
Fast, Small, and Simple Document Listing
on Repetitive Text Collections

Dustin Cobas(B) and Gonzalo Navarro

CeBiB — Center for Biotechnology and Bioengineering,
Department of Computer Science, University of Chile, Santiago, Chile

{dcobas,gnavarro}@dcc.uchile.cl

Abstract. Document listing on string collections is the task of finding
all documents where a pattern appears. It is regarded as the most funda-
mental document retrieval problem, and is useful in various applications.
Many of the fastest-growing string collections are composed of very simi-
lar documents, such as versioned code and document collections, genome
repositories, etc. Plain pattern-matching indexes designed for repetitive
text collections achieve orders-of-magnitude reductions in space. Instead,
there are not many analogous indexes for document retrieval. In this
paper we present a simple document listing index for repetitive string
collections of total length n that lists the ndoc distinct documents where
a pattern of length m appears in time O(m + ndoc · lg n). We exploit
the repetitiveness of the document array (i.e., the suffix array coarsened
to document identifiers) to grammar-compress it while precomputing the
answers to nonterminals, and store them in grammar-compressed form as
well. Our experimental results show that our index sharply outperforms
existing alternatives in the space/time tradeoff map.

1 Introduction

Document retrieval is a family of problems aimed at retrieving documents from
a set that are relevant to a query pattern. In a general setting, both documents
and patterns are arbitrary strings. This encompasses the well-known application
of natural language and Web searching, but also many others of interest in
bioinformatics, software development, multimedia retrieval, etc. [22].

The most fundamental document retrieval problem, on top of which more
sophisticated ones are built, is document listing. This problem aims at simply
returning the list of documents where the pattern appears. An obvious solution
to document listing resorts to pattern matching: find all the occ positions where
the pattern appears, and then return the ndoc different documents where those
positions lie. This solution requires time Ω(occ) and the output is of size O(ndoc),
so the approach is very inefficient if ndoc � occ (i.e., if the pattern appears
many times in the same documents). A better solution, which however applies
only in natural language settings, resorts to inverted indexes [1]. These restrict

Funded with basal funds FB0001 and by Fondecyt Grant 1-170048, Conicyt, Chile.

c© Springer Nature Switzerland AG 2019
N. R. Brisaboa and S. J. Puglisi (Eds.): SPIRE 2019, LNCS 11811, pp. 482–498, 2019.
https://doi.org/10.1007/978-3-030-32686-9_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32686-9_34&domain=pdf
https://doi.org/10.1007/978-3-030-32686-9_34


Fast, Small, and Simple Document Listing on Repetitive Text Collections 483

the possible patterns to sequences of words and store the list of the documents
where each word appears, thereby solving document listing via intersections of
the lists of the pattern words.

Muthukrishnan [20] designed the first linear-space and optimal-time index for
general string collections. Given a collection of total length n, he builds an index
of O(n) words that lists the ndoc documents where a pattern of length m appears
in time O(m+ndoc). While linear space is deemed as sufficiently small in classic
scenarios, the solution is impractical for very large text collections unless one
resorts to disk, which is orders of magnitude slower. Sadakane [26] showed how to
reduce the space of Muthukrishnan’s index to that of the statistically-compressed
text plus O(n) bits, while raising the time complexity to only O(m + ndoc · lg n)
if the appropriate underlying pattern-matching index is used [2].

The sharp growth of text collections is a concern in many recent applications,
outperforming Moore’s Law in some cases [27]. Fortunately, many of the fastest-
growing text collections are highly repetitive: each document can be obtained
from a few large blocks of other documents. These collections arise in different
areas, such as repositories of genomes of the same species (which differ from
each other by a small percentage only) like the 100K-genome project1, software
repositories that store all the versions of the code arranged in a tree or acyclic
graph like GitHub2, versioned document repositories where each document has
a timeline of versions like Wikipedia3, etc. On such text collections, statisti-
cal compression is ineffective [14] and even O(n) bits of extra space can be
unaffordable.

Repetitiveness is the key to tackle the fast growth of these collections: their
amount of new material grows much slower than their size. For example, ver-
sion control systems compress those collections by storing the list of edits with
respect to some reference document that is stored in plain form, and recon-
struct it by applying the edits to the reference version. Much more challeng-
ing, however, is to index those collections in small space so as to support fast
pattern matching or document retrieval tasks. To date, there exist several pat-
tern matching indexes for repetitive text collections (see a couple of studies
[10,21] and references therein). However, there are not many document retrieval
indexes for repetitive text collections [5,8,23]. Most of these indexes [8,26] rely
on a pattern-matching index needs Ω(n) bits in order to offer O(lg n) time per
retrieved document.

In this paper we introduce new simple and efficient document listing indexes
aimed at highly repetitive text collections. Like various preceding indexes, we
achieve O(m + ndoc · lg n) search time, yet our indexes are way faster and/or
smaller than previous ones on various repetitive datasets, because they escape
from the space/time tradeoff of the pattern-matching index. Our main idea is
as follows: we use the document array DA[1..n] [20], which projects the entries

1 www.genomicsengland.co.uk/about-genomics-england/the-100000-genomes-
project.

2 github.com/search?q=is:public.
3 en.wikipedia.org/wiki/Wikipedia:Size of Wikipedia.

www.genomicsengland.co.uk/about-genomics-england/the-100000-genomes-project
www.genomicsengland.co.uk/about-genomics-england/the-100000-genomes-project
http://github.com/search?q=is:public
http://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia


484 D. Cobas and G. Navarro

of the suffix array [19] to the document where each position belongs. Document
listing boils down to listing the distinct integers in a range DA[sp..ep], where
sp and ep are found in time O(m). Array DA must be grammar-compressible
since the differential suffix array is known to be so on repetitive texts [10,11].
We then build a balanced binary context-free grammar that generates (only) DA.
This allows us retrieve any individual cell of DA in time O(lg n) and any range
DA[sp..ep] in time O(ep − sp + lg n). We can then implement existing indexes
[8,26] within much less space and without affecting their time complexities.
Further, we propose a new simple index based on the grammar-compressed array
DA. Our compression guarantees that any range DA[sp..ep] is covered by O(lg n)
nonterminals. For each nonterminal of the grammar, we store the list of the dis-
tinct documents appearing in it. The set of all the lists is grammar-compressed
as well, as done in previous work [5,8]. We then merge the lists of the O(lg n)
nonterminals that cover DA[sp..ep], in time O(ndoc · lg n).

2 Preliminaries

A document T is a sequence of symbols over an alphabet Σ = [1..σ], terminated
by a special symbol $ that is lexicographically smaller than any symbol of Σ.

A collection D is a set of d documents D = {T1, . . . ,Td}. D is commonly
represented as the concatenation T = T1T2 . . .Td , of length |T | = n.

A pattern P is a string over the same alphabet Σ with length |P | = m. It
occurs occ times in T , and appears in ndoc documents.

Text Indexes. The suffix tree [28] of a string T is a compressed digital tree
storing all the suffixes T [i..n], for all 1 ≤ i ≤ n. The suffix tree node reached by
following the symbols of a pattern P is called the locus of P and is the ancestor
of all the occ leaves corresponding to the positions of P in T . The suffix tree
uses O(n lg n) bits and lists all the occurrences of P in time O(m + occ).

The suffix array [19] SA[1..n] of a string T [1..n] is a permutation of the
starting positions of all the suffixes of T in lexicographic order, T [SA[i],n] <
T [SA[i + 1],n] for all 1 ≤ i < n. SA can be binary searched to obtain the range
SA[sp..ep] of all the suffixes prefixed by P (note occ = ep − sp + 1). Thus the
occurrences of P can be listed in time O(m lg n + occ). The suffix array takes
n lg n bits.

Compressed suffix arrays (CSAs) [24] are space-efficient representations of
the suffix array. They find the interval [sp..ep] corresponding to P [1..m] in time
tsearch(m), and access any cell SA[i] in time tlookup(n). Their size in bits, |CSA |,
is usually bounded by O(n lg σ).

Grammar Compression. Grammar compression of a string S[1..n] replaces it
by a context-free grammar (CFG) G that uniquely generates S. This CFG G may
require less space than the original sequence S, especially when S is repetitive.

Finding the smallest CFG G∗ generating the input S is NP-hard [16], but
various O(lg(n/|G∗|))-approximations exist. In particular, we are interested in



Fast, Small, and Simple Document Listing on Repetitive Text Collections 485

approximations that are binary (i.e., the maximum arity of the parse tree is 2)
and balanced (i.e., any substring is covered by O(lg n) maximal nodes of the
parse tree) [3,13,25].

3 Related Work

Muthukrishnan [20] proposed the first optimal-time linear-space solution to the
document listing problem. He defines the document array DA[1..n] of T , where
DA[i] stores the identifier of the document to which T [SA[i]] belongs. The docu-
ment listing problem is then translated into computing the ndoc distinct identi-
fiers in the interval DA[sp..ep] corresponding to the pattern P . He uses a suffix
tree to find sp and ep in time O(m), and then an algorithm that finds the ndoc
distinct numbers in the range in time O(ndoc).

Sadakane [26] adapts the method to use much less space. He replaces the
suffix tree by a CSA, and mimics the algorithm to find the distinct numbers in
DA[sp..ep] using only O(n) bits of space. Within |CSA |+O(n) bits, he performs
document listing in time O(tsearch(m) +ndoc ·tlookup(n)). Using a particular CSA
[2] the space is n lg σ + o(n lg σ) + O(n) bits and the time is O(m + ndoc · lg n).

There are many other classical and compact indexes for document listing. We
refer the reader to a survey [22] and focus on those aimed at repetitive texts.

Gagie et al. [8] proposed a technique adapting Sadakane’s solution to highly
repetitive collections. They show that the technique to find the distinct elements
of DA[sp..ep] can be applied almost verbatim on an array they call interleaved
longest-common-prefix array (ILCP). On repetitive collections, this array can be
decomposed into a small number ρ of equal values, which allows them represent
it in little space. The ILCP index requires |CSA | + O((ρ + d) lg n) bits of space
and solves document listing in time O(tsearch(m) +ndoc · tlookup(n)).

Gagie et al. [8] proposed another radically different approach, called Precom-
puted Document Lists (PDL). The idea is to store the list of the documents where
(the corresponding substring of) each suffix tree node appears. Then the search
consists of finding the locus of P and returning its list. To reduce space, how-
ever, only some sampled nodes store their lists, and so document listing requires
merging the lists of the maximal sampled nodes descending from the locus node.
To further save space, the lists are grammar-compressed.

To bound the query time, the deepest sampled nodes cover at most b leaves,
and a factor β restricts the work done per merged document in the unions of the
lists. The index then uses |CSA | + O((n/b) lg n) bits, and the document listing
time is O(tsearch(m) +ndoc · β · h + b · tlookup(n)), h being the suffix tree height.

A problem in all revisited CSA-based solutions are the Θ((n lg n)/ tlookup(n))
extra bits that must be included in |CSA | in order to get Θ(tlookup(n)) time
per document. This space does not decrease with repetitiveness, forcing all these
indexes to use Ω(n) bits to obtain time O(tsearch(m) +ndoc · lg n), for example.

Claude and Munro [5] propose the first index for document listing based on
grammar compression, which escapes from the problem above. They extend a
grammar-based pattern-matching index [6] by storing the list of the documents



486 D. Cobas and G. Navarro

where each nonterminal appears. Those lists are grammar-compressed as well.
The index searches for the minimal nonterminals that contain P and merges
their lists. While it does not offer relevant space or query time guarantees, the
index performs well in practice. Navarro [23] extends this index in order to
obtain space guarantees and O(m2 + m lg2 n) time, but the scheme is difficult
to implement.

4 Our Document Listing Index

Like most of the previous work, we solve the document listing problem by com-
puting the ndoc distinct documents in the interval DA[sp..ep] corresponding to
the pattern P , found with a CSA in time O(tsearch(m)). Instead of also using
the CSA to compute the values of DA (and thus facing the problem of using
Θ((n lg n)/ tlookup(n)) bits to compute a cell in time Θ(tlookup(n)), as it hap-
pens in previous work [8,26]), we store the array DA directly, yet in grammar-
compressed form. This is promising because the suffix array of repetitive collec-
tions is known to have large areas SA[i..i+ �] that appear shifted by 1 elsewhere,
SA[j..j +�], that is, SA[i+k] = SA[j +k]+1 for all 0 ≤ k ≤ � [10,18]. Except for
the d entries of SA that point to the ends of the documents, it also holds that
DA[i + k] = DA[j + k]. Grammar compression is then expected to exploit those
large repeated areas in DA.

To answer the queries efficiently, we use an idea similar to the one introduced
in PDL [8] and the Grammar-index [5]: precomputing and storing the answers
of document listing queries, and grammar-compressing those lists as well. An
important difference with them is that PDL stores lists for suffix tree nodes and
the Grammar-index stores lists for nonterminals of the grammar of T . Our index,
instead, stores lists for the nonterminals of the grammar of DA. This is much
simpler because we do not store a suffix tree topology (like PDL) nor a complex
grammar-based pattern-matching index (like the Grammar-index): we simply
find the interval DA[sp..ep] using the CSA, fetch the nonterminals covering it,
and merge their lists. By using a binary balanced grammar on DA, we ensure
that any document is obtained in the merging only O(lg n) times, which leads
to our worst-case bound of O(ndoc · lg n). PDL and the Grammar-index cannot
offer such a logarithmic-time guarantee.

4.1 Structure

The first component of our index is a CSA suitable for repetitive collections,
of which we are only interested in the functionality of finding the interval
SA[sp..ep] corresponding to a pattern P [1..m]. For example, we can use the
Run-Length CSA (RLCSA) variant of Gagie et al. [10], which offers times
tsearch(m) = O(m lg lgw σ) within O(r lg n) bits, or tsearch(m) = O(m) within
O(r lg(n/r) lg n) bits, where r is the number of equal-letter runs in the Burrows-
Wheeler Transform of T . This also upper-bounds the number of areas SA[i..i+�]
into which SA can be divided such that each area appears elsewhere shifted by
1 [17].



Fast, Small, and Simple Document Listing on Repetitive Text Collections 487

The second component is the grammar G that generates DA[1..n], which must
be binary and balanced. Such grammars can be built so as to ensure that their
total size is O(r lg(n/r) lg n) bits [9], of the same order of the first component.

The third component are the lists Dv of the distinct documents that appear
in the expansion of each nonterminal v of G. These lists are stored in ascending
order to merge them easily. To reduce their size, the set of sequences D1, . . . , Dg

are grammar-compressed as a whole in a new grammar G′, ensuring that no
nonterminal of G′ expands beyond a list Dv. Each list Dv can then be obtained
in optimal time, O(|Dv|), from a nonterminal of G′.

4.2 Document Listing

Given a pattern P [1..m], we use the CSA to find the range [sp..ep] where the
occurrences of P lie in the suffix array, in time O(tsearch(m)). We then find
the maximal nodes of the parse tree of DA that cover DA[sp..ep]. Finally, we
decompress the lists of the nonterminals corresponding to those maximal nodes,
and compute their union.

Since G is binary and balanced, there are O(lg n) maximal nonterminals
that cover DA[sp..ep] in the parse tree. By storing the length to which each
nonterminal of G expands, we can easily find those O(lg n) maximal nonterminals
in time O(lg n), by (virtually) descending in the parse tree from the initial symbol
of G towards the area DA[sp..ep].

To merge the O(lg n) lists of documents in ascending order, we use an atomic
heap [7] (see practical considerations in the next section). This data structure
performs insert and extractmin operations in constant amortized time, when
storing O(lg2 n) elements. We then insert the heads of the O(lg n) lists in the
atomic heap, extract the minimum, and insert the next element of its list. If
we extract the same document many times, we report only one copy. We then
expand and merge the lists Dv1 , . . . , Dvk

in time O(|Dv1 | + · · · + |Dvk
|).

Since each distinct document we report may appear in the O(lg n) lists, our
document listing solution takes time O(tsearch(m) +ndoc · lg n). By using the
RLCSA that occupies O(r lg(n/r) lg n) bits, the total time is O(m + ndoc · lg n).

4.3 Example

Figure 1 shows an example with 3 documents, T1 = MINIMUM$, T2 =
MINIMAL$, and T3 = MINIMIZES$. The rightmost column shows T . The pre-
ceding columns show the sorted suffixes, the suffix array SA, and the document
array DA, a sequence over {1, 2, 3}. To the left of DA we show the syntax tree of
the grammar we built, with nonterminal symbols 4 to 18. Associated with each
nonterminal we write the list of distinct documents to which the nonterminal
expands.

A search for the pattern P = I identifies the suffix array interval SA[6..12],
thus we have to report all the distinct documents in DA[6..12]. These correspond
to two nodes in the grammar, the nonterminals 5 and 6. Thus we merge their



488 D. Cobas and G. Navarro

lists, {1, 2, 3} and {1, 2, 3}, to obtain the answer {1, 2, 3}. Note that each of the
3 documents we report was found twice in the lists that cover DA[6..12].

4.4 Plugging-in Other Indexes

Our grammar-compressed DA, without the lists Dv, can be used to replace the
CSA component that requires Θ((n lg n)/ tlookup(n)) bits to compute a cell in
time Θ(tlookup(n)). These indexes actually access cells SA[i] in order to obtain
DA[i]. Our compressed DA offers O(lg n) access time in O(r lg(n/r) lg n) bits.

Fig. 1. An example of our document listing structure.

Thus, we can implement Sadakane’s solution [26], as well as ILCP
and PDL [8] all answering in time O(m + ndoc · lg n), and replacing the
O((n lg n)/ tlookup(n)) part of their |CSA | space by O(r lg(n/r) lg n) bits (which
also accounts for the RLCSA variant that finds [sp..ep] in time O(m). We can also
implement the brute-force solution in time O(m+occ+lg n) and O(r lg(n/r) lg n)
bits by extracting the whole DA[sp..ep].



Fast, Small, and Simple Document Listing on Repetitive Text Collections 489

5 Practical Considerations

5.1 Compressed Suffix Array

We use a practical RLCSA [18, called RLFM+ in there] that uses (r lg σ +
2r lg(n/r))(1+o(1)) bits of space and offers search time tsearch(m) in O(m lg r) ⊆
O(m lg n). Since we do not need to compute cells of SA with this structure, we
do not need to spend the O((n lg n)/ tlookup(n)) bits, and as a result the contri-
bution of the RLCSA to the total space is negligible.

5.2 Grammar Compressor

We choose Re-Pair [15] to obtain both G and G′, since it performs very well in
practice. Re-Pair repeatedly replaces the most frequent pair of adjacent symbols
with a new nonterminal, until every pair is unique. Upon ties in frequency, we
give priority to the pairs whose symbols have been generated earlier, which in
practice yielded rather balanced grammars in all the cases we have tried.

Re-Pair yields a binary grammar, but the top-level is a long sequence. We
then complete the grammar by artificially adding a parse tree on top of the final
sequence left by Re-Pair. To minimize the height of the resulting grammar, we
merge first the pairs of nonterminals with shorter parse trees.

We store the g grammar rules as an array G taking 2g lg(g + d) bits, so that
if Ai is the ith nonterminal of the grammar, it holds that Ai → AG[2i]AG[2i+1].

When building G′, we concatenate all the lists Dv and separate them with
unique numbers larger than d, to ensure that Re-Pair will not produce nontermi-
nals that cross from one list to another. After running Re-Pair, we remove the
separators but do not complete the grammars, as all we need is to decompress
any Dv in optimal time. We represent all the reduced sets D′

v as a sequence D′,
marking the beginning of each set in a bitvector B. The beginning of D′

v is found
with operation select(B, v), which finds the vth 1 in B. This operation can be
implemented in constant time using o(|B|) further bits [4].

5.3 Sampling

The largest component of our index is the set of compressed lists D′
v. To reduce

this space, we store those lists only for sampled nonterminals v of G. The list of
a nonsampled nonterminal v is then obtained by merging those of the highest
sampled descendants of v in the parse tree, which yields a space/time tradeoff.

We use a strategy similar to PDL [8], based on parameters b and β. We define
a sampled tree by sampling some nodes from the parse tree. First, no leaf v of
the sampled tree can have an expansion larger than b, so that we spend time
O(b lg b) to obtain its sorted list directly from G. To this aim, we sample all the
nonterminals v of G with parent w such that |Dv| ≤ b < |Dw|. Those are the
leaves of the sampled tree, which form a partition of DA.

Second, for any nonsampled node v with |Dv| > b, we must be able to build
Dv by merging other precomputed lists of total length ≤ β|Dv|. This implies



490 D. Cobas and G. Navarro

Table 1. Statistics for document collections (small, medium, and large variants): Col-
lection name; Size in megabytes; RLCSA bits per symbol (bps); Docs, number of docu-
ments; Doc size, average document length; number of Patterns; Occs, average number
of occurrences; Doc occs, average number of document occurrences; Occs/doc, average
ratio of occurrences to document occurrences. For the synthetic collections (second
group), most of the statistics vary greatly among the variants that use 10 or 100 base
documents with the different mutation probabilities.

Collection Size

(n)

RLCSA

(bps)

Docs (d) Doc size

(n/d)

Patterns Occs

(occ)

Doc occs

(ndoc)

Occs/doc

( occ
ndoc )

Page 110 0.18 60 1 919 382 7658 781 3 242.75

641 0.11 190 3 534 921 14 286 2601 6 444.79

1037 0.13 280 3 883 145 20 536 2889 7 429.04

Revision 110 0.18 8834 13 005 7658 776 371 2.09

640 0.11 31 208 21 490 14 284 2592 1065 2.43

1035 0.13 65 565 16 552 20 536 2876 1188 2.42

Influenza 137 0.32 100 000 1436 269 532 739 88 525 6.02

321 0.26 227 356 1480 269 1 248 428 202 437 6.17

Concat 95 10 107 7538–10 832

95 100 106 10614–13 165

Version 95 10 000 10 000 7537–13 165

that generating Dv costs O(β lg n) times more than having D′
v stored and just

decompressing it.
We first assume the sampled tree contains all the ancestors of the sam-

pled leaves and then proceed bottom-up in the sampled tree, removing some
nodes from it. Any node v with parent w and children u1, ..., uk is removed if∑k

i=1 |Dui
| ≤ β · |Dv|; the nodes ui then become children of w in the sampled

tree.
At query time, if a node v of interest is not sampled, we collect all the lists of

its highest sampled descendants. Therefore, on a parse tree of height h we may
end up merging many more than the original O(h) lists D1, . . . , Dk, but have
the guarantee that the merged lists add up to size at most β · (|D1|+ · · ·+ |Dk|).
To merge the lists we use a classical binary heap instead of an atomic heap, so
the cost per merged element is O(lg n).

We may then spend k · b lg b = O(hb lg b) time in extracting and sorting the
lists Dv of size below b. The other lists Dv may lead to merging β|Dv| elements.
The total cost over the k = O(h) lists is then O(hb lg b+β(|D1|+· · ·+|Dk|) lg n) ⊆
O(hb lg b + ndoc · βh lg n). In terms of complexity, if we choose for example
b = O(lg n/ lg lg n), β = O(1), and the grammar is balanced, h = O(lg n), then
the total cost of merging is O(ndoc · lg2 n).

6 Experiments and Results

We evaluate different variants of our indexes and compare them with the state
of the art. We use the experimental framework proposed by Gagie et al. [8].



Fast, Small, and Simple Document Listing on Repetitive Text Collections 491

6.1 Document Collections

To test various kinds of repetitiveness scenarios, we performed several experi-
ments with real and synthetic datasets. We used the same document collections
tested by Gagie et al. [8], available at jltsiren.kapsi.fi/rlcsa. Table 1 summarizes
some statistics on the collections and the patterns used in the queries.

Real Collections. Page and Revision are collections formed by all the revi-
sions of some selected pages from the Wikipedia in Finnish language. In Page,
there is a document for each selected article, that also includes all of its revi-
sions. In the case of Revision, each page revision becomes a separate document.
Influenza is a repetitive collection composed of sequences of the H. influenzae
virus genomes.

Synthetic Collections. We also used two types of synthetic collections to
explore the effect of collection repetitiveness on document listing performance in
more detail. Concat and Version are similar to Page and Revision, respectively.
We use 10 and 100 base documents of length 1000 each, extracted at random
from the English file of Pizza&Chili (pizzachili.dcc.uchile.cl). Besides, we include
variants of each base document, generated using different mutation probabilities
(0.001, 0.003, 0.01, and 0.03). A mutation is a replacement by a different random
symbol. In collection Version, each variant becomes a separate document. In
Concat, all variants of the same base document form a single document.

Queries. The query patterns for Page and Revision datasets are Finnish words
of length ≥5 that occur in the collections. For Influenza, the queries are sub-
strings of length 4 extracted from the dataset. In the case of Concat and Version,
the patterns are terms selected from an MSN query log. See Gagie et al. [8] for
a more detailed description.

6.2 Compared Indexes

Grammar-Compressed Document Array (GCDA). This is our main pro-
posal. We use the balanced Re-Pair compressor implemented by Navarro (www.
dcc.uchile.cl/gnavarro/software/repair.tgz). To sample the parse tree, we test
several parameter configurations for the block size b and factor β.

Brute Force (Brute). This family of algorithms is the most basic solution
to the document listing problem. They use a CSA to retrieve all the document
identifiers in DA[sp..ep], sort them, and report each of them once. Brute-L uses
the CSA to extract the values DA[i]. Brute-D, instead, uses an explicit document
array DA. Finally, Brute-C is our variant using the grammar-compressed DA.
From the grammar tree of height h and storing the length of the expansion of
each nonterminal, we extract the range DA[sp..ep] in time O(h + ep − sp).

http://jltsiren.kapsi.fi/rlcsa
http://pizzachili.dcc.uchile.cl
www.dcc.uchile.cl/gnavarro/software/repair.tgz
www.dcc.uchile.cl/gnavarro/software/repair.tgz


492 D. Cobas and G. Navarro

Sadakane (Sada). Sada-L is the original index of Sadakane [26]. Sada-D speeds
up the query time by explicitly storing DA. Sada-C stores DA in grammar-
compressed form, where each individual cell DA[i] is extracted in time O(h).

Interleaved Longest Common Prefix (ILCP). ILCP-L implements the
ILCP index of Gagie et al. [8] using a run-length encoded ILCP array. ILCP-
D is a variant that uses the document array instead of the CSA functionality.
ILCP-C uses, instead, our grammar-compressed DA, which accesses any cell in
time O(h).

Precomputed Document Lists (PDL). PDL-BC and PDL-RP implement
the PDL algorithm proposed by Gagie et al. [8]. PDL-BC uses a Web graph
compressor [12] on the set of lists, whereas PDL-RP uses Re-Pair compression.
Both use block size b = 256 and factor β = 16, as recommended by their authors.

Grammar-Based (Grammar). This is an implementation of the index by
Claude and Munro [5]. It uses Re-Pair on the collection T and on the set of lists.
This index is the only tested solution that does not use a CSA.

We implemented GCDA on C++, using several succinct data structures from
the SDSL library (github.com/simongog/sdsl-lite). We used existing C++ imple-
mentations of the indexes Brute, Sada, ILCP and PDL, which were tested by
Gagie et al. [8] (jltsiren.kapsi.fi/software/doclist.tgz), and modified the versions
-C by using DA in grammar-compressed instead of in plain form.

All tested indexes except Grammar use a suffix array to compute the interval
[sp..ep] corresponding to pattern P . We used a RLCSA implementation
(jltsiren.kapsi.fi/rlcsa) that is optimized for repetitive text collections. To com-
pute entries SA[i], the RLCSA uses a suffix array sampling, which requires sig-
nificant space as explained. Our index does not use this operation, but it is
required for the indexes Brute-L, Sada-L, ILCP-L, and both variants of PDL. We
use 32 as the value for this sample rate, as it gave good results in previous tests
[8]. The exception is Brute-L, which uses a RLCSA optimized to extract whole
ranges SA[sp..ep] [10] (github.com/nicolaprezza/r-index). The column RLCSA
of Table 1 gives the space used by the RLCSA without suffix array samples.

Our machine has two Intel(R) Xeon(R) CPU E5-2407 processors @
2.40 GHz and 250 GiB RAM. The operating system was Debian Linux kernel
4.9.0-8-amd64. All indexes were compiled using g++ version 6.3.0 with flags
-O3 -DNDEBUG.

6.3 Tuning Our Main Index

Figure 2 shows the tradeoff between time and space of GCDA on small real col-
lections. We tested GCDA with 4 different sizes of block b: 128, 256, 512, and
1024. For each block size, we used 3 different factors β (4, 8, and 16), which
are represented with increasing color darkness in the plots. The configuration

http://github.com/simongog/sdsl-lite
http://jltsiren.kapsi.fi/software/doclist.tgz
http://jltsiren.kapsi.fi/rlcsa
http://github.com/nicolaprezza/r-index


Fast, Small, and Simple Document Listing on Repetitive Text Collections 493

b = 512 and β = 4 shows to be a good general-purpose choice of parameter
values, and we stick to it from now on.

The lower-right plot of Fig. 2 shows the space required by the main compo-
nents of our index. As the number of documents in the collection grows and
their size decreases, the weight of the grammar-compressed DA, and even more,
of the grammar-compressed lists of documents, becomes dominant. Note also
that Influenza is the least repetitive collection.

6.4 Comparison on Real Collections

Figures 3 and 4 show the tradeoff between time and space for all tested indexes
on the real collections. Our main index, GCDA, and the -C variants of the other
indexes we adapted, are clearly dominant in a large portion of the space/time
map. Most of the previous indexes are way slower, way larger, or both, than ours.
The best previous tradeoffs, PDL-BC and PDL-RP [8], are much closer, but still
they are almost always slower and larger than GCDA.

For all versions of Page, where there are few large documents and our gram-
mars compress very well, GCDA requires only 0.48–0.56 bits per symbol (bps)

Fig. 2. GCDA on small real collections with different configurations. The x axis shows
the total size of the index in bps. The y axis shows the average time per query in
µsec. Beware that the plots do not start at zero. The lower-right plot shows the size
of the main components of GCDA on the small collections; the y axis shows the size in
megabytes.



494 D. Cobas and G. Navarro

Fig. 3. Document listing indexes on real repetitive collections Page and Revision. The
x axis shows the total size of the index in bps. The y axis shows the average time per
query. Combinations with excessively high time are omitted in some plots.

and answers queries in less than 16 microseconds (μsec). The index using the
least space is Grammar, which requires 0.21–0.35 bps. Grammar is way out of the
plot, however, because it requires 1.2–3.4 milliseconds (msec) to solve the queries,
that is, 205–235 times slower than GCDA (as in previous work [8], Grammar did
not build on the largest dataset of Page). The next smallest index is our vari-
ant Brute-C, which uses 0.35–0.55 bps and is generally smaller than GCDA, but
slower by a factor of 2.6–6.7. Brute-L, occupying 0.38–0.60 bps, is also smaller
in some cases, but much slower (180–1080 μsec, out of the plot). GCDA sharply
outperforms all the other indexes in space, and also in time (only Sada-D is 6%



Fast, Small, and Simple Document Listing on Repetitive Text Collections 495

Fig. 4. Document listing indexes on real repetitive collection Influenza. The x axis
shows the total size of the index in bps. The y axis shows the average time per query.
Combinations with excessively high time are omitted in some plots.

faster in the small collection, yet using 18 times more space). The closest com-
petitors, PDL-BC and PDL-RP, are 4.4–5.0 times larger and 2.8–5.0 times slower
than GCDA.

In the case of Revision, where there are more and smaller documents, GCDA
uses 0.73–0.88 bps and answers queries in less than 150 µsec. Again Grammar
uses the least space, 0.26–0.42 bps, but once again at the price of being 8–
30 times slower than GCDA. The case of Brute-L is analogous: 0.38–0.60 bps
but over 8 times slower than GCDA. Instead, our variant Brute-C is a relevant
competitor, using 0.45–0.76 bps and being less than 60% slower than GCDA.
The other relevant index is our variant ILCP-C, using almost the same space and
time of GCDA. The group GCDA/Brute-C/ILCP-C forms a clear sweetpoint in
this collection. The closest competitors, again PDL-BC and PDL-RP, are 3.1–3.8
times larger and 1.2–1.9 times slower than GCDA.

Influenza, with many small documents, is the worst case for the indexes.
GCDA uses 4.46–4.67 bps and answers queries within 115 msec. Many indexes are
smaller than GCDA, but only our variants form a relevant space/time tradeoff:
ILCP-C uses 2.88–3.37 bps, Brute-C uses 2.42–2.86 bps, and Sada-C uses 4.96–5.40
bps. All the -C variants obtain competitive times, and ILCP-C even dominates
GCDA (it answers queries within 65 msec, taking less than 60% of the time of
GCDA). The other indexes outperforming GCDA in time are -D variants, which
are at least 3.7 times larger than GCDA and 5.2 times larger than ILCP-C.

6.5 Comparison on Synthetic Collections

Figure 5 compares the indexes on synthetic collections. These allow us study
how the indexes evolve as the repetitiveness decreases, in a scenario of few large
documents (Concat) and many smaller documents (Version). We combine in
a single plot the results for different mutation rates of a given collection and
number of base documents. The plots show the increasing mutation rates using
variations of the same color, from lighter to darker. All the -L variants and
Grammar are omitted because they were significantly slower.



496 D. Cobas and G. Navarro

Fig. 5. Document listing on synthetic collections. The x axis shows the total size of
the index in bps. The y axis shows the average time per query in µsec. Combinations
with excessively high time are omitted in some plots.

On collection Concat, GCDA essentially outperforms all the other indexes.
In the case of the version composed by 10 base documents, our index obtains
the best space/time tradeoff by a wide margin. Only Brute-C is smaller than
GCDA, but 8–9 times slower. On the other hand, various indexes are slightly
faster than GCDA, but much larger (from Sada-D, which is up to 30% faster
but 7 times larger, to Sada-C, which is 15% faster but at least 4 times larger).
With the other variant of Concat (100 base documents), our index offers the
best space and time for all mutation rates. Only PDL-RP is 6% faster in its best
case, but 2.2 times larger. Further, GCDA retains its space/time performance as
repetitiveness decreases, whereas the competing indexes worsen fast in one or
both aspects.

On Version, composed by 10 000 documents of length 1000, GCDA is also
a dominant solution, retaining its time performance as repetitiveness decreases
and outperforming all the -D variants in space up to a mutation rate of 1%.
Other competing indexes are our variants Brute-C and ILCP-C (the only one
dominating GCDA in some cases), as well as PDL-BC and PDL-RP in the case of
100 base documents. The strange behavior of the PDL indexes in both collections
with 10 base documents is briefly discussed in the original article [8].



Fast, Small, and Simple Document Listing on Repetitive Text Collections 497

7 Conclusions

We have presented simple and efficient indexes for document listing on repeti-
tive string collections. They find the ndoc documents where a pattern of length
m appears in a collection of size n in time O(m + ndoc · lg n). The indexes
uses grammar-compression of the document array, and perform better as the
collection is more repetitive.

Our experimental results show that our main index, GCDA, outperforms the
best previous solutions by a fair margin in time and/or space on various repetitive
collections. From the previous indexes, only PDL [8] gets close, but it is almost
always dominated by GCDA in both space and time. GCDA performs well in
space for mutation rates up to 1%, whereas its query time is mostly insensitive
to the repetitiveness. Other previous solutions (especially ILCP [8] and brute
force) that we adapted to run on our grammar-compressed document array also
display unprecedented performance on repetitive texts, competing with GCDA.

For the final version of this paper, we plan to combine the PDL indexes with
a grammar-compressed document array as well, which we omitted for lack of
time. A line of future work is to further reduce the space of GCDA and our
index variants that use the grammar-compressed document array, by using a
more clever encoding of the grammars that may nearly halve their space at a
modest increase in time [11]. Another line is to extend the index to support top-k
document retrieval, that is, find the k documents where P appears most often.

References

1. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval, 2nd edn.
Addison-Wesley, New York (2011)

2. Belazzougui, D., Navarro, G.: Alphabet-independent compressed text indexing.
ACM Trans. Algorithms 10(4), article 23 (2014)

3. Charikar, M., et al.: The smallest grammar problem. IEEE Trans. Inf. Theory
51(7), 2554–2576 (2005)

4. Clark, D.R.: Compact PAT Trees. Ph.D. thesis, University of Waterloo, Canada
(1996)

5. Claude, F., Munro, J.I.: Document listing on versioned documents. In: Kurland,
O., Lewenstein, M., Porat, E. (eds.) SPIRE 2013. LNCS, vol. 8214, pp. 72–83.
Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02432-5 12

6. Claude, F., Navarro, G.: Self-indexed grammar-based compression. Fundamenta
Informaticae 111(3), 313–337 (2010)

7. Fredman, M.L., Willard, D.E.: Trans-dichotomous algorithms for minimum span-
ning trees and shortest paths. J. Comput. Syst. Sci. 48(3), 533–551 (1994)

8. Gagie, T., et al.: Document retrieval on repetitive collections. Inf. Retr. 20, 253–291
(2017)

9. Gagie, T., Navarro, G., Prezza, N.: Fully-functional suffix trees and optimal text
searching in BWT-runs bounded space. CoRR abs/1809.02792 (2018)

10. Gagie, T., Navarro, G., Prezza, N.: Optimal-time text indexing in BWT-runs
bounded space. In: Proceedings of the 29th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 1459–1477 (2018)

https://doi.org/10.1007/978-3-319-02432-5_12


498 D. Cobas and G. Navarro

11. González, R., Navarro, G., Ferrada, H.: Locally compressed suffix arrays. ACM J.
Exp. Algorithmics 19(1), article 1 (2014)

12. Hernández, C., Navarro, G.: Compressed representations for web and social graphs.
Knowl. Inf. Syst. 40(2), 279–313 (2014)

13. Jez, A.: A really simple approximation of smallest grammar. Theor. Comput. Sci.
616, 141–150 (2016)

14. Kreft, S., Navarro, G.: On compressing and indexing repetitive sequences. Theor.
Comput. Sci. 483, 115–133 (2013)

15. Larsson, J., Moffat, A.: Off-line dictionary-based compression. Proc. IEEE 88(11),
1722–1732 (2000)

16. Lehman, E., Shelat, A.: Approximation algorithms for grammar-based compres-
sion. In: Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 205–212 (2002)

17. Mäkinen, V., Navarro, G.: Succinct suffix arrays based on run-length encoding.
Nord. J. Comput. 12(1), 40–66 (2005)

18. Mäkinen, V., Navarro, G., Sirén, J., Välimäki, N.: Storage and retrieval of highly
repetitive sequence collections. J. Comput. Biol. 17(3), 281–308 (2010)

19. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993)

20. Muthukrishnan, S.: Efficient algorithms for document retrieval problems. In: Pro-
ceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 657–666 (2002)

21. Navarro, G.: Indexing highly repetitive collections. In: Arumugam, S., Smyth, W.F.
(eds.) IWOCA 2012. LNCS, vol. 7643, pp. 274–279. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-35926-2 29

22. Navarro, G.: Spaces, trees and colors: the algorithmic landscape of document
retrieval on sequences. ACM Comput. Surv. 46(4), article 52 (2014)

23. Navarro, G.: Document listing on repetitive collections with guaranteed perfor-
mance. In: Proceedings of the 28th Annual Symposium on Combinatorial Pattern
Matching (CPM). LIPIcs , vol. 78, article 4 (2017)

24. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comput. Surv.
39(1), article 2 (2007)

25. Rytter, W.: Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theor. Comput. Sci. 302(1–3), 211–222 (2003)

26. Sadakane, K.: Succinct data structures for flexible text retrieval systems. J. Dis-
crete Algorithms 5, 12–22 (2007)

27. Sthephens, Z.D., et al.: Big data: astronomical or genomical? PLoS Biol. 17(7),
e1002195 (2015)

28. Weiner, P.: Linear pattern matching algorithm. In: Proceedings of the 14th Annual
IEEE Symposium on Switching and Automata Theory, pp. 1–11 (1973)

https://doi.org/10.1007/978-3-642-35926-2_29

	Fast, Small, and Simple Document Listing on Repetitive Text Collections
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Our Document Listing Index
	4.1 Structure
	4.2 Document Listing
	4.3 Example
	4.4 Plugging-in Other Indexes

	5 Practical Considerations
	5.1 Compressed Suffix Array
	5.2 Grammar Compressor
	5.3 Sampling

	6 Experiments and Results
	6.1 Document Collections
	6.2 Compared Indexes
	6.3 Tuning Our Main Index
	6.4 Comparison on Real Collections
	6.5 Comparison on Synthetic Collections

	7 Conclusions
	References




