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Abstract. Ultrasound imaging (US) is commonly used in nephrology for
diagnostic studies of the kidneys and lower urinary tract. However, it remains
challenging to automate the disease diagnosis based on clinical 2D US images
since they provide partial anatomic information of the kidney and the 2D images
of the same kidney may have heterogeneous appearance. To overcome this
challenge, we develop a novel multi-instance deep learning method to build a
robust classifier by treating multiple 2D US images of each individual subject as
multiple instances of one bag. Particularly, we adopt convolutional neural net-
works (CNNs) to learn instance-level features from 2D US kidney images and
graph convolutional networks (GCNs) to further optimize the instance-level
features by exploring potential correlation among instances of the same bag. We
also adopt a gated attention-based MIL pooling to learn bag-level features using
full-connected neural networks (FCN5s). Finally, we integrate both instance-level
and bag-level supervision to further improve the bag-level classification accu-
racy. Ablation studies and comparison results have demonstrated that our
method could accurately diagnose kidney diseases using ultrasound imaging,
with better performance than alternative state-of-the-art multi-instance deep
learning methods.
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1 Introduction

Ultrasound imaging (US) is commonly used in nephrology for diagnostic studies of the
kidneys and urinary tract. Anatomic measures of the kidney computed from US data,
such as renal parenchymal area, are correlated with kidney function [1], and pattern
classifiers built upon US imaging features could aid kidney disease diagnosis [2, 3].
Recent deep learning studies have demonstrated that automated US data analysis could
achieve promising performance in a variety of US data analysis tasks, including seg-
mentation and classification [4-6]. However, it remains challenging to automate the
kidney disease diagnosis based on clinical 2D US scans since in clinical practice
multiple 2D US scans of the same kidney in different views are often collected and the
multi-view 2D US scans have heterogeneous appearance, providing partial anatomic
information of the kidney, as illustrated by Fig. 1. Therefore, it is desired to develop a
clinically useful diagnosis model that is robust to different views of US images of the
same kidney.

Multiple instance learning (MIL) is an ideal tool to build a robust classifier on multi-
view 2D US scans of the same kidneys by treating multi-views of 2D US scans of the
same kidney as multiple instances of a bag and predicting a bag-level classification label
[7]. To effectively solve the MIL classification problem, a number of methods have been
developed [7]. Among the existing MIL methods, neural network based methods have
demonstrated promising performance in a variety of MIL problems, partially due to its
end-to-end learning capability [8—11]. Particularly, neural networks could be used to
estimate instance-level classification probabilities and fuse them with a log-sum-exp
based max operator [8] or a max operator [9] to generate a bag-level classification
probability in an end-to-end learning framework. Since the instance-level classification
might be affected by instance label instability problem [12], several embedded-space
based deep MIL methods have been developed to learn informative features at the
instance level, generate a bag mapping with a permutation-invariant MIL pooling
operator, and build a bag-level classifier on the embedded-space in an end-to-end
learning framework [10, 11]. Particularly, an attention-based MIL pooling has been
develop to learn a weighted average of instances [11].

Fig. 1. Multi-view 2D US scans of the same kidney. The images shown on the 1** column have
abnormal appearance annotated by radiologists, while others shown on the 2" and 3™ columns
have heterogeneous appearance.
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However, the existing deep MIL methods ignore classification labels of instances
that are often available in training data and could potentially improve the MIL clas-
sification performance if properly integrated, such as those shown on the 1* column of
Fig. 1. Furthermore, potential correlation between instances of the same bag has not
been well explored in the existing deep MIL methods, which may lead to suboptimal
instance-level features. In order to overcome these limitations and further improve deep
MIL methods, we develop a novel deep MIL method to learn a deep MIL classification
model in an end-to-end learning framework, and apply it to kidney disease diagnosis
based on multi-view 2D US images. Particularly, we build a MIL classifier to distin-
guish kidneys from patients with different kidney diseases based on their multi-view
2D US images. We adopt convolutional neural networks (CNNs) [13] to learn infor-
mative US image features, and adopt graph convolutional neural networks (GCNs) [14]
as a permutation-invariant operator to further optimize the instance-level CNN features
by exploring potential correlation among different instances of the same bag. We adopt
the attention-based MIL pooling to learn an optimal permutation-invariant MIL pooling
operator in conjunction with learning a bag-level classifier on the embedded space [11].
We further adopt instance-level supervision to enhance the learning of instance features
with a focus on instances with reliable labels in the training data. We have validated our
method based on clinical 2D US images collected from patients at a local hospital.
Extensive comparison and ablation studies have demonstrated that the proposed
method could improve the deep MIL methods.

CNN1 CNN2 CNN3 GCN1 GCN2

98- "3

FCNs

Fig. 2. Network architecture of the proposed deep MIL method. The instance-level supervision
is denoted by the yellow circles and the bag-level supervision is denoted by the red circle. (Color
figure online)

2 Methodology

We model the kidney disease diagnosis problem based on multi-view 2D US kidney
images as a MIL classification problem. Particularly, given kidneys X;,i = 1,..., N, and
their 2D US scans in different views, x;,k = 1, ..., K, their class label Y; = 0 if all x;
are normal, otherwise ¥; = 1. We build a deep MIL network upon recent advances in
deep MIL methods that facilitate end-to-end optimization of learning informative fea-
tures at the instance level, generate a bag mapping with a permutation-invariant MIL
pooling operator to embed bags into an embedded-space, and build a bag-level classifier
on the embedded-space [10, 11]. As illustrated by Fig. 2, our network consists of CNNs
to learn instance-level features from 2D US kidney images, GCNs as permutation-
invariant operators to further improve instance-level features, the attention-based MIL
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pooling to learn a bag-level classifier using full connected neural networks (FCNs), and
instance-level supervision to enhance the instance level feature learning and the bag-
level classification.

2.1 Learning Image Features for Instances Using CNNs and GCNs
with Instance-Level Supervision

To learn informative image features from 2D US kidney images, we adopt CNNs in
conjunction with nonlinear activation functions, as illustrated by Fig. 2. Particularly,
each 2D US kidney image, xj, is first fed into multiple layers of CNNs followed by
nonlinear activation functions (in the present study, we use 3 CNN layers and ReLU
activation). We denote the CNN output of x; by hj.

As illustrated by Fig. 1, instances of the same bag are potentially correlated with
each other. Such correlation information could not be utilized by the CNNs since they
are applied to individual instances of the same bag separately. For modeling such
unorganized instances, graph theory-based modeling provides an effective means. By
modeling each instance as a graph node, and connecting every pair of instances
weighted by their similarity measure, we could model the instances with an undirected
graph in a graph convolutional network (GCN) framework [14]. Particularly, new
features on the graph nodes could be learned by optimizing weights of GCNs.

Given the CNN features of different instances of the same bag, hy, k= 1,...,K, we
build a bag-level graph G = {V,E} by treating each instance as a graph node and
connecting each pair of nodes with a weight measuring their similarity based on their
CNN features. GCNs are then adopted to learn new features on the graph nodes [14]:

H'Y = g(DAD 3 (HD)Y W), (1)

where A with its element denoted by a;; is a symmetric adjacent matrix of the undi-
rected graph G,D; = Zj a;j is its degree matrix, W is a layer-specific trainable

weight matrix of GCNs, o(-) is a nonlinear activation function, Hl.(l) =

{nl Ky, .. Hi} hY € RF is a set of node features obtained by the I GCN layer,
H =+ _ {hl+ Ln RN T € RM s aset of new nodal features obtained by

the (I+ 1) GCN layer, K is the number of nodes, F and M are the numbers of features
on each node obtained by the ™ and the (I + 1)‘h GCN layers, respectively.
In the present study, we adopt a Euclidean distance function to obtain the adjacency

2>. 2)

To guide the feature learning, an instance-level supervision is adopted. Particularly,
instances with reliable positive labels and all negative instances are used to optimize
the feature learning using a softmax loss function. For a two-layer GCN, its forward
model takes the simple form:

matrix based on the input feature H):

aj = exp (th - h;
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7 =f(H') = AjReLU (Al(H((’))TWO) w!, (3)

where W(©) € RF*M and W) € RM*2 are GCN weight matrices, H*) is the input CNN
features, A;—  is the i"™ layer adjacency matrix which is computed based on the /™ layer
input features. The second GCN layer yields the instance-level feature Z7 =
{z1,22, .-, 2x } with 7 € R?, and the instance-level classification probability PT =
{p1,p2, .- ..px} is obtained by applying a row-wise softmax activation function.

2.2 Attention-Based MIL Pooling Layer with a Gating Mechanism

Once we obtain the instance-level features, we aggregate them to obtain an embedded-
space representation using a MIL pooling operator. Instead of adopting simple mean or
max MIL pooling, we adopt a gated attention-based MIL pooling layer [11]. Particu-
larly, the attention-based MIL pooling layer learns a weighted average operator to
aggregate instance features with a gating mechanism. Given a bag of K instances with
GCN features H' ™! = {n{" 1 W5t . K} P! € RM, gated attention-based MIL
pooling weight a; is computed as

exp(n (tnh (V1)) e sigm(00")))
st oo (s (1)) sem () ) )

where w € RE! and V, U € RPM are parameters to be optimized,  is an element-wise
multiplication, sigm () is the sigmoid non-linear activation function, and tanh () is
used as the gating mechanism. So, the embedded-space representation of bag Zy is
defined as:

4)

ay =

K
Iy = Zk:l agZk. (5)

Once the embedded-space representation of bags is obtained, a softmax operation is
applied to obtain the bag positive score Py.

2.3 Jointly Training the Instance-Level and Bag-Level Loss Functions
Once the bag positive score Py is obtained, the bag-level loss function is defined as:
Ly = —{YInPx+ (1 —Y)In(1l — Px)}, (6)

To utilize information of instances with reliable labels, we also generate instance-
level classification results by optimizing a cross-entropy loss function.

Ly =— ZV!ENY Zi:l ynclnpncv (7)
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where p,. is the classification probability of an instance, y,. is its ground truth clas-
sification label, and Ny is the set of node indices that have reliable classification labels
in a bag X. Finally, an overall loss function is defined as:

L=1Ly+Ly. (8)

3 Experimental Results

3.1 Clinical US Kidney Scans

We evaluated our method based on a data set of clinical US kidney scans of kidney
patients collected at the Children’s Hospital of Philadelphia (CHOP). The work
described has been carried out in accordance with the Declaration of Helsinki. The
study has been reviewed and approved by the institutional review board.

Participants were randomly sampled from two patient groups. Particularly, one
group of the patients were children with mild hydronephrosis (MH) which does not
affect the echogenicity, growth, or function of the affected or contralateral normal
kidney. The other group of the patients were children with Congenital anomalies of the
kidneys and urinary tract (CAKUT), with varying degrees of increased cortical
echogenicity, decreased corticomedullary differentiation, and hydronephrosis. All
images were obtained for routine clinical care. The first US scans after birth were used,
and all identifying information was removed. In total, we obtained 105 MH patients
with 2246 scans and 120 CAKUT patients with 2687 scans. All the MH scans were
labeled as negative instances with reliable classification labels, all CAKUT scans were
labeled as positive instances, and 335 of CAKUT scans with noticeable abnormality
from different patients were deemed as instances with reliable classification labels. All
the US scans were resized to have a spatial resolution of 321 x 321, and their image
intensities were linearly scaled to [0, 255].

3.2 Implementation Details

Our network consisted of 3 layers of CNNs, and their numbers of channels were set to
128, 64 and 32 respectively. All the CNNs had the same kernel sizes of 5 x 5 and the
same stride sizes of 2. Our GCNs had 2 layers, and their numbers of hidden features
were set to 64. In the attention-based MIL pooling network, the number of hidden

Table 1. Comparison results of different versions of the proposed method (mean=std).

Method Accuracy (mean=std)
Bag-level MILNN 0.852 £ 0.058
Bag-level MILNN-+attention 0.852 £+ 0.016
Bag-level MILNN+GNN-+attention 0.869 £ 0.000
Bag-level MILNN+GNN-+attention-+all instance supervised | 0.869 £ 0.064
Proposed 0.886 £+ 0.032
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nodes L was set to 64. The learning rate was 0.0001 and batch size was set as 6. The
maximum number of iteration steps was set to 20000. All the methods were imple-
mented using TensorFlow and executed on a GeForce GTX 6.00 GB GPU.

3.3 Ablation Studies and Comparisons with Alternative Methods

We compared the proposed network with its degraded versions to investigate how
GCNs, the attention-based MIL pooling, and the instance-level supervision contribute
to the overall classification based on validation datasets. All the networks had the same
number of parameters. Particularly, we first implemented the proposed network with
only the bag-level loss function (Bag-level MINN), but without the GCNs (replaced the
GCNs with FCNs having the same hidden nodes), the attention-based MIL pooling,
and the instance-level loss. Then, Bag-level MINN was enhanced by adding the
attention-based MIL pooling (Bag-level MINN+attention), the GCNs (Bag-level
MINN+GNN-+attention), and the instance-level supervision (Bag-level MINN+GNN+
attention+all instance supervised). In the implementation of Bag-level MINN+GNN+
attention+all instance supervised, all instances of the positive bags were labelled as
positive.

In the ablation studies, we randomly selected 79 MH and 99 CAKUT patients as a
training data set, random 45 subjects from the remaining dataset were used as a vali-
dation data set. This procedure was repeated twice to estimate the classification per-
formance of different versions of the proposed method. Their classification results are
summarized in Table 1, demonstrating that GCNs, the attention-based MIL pooling,
and the instance-level supervision based on instances with reliable labels could
improve the MIL classification performance. Particularly, these results also indicated
that the instance-level supervision based on all instance might be affected by the
instance label instability problem [12].

We further evaluated our method and compared it with state-of-the-art MIL
methods, including CNN based instance level classification with max MIL pooling
(minet) [9], embedded-space based deep MIL method with mean (Minet+mean) MIL
pooling [10], as well as embedded-space based deep MIL with an attention-based MIL
pooling (Gated-Attention) [11]. All the deep MIL methods under comparison had the
same CNNs with the same numbers of parameters. In the minet, we labelled all
instances of the positive bags as positive instances. The classification performance of
these methods were estimated using 5-fold cross-validation. All the classification
results are summarized in Table 2. These results further demonstrated that our method
could improve the classification performance of the state-of-the-art MIL methods.

Table 2. Comparison results of different MIL methods (mean=std)

Method Accuracy Sensitivity Specificity
Minet 0.6488 £ 0.0852|0.5917 &+ 0.1037 | 0.7143 £ 0.1683
Minet 0.8044 + 0.0656 | 0.8250 £ 0.1229 | 0.7809 + 0.1372

Gated-Attention
Proposed

0.8222 + 0.0471
0.8489 + 0.0365

0.8083 + 0.0228
0.8582 + 0.0697

0.8381 + 0.0865
0.8381 + 0.0865
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Finally, we adopted Grad-CAM to identify informative image regions for the
classification [15]. Figure 3 shows Grad-CAM maps of two randomly selected testing
subjects with CAKUT. Particularly, instances with relatively larger weights learned by
the attention-based MIL pooling are shown from left to right, indicating that our
method could capture clinically meaningful image features.

Example Subject 1
Attention weight=0.0609  Attention weight=0.0585  Attention weight=0.0583  Attention weight=0.0494

Example Subject 2
Attention weight=0.0578  Attention weight=0.0566  Attention weight=0.0556  Attention weight=0.038

Fig. 3. Two examples of the multi-instance Grad-CAM maps of abnormal subjects with
relatively lager attention weights. The largest weight across all test subjects was about 0.06.

4 Conclusions

In this study, we develop a novel multi-instance deep learning method to build a robust
classifier to aid kidney disease diagnosis using ultrasound imaging. Our method is built
upon recent advance in deep MIL on the embedded-space [10, 11] with novel com-
ponents, including the GCNs to optimize the instance-level features learned by CNNs
and the integrated instance-level and bag-level supervision to improve the classifica-
tion. Extensive ablation studies and comparison experiments have demonstrated that
our method could improve state-of-the-art deep MIL methods for the kidney disease
diagnosis. Our future work will be devoted to automatic network architecture opti-
mization and extensive validation of the proposed method based on different data sets.
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