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Abstract. While functional magnetic resonance imaging (fMRI) is
important for healthcare/neuroscience applications, it is challenging to
classify or interpret due to its multi-dimensional structure, high dimen-
sionality, and small number of samples available. Recent sparse mul-
tilinear regression methods based on tensor are emerging as promis-
ing solutions for fMRI. Particularly, the newly proposed tensor singu-
lar value decomposition (t-SVD) sheds light on new directions. In this
work, we study t-SVD for sparse multilinear regression and propose a
Sparse tubal-regularized multilinear regression (Sturm) method for
fMRI. Specifically, the Sturm model performs multilinear regression with
two regularization terms: a tubal tensor nuclear norm based on t-SVD
and a standard �1 norm. An optimization algorithm under the alter-
nating direction method of multipliers framework is derived for solving
the Sturm model. We then perform experiments on four classification
problems, including both resting-state fMRI for disease diagnosis and
task-based fMRI for neural decoding. The results show the superior per-
formance of Sturm in classifying fMRI using just a small number of
voxels.

1 Introduction

Brain diseases affect millions of people worldwide and impose significant chal-
lenges to healthcare systems. Functional magnetic resonance imaging (fMRI) is
a key brain imaging technique for diagnosis, monitoring and treatment of brain
diseases. Beyond healthcare, fMRI is also an indispensable tool in neuroscience
studies [5].

Facing the challenging “large p (brain voxels) small n (samples)” problem
in brain imaging, sparse learning models [9,11] are found to be attractive on

W. Li and J. Lou—These authors contributed equally to this work.

c© Springer Nature Switzerland AG 2019
H.-I. Suk et al. (Eds.): MLMI 2019, LNCS 11861, pp. 256–264, 2019.
https://doi.org/10.1007/978-3-030-32692-0_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32692-0_30&domain=pdf
https://doi.org/10.1007/978-3-030-32692-0_30


Sturm: Sparse Tubal-Regularized Multilinear Regression for fMRI 257

fMRI data because they can reveal the direct dependency of a response (e.g.,
diagnosis outcome or brain states) on a small portion of features i.e., brain voxels.
Recently, tensor-based sparse multilinear regression methods are emerging as a
promising direction, where tensor refers to multidimensional array. For example,
a 3D fMRI volume can be seen as a 3D tensor or a third-order tensor.

Tensor-based sparse multilinear regression models relate a feature tensor with
a univariate response via a coefficient tensor, generalizing Lasso-based models [4]
to tensor data. Regularization that promotes sparsity and low rankness is also
generalized to the coefficient tensor. For example, the regularized multilinear
regression and selection (Remurs) model [12] incorporates a sparse regulariza-
tion term, via an �1 norm, and a Tucker rank -minimization term [13], via a
summation of the nuclear norms (SNN) of unfolded matrices with application
to task-based fMRI data. A new Tubal Tensor Nuclear Norm (TNN) [14] has
recently been proposed based on the tubal rank, which originates from the tensor
singular value decomposition (t-SVD) [6]. In this work, we study sparse multilin-
ear regression under the t-SVD framework for fMRI classification. The success of
TNN was limited to unsupervised learning settings such as completion/recovery
and robust PCA [2]. To our knowledge, TNN has not been studied in a super-
vised setting yet, such as multilinear regression for predicting a response based
on a set of tensor-structural samples. Moreover, the targeted fMRI classification
tasks have the challenge of small sample size (relative to the feature dimension).

Our contributions are twofold: (1) We propose a Sparse tubal-regularized
multilinear regression (Sturm) method that incorporates TNN regularization
and a sparsity regularization on the coefficient tensor; (2) We evaluate Sturm
and related methods on both resting-state and task-based fMRI classification
problems, instead of only one of them as in previous work [3].

2 Method

Notations. We use lowercase, bold lowercase, bold uppercase, calligraphic
uppercase letters to denote scalar, vector, matrix, and tensor, respectively. A
third-order tensor A ∈ R

I1×I2×I3 is addressed by three indices {in}, n = 1, 2, 3.
Each in usually addresses the nth mode of A. For example, in a 3D fMRI volume,
I1, I2 and I3 could indicate the sagittal, coronal and axial dimension, respectively.

2.1 Tubal Rank and Tubal Tensor Nuclear Norm (TNN)

Tubal rank is derived from the t-SVD as illustrated in Fig. 1, where U ∈
R

I1×I1×I3 , V ∈ R
I2×I2×I3 are orthogonal tensors, and S ∈ R

I1×I2×I3 is an
f-diagonal tensor. The number of nonzero singular tubes (along the diagonal
direction) of S is defined as the tubal rank.

t-SVD can be computed efficiently via the discrete Fourier transfer (DFT).
Denote the Fourier transformed tensor A as AF, AF = fft(A, [ ], 3). As a convex
relaxation for the tubal rank, the TNN of A ∈ R

I1×I2×I3 is defined as ‖A‖TNN =
1
I3

∑I3
i3=1 ‖A(i3)

F ‖∗, where ‖ · ‖∗ denotes the matrix nuclear norm. More about
t-SVD and TNN can be found in [14].
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Fig. 1. Illustration of t-SVD A = U ∗ S ∗ V�, ∗ means tensor product [6], assuming
I1 > I2. U and V are orthogonal tensors. S is an f-diagonal tensor. Tubal rank is the
number of nonzero singular tubes of S. In this example, the tubal rank is 6.

2.2 The Sturm Model

Regularized Multilinear Regression Model. This approach trains a
model from M pairs of feature tensor and associated response label, (Xm ∈
R

I1×I2×I3 , ym) with m = 1, ...,M , to relate them via a coefficient tensor
W ∈ R

I1×I2×I3 as

min
W

1
M

M∑

m=1

L(〈Xm,W〉, ym) + λΩ(W), (1)

where L(·) is a loss function, Ω(·) is a regularization term, λ is a balancing hyper-
parameter, and 〈X ,W〉 denotes the inner product (a.k.a. the scalar product) of
two tensors of the same size:

〈X ,W〉 :=
∑

i1

∑

i2

∑

i3

X (i1, i2, i3) · W(i1, i2, i3). (2)

The State-of-the-Art Model. The Remurs [12] model has been successfully
applied to task-based fMRI data. It uses a conventional least square loss function
and assumes W to be both sparse and low rank. The sparsity of W is regularized
by an �1 norm and the low rank by an SNN norm. However, the SNN requires
unfolding W into matrices, susceptible to losing some higher-order structural
information. Moreover, it has been pointed out in [10] that SNN is not a tight
convex relaxation of its target rank.

A New Model. The limitation of SNN motivates us to propose a Sparse
tubal-regularized multilinear regression (Sturm) model which replaces SNN
in Remurs with TNN. This leads to the following objective function

min
W

1
2

M∑

m=1

(ym − 〈Xm,W〉)2 + τ‖W‖TNN + γ‖W‖1, (3)

where τ and γ are hyperparameters, and ‖W‖1 is the �1 norm of tensor W,
defined as ‖W‖1 =

∑
i1

∑
i2

∑
i3

|W(i1, i2, i3)| , which is equivalent to the �1
norm of its vectorized representation w. Here, the TNN regularization term
‖W‖TNN enforces low tubal rank in W.
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Optimization Algorithm for Sturm. ADMM [1] is a standard solver for
Problem (3). Thus, we derive an ADMM algorithm to optimize the Sturm objec-
tive function. We begin with introducing two auxiliary variables, A and B to
disentangle the TNN and �1-norm regularization:

min
W

1
2

M∑

m=1

(ym−〈Xm,A〉)2+τ‖B‖TNN +γ‖W‖1, s.t. A = W and B = W. (4)

Then, we introduce two Lagrangian dual variables P (for A) and Q (for B).
With a Lagrangian constant ρ, the augmented Lagrangian becomes,

Lρ(A,B,W,P,Q) =
1
2

M∑

m=1

(ym − 〈Xm,A〉)2 + τ‖B‖TNN + γ‖W‖1

+
〈
P,A − W

〉
+

ρ

2
‖A − W‖2F +

〈
Q,B − W

〉
+

ρ

2
‖B − W‖2F .

(5)

where ‖ · ‖F is the Frobenius norm defined as ‖T ‖F =
√

〈T , T 〉 using Eq. (2).
We further introduce two scaled dual variables P ′ = 1

ρP and Q′ = 1
ρQ only for

notational convenience. Next, we derive the update from iteration k to k + 1 by
minimizing one variable with all the other variables fixed.

Updating Ak+1:

Ak+1 = arg min
A

1
2

M∑

m=1

(ym − 〈Xm,A〉)2 +
ρ

2
‖A − Wk + P ′k‖F . (6)

This can be rewritten as a linear-quadratic objective function by vectorizing all
the tensors. Specifically, let a = vec(A), wk = vec(Wk), p′k = vec(P ′k), y =
[y1 · · · yM ]�, xm = vec(Xm), and X = [x1 · · ·xM ]�. Then we get an equivalent
objective function with the following solution:

ak+1 = (X�X + ρI)−1(X�y + ρ(wk − p′k)), (7)

where I is an identity matrix. Ak+1 is obtained by folding (reshaping) ak+1 into
a third-order tensor, denoted as Ak+1 = tensor3(ak+1).

Updating Bk+1:

Bk+1 = argmin
B

τ‖B‖TNN +
ρ

2
‖B−Wk +Q′k‖2F = prox τ

ρ ‖·‖T NN
(Wk−Q′k). (8)

The proximal operator for the TNN at tensor T with parameter μ is denoted
by proxμ‖·‖T NN

(T ) and defined as
proxμ‖·‖T NN

(T ) := arg minW μ‖W‖TNN + 1
2‖W − T ‖2F . More details of the

TNN proximal operator can be found in [14].

Updating Wk+1:

Wk+1 = prox γ
2ρ ‖·‖1

(Ak+1 + P ′k + Bk+1 + Q′k)/2. (9)
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It can be solved by calling the proximal operator of the �1 norm with param-
eter γ

2ρ , which is simply the element-wise soft-thresholding, i.e., proxμ‖·‖1
(T ) =

sign(T )(|T | − μ)+.

Updating Pk+1 and Qk+1:

P ′k+1 = P ′k + Ak+1 − Wk+1, and Q′k+1 = Q′k + Bk+1 − Wk+1. (10)

Optimization Algorithm Analysis. Sturm is an instance of the ADMM algo-
rithm applied to linear constraint convex optimization problem, which is guar-
anteed to converge with a 1

ε convergence rate [1].

3 Experiments and Discussion

3.1 Classification Problems and Datasets

Resting-State fMRI for Disease Diagnosis. We use two freely available
datasets. Rest 1 – ABIDENY U&UM : the two largest subsets NYU and UM from
the Autism Brain Imaging Data Exchange (ABIDE)1, which consists of 101
patients with autism spectrum disorder (ASD) and 131 healthy control sub-
jects. Rest 2 – ADHD-200NY U : the NYU subset from the Attention Deficit
Hyperactivity Disorder (ADHD) 200 dataset2 with 118 ADHD patients and 98
healthy controls. The 4D raw fMRI data is reduced to 3D by either taking the
average or the amplitude of low frequency fluctuation of voxel values along the
time dimension. We perform experiments on both and report the best results.

Task-Based fMRI for Neural Decoding. We consider four datasets from the
OpenfMRI3 in two binary classification problems. Task 1 – Balloon vs Mixed
Gamble, two gamble-related datasets with 64 subjects in total; and Task 2 –
Simon vs Flanker, two recognition and response related tasks with overall 94
subjects. The OpenfMRI data is processed with a standard template following
[8] to obtain the 3D statistical parametric maps (SPMs) for each brain condition.

3.2 Algorithms and Evaluation Settings

Algorithms. Sturm and Sturm + SVM (support vector machine) are compared
against the following four algorithms and three additional algorithms combining
with SVM.

– SVM : a linear SVM is chosen for both speed and accuracy consideration.
– Lasso [4]: a linear regression method with the �1 norm regularization.
– Elastic Net (ENet) [15]: a linear regression method with �1 and �2 norm.
– Remurs [12]: a multilinear regression model with �1 norm and Tucker rank-

based SNN regularization.
1 http://fcon 1000.projects.nitrc.org/indi/abide.
2 http://neurobureau.projects.nitrc.org/ADHD200/Data.html.
3 https://legacy.openfmri.org.

http://neurobureau.projects.nitrc.org/ADHD200/Data.html
https://legacy.openfmri.org
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SVM, Lasso, and ENet take vectorized fMRI data as input while Remurs
directly takes 3D fMRI tensors as input. In addition, Lasso, ENet, Remurs, and
Sturm can also be used for feature selection. Hence, we can use the selected
voxels from each of the above algorithm as input to SVM for classification i.e.,
Lasso + SVM, ENet + SVM, Remurs + SVM and Sturm + SVM.

Model Hyper-parameter Tuning. For Sturm, we follow the Remurs default
setting [12] to set ρ to 1 and use the same set {10−3, 5 × 10−3, 10−2, . . . , 5 ×
102, 103} for τ and γ, additionally scaling the first term in Eq. (3) by a factor
α =

√
(max(I1, I2) × I3) to better balance the scales of the loss function and

regularization terms [7]. Ten-fold cross validation is applied for tuning hyper-
parameters in all the algorithms.

Image Resizing. To improve computational efficiency and reduce the small
sample size problem (and overfitting), the input 3D tensors are further re-sized
into three different sizes with a factor β, choosing from {0.3, 0.5, 0.7}. The best
accuracy from all three sizes is reported for each algorithm in this paper.

Feature Selection. In Lasso + SVM, ENet + SVM, Remurs + SVM, and
Sturm + SVM, we rank the selected features by their associated absolute values
of W in the descending order and feed the top η% of the features to SVM. We
study five values of η: {1, 5, 10, 50, 100} and report the best accuracy for each
algorithm.

Evaluation Metric and Method. The classification accuracy is our primary
evaluation metric, and we also examine the sparsity of the obtained solutions for
all algorithms except SVM. The sparsity is calculated as the ratio of the number
of zeros in the output coefficient tensor W to its size I1 × I2 × I3. In general,
higher sparsity implies better interpretability [4].

Table 1. Classification accuracy (mean ± standard deviation in %). Rest 1 and Rest
2 denote two disease diagnosis problems on ABIDENY U&UM and ADHD-200, respec-
tively. Task 1 and Task 2 denote two neural decoding problems on OpenfMRI datasets
for Balloon vs Mixed gamble and Simon vs Flanker, respectively. The best accuracy
among all of the compared algorithms for each column is highlighted in bold and the
second best is underlined.

Method Rest 1 Rest 2 Task 1 Task 2 Average

Rest Task All

SVM 60.78 ± 0.09 63.97 ± 0.09 87.38 ± 0.12 82.56 ± 0.17 62.38 84.97 73.67

Lasso 61.16 ± 0.08 64.84 ± 0.11 87.38 ± 0.12 85.22 ± 0.07 63.00 86.30 74.65

ENet 61.21 ± 0.10 64.38 ± 0.10 81.19 ± 0.15 82.56 ± 0.17 62.80 81.87 72.34

Remurs 60.72 ± 0.08 62.13 ± 0.09 87.14 ± 0.13 84.67 ± 0.15 61.43 85.90 73.67

Sturm 62.05 ± 0.11 63.47 ± 0.07 89.10 ± 0.09 86.89 ± 0.16 62.76 88.00 75.38

Lasso + SVM 63.37 ± 0.08 62.56 ± 0.09 74.05 ± 0.20 72.11 ± 0.16 62.97 73.08 68.02

ENet + SVM 64.20 ± 0.07 61.61 ± 0.08 76.43 ± 0.14 72.00 ± 0.14 62.91 74.21 68.56

Remurs + SVM 64.67 ± 0.10 60.23 ± 0.10 81.19 ± 0.12 83.56 ± 0.19 62.45 82.37 72.41

Sturm+ SVM 64.66 ± 0.12 66.24 ± 0.06 78.10 ± 0.22 82.44 ± 0.16 65.45 80.27 72.86
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Table 2. Sparsity (mean ± standard deviation) for respective results in Table 1 with
the best and second best highlighted.

Method Rest 1 Rest 2 Task 1 Task 2 Average

Rest Task All

Lasso 0.52 ± 0.09 0.23 ± 0.32 0.74 ± 0.12 0.73 ± 0.01 0.38 0.73 0.55

ENet 0.60 ± 0.01 0.01 ± 0.01 0.96± 0.05 0.95± 0.03 0.31 0.96 0.63

Remurs 0.69 ± 0.03 0.73 ± 0.17 0.81 ± 0.08 0.81 ± 0.07 0.71 0.81 0.76

Sturm 0.86 ± 0.18 0.86 ± 0.24 0.72 ± 0.24 0.60 ± 0.15 0.86 0.66 0.76

Lasso + SVM 0.57 ± 0.05 0.19 ± 0.40 0.77 ± 0.10 0.75 ± 0.06 0.38 0.76 0.57

ENet + SVM 0.58 ± 0.09 0.02 ± 0.01 0.96± 0.04 0.95± 0.04 0.30 0.96 0.63

Remurs + SVM 0.70 ± 0.13 0.74 ± 0.17 0.80 ± 0.04 0.79 ± 0.13 0.72 0.79 0.76

Sturm + SVM 0.87± 0.07 0.99± 0.01 0.85 ± 0.14 0.56 ± 0.11 0.93 0.71 0.82

3.3 Result Discussion and Visualization

Classification Accuracy. Table 1 shows the classification accuracy for all algo-
rithms. Over the two resting-state problems, Sturm + SVM has the highest accu-
racy of 65.45%, and Lasso is the second-best (63.00%). Whereas, on these two
task-based problems, Sturm has outperformed all other algorithms in accuracy,
with 88.00% accuracy. Lasso is again the second-best in accuracy (86.30%). One
interesting observation is that on task-based classification problems, Sturm +
SVM has significant drop in accuracy compared with Sturm alone, and Lasso +
SVM, ENet + SVM and Remurs + SVM all have lower accuracy compared to
without SVM. Overall, Sturm still achieves the highest accuracy.

Model Sparsity. Table 2 presents the respective sparsity values except SVM,
which uses all features so the sparsity is zero. Over the two resting-state clas-
sification problems, Sturm + SVM and Sturm are the top two algorithms with
sparsity of 0.93 and 0.86, respectively. Noticeably, Lasso & ENet fail to select a
sparse solution via cross validation on Rest 2. Over the two task-based problems,
both ENet and ENet + SVM have the best sparsity (0.96). However, both of
them have much lower accuracy than Sturm and Remurs. Over all the problems,
Sturm + SVM obtains the most sparse model with the overall sparsity of 0.82,
meanwhile, Sturm and Remurs have almost identical sparsity of 0.76.

Weight Map Visualization. Take Task Simon vs Flanker as an example. The
selected voxels on two brain slices from the top 5% (4514 voxels, ranked by the
absolute weights) of the full-brain voxels are visualized in Fig. 2 using the best
performing parameters in cross-validation of Lasso, ENet, Remurs and Sturm.
Figure 2 clearly shows that Sturm and Remurs select more spatially connected
voxels than Lasso or ENet does, resulting in more robust and easier interpreted
models for further analysis. Both Sturm and Remurs choose voxels from highly
consistent regions, while Sturm produces weight maps with slightly higher visual
contrast than Remurs does.
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(a) Lasso (b) ENet

(c) Remurs (d) Sturm

Fig. 2. Weight maps on Task Simon vs Flanker. Sturm and Remurs select clear regions
which are easier for further analysis than Lasso and ENet.

4 Conclusion

The proposed multilinear regression model (Sturm) performs regression with
regularization on the tubal tensor nuclear norm (TNN), demonstrates the supe-
rior overall performance of Sturm (and Sturm + SVM, in some cases) over other
methods in terms of accuracy, sparsity and weight maps. Thus, it is promising
to use TNN and tubal rank regularization in a supervised setting for fMRI.
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