
On the Computation of Longest Previous
Non-overlapping Factors

Enno Ohlebusch(B) and Pascal Weber

Institute of Theoretical Computer Science, Ulm University, 89069 Ulm, Germany
{Enno.Ohlebusch,Pascal-1.Weber}@uni-ulm.de

Abstract. The f -factorization of a string is similar to the well-known
Lempel-Ziv (LZ) factorization, but differs from it in that the factors must
be non-overlapping. There are two linear time algorithms that compute
the f -factorization. Both of them compute the array of longest previous
non-overlapping factors (LPnF-array), from which the f -factorization can
easily be derived. In this paper, we present a simple algorithm that com-
putes the LPnF-array from the LPF-array and an array prevOcc that
stores positions of previous occurrences of LZ-factors. The algorithm has
a linear worst-case time complexity if prevOcc contains leftmost positions.
Moreover, we provide an algorithm that computes the f -factorization
directly. Experiments show that our first method (combined with effi-
cient LPF-algorithms) is the fastest and our second method is the most
space efficient way to compute the f -factorization.

1 Introduction

The Lempel-Ziv (LZ) factorization [20] of a string has played an important role
in data compression for more than 40 years and it is also the basis of important
algorithms on strings, such as the detection of all maximal repetitions (runs)
in a string [16] in linear time. Because of its importance in data compression,
there is extensive literature on algorithms that compute the LZ-factorization
and [1–4,10,12,13,18,19] is an incomplete list.

A variant of the LZ-factorization is the f -factorization, which played an
important role in solving a long standing open problem: it enabled the devel-
opment of the first linear time algorithm for seeds computation by Kociumaka
et al. [15].

Definition 1. Let S = S[0..n−1] be a string of length n on an alphabet Σ. The
f -factorization s1s2 · · · sm of S can be defined as follows. Given s1s2 · · · sj−1, the
next factor sj is obtained by a case distinction on the character c = S[i], where
i = |s1s2 · · · sj−1|:
(a) if c does not occur in s1s2 · · · sj−1 then sj = c
(b) else sj is the longest prefix of S[i..n − 1] that is a substring of s1s2 · · · sj−1.

c© Springer Nature Switzerland AG 2019
N. R. Brisaboa and S. J. Puglisi (Eds.): SPIRE 2019, LNCS 11811, pp. 372–381, 2019.
https://doi.org/10.1007/978-3-030-32686-9_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32686-9_26&domain=pdf
https://doi.org/10.1007/978-3-030-32686-9_26

On the Computation of Longest Previous Non-overlapping Factors 373

The difference to the LZ-factorization is that the factors must be non-
overlapping. There are two linear time algorithms that compute the f -
factorization [5,6]. Both of them compute the LPnF-array (defined below), from
which the f -factorization can be derived (in case (b), the factor sj is the length
LPnF[i] prefix of S[i..n − 1]).

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S[i] a a a a a a a a a a a a a a a a

LPnF[i] 0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1
LPF[i] 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

(rm)prevOcc[i] ⊥ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
(lm)prevOcc[i] ⊥ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 1. The LPnF, LPF, and prevOcc arrays of the string S = aaaaaaaaaaaaaaaa.

Definition 2. For a string S of length n, the longest previous non-overlapping
factor (LPnF) array of size n is defined for 0 ≤ i < n by

LPnF[i] = max{� | 0 ≤ � ≤ n − i;S[i..i + � − 1] is a substring of S[0..i − 1]}
In the following, we will give a simple algorithm that directly bases the com-

putation of the LPnF-array on the LPF-array, which is used in several algorithms
that compute the LZ-factorization. The LPF-array is defined by (0 ≤ i < n)

LPF[i] = max{� | 0 ≤ � ≤ n − i;S[i..i + � − 1] is a substring of S[0..i + � − 2]}
In data compression, we are not only interested in the length of the longest
previous factor but also in a previous position at which it occurred (because
otherwise decompression would be impossible). For an LPF-array, the positions
of previous occurrences are stored in an array prevOcc. If LPF[i] = 0, we set
prevOcc[i] = ⊥ (for decompression, one can use the definition prevOcc[i] = S[i]).
Figure 1 depicts the LPF-array of S = a16 and two of many possible instances of
the prevOcc-array: one that stores the rightmost (rm) positions of occurrences
of longest previous factors and one that stores the leftmost (lm) positions.

2 Computing LPnF from LPF

Algorithm 1 computes the LPnF-array by a right-to-left scan of the LPF-array
and its prevOcc-array. The computation of an entry � = LPnF[i] is solely based
on entries LPF[j] and prevOcc[j] with j ≤ i. Consequently, after the calculation
of �, it can be stored in LPF[i]. Since Algorithm 1 overwrites the LPF-array with
the LPnF-array (and the prevOcc-array of LPF with the prevOcc-array of LPnF),
no extra space is needed. Algorithm 1 is based on the following simple idea:

1. If the factor starting at position i and its previous occurrence starting at
position j = prevOcc[i] do not overlap, then clearly LPnF[i] = LPF[i].

374 E. Ohlebusch and P. Weber

Algorithm 1. Given LPF and its prevOcc-array, the algorithm computes LPnF
and stores it in LPF.
1: function computeLPnF(LPF,prevOcc)
2: for i ← n − 1 downto 0 do
3: if LPF[i] > 0 then � hence prevOcc[i] �= ⊥
4: j ← prevOcc[i]
5: if j + LPF[i] > i then � overlapping case
6: � ← i − j
7: while LPF[j] > � do � hence prevOcc[j] �= ⊥
8: � ← min{LPF[i], LPF[j]}
9: j ← prevOcc[j]

10: if j + � ≤ i then � non-overlapping case
11: break
12: else � overlapping case
13: � ← i − j

14: prevOcc[i] ← j
15: LPF[i] ← �

2. Otherwise, the length of the (currently best) previous non-overlapping factor
is � = i−j. A longer previous non-overlapping factor exists if LPF[j] > � (note
that LPF[i] > � holds): the prefix of S[i..n − 1] of length min{LPF[i], LPF[j]}
also occurs at position prevOcc[j] and even if the two occurrences (starting
at i and prevOcc[j]) overlap, their non-overlapping part must be greater than
� because prevOcc[j] < j.

3. Step 2 is repeated until there is no further candidate (condition of the while-
loop in line 7) or the two occurrences under consideration do not overlap (line
11 of Algorithm 1).

On the one hand, the example in Fig. 1 shows that Algorithm 1 may have a
quadratic run-time if it uses the prevOcc-array that stores the rightmost posi-
tions of previous occurrences. On the other hand, the next lemma proves that
Algorithm 1 has a linear worst-case time complexity if it uses the prevOcc-array
that stores the leftmost positions of previous occurrences. Its proof is based on
the following notion: An integer p with 0 < p ≤ |ω| is called a period of ω ∈ Σ+

if ω[i] = ω[i + p] for all i ∈ {0, 1, . . . , |ω| − p − 1}.

Lemma 1. If prevOcc stores the leftmost positions of previous occurrences, then
the else-case on line 12 in Algorithm1 cannot occur.

Proof. For a proof by contradiction, suppose that the else-case on line 12 in Algo-
rithm1 occurs for some i. We have LPF[i] > 0, j = prevOcc[i] is the leftmost
occurrence of the longest previous factor ωi starting at i, and j+LPF[i] > i. Sup-
pose LPF[j] > i−j, i.e., the while-loop is executed. Let m = min{LPF[i], LPF[j]}
and k = prevOcc[j]. If m = LPF[i], then it would follow that an occurrence of
ωi starts at k. This contradicts the fact that j is the leftmost occurrence of
ωi. Consequently, m = LPF[j] < LPF[i]. The else-case on line 12 occurs when
k + m > i. This implies k + m > j because i > j. Let ωj be the longest previous

On the Computation of Longest Previous Non-overlapping Factors 375

ωi

ωi

ωj

ωj

v

v

u

u

ijk a b

Fig. 2. Proof of Lemma 1: i, j, and k are positions, while a and b are characters.

factor starting at j. Let a = S[k + m] (the character following the occurrence of
ωj starting at k) and b = S[j + m] (the character following the occurrence of ωj

starting at j); see Fig. 2. By definition, a �= b. We will derive a contradiction by
showing that a = b must hold in the else-case on line 12.

Since k + m > j, the occurrence of ωj starting at k overlaps with the occur-
rence of ωj starting at j. Let u be the non-overlapping part of the occurrence of
ωj starting at k, i.e., u = S[k..j − 1]. Because the occurrence of ωj starting at j
has u as a prefix and overlaps with the occurrence of ωj starting at k, it follows
that |u| is a period of ωj ; see Fig. 2. By a similar reasoning, one can see that |v|
is a period of ωi, where v = S[j..i−1]. Since ωj is a length m prefix of S[j..n−1]
and ωi is a length LPF[i] prefix of S[j..n − 1], where m = LPF[j] < LPF[i], it
follows that ωj is a prefix of ωi. Hence |v| is also a period of ωj . In summary,
both |u| and |v| are periods of ωj . Fine and Wilf’s theorem [8] states that if
|ωj | ≥ |u| + |v| − gcd(|u|, |v|), then the greatest common divisor gcd(|u|, |v|) of
|u| and |v| is also a period of ωj . Since m = |ωj | ≥ |u| + |v|, the theorem is
applicable. Let γ be the length gcd(|u|, |v|) prefix of ωj . It follows that v = γq

for some integer q > 0, hence |γ| is a period of ωi. Recall that a = S[k + m] is
the character ωj [m − |u|] = ωi[m − |u|] and b = S[j + m] = ωi[m]. We derive
a = ωi[m − |u|] = ωi[m] = b because |γ| is a period of ωi and |u| is a multiple of
|γ|. This contradiction proves the lemma.

To the best of our knowledge, Abouelhoda et al. [1] first computed the LZ-
factorization based on the suffix array (and the LCP-array) of S. Their algorithm
computes the LPF-array and the prevOcc-array that stores leftmost positions of
previous occurrences of longest factors. So the combination of their algorithm
and Algorithm 1 gives a linear-time algorithm that computes the LPnF-array.
Subsequent work (e.g. [2–4,12,13,18]) concentrated on LZ-factorization algo-
rithms that are faster in practice or more space-efficient (or both). Some of
them also first compute the arrays LPF and prevOcc, but their prevOcc-arrays
neither store leftmost nor rightmost occurrences (in fact, these algorithms are
faster because they use lexicographically nearby suffixes–a local property–while
being the leftmost occurrence is a global property). However, leftmost occur-
rences can easily be obtained by Algorithm 2. The algorithm is based on the
following simple observation: If LPF[i] > 0, j = prevOcc[i], and LPF[j] ≥ LPF[i],
then prevOcc[j] is also the starting position of an occurrence of the factor
starting at i. Since prevOcc[j] < j, an occurrence left of j has been found.

376 E. Ohlebusch and P. Weber

Algorithm 2. Given LPF and its prevOcc-array, the algorithm computes the
leftmost occurrence of each factor and stores it in prevOcc.
1: function compute-leftmost-Occurrence(LPF,prevOcc)
2: for i ← 0 to n − 1 do
3: if LPF[i] > 0 then � hence prevOcc[i] �= ⊥
4: j ← prevOcc[i]
5: while LPF[j] ≥ LPF[i] do
6: j ← prevOcc[j]

7: prevOcc[i] ← j

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13
S[i] a #1 a a #2 a a a #3 a a a a #4

LPF[i] 0 0 1 1 0 2 2 1 0 3 3 2 1 0
prevOcc[i] ⊥ ⊥ 0 2 ⊥ 2 5 5 ⊥ 5 9 9 9 ⊥

(lm)prevOcc[i] ⊥ ⊥ 0 0 ⊥ 2 2 0 ⊥ 5 5 2 0 ⊥
iterations 0 0 1 0 1 2 0 1 2 3

Fig. 3. LPF and prevOcc arrays of the string S = a1#1a
2#2a

3#3a
4#4.

The while-loop in Algorithm2 repeats this procedure until the leftmost occur-
rence is found. Note that the algorithm overwrites the prevOcc-array. Conse-
quently, if its for-loop is executed for i, then for every 0 ≤ j < i, prevOcc[j]
stores a leftmost position. The next example shows that Algorithm 2 is not lin-
ear in the worst-case. Consider the string S = a1#1a

2#2a
3#3a

4#4 . . . am#m,
where m > 0 and #k are pairwise distinct separator symbols. Clearly, the length
of S is n = m +

∑m
k=1 k = m + m(m + 1)/2 = m(m + 3)/2. If Algorithm 2 is

applied to the arrays LPF and prevOcc in Fig. 3, it computes the leftmost (lm)
prevOcc array and the number of iterations of its while-loop (last row in Fig. 3)
is

∑m−1
j=1

∑j
k=1 k = (

∑m−1
j=1 j2 +

∑m−1
j=1 j)/2 = (m − 1)m(m + 1)/6.

3 Direct Computation of the f-Factorization

Algorithm 3 computes the f -factorization of S based on backward search on
T = Srev and range maximum queries (RMQs) on the suffix array of T .1 It
uses ideas of [2, Algorithm CPS2] and [18, Algorithm LZ bwd]. In fact, Algo-
rithm3 computes the right-to-left f -factorization of the reverse string Srev of
S. It is not difficult to see that s1s2 · · · sm is the (left-to-right) f -factorization
of S if and only if srevm · · · srev2 srev1 is the right-to-left f -factorization of Srev.
In this subsection, we assume a basic knowledge of suffix arrays (SA), the
Burrows-Wheeler transform (BWT), and wavelet trees; see e.g. [7,18]. Given a
substring ω of T , there is a suffix array interval [sp..ep]— called the ω-interval—
so that ω is a prefix of every suffix T [SA[k]..n] if and only if sp ≤ k ≤ ep.
For a character c, the cω-interval can be computed by one backward search
1 In the implementation, T is terminated by a special (EOF) symbol.

On the Computation of Longest Previous Non-overlapping Factors 377

Algorithm 3. f -factorization of S based on backward search on T = Srev

1: function compute-f-factorization(SA, wavelet tree of BWT)
2: i ← n − 1 � T = Srev[0..n − 1]
3: while i ≥ 0 do
4: sp ← 0; ep ← n; pos ← i; m ← ⊥
5: repeat
6: [sp..ep] ← backwardSearch(T [i], [sp..ep])
7: max ← SA[RMQ(sp, ep)]
8: if max ≤ pos then
9: break

10: m ← max
11: i ← i − 1
12: until i < 0
13: output pos − i

step backwardSearch(c, [sp..ep]); this takes O(log |Σ|) time if backward search
is based on the wavelet tree of the BWT of T . A linear time preprocessing is
sufficient to obtain a space-efficient data structure that supports RMQs in con-
stant time; see [9] and the references therein. RMQ(sp, ep) returns the index of
the maximum value among SA[sp],SA[sp+1], . . . ,SA[ep]; hence SA[RMQ(sp, ep)]
is the maximum of these SA-values. Suppose Algorithm 3 has already computed
srevj−1 · · · srev2 srev1 and let i = n−(|srevj−1 · · · srev2 srev1 |+1). It computes the next fac-
tor srevj as follows. First, it stores the starting position i in a variable pos. In line
6, backwardSearch(T [i], [0..n]) returns the c-interval [sp..ep], where c = T [i].
In line 7, the maximum max of SA[sp],SA[sp + 1], . . . ,SA[ep] is determined. If
max = pos (max < pos is impossible because c = T [pos]), then there is no
occurrence of c in T [pos + 1..n], so that srevj = c (the algorithm outputs 0,
meaning that the next factor is the next character). Otherwise, there is a pre-
vious occurrence of c at position max > pos and the process is iterated, i.e., i
is decremented by one and the new T [i..pos]-interval is computed etc. Consider
an iteration of the repeat-loop, where [sp..ep] is the T [i..pos]-interval for some
i < pos. The repeat-loop must be terminated early (line 9) if max ≤ pos because
then the rightmost occurrence of T [i..pos] starts left of pos + 1. In other words,
T [i..pos] is not a substring of T [pos + 1..n]. Since the repeat-loop did not termi-
nate in the previous iteration, T [i+1..pos] is a substring of T [pos+1..n] that has
a previous occurrence at position m > pos, where m is the maximum SA-value
of the previous iteration. So srevj = T [i + 1..pos] and the algorithm outputs its
length |srevj | = pos−(i+1)+1 = pos−i, which coincides with |sj |. Note that the
algorithm can easily be extended so that it also computes positions of previous
occurrences. Algorithm 3 has run-time O(n log |Σ|) because one backward search
step takes O(log |Σ|) time.

Kolpakov and Kucherov [17] used the reversed f -factorization (they call it
reversed LZ-factorization) for searching for gapped palindromes. The reversed
f -factorization is defined by replacing case (b) in Definition 1 with: (b) else sj is
the longest prefix of S[i..n − 1] that is a substring of (s1s2 · · · sj−1)rev. It is not

378 E. Ohlebusch and P. Weber

difficult so see that Algorithm 3 can be modified in such a way that it computes
the reversed f -factorization of S in O(n log |Σ|) time (to find the next factor sj ,
match prefixes of S[i..n − 1] against T = Srev).

4 Experimental Results

Our implementation is based on the sdsl-lite library [11] and we experimen-
tally compared it with the LPnF construction algorithm of Crochemore and Tis-
chler [6], called CT-algorithm henceforth. Another LPnF construction algorithm
is described in [5], but we could not find an implementation (this algorithm is
most likely slower than the CT-algorithm because it uses two kinds of range min-
imum queries—one on the suffix array and one on the LCP-array—and range
minimum queries are slow; see below). The experiments were conducted on a
64 bit Ubuntu 16.04.4 LTS system equipped with two 16-core Intel Xeon E5-
2698v3 processors and 256 GB of RAM. All programs were compiled with the O3
option using g++ (version 5.4.1). Our programs are publically available.2 The
test data—the files dblp.xml, dna, english, and proteins—originate from the Pizza
& Chili corpus.3 In our first experiment, we computed the LPnF-array from the
LPF-array. Three algorithms that compute the LPF-array were considered:

– AKO: algorithm by Abouelhoda et al. [1]
– LZ OG: algorithm by Ohlebusch and Gog [18]
– KKP3: algorithm by Kärkkäinen et al. [14]

It is known that AKO is slower than the others, but in contrast to the other
algorithms it calculates leftmost prevOcc-arrays. Thus, there was a slight chance
that AKO in combination with Algorithm1 is faster than LZ OG or KKP3 in combi-
nation with Algorithm1. However, our experiments showed that this is not the
case. AKO is missing in Fig. 4 because the differences between the run-times of
the other algorithms become more apparent without it. For the same reason, we
did not take the suffix array construction time into account (note that each of
the algorithms needs the suffix array). To find out whether or not it is advanta-
geous to compute a leftmost prevOcc-array by Algorithm 2 before Algorithm1 is
applied, we also considered the combinations of LZ OG and KKP3 with both algo-
rithms. Figures 4 and 5 show the results of the first experiment. As one can see in
Fig. 4, for real world data it seems disadvantageous to apply Algorithm2 before
Algorithm 1 because the overall run-time becomes slightly worse. However, for
‘problematic’ strings such as an and anb it is advisable to use Algorithm 2: With
it both LZ OG and KKP3 outperformed the CT-algorithm (data not shown), but
without it both did not terminate after 20 min. All in all, KKP3 in combination
with Algorithms 1 and 2 is the best choice for the construction of the LPnF-array.
In particular, it clearly outperforms the CT-algorithm in terms of run-time and
memory usage.

2 https://www.uni-ulm.de/in/theo/research/seqana/.
3 http://pizzachili.dcc.uchile.cl.

https://www.uni-ulm.de/in/theo/research/seqana/
http://pizzachili.dcc.uchile.cl

On the Computation of Longest Previous Non-overlapping Factors 379

Fig. 4. Run-time comparison of LPnF-array construction (without suffix array con-
struction, which on average takes 50% of the overall run-time)

Fig. 5. Peak memory comparison of LPnF-array construction (with suffix array con-
struction)

380 E. Ohlebusch and P. Weber

In the second experiment, we compared Algorithm 3—the only algorithm that
computes the f -factorization directly—with the other algorithms (which first
compute the LPnF-array and then derive the f -factorization from it). Algorithm3
uses only 44% of the memory required by KKP3, but its run-time is by an order
of magnitude worse (data not shown). We blame the range maximum queries for
the rather bad run-time because these are slow in practice.

References

1. Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replacing suffix trees with enhanced
suffix arrays. J. Discrete Algorithms 2(1), 53–86 (2004)

2. Chen, G., Puglisi, S.J., Smyth, W.F.: Lempel-Ziv factorization using less time &
space. Math. Comput. Sci. 1(4), 605–623 (2008)

3. Crochemore, M., Ilie, L.: Computing longest previous factor in linear time and
applications. Inf. Process. Lett. 106(2), 75–80 (2008)

4. Crochemore, M., Ilie, L., Iliopoulos, C.S., Kubica, M., Rytter, W., Waleń, T.: LPF
computation revisited. In: Fiala, J., Kratochv́ıl, J., Miller, M. (eds.) IWOCA 2009.
LNCS, vol. 5874, pp. 158–169. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-10217-2 18

5. Crochemore, M., Kubica, M., Iliopoulos, C.S., Rytter, W., Waleń, T.: Efficient
algorithms for three variants of the LPF table. J. Discrete Algorithms 11, 51–61
(2012)

6. Crochemore, M., Tischler, G.: Computing longest previous non-overlapping factors.
Inf. Process. Lett. 111, 291–295 (2011)

7. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In:
Proceedings of 41st Annual IEEE Symposium on Foundations of Computer Science,
pp. 390–398 (2000)

8. Fine, N.J., Wilf, H.S.: Uniqueness theorem for periodic functions. Proc. Am. Math.
Soc. 16, 109–114 (1965)

9. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM J. Comput. 40(2), 465–492 (2011)

10. Fischer, J., I, T., Köppl, D., Sadakane, K.: Lempel-Ziv factorization powered by
space efficient suffix trees. Algorithmica 80(7), 2048–2081 (2018)

11. Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: plug and play
with succinct data structures. In: Gudmundsson, J., Katajainen, J. (eds.) SEA
2014. LNCS, vol. 8504, pp. 326–337. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-07959-2 28

12. Goto, K., Bannai, H.: Simpler and faster Lempel Ziv factorization. In: Proceedings
of 23rd Data Compression Conference, pp. 133–142. IEEE Computer Society (2013)

13. Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Linear time Lempel-Ziv factorization:
simple, fast, small. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol.
7922, pp. 189–200. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38905-4 19

14. Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Lazy Lempel-Ziv factorization algorithms.
ACM J. Exp. Algorithmics 21(2), Article 2.4 (2016)

15. Kociumaka, T., Kubica, M., Radoszewski, J., Rytter, W., Waleń, T.: A linear time
algorithm for seeds computation. In: Proceedings of 23rd Symposium on Discrete
Algorithms, pp. 1095–1112 (2012)

https://doi.org/10.1007/978-3-642-10217-2_18
https://doi.org/10.1007/978-3-642-10217-2_18
https://doi.org/10.1007/978-3-319-07959-2_28
https://doi.org/10.1007/978-3-319-07959-2_28
https://doi.org/10.1007/978-3-642-38905-4_19
https://doi.org/10.1007/978-3-642-38905-4_19

On the Computation of Longest Previous Non-overlapping Factors 381

16. Kolpakov, R., Kucherov, G.: Finding maximal repetitions in a word in linear time.
In: Proceedings of 40th Annual IEEE Symposium on Foundations of Computer
Science, pp. 596–604 (1999)

17. Kolpakov, R., Kucherov, G.: Searching for gapped palindromes. Theor. Comput.
Sci. 410(51), 5365–5373 (2009)

18. Ohlebusch, E., Gog, S.: Lempel-Ziv factorization revisited. In: Giancarlo, R.,
Manzini, G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 15–26. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-21458-5 4

19. Policriti, A., Prezza, N.: LZ77 computation based on the run-length encoded BWT.
Algorithmica 80(7), 1986–2011 (2018)

20. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Trans. Inf. Theory 23(3), 337–343 (1977)

https://doi.org/10.1007/978-3-642-21458-5_4

	On the Computation of Longest Previous Non-overlapping Factors
	1 Introduction
	2 Computing LPnF from LPF
	3 Direct Computation of the f-Factorization
	4 Experimental Results
	References

