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Abstract. Between preoperative computed tomography (CT) image
acquisition and endoscopic sinus surgery, the nasal cavity of a patient
undergoes changes. These changes make it challenging for non-
deformable vision-based registration algorithms to find accurate align-
ments between CT image and intraoperative video. Large alignment
errors can lead to injuries to critical structures. In this paper, we
present a deformable video-CT registration that deforms the patient
shape extracted from CT according to statistics learned from population.
We also associate confidence with regions of deformed shapes based on
the location of matched video features. Experiments on both simulation
and in vivo data produced < 1 mm errors (statistically significantly lower
than prior work).
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1 Introduction

Since the step-by-step procedure for endoscopic sinus surgery (ESS) was first
developed [14] in the early 1980s, interventions through the nasal cavities
have become predominantly minimally invasive due to faster recovery times
and reduced facial scarring. However, ESS comes with its own challenges. For
instance, the 3D operating field is transformed into a 2D video display and the
field of view (FOV) of the surgeon is limited to that of the endoscope. These
can cause difficulty in estimating nearby anatomy that is not in the FOV of the
endoscope. Knowledge of nearby anatomy is especially critical during surgeries
through the nasal cavity since nasal cavities are small and complex with thin
boundaries separating them from critical structures like the brain, eyes, carotid
arteries, optic nerves, etc. Therefore, minimally invasive ESS through the nasal
cavity requires a preoperative patient computed tomography (CT) scan, which
is used by surgical navigation systems to orient surgeons with respect to critical
anatomy.
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Several navigation systems have been introduced that register endoscopic
views to preoperative patient CT image. Systems that use electromagnetic or
optical trackers require markers to be attached to the endoscope, which can inter-
fere with surgical workflow. Vision-based navigation systems, however, do not
add any additional hardware to the surgical space. Many vision-based navigation
systems compute rigid registrations between features from endoscopic video and
CT image. The iterative closest point (ICP) algorithm [2] is a standard two-step
registration algorithm that iterates between finding correspondences between
feature sets and finding the transformation that best aligns the matched points
until convergence. Several ICP variants have also been explored [21]. In addition
to position, orientation [6,20], contours [4], and noise models [11,22] have been
used to improve matches. However, patient anatomy undergoes change between
CT image acquisition and surgery [12]. Patients are also administered deconges-
tants before surgery which further modifies anatomy. Rigid registration methods
have shown deterioration in performance in the presence of tissues that undergo
change due to decongestants [15,16]. However, prior work has shown that prin-
cipal component analysis (PCA) modes can capture the physiological changes
that occur in the nasal cavity, i.e., the expanding and contracting of erectile tis-
sues on the nasal turbinates [26]. Therefore, deformable variants of ICP that use
PCA-based statistical shape models (SSMs) [9] to additionally solve for shape
parameters have also been explored [13,27]. However, these methods compute
registrations to the mean shape, deforming the mean shape to estimate patient,
and do not take prior patient information into consideration. Further, they do
not provide confidence measures on the estimated shape.

Our registration simultaneously computes video-CT registration and deforms
patient shape using SSMs. We also estimate how errors in deformed patient
shape estimation increase as distance from video features increases and provide
confidence measures. We evaluate our method on simulated and in vivo data.

2 Method

The method in [27] is formulated according to the following likelihood function:

fmatch def(x,y; θ, s, V̄,W) = fmatch(x; Tssm(y, s), θ) · fshape(Tssm(y, s); s),

where fmatch finds the oriented point y = (yp, ŷn) on the current shape, ψ, that
maximizes the likelihood of a match with oriented sample point x = (xp, x̂n)
from video, and fshape is the likelihood of shape deformation. θ represents param-
eters of the non-deformable registration (i.e., rotation, R, translation, t, and
scale, a), s = {s} represents the shape parameters, V̄ is the mean shape, W the
weighted modes of variation, and Tssm is the deformable transformation applied
to V̄. fmatch can be any likelihood-based registration objective, such as those
presented in [3,5,6]. In this paper, we use the fmatch defined in [6,27], which
incorporates an anisotropic Gaussian noise model and an anisotropic Kent noise
model to account for errors in position and orientation, respectively [6]. Assum-
ing both position and orientation errors are zero-mean, i.i.d, fmatch for each x
transformed by a current similarity transform, [a,R, t], is defined as [27]:
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fmatch(x;y,Σx,Σy, κ, β, γ̂1, γ̂2, a,R, t) =
1

√
(2π)3|Σ| · c(κ, β)

· e
− 1

2 (yp−aRxp−t)TΣ−1(yp−aRxp−t)−κŷn
TRx̂n+β
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,

where Σ = RΣxRT + Σy, Σx and Σy are the covariance matrices representing
noise in x and y, κ = 1

σ2 is the concentration parameter of orientation noise,
σ is the standard deviation, and β = eκ

2 (e ∈ [0, 1] is the eccentricity) con-
trols the anisotropy of orientation noise along with γ̂1 and γ̂2, which are the
major and minor axes of the elliptical level sets of the Kent distribution on
the unit sphere [6,18]. ŷn, γ̂1, γ̂2 are orthogonal. Similarly, assuming each ver-
tex, v ∈ V, on a shape deforms independently and deformations are Gaussian
distributed [23]:

fshape(V; s) =
nv∏

i=1

fvertex(vi; s), where fvertex(v; s) =
nm∏

i=1

1
(2π)3/2

.e
‖si‖2

2
2 , (1)

where nv is the number of vertices in the shape and nm is the number of PCA
modes used to estimate deformation.

This formulation forces the mean shape to be the most likely shape [27]
and cannot accommodate prior patient information. That is, in a generalized

formulation for the exponent in Eq. 1, e
‖si−µi‖2

2
2 , μi, which are the mode weights

corresponding to the most likely shape, are simply set to 0, ∀i, since the mean
shape produces 0 mode weights. This is a good assumption when patient CT is
unavailable [25,27]. However, if patient CT is available, then patient shape should
be assumed to be the most likely shape. If patient shape, V∗, is segmented such
that it has correspondences with the mean shape [26,28], μ can be computed by
projecting the mean subtracted patient shape onto the SSM modes,

μi = mT
i (V∗ − V̄)/

√
λi,

where m and λ are the modes and mode weights of variation. m and λ can be
obtained by performing PCA on a set of shapes with corresponding vertices [9]:

ΣSSM =
1
ns

ns∑

j=1

(Vj − V̄)(Vj − V̄)T = [m1 . . .mns ]

⎡

⎢
⎣
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. . .
λns

⎤

⎥
⎦ [m1 . . .mns ]

T.

Finally, the deformation applied to V̄ based on the current s is defined as

Tssm(ypi
) =

3∑

j=1

η
(j)
i Tssm(v(j)

i ), where Tssm(vi) = v̄i +
nm∑

j=1

sjw
(i)
j ,

η
(j)
i are the 3 barycentric coordinates that define the position of yi on a triangle

on ψ, and wi =
√

λimi are the weighted modes of variation [27].
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Finally, we associate confidence with regions of the estimated shape. We
expect errors to be lower where sampled points are matched to the shape and
higher as distance from these points increases since these areas are unobserved.
To verify this, we associate per vertex errors with distance from the centroid of
inlying matched points,

di = ‖vi − c‖2, where c =
1

ninliers

ninliers∑

i=1

yi,

and model our confidence based on observations in simulation. ninliers is the
number of inlying matched points.

3 Experiments and Analysis

Since our method initializes the shape estimation problem closer to the optimal
solution, we expect our registrations to converge faster and produce lower mean
errors since it is less likely for our optimization to converge to a non-optimal solu-
tion. To verify these expectations, we evaluate our method on simulated and in
vivo data. All experiments are run on a 3.4 GHz Intel Core i7 CPU, 16 GB RAM.

3.1 Simulated Data

We perform a leave-one-out experiment using right nasal cavity meshes from a
53 CT dataset [1,7,8,10]. The left-out shape is perturbed to simulate a patient
with modified anatomy. Points are sampled from regions of the perturbed left-
out shape that would be visible to an endoscope (Fig. 3A). Position noise with
σ = 1×1 mm2 in plane and 2 mm out of plane (i.e., 1×1×2 mm3) and orientation
noise with σ = 10◦ and e = 0.5 are added to the sampled points. Offsets in inter-
vals [0, 10] mm and [0, 10]◦ are applied to the sample positions and orientations,
respectively. The perturbed left-out shape is estimated using our method, i.e.,
with μ set to weights from the original left-out shape, and using prior work, i.e.,
with μ = 0. Estimation of s is constrained to [−3, 3] standard deviations. Both
registrations are run with two noise assumptions: first, assuming the noise in the
samples is known, and second, assuming the noise is unknown and initializing
the noise estimates to 2 × 2 × 4 mm3 and 20◦ (e = 0.5) for position and orienta-
tion, respectively. To evaluate our results, we first compute the total registration
error (tRE) by computing the Hausdorff distance (HD) between the deformed
left-out shape and the estimated shape transformed to the coordinate frame of
the registered sample points. Next, we compute the total shape error (tSE) by
computing the HD between the two shapes in the same coordinate frame.

In both cases, we observed statistically significant1 decrease in errors when
registration is initialized to patient weights, with errors lower when noise is
known (Fig. 1A and B) compared to when noise is unknown (Fig. 2A and B).
1 All statistical significance figures reported in this paper are evaluated using the

paired-sample Student’s t-test and indicate p < 0.001.
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Fig. 1. Simulation experiment with known noise shows statistically significant (indi-
cated by *) decrease in (A) tSE, (B) tRE, (C) number of iterations, and (D) runtime
when registration is initialized to patient shape (green) rather than mean shape (red).
(Color figure online)

We also observe that there is a statistically significant decrease in the num-
ber of iterations required for convergence, which also leads to decrease in run-
time. Although there is a bigger decrease in number of iterations and runtime
for convergence with known noise (Fig. 1C and D), results with unknown noise
(Fig. 2C and D) show that for similar number of iterations and runtime, we
achieve lower errors when registration is initialized to patient shape. Our cur-
rent CPU implementation is embarrassingly parallelizable and can be further
optimized to improve runtime.

We also observe, as expected, that shape estimation errors are lower where
correspondences to sample points are found (Fig. 3B). Per vertex tSE shows
little change near the centroid of the matched points, but quickly increases away
from it (Fig. 4A). Therefore, we model our confidence in shape estimation as an
exponential decay as distance from matched points increases. Figure 4B shows an
estimated left-out shape from the experiment with unknown noise with ground
truth errors, while Fig. 4C shows our estimated confidence in shape estimation.

3.2 In Vivo Data

Our clinical evaluation was performed on anonymized endoscopic videos of
the nasal cavity collected from 4 consenting patients under an IRB approved
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Fig. 2. Simulation experiment with unknown noise shows statistically significant (indi-
cated by *) decrease in (A) tSE, (B) tRE, (C) number of iterations, and (D) runtime
when registration is initialized to patient shape (green) rather than mean shape (red).
(Color figure online)

protocol. These videos were used to train a self-supervised depth-estimation net-
work that leverages established multi-view stereo methods like structure from
motion (SfM) for learning [17]. This method produces dense and accurate point
clouds from single frames of monocular endoscopic videos. Reconstructions from
nearby frames were aligned using relative camera motion to produce dense recon-
structions covering large areas in the nasal cavities. 3000 randomly sampled
points from 14 such reconstructions were deformably registered both to the
mean shape and the patient shape assuming noise with σ = 1 × 1 × 2 mm3

and 30◦ (e = 0.5) in position and orientation, respectively. The SSM used is pre-
built using our 53 CT dataset and does not include CTs from any of the patients
scoped for clinical evaluation. Rigid registrations to the respective patient shapes
with the same parameters were also computed for comparison [6]. All registra-
tions were manually initialized.

Since in vivo data lacks ground truth, we evaluate our registration using
residual errors between matches computed by the registration. However, residual
error can be misleading since it does not take into consideration the orientations
of matched points. Therefore, we also report registration confidence based on the
agreement in the orientations of corresponding points. [27] showed that registra-
tion confidence decreased with increasing chi-square CDF values, p, computed
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Fig. 3. (A) Right nasal cavity mesh with an example of points (yellow) sampled from
the inferior turbinate, lateral and septal walls, and cavity floor - regions visible to
an endoscope when entering the cavity. (B) Mean tSE over registrations (from L-R)
initialized at patient shape and mean shape, with known and unknown noise each,
and run with 50 modes plotted on the mean shape. Shape estimation errors are higher
away from matched points as well as when mean shape is used for initialization (arrow).
(Color figure online)

Fig. 4. (A) Trend in shape estimation errors as distance from matched points increases.
(B) Ground truth shape estimation errors on an estimated left-out shape and (C) our
estimated confidence. Blue indicates high confidence while red indicates low confidence.
(Color figure online)

using orientation agreement scores. For simplicity, we show increasing confidence
with increasing q = 1 − p.

Both deformable registration methods produced statistically significant
improvements over rigid registration to patient shape, which produced a mean
residual error of 0.7 (±0.26) mm. Residual errors between deformable registra-
tion initialized at mean shape and initialized at patient shape produced the same
residual error of 0.44 (±0.14) mm. However, confidence in registration using ori-
entation agreement was higher when initialized to patient shape (Fig. 5A), imply-
ing that our method produced better alignment. We are also able to visualize
confidence in estimated shapes. Confidence in estimated Patient 2 is shown in
Fig. 5B along with the alignment that produced the estimated shape (Fig. 5C
and D).
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Fig. 5. (A) Confidence based on orientation agreement plotted for registrations com-
puted with reconstructions from different video sequences. Initializations at patient
shape (green) produce higher confidence in registration, only showing no confidence
for sequences 01 and 04 from Patient 4. Several registrations initialized at mean shape
(red) show no confidence. (B) Deformed patient 2 with confidence estimates when
aligned with features extracted from (C) video sequence 02. (D) Points (red with blue
normals) overlayed on the deformed shape (gray). (Color figure online)

4 Discussion and Future Work

In this work, we show that we can deformably register endoscopic videos to
patient CT using PCA modes to deform patient shape. This method produces
statistically significant improvements in registration errors as well as iterations
and runtime to convergence compared to prior PCA-based deformable registra-
tion methods [24]. We believe that these results bring us a step closer to providing
accurate patient-specific navigation during endoscopic sinus procedures without
using any external tools like electromagnetic or optical trackers.

We did not compare our method to other prior registration methods like
coherent point drift (CPD) due to memory limitations [19]. CPD computes a
nv × nv matrix which is stored in memory, resulting in large memory overhead
even for medium sized meshes. Our method does not suffer from such limita-
tions. Further, we expect our method to perform as well [24] or better since
CPD only deforms the parts of meshes where sample points are matched which
can result in unnatural deformations in the mesh. Since our method is driven
by statistics learned from population, it is much less likely for our method to
produce unnatural deformations. Our method also computes confidence falloff in



Recovering Physiological Changes in Nasal Anatomy 123

estimated shapes as distance from registered feature points increases. Providing
this information during surgical navigation is critical since it allows surgeons to
modulate their trust in the navigation system.

In the future, we will analytically evaluate the uncertainty in different regions
of the estimated shape and improve the runtime of our algorithm. We are also
working on building SSMs from a larger population in order to better capture the
extent of variations in the nasal cavity. Another goal we hope to work towards is
automating registration initialization so our method can be seamlessly integrated
into the surgical navigation workflow. Finally, we would like to emphasize that
our method can enable highly accurate navigation and reduce risk of damage to
critical structures towards the start of a procedure. We hope that future work
that can account for non-physiological changes that occur during surgery can be
integrated with our method to enable accurate navigation throughout endoscopic
sinus procedures.
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