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Abstract. The k2-tree is a successful compact representation of binary
relations that exhibit sparseness and/or clustering properties. It can be
extended to d dimensions, where it is called a kd-tree. The representation
boils down to a long bitvector. We show that interpreting the kd-tree as a
dynamic trie on the Morton codes of the points, instead of as a dynamic
representation of the bitvector as done in previous work, yields operation
times that are below the lower bound of dynamic bitvectors and offers
improved time performance in practice.

1 Introduction

The k2-tree [14] is a compact data structure conceived to represent the adjacency
matrix of Web graphs, but its functionality was later extended to represent other
kinds of d-ary relations such as ternary relations [1], point grids [12], raster data
[9], RDF stores [2], temporal graphs [15], graph databases [3], etc.

The k2-tree compactly represents an extension of a variant of the Quadtree
data structure [20], more precisely of the MX-Quadtree [25, Section 1.4.2.1]. The
MX-Quadtree splits the n × n grid into four submatrices of n/2 × n/2 cells.
The root indicates which of the submatrices are nonempty of points, and a child
of the root recursively represents each nonempty submatrix. In the k2-tree, the
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matrix is instead split into k2 submatrices of n/k × n/k cells. In d dimensions,
the structure becomes a kd-tree, where the grid is divided into kd submatrices
of n/k × · · · × n/k cells. The height of the kd-tree is then logkd(nd) = logk n.

Instead of using pointers to represent the tree topology, the kd-tree uses a
long bitvector B[1..N ], where each node stores only kd bits indicating which
of its submatrices are nonempty, and all the node bitvectors are concatenated
level-wise into B. Bitvector B supports navigation towards children and parents
in O(1) time [14] by means of rank/select operations [16,21] on bitvector B.
Query operations like retrieving all the neighbors or the reverse neighbors of a
node (when representing graphs) or retrieving all the points in a range (when
representing grids) then translate into traversals on the kd-tree [14].

In various applications one would like the relations to be dynamic, that is,
elements (graph edges, grid points) can be inserted and deleted from the relation.
Each such update requires flipping bits or inserting/deleting chunks of kd bits at
each of the logk n levels in B. Such operations can be supported using a dynamic
bitvector representation [13]. There exists, however, an Ω(log N/ log log N) lower
bound to support updates and rank/select operations on a bitvector of length
N [17], and such slowdown factor multiplies every single operation carried out
on the bitvector, both for traversals and for updates.

In this paper we take a different view of the kd-tree representation. We regard
the kd-ary tree as a trie on the Morton codes [20] of the elements stored in the
grid. The Morton code (in two dimensions, but the extension is immediate) is
the concatenation of the logk n identifiers of the consecutive subgrids chosen by
a point until it is inserted at the last level. We then handle a trie of strings of
length logk n over an alphabet of size kd. While such a view yields no advantage
in the static case, it provides more efficient implementations in the dynamic
scenario. For example, a succinct dynamic trie [4] on the Morton codes requires
space similar to our bitvector representation, but it is much faster in supporting
the operations: o(d log k) time, and constant for practical values of d and k.

In this paper we implement this idea and show that it is not only theoretically
appealing but also competitive in practice with the preceding dynamic-bitvector-
based representation [13]. In our way, we define a new depth-first deployment for
tries that, unlike the level-wise one [14], cannot be traversed in constant time per
edge. Yet, we show it turns out to be convenient in a dynamic scenario because
we have to scan only small parts of the representation.

2 The k2-Tree and Its Representation as a Trie

Let us focus on the case k = 2 and d = 2 for simplicity; d = 2 encompasses all
the applications where we represent graphs, and the small value of k is the most
practical in many cases. Given p points in an n × n matrix M , the k2-tree is a
k2-ary (i.e., 4-ary) tree where each node represents a submatrix. Assume n is a
power of k (i.e., of 2) for simplicity. The root then represents the whole matrix
M [0..n− 1, 0..n− 1]. Given a node representing a submatrix M [r1..r2, c1..c2], its
4 children represent the submatrices M [r1..rm, c1..cm] (top-left), M [r1..rm, cm +
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1..c2] (top-right), M [rm+1..r2, c1..cm] (bottom-left), and M [rm+1..r2, cm+1..c2]
(bottom-right), in that order, where rm = (r1+r2−1)/2 and cm = (c1+c2−1)/2.
Each of the 4 submatrices of a node may be empty of points, in which case the
node does not have the corresponding child. The node stores 4 bits indicating
with a 1 that the corresponding matrix is nonempty, or with a 0 that it is empty.
The k2-tree is of height logk n = log2 n. The p matrix points correspond to the
leaves marked with 1 at depth logk n. See Fig. 1.
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Fig. 1. Binary relation for the set {(0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (1, 3), (1, 7), (2, 1),
(4, 0), (4, 1), (7, 3), (8, 12), (11, 12)} (on top). The corresponding k2-tree (in the mid-
dle) with level-order numbers shown in parentheses above each node, and its levelwise
representation (on the bottom), again with level-order numbers above each node.

Succinct Representation. A simplified description of the compact k2-tree repre-
sentation [14] consists of a bitvector B where the tree is traversed levelwise, left
to right, and the k2 = 4 bits of all the nodes are concatenated. This is similar to
a louds tree representation [8,18], which is also computed via a BFS traversal.
Then, if the tree has v nodes, the bitvector B is of length k2v = 4v, B[1..4v].
Note that the nodes of depth logk n = log2 n correspond to 4 cells, and therefore
it is sufficient to store their 4 bits; their children are not represented. Given
p points, the number of nodes of the k2-tree is v ≤ p log4(n2/p) + O(p) [22,
Sec. 9.2].
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Each k2-tree node is identified by the position of the first of the 4 bits that
describes its empty/nonempty children. To move from a node i to its t-th child
(0 ≤ t ≤ 3), the formula is simply 4 · rank1(B, i + t) + 1, where rank1(B, i)
counts the number of 1s in B[1..i] and can be computed in O(1) time using o(v)
space on top of B [16]. For example, we determine in O(logk n) time whether
a certain point exists in the grid. Other operations require traversal of selected
subtrees [14].

Dynamic k2-Trees. A dynamic k2-tree [13] is obtained by representing B as
a dynamic bitvector. Now operation rank takes time O(log v/ log log v) [23],
which is optimal [17]. This slows down the structure with respect to the static
variant. For example, determining whether a point exists takes time O(logk n ·
log v/ log log v) ⊆ O(log2 n/ log log n). To insert a point (r, c), we must create its
path up to the leaves, converting the first 0 in the path to a 1 and thereafter
inserting groups of k2 = 4 bits, one per level up to level logk n. This takes time
O(logk n · log v/ log log v) as well. Deleting a point is analogous.

Morton Codes. Consider a point (r, c), which induces a root-to-leaf path in the
k2-tree. If we number the 4 submatrices described in the beginning of this section
as 0,1,2,3, then we can identify (r, c) with a sequence of log4(n2) = log2 n symbols
over the alphabet [0..3] that indicate the submatrix chosen by (r, c) at each level.
In particular, note that if we write the symbols in binary, 0 = 00, 1 = 01, 2 = 10,
and 3 = 11, then the row r is obtained by concatenating the first bits of the log2 n
levels, from highest to lowest bit, and the column c is obtained by concatenating
the second bits of the log2 n levels. The Morton code of (r, c) is then obtained
by interlacing the bits of the binary representations of r and c.

As a consequence, we can regard the k2-tree as the trie of the Morton codes
of all the p points, that is, a trie storing p strings of length logk n = log2 n over
an alphabet of size k2 = 4. The extension to general values of kd is immediate.

Succinct Tries. A recent dynamic representation [4] of tries of v nodes over
alphabet [0..σ − 1] requires v(2+ log2 σ)+ o(v log σ) bits. If σ is polylogarithmic
in v, it simulates each step of a trie traversal in O(1) time, and the insertion and
deletion of each trie node in O(1) amortized time. Used on our Morton codes,
with alphabet size σ = k2 = 4, the tries use v(2+2 log2 k)+o(v) = 4v+o(v) bits,
exactly as the representation using the bitvector B. Instead, they support queries
like whether a given point exists in time O(logk n), and inserting or deleting a
point in amortized time O(logk n), way faster than on the dynamic bitvector B.

The General Case. With larger values of k and d, B requires kdv bits, and it
may become sparse. By using sparse bitvector representations [24], the space
becomes O(p log(nd/p) + pd log k) bits [22, Sec. 9.2], but the time of operation
rank becomes O(d log k), and this time penalty factor multiplies all the other
operations. A dynamic representation of the compressed bitvector [23] uses the
same space and requires O(log v/ log log v) time for each operation. The space
usage of the trie [4] on a general alphabet of size σ = kd is of the same order,
O(p log(nd/p) + pd log k) bits, but the operations are supported in less time,
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O(log σ/ log log σ) = O(log(kd)/ log log(kd)) = O(d log k/ log(d log k)) (amor-
tized for updates). The insertion or deletion of a point, which affects logk n
tree edges, then requires O(d log n/ log(d log k)) amortized time. We state this
simple result as a theorem.

Theorem 1. A dynamic kd-tree can represent p points on an nd-size grid within
O(p log(nd/p) + pd log k) bits, while supporting the traversal, insertion, or dele-
tion of each tree edge in time O(d log k/ log(d log k)) (amortized for updates). If
kd = O(polylog p), then the times are O(1) (also amortized for updates).

3 Implementation of the Dynamic Trie

We now define a practical implementation of succinct dynamic tries, for the
particular case of k2-trees with k = 2. The whole trie is divided into blocks, each
being a connected component of the trie. A block can have child blocks, so we
can say that the trie is represented as a tree of blocks. Blocks will be of variable
size. Let us define block sizes N1 < N2 < · · · < Nmax, such that Ni = Ni−1/α,
for i = 2, . . . , max, for a given parameter 0 < α < 1, and Nmax = 4 · N1. At any
given time, a block B of size Ni is able to store at most Ni nodes. If new nodes
are added to B such that the number of nodes exceeds Ni, then B is enlarged
to have size Nj , for j > i, such that the new nodes can be stored. By defining
the block sizes Ni as we do, we ensure that the fill ratio of each block is at least
1 − α [5]; for example, if α = 0.05, then every block is at least 95% full, which
means that the space wasted is at most 5%.

Each block B stores the following components:

– TB: the tree topology of the connected component represented by the block.
Every node in the trie is either an internal node, a leaf node, or a frontier
node in some TB . The latter are seen as leaves in TB , but they correspond
to trie nodes whose subtree is stored in a descendant block. We mark such
nodes in B and store a pointer to the corresponding child block, see next.

– FB: a sorted array storing the preorder numbers of the frontier nodes.
– PB: an array with the pointers to children blocks, in the same order of FB.
– dB : the depth (in the trie) of the root of TB .

Unlike the classical k2-tree representation [13,14], which deploys the nodes
levelwise, we represent the tree topology TB in depth-first order. This order is
compatible with our block layout and speeds up the insertion of points, since
the bits of all the edges to insert or remove are contiguous.

Representation. In TB , each node is encoded using 4 bits, indicating which of its
children are present. For instance, ‘0110’ encodes a node that has two children,
labeled by symbols 1 and 2. Therefore, the total number of bits used to encode
the trees TB is exactly the same as in the classical representations [13,14].

We store TB using a simple array able to hold Ni nodes. A node is identified
by its index within this array. Figure 2 shows an example top block for the k2-tree
of Fig. 1 and our array-based depth-first representation. Depth-first numbers are



424 D. Arroyuelo et al.

shown along each node; these are also their indexes in the array storing TB . In
the example, nodes with depth-first number 2 and 3 are frontier nodes; they are
underlined in the array representation.

TB : 1001 1110 0110 1100 1001 1100 1001 0100 1010 1000 0010

6 109

8

7

0

1

432

5

0 1 2 3 4 5 6 7 8 9 10

Fig. 2. Example block of a k2-tree and its depth-first representation. Depth-first num-
bers are shown along with each node, and they correspond with the index in the array
representation. Nodes with numbers 2 and 3 (underlined in TB) are frontier nodes.

Apart from TB , each block B then requires 3 words to store dB and its
corresponding entries in the arrays FB′ and PB′ in its parent block B′. This
implies a maximum overhead of O(log(n)/N1) bits per node, assuming pointers
of Θ(log n) bits as in the transdichotomous RAM model of computation. Thus
we have to choose N1 = ω(log N) for this overhead to be o(n).

The depth-first order we use, however, corresponds more to the dfuds repre-
sentation [8], whereas the classical levelwise deployment is analogous to a louds
representation [18]. An important difference is that, whereas the fixed-arity vari-
ant of louds is easy to traverse in constant time per edge, the dfuds repre-
sentation requires more space [8,22]: apart from the 4 bits, each node with c
children uses c + 1 bits to mark its number of children.

As a consequence, our actual storage format cannot be traversed in constant
time per edge. Rather, we will traverse the blocks sequentially and carry out all
the edge traversals or updates on the block in a single left-to-right pass. This
is not only cache-friendly, but convenient because we do not need to store nor
recompute any sublinear-space data structure to speed up traversals [16].

A complication related to our format is that, when traversing the tree, we
must maintain the current trie depth in order to identify the leaves (these are
always at depth log2 n). Besides, as we traverse the block we must be aware of
which are the frontier nodes, so as to skip them in the current block or switch
to another block, depending on whether or not we want to enter into them.
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Operation child. This is the main operation needed for traversing the tree. Let
child(x, i) yield the child of node x by symbol 0 ≤ i ≤ 3 (if it exists). Assume node
x belongs to block B. Recall that x is actually the position of the node within
the array that represents TB . For computing child(x, i), we first check whether
node x is in the frontier of B or not. To support this checking efficiently, we
keep a finger if on array FB, such that if is the smallest value for which FB[if ] is
greater or equal than the preorder of the current node in the traversal. Since we
traverse in preorder, and FB is sorted, increasing if as we traverse TB is enough
to keep if up to date. When the preorder of the current node exceeds FB[if ],
we increase if . If FB [if ] = x, then node x is in the frontier, hence we go down
to block PB[if ], start from the root node (which is x itself stored in the child
block), and set if ← 0. Otherwise, x is not a frontier node, and we stay in B.
In summary, operation child(x, i) is supported by an Euler tour on the part of
the subtree of node x that belongs to block B. During the tour, we skip pointers
associated to the frontier nodes we find before getting to the ith child of x.

Determining whether the i-th child of a node x exists requires a simple bit
inspection. If it does, we must determine how many children of x (and their
subtrees) must be skipped to get to child(x, i). We store a precomputed table
that, for every 4-bit pattern and each i = 0, . . . , 3, indicates how many subtrees
must be skipped to get the desired child. For instance, if x is ‘1011’ and i = 2,
this table tells that one child of x must be skipped to get to the node labeled 2.

In our sequential traversal of B, corresponding to a depth-first traversal of
TB, we keep a stack S (initially empty) such that for every node in the path from
node x to the current node, stores the number of children not yet traversed. We
start looking for the desired child by moving to position x + 1, corresponding to
the first child of x in preorder. At this point, we push the number of children
of this node into S. The traversal is carried out by increasing an index on the
array that stores TB . The key for the traversal is to know the current depth at
each step. As said before, we keep track of the current depth d, to know when
we arrive at a leaf node. When traversing, we update d as follows. Every time
we move to the next node (in preorder), we increase d only if (1) d is not the
maximum depth (minus 1, recall that the last level is not represented), (2) the
current node is not a frontier node, or (3) the current node is the last child
of its parent. We use S to check the latter condition. Every time we reach a
new node, we push in S its number of children if the node is not of maximum
depth (minus 1), and it is not a frontier node. Otherwise, we instead decrease
the value at the top of the stack, since the subtree of the corresponding node
has been completely traversed. When the top value becomes 0, it means that a
whole subtree has been traversed. In such a case we pop S, decrease the current
depth d, and decrease the new value at the top (if this also becomes 0, we keep
repeating the process, decreasing d and the top value).

Once the stack S becomes empty again, we have traversed the subtree of the
first child. We repeat the same process from the current node, skipping as many
children of x as needed.
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Operation insert. To insert a point (c, r), we use the corresponding Morton code
M = yz, for strings y ∈ {0, . . . , 3}∗ and z ∈ {0, . . . , 3}+ to navigate the trie,
until we cannot descend anymore. Assume that we have been able to get down
to a node x (stored in block B) that represents string y, and at this node we
have failed to descend using the first symbol of z. Then, we must insert string z
in the subtree of node x. If the block has enough space for the |z| new nodes, we
simply find the insertion point from x (skipping subtrees as explained above),
make room for the new nodes, and write them sequentially using a precomputed
table that translates a given symbol of z to the 4-bit pattern corresponding to
the unary node for that symbol. We also store a precomputed table that, given
the encoding of x and the first symbol of string z, yields the new encoding for x.

If, on the other hand, the array used to store TB has no room for the new
nodes, we proceed as follows. If the array is currently able to store up to Ni <
Nmax nodes, we reallocate it to make it of size Nj , for the smallest Nj such that
Ni + |z| ≤ Nj holds. If, otherwise, Ni = Nmax, or Ni + |z| > Nmax, we must
first split B to make room.

To minimize space usage, the splitting process should traverse TB to choose
the node w such that splitting TB at w generates two trees whose size difference is
minimum. We combine this criterion, however, with another one that optimizes
traversal time. As explained, an advantage of our method is that we can traverse
several edges in a single left-to-right scan of the block. Such scan, however,
ends when we have to follow a pointer to another block. We try, therefore,
to have those pointers as early as possible in the block so as to increase the
probability that the left siblings of the ith child of node x are frontier nodes,
so we avoid traversing their subtrees when computing child(x, i). Our splitting
criterion, then, tries first to separate the leftmost node in the block whose subtree
size is 25%–75% of the total block size.

After choosing node w, we carry out the split by generating two blocks,
adding the corresponding pointer to the new child block, and adding w as a
frontier node (storing its preorder in FB and its pointer in PB).

Increasing the Size of Deeper Blocks. A way to reduce the cost of traversing the
blocks sequentially is to define a small maximum block size Nmax. The cost is
that this increases the space usage, because more blocks will be needed (thus
increasing the number of pointers, and hence the space, of the data structure).
We have the fortunate situation, however, that the most frequently traversed
blocks are closer to the root, and these are relatively few. To exploit this fact,
we define different maximum block sizes according to the depth of the corre-
sponding block, with smaller maximum block sizes for smaller depths. We define
parameters 0 ≤ d1 < d2 such that a block whose root has depth at most d1
have maximum block size N ′′

max, a block whose root has depth at most d2 have
maximum block size N ′

max, and the remaining blocks have maximum size Nmax,
for N ′′

max < N ′
max < Nmax. In this way, we aim to reduce the traversal cost,

while using little space at deeper blocks (recall that, regardless the block size
Ni, a block has at least (1 − α) · Ni nodes, ensuring a good space utilization).
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Pushing this idea to the extreme, we may set N ′′
max = 1, equivalent to allowing

the top part of the tree to be represented with explicit pointers.

Analysis Again. Theorem 1 builds on a highly theoretical result [4]. The engi-
neered structure defined in this section, on the other hand, obtains higher time
complexities. In our implementation, each operation costs O(Nmax) time, which
we set close to log2 N to obtain the same space redundancies of dynamic bitvec-
tors. In turn, the implementation of dynamic bitvectors [13] takes Θ(log2 N)
time per basic operation (edge traversal or update). An advantage of our imple-
mentation is that, during the Θ(log2 N)-time traversal of a single block, we may
be able to descend several levels in the root-to-leaves path of the k2-tree, but this
is not guaranteed. As a result, we can expect that our implementation will be
about as fast as the dynamic bitvectors or significantly faster, depending on the
tree topology. Our experiments in the next section confirm these expectations.

4 Experiments

4.1 Experimental Setup

We experimentally evaluate our proposal comparing it with the dynamic k2-tree
implementation based on dynamic bit vectors [13], to demonstrate the com-
parative performance of our technique. Other dynamic trie implementations
exist [6,7,19] that are designed for storing general string dictionaries, and could
store the points using their Morton codes. However, these techniques usually
require space comparable to that of the original collection of strings (in our
case, the Morton codes), which would be excessive in datasets like Web graphs
that can be easily compressed using a few bits per edge. Moreover, since generic
dictionaries are mainly optimized for word queries, or at most prefix queries, it
would be harder to provide an efficient implementation of row/column queries
in these structures, whereas those algorithms are very efficient in k2-trees.

We use four different datasets in our experiments. Their basic information
is described in Table 1. The graphs indochina and uk are Web graphs from the
Laboratory for Web Algorithmics1 [10,11], known to be very sparse and com-
pressible. The datasets triples-med and triples-dense are selected predicates of
the DBPedia 3.5.12, transformed through vertical partitioning as in previous
work [2]; they are also sparse matrices but much less regular, and more difficult
to compress.

For our structure we use k = 2 and the following configuration parameters:
N ′′

max = 1 (i.e., we use explicit pointers in the first few levels of the trie), N ′
max =

96, and show results for different configurations varying Nmax, from 256 to 1024.
We also show the tradeoff using values of d1 8 and 12, and values of d2 from 10
to 16 depending on d1.

For the approach based on dynamic bitvectors (dyn-bitmap), we show results
of the practical implementation with the default setup (base block size 512 for
1 http://law.di.unimi.it/datasets.php.
2 https://wiki.dbpedia.org/services-resources/datasets/data-set-35/data-set-351.

http://law.di.unimi.it/datasets.php
https://wiki.dbpedia.org/services-resources/datasets/data-set-35/ data-set-351
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Table 1. Datasets used in our experiments.

Type Dataset Rows/cols Points

(millions) (millions)

Web graph indochina-2004 7.4 194.1

uk-2002 18.5 298.1

RDF triples-med 67.0 7.9

triples-dense 67.0 98.7

the nodes that compose the dynamic bitmap; k = 4 in the first 3 levels of the
tree and k = 2 in the remaining levels). Using a higher value of k in a few upper
levels of the conceptual tree has negligible effect on compression, since only a
few nodes at the beginning of the bitmap use it, but it has a positive effect
in query times since it reduces the height of the tree. When relevant, we also
display results for another configuration with smaller block size 128 and k = 4
in the first 5 levels, keeping k = 2 in the remaining levels of the tree.

We also performed tests with dynamic path-decomposed tries [19] (dyn-PDT)
and HAT tries [6] (HAT-Trie), applied to the Morton codes. For dyn-PDT we used
the default configuration provided by the authors, but set λ to 4 as suggested by
the authors for DNA, since Morton codes also use a very small alphabet (results
were not significantly different with λ = 16). We tested the variants with bitmap
management, varying � from 8 to 64. For HAT-Trie we also used the default
configuration. As explained previously, these are generic implementations not
designed for this specific problem, and therefore their results are not competitive
with ours. Nevertheless, we will outline the results obtained with these structures
for completeness.

We run our experiments in a machine with 4 Intel i7-6500@2.5 GHz cores
and 8 GB RAM, running Ubuntu 16.04.6. Our code is implemented in C++ and
compiled with g++ 5.5.0 using the -O9 optimization flag. Our implementation
is publicly available at https://github.com/darroyue/k2-dyn-tries.

4.2 Results

In order to test the compression and performance of our techniques, we start by
building the representations from the original datasets. To do this, we shuffle the
points in the dataset into a random order, and insert them in the structures one
by one. Then, we measure the average insertion time during construction of the
complete dataset, as well as the space used by the structure after construction.

Figure 3 displays insertion times during construction and final space for all
the datasets and tested configurations. The results show that in Web graphs
(indochina and uk) our representations can be created significantly faster than
the dynamic bitvectors while requiring negligible additional space, for example
20–25% faster using 3% more space. Moreover, our representations provide a
wide space-time tradeoff that the technique based on dynamic bitvectors does

https://github.com/darroyue/k2-dyn-tries
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Fig. 3. Compression and insertion times (in bits per inserted point and µs/insertion)

not match (in Web graphs we only show results for the default configuration
of dyn-bitmap, because the configuration with smaller blocks is both larger
and slower). The configuration to achieve this tradeoff is also quite intuitive:
larger(smaller) blocks in the lower levels lead to slower(faster), but more(less)
compact structures.

In the RDF datasets (triples-med and triples-dense), our structures are even
more competitive, using far less space and time than the dynamic bitvectors. In
triples-med, our structures are 2.5 times faster when using similar space, or use
25% less space for the same speed. In triples-dense we are about 5 times faster
when using the same space, and still 3 times faster than dynamic bitvectors when
using 20% less space. Notice that the main difference between RDF and Web
graph datasets is the regularity and clusterization of the points in the matrix,
which is much higher in Web graphs than in RDF datasets. This also explains
the worse space results achieved in these datasets compared to Web graphs. A
similar difference in regularity exists between triples-med and triples-dense, where
the latter is much more difficult to compress.

Dyn-PDT and HAT-Trie are not displayed in the figure, since they require
much more space than any of the displayed variants and us, whereas their inser-
tion times are similar to ours. Particularly, Dyn-PDT uses 2–4 times our space
in triples-dense, 5–10 times our space in triples-med, and 12–20 times our space
in Web graphs. It obtains insertion times similar to ours, ranging from 2.5 to
4.5µs/insertion depending on the dataset and configuration, and query times
very similar to insertion times and also similar to ours. HAT-Trie also obtains
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similar insertion times, ranging from 3.5 to 4.5µs/insertion, but requires up to
twice the space of dyn-PDT.

Next, we measure the average query times to retrieve a point. To do this, we
again select the points of each collection in random order, limiting our selection to
100 million points in the larger datasets, and measure the average query time to
search for each of them. Figure 4 displays the query times for these cell retrieval
queries. Results are analogous to those of insertion times. In Web graphs, our
tries obtain even better performance compared to dynamic bitvectors. In RDF
datasets the times are slightly closer but our tries still outperform dynamic
bitvectors in space and time: In triples-med tries are 70% faster when using the
same space, or 20% smaller when taking the same time. In triples-dense tries are
4 times faster when using the same space, and 3 times faster when using 20%
less space. Again, Dyn-PDT and HAT-Trie are not displayed, because they are
much larger than the displayed variants. Query times obtained by dyn-PDT are
similar to ours, ranging from 2.5 to 5µs/query. HAT-Trie has similar but slightly
faster query times, ranging from 2.2 to 3.4µs/query.
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Fig. 4. Query times to retrieve cells (in µs/query)

We also perform tests querying for 100 million randomly selected cells. In
practice, most of these cells will not belong to the collection, and they will prob-
ably be relatively far from existing points, hence allowing the structures to stop
the traversal in the upper levels of the tree. These kind of queries are much faster
and almost identical for all the trie configurations tested in each dataset. Figure 5
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Fig. 5. Query times to retrieve random cells (in µs/query)

displays the query times for these queries. In Web graphs, the dynamic bitvectors
obtain better query times for these queries (0.4–0.6 µs/query in indochina and
uk, while our tries take around 0.6–0.7 and 0.75–0.95µs/query, respectively). In
RDF datasets, our tries are still significantly faster (around 0.55–0.6 µs/query
in both datasets, whereas dynamic bitvectors take 1.1–1.2µs/query in triples-
med and 1.5–1.9µs/query in triples-dense). This points to the depth of the tree
search as a relevant factor in query complexity: our tries seem to have more
stable query times, and are faster in queries that involve traversal of the full tree
depth. In Web graphs, where points are usually clustered, non-existing points
are detected in upper levels of the tree, and query times are usually better. In
the RDF datasets, where points are more randomly distributed, the depth of the
search is expected to be higher on average even if the dataset is still very sparse.

5 Conclusions

Regarding the k2-tree as a trie on the Morton codes of the points it represents
yields a new view that differs from the classical one based on bitvectors [14].
We have shown that this makes an important difference in the dynamic sce-
nario, because dynamic tries can break lower bounds on maintaining dynamic
bitvectors. Apart from the theoretical result, we have implemented a dynamic
trie specialized in representing k2-trees, where the trie is cut into a tree of blocks,
each block representing a connected component of the trie. The dynamic trie uses
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a depth-first search deployment of the trie, unlike the classical level-wise deploy-
ment. While this format cannot be traversed in constant time per trie edge, it
is convenient for a dynamic trie representation because it is consistent with the
tree of blocks, update operations require local changes, a single left-to-right block
scan processes several downward edge traversals, and such scan is cache-friendly
and does not require rebuilding any speed-up data structure.

Our experimental results show that our representation significantly outper-
forms the one based on dynamic bitvectors [13] on some datasets, in space, time,
or both, depending on the nature of the dataset.

In the final version we will include experiments on other operations like
extracting all the neighbors of a node. A future goal is to explore applications
of our dynamic k2-tree representation, in particular for graph databases [3].
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