
Bounds and Estimates on the Average
Edit Distance

Michele Schimd(B) and Gianfranco Bilardi

Department of Information Engineering, University of Padova, Padua, Italy
{schimdmi,bilardi}@dei.unipd.it

Abstract. The edit distance is a metric of dissimilarity between strings,
widely applied in computational biology, speech recognition, and machine
learning. Let ek(n) denote the average edit distance between random,
independent strings of n characters from an alphabet of a given size k.
An open problem is the exact value of αk(n) = ek(n)/n. While it is
known that, for increasing n, αk(n) approaches a limit αk, the exact
value of this limit is unknown, for any k ≥ 2. This paper presents an
upper bound to αk based on the exact computation of some αk(n) and
a lower bound to αk based on combinatorial arguments on edit scripts.
Statistical estimates of αk(n) are also obtained, with analysis of error and
of confidence intervals. The techniques are applied to several alphabet
sizes k. In particular, for a binary alphabet, the rigorous bounds are
0.1742 ≤ α2 ≤ 0.3693 while the obtained estimate is α2 ≈ 0.2888; for
a quaternary alphabet, 0.3598 ≤ α4 ≤ 0.6318 and α4 ≈ 0.5180. These
values are more accurate than those previously published.

Keywords: Edit distance · Average analysis · Upper and lower
bounds · Statistical estimates

1 Introduction

Measuring distance between strings is a fundamental problem in computer sci-
ence, with applications in computational biology, speech recognition, machine
learning, and other fields. One commonly used metric is the edit distance (or
Levenshtein distance), defined as the minimum number of substitutions, dele-
tions, and insertions necessary to transform one string into the other.

It is natural to ask what is the average distance between two randomly gen-
erated strings, as the string size grows; knowledge of the asymptotic behavior
has proved useful in computational biology (Ganguly et al. [10]) and in near-
est neighbour search (Rubinstein [14]). In computational biology, for example,
the edit distance can be used to the test the hypothesis that two subsequences

This work was partially supported by University of Padova projects CPDA152255/15
and CPGA3/13; by MIUR, the Italian Ministry of Education, University and Research,
under Grant 20174LF3T8 AHeAD: efficient Algorithms for HArnessing networked
Data; and by an IBM SUR Grant.

c© Springer Nature Switzerland AG 2019
N. R. Brisaboa and S. J. Puglisi (Eds.): SPIRE 2019, LNCS 11811, pp. 91–106, 2019.
https://doi.org/10.1007/978-3-030-32686-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32686-9_7&domain=pdf
http://orcid.org/0000-0002-6422-6258
http://orcid.org/0000-0003-0303-8349
https://doi.org/10.1007/978-3-030-32686-9_7

92 M. Schimd and G. Bilardi

originated from the same portion of DNA. Even for the case of uniform and
independent strings, the study of average edit distance appears to be challeng-
ing and little work has been reported on the problem. In contrast, the closely
related problem of finding the average length of the longest common subsequence
has been extensively studied, since the seminal work by Chvátal and Sankoff [8].

Using Fekete’s lemma, it can be shown that both metrics tend to grow linearly
with n (Steele [18]). Let ek(n) denote the average edit distance between two
random, independent strings of length n on a k-ary alphabet; then αk(n) =
ek(n)/n approaches a limit αk ∈ [0, 1]. Similarly, let �k(n) denote the length of
the longest common subsequence; then γk(n) = �k(n)/n approaches a limit γk ∈
[0, 1]. The γk’s are known as the Chvátal-Sankoff constants. The determination
of the exact values of αk and γk is an open problem. This paper addresses the
problem of estimating and bounding αk, for various alphabet sizes k.

Related Work. There is limited literature directly pursuing bounds and estimates
for αk. It is also interesting to review results on γk: on the one hand, bounds
to γk give bounds to αk; on the other hand, techniques for analyzing γk can be
adapted for analyzing αk.

The only published estimates of αk can be found in [10] which gives α4 ≈
0.518 for the quaternary alphabet and α2 ≈ 0.29 for the binary alphabet. For γk,
the best available estimates are given by Bundschuh [5], in particular γ2 ≈ 0.8126
and γ4 ≈ 0.6544. Estimates of γk by sampling are given by Ning and Choi [13],
their results, however, appear in contrast with estimates of [5]. In particular they
conjectured that γ2 > 0.82 contradicting the estimate of γ2 given in [5].

The best published analytical lower bounds to αk are α4 ≥ 0.3383 for qua-
ternary alphabet and α2 ≥ 0.1578 for binary alphabet [10]. To the best of our
knowledge, no systematic study of upper bounds to αk have been published. The
best known analytical lower and upper bounds to γ2 are given by Lueker [11],
who obtained 0.7881 ≤ γ2 ≤ 0.8263. For larger alphabets, the best results appear
in Danćık [9], including 0.5455 ≤ γ4 ≤ 0.7082. From known relations between
edit distance and the length of the longest common subsequence, it follows that
1−γk ≤ αk ≤ 2(1−γk). Thus, upper and lower bounds to αk can be respectively
obtained from lower and upper bounds to γk. From γ2 ≤ 0.8263 [11], we obtain
α2 ≥ 0.1737, which is tighter than the bound given in [10]. Instead γ4 ≤ 0.7082
[9] yields α4 ≥ 0.2918, which is weaker than the bound α4 ≥ 0.3383 [10]. From
the weaker relation (1−γ4)/2 ≤ α4, [14] obtained the looser bound α2 ≥ 0.0869.
Improved bounds, for both α2 and α4, are derived in this paper. Some of our
techniques resemble those used in Baeza-Yates et al. [4] for estimating γk.

1.1 Paper Contributions

The contributions of this paper include:

– statistical estimates of αk(n) with error analysis,
– upper bounds to αk by exhaustive computation of αk(n) for small n, and
– lower bounds to αk through analytical counting arguments.

Bounds and Estimates on the Average Edit Distance 93

Our numerical results for k = 2 and k = 4 are compared with previously known
values in Table 1. The methods used to derive such values are presented through-
out the paper, which is organized as follows. Section 2 introduces notation and
definitions. Section 3 presents statistical estimates, with error analysis. Section 4
describes an algorithm for computing upper bounds. Section 5 develops lower
bounds analysis based on counting edit scripts. Section 6 shows and discusses
numerical results on bounds and estimates of αk. Finally, Sect. 7 gives conclu-
sions and future directions of investigation.

Table 1. Our results on α2 and α4 compared with previously published ones.

Lower bound Estimate Upper bound

Previous This work Previous This work Previous This work

α2 0.1737 [11] 0.1742 0.290 [10] 0.2888 - 0.3693

α4 0.3383 [10] 0.3598 0.518 [10] 0.5180 - 0.6318

2 Preliminaries

2.1 Notation and Definitions

Let Σk be a finite alphabet of size k ≥ 2 and let n ≥ 1 be an integer; a string x
is a sequence of symbols x[1]x[2] . . . x[n] where x[i] ∈ Σk; n is called the length
of x, also denoted by |x|. Σn

k is the set of all strings of length n.

Edit Distance. We consider the following edit operations on a string x: the match
of x[i], the substitution of x[i] with a different symbol b ∈ Σk \{x[i]}, the deletion
of x[i], and the insertion of b ∈ Σk in position j = 0, . . . , n (insertion in j means b
goes after x[j] or at the beginning if j = 0); an edit script is an ordered sequence
of edit operations. To each type of edit operation is associated a cost; throughout
this paper, matches have cost 0 and other operations have cost 1. The cost of a
script is the sum of the costs of its operations. The edit distance between x and
y, dE(x, y), is the minimum cost of any script transforming x into y. It is easy
to see that ||x| − |y|| ≤ dE(x, y) ≤ max(|x|, |y|).

Random Strings and the Limit Constant. A random string X = X[1]X[2] . . .
X[n] is a sequence of random symbols X[i] each generated according to some
distribution. We will assume X[i] uniformly and independently sampled from
Σk, hence P[X = x] = k−n for every x ∈ Σn

k . For a string x we define the
eccentricity, ecc(x), as its expected distance from a random string Y ∈ Σn

k :

ecc(x) = k−n
∑

y∈Σn
k

dE(x, y). (1)

94 M. Schimd and G. Bilardi

The expected edit distance between two random, independent strings of Σn
k is:

ek(n) = k−2n
∑

x∈Σn
k

∑

y∈Σn
k

dE(x, y)

= k−n
∑

x∈Σn
k

ecc(x). (2)

Let αk(n) = ek(n)/n; it can be shown (Fekete’s lemma from ergodic theory;
see, for example, Lemma 1.2.1 in [18]) that there exists a real number αk ∈ [0, 1],
depending only on k, such that

lim
n→∞ αk(n) = αk.

The main objective of this paper is to derive estimates and bounds to αk.

2.2 Computing the Edit Distance

Edit distance and length of the longest common subsequence (LCS) can be
computed using a dynamic programming algorithm. For the edit distance, given
two strings x and y with length n and m respectively, the algorithm fills an
(n + 1) × (m + 1) matrix M. The values of M are computed according to the
following recurrence:

Mi,0 = i for i = 0, . . . , n

M0,j = j for j = 0, . . . ,m (3)
Mi,j = min {Mi−1,j−1 + ξi,j ;Mi−1,j + 1;Mi,j−1 + 1} otherwise

where ξi,j = 0 if x[i] = y[j] and ξi,j = 1 otherwise.1 The edit distance between x
and y is the value computed in the entry Mn,m. This algorithm takes O(nm) time
and space. From the matrix M, an edit script realizing the transformation of x
into y can be obtained using backtracking which produces a path from cell (n,m)
to cell (0, 0) of M. For both problems, the approach by Masek and Paterson [12]
(using the method of the Four Russians) reduces the time to O(n2

log n) (assuming
n ≥ m). It is known that both the edit distance and the length of the LCS cannot
be computed in time O(n2−ε), unless the Strong Exponential Time Hypothesis
(SETH) is false (Abboud et al. [1], Backurs and Indyk [3]). For the edit distance,
a (log n)O(1/ε) approximation, computable in time O(n1+ε), is given by Andoni et
al. [2], while a constant approximation algorithm with running time O(n1+5/7) is
given by Chakraborty et al. [7]. A very recent work by Rubinstein and Song [15],
gives a reduction from approximate length of the longest common subsequence
to approximate edit distance, proving that the algorithm in [7] can also be used
to approximate the length of the LCS.

1 A similar algorithm computes the length of the LCS. The recurrence (3) becomes
Mi,0 = 0, M0,j = 0, and Mi,j = max {Mi−1,j−1 + (1 − ξi,j); Mi−1,j ; Mi,j−1}.

Bounds and Estimates on the Average Edit Distance 95

In order to compute upper bounds to αk, we propose an algorithm related to
the approaches developed by Calvo-Zaragoza et al. [6] and [11]. In these works,
portions of the dynamic programming matrix are associated to states of a finite
state machine. Our algorithm conceptually simulates all possible execution of a
machine similar to the one defined in [6].

3 Statistical Estimates of αk

In this section, we discuss how to develop statistical estimates of αk(n), by
sampling. In Table 2, we show results for k = 4, a case of special interest in DNA
analysis [10]. Although αk < αk(n) for every finite n, when n is sufficiently large,
estimates of αk(n) provide approximations to αk.

3.1 Estimates of αk(n) and Confidence Interval

Let (x1, y1), . . . , (xN , yN) be N random and independent pairs of strings from
Σn

k . The sample mean

ẽk(n) =
1
N

N∑

i=1

dE(xi, yi) (4)

provides an estimate of ek(n). We determine confidence intervals of such an
estimate, using the sample variance

S2
k(n) =

1
N − 1

N∑

i=1

(dE(xi, yi) − ẽk(n))2. (5)

Table 2 presents values of ẽ4(n) and S2
4(n) for N = 5000 and n = 24, 25, . . . , 214.

Our analysis on confidence intervals is based on the work by Saw et al. [16], which
extends Chebyshev’s inequality to the cases where both mean and variance are
not known, but rather estimated with (4) and (5), respectively. For this analysis
to apply, it is sufficient for a random variable to have finite first and second order
moments, a condition certainly satisfied by the edit distance of a random pair
of strings of a given length.

Proposition 1 (Eq. (2.2) in [16]). Let ẽk(n) and S2
k(n) be given by (4) and

(5), respectively. For any t ≥ 1,

P[|ek(n) − ẽk(n)| ≤
√

(N + 1)/NtSk(n)] ≥ 1 −
(

N − 1
N

1
t2

+
1
N

)
. (6)

From (6) we get the confidence interval on αk(n)

P[αk(n) ∈ [ẽk(n)/n ±
√

(N + 1)/NtSk(n)]] ≥ 1 −
(

N − 1
N

1
t2

+
1
N

)
.

96 M. Schimd and G. Bilardi

Table 2. Results of statistical estimates of α4(n) for n = 24, 25, . . . , 214 obtained from
N = 5000 samples. The table shows: n, sample mean ẽ4(n), sample variance S2

4(n),
estimate α̃4(n), and the value S4(n)/n used to the compute confidence intervals.

n ẽ4(n) S2
4(n) α̃4(n) S4(n)/n

16 10.0164 2.0814 0.6260 0.0902

32 18.9460 3.3306 0.5920 0.0570

64 36.4370 5.4487 0.5693 0.0365

128 70.5634 9.1274 0.5513 0.0236

256 138.0370 14.4977 0.5392 0.0149

512 272.1636 24.3117 0.5315 0.0096

1024 538.7120 39.6606 0.5261 0.0062

2048 1070.2178 65.2186 0.5226 0.0039

4096 2131.4744 111.4540 0.5204 0.0026

8192 4251.1936 178.6490 0.5189 0.0016

16384 8486.4712 323.7883 0.5180 0.0011

The values S4(n)/n are shown in Table 2 for each n. For example with n = 214,
N = 5000, and t = 5, we get

P[α4(214) ∈ [0.518 ± 0.0055]] ≥ 1 −
(

4999
5000

1
52

+
1

5000

)
= 0.9598.

Since αk < αk(n), we conclude that

P[α4 < 0.5235] ≥ 0.9598. (7)

3.2 The (2w + 1)-bandwidth Algorithm for Approximate Distance

Although better approximations of αk can, in principle, be obtained using larger
values of n, the quadratic complexity of the dynamic programming algorithm
limits the values of n we can practically test. To partially circumvent this obsta-
cle, for n > 214, we have estimated αk(n) resorting to an algorithm that computes
an approximation (from above) to dE(x, y). The algorithm is parameterized by
an integer w ≥ 0 called bandwidth. It computes the portion of a matrix Q corre-
sponding to the 2w + 1 central diagonals. The algorithm performs the following
steps.

1. For h = 0, . . . , w + 1, set Qh,0 = h and Q0,h = h.
2. For h = w + 2, . . . , n, set Qh−w−1,h and Qh,h−w−1 to h.
3. For j = 1, . . . , n and i = max (1, j − w), . . . ,min (j + w, n), apply (3) to Qi,j .

We observe that the values of the entries of Q on the boundary of the region
where such matrix is computed (steps 1 and 2) are set to upper bounds to the

Bounds and Estimates on the Average Edit Distance 97

corresponding entries of the matrix M, reviewed in Sect. 2.2. Since the function
that updates an entry in terms of its neighbours (step 3) is monotone non-
decreasing, we have that Qi,j ≥ Mi,j , whence the output Qn,n of the bandwidth
algorithm computes an upper bound to dE(x, y). It can be shown that Qn,n =
dE(x, y) whenever there exists an optimal path in M confined to the 2w + 1
central diagonals, a condition that is always met if dE(x, y) ≤ w.

We carried out simulations setting w =
√

n, so that the bandwidth algorithm
runs in time is O(n3/2). Application of Eq. (6) to n = 220 with t = 5, gives
for ê4(220)/220, the confidence interval [0.5162, 0.5174] with probability at least
0.9598. Since ê4(n)/n is an estimate of an upper bound to e4(n)/n, we obtain

P[α4 < 0.5174] ≥ 0.9598. (8)

We observe that bound (8) improves on bound (7), obtained via the exact dis-
tance algorithm. This indicates that the loss of precision due to the use of an
approximate algorithm is more than compensated by the ability to process larger
string sizes.

4 Upper Bounds for αk

This section presents methods to derive upper bounds to αk based on the exact
computation of αk(n) = ek(n)/n for some n, and on the relation αk ≤ αk(n),
valid for all n ≥ 1. The computation of ek(n) can be reduced to that of the
eccentricity, as in Eq. (2) repeated here for convenience:

ek(n) = k−n
∑

x∈Σn
k

ecc(x). (9)

If ecc(x) is computed according to Eq. (2) and the distance dE(x, y) is com-
puted by the O(n2)-time dynamic programming algorithm for each of the kn

strings y ∈ Σn
k , then the overall computation time is O(n2kn) for ecc(x) and

O(n2k2n) for ek(n), since the eccentricity of each of the kn strings x ∈ Σn
k

is needed in Eq. (9). Below, we propose a more efficient algorithm to speed
up the computation of ecc(x) and, in turn, that of ek(n), achieving time
O(n2 min (k, 3)n

kn) = O(n23nkn). We also show how to exploit some symme-
tries of ecc(x) in order to limit its evaluation to a suitable subset of Σn

k .

4.1 The Coalesced Dynamic Programming Algorithm
for Eccentricity

Let M(x, y) be the matrix produced by the dynamic programming algorithm
(reviewed in Sect. 2.2) to compute dE(x, y), with x, y ∈ Σn

k . We develop a strat-
egy to coalesce the computations of M(x, y) for different y ∈ Σn

k , while keeping
x fixed. To this end, we choose to generate the entries of M(x, y), according
to Eq. (3), in column-major order. Clearly, the j-th column is fully determined
by x and by the prefix of y of length j. Define now the column multiset Cj

98 M. Schimd and G. Bilardi

Algorithm 1. Coalesced dynamic programming algorithm to compute ecc(x)
1: procedure Eccentricity(x)
2: n ← |x|
3: C0 ← {((0, 1, . . . , n), 1)}
4: for j ← 1 to n do
5: Cj ← ∅
6: for c ∈ Cj−1 do
7: for b ∈ Σk do
8: c′ ← NextColumn(x, c, j, b)
9: Insert(Cj , (c

′, μ(c)))
10: end for
11: end for
12: end for
13: e ← 0
14: for c ∈ Cn do
15: e ← e + μ(c) ∗ c[n]
16: end for
17: return e/kn

18: end procedure

containing the j-th (i.e., the last) column of M(x, y[1] . . . y[j]) for each string
y[1] . . . y[j] ∈ Σj

k. Multiset Cj is a function of (just) x, although, for simplicity,
the dependence upon x is not reflected in our notation.

The Coalesced Dynamic Programming (CDP) algorithm described below
(referring also to the line numbers of Algorithm 1), constructs the sequence
of multisets C0, C1, . . . , Cn. A column multiset C will be represented as a set of
pairs (c, μ(c)), one for each distinct member c, with μ(c) being the multiplicity
of c in C. The eccentricity of x is obtained (lines 13–17) as the weighted average
of the n-th element of all columns in Cn:

ecc(x) = k−n
∑

c∈Cn

μ(c)c[n]. (10)

As can be seen from Eq. (3), multiset C0 contains just column (0, 1, . . . , n), with
multiplicity 1 (line 3). For j = 1, . . . , n, Cj is obtained by scanning all c ∈ Cj−1

(line 6) and all b ∈ Σk (line 7), and by

– computing the j-th column c′ resulting from Eq. (3) when the (j − 1)-st
column is c and ξi,j = 0 if x[i] = b or else ξi,j = 1 (call to NextCol-
umn(x, c, j, b), line 8);

– inserting μ(c) copies of c′ in Cj , by either creating a new pair (c′, μ(c)) when
c′ is not present in the multiset or by incrementing its multiplicity by μ(c)
otherwise (call to Insert(Cj , (c′, μ(c))), line 9).

The correctness of the CDP algorithm is pretty straightforward to establish. A
few observations are however necessary in order to describe and analyze a data
structure that can efficiently implement, in our specific context, multisets with

Bounds and Estimates on the Average Edit Distance 99

the insertion operation. The key property is that, for j = 0, 1 . . . , n, the column
of M(x, y) with index j satisfies the conditions (a) M0,j = j and (b) (Mi,j −
Mi−1,j) ∈ {−1, 0, 1}, for i = 1, . . . , n. Using this property, the set of distinct
columns that belong to the multiset Cj can be represented as a ternary tree where
each arc has a label from the set {−1, 0, 1} and a column (M0,j ,M1,j , . . . ,Mn,j)
is mapped to a leaf v such that the n arcs in the path from the root to v have
labels (M1,j − M0,j), . . . , (Mn,j − Mn−1,j). Each leaf stores the multiplicity of
the corresponding column. The size of the tree for Cj is O(min(3n, kj)), since
there are at most 3n columns satisfying the constrains and kj k-ary strings that
contribute (not necessarily distinct) columns. Hence, the body of the loop whose
iteration space is defined in lines 4, 6, and 7 is executed nkO(min(3n, kj)) times.
Considering that one call to NextColumn() as well as one call to Insert() can
be easily performed in O(n) time, we can summarize the previous discussion as
follows, where we also consider that, at any given time, the algorithm only needs
to store two consecutive column multisets.

Proposition 2. The CPD algorithm computes the eccentricity ecc(x) of a
string x of length n over a k-ary alphabet in time T = O(n2k min(3n, kn)) and
space S = O(min(3n, kn)). Correspondingly, the average distance ek(n) can be
computed in time T = O(n2kn+1 min(3n, kn)) and space S = O(min(3n, kn)).

4.2 Exploiting Symmetries of ecc(x) in the Computation of ek(n)

The edit distance enjoys some useful symmetries, which can be easily derived
from the definition. One is that, if we let xR = x[n] . . . x[1] denote the reverse
of string x = x[1] . . . x[n], then dE(x, y) = dE(xR, yR). Another one is that if
π : Σk → Σk is a permutation of the alphabet and π(x) denotes the string
π(x[1]) . . . π(x[n]), then dE(x, y) = dE(π(x), π(y)). The following is a simple,
but useful corollary of these properties.

Proposition 3. For any x ∈ Σn
k , we have ecc(xR) = ecc(x). Furthermore, for

any permutation π of Σk, we have ecc(π(x)) = ecc(x).

It is useful to define the equivalence class of x as the set of strings that have the
same eccentricity as x, due to Proposition 3, and denote by ν(x) the cardinality
of such set. If Rk,n ⊆ Σn

k contains exactly one (representative) member for each
equivalence class, then Eq. (9) can be rewritten as

ek(n) = k−n
∑

x∈Rk,n

ν(x)ecc(x). (11)

Computing ek(n) according to Eq. (11) enables one to reduce the number of
strings for which the eccentricity has to be computed (via the CDP algorithm)
by a factor slightly smaller than (2k!), with a practically appreciable reduction
in computation time.

The strategy outlined in this section has been implemented in C++ and run
on a 32 core IBM Power7 server. For several alphabet sizes k, we have considered

100 M. Schimd and G. Bilardi

values of n up to a maximum value nub
k , under the constraint that the running

time would not exceed one week. The resulting values ek(nub
k) are presented and

discussed in Sect. 6.

5 Lower Bounds for αk

In this section, we prove the theoretical results that are used to obtain the lower
bounds αlb

k shown in Sect. 6. To obtain such lower bounds, we will derive lower
bounds to ecc(x) by ignoring the contribution of the strings inside the ball of
radius r centered at x and by setting to r + 1 the contribution of the string
outside the same ball. The objective is to determine the largest value r∗ of r for
which (it can be shown that) the ball of radius r contains a fraction of Σn

k that
vanishes with n; then r∗ will effectively represent a lower bound to αkn. Below,
we formalize this idea and show that we can choose r∗ = βn for suitable values
of β independent on n; this establishes that αk ≥ β.

5.1 Lower Bounds to ecc(x) Using Upper Bounds to Ball Size

In this subsection, we show how to derive lower bounds to ecc(x) starting from
upper bounds to the size of the ball of radius r centered at x. We also show
that, when such bounds are valid for every x, they can be used to compute lower
bounds to αk.

Definition 1. For a string x ∈ Σn
k , the ball of radius r centered at x is defined

as the set of strings having distance at most r from x:

Br(x) = {y ∈ Σn
k : dE(x, y) ≤ r}.

Similarly, the shell of radius r centered at x is defined as the set of strings having
distance exactly r from x:

Sr(x) = {y ∈ Σn
k : dE(x, y) = r}.

For a given r, each string in Σn
k \ Br(x) has distance at least r + 1 from

x; therefore its contribution to ecc(x) is at least r + 1. Given an upper bound
ur(x) ≥ |Br(x)|, the consequent lower bound |Σn

k \ Br(x)| ≥ (kn − ur(x)) yields
the following lower bound to ecc(x).

Lemma 1. Let ur(x) ≥ |Br(x)|, then for every r∗ = 0, 1, . . . , n:

ecc(x) ≥ r∗ (
1 − k−nur∗(x)

)
(12)

Bounds and Estimates on the Average Edit Distance 101

Proof. We can rewrite (1) as

ecc(x) = k−n
r∗∑

r=0

r|Sr(x)| + k−n
n∑

r=r∗+1

r|Sr(x)|

≥ k−n(r∗ + 1)
n∑

r=r∗+1

|Sr(x)|

= k−n(r∗ + 1) (|Bn(x)| − |Br∗(x)|)
> r∗ (

1 − k−n|Br∗(x)|)

≥ r∗ (
1 − k−nur∗(x)

)
.

	

In particular when ur∗ ≥ |Br∗(x)| for every x ∈ Σn

k , simple manipulations of
Eq. (2), recalling that αk = limn→∞

ek(n)
n , yield

αk ≥ lim
n→∞

r∗

n

(
1 − k−nur∗

)
. (13)

The bounds presented next are based on (13). We will show that, for suitable
values of β, the quantity (k−nuβn) converges to 0, so that αk ≥ β.

5.2 Upper Bounds on Ball Size

To use Lemma 1 we need an upper bound to |Br(x)|. The next proposition
develops such an upper bound by (i) associating every string in Br(x) to a
script of certain type with cost r or r − 1 and (ii) counting such scripts.

Proposition 4. For any x ∈ Σn
k and for any r = 1, . . . , n

|Br(x)| ≤ (k − 1)r

�r/2	∑

d=0

(
n

d

)2(
n − d + 1

r − 2d

)(
k

(k − 1)2

)d

. (14)

Proof. We introduce the notion of simple script of cost r ∈ {0, 1, . . . , n}, con-
structed by the following sequence of choices (shown within square brackets is
the number of possible choices):

– d ∈ {0, 1, . . . , �r/2�}
– d positions to delete from x [

(
n
d

)
]

– (r − 2d) of the remaining (n − d) positions to be substituted [
(

n−d
r−2d

)
]

– d positions to insert in y [
(
n
d

)
]

– the symbols in the substitutions [(k − 1)r−2d]
– the symbols in the insertions [kd]

102 M. Schimd and G. Bilardi

Straightforwardly, the number of simple scripts of cost r is

sr =
�r/2	∑

d=0

(
n

d

)2(
n − d

r − 2d

)
(k − 1)r−2dkd. (15)

It is easy to see that optimal scripts are simple.
Next, we prove that any y ∈ Br(x) can be obtained from x via a simple

script of cost r − 1 or r. Let r′ = dE(x, y) ≤ r, we will focus to the case where
r′ < r − 1, since in the complementary case the argument is trivial. Consider an
optimal, simple script of cost r′ that transforms x into y. By augmenting this
script with �(r − r′)/2� pairs of deletions and insertions, each pair acting on a
matched position, we obtain a simple script of cost r, if r − r′ is even, or of cost
r − 1 if r − r′ is odd. The prescribed augmentation is always possible since the
number of matches is at least n − r′ ≥ r − r′ ≥ (r − r′)/2.

The thesis is then established by the following sequence of inequalities

|Br(x)| ≤ sr + sr−1

≤
�r/2�∑

d=0

(n
d

)2(n − d

r − 2d

)
(k − 1)r−2dkd +

�(r−1)/2�∑

d=0

(n
d

)2(n − d

r − 1 − 2d

)
(k − 1)r−1−2dkd

≤
�r/2�∑

d=0

(n
d

)2(n − d

r − 2d

)
(k − 1)r−2dkd +

�r/2�∑

d=0

(n
d

)2(n − d

r − 1 − 2d

)
(k − 1)r−2dkd

≤
�r/2�∑

d=0

(n
d

)2(n − d+ 1

r − 2d

)
(k − 1)r−2dkd,

where we have made use of the identity
(

n − d

r − 2d

)
+

(
n − d

r − 1 − 2d

)
=

(
n − d + 1

r − 2d

)
.

	

5.3 Asymptotic Behavior of Ball Size and Bounds for αk

The next results show that (14), divided by kn, is bounded by an exponential
function where we can choose the exponent in such a way that this function
vanishes with n. This can then be used in (13) to obtain lower bounds to αk.

Definition 2. Let H(β) denote the binary entropy function

H(β) = −β log2 β − (1 − β) log2 (1 − β).

Definition 3. For β ∈ [0, 1] and δ ∈ [0, β/2] we define the function

gk(β, δ) =(β − 2δ) log2 (k − 1) − (1 − δ) log2 k

+ 2H(δ) + (1 − δ)H
(

β − 2δ

1 − δ

)
. (16)

Bounds and Estimates on the Average Edit Distance 103

Lemma 2. Let ur be given by the right hand side of (14) and gk(β, δ) given by
(16). For every β ∈ [0, 1]

k−nuβn ≤ (n + 1)
�βn/2	∑

d=0

2ngk(β, d
n). (17)

Proof. Using the relation
(

n − d + 1
r − 2d

)
=

n − d + 1
n − r + d + 1

(
n − d

r − 2d

)
≤ (n + 1)

(
n − d

r − 2d

)
,

the bound
(
n
k

) ≤ 2nH(k/n) (see, e.g., Eq. (5.31) in Spencer [17]), and defining
β = r/n we get

k−nur ≤k−n(k − 1)r

�r/2	∑

d=0

(
n

d

)2(
n − d + 1

r − 2d

) (
k

(k − 1)2

)d

≤(n + 1)
�r/2	∑

d=0

22nH(d
n)+(n−d)H(r−2d

n−d)+(r−2d) log2 (k−1)2+(d−n) log2 k

=(n + 1)
�βn/2	∑

d=0

2ngk(β, d
n).

	

Theorem 1. Letting Ak = {β ∈ [0, 1] : ∀δ ∈ [0, β/2] (gk(β, δ) < 0)}, we have:

αk ≥ supAk.

Proof. We begin by observing that Ak is not empty, since 0 ∈ Ak. In fact, when
β = 0, the condition δ ∈ [0, β/2] is satisfied only by δ = 0, and gk(0, 0) =
− log2 k < 0. Since, by definition, Ak ⊆ [0, 1], we conclude that supAk is finite.
Next, we define the function

Gk(β) = max
0≤δ≤β/2

gk(β, δ).

This definition of Gk(β) is well posed, since gk(β, δ) is a continuous function,
hence it does have a maximum in the compact set 0 ≤ δ ≤ β/2. Furthermore, it
follows from the definitions of Gk(β) and Ak that Gk(β) < 0, for any β ∈ Ak.

For any β ∈ Ak, we see from Lemma 2 that

k−nuβn ≤ (n + 1)
�βn/2	∑

d=0

2ngk(β, d
n) ≤ f(n)2nGk(β),

where we have used the relation gk

(
β, d

n

) ≤ Gk(β) (which follows from the
definition of Gk(β) and the fact that for, any d in the summation range,

104 M. Schimd and G. Bilardi

0 ≤ d
n ≤ β/2) and we have let f(n) = (n + 1)

(⌊
βn
2

⌋
+ 1

)
. Taking now the

limit in (13) with r∗ = βn yields:

αk ≥ lim
n→∞ β

(
1 − f(n)2nGk(β)

)
= β,

as f(n) = O(n2) and 2nGk(β) is a negative exponential. In conclusion, since αk

is no smaller than any member of Ak, it is also no smaller than supAk. 	

Theorem 1 gives a criterion to find lower bounds to αk: choose β such that

g(β, δ) < 0 for every δ. The lower bounds presented in Sect. 6 are computed
using a numerical evaluation of supAk.

6 Numerical Results and Discussion

In this section, we present and discuss some numerical results obtained by apply-
ing the methodologies developed in previous sections, to alphabets of various size
k. These values are reported in the Table 3 along with the indication of the string
size nub

k used in the computation of αub
k .

Table 3. Results on αk for several alphabet sizes k. The table shows lower bounds
αlb
k , statistical estimates α̃k, upper bounds αub

k . The values of αlb
k are obtained by

numerically evaluating sup Ak (Sect. 5, Theorem 1). Each statistical estimate α̃k is
based on N = 5000 sample pairs of strings of length n = 214 (Sect. 3.1). The values
of αub

k are based on the exact determination of αk(n
ub
k) (Sect. 4). We can observe that

αlb
k < α̃k < αub

k .

k αlb
k α̃k αub

k nub
k

2 0.1742 0.2888 0.3693 24

3 0.2837 0.4292 0.5343 17

4 0.3598 0.5180 0.6318 15

5 0.4152 0.5806 0.7020 13

6 0.4578 0.6277 0.7515 12

7 0.4918 0.6645 0.7903 11

8 0.5199 0.6946 0.8122 12

16 0.6648 0.8196 0.8955 10

32 0.7387 0.8999 0.9659 6

As already mentioned in the introduction, 1 − γk ≤ αk. Since γk vanishes
with k (Theorem 1 in [8]), we have that limk→∞ αk = 1. The data in Table 3
show a trend consistent with this asymptotic behavior of αk.

The gap between lower and upper bound indicates that there is room
for improving both. Improving the current upper bounds requires substantial

Bounds and Estimates on the Average Edit Distance 105

improvements in the way we compute exact values of αk(n). Improving the
lower bounds appears viable by tightening the upper bound to the volume of
Br(x), in Proposition 4. To this end, an avenue to be explored is a refinement
of script counting that exploits properties of optimal scripts, not considered in
the present arguments.

We observe that, for fixed k and variable n, the values αk(n) form a sequence
of computable upper bounds to αk that converges to αk. It would be interesting
to find a sequence of computable lower bounds to αk that converges to αk.
Together, these two sequences would establish the computability of αk, providing
an algorithm that, given as input any ε > 0, would output a rational number
η such that |αk − η| < ε. To the best of our knowledge, whether the αk’s are
computable is an open question. In contrast, it is a simple corollary of known
results that the γk’s are computable. On the one hand, a sequence of computable
lower bounds converging to γk is straightforwardly provided by the values γk(n).
On the other hand, a sequence of computable upper bounds converging to γk has
been established, by a rather sophisticated approach, in [11] (see, in particular,
Theorem 3.13).

7 Conclusions

In this paper, we have explored approaches to obtain statistical estimates, upper
bounds, and lower bounds to the asymptotic constant characterizing the average
edit distance between random, independent strings. We used such approaches
to obtain results for some alphabet sizes k. These numerical results (Table 3)
improve over previously known values [10]. There is still a gap between upper
and lower bounds which deserves further investigation. The approaches proposed
here can be extended to the study of other statistical properties of the edit
distance (e.g., the standard deviation, widely studied in the context of the longest
common subsequence).

It is interesting to explore the role of statistical properties of the edit distance
in string alignment and other key problems in DNA processing. One motivation
is provided by the increasing availability of reads coming from third genera-
tion sequencers (e.g., PacBio) where sequencing errors can be modelled as edit
operations. In this case it will be necessary to study the behaviour of the aver-
age edit distance, when strings are generated from non-uniform distributions
or from empirical distributions (e.g., the distribution of substrings from the
human DNA).

References

1. Abboud, A., Backurs, A., Williams, V.V.: Tight hardness results for LCS and
other sequence similarity measures. In: 2015 IEEE 56th Annual Symposium on
Foundations of Computer Science, pp. 59–78 (2015). https://doi.org/10.1109/
FOCS.2015.14

https://doi.org/10.1109/FOCS.2015.14
https://doi.org/10.1109/FOCS.2015.14

106 M. Schimd and G. Bilardi

2. Andoni, A., Krauthgamer, R., Onak, K.: Polylogarithmic approximation for edit
distance and the asymmetric query complexity. In: 2010 IEEE 51st Annual Sym-
posium on Foundations of Computer Science, pp. 377–386 (2010). https://doi.org/
10.1109/FOCS.2010.43

3. Backurs, A., Indyk, P.: Edit distance cannot be computed in strongly subquadratic
time (unless seth is false). In: Proceedings of the Forty-seventh Annual ACM Sym-
posium on Theory of Computing, pp. 51–58. STOC 2015, ACM, New York, NY,
USA (2015). https://doi.org/10.1145/2746539.2746612

4. Baeza-Yates, R.A., Gavaldà, R., Navarro, G., Scheihing, R.: Bounding the expected
length of longest common subsequences and forests. Theor. Comput. Syst. 32(4),
435–452 (1999). https://doi.org/10.1007/s002240000125

5. Bundschuh, R.: High precision simulations of the longest common subsequence
problem. Eur. Phys. J. B - Condens. Matter Complex Syst. 22(4), 533–541 (2001).
https://doi.org/10.1007/s100510170102

6. Calvo-Zaragoza, J., Oncina, J., de la Higuera, C.: Computing the expected edit
distance from a string to a probabilistic finite-state automaton. Int. J. Found.
Comput. Sci. 28(05), 603–621 (2017). https://doi.org/10.1142/S0129054117400093

7. Chakraborty, D., Das, D., Goldenberg, E., Koucky, M., Saks, M.: Approximating
edit distance within constant factor in truly sub-quadratic time. In: 2018 IEEE
59th Annual Symposium on Foundations of Computer Science, pp. 979–990 (2018).
https://doi.org/10.1109/FOCS.2018.00096

8. Chvátal, V., Sankoff, D.: Longest common subsequences of two random sequences.
J. Appl. Probab. 12(2), 306–315 (1975). https://doi.org/10.2307/3212444

9. Danćık, V.: Expected length of longest common subsequences. Ph.D. thesis, Uni-
versity of Warwick (1994)

10. Ganguly, S., Mossel, E., Racz, M.Z.: Sequence assembly from corrupted shotgun
reads. arXiv preprint arXiv:1601.07086 (2016)

11. Lueker, G.S.: Improved bounds on the average length of longest common sub-
sequences. J. ACM 56(3), 17:1–17:38 (2009). https://doi.org/10.1145/1516512.
1516519

12. Masek, W.J., Paterson, M.S.: A faster algorithm computing string edit dis-
tances. J. Comput. Syst. Sci. 20(1), 18–31 (1980). https://doi.org/10.1016/0022-
0000(80)90002-1

13. Ning, K., Choi, K.P.: Systematic assessment of the expected length, variance
and distribution of longest common subsequences. arXiv preprint arXiv:1306.4253
(2013)

14. Rubinstein, A.: Hardness of approximate nearest neighbor search. In: Proceedings
of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pp. 1260–
1268. STOC 2018, ACM, New York, NY, USA (2018). https://doi.org/10.1145/
3188745.3188916

15. Rubinstein, A., Song, Z.: Reducing approximate longest common subsequence to
approximate edit distance. arXiv preprint arXiv:1904.05451 (2019)

16. Saw, J.G., Yang, M.C.K., Mo, T.C.: Chebyshev inequality with estimated mean
and variance. Am. Stat. 38(2), 130–132 (1984). https://doi.org/10.1080/00031305.
1984.10483182

17. Spencer, J.: Asymptopia. Am. Math. Soc., 71 (2014)
18. Steele, J.M.: Probability Theory and Combinatorial Optimization. SIAM,

Philadelphia (1997)

https://doi.org/10.1109/FOCS.2010.43
https://doi.org/10.1109/FOCS.2010.43
https://doi.org/10.1145/2746539.2746612
https://doi.org/10.1007/s002240000125
https://doi.org/10.1007/s100510170102
https://doi.org/10.1142/S0129054117400093
https://doi.org/10.1109/FOCS.2018.00096
https://doi.org/10.2307/3212444
http://arxiv.org/abs/1601.07086
https://doi.org/10.1145/1516512.1516519
https://doi.org/10.1145/1516512.1516519
https://doi.org/10.1016/0022-0000(80)90002-1
https://doi.org/10.1016/0022-0000(80)90002-1
http://arxiv.org/abs/1306.4253
https://doi.org/10.1145/3188745.3188916
https://doi.org/10.1145/3188745.3188916
http://arxiv.org/abs/1904.05451
https://doi.org/10.1080/00031305.1984.10483182
https://doi.org/10.1080/00031305.1984.10483182

	Bounds and Estimates on the Average Edit Distance
	1 Introduction
	1.1 Paper Contributions

	2 Preliminaries
	2.1 Notation and Definitions
	2.2 Computing the Edit Distance

	3 Statistical Estimates of k
	3.1 Estimates of k(n) and Confidence Interval
	3.2 The (2w+1)-bandwidth Algorithm for Approximate Distance

	4 Upper Bounds for k
	4.1 The Coalesced Dynamic Programming Algorithm for Eccentricity
	4.2 Exploiting Symmetries of `3́9`42`"̇613A``45`47`"603Aecc(x) in the Computation of ek(n)

	5 Lower Bounds for k
	5.1 Lower Bounds to `3́9`42`"̇613A``45`47`"603Aecc(x) Using Upper Bounds to Ball Size
	5.2 Upper Bounds on Ball Size
	5.3 Asymptotic Behavior of Ball Size and Bounds for k

	6 Numerical Results and Discussion
	7 Conclusions
	References

