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Abstract. Effective utilization of multi-domain data for brain disease
identification has recently attracted increasing attention since a large
number of subjects from multiple domains could be beneficial for inves-
tigating the pathological changes of disease-affected brains. Previous
machine learning methods often suffer from inter-domain data het-
erogeneity caused by different scanning parameters. Although several
deep learning methods have been developed, they usually assume that
the source classifier can be directly transferred to the target (i.e., to-
be-analyzed) domain upon the learned domain-invariant features, thus
ignoring the shift in data distributions across different domains. Also,
most of them rely on fully-labeled data in both target and source domains
for model training, while labeled target data are generally unavailable.
To this end, we present an Unsupervised Conditional consensus Adver-
sarial Network (UCAN) for deep domain adaptation, which can learn the
disease classifier from the labeled source domain and adapt to a different
target domain (without any label information). The UCAN model con-
tains three major components: (1) a feature extraction module for learn-
ing discriminate representations from the input MRI, (2) a cycle feature
adaptation module to assist feature and classifier adaptation between
the source and target domains, and (3) a classification module for dis-
ease identification. Experimental results on 1, 506 subjects from ADNI1
(with 1.5 T structural MRI) and ADNI2 (with 3.0 T structural MRI)
have demonstrated the effectiveness of the proposed UCAN method in
brain disease identification, compared with state-of-the-art approaches.

1 Introduction

Alzheimer’s disease (AD) is a slow fatal neurodegenerative disease affecting peo-
ple over the age of 65 years. Thus, the identification and analysis of AD and its
prodromal phase, i.e., mild cognitive impairment (MCI), are essential for early
treatment and possible delays in disease progression. Significant advances in neu-
roimaging have provided opportunities to study brain-related diseases, bringing
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Fig. 1. Illustration of the proposed Unsupervised Conditional consensus Adversar-
ial Network (UCAN), including (1) a feature extraction module with a convolutional
(Conv) layer and four type of residual blocks as the backbone, (2) a cycle feature adap-
tation (CFA) module to harmonize learned features and classifiers of the source and
target domains, and (3) a classification module. The input are a pair of images, i.e., xs

i

from the labeled source domain and xt
j from the unlabeled target domain (with learned

features as fs
i and f t

j , respectively). Here, gG = Cs(Gs→t(f
s
i )) + Ct(Gs→t(f

s
i )).

improvements in early detection of AD and MCI. Structural magnetic resonance
imaging (MRI) is widely used in AD studies because it provides an excellent
spatial resolution and a non-invasive method to study a patient’s brain. MRI-
based methods help predict the progression of MCI to AD, by describing brain
atrophy and change in the size of brain tissues explicitly [1,2].

Conventional MRI-based methods often suffer from inter-domain data het-
erogeneity caused by different scanning parameters, because models learned on
source domains are directly applied to problems in the to-be-analyzed target
domain [3–5]. For example, Cheng et al. [3] proposed the sharing domain trans-
fer learning method for MCI conversion prediction, which directly use the source
domain to be auxiliary for the target domain to select a subset of common fea-
tures. Several deep learning methods have been recently developed to alleviate
the issue of domain shift [6–10]. For example, Motiian et al. [6] provided a unified
framework to learn an embedding subspace for addressing the problem of super-
vised domain adaptation. A deep domain confusion network [7] was developed to
map data from both domains into a common feature space to reduce the domain
shift, measured by the maximum mean discrepancy (MMD). This method was
further extended to a deep adaptation network (DAN) via a multi-layer multi-
kernel selection technique [8] and a joint adaptation network (JAN) [9] for nat-
ural image classification. Long et al. [10] presented a conditional adversarial
domain adaptation network (CDAN) by integrating adversarial learning and
domain adaptation to a unified framework.

However, existing methods typically suffer from two limitations. (1) They are
usually based on the assumption that the source classifier and target classifier
can be shared directly. Unfortunately, such an assumption is too strong and
could not always hold in practical applications. (2) Many of them are supervised,
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relying on fully-labeled data in both target and source domains, and hence, they
cannot be applied to general problems, where there are labeled data in the source
domain and unlabeled data in the target domain.

As shown in Fig. 1, we propose an Unsupervised Conditional consensus
Adversarial Network (UCAN) for brain disease identification, where classifiers
learned from labeled source domain can be robustly adapt to a different target
domain (without any label information). Three major components are included:
(1) a feature extraction module for learning discriminate representations from
the input MRI, (2) a cycle feature adaptation module to harmonize learned MRI
features and classifiers of the source and target domains, and (3) a classifica-
tion module. Experimental results on two public datasets with structural MRIs
(acquired using different scanning parameters) suggest the efficacy of our method
in both tasks of AD/MCI identification and MCI conversion prediction.

2 Materials and Method

2.1 Subjects and Structural MR Image Pre-processing

Two datasets from the ADNI database [11] were employed in this work, includ-
ing ADNI1 and ADNI2. Since several subjects participated in both ADNI1 and
ADNI2, we remove these subjects from ADNI2 to ensure that these two datasets
are independent. Subjects in these datasets were divided into four categories:
(1) AD, (2) cognitively normal (CN), (3) progressive MCI (pMCI) that would
progress to AD within 36 months after baseline, and (4) static MCI (sMCI)
that would not progress to AD. The baseline ADNI1 dataset consists of 1.5 T
T1-weighted MR images acquired from a total of 785 subjects, including 231
NC, 246 sMCI, 103 pMCI, and 205 AD subjects. The baseline ADNI2 dataset
includes 3.0 T T1-weighted sMRI data acquired from 721 subjects, including 205
NC, 312 sMCI, 42 pMCI, and 162 AD subjects. A standard pipeline was used
to pre-process structural MR images, including (1) anterior commissure (AC)-
posterior commissure (PC) alignment; (2) skull stripping; (3) intensity correc-
tion; (4) cerebellum removal; (5) linear alignment to the Colin27 template [12];
(6) re-sampling all MR images to have the same size of 142 × 142 × 178mm3

(with a spatial resolution of 1 × 1 × 1mm3) corresponding to the coronal-plane
view, sagittal-plane view, and axial-plane view, respectively; and (7) intensity
inhomogeneity correction using the N3 algorithm [13].

2.2 Unsupervised Conditional Consensus Adversarial Network

We now present our conditional consensus adversarial domain adaptation frame-
work (see Fig. 1). We consider the problem of unsupervised adaptation in this
work. Denote xs

i (with its label ysi ) and xt
j (without label) as the i-th and the j-

th subjects from the source and target domains, respectively. Given ns subjects
from the source domain and nt subjects from the target domain, we represent the
labeled source domain as Ds = {(xs

i , y
s
i )}ns

i=1 and the unlabeled target domain as
Dt = {xt

j}nt
j=1. The goal is to learn a model that can correctly predict the label

of subjects from the target domain, based on labeled source data.
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Feature Extraction Module: Each input image is first fed into a convolution
(Conv) layer with the kernel/filter size of 7×7 and the channel size of 64 (stride:
2), followed by a max pooling with 3×3 filter (stride: 2). Then, we use the ResNet-
50 model [14] to extract MRI features of images from both the source and target
domains, including four types of residual blocks (with each block containing 3
Conv layers). The numbers of blocks are 3, 4, 6, and 3 for four types of residual
blocks, respectively. And the different parameters (i.e., [filters, channels]) for
these four types of blocks are listed below:

⎡
⎣

1 × 1, 64
3 × 3, 64
1 × 1, 256

⎤
⎦ ,

⎡
⎣

1 × 1, 128
3 × 3, 128
1 × 1, 512

⎤
⎦ ,

⎡
⎣

1 × 1, 256
3 × 3, 256
1 × 1, 1024

⎤
⎦ ,

⎡
⎣

1 × 1, 512
3 × 3, 512
1 × 1, 2048

⎤
⎦ .

Cycle Feature Adaptation Module: Using learned features (i.e., fs
i for xs

i

and f t
j for xt

j) via the feature extraction module, we further perform domain
adaptation to harmonize data from the source and target domains. Let Cs and
Ct be the task-specific classification models trained on the source and target
domains, respectively. We can begin by simply learning a source classifier Cs

with the cross-entropy loss as follows

Ltask(Cs, x
s
i , y

s
i ) = E(xs

i ,y
s
i )∼Ds

1
ns

ns∑
i=1

L(Cs(xs
i ), y

s
i ), (1)

where L(·, ·) is the cross-entropy function.
As shown in Fig. 1 (b), our proposed cycle feature adaptation module has

a symmetric network design, based on which we augment the cycle generative
adversarial structure to promote the efficacy of feature adaptation. By directly
mapping the source feature (e.g., fs

i ) to the target domain via a generator Gs→t

and mapping the target feature (e.g., f t
j ) to the source domain via a generator

Gt→s, we aim to remove the low-level differences between features from two
domains, ensuring that our learned model is well-conditioned on target domain
alignment. We assume that having cycles in both directions helps perform global
domain alignment by learning features in the adaptation process, and employ
the following source domain loss Lsdom and the target domain loss Ltdom:

Lsdom(Ds, f
s
i , f

t
j ) = − Exs

i∼Ds logDs(fs
i ) − Ext

j∼Dt log(1 − Ds(Gt→s(f t
j ))),

(2)
Ltdom(Dt, f

s
i , f

t
j ) = − Ext

j∼Dt logDt(f t
j ) − Exs

i∼Ds log(1 − Dt(Gs→t(fs
i ))),

(3)
where Ds and Dt denote the discriminators corresponding to the source and
target domains, respectively. And Gs→t denotes the generator to map source
features to the target domain, while Gt→s is the generator to map target features
to the source domain.

To distinguish features from different domains, we first concatenate the fea-
ture representation (e.g., fs

i ) and classifier prediction (e.g., gsi ) from each domain.
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Such a concatenation operation could capture the inherent relationship of task-
specific features and classifier prediction results, formulated as follows:

hs
i = fs

i ⊕ gsi , ht
j = f t

j ⊕ gtj .

We then employ the above inherent relationship between features and clas-
sifier prediction as discriminative representation conditioning on the adversarial
learning, encouraging the distributions of source data and target data to be sim-
ilar. Thus, the adversarial loss based on the discriminative representations (e.g.,
hs
i and ht

j) of the source and target domains can be formulated as follows:

Ladv(D,hs
i , h

t
j) = −Exs

i∼Ds logD(hs
i ) − Ext

j∼Dt log(1 − D(ht
j)), (4)

where D is the discriminator to tell the domain labels (e.g., source or target
domain) of the input paired images based on hs

i and ht
j .

Classification Module: Since data in the target domain are unlabeled, we pro-
pose to employ the generated feature representation (via the generator Gs→t)
and its label in the source domain to improve the robustness of the target clas-
sifier. Given a feature vector fs

i , we denote gG = Cs(Gs→t(fs
i )) +Ct(Gs→t(fs

i ))
as the prediction for our generated feature Gs→t(fs

i ), and such predictions are
achieved by the source classifier Cs and the target classifier Ct. Then, we develop
a task-specific loss to assist the classification tasks in both the source and target
domains, which is formulated as follows:

L′
task(Cs, Ct, Gs→t(fs

i ), ysi )

= E(Gs→t(fs
i ),y

s
i )∼Ds

1
ns

ns∑
i=1

(L(Cs(Gs→t(fs
i )), ysi ) + L(Ct(Gs→t(fs

i )), ysi )) ,
(5)

through which we can explicitly learn the target classifier Ct, even though there
are no labeled data in the target domain.

By combining Eqs. (1)–(5), we obtain the objective function of our UCAN
model as follows:

min
Cs,Ct

min
Gt→s,Gs→t

min
Ds,Dt,D

Ltotal(Cs, Ct, x
s
i , y

s
i , x

t
j , Gt→s, Gs→t,Ds,Dt,D)

= Ltask(Cs, x
s
i , y

s
i ) + L′

task(Cs, Ct, Gs→t(fs
i ), ysi )

+ Lsdom(Ds, f
s
i , f

t
j ) + Ltdom(Dt, f

s
i , f

t
j )

+ Ladv(D,hs
i , h

t
j).

(6)

Implementation: The proposed network is implemented in PyTorch. Specifi-
cally, in the training stage, we first pre-train the feature extraction module using
ResNet-50 [14] on ImageNet (with the Pytorch source code provided in https://
github.com/KaimingHe/deep-residual-networks), and then train the entire net-
work in an end-to-end manner for 500 epochs. The Adam solver is used with a

https://github.com/KaimingHe/deep-residual-networks
https://github.com/KaimingHe/deep-residual-networks
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Fig. 2. Results of five different methods in both tasks of (a) disease identification and
(b) MCI conversion prediction.

batch size of 36 and a learning rate of 3 × 10−3. In the testing stage, we feed
the testing MRI into the bottom part of the trained UCAN model (only the
target domain) to predict its class label. For each 3D structural MR image, we
extract its slices from three views (i.e., coronal-plane, sagittal-plane and axial-
plane views), followed by feeding slides of each view to the proposed network.
Finally, the results based on slides of three views for each subject are fused
using the majority voting strategy to get the final result. Each slice is re-sized to
256 × 256 with zero-filling before being fed into our network. Besides, we apply
both horizontal and vertical flip to MRI slides for data augmentation.

3 Experiment

Experimental Setup: The proposed UCAN method was compared with
three state-of-the-art methods for deep domain adaptation using structural MR
images, including (1) Deep Adaptation Network (DAN) [8], and (2) Joint Adap-
tation Network (JAN) [9], and (3) Conditional Domain Adaptation Network
(CDAN) [10]. To evaluate the efficacy of the proposed cycle feature adapta-
tion (CFA) module (see Fig. 1), we further compare our UCAN with its vari-
ant without using the CFA module (called UCAN-c). Except for the CFA
module, UCAN-c and UCAN share the same network architecture. For a fair
comparison, both DAN and JAN methods employ the suggested network archi-
tecture and parameters provided by the authors (see https://github.com/thuml/
Xlearn), while CDAN uses the same settings provided by the respective paper
(see https://github.com/thuml/CDAN). Two groups of experiments were per-
formed, including (1) brain disease identification (i.e., AD vs. pMCI vs. sMCI
vs. NC classification), and (2) MCI conversion prediction (i.e., pMCI vs. sMCI
classification). To validate the robustness of a specific method, a two-fold cross-
validation was used in the experiments. In the 1st fold (i.e., “ADNI1→ADNI2”),
we treated ADNI1 as the source domain and ADNI2 as the target domain. In
the 2nd fold (i.e., “ADNI2→ADNI1”), we regarded ADNI2 as the source domain
and ADNI1 as the target domain. The classification accuracy was employed as
the evaluation metric in the task of pMCI vs. sMCI classification, while the
averaged accuracy among four categories was used in the task of brain disease
identification.

https://github.com/thuml/Xlearn
https://github.com/thuml/Xlearn
https://github.com/thuml/CDAN
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Fig. 3. Results of the proposed UCAN model using MRI slices from three different
views in (a) disease identification and (b) MCI conversion prediction.

Results of Disease Identification: Figure 2(a) reports the results achieved
by five different methods in the task of brain disease identification (i.e., AD
vs. pMCI vs. sMCI vs. NC classification), from which one may have the fol-
lowing observations. First, our UCAN method achieved the best performance
in two-fold cross-validation, compared with three deep learning methods (i.e.,
DAN, JAN, and CDAN). Second, our UCAN consistently outperforms its degen-
erated variant (i.e., UCAN-c). For instance, using ADNI1 as the source domain
(i.e., “ADNI1→ADNI2”), the average accuracy of four-category classification
achieved by UCAN is 0.4429 for subjects in the target ADNI2 domain, while
UCAN-c only yields an average accuracy of 0.4351. This clearly suggests the
effectiveness of our proposed cycle feature adaptation module to alleviate the
data distribution shift among source and target domains. Besides, the overall
performance achieved by five methods in the 2nd fold (i.e., “ADNI2→ADNI1”)
is worse than that of different methods in the 1st fold (i.e., “ADNI1→ADNI2”).
The possible reason is that ADNI2 is a relatively unbalanced dataset (e.g., the
number of pMCI subjects is largely less than the other three categories, com-
pared with ADNI1. In such a case, models trained on ADNI2 are less robust
than those trained on the balanced ADNI1 dataset.

Results of Disease Progression Prediction: We also report the results of
five methods in MCI conversation prediction (i.e., pMCI vs. sMCI classification)
in Fig. 2(b). From this figure, a similar trend can be found as that in the task of
brain disease identification. That is, our UCAN method is consistently superior
to the four competing methods in both folds. The underlying reason is being
that our method can capture the relationship between feature representations
and classifier predictions as complementary information in the training process.
Considering that the domain adaptation between the source and target domains
in the task of pMCI vs. sMCI classification is a severe data unbalanced problem,
these results further demonstrate the robustness of the proposed UCAN method.

Discussion and Future Work: In the current work, the input data of UCAN
are 2D image slices extracted from three views (i.e., sagittal-plane, axial-plane,
and coronal-plane views). We now investigate the influence of different views on
the performance of our method, with results reported in Fig. 3. From Fig. 3, one
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can observe that the overall best performance is achieved by using the sagittal-
plane view in 1st fold. In the experiments, we equally treat three views to gen-
erate the prediction result for a testing subject, by fusing the results of UCAN
using slides of three views via majority voting. Using a weighted voting strategy
seems to be more reasonable, which will be our future work. Besides, we plan
to employ 3D (rather than 2D) convolution in the proposed network to take
advantage of the global structure information of 3D MRIs.

4 Conclusion

We present an unsupervised conditional consensus adversarial network (UCAN)
for deep domain adaptation, which can learn the disease classifier from the
labeled source domain and adapt to a different target domain. Specifically, we
first design a feature extraction module to learn representations from input MRI,
followed by a cycle feature adaptation module to harmonize features and classi-
fiers of the source and target domains. Experimental results on 1, 506 subjects
suggest the efficacy of the proposed method.
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