
Faster Repetition-Aware Compressed
Suffix Trees Based on Block Trees

Manuel Cáceres(B) and Gonzalo Navarro

CeBiB — Center for Biotechnology and Bioengineering,
Department of Computer Science, University of Chile, Santiago, Chile

{mcaceres,gnavarro}@dcc.uchile.cl

Abstract. Suffix trees are a fundamental data structure in stringol-
ogy, but their space usage, though linear, is an important problem in
applications. We design and implement a new compressed suffix tree tar-
geted to highly repetitive texts, such as large genomic collections of the
same species. Our suffix tree builds on Block Trees, a recent Lempel-Ziv-
bounded data structure that captures the repetitiveness of its input. We
use Block Trees to compress the topology of the suffix tree, and augment
the Block Tree nodes with data that speeds up suffix tree navigation.

Our compressed suffix tree is slightly larger than previous repetition-
aware suffix trees based on grammars, but outperforms them in time,
often by orders of magnitude. The component that represents the tree
topology achieves a speed comparable to that of general-purpose com-
pressed trees, while using 2–10 times less space, and might be of inde-
pendent interest.

1 Introduction

Suffix trees [22,36,37] are one of the most appreciated data structures in Stringol-
ogy [3] and in application areas like Bioinformatics [13], enabling efficient solu-
tions to complex problems such as (approximate) pattern matching, pattern dis-
covery, finding repeated substrings, computing matching statistics, computing
maximal matches, and many others. In other collections, like natural language
and software repositories, suffix trees are useful for plagiarism detection [23],
authorship attribution [38], document retrieval [14], and others.

While their linear space complexity is regarded as acceptable in classical
terms, their actual space usage brings serious problems in application areas. From
an Information Theory standpoint, on a text of length n over alphabet [1, σ],
classical suffix tree representations use Θ(n lg n) bits, whereas the information
contained in the text is, in the worst case, just n lg σ bits. From a practical point
of view, even carefully engineered implementations [17] require at least 10 bytes
per symbol, which forces many applications to run the suffix tree on (orders of
magnitude slower) secondary memory.

Funded by Fondecyt Grant 1-170048 and by Basal Funds FB0001, Conicyt, Chile.

c© Springer Nature Switzerland AG 2019
N. R. Brisaboa and S. J. Puglisi (Eds.): SPIRE 2019, LNCS 11811, pp. 434–451, 2019.
https://doi.org/10.1007/978-3-030-32686-9_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32686-9_31&domain=pdf
https://doi.org/10.1007/978-3-030-32686-9_31

Faster Repetition-Aware Compressed Suffix Trees Based on Block Trees 435

Consider for example Bioinformatics, where various complex analyses require
the use of sophisticated data structures, suffix trees being among the most impor-
tant ones. DNA sequences range over σ = 4 different nucleotides represented with
lg 4 = 2 bits each, whereas the suffix tree uses at least 10 bytes = 80 bits per
base, that is, 4000% of the text size. A human genome fits in approximately 715
MB, whereas its suffix tree requires about 30 GB. The space problem becomes
daunting when we consider the DNA analysis of large groups of individuals; con-
sider for example the 100,000-human-genomes project (www.genomicsengland.
co.uk).

One solution to the problem is to build suffix trees on secondary memory
[7,9]. Most suffix tree algorithms, however, require traversing them across arbi-
trary access paths, which makes secondary memory solutions many orders of
magnitude slower than in main memory. Another approach replaces the suffix
trees with suffix arrays [21], which decreases space usage to 4 bytes (32 bits) per
character but loses some functionality like the suffix links, which are essential
to solve various complex problems. This functionality can be recovered [2] by
raising the space to about 6 bytes (48 bits) per character.

A promising line of research is the construction of compact representations
of suffix trees, named Compressed Suffix Trees (CSTs), which simulate all the
suffix tree functionality within space bounded not only by O(n lg σ) bits, but by
the information content (or text entropy) of the sequence. An important theo-
retical achievement was a CST using O(n) bits on top of the text entropy that
supports all the operations within an O(polylog n) time penalty factor [34]. A
recent implementation [28] uses, on DNA, about 10 bits per base and supports
the operations in a few microseconds. While even smaller CSTs have been pro-
posed, reaching as little as 5 bits per base [32], their operation times raise to
milliseconds, thus becoming nearly as slow as a secondary-memory deployment.

Still, further space reductions are desirable when facing large genome repos-
itories. Fortunately many of the largest text collections are highly repetitive;
for example DNA sequences of two humans differ by less than 0.5% [35]. This
repetitiveness is not well captured by statistical based compression methods [16],
on which most of the CSTs are based. Lempel-Ziv [19] and grammar [15] based
compression techniques, among others, do better in this scenario [24], but only
recently we have seen CSTs building on them, both in theory [5,11] and in prac-
tice [1,26]. The most successful CSTs in practice on repetitive collections are the
grammar-compressed suffix trees (GCSTs), which on DNA use about 2 bits per
base and support the operations in tens to hundreds of microseconds.

GCSTs use grammar compression on the parentheses sequence that repre-
sents the suffix tree topology [31], which inherits the repetitiveness of the text
collection. While Lempel-Ziv compression is stronger, it does not support easy
access to the sequence. In this paper we explore an alternative to grammar com-
pression called Block Trees [6,29], which offer similar approximation ratios to
Lempel-Ziv compression, but promise faster access.

Our main contribution is the BT-CT, a Block-Tree-based representation of
tree topologies, which enriches Block Trees to support the required navigation

www.genomicsengland.co.uk
www.genomicsengland.co.uk

436 M. Cáceres and G. Navarro

Table 1. List of typical operations implemented by suffix trees; str(v) represents the
concatenation of the strings in the root-to-v path.

Operation Description

root() The root of the suffix tree

is-leaf(v) True if v is a leaf node

first-child(v) The first child of v in lexicographical order

tree-depth(v) The number of edges from root() to v

next-sibling(v) The next sibling of v in lexicographical order

previous-sibling(v) The previous sibling of v in lexicographical order

parent(v) The parent of v

is-ancestor(v, u) True if v is ancestor of u

level-ancestor(v, d) The ancestor of v at tree depth d

lca(v, u) The lowest common ancestor between v and u

letter(v, i) str(v)[i]

string-depth(v) |str(v)|
suffix-link(v) The node u s.t. str(u) = str(v)[2,string-depth(v)]

string-ancestor(v, d) The highest ancestor u of v s.t. string-depth(u) ≥ d

child(v, c) The child u of v s.t. str(u)[string-depth(v)+1] = c

operations. Although we are unable to prove useful upper bounds on the oper-
ation times, the BT-CT performs very well in practice: while using 0.3–1.5 bits
per node in our repetitive suffix trees, it implements the navigation operations in
a few microseconds, becoming very close to the performance of plain 2.8-bit-per-
node representations that are blind to repetitiveness [27]. We use the BT-CT to
represent suffix tree topologies in this paper, but it might also be useful in other
scenarios, such as representing the topology of repetitive XML collections [4].

As said, our new suffix tree, BT-CST, uses the BT-CT to represent the suffix
tree topology. Although larger than the GCST, it still requires about 3 bits
per base in highly repetitive DNA collections. In exchange, it is faster than the
GCST, often by an order of magnitude. This owes to the BT-CT directly, but
also indirectly: Its faster navigation enables the binary search for the “child by
letter” operation in suffix trees, which is by far the slowest one. While with the
GCST a linear traversal of the children is advisable [26], a binary search pays
off in the BT-CST, making it faster especially on large alphabets.

2 Preliminaries and Related Work

A text T [1, n] = T [1] . . . T [n] is a sequence of symbols over an alphabet Σ =
[1, σ], terminated by a special symbol $ that is lexicographically smaller than
any symbol of Σ. A substring of T is denoted T [i, j] = T [i] . . . T [j]. A substring
T [i, j] is a prefix if i = 1 and a suffix if j = n.

Faster Repetition-Aware Compressed Suffix Trees Based on Block Trees 437

The suffix tree [22,36,37] of a text T is a trie of its suffixes in which unary
paths are collapsed into a single edge. The tree then has less than 2n nodes. The
suffix tree supports a set of operations (see Table 1) that suffices to solve a large
number of problems in Stringology [3] and Bioinformatics [13].

The suffix array [21] A[1, n] of a text T [1, n] is a permutation of [1, n] such that
A[i] is the starting position of the ith suffix in increasing lexicographical order. The
leaves descending from a suffix tree node span a range of suffixes in A.

The function lcp(X,Y) is the length of the longest common prefix (lcp) of
strings X and Y . The LCP array [21], LCP [1, n], is defined as LCP [1] = 0 and
LCP [i] = lcp(T [A[i − 1], n], T [A[i], n]) for all i > 1, that is, it stores the lengths
of the lcps between lexicographically consecutive suffixes of T [1, n].

2.1 Succinct Tree Representations

A balanced parentheses (BP) representation (there are others [31]) of the topol-
ogy of an ordinal tree T of t nodes is a binary sequence (or bitvector) P [1, 2t]
built as follows: we traverse T in preorder, writing an opening parenthesis (a
bit 1) when we first arrive at a node, and a closing one (a bit 0) when we leave
its subtree. For example, a leaf looks like “10”. The following primitives can be
defined on P :
– access(i) = P [i]
– rank0|1(i) = | {1 ≤ j ≤ i;P [j] = 0|1} |
– excess(i) = rank1(i) − rank0(i)
– select0|1(i) = min({j; rank0|1(j) = i} ∪ {∞})
– leaf-rank(i) = rank10(i) = | {1 ≤ j ≤ i − 1;P [j] = 1 ∧ P [j + 1] = 0} |
– leaf-select(i) = select10(i) = min({j; leaf-rank(j + 1) = i} ∪ {∞})
– fwd-search(i, d) = min({j > i; excess(j) = excess(i) + d)} ∪ {∞})
– bwd-search(i, d) = max({j < i; excess(j) = excess(i) + d)} ∪ {−∞})
– min-excess(i, j) = min({excess(k) − excess(i − 1); i ≤ k ≤ j} ∪ {∞})

These primitives suffice to implement a large number of tree navigation oper-
ations, and can all be supported in constant time using o(t) bits on top of
P [27]. These include the operations needed by suffix trees. For example, inter-
preting nodes as the position of their opening parenthesis in P , it holds that
parent(v) = bwd-search(i,−2)+1, next-sibling(v) = fwd-search(v,−1)+1 and the
lowest common ancestor of two nodes v ≤ u is lca(v, u) = parent(fwd-search(v−
1,min-excess(v, u)) + 1).

2.2 Compressed Suffix Arrays

A milestone in the area was the emergence of Compressed Suffix Arrays
(CSAs) [25], which using space proportional to that of the compressed sequence
managed to answer access queries to the original suffix array and its inverse (i.e.,
return any A[i] and A−1[j]), to the indexed sequence (i.e., return any T [i..j]),
and access to a novel array, Ψ [i] = A−1[(A[i] mod n) + 1], which lets us move
from a text suffix T [j, n] to the next one, T [j + 1, n], yet indexing the suffixes
by their lexicographic rank, A−1[j]. This function plays a key role in the design
of CSTs, as seen next.

438 M. Cáceres and G. Navarro

2.3 Compressed Suffix Trees

Sadakane [34] designed the first CST, on top of a CSA, using |CSA| + O(n) bits
and solving all the suffix tree operations in time O(polylog n). He makes up a
CST from three components: a CSA, for which he uses his own proposal [33];
a BP representation of the suffix tree topology, using at most 4n + o(n) bits;
and a compressed representation of LCP , which is a bitvector H[1, 2n] encoding
the array PLCP [i] = LCP [A−1[i]] (i.e., the LCP array in text order). A recent
implementation [28] of this index requires about 10 bits per character and takes
a few microseconds per operation.

Russo et al. [32] managed to use just o(n) bits on top of the CSA, by storing
only a sample of the suffix tree nodes. An implementation of this index [32] uses
as little as 5 bits per character, but the operations take milliseconds, as slow as
running in secondary storage.

Yet another approach [10] also obtains o(n) on top of a CSA by getting rid of
the tree topology and expressing the tree operations on the corresponding suffix
array intervals. The operations now use primitives on the LCP array: find the
previous/next smaller value (psv/nsv) and find minima in ranges (rmq). They
also noted that bitvector H contains 2r runs, where r is the number of runs of
consecutive increasing values in Ψ , and used this fact to run-length compress H.
Abeliuk et al. [1] designed a practical version of this idea, obtaining about 8 bits
per character and getting a time performance of hundreds of microseconds per
operation, an interesting tradeoff between the other two options.

Engineered adaptations of these three ideas were implemented in the SDSL
library [12], and are named cst sada, cst fully, and cst sct3, respectively.
We will use and adapt them in our experimental comparison.

2.4 Repetition-Aware Compressed Suffix Trees

Abeliuk et. al [1] also presented the first CST for repetitive collections. They built
on the third approach above [10], so they do not represent the tree topology.
They use the RLCSA [20], a repetition-aware CSA with size proportional to
r, which is very low on repetitive texts. They use grammar compression on the
differential LCP array, DLCP [i] = LCP [i]−LCP [i−1]. The nodes of the parsing
tree (obtained with Re-Pair [18]) are enriched with further data to support the
operations psv/nsv and rmq. To speed up simple LCP accesses, the bitvector H
is also stored, whose size is also proportional to r. Their index uses 1–2 bits per
character on repetitive collections. It is rather slow, however, operating within
(many) milliseconds.

Navarro and Ordóñez [26] include again the tree topology. Since text repeti-
tiveness induces isomorphic subtrees in the suffix tree, they grammar-compressed
the BP representation. The nonterminals are enriched to support the tree navi-
gation operations enumerated in Sect. 2.1. Since they do not need psv/nsv/rmq
operations on LCP, they just use the bitvector H, which has a few runs and thus
is very small. Their index uses slightly more space, closer to 2 bits per character,
but it is up to 3 orders of magnitude faster than that of Abeliuk et al. [1]: their

Faster Repetition-Aware Compressed Suffix Trees Based on Block Trees 439

structure operates in tens to hundreds of microseconds per operation, getting
closer to the times of general-purpose CSTs.

Less related or theoretical work [5,8,11] is not discussed for lack of space.

3 Block Trees

A Block Tree [6] is a full r-ary tree that represents a (repetitive) sequence P [1, p]
in compressed space while offering access and other operations in logarithmic
time. The nodes at depth d (the root being depth 0) represent blocks of P of
length b = |P |/rd, where we pad P to ensure these numbers are integers. Such
a node v, representing some block v.blk = P [i, i + b − 1], can be of three types:

LeafBlock: If b ≤ mll, where mll is a parameter, then v is a leaf of the Block
Tree, and it stores the string v.blk explicitly.

BackBlock: Otherwise, if P [i − b, i + b − 1] and P [i, i + 2b − 1] are not their
leftmost occurrences in P , then the block is replaced by its leftmost occurrence
in P : node v stores a pointer v.ptr = u to the node u such that the first
occurrence of v.blk starts inside u.blk = P [j, j + b − 1], more precisely it
occurs in P [j + o, j + o + b − 1]. This offset inside u.blk is stored at v.off = o.
Node v is not considered at deeper levels.

InternalBlock: Otherwise, the block is split into r equal parts, handled in the
next level by the children of v. The node v then stores a pointer to its children.

The Block Tree can return any P [i] in logarithmic time, by starting at posi-
tion i in the root block. Recursively, the position i is translated in constant time
into an offset inside a child node (for InternalBlocks), or inside a leftward node
in the same level (for BackBlocks, at most once per level). At leaves, the symbol
is stored explicitly.

If we augment the nodes of the Block Tree with rank information for the σ
symbols of the alphabet, the Block Tree answers rank and select queries on P in
logarithmic time as well. Specifically, for every c ∈ [1, σ], we store in every node
v the number v.c of cs in v.blk. Further, every BackBlock node v pointing to u
stores the number of cs in u.blk[1, v.off − 1].

Our new repetition-aware CST will represent the BP topology with a Block
Tree. The basic structure supports operations access(i), rank0|1(i), excess(i) and
select0|1(i). In the next section we show how to solve the remaining operations.

4 Our Repetition-Aware Compressed Suffix Tree

Following the scheme of Sadakane [34] we propose a three-component struc-
ture to implement a new CST tailored to highly repetitive inputs. We use the
RLCSA [20] as our CSA. For the LCP, we use the compressed version of the
bitvector H [10]. For the topology, we use BP and represent the sequence with
a Block Tree, adding new fields to the Block Tree nodes to efficiently answer all
the queries we need (Sect. 2.1). We call this representation Block Tree CST (BT-
CST). Section 4.1 describes BT-CT, our extension to Block Trees, and Sect. 4.2
our improved operation child(v, a) for the BT-CST.

440 M. Cáceres and G. Navarro

4.1 Block Tree Compressed Topology (BT-CT)

We describe our main data structure, Block Tree Compressed Topology (BT-CT),
which compresses a parentheses sequence and supports navigation on it.

Stored Fields. We augment the nodes of the Block Tree with the following
fields:

– For every node v that represents the block v.blk = P [i, i + b − 1]:
• rank1, the number of 1s in v.blk, i.e., rank1(i + b − 1) − rank1(i − 1) in P .
• lrank (leaf rank), the number of 10s (i.e., leaves in BP) that finish inside

v.blk, i.e., leaf-rank(i + b − 1) − leaf-rank(i − 1) in P .
• lbreaker (leaf breaker), a bit telling whether the first symbol of v.blk is a

0 and the preceding symbol in P is a 1, i.e., whether P [i − 1, i] = 10.
• mexcess, the minimum excess in v.blk, i.e., min-excess(i, i + b − 1) in P .

– For every BackBlock node v that represents v.blk = P [i, i + b − 1] and points
to its first occurrence O = P [j + o, j + o + b − 1] inside u.blk = P [j, j + b − 1]
with offset v.off = o:

• fb-rank1, the number of 1s in the prefix of O contained in u.blk (O∩u.blk,
the 1st block spanned by O), i.e., rank1(j + b− 1)− rank1(j + o− 1) in P .

• fb-lrank, the number of 10s that finish in O ∩ u.blk, i.e., leaf-rank(j + b −
1) − leaf-rank(j + o − 1) in P .

• fb-lbreaker, a bit telling whether the first symbol of O is a 0 and the
preceding symbol is a 1, i.e., whether P [j + o − 1, j + o] = 10.

• fb-mexcess, the minimum excess reached in O ∩ u.blk, i.e., min-excess(j +
o, j + b − 1).

• m-fb, a bit telling whether the minimum excess of u.blk is reached in
O∩u.blk, i.e., whether min-excess(i, i+b−1) = min-excess(j+o, j+b−1).

Fields Computed on the Fly. In the description of the operations we will
use other fields that are computed in constant time from those we already store:

– For every node v that represents v.blk = P [i, i + b − 1]
• rank0, the number of 0s in v.blk, i.e., b − v.rank1.
• excess, the excess of 1s over 0s in v.blk, i.e., v.rank1−v.rank0 = 2·v.rank1−b.

– For every BackBlock node v that represents v.blk = P [i, i + b − 1] and points
to its first occurrence O = P [j + o, j + o + b − 1] inside u.blk = P [j, j + b − 1]
with offset v.off = o:

• fb-rank0, the number of 0s in O ∩ v.blk, i.e., (b − o) − v.fb-rank1.
• pfb-rank0|1, the number of 0s|1s in the prefix of u.blk that precedes O

(u.blk − O), i.e., u.rank0|1 − v.fb-rank0|1.
• fb-excess, the excess in O ∩ u.blk, i.e., v.fb-rank1 − v.fb-rank0.
• sb-excess, the excess in O−u.blk (2nd block spanned by O), i.e., v.excess−

v.fb-excess.
• pfb-lrank, the number of 10s that finish in u.blk − O, i.e., u.lrank −

v.fb-lrank.

Faster Repetition-Aware Compressed Suffix Trees Based on Block Trees 441

• sb-mexcess, the minimum excess in O − u.blk, i.e., min-excess(j + b, j +
b+o−1) in P . We store either v.fb-mexcess or v.sb-mexcess, the one that
differs from v.mexcess. To deduce the non-stored field we use mexcess,
fb-excess and m-fb.

Complex Operations. Apart from the basic operations solved in the original
Block Tree we need, as described in Sect. 2.1, more sophisticated ones to support
navigation in the parentheses sequence.

leaf-rank(i) and leaf-select(i). The implementations of these operations are
analogous to those for rankc(i) and selectc(i) respectively, in the base Block Tree.
The only two differences are that in LeafBlocks we consider the lbreaker field to
check whether the block starts with a leaf, and in BackBlocks we consider fields
lbreaker and fb-lbreaker to check whether we have to add or remove one leaf when
moving to a leftward node. Like rankc(i) and selectc(i), our operations work O(1)
per level, and then have their same time complexity, given in Sect. 3.

fwd-search(i, d) and bwd-search(i, d). We only show how to solve fwd-search
(i, d) with d < 0; the other cases are similar (some combinations not needed for
our CST require further fields). Thus we aim to find the smallest position j > i
where the excess of P [i + 1..j] is d.

We describe our solution as a recursive procedure fwd-search(i, j) with two
global variables: d from the input, and e. Variables i and j are the limits of the
search for the currently processed node, and e is the accumulated excess of the
part of the range that has already been processed. The procedure is initially
called at the Block Tree root with fwd-search(i, n) and with e = 0. If at some
point e reaches d, we have found the answer to the search. The general idea is to
traverse the range of the current node v left to right, using the fields v.mexcess,
v.fb-mexcess and v.sb-mexcess to speed up the procedure:

– If the search range spans the entire block v.blk (i.e., j − i = b) and the answer
is not reached inside v (i.e., e+v.mexcess > d), then we increase e by v.excess
and return ∞.

– If v is a LeafBlock we scan v.blk bitwise, increasing/decreasing e for each 1/0.
If e reaches d at some index k, we return k; otherwise we return ∞.

– If v is an InternalBlock, we identify the k-th child of v, which contains position
i + 1, and the m-th, which contains position j (it could be that k = m). We
then call fwd-search recursively on the k-th to the m-th children, intersecting
the query range with the extent of each child (the search range will completely
cover the children after the k-th and before the m-th). As soon as any of these
calls returns a non-∞ value, we adjust (i.e., shift) and return it. If all of them
return ∞, we also return ∞.

– If v is a BackBlock we must translate the query to the original block O,
which starts at offset v.off in u.blk, where u = v.ptr. We first check whether
the query covers the prefix of v.blk contained in u.blk, O ∩ u.blk (i.e., if i = 0
and j ≥ b − v.off). If so, we check whether we can skip O ∩ u.blk, namely if
e + v.fb-mexcess > d. If we can skip it, we just update e to e + v.fb-excess,

442 M. Cáceres and G. Navarro

otherwise we call fwd-search recursively on the intersection of u.blk and the
translated query range. If the answer is not ∞, we adjust and return it.
Otherwise, we turn our attention to the node u′ next to u. Again, we check
whether the query covers the suffix of v.blk contained in u′.blk, O −u.blk (i.e.,
j = b and i ≤ b−v.off). If so, we check whether we can skip O−u.blk, namely
if e + v.sb-mexcess > d. If we can skip it, we just update e to e + v.sb-excess,
otherwise we call fwd-search recursively on the intersection of u′.blk and the
translated query range. If the answer is not ∞, we adjust and return it.
Otherwise, we return ∞.

min-excess(i, j). We will also start at the root with the global variable e set
to zero. A local variable m will keep track of the minimum excess seen in the
current node, and will be initialized at m = 1 in each recursive call. The idea
is the same as for fwd-search: traverse the node left to right and use the fields
v.mexcess, v.fb-mexcess and v.sb-mexcess to speed up the traversal.

– If the query covers the entire block v.blk (i.e., j − i + 1 = b), we increase e by
v.excess and return v.mexcess.

– If v is a LeafBlock we record the initial excess in e′ = e and scan v.blk bitwise,
updating e for each bit read as in operation fwd-search. Every time we have
e − e′ < m, we update m = e − e′. At the end of the scan we return m.

– If v is an InternalBlock, we identify the k-th child of v, which contains position
i, and the m-th, which contains position j (it could be that k = m). We then
call min-excess recursively on the k-th to the m-th children, intersecting the
query range with the extent of each child (the search range will completely
cover the children after the k-th and before the m-th, so these will take
constant time). We return the minimum between all their answers (composed
with their correspondent prefix excesses).

– If v is a BackBlock we translate the query to the original block O, which
starts at offset v.off in u.blk, where u = v.ptr. We first check whether the
query covers the prefix of v.blk contained in u.blk, O ∩ u.blk (i.e., if i = 1 and
j ≥ b − v.off − 1). If so, we simply set m = v.fb-mexcess and update e to
e + v.fb-excess. Otherwise we call min-excess recursively on the intersection
of u.blk and the translated query range, and record its answer in m. We now
consider the block u′ next to u and again check whether the query covers
the suffix of v.blk contained in u′.blk, O − u.blk (i.e., if j = b and i ≤ b −
v.off + 1). If so, we just set m = min(m, v.fb-excess + v.sb-mexcess) and
update e to e + v.sb-excess. Otherwise, we call min-excess on the intersection
of u′.blk and the translated query range, record its answer in m′, and set
m = min(m, v.fb-excess + m′). Finally, we return m.

Note that, although we look for various opportunities to use the precomputed
data to skip parts of the query range, the operations fwd-search, bwd-search,
and min-excess are not guaranteed to work proportionally to the height of the
Block Tree. The instances we built that break this time complexity, however, are
unlikely to occur. Our experiments will show that the algorithms perform well
in practice.

Faster Repetition-Aware Compressed Suffix Trees Based on Block Trees 443

4.2 Operation Child

The fast operations enabled by our BT-CT structure give space for an improved
algorithm to solve operation child(v, a). Most previous CSTs first compute d =
string-depth(v) and then linearly traverse the children of v from u = first-child(v)
with operation next-sibling, checking for each child u whether letter(u, d+1) = a,
and stopping as soon as we find or exceed a. Since computing letter is significantly
more expensive than our next-sibling, we consider the variant of first identifying
all the children u of v, and then binary searching them for a, using letter. We
then perform O(σ) next-sibling operations, but only O(lg σ) letter operations.

5 Experiments and Results

We measured the time/space performance of our new BT-CST and compared it
with the state of the art. Our code and testbed is available at https://github.
com/elarielcl/BT-CST.

5.1 Experimental Setup

Compared CSTs. We compare the following CST implementations.

BT-CST. Our new Compressed Suffix Tree with the described components.
For the BT-CT component we vary r ∈ {2, 4, 8} and mll ∈ {4, 8, 16, 32, 64,
128, 256}.

GCST. The Grammar-based Compressed Suffix Tree [26]. We vary parameters
rule-sampling and C-sampling as they suggest.

CST SADA, CST SCT3, CST FULLY. Adaptation and improvements
from the SDSL library1 on the indexes of Sadakane [34], Fischer et al. [10] and
Russo et al. [32], respectively. CST SADA maximizes speed using Sadakane’s
CSA [33] and a non-compressed version of bitvector H. CST SCT3 uses
instead a Huffman-shaped wavelet tree of the BWT as the suffix array, and a
compressed representation [30] for bitvector H and those of the wavelet tree.
This bitvector representation exploits the runs and makes the space sensitive
to repetitiveness, but it is slower. CST FULLY uses the same BWT representa-
tion. For all these suffix arrays we set sa-sampling = 32 and isa-sampling = 64.

CST SADA RLCSA, CST SCT3 RLCSA. Same as the preceding imple-
mentations but (further) adapted to repetitive collections: We replace the
suffix array by the RLCSA [20] and use a run-length-compressed representa-
tion of bitvector H [10].

For the CSTs using the RLCSA, we fix their parameters to 32 for the sampling
of Ψ and 128 for the text sampling. We only show the Pareto-optimal results of
each structure. Note that we do not include the CST of Abeliuk et al. [1] in the
comparison because it was already outperformed by several orders of magnitude
by GCST [26].

1 Succinct data structures library (SDSL), https://github.com/simongog/sdsl-lite.

https://github.com/elarielcl/BT-CST
https://github.com/elarielcl/BT-CST
https://github.com/simongog/sdsl-lite

444 M. Cáceres and G. Navarro

Text Collection and Queries. Our input sequences come from the Repetitive
Corpus of Pizza & Chili (http://pizzachili.dcc.uchile.cl/repcorpus). We selected
einstein, containing all the versions (up to January 12, 2010) of the German
Wikipedia Article of Albert Einstein (89 MB, compressible by p7zip to 0.11%);
influenza, a collection of 78,041 H. influenzae genomes (148 MB, compressible
by p7zip to 1.69%); and kernel, a set of 36 versions of the Linux Kernel (247
MB, compressible by p7zip to 2.56%).

Data points are the average of 100,000 random queries, similar to the scheme
used in previous work on Compressed Suffix Trees [1,26] to choose the nodes on
which the operations are called: For next-sibling and parent we collect the nodes
in leaf-to-root paths starting from random leaves. For lca we choose random leaf
pairs. For suffix-link we collect the nodes on traversals starting from random
leaves, and taking suffix-links until reaching the root. For child we choose random
leaves and collect the nodes in the traversals to the root, discarding the nodes
with less than 3 children, and we choose the initial letter of a random child of
the node.

Computer. The experiments ran on an isolated Intel(R) Xeon(R) CPU E5-2407
@ 2.40 GHz with 256 GB of RAM and 10 MB of L3 cache. The operating system
is GNU/Linux, Debian 2, with kernel 4.9.0-8-amd64. The implementations use a
single thread and all of them are coded in C++. The compiler is gcc version 4.6.3,
with -O9 optimization flag set (except CST SADA, CST SCT3 and CST FULLY,
which use their own set of optimization flags).

Operations. We implemented all the suffix tree operations of Table 1. From
those, for lack of space, we present the performance comparison with other
CSTs on five important operations: next-sibling, parent, child, suffix-link, and
lca. To test our suffix tree in more complex scenarios we implemented the suffix-
tree-based algorithm to solve the “maximal substrings” problem [26] on all of
the above implementations except for CST FULLY (because of its poor time
performance). We use their same setup [26], that is, influenza from Pizza
& Chili as our larger sequence and a substring of size m (m = 3000 and
m = 2 MB) of another influenza sequence taken from https://ftp.ncbi.nih.
gov/genomes/INFLUENZA. BT-CST uses r = 2 and mll = 128 and GCST
uses rule-sampling= 1 and C-sampling = 210. The tradeoffs refer to sa-sampling
∈ {64, 128, 256} for the RLCSAs.

5.2 Results and Discussion

Figures 1, 2 and 3 show the space and time for all the indexes and all the opera-
tions. The smallest structure is GCST, which takes as little as 0.5–2 bits per sym-
bol (bps). The next smallest indexes are BT-CST, using 1–3 bps, and CST FULLY,
using 2.0–2.5 bps. The compressed indexes not designed for repetitive collections
use 4–7 bps if combined with a RLCSA, and 6–10.5 bps in their original versions
(though we also adapted the bitvectors of CST SCT3).

From the BT-CST space, component H takes just 2%–9%, the RLCSA
takes 23%–47%, and the rest is the BT-CT (using a sweetpoint configuration).

http://pizzachili.dcc.uchile.cl/repcorpus
https://ftp.ncbi.nih.gov/genomes/INFLUENZA
https://ftp.ncbi.nih.gov/genomes/INFLUENZA

Faster Repetition-Aware Compressed Suffix Trees Based on Block Trees 445

This component takes 0.30 bits per node (bpn) on einstein, 1.06 bpn on
influenza, and 1.50 bpn on kernel. The grammar-compressed topology of
GCST takes, respectively, 0.05, 0.81, and 0.39 bpn.

In operations next-sibling and parent, which rely most heavily on the
suffix tree topology, our BT-CT component building on Block Trees makes
BT-CST excel in time: The operations take nearly one microsecond (μsec),
at least 10 times less than the grammar-based topology representation of
GCST. CST FULLY is three orders of magnitude slower on this operation, tak-
ing over a millisecond (msec). Interestingly, the larger representations, includ-
ing those where the tree topology is represented using 2.79 bits per node
(CST SADA[RLCSA]), are only marginally faster than BT-CST, whereas the
indexes CST SCT3[RLCSA] are a bit slower than CST SADA[RLCSA] because
they do not store an explicit tree topology. Note that these operations, in BT-
CT, make use of the operations fwd-search and bwd-search, thereby showing that
they are fast although we cannot prove worst-case upper bounds on their time.

Operation lca, which on BT-CST involves essentially the primitive min-excess,
is costlier, taking around 10µs in almost all the indexes, including ours. This
includes again those where the tree topology is represented using 2.79 bits per
node (CST SADA[RLCSA]). Thus, although we cannot prove upper bounds on
the time of min-excess, it is in practice as fast as on perfectly balanced structures,
where it can be proved to be logarithmic-time. The variants CST SCT3[RLCSA]
also require an operation very similar to min-excess, so they perform almost
like CST SADA[RLCSA]. For this operation, CST FULLY is equally fast, owing
to the fact that operation lca is a basic primitive in this representation. Only
GCST is several times slower than BT-CST, taking several tens of μsec.

Operation suffix-link involves min-excess and several other operations on
the topology, but also the operation Ψ on the corresponding CSA. Since the
latter is relatively fast, BT-CST also takes nearly 10µs, whereas the additional
operations on the topology drive GCST over 100µs, and CST FULLY over the
msec. This time the topology representations that are blind to repetitivess are
several times faster than BT-CST, taking a few μsec, possibly because they take
more advantage of the smaller ranges for min-excess involved when choosing
random nodes (most nodes have small ranges). The CST SCT3[RLCSA] variants
also solve this operation with a fast and simple formula.

Finally, operation child is the most expensive one, requiring one application
of string-depth and several of next-sibling and letter, thereby heavily relying on
the CSA. BT-CST-bin and CST SCT3[RLCSA] binary search the children; the
others scan them linearly. The indexes using a CSA that adapts to repetitiveness
require nearly 1 ms on large alphabets, whereas those using a larger and faster
CSA are up to 10 (CST SCT3) and 100 (CST SADA) times faster. Our BT-CST-
bin variant is faster than the base BT-CST by 15% on einstein and 18% on
kernel, and outperforms the RLCSA-based indexes. On DNA, instead, most
of the indexes take nearly 100µs, except for CST SADA, which is several times
faster; GCSA, which is a few times slower; and CST FULLY, which stays in the
msec.

446 M. Cáceres and G. Navarro

Fig. 1. Performance of CSTs for operations next-sibling and parent. The y-axis is in
log-scale.

Faster Repetition-Aware Compressed Suffix Trees Based on Block Trees 447

Fig. 2. Performance of CSTs for operations lca and suffix-link. The y-axis is in
log-scale.

448 M. Cáceres and G. Navarro

Fig. 3. Performance of CSTs for operation child. The y-axis is in log-scale. BT-CST-bin
is BT-CST with binary search for child.

Fig. 4. Performance of CSTs when solving the maximal substrings problem. The y-axis
is time in microseconds per base in the smaller sequence (of length m).

Faster Repetition-Aware Compressed Suffix Trees Based on Block Trees 449

Figure 4 shows the results for the maximal substrings problem. BT-CST
sharply dominates an important part of the Pareto-curve, including the sweet
point at 3.5 bps and 200–300µs per symbol. The other structures for repetitive
collections take either much more time and slightly less space (GCSA, 1.5–2.5
times slower), or significantly more space and slightly less time (CST SCT3, 45%
more space and around 200µs). CST SADA is around 10 times faster, the same
as its CSA when solving the dominant operation, child.

6 Conclusions and Future Work

We have introduced the Block-Tree Compressed Suffix Tree (BT-CST), a new
compressed suffix tree aimed at indexing highly repetitive text collections. Its
main feature is the BT-CT component, which uses Block Trees to represent the
parentheses-based topology of the suffix tree and exploit the repetitiveness it
inherits from the text collection. Block Trees [6] represent a sequence in space
close to its Lempel-Ziv complexity (with a logarithmic-factor penalty), in a way
that logarithmic-time access to any element is supported. The BT-CT enhances
Block Trees with the more complex operations needed to simulate tree navigation
on the parentheses sequence, as needed by the suffix tree operations.

Our experimental results show that the BT-CST requires 1–3 bits per symbol
in highly repetitive text collections, which is slightly larger than the best previous
alternatives [26], but also significantly faster (often by an order of magnitude). In
particular, the BT-CT component uses 0.3–1.5 bits per node on these suffix trees
and it takes a few microseconds to simulate the tree navigation operations, which
is close to the time obtained by the classical 2.8-bit-per-node representation that
is blind to repetitiveness [27]. This structure may be interesting to represent
other repetitive trees beyond compressed suffix tree topologies, for example those
arising in XML datasets, JSON repositories, and many others.

Although we have shown that in practice they perform as well as their clas-
sical counterpart [27], an interesting open problem is whether the operations
fwd-search, bwd-search, and min-excess can be supported in polylogarithmic time
on Block Trees. This was possible on perfectly balanced trees [27] and even on
balanced-grammar parse trees [26], but the ability of Block Trees to refer to a
prefix or a suffix of a block makes this more challenging. We note that the algo-
rithm described by Belazzougui et al. [6] claiming logarithmic time for min-excess
does not work (as checked with coauthor T. Gagie).

References

1. Abeliuk, A., Cánovas, R., Navarro, G.: Practical compressed suffix trees. Algo-
rithms 6(2), 319–351 (2013)

2. Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replacing suffix trees with enhanced
suffix arrays. J. Discrete Algorithms 2(1), 53–86 (2004)

3. Apostolico, A.: The myriad virtues of subword trees. In: Apostolico, A., Galil, Z.
(eds.) Combinatorial Algorithms on Words, pp. 85–96. Springer, Heidelberg (1985).
https://doi.org/10.1007/978-3-642-82456-2 6

https://doi.org/10.1007/978-3-642-82456-2_6

450 M. Cáceres and G. Navarro

4. Arroyuelo, D., et al.: Fast in-memory XPath search using compressed indexes.
Softw. Pract. Exp. 45(3), 399–434 (2015)

5. Belazzougui, D., Cunial, F.: Representing the suffix tree with the CDAWG. In: Pro-
ceedings of 28th Annual Symposium on Combinatorial Pattern Matching (CPM),
pp. 7:1–7:13 (2017)

6. Belazzougui, D., et al.: Queries on LZ-bounded encodings. In: Proceedings of Data
Compression Conference (DCC), pp. 83–92 (2015)

7. Clark, D.R., Ian Munro, J.: Efficient suffix trees on secondary storage. In: Proceed-
ings of 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
383–391 (1996)

8. Farruggia, A., Gagie, T., Navarro, G., Puglisi, S.J., Sirén, J.: Relative suffix trees.
Comput. J. 61(5), 773–788 (2018)

9. Ferragina, P., Grossi, R.: The string B-tree: a new data structure for string search
in external memory and its applications. J. ACM 46(2), 236–280 (1999)

10. Fischer, J., Mäkinen, V., Navarro, G.: Faster entropy-bounded compressed suffix
trees. Theor. Comput. Sci. 410(51), 5354–5364 (2009)

11. Gagie, T., Navarro, G., Prezza, N.: Optimal-time text indexing in BWT-runs
bounded space. CoRR, 1705.10382 (2017). arxiv.org/abs/1705.10382

12. Gog, S.: Compressed suffix trees: design, construction, and applications. Ph.D.
thesis, University of Ulm, Germany (2011)

13. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, Cambridge (1997)

14. Hon, W.-K., Shah, R., Thankachan, S.V., Vitter, J.S.: Space-efficient frameworks
for top-k string retrieval. J. ACM 61(2), 9:1–9:36 (2014)

15. Kieffer, J.C., Yang, E.-H.: Grammar-based codes: a new class of universal lossless
source codes. IEEE Trans. Inf. Theory 46(3), 737–754 (2000)

16. Kreft, S., Navarro, G.: On compressing and indexing repetitive sequences. Theor.
Comput. Sci. 483, 115–133 (2013)

17. Kurtz, S.: Reducing the space requirement of suffix trees. Softw. Pract. Exp.
29(13), 1149–1171 (1999)

18. Larsson, J., Moffat, A.: Off-line dictionary-based compression. Proc. IEEE 88(11),
1722–1732 (2000)

19. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. Inf. Theory
22(1), 75–81 (1976)

20. Mäkinen, V., Navarro, G., Sirén, J., Välimäki, N.: Storage and retrieval of highly
repetitive sequence collections. J. Comput. Biol. 17(3), 281–308 (2010)

21. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993)

22. McCreight, E.M.: A space-economical suffix tree construction algorithm. J. ACM
23(2), 262–272 (1976)

23. Mozgovoy, M., Fredriksson, K., White, D., Joy, M., Sutinen, E.: Fast plagiarism
detection system. In: Proceedings of 12th International Symposium on String Pro-
cessing and Information Retrieval (SPIRE), pp. 267–270 (2005)

24. Navarro, G.: Indexing highly repetitive collections. In: Proceedings of 23rd Inter-
national Workshop on Combinatorial Algorithms (IWOCA), pp. 274–279 (2012)

25. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comput. Surv. 39,
1 (2007)

26. Navarro, G., Ordóñez, A.: Faster compressed suffix trees for repetitive collections.
J. Exp. Algorithmics 21(1), 1–8 (2016)

27. Navarro, G., Sadakane, K.: Fully functional static and dynamic succinct trees.
ACM Trans. Algorithms 10(3), 16 (2014)

http://arxiv.org/abs/org/abs/1705.10382

Faster Repetition-Aware Compressed Suffix Trees Based on Block Trees 451

28. Ohlebusch, E., Fischer, J., Gog, S.: CST++. In: Proceedings of 17th International
Conference on String Processing and Information Retrieval (SPIRE), pp. 322–333
(2010)

29. Ordóñez, A.: Statistical and repetition-based compressed data structures. Ph.D.
thesis, Universidade da Coruña (2016)

30. Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with applica-
tions to encoding k-ary trees, prefix sums and multisets. ACM Trans. Algorithms
3(4), 43 (2007)

31. Raman, R., Rao, S.S.: Succinct representations of ordinal trees. In: Brodnik, A.,
López-Ortiz, A., Raman, V., Viola, A. (eds.) Space-Efficient Data Structures,
Streams, and Algorithms. LNCS, vol. 8066, pp. 319–332. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40273-9 20

32. Russo, L.M.S., Navarro, G., Oliveira, A.L.: Fully compressed suffix trees. ACM
Trans. Algorithms 7(4), 53:1–53:34 (2011)

33. Sadakane, K.: New text indexing functionalities of the compressed suffix arrays. J.
Algorithms 48(2), 294–313 (2003)

34. Sadakane, K.: Compressed suffix trees with full functionality. Theory Comput.
Syst. 41(4), 589–607 (2007)

35. Tishkoff, S.A., Kidd, K.K.: Implications of biogeography of human populations for
‘race’ and medicine. Nat. Genet. 36, S21–S27 (2004)

36. Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260
(1995)

37. Weiner, P.: Linear pattern matching algorithms. In: Proceedings of 14th Annual
Symposium on Switching and Automata Theory (FOCS), pp. 1–11 (1973)

38. Zhang, D., Lee, W.S.: Extracting key-substring-group features for text classifi-
cation. In: Proceedings of 12th Annual International Conference on Knowledge
Discovery and Data Mining (SIGKDD), pp. 474–483 (2006)

https://doi.org/10.1007/978-3-642-40273-9_20

	Faster Repetition-Aware Compressed Suffix Trees Based on Block Trees
	1 Introduction
	2 Preliminaries and Related Work
	2.1 Succinct Tree Representations
	2.2 Compressed Suffix Arrays
	2.3 Compressed Suffix Trees
	2.4 Repetition-Aware Compressed Suffix Trees

	3 Block Trees
	4 Our Repetition-Aware Compressed Suffix Tree
	4.1 Block Tree Compressed Topology (BT-CT)
	4.2 Operation Child

	5 Experiments and Results
	5.1 Experimental Setup
	5.2 Results and Discussion

	6 Conclusions and Future Work
	References

