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Abstract. Among the model-driven segmentation methods, the Maximum a
Posterior (MAP) & Markov Random Field (MRF) is the popular statistical
framework. However, there remains a dominating limitation in the existing
statistical modeling, i.e., the data imaged by MR scanners with different types
and parameters cannot be adaptively processed to lead accurate and robust
vessel segmentation, as is well-known to the researchers in this field. Our
methodology steps contribute as: (1) a region-histogram standardization strategy
is explored to the time-of-flight magnetic resonance angiography data; (2) a
Gaussian mixture models (GMM) is constructed with three Gaussian distribu-
tions and a knowledge-based expectation-maximization algorithm is explored to
obtain the GMM parameters; (3) a probability feature map is captured according
the estimated vascular distribution weight in GMM and then is embedded into
the Markov high-level process to relieve the label field noise and rich the
vascular structure. Our method wins out the other models with better segmen-
tation accuracy and the sensibility to small-sized vessels or large arteriovenous
malformation mass, which is validated on three different datasets and obtains
satisfying results on visual and quantitative evaluation with Dice similarity
coefficient and positive predictive value of 89.12% and 95.66%.
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1 Introduction

Cerebrovascular segmentation is significant to present the three-dimensional (3D)
structure of cerebral vessels and is beneficial to clinical diagnosis and treatment pro-
cess. Traditional segmentation mainly depends on the manual operation of clinicians,
which has the disadvantages of poor reproducibility and low efficiency. Recently,
Deep-learning methods [1] realized the optimal segmentation on many medical image
analysis tasks, while it is very hard to obtain vascular ground-truths (GT) from complex
image context. High-efficient statistical modeling benefits not only clinicians but also
deep-learning enthusiasts. Thus, it is our main research motivation.

For cerebrovascular segmentation from Time-of-flight Magnetic Resonance
Angiography (TOF-MRA) data, Moccia et al. [2] completely reviewed the existing
segmentation methodology, including active contour model, threshold-based segmen-
tation, Hessian-matrix based model, and statistical model. The last two methods draw
our recent interest in developing a more accurate and robust model.

Hessian-Matrix Based Model: It is often used to differentiate and enhance the ball-,
tube-, and plane-like structures with the analysis of the second-order intensity
derivatives or the Hessian-matrix eigenvalues. Hessian-based feature, i.e., eigenvalues
and eigenvectors have been designed to construct a few of vessel functions by some
researchers [3]. Especially, the recent vessel function proposed by Jerman et al. [4]
presents satisfying contrast and the ratio of signal to noise on the resultant filtering
response image. Although Hessian-matrix based model highlights the vessel-like
object, it cannot directly lead an accurate segmentation.

Statistical Model: An adaptive algorithm for cerebrovascular segmentation from
TOF-MRA data is proposed by Wilson and Noble [5], where the finite mixture models
(FMM) is a weighted combination of two Gaussian distributions and a uniform one.
Wen et al. [6] split FMM into a Rayleigh distribution and two Gaussian ones. However,
they did not consider the neighborhood constraint around a voxel, which resulted in
vascular fragments and pseudo-vessels. Hassouna et al. [7] employed Maximum a
Posterior & Markov random field (MAP-MRF) to relieve the FMM-processing noise
and keep the segmentation continuity. Zhou et al. [8] further enriched the vascular
structure by using statistical modeling on MAP–MRF and multi-pattern neighborhood
system.

The above statistical methods only make limited improvement on their designated
experimental dataset. As far as we know, no one has proposed a self-adapting statistic
model to segment cerebral vessel in the TOF-MRA data from MR equipment with
different scanner-types, imaging parameters, and individual difference of patients.

Our work contributes to the challenge in four aspects. Firstly, we present an efficient
data standardization strategy to make the algorithm focus on the region without a skull,
which helps statistic model adapt to segment cerebral vessel in the TOF-MRA data
from anywhere and any patients. Secondly, a knowledge-based expectation maxi-
mization (EM) algorithm is proposed to estimate the Gaussian mixture models
(GMM) parameters, which helps to obtain better parameters of the vascular distribu-
tion. Thirdly, the vascular probability feature map is extracted and a novel neighbor-
hood energy function for MRF is obtained to further improve the segmentation
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performance. Lastly, our method is validated on three different datasets (total of 139
clinical data). Due to data being influenced by different factors, such as scanners,
imaging parameters, and patients, our proposed method greatly improves the Dice
similarity coefficients by 7.15%–38.20% and improves the sensitivity by 9.45%–

48.41% than the existing methods. In terms of vascular network coverage, and envi-
ronmental complexity, the visual comparison in between our method with the above
traditional methods are shown in Fig. 1.

2 Method

The proposed method consists of four steps: (1) data standardization; (2) GMM and
initialization; (3) GMM parameters estimation using knowledge-based EM algorithm;
(4) a novel neighborhood constraint energy function for MAP-MRF.

2.1 Data Standardization

As a fact, most of cerebrovascular voxels distribute in the middle and high intensity,
and the proportion of cerebrovascular voxels in intracranial volume is relatively small
(about 1% * 5%). Another fact comes from numerous experiential validations.
Namely, GMM accuracy is mostly dominated by the non-vascular region, whereas little
by fitting the vascular regions. The existing methods often modeled the whole data
space of original TOF-MRA data, where the non-vascular region inevitably facilitates
the fitting errors and computational redundancy. In this respect, skull-stripping step is
necessary, for which we use the FSL-BET [10] tool to greatly reduce the non-vascular
region and stabilize the histogram of intracranial volume.

Fig. 1. The cerebrovascular segmentation results using different methods. The maximum
intensity projections of the TOF-MRA without skull (a1 * a2). Subfigures (b–e) are the
segmentation results of the proposed method, Zhou’s [8], Lu’s [9], and Wilson and Nobel [5].
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To improve the robustness, the histogram specification is employed to reduce the
difference of the histograms of various TOF-MRA data. We use the proposed method
without histogram specification to process all the TOF-MRA data. Then we select a
TOF-MRA data that has the best visual vessel segmentation result and regard its
intensity distribution as the specific histogram. After that, we standardize the histogram
of the other TOF-MRA data to the specific histogram. Since discrete transformation
may have a one-to-many relationship, a 3 � 3 � 3 Gaussian kernel (commonly used
with an empirical variance of 0.4) is used to convolve with the TOF-MAR data, which
increases the vascular intensity continuity as shown in Fig. 2.

2.2 GMM and Initialization

After data standardization, the resultant intensity distribution (shown in Fig. 2-a)
facilitates to divide the voxels of skull-stripping data into one vessel class (cerebral
vasculature) and two background classes (brain tissues and cerebrospinal fluid).
Therefore, we use two Gaussian distributions to model the background classes, and
another one for the vessel class, namely

M yð Þ ¼ P3
i¼1 wGifGi yjui; rið ÞP3

i¼1 wGi ¼ 1

fGi yjui; rið Þ ¼ 1ffiffiffiffi
2p

p
ri
exp � y�uið Þ2

2r2i

� �
i 2 1; 2; 3½ �

8><
>: ð1Þ

where the functions fGi yjui; rið Þ i ¼ 1; 2; 3ð Þ are Gaussian distributions; fG3 yju3; r3ð Þ
corresponds to the cerebrovascular region; fG2 yju2; r2ð Þ corresponds to the gray and
white matters; fG1 yju1; r1ð Þ corresponds to cerebrospinal fluid and lateral ventricle;
wGi i ¼ 1; 2; 3ð Þ are the weights of these categories; y is the observed intensity of each
voxel in TOF-MRA data. K-means algorithm is used to initialize the GMM parameters
using three points (i.e., a quarter of the peak value, peak value, and twice peak value) as
the start points. The curve line of the GMM initialization is shown in Fig. 3-b.

Fig. 2. The process of data standardization illustrates the resultant histograms of (a) the original
TOF-MRA data; (b) skull-stripped data; (c) the specific one and (d) the transformed one.
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2.3 Knowledge-Based EM Algorithm for GMM Parameters Estimation

As we all know, the proportion of non-vascular voxels is much larger than that of
cerebrovascular voxels in whole TOF-MRA volume, which will make the EM algo-
rithm unable to estimate the parameters of vascular distribution fairly. Hence, we
collect some vascular points using region growing algorithm, which would provide
some knowledge for estimating vascular distribution. Then all the voxels D of skull-
stripped volume are divided into un-labeled and labeled voxels (i.e., Du and Dl). To
make full use of labeled data and better fit the vascular distribution, a knowledge-based
machine learning algorithm is used to estimate the GMM parameters and is iteratively
updated as follows.
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where Dli is the labeled dataset of the ith distribution. N �ð Þ is the number of voxels in
the given set. According to Bayesian criterion, the posterior probability p Gijxj

� �
is

calculated by:

p Gijyj
� � ¼ wGifGi yjjui; ri

� �
P3

i¼1 wGifGi yjjui; ri
� � ð5Þ

Fig. 3. After data standardization, the intensity of skull-stripped TOF-MRA data (a) and the
initial curve line of GMM (b).

176 B. Zhang et al.



According to the maximum a posteriori (MAP) classification, if a voxel yj meets
p G3jyj
� �� max p Gijyj

� �
; i ¼ 1; 2

	 

[ 0, we infer it to be a vascular point initially.

2.4 Neighborhood Constraint with Vessel Prior

Probability Feature Map. Hessian-based multi-scale filter [4] highlights the tubular
structure and suppress background efficiently, but its filtering response cannot represent
the probability of vessels. Without loss of generality, we facilitate the filtering response
to be probabilistic using estimated GMM parameters. The probability feature map Vf is
defined as:

Vf vð Þ ¼ 1

1þ s
v

� �2 ð6Þ

where v is multi-scale filtering response, and the parameter s is obtained by solving the
following equations:

@ sð Þ ¼ wG3

Z
V
1dv; @ sð Þ ¼

Z 1

s

Z
V
e v; sð Þdvds; e v; sð Þ ¼ 1 v� s

0 v\s

�
ð7Þ

where wG3 is the estimated weight of the vascular Gaussian distribution in Eq. (1), and
@ sð Þ presents the number of voxels that meet the condition. Figure 4 shows the obvious
difference between the probability feature map and the multi-scale filtering response.

Neighborhood Constraint. In this study, we organize the novel six-neighborhood
energy function by GMM process result and probability feature map. The new potential
energy function U xr; rð Þ comes from two parts, not only comes from the initial label
field obtained by GMM corresponding to u1 xr; xr�ð Þ, but also comes from probability
feature map corresponding to u2 Vfr ;Vfr�

� �
, which is defined as:

U xr; rð Þ ¼
X

r�2gr
ða1u1 xr; xr�ð Þþ a2u2 Vfr ;Vfr�

� �Þ ð8Þ

where r is the index of a point and r� 2 gr is the index around six-neighborhood. where
xr, xr� takes a value from the label set L ¼ Lv; Lbf g with Lv and Lb being the vessel
class and the background class, respectively. Vfr is the value of the rth position in a
probability feature map. Given that scale factors meet a1 þ a2 ¼ 1, and a1 and a2 is set
to be 0.5. u1 xr; xr�ð Þ and u2 Vfr ;Vfr�

� �
are defined as:

u1 xr; xr�ð Þ ¼ 0; if xr ¼ xr�
1; otherwise

�
ð9Þ

u2 Vfr ;Vfr�
� � ¼ Vfr � Vfr�

�� �� ð10Þ

Then, according to the MAP–MRF segmentation approach [8], the posterior prob-
ability of the vessel and background class is expressed as:
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p xr ¼ Lvjyrð Þ / fG3 yrju3; r3ð Þexp �U xr ¼ Lv; rð Þð Þ ð11Þ

And the posterior probability of the is expressed by:

p xr ¼ Lbjyrð Þ /
P2

i¼1 wGifGi yrjui; rið ÞP2
i¼1 wGi

exp �U xr ¼ Lb; rð Þð Þ ð12Þ

According to the MAP criterion, if a voxel meets p xr ¼ Lvjyrð Þ[ p xr ¼ Lbjyrð Þ, we
infer it to be a vascular point.

3 Experiment and Result

3.1 Materials and Implementation Environment

Our experimental materials consist of three datasets which are acquired from several
MR scanners with different imaging parameters for different individuals that have
healthy or diseased cerebrovascular structures. (1) MIDAS-109: 109 normal TOF-
MRA datasets are collected using SIEMENS ALLEGRA 3.0T MRI scanner
(TR = 35.0, TE = 3.56, flip angle = 22) from a public dataset MIDAS [11]. Each
volume has the size of 448 � 448 � 128 (voxels), and the resolution is uniformly

Fig. 4. Illustration of differences in between three kinds of image data with their local
information on (a1) TOF-MRA data, (b1) multi-scale filtering response, and (c1) probability
feature map. The subfigures in (a2 * c2) show the intensity-value boards within the blue boxed
region of that in (a1 * c1). Note, the intensity-value in b2, c2 is multiplied by 100 for
equilibrium display.
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0.51 mm � 0.51 mm � 0.80 mm. (2) AVM-20: 20 abnormal TOF-MRA datasets
with arteriovenous malformation (AVM) mass, are collected using GE Signa HDx 3.0T
MRI scanner (TR = 25.0, TE = 3.5, flip angle = 20) from General Hospital of
Southern Theater Command of Chinese People’s Liberation Army. Each volume
has the size of 512 � 512 � 332 (voxels), and the resolution is uniformly
0.56 mm � 0.56 mm � 0.55 mm. (3) GZ-10: 10 normal TOF-MRA datasets are
collected using GE Signa HDx 3.0T MRI scanner (TR = 30.0, TE = 3.2, flip
angle = 15) from General Hospital of Southern Theater Command of PLA of China.
Each volume has the size of 512 � 512 � 283 (voxels), and the resolution is uni-
formly 0.43 mm � 0.43 mm � 0.50 mm.

The algorithms are implemented by using MATLAB2018b, on a PC Intel® Cor-
eTM i7-6850 k CPU @3.60 GHz*12, while the 3D visualization uses a hybrid ren-
dering engine of VTK-8.0 with Visual Studio 2017.

3.2 Quantification Result

To make a quantitative evaluation, ten TOF-MRA data are selected from the above
three datasets (Note, five from MIDAS-109, three from AVM-20, two from GZ-10).
The cerebrovascular structures are manually segmented with voxel-by-voxel selections
from the 10 TOF-MRA data by three neurosurgeons. The manual segmentations are
treated as the ground truth to estimate the performance of models. Meanwhile, to derive
a quantitative comparison of the segmentation results, three metrics are employed, i.e.,
dice similarity coefficient DSC ¼ 2TP

2TPþFN þFP, sensitivity Sen ¼ TP
TPþFN and positive

predictive value PPV ¼ TP
TPþFP. where TP, FP, TN, and FN denote the voxel number of

true-positive, false-positive, true-negative and false-negative results, respectively.
Our experiments consisted of four methods in three datasets, and the qualitative

evaluation results are presented in Table 1. The proposed method gets an average DSC
score of 89.12%, an average Sen score of 83.72%, and an average PPV score of
95.66%, which outperforms all other methods. Besides, clinical evaluation proceeded
through the observations of neurosurgeons is illustrated in Table 2. Their evaluation
reports were divided into three-level cases. i.e., Good, general, and poor cases
according to cerebrovascular network coverage, over-segmentation, and the percentage
of pseudo-vascular structures. Cerebrovascular segmentation results are shown in
Fig. 1, which shows that all these methods show similar performance on the large
vessel segmentation. Comparing some segmentation details, it is obvious that our
segmentation result with richer vascular network coverage than all the other methods.
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4 Conclusion

Our method steps contribute four parts for the MAP-MRF framework, i.e., data stan-
dardization, knowledge-based EM estimation of GMM parameters, and Markov high-
level model with novel neighborhood constraint energy function, which make our
proposed method more effective than the existing ones. Meanwhile, the proposed
method is validated on three TOF-MRA datasets that contain 139 data totally and are
acquired from different MR equipment, scanning parameters, and individuals. Exten-
sive experimental results demonstrate that our method wins out of other ones in terms
of the universality and accuracy for non-homologous TOF-MRA datasets. In addition,
our method performs well on TOF-MAR data with AVM, which indicates a particular
significance for computer-assisted clinical procedures. In the feature work, we will
produce weak label on un-marked cerebrovascular data sets and conduct weak
supervised learning, especially, we will further optimize and expand the method to
automate vascular annotation and develop the deep-learning on vascular segmentation
of more TOF-MRA datasets.

Table 1. The qualitative evaluation results of four different methods for three datasets

DSC PPV Sen

Wilson’s [5] MIDAS-109 59.19 ± 3.2128 97.20 ± 0.7466 42.64 ± 3.3872
AVM_20 34.12 ± 2.3709 99.28 ± 0.2875 20.62 ± 1.7375
GZ_10 55.92 ± 5.7872 97.22 ± 0.4153 39.03 ± 5.7401
Mean 50.92 ± 11.6814 97.83 ± 1.1152 35.31 ± 10.3709

Zhou’s [8] MIDAS-109 81.32 ± 3.9763 92.49 ± 2.0162 72.97 ± 7.2246
AVM_20 81.88 ± 2.9729 93.58 ± 2.1230 72.79 ± 3.4084
GZ_10 83.74 ± 2.0943 88.64 ± 2.5889 79.75 ± 5.8663
Mean 81.97 ± 3.5032 92.05 ± 2.8003 74.27 ± 6.6309

Lu’s [9] MIDAS-109 71.09 ± 2.7068 82.30 ± 5.4044 63.31 ± 6.3041
AVM_20 66.21 ± 1.1884 94.76 ± 1.4166 50.92 ± 1.7928
GZ_10 61.51 ± 2.5085 90.62 ± 0.8749 46.64 ± 3.1079
Mean 67.71 ± 4.4080 87.70 ± 6.8260 56.26 ± 8.6423

Our MIDAS-109 90.93 ± 0.8302 94.80 ± 1.2320 87.39 ± 1.4320
AVM_20 85.96 ± 4.2120 97.99 ± 1.4643 76.73 ± 6.1389
GZ_10 89.34 ± 1.7574 94.34 ± 1.6684 85.05 ± 4.5294
Mean 89.12 ± 3.3068 95.66 ± 2.0735 83.72 ± 6.1810

Table 2. Clinical evaluation of the three TOF-MRA data sets

Avg. time Good General Poor

MIDAS-109 25.71 s 97 8 4
AVM-20 73.71 s 18 1 1
GZ-10 69.67 s 8 2 0
Total 123 11 5
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