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Abstract. For the task of concurrently detecting and categorizing
objects, the medical imaging community commonly adopts methods
developed on natural images. Current state-of-the-art object detectors
are comprised of two stages: the first stage generates region propos-
als, the second stage subsequently categorizes them. Unlike in natural
images, however, for anatomical structures of interest such as tumors,
the appearance in the image (e.g., scale or intensity) links to a malig-
nancy grade that lies on a continuous ordinal scale. While classification
models discard this ordinal relation between grades by discretizing the
continuous scale to an unordered bag of categories, regression models are
trained with distance metrics, which preserve the relation. This advan-
tage becomes all the more important in the setting of label confusions
on ambiguous data sets, which is the usual case with medical images. To
this end, we propose Reg R-CNN, which replaces the second-stage clas-
sification model of a current object detector with a regression model.
We show the superiority of our approach on a public data set with
1026 patients and a series of toy experiments. Code will be available
at github.com/MIC-DKFZ/RegRCNN.
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1 Introduction

The task of concurrently detecting and categorizing objects has been extensively
studied in classic computer vision [5,12]. In medical image computing, numerous
approaches have been proposed to predict lesion locations and gradings, most
of them in a supervised manner utilizing manual annotations. However, when
adopting state-of-the-art object detectors for end-to-end lesion grading, one has
to account for an inherent difference in the data: The grading of lesions denotes
a subjective discretization of naturally continuous and ordered features (such as
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scale or intensity) to semantic categories with clinical meaning (e.g., BI-RADS
score, Gleason score [14], PI-RADS score, TNM staging). This is in contrast
to typical tasks on natural images, where categories can be described as an
unordered set (no natural ordinal relation exists between dogs and cars). Hence,
current object detectors phrase the categorization as a classification task and
are trained using the cross-entropy loss, not considering the continuous ordinal
relation between classes (see Sect. 2.1).

In this paper, we account for the ordinal information in lesion appearance
and derived categories, aiming to improve model performance. To this end, we
propose Reg R-CNN, which replaces the classification model of Mask R-CNN
[5], a state-of-the-art object detector, with a regression model. Regression mod-
els utilize distance metrics, i.e., models are trained directly on the underlying
continuous scale, which has the following major benefit in the setting of lesion
grading on medical images:

Medical data sets often exhibit high ambiguity that is reflected in the vari-
ability of the human annotations. Under the assumption that class confusions
follow a distribution around the underlying ground truth, distance metrics used
in regression such as the L1-distance are more tolerant to mild deviation from
the target value as opposed to the categorical cross entropy which penalizes all
off-target predictions in equal measure [4].

We empirically show the superiority of Reg R-CNN on a public data set with
1026 patients and a series of toy experiments with code made publicly available.

2 Methods

2.1 Regression vs. Classification Training

In order to see why we expect the training of regression models to be more
robust to label noise than classification models for the case when target classes
lie on a continuous scale, let us first revisit the objective commonly minimized
by classifiers. This objective is the cross entropy (CE), defined as

H (p,q;X) = −
∑

j

pj(X) log qj(X) (1)

between a target distribution p(X) over discrete labels j ∈ C and the predicted
distribution q(X) given data X. For mutually exclusive classes, the target dis-
tribution is given by a delta distribution p(X) = {δij}j∈C .

To produce a prediction q(X), the network’s logits z(X) are squashed by
means of a softmax function:

q(X) =
ez(X)

∑
k∈C ezk(X)

, (2)

which, plugged into Eq. 1 and given the target class i, leads to the loss term

H = LCE(p = δij ,q;X) = −zi + log
∑

k ezk . (3)
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From Eq. 3 it is apparent that the standard CE loss treats labels as an
unordered bag of targets, where all off-target classes (j �= i) are penalized in
equal measure, regardless of their proximity to the target class i. Distance met-
rics on the other hand, as their name suggests, take into account the distance of
a prediction to the target. This lets the loss scale in the deviation of prediction
to target. Allowing to be more accepting of mild discrepancies, it better accom-
modates for noise from potentially conflicting labels in settings where the target
labels lie on a continuum.

In the range of experiments below, we compare classification against regres-
sion setups, for which we employed the smooth L1 loss [6] given by

Lreg(p, t) =

{
1/2(t − p)2, |t − p| < 1
|t − p| − 1/2, otherwise

(4)

for predicted value p and target value t. Other works have investigated adaptions
to the CE loss to account for noisy labels in classification tasks, e.g. [15,17].
Our approach is complementary to those works as it exploits label continua on
medical images.

2.2 Reg R-CNN and Baseline

The proposed Reg R-CNN architecture is based on Mask R-CNN [5], a state-
of-the-art two-stage detector. In Mask R-CNN, first, objects are discriminated
from background irrespective of class, accompanied by bounding-box regression
to generate region proposals of variable sizes. Second, proposals are resampled
to a fixed-sized grid and fed through three head networks: A classifier for cate-
gorization, a second bounding-box regressor for refinement of coordinates, and a
fully convolutional head producing output segmentations (the latter are not fur-
ther used in this study except for the additional pixel-wise loss during training).
Reg R-CNN (see Fig. 1) simply replaces the classification head by a regression
head, which is trained with the smooth L1 loss instead of the cross-entropy loss
(see Sect. 2.1).

For the final filtering of output predictions, non-maximum suppression
(NMS) is performed based on detection-confidence scores. In Mask R-CNN, these
are provided by the classification head. Since the regression head does not pro-
duce confidences, we use the objectness scores from the first stage instead.

In this study, we compare Reg R-CNN against Mask R-CNN as the classifica-
tion counterpart of our approach. Only minor changes are made with respect to
the original publication [5]: The number of feature maps in the region proposal
network is lowered to 64 to account for GPU memory constraints. The poolsize
of 3D RoIAlign (a 3D re-implementation of the resampling method used to cre-
ate fixed-sized proposals) is set to (7, 7, 3) for the classification head and (14,
14, 5) for the mask head. The matching Intersection over Union (IoU) for posi-
tive proposals is lowered to 0.3. Objectness scores are used for the final NMS to
reflect the desired disentanglement of detection and categorization tasks.
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Note that all changes apply to Reg R-CNN as well, such that the only dif-
ference between the models is the exchange of the classification head with a
regression head.

Fig. 1. Reg R-CNN for joint detection and grading of objects. The architecture is
closely related to Mask R-CNN [5], where grading is done with a classification head
instead of the displayed “Score Regressor” head network. FPN denotes the feature
pyramid network [11], RPN denotes the region proposal network and RoIAlign is the
operation which resamples object proposals to a fixed-sized grid before categorization.

2.3 Evaluation

Comparing the performance of regression to classification models requires taking
into account additional considerations since both are trained along an upstream
detection task.

In order to compare continuous regression and discrete classification outputs,
we bin the continuous regression output after training, such that bin centers
match the discrete classification targets.

What’s more, the joint task of object detection and categorization is com-
monly evaluated using average precision (AP) [2]. However, AP requires per-
category confidence scores, which are, as mentioned before, not provided by
regression outputs. Instead, we borrow a metric commonly used in viewpoint esti-
mation, the Average Viewpoint Precision (AVP) [16]. Based on AVP, we phrase
the lesion scoring as an additional task on top of foreground vs. background
object detection: In order for a box prediction to be considered a true positive,
it needs to match the ground-truth box with an IoU > 0.11, and additionally the
malignancy prediction score is required to lie in the correct category bin. This
way, AVP simultaneously measures both the detection and malignancy-scoring
performance of the models. We additionally disentangle the task performances
and separately report the AP of foreground vs. background detection (this poses
an upper bound on AVP) and the bin accuracy. The latter is determined by
selecting only true positive predictions according to the detection metric and
counting malignancy-score matches with the target bin.
1 This relatively low matching threshold respects the clinical need for coarse localiza-
tion and exploits the non-overlapping nature of objects in 3D images.
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Fig. 2. (a) A confusion-matrix-style display of annotator dissent in the LIDC data set.
Rows represent the binned mean ratings of lesions (in place of the true class in a stan-
dard confusion matrix), columns the ratings of the corresponding single annotators.
“MS” means malignancy score. Matrix is row-wisely normalized, hence cell values indi-
cate distribution of lesion ratings within a bin. (b)–(d) Example slice from the LIDC
data set showing GT, Reg R-CNN, and Mask R-CNN prediction separately. GT note
“sa. MS” shows the single-annotator grades (grade 0 means no finding), “agg. MS”
their mean. In the predictions, “FG” means foreground confidence (objectness score),
“MS” denotes the predicted malignancy score. Mask R-CNN MS can be non-integer
due to Weighted Box Clustering [7]. Color symbolizes bin.

3 Experiments

3.1 Utilized Data Sets

Lung CT Data Set. The utilized LIDC-IDRI data set consists of 1026 patients
with annotations of four medical experts each [1]. Having disposable multiple
gradings from distinct annotators is a rare exception on medical images and
allows to investigate the exhibited label noise [9].

Full agreement, which we define as all raters assigning the same malignancy
label to all lesions (RoIs) in a patient, is observed on a mere 163 patients (this
includes patients void of findings by all raters). This corresponds to a rater
disagreement with respect to the malignancy scoring on 84% of the patients. On
a lesion level (RoI-wise), the data set comprises 2631 lesions when considering
all lesions with a positive label by at least one rater. This number drops to 1834,
1333, or 821, when requiring 2, 3, or 4 positive labels respectively. This shows
that this data set’s labelling is both ambiguous with respect to whether or not a
lesion is present as well as the prospective lesion’s grading. The first ambiguity
type has bearings on the detection head’s performance, while the second type
influences the network’s classification or, respectively, regression head.

In order to evaluate the grading performance, the following malignancy statis-
tics include only patients with at least one finding. Among those, we count 99
lesions (3.8% of all lesions) with full rater agreement, leaving disagreement on
2532 (or 96.2%). The standard deviation of the 4 graders averaged over all lesions
amounts to 1.05 malignancy-score values (ms). In Fig. 2(a), we show how the sin-
gle graders’ malignancy ratings differ given the binned mean rating. The figure
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reveals significant label confusion across adjacent labels and even beyond. Fig-
ures 2(b)–(d) display example Reg and Mask R-CNN predictions next to the
corresponding ground truth.

In order to investigate the models’ performance under label noise, we ran-
domly sample a malignancy score (MS) for a given lesion from the 4 given grad-
ings at each training iteration. At test time, we however employ the lesions’ mean
malignancy score as the ground truth label, which allows to evaluate against a
ground truth of reduced noise.

Toy Data Set. To analyze the performance of Reg R-CNN vs. Mask R-CNN
on an artificial data set with label noise on a continuous scale, we designed a set
of 3D toy images. The associated task is the joint detection and categorization
of cylinders, where five categories are distinguished as cylinders of five differ-
ent radii. In order to simulate label confusion, Gaussian noise is added to the
isotropic target radii during training, sampled with standard deviation σ = r/6
around object radius r, as depicted in Figs. 3(c) and (d). This causes targets
(especially of large-radius objects) to be shifted into wrong, yet mostly adjacent
target bins. Figure 3(a) portrays that these ambiguities are imprinted on the
images as a belt of reduced intensity with width 2σ around the actual radius. At
test time, model predictions are evaluated against the exact target radii without
noise. The data set consists of 1.5k randomly generated samples for training and
validation, as well as a hold-out test set of 1k images.

3.2 Training and Inference Setup

Both the LIDC and the toy data set consist of volumetric images. In this study,
we evaluate models both in 3D as well as 2D (slice-wise processing). For the
sake of comparability, all methods are implemented in a single framework and
run with identical hyperparameters. Networks are trained on patch crops of sizes
160×160×96 (LIDC) and 320×320×8 (toy), oversampling of foreground regions
is applied. Class imbalances in object-level classification losses are accounted for
by stochastically mining the hardest negative object candidates according to
softmax probability.

On LIDC, models are trained for 130 epochs, each composed of 200 batches
with size 8 (20) in 3D (2D) using the Adam optimizer [8] with default settings
at a learning rate of 10−4. Training is performed as a five-fold cross valida-
tion (splits: train 60%/val 20%/test 20%). At test time, we ensemble the four
best performing models according to validation metrics over four test-time views
(three mirroring augmentations) in each fold. Aggregation of box predictions
from ensemble members is done via clustering and weighted averaging of scores
and coordinates. Predictions from 2D models are consolidated along the z-axis
by means of an adaption of NMS and evaluated against the 3D ground truth.
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Fig. 3. (a) Cylinders (2D projections) of all five categories (r1-r5) in the toy experi-
ment. (b) Exact GT. (c) Examples of a noisy GT for each category (r1-r5). ra indicates
the annotated radius (target regression value). (d) Gaussian sampling distributions
used to generate the noisy GT. Green vertical lines depict the exact ground-truth val-
ues, while blue lines are the corresponding label-noise distributions. Green rectangles
are the bins (borders enlarged for illustration) used for training of the classifier as well
as for evaluation of both methods. Note that distributions reach into neighboring bins
leading to label confusions. (Color figure online)

3.3 Results and Discussion

Results are shown in Table 1. In addition to the fold means of the metrics, we
report the corresponding standard deviations. On LIDC, Reg R-CNN outper-
forms Mask R-CNN on both input dimensions and all three considered metrics.
On the toy data set, Reg R-CNN shows superior performance in AVP10 and
Bin Accuracy. AP10 reaches 100% in both models indicating that the detection
task is solved entirely, i.e., the object grading task has been isolated successfully
(hence, results for AVP10 converge towards the Bin Accuracy). All experiments
demonstrate the superiority of distance losses in the supervision of models per-
forming continuous and ordered grading under noisy labels. Interestingly, there
is a marked increase in performance for both setups when running in 3D as
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opposed to 2D, suggesting that additional 3D context is generally beneficial for
the task.

Table 1. Results for LIDC and the toy data set. AVP10 measures joint detection and
categorization performance, while AP10 measures the disentangled detection perfor-
mance and Bin Accuracy shows categorization performance (conditioned on detection,
see Sect. 2.3)

Dim Network head AVP10 AP10 Bin accuracy

LIDC 3D Reg R-CNN 0.259±0.035 0.628±0.038 0.477±0.035

Mask R-CNN 0.235±0.027 0.622±0.029 0.411±0.026

2D Reg R-CNN 0.148±0.046 0.414±0.052 0.468±0.057

Mask R-CNN 0.127±0.034 0.406±0.040 0.447±0.018

Toy 3D Reg R-CNN 0.881±0.014 0.998±0.004 0.887±0.014

Mask R-CNN 0.822±0.070 1.000±.000 0.826±0.069

2D Reg R-CNN 0.859±0.021 1.000±0.000 0.860±0.021

Mask R-CNN 0.748±0.022 1.000±0.000 0.748±0.021

4 Conclusion

Simultaneously detecting and grading objects is a common and clinically highly
relevant task in medical image analysis. As opposed to natural images, where
object categories are mostly well defined, the categorizations of interest for clin-
ically relevant findings commonly leave room for interpretation. This ambiguity
can bear on machine-learning models in the form of noisy labels, which may ham-
per the performance of classification models. Clinical label categories however
often reside on a continuous and ordered scale, suggesting that label confusions
are likely more frequent between adjacent categories.

For this case, we show that both the performance of lesion detection and
malignancy grading can be improved upon over a state-of-the-art detection
model when simply trading its classification for a regression head and alter-
ing the loss accordingly. We document the success of the ensuing model Reg
R-CNN on a large lung CT data set and on a toy data set that induces artificial
ambiguity. We attribute the edge in performance to the loss formulation of the
regression task, which naturally accounts for the continuous relation between
labels and is therefore less prone to suffer from conflicting gradients from noisy
labels.

5 Outlook

As Eq. 4 shows, we employ a metric approach to ordinal data. In general, this
is not hazard-free as model performance may suffer from the imposed metric
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if the scale actually is non-metric [10]. In other words, our approach implicitly
assumes the grading scale has sufficiently metric-like properties. To address this
limitation, we plan to study alternative non-metric approaches in future work
[3,13].
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