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Abstract. Deep neural network (DNN) models are widely applied in
biomedical image studies since DNN models take advantage of massive data to
provide improved performance over traditional machine learning models.
However, like any other data-driven models, DNN models still face general-
ization limitations. For example, a model trained on clinical data from one
hospital may not perform as well on data from another hospital. In this work, a
novel approach is proposed to determine confident samples from unseen data on
which a DNN model will have improved performance. Confident samples are
defined as inliers identified by an outlier detector, which is based on projection
of training data onto a standard feature space (e.g. ImageNet feature space). The
hypothesis of the proposed method is that in a standard feature space, a DNN
model will perform better on the inlier data samples and more poorly on the
outliers. While projecting the unseen data to a standard feature space, if data
points are detected as inliers, then the model will likely have consistent per-
formance on those inliers as those patterns have already been “seen” from the
training dataset. To validate our hypothesis, experiments were conducted using
publicly available digit image datasets and chest X-ray images from three
unseen datasets collected across U.S. and Canada hospitals. The experimental
results showed consistently improved performance across various DNN models
on all confident samples from unseen datasets.

Keywords: Deep neural network � Feature extraction � Outlier detection �
Confident samples

1 Introduction

Deep neural network (DNN) methods have been successfully applied in healthcare
domain in recent years. With significant advances in improving the performance of
DNN models, it is also crucial to find or detect whether the model has produced a
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confident prediction, especially for unseen data. The lack of confidence in model
predictions may result in poor clinical decisions, which is especially relevant in the
medical diagnosis field [1].

In the literature, researchers have estimated the model confidence by quantifying
the uncertainty of the model using Monte Carlo dropout [2]. This approach can be
applied to image segmentation as in [3] where overall segmentation accuracy improved
when pixels with high uncertainty were dropped. Bayesian dropout was also used to
estimate prediction uncertainty in diagnosing diabetic retinopathy using fundus images
[4]. Diagnostic performance was improved when estimates of uncertainty were used to
filter out samples [4].

Other recent work on classification using a filtering strategy for DNNs has been
done to filter out instances where the base model prediction is not confident [5]. This
method used the outputs of model softmax layer to determine a threshold to optimize
sensitivity while preserving precision at a given confidence level [5]. Hendrycks et al.
[6] reported a method to measure the confidence score of unseen examples by finding
the difference between output probabilities from the final softmax activation layer and
true probabilities. In the study, they performed outlier detection between popular
computer vision datasets, such as MNIST. However, the out-of-domain examples are
visually very different from the in-domain examples in their study. In real world
applications, image data from different data sources are often visually indistinguish-
able. As shown in Fig. 1, the hospital of origin cannot be determined by visual
assessment of examples of chest X-ray images from different datasets used in the
present study.

Fig. 1. Good and bad lung field data collected from different data sources. (a) NIH good lung
field image, (b) NIH bad lung field image, (c) Source 1 good lung field image, (d) Source 1 bad
lung field image, (e) Source 2 good lung field image, (f) Source 2 bad lung field image,
(g) Source 3 good lung field image and (h) Source 3 bad lung field image.

66 M. Zhang et al.



In this paper, we propose a generalized novel approach to find the confident pre-
dictions when applying DNN models. Borrowing the ideas from Inception Score
(IS) [7] and Fréchet Inception Distance (FID) [8] to measure similarity across image
datasets, the proposed method projects correctly predicted training data samples onto a
standard feature space (ImageNet [9] feature space based on the VGG16 [10] network).
An outlier detection model is then trained and built based on a standard feature space to
identify the inlier samples on the training dataset. Such inlier samples are considered as
confident samples of the model as defined by the projected features from the training
dataset. Unseen data is projected onto a standard feature space and passed through the
outlier detector. The unseen data is not touched during training and only given to the
model for model prediction. The model is considered to be confident on predictions on
inlier samples as those samples are expected to be similar to the training dataset.
Otherwise, the model is not expected to be confident, and we cannot rely on the
model’s prediction. To evaluate the proposed approach, several datasets are used in this
paper: the Modified National Institute of Standards and Technology (MNIST) hand-
written digits [11] as training data with the United States Postal Service (USPS) [12]
and Street View House Number (SVHN) [13] digit datasets as test data, and the
National Institutes of Health (NIH) Chest X-ray dataset [14] as training data with
private test datasets across three U.S. and Canada hospitals. Three state-of-art DNN
networks including VGG16 [10], ResNet50 [15] and DenseNet121 [16] were
employed to evaluate the generalizability of this approach.

2 Methods

For an unseen dataset, a DNN model is expected to maintain consistent performance on
data that are similar or close to training data. In order to compare training data to
unseen data, it is beneficial to project those datasets onto a standard feature space as
shown in the literature [7]. In this study, we utilize the ImageNet feature space as our
standard feature space. A model is expected to have consistent performance on data
that are close to the training data in the ImageNet feature space. The workflow of
proposed method is shown in Fig. 2. When a new unseen sample is given, first, it is
projected onto the ImageNet feature space to generate a feature vector. Second, the
outlier detector predicts whether the unseen data sample is an inlier (close to training
dataset) or an outlier (far from training dataset). It is noted that a data-driven model
learns common patterns from most samples within a group or class and that outlier
samples are more often associated with wrong predictions. We expect a DNN model to
maintain consistent performance on inliers when compared to the performance on test
samples from the same distribution as the training data.
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2.1 Standard Feature Space

To evaluate the similarity between two image datasets, Salimans et al. [7] first proposed
the Inception Score (IS), which is computed by projecting both image datasets onto the
ImageNet label space using an ImageNet pre-trained Inception model [17]. Images are
projected onto this standard space because ImageNet provides 1000 categories of
classification labels and it has been shown that it is more reliable to calculate entropies
over classification labels in a standard space. Later, Heusel et al. [8] proposed the
Fréchet Inception Distance (FID) to improve the consistency of the IS. They used the
features from coding layers instead of classification labels to obtain vision-relevant
features. The Fréchet distance is calculated from this standard feature space to improve
the consistency of similarity measurements across two image datasets.

Borrowing the same idea, to better measure the similarity between the training data
and the unseen data, we project our images onto the ImageNet feature space. Due to the
page limit, only the results of the standard feature space built on the VGG16 network
pretrained on ImageNet are shown in this paper. Results using the ResNet50, Dense-
Net121 and InceptionV3 pre-trained ImageNet standard feature spaces are given in the
Supplementary Material.

2.2 Outlier Detector

Both IS and FID explicitly measure the distribution similarity between two image sets.
However, a large number of images, on the order of thousands of samples, is required
to accurately estimate the similarity measurement. In this paper, we aim to identify the
similarity of each individual case from an unseen data source against the training
dataset. As such, IS and FID cannot be applied here. Therefore, we employ an outlier
detection method to classify the data into inliers and outliers to inexplicitly measure the
distance between individual cases from an unseen data source and the training dataset.

State of art outlier detector methods in the literature include Isolation Forest
(IF) [18] and one-class support vector machine (OCSVM) [19]. IF algorithm is a

Fig. 2. Illustration of the proposed method.
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powerful unsupervised ensemble method for outlier detection based on decision trees.
The averaged random tree path length determines whether a data point is an inlier or an
outlier. OCSVM identifies the smallest hypersphere consisting of all the data. Data
points that fall inside the hypersphere are considered to be inliers, whereas data points
outside the hypersphere are considered to be outliers.

In this study, we employed and compared both IF and OCSVM to detect inliers and
outliers from unseen data against the training dataset. To construct the outlier detector,
only correctly predicted training samples using DNN models are projected onto a
standard feature space (ImageNet feature space). The outlier detector is built on these
extracted features and is given an outlier ratio, which is defined as the proportion of
outliers present in the training data. The outlier ratio helps the outlier detector define the
decision boundary to determine outlier data points.

Samples classified as inliers by the outlier detector are considered as confident
samples for the DNN models. For the unseen data, model performance is evaluated on
the confident samples to evaluate performance improvement on such samples. Detailed
experiments will be discussed in next section.

3 Experiments

To validate the proposed method, two sets of experiments were conducted on the
MNIST classification [11] and NIH chest X-ray lung field classification tasks [20]. To
address these classification tasks, state of the art DNN models including VGG16,
ResNet50 and DenseNet121 networks were retrained on the training datasets. The
ResNet50, DenseNet121 and VGG16 models were initialized with pre-trained Ima-
geNet weights. In each case, the training process followed the standard training process
in Keras [21] with both horizontal and vertical random flipping augmentation during
training. The Adam optimizer [22] with a default learning rate of 0.001 was used
during training. After the DNN models were trained and tested, the correctly predicted
images from the training dataset were projected into the standard space to extract
features as stated in Sect. 2. IF and OCSVM outlier detector models were constructed
with those extracted features and used to remove outliers. Outlier ratios of 0.1, 0.2, 0.3,
0.4 and 0.5 were selected. Other settings of IF and OCSVM were based on default
settings from the Python Scikit-Learn package.

3.1 MNIST Classification

MNIST classification is a classical machine learning task that classifies handwritten
digit images into 10 classes (numbers 0 to 9). First, we built MNIST classification
models based on VGG16, ResNet50 and DenseNet121. Second, we evaluated those
models separately on the MNIST test, USPS and SVHN datasets. As shown in Fig. 3,
the USPS dataset [12] is more visually similar to the MNIST dataset while the SVHN
dataset [13] is very different. The results reported in Table 1 indicate that the models
trained on MNSIT dataset performed reasonably well on USPS data but performed
poorly on SVHN dataset.
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Benchmark Experimental Results. We benchmark the performance of the DNN
models on unseen data. Benchmark accuracy is defined as the classification accuracy of
the retrained DNN model on the entire unseen dataset before outlier detection. From
Table 1, we observe that the model performance dropped substantially on the unseen
USPS and SVHN datasets when compared to the MNIST test dataset. For the
ResNet50 model, the accuracy dropped by 16.23% and 77.94% from the MNIST test
dataset to the USPS and SVHN datasets, respectively. For DenseNet121, the accuracy
dropped by 8.18% and 80.79% from MNIST test dataset to the USPS and SVHN
datasets, respectively. For VGG16, the accuracy dropped by 6.54% and 65.97% from
MNIST test dataset to the USPS and SVHN datasets, respectively. This reduction in
model performance indicates a failure to generalize to unseen data.

Fig. 3. Sample images from (a) MNIST, (b) USPS, and (c) SVHN datasets.

Table 1. Performance of the proposed method on the MNIST test, USPS and SVHN datasets

MNIST test
data

ResNet50 (99.53%) DenseNet121 (99.67%) VGG16 (99.66%)

Outlier ratio 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

IF In 99.54 99.57 99.61 99.59 99.69 99.68 99.72 99.68 99.66 99.73 99.67 99.68 99.66 99.69 99.72

Out 99.47 99.36 99.33 99.43 99.36 99.53 99.48 99.65 99.69 99.61 99.57 99.59 99.66 99.62 99.59

OCSVM In 99.53 99.57 99.55 99.62 99.61 99.69 99.68 99.66 99.69 99.69 99.66 99.66 99.66 99.68 99.66

Out 99.49 99.38 99.48 99.39 99.45 99.49 99.64 99.69 99.64 99.65 99.7 99.65 99.66 99.63 99.66

USPS
benchmark

ResNet50 (83.30%) DenseNet121 (91.49%) VGG16 (93.12%)

Outlier ratio 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

IF In 83.53 83.82 84.34 85.09 85.87 91.61 91.65 91.77 91.93 92.34 93.07 93.06 93.12 93.28 93.63

Out 81.88 81.6 81.14 80.87 80.91 90.64 90.92 90.85 90.84 90.62 93.4 93.29 93.11 92.91 92.66

OCSVM In 83.61 83.63 84.41 85.25 86.59 91.37 91.09 90.9 90.93 91.54 92.98 92.81 92.71 92.9 93.54

Out 81.87 82.55 81.63 81.4 81.26 92.04 92.44 92.36 92.03 91.46 93.8 93.86 93.74 93.33 92.86

SVHN
benchmark

ResNet50 (21.59%) DenseNet121 (18.88%) VGG16 (33.69%)

Outlier ratio 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

IF In 50 100 – – – 33.33 100 – – – 60 – – – –

Out 21.56 21.58 21.59 21.59 21.59 18.87 18.87 18.88 18.88 18.88 33.68 33.69 33.69 33.69 33.69

OCSVM In 83.33 100 100 – – 75 66.67 100 – – 100 100 100 – –

Out 21.55 21.57 21.58 21.59 21.59 18.86 18.87 18.87 18.88 18.88 33.65 33.68 33.68 33.69 33.69
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Experimental Results on Inliers. When applying the proposed method, results in
Table 1 show that model performance generally improved on confident samples (in-
liers) when using both IF and OCSVM outlier detectors across different outlier ratios.
For the IF outlier detector when compared to benchmark, ResNet50 accuracy improved
from 83.30% up to 85.87% on USPS data and 21.59% up to 100% on SVHN data.
Similarly, for the OCSVM detector, ResNet50 accuracy improved from 83.30% up to
86.59% on USPS data and 21.59% up to 100% on SVHN data. Similar trends were
observed for DenseNet121 and VGG16 (Table 1). The above results empirically
support our hypothesis that a generic model will perform consistently well on inlier
data. The number of inliers and outliers detected for each dataset are given in the
Supplementary Material (Tables S4–S6).

3.2 Chest X-ray Lung Field Classification

The chest frontal X-ray lung field classification was chosen to evaluate the performance
of the proposed method. Determination of the acceptability of a patient positioning is
one of the key components for successful Quality Control (QC) in a radiology
department workflow. All clipped chest X-ray lung field images were considered to
belong to the bad lung field class. Figure 1 shows examples of good and bad lung field
chest X-ray images from different data sources.

As in the MNIST experiment, the ResNet50, DenseNet121 and VGG16 were
selected and trained on the NIH chest X-ray dataset. Three additional datasets from
different hospitals across the U.S. and Canada were collected as unseen datasets to
evaluate the proposed method. Due to the data contracts, the names of those three
hospitals were anonymized to Source 1, Source 2 and Source 3 in this paper.

The NIH dataset had over 112,000 of images from more than 30,000 patients,
including many with advanced lung diseases. We selected and manually annotated
7,856 images with good lung field where the whole lung field was clearly visible
without any clipping. Manual annotation was performed with the help of Radiology
Technologists. In the same manner, 4,356 images with bad lung field were also
selected. All the models were trained only on the NIH X-ray dataset with a random split
of 75%/15%/15% for training/validation/testing. The three other datasets from Sources
1, 2 and 3 were selected and manually annotated with the same criteria and used as
unseen datasets.

Benchmark Experimental Results. From Fig. 4, we observe that the model bench-
mark accuracy dropped substantially on the unseen datasets from Source 1, 2 and 3
when compared to the NIH test dataset benchmark accuracy. For the ResNet50 model,
the accuracy performance dropped by 8.19%, 20.09% and 7.86% from the NIH test
dataset on Sources 1, 2 and 3, respectively. For DenseNet121, the accuracy perfor-
mance dropped by 8.31%, 19.64% and 6.03% from the NIH test dataset on Sources 1, 2
and 3, respectively. For VGG16, the accuracy performance dropped by 7.80%, 14.13%
and 7.02% from the NIH test dataset on Sources 1, 2 and 3, respectively.
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Experimental Results on Inliers. While applying the proposed method, results in
Fig. 4 show that the performance of all models improved for both IF and OCSVM
across different outlier ratios. When using IF as the outlier detector, the ResNet50
accuracy improved from 89.30%, 77.40% and 89.63% up to 97.75%, 92.35% and
92.29% on Sources 1, 2 and 3, respectively. DenseNet121 accuracy improved from
89.89%, 78.56% and 92.17% up to 95.75%, 93.64% and 94.21% on Sources 1, 2 and
3, respectively. VGG16 accuracy improved from 90.23%, 83.90% and 91.01% up to

Fig. 4. Inlier classification accuracy (%) as a function of outlier ratio across X-ray image
datasets originating from (a) NIH test, (b) Source 1, (c) Source 2 and (d) Source 3. Benchmark
accuracy is defined as the classification accuracy of the retrained DNN model on the entire
unseen dataset before outlier detection.
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97.75%, 92.71% and 93.31% on Sources 1, 2 and 3 respectively. By using OCSVM,
the best accuracy that ResNet50 can achieve is up to 98.77%, 91.73% and 94.61% on
Sources 1, 2 and 3, respectively. The best accuracy that DenseNet121 can achieve is up
to 97.78%, 94.66% and 95.42% on Sources 1, 2 and 3, respectively. The best accuracy
that VGG16 can achieve is 99.08%, 92.73% and 94.45% on data Sources 1, 2 and 3,
respectively. Similar to the experimental results on the MNIST digit images, the
experimental results on medical chest X-ray images also show that a generic model
performed better on its confident samples (inliers) across different outlier detectors. The
number of inliers and outliers detected for each dataset are given in the Supplementary
Material (Tables S11–S14).

4 Discussion and Conclusion

As observed in both Table 1 and Fig. 4, the model has improved performance on the
inliers of unseen data despite the fact that the model would typically not be confident
on most of the samples in the unseen datasets. This can help clinicians prioritize and
allocate more resources to cases where the model is not confident. However, the quality
of proposed method heavily depends on the robustness of feature extractors and the
outlier detectors that are used. In this paper, we consider the feature space constructed
from the VGG16 network trained on ImageNet. Additionally, based on our preliminary
experiments, we have noticed that when the outlier detector was not well constructed,
the inliers identified were not implying correct predictions. One potential way to
resolve these issues, which is one of our future work is to build an end-to-end
framework incorporating both Bayesian approach (resolves uncertainty) and outlier
detection (resolves domain-shift).

In this study, we proposed a novel method to determine the confident samples. An
outlier detection model was constructed based on the features extracted from the
standard feature space. Inliers from the detection model were considered as the con-
fident samples from the unseen data. Experimental results showed that the performance
of the ResNet50, DenseNet121 and VGG16 models improved on all unseen datasets
after filtering out outliers.
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