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Abstract. In this article, we show how to transform a colored de Bruijn
graph (dBG) into a practical index for processing massive sets of sequenc-
ing reads. Similar to previous works, we encode an instance of a colored
dBG of the set using BOSS and a color matrix C. To reduce the space
requirements, we devise an algorithm that produces a smaller and more
sparse version of C. The novelties in this algorithm are (i) an incomplete
coloring of the graph and (ii) a greedy coloring approach that tries to
reuse the same colors for different strings when possible. We also propose
two algorithms that work on top of the index; one is for reconstructing
reads, and the other is for contig assembly. Experimental results show
that our data structure uses about half the space of the plain represen-
tation of the set (1 Byte per DNA symbol) and that more than 99% of
the reads can be reconstructed just from the index.

Keywords: de Bruijn graphs · DNA sequencing · Compact data
structures

1 Introduction

A set of sequencing reads is a massive collection R = {R1, . . . , Rn} of n overlap-
ping short strings that together encode the sequence of a DNA sample. Analyzing
this kind of data allows scientists to uncover complex biological processes that
otherwise could not be studied. There are many ways for extracting information
from a set of reads (see [27] for review). However, in most of the cases, the pro-
cess can be reduced to build a de Bruijn graph (dBG) of the collection and then
search for graph paths that spell segments of the source DNA (see [6,15,28] for
some examples).

Briefly, a dBG is a directed labeled graph that stores the transitions of the
substrings of size k, or kmers, in R. Constructing it is relatively simple, and
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the resulting graph usually uses less space than the input text. Nevertheless,
this data structure is lossy, so it is not always possible to know if the label of
a path matches a substring of the source DNA. The only paths that fulfill this
property are those in which all nodes, except the first and last, have indegree
and outdegree one [16]. Still, they represent just a fraction of the complete dBG.

More branched parts of the graph are also informative, but traverse them
requires extra information to avoid spelling incorrect sequences. A simple solu-
tion is to augment the dBG with colors, in other words, we assign a particular
color ci to every string Ri ∈ R, and then we store the same ci in every edge
that represents a kmer of Ri. In this way, we can walk over the graph always
following the successor node colored with the same color of the current node.

The idea of coloring dBGs was first proposed by Iqbal et al. [15]. Their data
structure, however, contemplated a union dBG built from several string collec-
tions, with colors assigned to the collections rather than particular strings. Con-
sidering the potential applications of colored dBGs, Boucher et al. [4] proposed a
succinct version of the data structure of Iqbal et al. In their index, called VARI,
the topology of the graph is encoded using BOSS [5], and the colors are stored
separately from the dBG in a binary matrix C, in which the rows represent the
kmers and the columns represent the colors. Since the work of Boucher et al.,
some authors have tried to compress and manipulate C even further; including
that of [2,13,25], while others, such as [21] and [22] have proposed methods to
store compressed and dynamic versions C.

An instance of a colored dBG for a single set R can also be encoded using
a color matrix. The only difference though is that the number of columns is
proportional to the number of sequences in R. Assigning a particular color to
every sequence is not a problem if the collection is of small or moderated size.
However, massive datasets are rather usual in Bioinformatics, so even using a
succinct representation of C might not be enough. One way to reduce the number
of columns is to reuse colors for those sequences that do not share any kmer in the
dBG. Alpanahi et al. [1] addressed this problem, and showed that it is unlikely
that the minimum-size coloring can be approximated in polynomial time.

Alpanahi et al. also proposed a heuristic for recoloring the colored dBG of
a set of sequences that, in practice, dramatically reduces the number of colors
when R is a set of sequencing reads. Their coloring idea, however, might still
produce incorrect sequences, so the applications of their version of the colored
dBG are still limited.

Our Contributions. In this article, we show how to use a colored dBG to store
and analyze a collection of sequencing reads succinctly. Similarly to VARI, we
use BOSS and the color matrix C to encode the data. However, we reduce the
space requirements by partially coloring the dBG and greedily reusing the same
colors for different reads when possible. We also propose two algorithms that
work on top of the data structure, one for reconstructing the reads directly from
the dBG and other for assembling contigs. We believe that these two algorithms
can serve as a base to perform Bioinformatics analyses in compressed space.
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Our experimental results show that on average, the percentage of nodes in BOSS
that need to be colored is about 12.4%, the space usage of the whole index is
about half the space of the plain representation of R (1 Byte/DNA symbol), and
that more than 99% of the original reads can be reconstructed from the index.

2 Preliminaries

DNA Strings. A DNA sequence R is a string over the alphabet Σ = {a, c, g, t}
(which we map to [2..5]), where every symbol represents a particular nucleotide
in a DNA molecule. The DNA complement is a permutation π[2..σ] that reorders
the symbols in Σ exchanging a with t and c with g. The reverse complement
of R, denoted Rrc, is a string transformation that reverses R and then replaces
every symbol R[i] by its complement π(R[i]). For technical convenience we add
to Σ the so-called dummy symbol $, which is always mapped to 1.

de Bruijn Graph. A de Bruijn graph (dBG) [7] of the string collection R =
{R1, . . . , Rn} is a labeled directed graph G = (V,E) that encodes the transitions
between the substrings of size k of R, where k is a parameter. Every node v ∈ V
is labeled with a unique k − 1 substring of R. Two nodes v and u are connected
by a directed edge (v, u) ∈ E if the k − 2 suffix of v overlaps the k − 2 prefix of
u and the k-string resulted from the overlap exists as substring in R. The label
of the edge is the last symbol of the label of node u.

Rank and Select Data Structures. Given a sequence B[1..n] of elements
over the alphabet Σ = [1..σ], rankb(B, i) with i ∈ [1..n] and b ∈ Σ, returns
the number of times the element b occurs in B[1..i], while selectb(B, i) returns
the position of the ith occurrence of b in B. For binary alphabets, B can be
represented in n + o(n) bits so that rank and select are solved in constant
time [9]. When B has m � n 1s, a compressed representation using m lg n

m +
O(m)+o(n) bits, still solving the operations in constant time, is of interest [26].

BOSS Index. The BOSS data structure [5] is a succinct representation for
dBGs based on the Burrows-Wheeler Transform (BWT ) [8]. In this index, the
labels of the nodes are regarded as rows in a matrix and sorted in reverse lex-
icographical order, i.e., strings are read from right to left. Suffixes and prefixes
in R of size below k − 1 are also included in the matrix by padding them with $
symbols in the right size (for suffixes) or the left side (for prefixes). These padded
nodes are also called dummy. The last column of the matrix is stored as an array
K[1..σ], with K[i] being the number of labels lexicographically smaller than any
other label ending with character i. Additionally, the symbols of the outgoing
edges of every node are sorted and then stored together in a single array E. A
bit vector B[1..|E|] is also set to mark the position in E of the first outgoing
symbol of each node. The complete index is thus composed of the vectors E,
K, and B. It can be stored in |E|(H0(E) + H0(B))(1 + o(1)) + O(σ log n) bits,
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where H0 is the zero-order empirical entropy [23, Sec 2.3]. This space is reached
with a Huffman-shaped Wavelet Tree [18] for E, a compressed bitmap [26] for
B (as it is usually very dense), and a plain array for K. Bowe et al. [5] defined
the following operations over BOSS to navigate the graph:

– outdegree(v): number of outgoing edges of v.
– forward(v, a): node reached by following an edge from v labeled with a.
– indegree(v): number of incoming edges of v.
– backward(v): list of the nodes with an outgoing edge to v.
– nodeLabel(v): label of node v.

The first four operations can be answered in O(log σ) time while the last one
takes O(k log σ) time. For our purposes, we also define the following operations:

– forward r(v, r): node reached by following the r-th outgoing edge of v in
lexicographical order.

– label2Node(S): identifier in BOSS of the node labeled with the (k − 1)-
string S.

The function forward r is a small variation forward, and it maintains the orig-
inal time, while the function label2Node is the opposite of nodeLabel, but it
also maintain its complexity in O(k log σ) time.

Graph Coloring. The problem of coloring a graph G = (V,E) consists of
assigning an integer c(v) ∈ [1..ω] to each node v ∈ V such that (i) no adjacent
nodes have the same color and (ii) ω is minimal. The coloring is complete if all
the nodes of the graph are assigned with one color, and it is proper if constraint
(i) is met for each node. The chromatic number of a graph G, denoted by χ(G),
is the minimum number of colors required to generate a coloring that is complete
and proper. A coloring using exactly χ(G) colors is considered to be optimal.
Determining if there is a feasible ω-coloring for G is well known to be NP-
complete, while the problem of inferring χ(G) is NP-hard [17].

Colored dBG. The first version of the colored dBG [15] was described as
a union graph G built from several dBGs of different string collections. The
edges in G that encode the kmers of the i-th collection are assigned the color
i. The compacted version of this graph [4] represents the topology of G using
the BOSS index and the colors using a binary matrix C, where the position
C[i, j] is set to true if the kmer represented by the i-th edge in the ordering of
BOSS is assigned color j. The rows of C are then stored using the compressed
representation for bit vectors of [26], or using Elias-Fano encoding [10,11,24]
if the rows are very sparse. In the single set version of the colored dBG, the
colors are assigned to every string. Therefore, the number of columns in C grows
with the size of the collection. Alipanahi et al. [1] noticed that we could reduce
the space of C by using the same colors in those strings that have no common
kmers. This new problem was named the CDBG-recoloring, and formally stated
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as follows; given a set R of strings and its dBG G, find the minimum number
of colors such that (i) every string Ri ∈ R is assigned one color and (ii) strings
having two or more kmers in common in G cannot have the same color. Alipanahi
et al. [1] showed that an instance I(G′) of the Graph-Coloring problem can be
reduced in polynomial time to another instance I ′(G) of the CDBG-recoloring
problem. Thus, any algorithm that finds χ(G′), also finds the minimum number
of colors for dBG G. However, they also proved that the decision version of
CDBG-Recoloring is NP-complete.

3 Definitions

Let R = {R1, R2, ...., Rn} be a collection of n DNA sequencing reads, and let
R′ = {R1, R

rc
1 ..Rn, Rrc

n } be a collection of size 2n that contains the strings in
R along with their DNA reverse complements. The dBG of order k constructed
from R′ is defined as Gk

R′ = (V,E), and an instance of BOSS for Gk
R′ is denoted

as BOSS(Gk
R′) = (V ′, E′), where V ′ and E′ include the dummy nodes and their

edges. For simplicity, we will refer to BOSS(Gk
R′) just as BOSS(G). A node

in V ′ is considered an starting node if its k − 1 label is of the form $A, where
$ is a dummy symbol and A is a k − 2 prefix of one or more sequences in R′.
Equivalently, a node is considered an ending node if its k −1 label is of the form
A$, with $ being a dummy and A being a k − 2 suffix of one or more sequences
in R′. Nodes whose labels do not contain dummy symbols are considered solid,
and solid nodes with at least one predecessor node with outdegree more than
one are considered critical. For practical reasons, we define two extra functions,
isStarting and isEnding that are used to check if a node is starting or ending
respectively.

A walk P over the dBG of BOSS(G) is a sequence (v0, e0, v1...vt−1, et, vt)
where v0, v1, ...vt−1, vt are nodes and e1..et are edges, ei connecting vi−1 with vi.
P is a path if all the nodes are different, except possibly the first and the last.
In such case, P is said to be a cycle. A sequence Ri ∈ R is unambiguous if there
is a path in BOSS(G) whose label matches the sequence of Ri and if no pair of
colored nodes in (u, v) ∈ P share a predecessor node v′ ∈ P . In any other case,
Ri is ambiguous. Finally, the path Pi that spells the sequence of Ri is said to be
safe if every one of its branching nodes has only one successor colored with the
color of Ri.

We assume that R is a factor-free set, i.e., no Ri ∈ R is also a substring of
another sequence Rj , with i �= j.

4 Coloring a dBG of Reads

In this section, we define a coloring scheme for BOSS(G) that generates a more
succinct color matrix, and that allows us to reconstruct and assemble unambigu-
ous sequences of R′. We use the dBG of R′ because most of the Bioinformatic
analyses require the inspection of the reverse complements of the reads. Unlike
previous works, the rows in C represent the nodes in BOSS(G) instead of the
edges.
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A Partial Coloring. We make C more sparse by coloring only those nodes
in the graph that are strictly necessary for reconstructing the sequences. We
formalize this idea with the following lemma:

Lemma 1. For the path of an unambiguous sequence Ri ∈ R′ to be safe we have
to color the starting node si that encodes the k − 2 prefix of Ri, the ending node
ei that encodes the k − 2 suffix of Ri and the critical nodes in the path.

Proof. We start a walk from si using the following rules: (i) if the current node
v in the walk has outdegree one, then we follow its only outgoing edge, (ii) if
v is a branching node, i.e., it has outdegree more than one, then we inspect its
successor nodes and follow the one colored with the same color of si and (iii) if
v is equal to ei, then we stop the traversal. ��

Note that the successor nodes of a branching node are critical by definition,
so they are always colored. On the other hand, nodes with outdegree one do not
require a color inspection because they have only one possible way out.

Coloring the nodes si and ei for every Ri is necessary; otherwise, it would be
difficult to know when a path starts or ends. Consider, for example, using the
solid nodes that represent the k − 1 prefix and the k − 1 suffix of Ri as starting
and ending points respectively. It might happen that the starting point of Ri

can also be a critical point of another sequence Rj . If we start a reconstruction
from si and pick the color of Rj , then we will generate an incomplete sequence.
A similar argument can be used for ending nodes. The concepts associated with
our coloring idea are depicted in Figs. 2A and B.

Unsafe Coloring. As explained in Sect. 2, we can use the recoloring idea of [1]
to reduce the number of columns in C. Still, using the same colors for unrelated
strings is not safe for reconstructing unambiguous sequences.

Lemma 2. Using the same color c for two unambiguous sequences Ri, Rj ∈ R′

that do not share any k−1 substring might produce an unsafe path for Ri or Rj.

Proof. Assume there is another pair of sequences Rx, Ry ∈ R′ that do not share
any k−1 subsequence either, to which we assign them color c′. Suppose that the
paths of Rx and Rj crosses the paths of Ri and Rj such that the resulting dBG
topology resembles a grid. In other words, if Ri has the edge (u, u′) and Rj has
the edge (v, v′), then Rx has the edge (u, v) and Ry has the edge (u′, v′). In this
scenario, v will have two successors, node v′ from the path of Rj and some other
node v′′ from the path of Rx. Both v′ and v′′ are critical by definition so they
will be colored with c and c′ respectively. The problem is that node v′ is also a
critical node for Ry, so it will also have color c′. The reason is that u′, a node
that precedes v′, appears in Ri and Ry. As a consequence, the path of Rx is no
longer safe because one of its nodes (v in this example) has to successors colored
with c′. A similar argument can be made for Ri and color c. Figure 1 depicts the
idea of this proof. ��
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Fig. 1. Example of unsafe paths produced by a graph recoloring. (A) The dBG gen-
erated from the unambiguous sequences Ri, Rj , Rx and Ry. Every texture represents
the path of a specific string. (B) Recolored dBG. Sequences Ri and Rj are assigned the
same color c (light gray) as they do not share any k− 1 substring. Similarly, sequences
Rx and Ry are assigned another color c′ (horizontal lines) as they do not share any
k − 1 sequence neither. Nodes u, u′, v, v′ and v′′ are those mentioned in the Proof of
Lemma 2. The sequences of Ri and Rx cannot be reconstructed as their paths become
unsafe after the recoloring.

When spurious edges connect paths of unrelated sequences that are assigned
the same color (as in the proof of Lemma 2), we can generate chimeric strings if,
by error, we follow one of those edges. In the algorithm, we solve this problem
by assigning different colors to those strings with sporadic edges, even if they do
not share any k − 1 substring.

Safer and Greedy Coloring. Our greedy coloring algorithm starts by marking
in a bitmap N = [1..|V ′|] the p nodes of BOSS(G) that need to be colored
(starting, ending and critical). After that, we create an array M of p entries.
Every M [j] with j ∈ [1..p] will contain a dynamic vector that stores the colors
of the j-th colored node in the BOSS ordering. We also add rank1 support to
N to map a node v ∈ V to its array of colors in M . Thus, its position can be
inferred as rank1(N, v).

The only inputs we need for the algorithm are N , R′ and BOSS(G). For
every Ri ∈ R′ we proceed as follows; we append a dummy symbol at the ends
of the string, and then use the function label2Node to find the node v labeled
with the k − 1 prefix of Ri. Note that this prefix will map a starting node as we
append dummies to Ri. From v, we begin a walk on the graph and follow the
edges whose symbols match the characters in the suffix Ri[k..|Ri|]. Note now
that the last node v′ we visit in this walk is an ending node that maps the k − 1
suffix of Ri. As we move through the edges, we store in an array Wi the starting,
ending, and critical nodes associated with Ri. Additionally, we push into another
array Ii the neighbor nodes of the walk that need to be inspected to assign a
color to Ri. The rules for pushing elements into Ii are as follows; (i) if v is a node
in the path of Ri with outdegree more than one, then we push all its successor
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Fig. 2. Succinct colored dBG. (A) The topology of the graph. Colors and textures
represent the paths that spell the input sequences of the dBG. Numbers over the nodes
are their identifiers. Nodes 4,1,6 and 10 are starting nodes (darker borders). Nodes
11,13 and 12 are ending nodes and nodes 3,9,11 and 5 are critical. (B) Our greedy
coloring algorithm. (C) The binary matrix C that encodes the colors of Fig. B. The
left side is C in its uncompressed form and the right side is our succinct version of C
using the arrays N ,M ′, and F .

nodes into Ii, (ii) if v is a node in the path of Ri with indegree more than one,
then we visit every predecessor node v′ of v, and if v′ has outdegree more than
one, then we push into Ii the successor nodes of v′. Once we finish the traversal,
we create a hash map Hi and fill it with the colors that were previously assigned
to the nodes in Ii and Wi. After that, we pick the smallest color c′ that is not
in the keys of Hi, and push it to every array M [rank1(N, j)] with j ∈ Wi. After
we process all the sequences in R′, the final set of colors is represented by the
values in M . The whole processing of coloring a Ri is described in detail by the
procedure greedyCol in Pseudocode (Algorithm 1).

The construction of the sets Wi and Ii is independent for every string in
R′, so it can be done in parallel. However, the construction of the hash map Hi

and the assignment of the color c′ to the elements of Wi has to be performed
sequentially as all the sequences in R′ need concurrent access to M .

Ambiguous Sequences. Our scheme, however, cannot safely retrieve sequ-
ences that are ambiguous.

Lemma 3. Ambiguous sequences of R′ cannot be reconstructed safely from the
color matrix C and BOSS(G).

Proof. Assume that collection R is composed just by one string R1 = XbXc,
where X is a repeated substring and b, c are two different symbols in Σ. Consider
also that the kmer size for BOSS(G) is k = |X| + 1. The instance of BOSS(G)
will have a node v labeled with X, with two outgoing edges, whose symbols are
b and c. Given our coloring scheme, the successor nodes of v will be both colored
with the same color. As a consequence, if during a walk we reach node v, then
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we will get stuck because there is not enough information to decide which is the
correct edge to follow (both successor nodes have the same color). ��

A sequence Ri will be ambiguous if it has the same k − 1 pattern in two
different contexts. Another case in which Ri is ambiguous is when a spurious
edge connects an uncolored node of Ri with two or more critical nodes in the
same path. Note that unlike unambiguous sequences with spurious edges, an
ambiguous sequence will always be encoded by an unsafe path, regardless of the
recoloring algorithm. In general, the number of ambiguous sequences will depend
on the value we use for k.

5 Compressing the Colored dBG

The pair (M,N) can be regarded as a compact representation of C, where the
empty rows were discarded. Every M [i], with i ∈ [1..|M |], is a row with at least
one value, and every color M [i][j], with j ∈ [1..|M [i]|], is a column. However, M
is not succinct enough to make it practical. We are still using a computer word
for every color of M . Besides, we need |M | extra words to store the pointers for
the lists in M .

We compress M by using an idea similar to the one implemented in BOSS to
store the edges of the dBG. The first step is to sort the colors of every list M [i].
Because the greedy coloring generates a set of unique colors for every node,
each M [i] becomes an array of strictly increasing elements after the sorting.
Thus, instead of storing the values explicitly, we encode them as deltas, i.e.,
M [i][j] = M [i][j] − M [i][j − 1]. After transforming M , we concatenate all its
values into one single list M ′ and create a bit map F = [1..|M ′|] to mark the
first element of every M [i] in M ′. We store M ′ using Elias-Fano encoding [10,11]
and F using the compressed representation for bit maps of [26]. Finally, we add
select1 support to F to map a range of elements in M ′ to an array in M . The
complete representation of the color matrix now becomes C = N + F + M ′ (see
Fig. 2C). The complete index of the colored dBG is thus composed of our version
of C and BOSS(G). We now formalize the idea of retrieving the colors of a node
from the succinct representation of C.

– getColors(v): list of colors assigned to node v.

Theorem 1. the function getColors(v) computes in O(c) time the c colors
assigned to node v.

Proof. We first compute the rank r of node v within the colored nodes. This
operation is carried out with r = rank1(N, v). After retrieving r, we obtain
the range [i..j] in M ′ where the values of v lie. For this purpose, we perform
two select1 operations over F , [i, j] = (select1(F, r), select1(F, r + 1) − 1).
Finally, we scan the range [i..j] in M ′, and as we read the values, we incrementally
reconstruct the colors from the deltas. All the rank and select operations takes
O(1), and reading the c = j−i+1 entries from M ′ takes O(c), because retrieving
an element from an Elias-Fano-encoded array also takes O(1). In conclusion,
computing the colors of v takes O(c). ��
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6 Algorithms for the Colored dBG

Reconstructing Unambiguous Sequences. We describe now an online algo-
rithm that works on top of our index and that reconstructs all the unambiguous
sequences in R′. We cannot tell, however, if a reconstructed string Ri was present
in the original set R or if it was its reverse complement Rrc

i . This is not really a
problem, because a sequence and its reverse complement are equivalent in most
of the Bioinformatic analyses.

The algorithm receives as input a starting node v. It first computes an array A
with the colors assigned to v using the function getColors (see Sect. 5), and then
sets a string S = nodeLabel(v). For every color a ∈ A, the algorithm performs
the following steps; initializes two temporary variables, an integer v′ = v and
string S′ = S, and then begins a graph walk from v′. If the outdegree of v′ is
one, then the next node in the walk is the successor node v′ = outgoing r(v′, 1).
On the other hand, if the outdegree of v′ is more than one, then the algorithm
inspects all the successor nodes of v′ to check which one of them is the node v′′

colored with a. If there is only one such v′′, then it sets v′ = v′′. This procedure
continues until v′ becomes an ending node. During the walk, the edge symbols
are pushed into S′. When an ending node is reached, the algorithm reports
S′[1..|S′| − 1] as the reconstructed sequence.

If at some point during a walk, the algorithm reaches a node with outdegree
more than one, and with more than one successor colored with a, then aborts
the reconstruction of the string as the path is unsafe for color a. Then, it returns
to v and continues with the next sequence. The complete procedure is detailed
in the function buildSeqs of Algorithm 2.

Assembling Contigs. Our coloring scheme for the dBG allows us to report
sequences that represent the overlap of two or more strings of R′. There are
several ways in which a set of sequences can be arranged such that they form
valid overlaps, but in practice, we are not interested in all such combinations.
What we want is to compute only those union strings that describe real segments
of the underlying genome of R′, a.k.a contig sequences. In this work we do not go
deep into the complexities of contig assembly (see [14,16,19,20] for some review).
Instead, we propose a simple heuristic, that work on top of our index, and that
it is aimed to produce contigs that are longer than those produced by uncolored
dBGs.

Similar to buildSeqs, this method traverses the graph to reconstruct the
contigs. During the process, it uses the color information to weight the outgoing
edges on the fly, and thus, inferring which is the most probable path that matches
a real segment of the source DNA.

The algorithm receives as input a starting node v and initializes a set L
and hash map Q. Both data structures are used to store information about the
strings that belong to the contig of v. A read Ri ∈ R′ is identified in the index as
a pair (c, v′), where c is a color assigned to Ri and v′ is the starting node of its
path. L contains the reads already traversed while Q contains the active reads.
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Fig. 3. Example of the assembly of a contig using our index. (A) Inexact overlap of four
sequences. The circle to the left of every string represents its color in the dBG. Light
gray symbols are mismatches in the overlap. (B) The colored dBG of the sequences.
Circles with darker borders are starting and ending nodes. Light gray values over the
starting nodes are their identifiers. The contig assembly begins in node 5 (denoted with
a dashed arrow) and the threshold x to continue the extension is set to 0.5. The state
of the hash map Q when the walk reaches a branching node (dashed circles) is depicted
below the graph. The assembly ends in the right-most branching node as it has not a
successor node that contains at least 50% of the colors in Q. The final contig is shown
as a light grey path over the graph, and its sequence is stored in S.

The algorithm also initializes a string S = nodeLabel(v) and pushes every pair
Q[ci] = v with ci ∈ getColor(v). After that, it begins a walk from v and pushes
into S the symbols of the edges it visits. For every new node v′ reached during
the walk, the algorithm checks if one of its predecessor nodes, say u, is a starting
node. If so, then for every ci ∈ getColors(u) sets Q[ci] = u if (ci, u) does not
exist in L. On the other hand, if one of the successors of v′, say u′, is an ending
node, then for every ci ∈ getColors(u′) sets L[(c,Q[ci])] and then removes the
entry Q[ci]. After updating Q and L, it selects one of the outgoing edges of v′

to continue the walk. For this purpose, the algorithm uses the following rules;
(i) if v′ has outdegree one, then it takes its only outgoing edge, (ii) if v′ has
outdegree more than one, then it inspects how the colors in Q distribute among
the successors of v′. If there is only one successor node of v′, say v′′, colored with
at least x fraction of the colors of Q, where x is a parameter, then the algorithm
follows v′′, and removes from Q the colors of the other successor nodes of v′.

The algorithm will stop if; (i) there is no such v′′ that meet the x threshold,
(ii) there is more than one successor of v′ with the same color or (iii) v′ has
outdegree one, but the successor node is an ending node. After finishing the walk,
the substring S[2..|S|] is reported as the contig. The procedure contigAssm in
Pseudocode (Algorithm 3) describes in detail the contig assembly algorithm, and
a graphical example is shown in Fig. 3.

7 Experiments

We use a set of reads generated from the E.coli genome1 to test the ideas
described in this article. The raw file was in FASTQ format and contained
1 http://spades.bioinf.spbau.ru/spades test datasets/ecoli mc.

http://spades.bioinf.spbau.ru/spades_test_datasets/ecoli_mc
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14,214,324 reads of 100 characters long each. We preprocessed the file by remov-
ing sequencing errors using the tool of [3], and discarding reads with N symbols.
The preprocessing yielded a data set of 8,655,214 reads (a FASTQ file of 2 GB).
Additionally, we discarded sequencing qualities and the identifiers of the reads
as they are not considered in our data structure. From the resulting set R (a
text file of 833.67 MB), we created another set R′ that considers the elements
in R and their reverse complements.

Our version of the colored dBG, the algorithm for greedy coloring and the
algorithms for reconstructing and assembly reads were implemented in C++2,
on top of the SDSL-lite library [12]. In our implementation, arrays M ′ and F
are precomputed beforehand to store the colors directly to them, because using
the dynamic list M is not cache-friendly. Additionally, all our code, except the
algorithm for contig assembly, can be executed using multiple threads.

We built six instances of our index using R′ as input. We choose different
values for k, from 25 to 50 in steps of five. The coloring of every one of these
instances was carried out using eight threads. Statistics about the graph topolo-
gies are shown in Table 1, and statistics about the coloring process are shown in
Table 2. In every instance, we reconstructed the unambiguous reads (see Table 2).
Additionally, we generated an FM-index of R′ to locate the reconstructed reads
and check that they were real sequences. All the tests were carried out on a
machine with Debian 4.9, 252 GB of RAM and processor Intel(R) Xeon(R) Sil-
ver @ 2.10 GHz, with 32 cores.

8 Results

The average compression rate achieved by our index is 1.89, meaning that, in all
the cases, the data structure used about half the space of the plain representation
of the reads (see Table 1). We also note that the smaller the value for k, the
greater the size of the index. This behavior is expected as the dBG becomes
denser when we decrease k. Thus, we have to store a higher number of colors
per node.

The number of colors of every instance is several orders of magnitude smaller
than the number of reads, being k = 25 the instance with more colors (6552) and
k = 50 the instance with the fewest (1689). Even though the fraction of colored
nodes in every instance is small, the percentage of the index space used by the
color matrix is still high ( 73% on average). Regarding the time for coloring the
graph, it seems to be reasonable for practical purposes if we use several threads.
In fact, building, filling and compacting C took 5,015 s on average, and the value
decreases if we increment k. The working space, however, is still considerable.
We had memory peaks ranging from 3.03 GB to 4.3 GB, depending on the value
for k (see Table 2).

The process of reconstructing the reads yielded a small number of ambiguous
sequences in all the instances (2,760 sequences on average), and decreases with
higher values of k, especially for values above 40 (see Table 2).
2 https://bitbucket.org/DiegoDiazDominguez/colored bos/src/master.

https://bitbucket.org/DiegoDiazDominguez/colored_bos/src/master
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Table 1. Statistics about the different colored dBGs generated in the experiments.
The index size is expressed in MB and considers the space of BOSS(G) plus the space
of our succinct version of C. The compression rate was calculated as the space of the
plain representation of the reads (833.67 MB) divided by the index size.

k Total number
of nodes

Number of
solid nodes

Number of
edges

Index
size

Compression
rate

25 106,028,714 11,257,781 120,610,151 446.38 1.86
30 142,591,410 11,425,646 157,186,548 443.82 1.87
35 179,167,289 11,561,630 193,773,251 441.18 1.88
40 215,751,326 11,667,364 230,365,635 438.23 1.90
45 252,337,929 11,743,320 266,958,709 435.30 1.91
50 288,925,674 11,791,640 303,552,318 432.13 1.92

Table 2. Statistics about our greedy coloring algorithm. The column “Color space
usage” refers to the percentage of the index space used by our succinct version of C.
Elapsed time and memory peak are expressed in seconds and MB, respectively, and
both consider only the process of building, filling, and compacting the color matrix.

k Number of
colored nodes

Number of
colors

Color space
usage

Ambiguous
sequences

Elapsed
time

Memory
peak

25 21,882,874 6,552 83.03 1904 5,835 4,391
30 21,907,324 4,944 79.14 1502 5,551 4,119
35 21,926,687 2,924 75.27 1224 5,131 3,847
40 21,942,083 2,064 71.40 1054 4,872 3,575
45 21,954,138 1,888 67.51 714 4,507 3,303
50 21,964,947 1,689 63.58 176 4,199 3,030

9 Conclusions and Further Work

Experimental results shows our data structure is succinct, and that has a prac-
tical use. Still, we believe that a more careful algorithm for constructing the
index is still necessary to reduce the memory peaks during the coloring. Fur-
ther compaction of the color matrix can be achieved by using more elaborated
compression techniques. However, this extra compression can increase the con-
struction time of the colored dBG and produce a considerable slow down in the
algorithms that work on top of it for extracting information from the reads.
Comparison of our results with other similar data structures is difficult for the
moment. Most of the indexes based on colored dBGs were not designed to handle
huge sets of colors like ours and the greedy recoloring of [1] does not scale well
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and needs extra information for reconstructing the reads. Still, it is a promis-
ing approach that, with further work, can be used in the future as a base for
performing Bioinformatics analyses in compressed space.

A Appendix

A.1 Pseudocodes

Algorithm 1. Function greedyCol

1: procedure greedyCol(G,N ,Ri,M) � G is a dBG, N is a bitmap, Ri is a
string and M is array of lists

2: Ri ← $Ri$ � append dummy symbols at the ends of Ri

3: v ← string2node(Ri[1..k − 1])
4: Wi ← ∅
5: Ii ← Ii ∪ rank1(N, v)
6: for each r ∈ Ri[k − 1..|Ri|] do � traverse the dBG path of Ri

7: o ← outdegree(G, v)
8: if o > 1 then
9: for j ← 1 to o do

10: Ii ← Ii ∪ rank1(N, forward r(G, v, j))
11: i ← indegree(G, v)
12: if i > 1 then
13: for j ← 1 to i do
14: v′ ← incomming r(G, v, j)
15: o′ ← outdegree(G, v′))
16: if o′ > 1 then
17: for j ← 1 to o′ do
18: Ii ← Ii ∪ rank1(N, forward r(G, v′, j))
19: if N [v] is true then
20: Wi ← Wi ∪ rank1(N, v)
21: v ← forward(G, v, r)
22: Wi ← Wi ∪ rank1(N, v)
23: Ii ← Ii ∪ rank1(N, v)
24: for each n ∈ Ii do � compute the colors already used
25: for each c ∈ M [n] do
26: Hi[c] ← true
27: c′ ← minimum color not in Hi

28: for each n ∈ Wi do � color the nodes
29: M [n] ← M [n] ∪ c′
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Algorithm 2. Function buildSeqs

1: procedure buildSeqs(G,v) � G is a colored dBG and v is a starting node
2: L ← ∅ � list of rebuilt sequences
3: A ← getColors(G,v)
4: S ← nodeLabel(G, v) � initialize an string with the label of v
5: for each a ∈ C do
6: v′ ← v � temporal dBG node
7: S′ ← S, amb ← false
8: while isEnding(G,v′) is false and amb is false do
9: o ← outdegree(G,v′)

10: if o is 1 then
11: S′ ← S′ ∪ edgeSymbol(G, v′, 1) � push the new symbol into S′

12: v′ ← forward r(G, 1)
13: else
14: m ← 0
15: for u ← 1 to o do � check which successors of v′ has color a
16: if a ∈ getColors(forward r(G, v′, u)) then
17: v′ ← forward r(G, v′, u)
18: m ← m + 1
19: if m > 1 then � more than one successor v′ has color a
20: amb ← true
21: if amb not true then
22: L ← L ∪ S[2..|S| − 1]
23: return L
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Algorithm 3. Function contigAssm

1: procedure contigAssm(G,v,x) � v is a starting node and x is a threshold
2: L ← ∅
3: S ← nodeLabel(G, v)
4: for each ci ∈ getColors(v) do
5: Q[ci] ← v

6: while true do
7: if indegree(G, v) > 1 then
8: v′ ← backward r(G, v, 1))
9: if isStarting(v′) then � add new reads to the contig

10: for each ci ∈ getColors(v′) do
11: if L[(ci, v′)] is not true then
12: Q[ci] ← v′

13: if o ← outdegree(G, v) > 1 then
14: t ← v, v ← 0
15: for i ← 1 to o do � compute the most probable successor node
16: v′ ← forward r(G, t, i)
17: if isEnding(v′) then � discard reads ending at v
18: for each ci ∈ getColors(v′) do
19: L[(ci, Q[ci])] ← true

20: Q ← Q \ A
21: else
22: A ← getColors(v′)
23: w ← (Q ∩ A)/|Q| � weight the successor node
24: if w ≥ x then
25: v ← v′

26: Q ← A
27: S ← S ∪ edgeSymbol(G, t, i)
28: break
29: if v is 0 then break � no successor has the minimum weight x

30: else
31: v ← forward r(G, v, 1)
32: if isEnding(v) then break
33: S ← S ∪ edgeSymbol(G, v, 1)
34: return S[2..|S|]
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