
COBS: A Compact Bit-Sliced
Signature Index

Timo Bingmann1(B), Phelim Bradley2, Florian Gauger1, and Zamin Iqbal2

1 Institute of Theoretical Informatics,
Karlsruhe Institute of Technology, Karlsruhe, Germany

bingmann@kit.edu
2 European Molecular Biology Laboratory,

European Bioinformatics Institute, Cambridge, UK

Abstract. We present COBS, a COmpact Bit-sliced Signature index,
which is a cross-over between an inverted index and Bloom filters. Our
target application is to index k-mers of DNA samples or q-grams from
text documents and process approximate pattern matching queries on
the corpus with a user-chosen coverage threshold. Query results may
contain a number of false positives which decreases exponentially with
the query length. We compare COBS to seven other index software pack-
ages on 100 000 microbial DNA samples. COBS’ compact but simple data
structure outperforms the other indexes in construction time and query
performance with Mantis by Pandey et al. in second place. However,
unlike Mantis and other previous work, COBS does not need the com-
plete index in RAM and is thus designed to scale to larger document sets.

1 Introduction

In this paper we present an approximate q-gram index named COBS [13],
short for COmpact Bit-sliced Signature index, which is a cross-over between
an inverted index and Bloom filters. The current focus of COBS is to index
DNA and protein k-mers from sequencing experiments, but the data structure
can also be used for indexing q-grams from other domains such as English text.

In living cells, DNA exists as long contiguous molecules, typically textu-
ally encoded as strings of A, C, G, and T. Experimental methods for “reading”
DNA have been developing rapidly; there are various approaches, but all involve
breaking the DNA and “reading” (typically called “sequencing”) those frag-
ments (these short strings are typically called “reads”). Read lengths started
out moderately long (500–1000 characters) in the late 1990s, dropped down to
30 characters in 2008 with the advent of massively parallel technologies, and in
the recent past, bleeding edge technologies have enabled reading of fragments as
long as 1 million characters, albeit with a higher error rate.

The output of sequencing experiments are stored both in raw format (text
files of the read strings) and “assembled format” – semi-heuristic best approxima-
tions to the underlying genome, also in text format, but of very variable quality,
c© Springer Nature Switzerland AG 2019
N. R. Brisaboa and S. J. Puglisi (Eds.): SPIRE 2019, LNCS 11811, pp. 285–303, 2019.
https://doi.org/10.1007/978-3-030-32686-9_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32686-9_21&domain=pdf
https://doi.org/10.1007/978-3-030-32686-9_21

286 T. Bingmann et al.

in particular when based on short read data. Unambiguous reconstruction of
the original string from the substrings is mathematically impossible unless the
fragments are longer than the longest repeated substring. Another complication
is that a great deal of data is generated by sequencing unknown mixtures of dif-
ferent genomes (e.g. mixtures of bacteria from within the human gut, or samples
from humans infected by three different types of malaria parasite), making it
very hard to reconstruct the underlying genomes.

As sequencing technology has advanced, it has also become much cheaper and
more widespread, and its output has been stored in publicly available archives,
e.g. the European Nucleotide Archive (ENA) and the Sequence Read Archive
(SRA) which maintain mirrors of all the data. These archives now double in
size every 18 months, and it is progressively more important to be able to search
within the stored datasets, to find important genes or mutations, or combinations
of mutations which are informative of function or ancestry. All of these search
queries can be expressed in terms of exact or approximate matching of strings. In
2018, the ENA encompassed 1.5 · 109 microbial sequences and 8 · 1015 base pairs
(i.e. characters) of read data [17], while the European Bioinformatics Institute
reached 160 PB of storage capacity [10].

Despite the obvious similarities to standard document retrieval problems, the
properties of DNA k-mer data are very different from traditional text corpora.
Google’s index is reported to have in the order of 1013 documents containing
108 unique terms [6], whereas the small benchmark set of 100 000 microbial
sequences used in our experiments already contain 2.2 · 1010 distinct 31-mers, of
which 1.8 ·1010 occur only once. The frequency of terms in a natural language is
power-law distributed, with underlying terms generated over hundreds of years,
resulting in just a few new terms per document. Microbial genomes however
encode many billions of years of evolution; each new genome generates thousands
of novel k-mers. There are also two other aspects whereby searching biological
data differs from standard text retrieval. The first is that the index must support
approximate queries allowing detection of closely related DNA to the query.
Approximate pattern matching however is a notoriously difficult subject for text
indices [22,27]. The second is that users often want all hits, not just the top few
as is typical in web search.

For COBS we chose the robust q-gram indexing approach [36] and combined
it with Bloom filters to reduce the term space size. This can be considered a vari-
ant of signature files, which have a long history in information retrieval [12] but
were pushed to the sidelines for text search by inverted indexes [41]. Recently,
they have been reconsidered as acceleration filters for large text search cor-
pora [15] by engineering them to adapt to the collection’s characteristics. With
COBS we venture to combine signature files with one-sided errors introduced by
Bloom filters and inverted files to design an ultra fast and scalable q-gram index
which supports approximate queries delivering a small reasonable number of
expected false positives. Our contribution of making the signature files compact
first enables the index to be applied to corpora with highly varying document
sizes, such as microbial DNA samples.

COBS: A Compact Bit-Sliced Signature Index 287

After reviewing related work in the following subsection, we present the new
COBS index design in Sect. 2. In Sect. 3 we then report on our experimental
evaluation of COBS and seven other k-mer indexing software packages.

1.1 Related Work

Considering q-grams or k-mers of a sequence are a staple in bioinformatics [8].
The earliest use of Bloom filters as an index for a collection of independent

documents we could find is called Bloofi by Crainiceanu and Lemire [11]. They
propose to use a Bloom filter for each document and to arrange them either in
a B-tree or as a Flat-Bloofi. The latter is similar to BIGSI and COBS without
compaction.

The currently most cited line of work on DNA k-mer indices for approxi-
mate search are the Sequence Bloom Trees (SBTs) first proposed by Solomon
and Kingsford [32]. In an SBT the k-mers of each document are indexed into
individual Bloom filters, which are then arranged as the leaves of a binary tree.
The inner nodes of the binary tree are union Bloom filters of their descendants.
A query can then breadth-first traverse the tree, pruning search paths which no
longer sufficiently cover a given threshold Θ of the query k-mers.

In the original SBT [32] a simple greedy clustering method is used, the bit
union is stored in each inner node, and all nodes are RRR compressed [31] using
SDSL [14]. The first improvement, the Split Sequence Bloom Tree (SSBT) [33],
splits the inner nodes into two Bloom filters: a similarity filter and a remainder
filter, where the first contains all bits in both child filters and the second those set
in either child minus the similarity filter. This representation allows descendant
nodes to omit storing the bits in the similarity filter explicitly, hence reducing
space requirements while retaining the same information.

Simultaneously, Sun, Harris, Chikhi, and Medvedev proposed the AllSome
Sequence Bloom Tree (AllSome-SBT) [34], which splits each inner node into
an all and a some subfilter. The all filter contains bits in all leaves below the
node, excluding those already set in the parent node, and the some filter all
bits in some leaves but not all. Again, this representation allows exclusion of
bits already known from the parent node’s filters, and thus reducing space and
enabling better compression. Furthermore, the AllSome-SBT also improves on
the clustering methods by employing an agglomerative hierarchical technique
and by constructing batch Bloom filters for large query sets.

The currently smallest SBT variant is called HowDe Sequence Bloom Tree
(HowDe-SBT) by Harris and Medvedev [16]. It decomposes the Bloom filters in
each inner node into two bit vectors: the det vector signals if a particular bit is
determined at this inner node, meaning that it is equal in all descendant leaves,
and the how vector signals if it is determined as zero or one. All determined
bits can be omitted from any children. These two bit vectors are exactly the
information needed to perform an efficient breadth-first search down the tree.
Furthermore, the authors introduce a culling process to remove sparse inner
nodes which don’t reveal much information and thus speed up queries.

288 T. Bingmann et al.

A completely different approach to indexing k-mers is taken by Mantis from
Pandey et al. [28]. In Mantis, a counting quotient filter (CQF) [29] is used to
construct a mapping from k-mers to color classes, wherein k-mers with iden-
tical occurrence vectors for all documents are mapped to the same color class.
Incidence of color classes to documents can then be represented as a matrix, in
which columns are associated with documents and each row corresponds to a
color class. Hence, bits set in the rows signal occurrence of any k-mer mapping
to the color in the corresponding document list. Mantis then compresses the bit
vectors in the color matrix using RRR or with a spanning tree based approach.
The k-mer mapping is built from CQFs constructed by Squeakr [30], a k-mer
counting tool. Mantis differs from the other k-mer indexes referenced in this
paper by being able to deliver exact approximate matching results without false
positives.

SeqOthello [39] is another k-mer index software package. It contains an
“ensemble” of encoding techniques for compressing the occurrence maps of
k-mers in the document set. Occurrence maps are then grouped depending on
their density and encoding into disjoint buckets. To locate the correct occurrence
map for a k-mer, a hierarchy of Othellos is built inside each bucket and over all
bucket Othellos. An Othello [38] is a minimum perfect hash function mapping,
which is fast and scalable but can introduce false positive results due to mapping
of alien k-mers to random results.

BIGSI (BItsliced Genomic Signature Index) by Bradley et al. [5] is the direct
ancestor of COBS and also a combination of Bloom filters and inverted indexes.
BIGSI however is a prototype programmed in Python and uses a key-value
database such as BerkeleyDB or RocksDB as storage back-end. It also does
not contain the compaction feature introduced in COBS.

Related to k-mer indexing are colored de Bruijn graph representation data
structures, which often contain an exact k-mer index but do not support approx-
imate k-mer pattern searches. The original implementation, Cortex [20,21],
stored k-mers in a hash table, along with booleans for the four possible for-
ward and backward edges in a single byte. This was then followed by McCortex
[35], which added a second data structure to encode paths in the graph present
in the original reads. By contrast, VARI [26], Rainbowfish [1], and pufferfish [2]
explore use of succinct data structures, the Burrows-Wheeler transform, and
minimal perfect hash functions to save space and possibly even accelerate oper-
ations. The Bloom Filter Trie by Holley et al. [19] is another colored de Bruijn
graph representation based on the burst trie [18], wherein lookups for suffixes at
compressed inner nodes are accelerated with Bloom filters.

2 A Compact Bit-Sliced Signature Index

In this section we present the index structure used in COBS. We first generally
review Bloom filters as a q-gram index in Subsect. 2.1, then turn to COBS’ more
compact bit-sliced representation in Subsect. 2.2, and discuss implementation
details and algorithm engineering aspects in Subsect. 2.3.

COBS: A Compact Bit-Sliced Signature Index 289

2.1 Approximate Matching with Bloom Filters of Signatures

Given are an ordered set of documents D = [d0, . . . , d|D|−1], where each doc-
ument d is composed of a set of strings {t0, . . . , t|d|−1}. The number of items
in a set or array is denoted with | · |. Each string t is a zero-based array of |t|
characters from a finite ordered alphabet Σ. In the context of indexing DNA, the
alphabet is usually {A, C, G, T}, the documents are experiment samples, and the
strings in each document can be reads or assembled genome sequences. When
indexing web sites, the alphabet may be the ASCII characters or English words,
the documents could be web pages, and the substrings may be words, sentences,
or paragraphs.

Fig. 1. Theoretical false positive rate of
Bloom filters given fill and number of hash
functions.

Fig. 2. Access pattern of the classical bit-
sliced index.

To facilitate approximate pattern matching we consider q-grams of the strings
[36], commonly called k-mers for DNA. For each string t with |t| ≥ q there are
|t| − q + 1 consecutive substrings of length q. For a document d, we denote
with Gq(d) the union of all q-grams in the strings in d. Due to similarities with
full-text indexing we also refer to the q-grams in a document as terms.

A COBS index is composed of |D| Bloom filters [4], each representing an
approximate membership data structure with one-sided error. To construct a
Bloom filter for a document d we assume k pairwise independent hash functions
h0, . . . , hk−1 with range [0, w) and set the k bits hi(s) in an array f of w bits for
each q-gram s ∈ Gq(d). Testing for membership of a q-gram s is performed by
checking if all k cells hi(s) are set, which can lead to false positives but never
false negatives.

The entire document collection is thus represented by |D| bit arrays
[f0, . . . , f|D|−1], each a Bloom filter with possibly different parameters. From
previous work, the false positive rate p of a Bloom filter of size w with k hash
functions and v inserted elements is known to be at most (1 − (1 − 1

w)kv)k ≤
(1−e−kv/w)k. Given a desired false positive rate p and number of elements v, one

290 T. Bingmann et al.

can calculate a partial derivative of the last bound to determine good approxi-
mate parameters k = w

v ln 2 and w = − v ln p
(ln 2)2 [7,24].

To perform approximate matching for a pattern P , we follow previous work
[36] and determine the q-gram distance of P to all documents in the collection
D by testing each of the query’s q-grams Gq(P) on all documents. In COBS
we present this positively as the q-gram score of the query for each document.
The score is used to rank and return all documents containing at least a given
percentage K of the |Gq(P)| terms in the query.

As Solomon and Kingsford already noticed for SBTs, in the case of approxi-
mate pattern search on Bloom filters, we are not interested in the false positive
rate of a single Bloom filter lookup. Instead we are concerned with the false
positive rate of a query P . More precisely, given � = |Gq(P)| q-grams with the
probability that more than K� terms are false positives in the same filter.

Theorem 1 (False Positive Rate of a Query, Theorem 2 in [32]). Let
P be a query pattern containing � = |Gq(P)| distinct terms. If we consider the
terms as being independent, the probability that more than �K�� false-positive
terms occur in a filter f with false positive rate p is 1 − ∑�K��

i=0

(
�
i

)
pi(1 − p)�−i.

This theorem is derived by considering lookups of terms as independent Bernoulli
trials and summing over the probability of zero to �K�� false positives among the
� trials, which yields a binomial distribution. Given K ≥ p, Solomon and Kings-
ford also apply a Chernoff bound and show that the false positive probability
for a query to be detected in a document is ≤ exp(−�(K − p)2/(2(1 − p))).

These repeated trials into the Bloom filter allow us to push the false pos-
itive rate p up higher than commonly used. Figure 1 shows the false positive
rate (1 − e−kv/w)k of Bloom filters depending on its fill v

w and the number of
hash functions k. Traditional uses of Bloom filters for approximate membership
queries consider an error rate of 0.01 or less and multiple hash functions as desir-
able. Due to the inverse exponential relationship of a query’s false positive rate
with its length, coupled with the fact that more hash functions cost more cache
faults or I/Os, the minimum k = 1 and a high false positive rate around 0.3 are
desirable for our q-gram index application.

For example, if we consider a query of length 100 containing � = 70 distinct
31-grams, a false positive rate of p = 0.3, and threshold K = 0.5, then Theorem
1 yields a false positive rate of about 0.000143. Which means there will be about
143 false positive results in one million documents on average.

2.2 Bit-Slicing and Compaction

Provided all Bloom filters are of the same size w, one can store them as a w×|D|
bit matrix such that a row contains all bit cells at one index in the |D| filters (see
left side of Fig. 3). This is also called a “bit-sliced” layout [37] and was chosen for
BIGSI and COBS to reduce the number of random accesses needed to evaluate
a query. Each row of a term can be scanned sequentially, as shown in Fig. 2.
This is particularly important if the index is read from external memory, where

COBS: A Compact Bit-Sliced Signature Index 291

Fig. 3. Architecture of the bit-sliced signature index and query processing steps.

scanning is much more efficient than random accesses. The approach however
requires all Bloom filters to use the same hash functions and be the same size.

Figure 3 also illustrates how a query P is performed using the bit-sliced Bloom
filter matrix. The q-grams of the query are hashed to determine the correspond-
ing rows. These k|Gq(P)| rows are then scanned and an AND join of k rows
is performed to determine which q-grams occur in which document. This yields
an indicator bit vector ordered by document number. All indicator vectors are
then added together to calculate the score for each document. Only those docu-
ments reaching the query threshold K|Gq(P)| are then reported as approximate
matches. Due to the one-sided error of the Bloom filters, only more documents
may be reported due to hash collisions; false negatives, i.e. missed hits, cannot
occur.

One can also view the Bloom filter bit matrix as an inverted index: each
row simply lists the document numbers containing the corresponding q-gram as
indexes in a bit vector. Unlike a traditional inverted index however, multiple
q-gram terms are superimposed in one row. This leads to false positive matches.
In theory, one could apply all the methods developed by the information retrieval
community [40] to these bit vectors or posting lists.

The current version of a bit-sliced index however relies on all documents
and resulting Bloom filters having the same size. But larger documents result
in denser bit vectors and smaller documents in sparser, as the number of bits
set depends on the number of q-gram terms in the document. Depending on the
dataset, this creates vastly different false positive rates in the bit matrix. Hence,
we propose to adapt the size of each Bloom filter bit array to the document it
indexes and aim to keep the false positive rate constant. We call this a compact
bit-sliced signature index (the CO in COBS).

In theory one could adapt the Bloom filter size and hash function for each doc-
ument. In practice we want to store bits of rows as blocks of size Θ(B) in exter-
nal memory, thus keep the parameters constant for B consecutive documents.

292 T. Bingmann et al.

Furthermore, instead of calculating a new hash function for each filter, we pro-
pose to use only one function with a larger output range and then use a modulo
operation to map it down to each individual filter’s size. Both practical optimiza-
tions only incur a small deviation from the optimal index size and false positive
rates.

Figure 4 shows in light blue the desired Bloom filter size for the 100 000
microbial documents used in our experiments ordered by size and with false
positive rate 0.3 and one hash function. The dark blue staircase function above
the upward sloping curve shows batches of B = 8192 documents encoded with
the maximum Bloom filter size of that block. The visible dark blue area is the
minor overhead for encoding documents block-wise. If one uses only one Bloom
filter size (the classic approach), then the index size would be the entire filled
orange area, which extends upward to ensure the desired false positive rate for
the largest document.

Fig. 4. Compact index composed of small
sub-indexes containing B documents.

Fig. 5. Access pattern of our compact bit-
sliced index.

Due to the variance in size of microbial and other real-world documents,
the compact representation in COBS is essential. In designing COBS, we also
considered that today’s SSD and NVMe storage technology now has orders of
magnitude faster random access speeds [3] compared to rotational disks. Thus
with these new storage devices, the batched random access for many smaller
blocks of size B, as used in the compact layout and illustrated in Fig. 5, first
becomes viable.

2.3 Implementation and Engineering

We implemented COBS as a command line search engine tool using C++ and
plan to provide a Python interface to the underlying algorithm library. The
tool is open source and available from https://panthema.net/cobs/. It can read
DNA FASTA files, multi-document protein FASTA files, McCortex, or text files
as documents and extract q-grams from them. Depending on the format, the
input data is broken into different q-gram sets: DNA reads are for example

https://panthema.net/cobs/

COBS: A Compact Bit-Sliced Signature Index 293

hashed independently, while English text is processed continuously. We used
xxHash [9] for hashing the q-gram strings. The q-grams or k-mers can optionally
be canonicalized if their reverse complement are considered equivalent.

Classic and Compact. The COBS program can currently construct two index
variants: classic (ClaBS) and compact (COBS). In the classic index all docu-
ments are hashed using the same Bloom filter size, which depends on the desired
false positive rate and the number of q-grams in the largest document. This is
the non-compact version, which is similar to BIGSI, but was written for perfor-
mance in C++ and with direct file accesses. We will refer to it as ClaBS in the
experimental results.

When constructing a compact index, the size of all documents are determined
and the document set is reordered by size. Then a subindex is constructed for
every B documents, as described in Subsect. 2.2. Each subindex is actually a
ClaBS index. The subindices are simply concatenated into one large file.

While classic indexes with the same parameters can be concatenated straight-
forwardly, compact indexes are more difficult to merge. We may implement this
in future versions of COBS by keeping some slack in the Θ(B) blocks and packing
new documents into the best free block or by storing the subindices as separate
files. This would allow incremental augmentation of COBS compact indices.

Parallelization. Due to the massive amount of data to process, we parallelized
construction and query for shared-memory systems. ClaBS index construction
we parallelized by building temporary indexes over batches of the documents
and then merging them into larger indexes. For compact index construction we
parallelized construction of the subindices.

Pattern search in COBS can optionally be parallelized by processing disjoint
partitions of the document scores in parallel and then selecting the top scores
sequentially using a partial sort operation.

Memory Mapped I/O. For querying an index, we map the file into virtual
address space using mmap. The necessary rows of the inverted Bloom filter index
are then read using simple memory transfers. We experimented with directly
issuing asynchronous I/O commands, but found only a negligible performance
advantage that did not outweigh the higher code complexity.

Alternatively, COBS can also read the complete index into RAM and then
run all queries. This was added to compare performance against other indexing
software which only work in RAM, e.g. Mantis, in Sect. 3.

Single-Instruction Multiple-Data (SIMD). Besides the I/O bottleneck,
extracting the bits from the index rows and adding them together required a
considerable amount of running time in the query.

In the ADD step of the query process (Fig. 3), the rows are summed up to
create the query result. In this illustration we hid the fact that the rows that are
output from the AND step are bit-packed: each cell is represented by one bit. In
the output of the ADD step, however, each document’s score is represented by
an integer specifying the number of matched query terms. This poses a problem

294 T. Bingmann et al.

since the bits need to be unpacked before they can be processed. Ideally we
would like to unpack and process multiple bits at once.

We use a straight-forward mapping to expand 8 bits output by the AND
step to the 8 · 16 = 128 bits needed by the ADD step when using 16-bit score
counters. This can be achieved by using one array lookup in a table of length
256 containing items of 128 bits. With these 128 bits, the final result can then be
calculated by summing up the expanded values for each document using a single
128-bit SIMD instruction. The same approach can also be done with 32-bit score
counters with 256-bit or two 128-bit instructions.

3 Experimental Evaluation

In this section we present a comprehensive evaluation of eight software packages
for indexing k-mers from read or assembled genomic sequence data.

Table 1. Software, references, git hashes, and commit dates used in experiments.

Software/Index Git hash and commit date

SBT [32] 977adfa from March 1st 2019

SSBT (Split-SBT) [33] 710c95f from July 10th 2018

AllSome-SBT [34] 4e1f2c5 from October 28th, 2018

HowDe-SBT [16] 76e3c89 from March 1st, 2019

SeqOthello [39] 68d47e0 from September 6th, 2018

Mantis [28] 3853c82 from January 29th, 2019

BIGSI [5] 2ab35e5 from May 15th, 2019 using BerkeleyDB 4.8.30

COBS and ClaBS [this] 5328bd5 from May 24th, 2019

Software Packages. We acquired copies of the original source code of seven
other index software packages via Github. The paper references, git hashes, and
commit dates are listed in Table 1. More information about each package can
be found in the related work Subsect. 1.1. We compiled all software from source
and additionally used ntCard [25] (v1.1.0) as a preprocessing step for the SBTs,
jellyfish [23] (v2.2.10) in other steps and as a library.

Data. Bradley et al. [5] previously indexed the complete global corpus of micro-
bial DNA data, some 450 000 files. In doing this, they processed the raw data
into k-mers. Since this contains low frequency errors from the sequencing instru-
ments, they “de-noised” it using standard methods from McCortex, and stored
the remaining k-mers in a binary format. We downloaded 100 000 of these files
from http://ftp.ebi.ac.uk/pub/software/bigsi/nat biotech 2018/ctx/. For micro-
bial genomic read data k was chosen as 31, as this is large enough to (gener-
ally) guarantee uniqueness within a genome, without being so large as to fre-
quently hit a sequencing error. For scaling experiments we selected random sub-
sets containing 100, 250, 500, 1 000, 2 500, 5 000, 10 000, 25 0000, and 50 000

http://ftp.ebi.ac.uk/pub/software/bigsi/nat_biotech_2018/ctx/

COBS: A Compact Bit-Sliced Signature Index 295

documents from the 100 000 base set, each contained in the larger subsets.
The 10 000 document subset is the same as used in one of the BIGSI experi-
ments [5]. The average document size is 42.77 MiB stored in McCortex format,
such that the entire 100 000 microbial dataset is 3.984 TiB in total. Each docu-
ment contains 3.4 M 31-mers on average with the minimum being zero and the
largest containing 138 M 31-mers. In total the 100 000 dataset contains 336 846 M
31-mers to index. While building the indexes using the various software all
k-mers were included, without any occurrence threshold or cut-off.

For COBS’ compact index B = 1024 documents were grouped into a sub-
index in the largest instance with 100 000 documents.

Platform. We ran the experimental evaluation on a quad-socket Intel Xeon Gold
6138 2.0 GHz 4× 20-core machine with 768 GiB DDR4-2666 RAM and 4× 2 TB
NVMe Samsung 970 EVO SSD storage devices combined using RAID 0. The
machine was running Ubuntu 18.04 with Linux kernel 4.15.0-48-generic and we
used gcc 7.3.0. The combined SSDs reached 12.2 GiB/s sequential read, 2.3 GiB/s
sequential write, 741 MiB/s random 4 KiB block read, and 1 188 MiB/s random
4 KiB block write speeds.

Queries. We designed four sets of batch queries to measure the perfor-
mance of the indices, each set containing known true positives and true neg-
atives in random order. In each batch all queries are of the same length
� ∈ {31, 100, 1 000, 10 000} base pairs (bp). To generate true positives, we first
extracted all unitigs from the colored de Bruijn graph representation of each doc-
ument using McCortex, and then randomly chose queries from all �-grams in the
unitigs. To generate true negatives, we generated random query strings of length
�, broke these down into k-mers, and checked that none of the k-mers were con-
tained in any document. To balance the size, we selected 100 000 true positives and
100 000 true negatives for � = 31 and � = 100, for � = 1000 we selected 10 000
true positives and negatives each, and for � = 10 000 we selected 1 000 each.

The queries are stored in FASTA format and annotated with their origin
(random negative or the correct document id). After running the queries, we
checked the results of each index software by comparing it against the true
origin. Using the true negatives in the � = k = 31 set we can determine the false
positive rate of each index.

Measurements. To evaluate the software we measured many different perfor-
mance metrics while running construction and the batch queries. The machine
was used exclusively when running the experiments. Using interfaces from the
Linux kernel, we measured wall-clock time, CPU user time which captures time
spent computing in any user thread, the maximum resident set size (RSS) in
memory as returned by the time utility, the number of bytes read and written
to the SSDs in each step, and the change in storage usage. We also recorded the
resulting size of the index data files.

We flushed the disk cache before each build phase or query batch. Each query
batch was run three times: the first round started with a flushed (cold) cache,
and the two subsequent rounds with a warm cache. The rounds are labeled r0,
r1, and r2.

296 T. Bingmann et al.

3.1 Results

In this section we present and discuss the results of our experiments with the
eight index software packages. The machine we selected for the experiments is
a large server-class platform with 80 cores and large amounts of RAM. While
these properties are always good, we primarily chose it due to the 8 TB of fast
SSD storage, which is many times faster than traditional rotational disks. For
rapidly performing the experiments, this storage speed was crucial.

On the other hand the fast storage speed and massive multi-core processing
power in our machine may highlight different aspects in the indexing software
than previous comparisons. Most prominently, algorithms which previously only
had to process data rates known from rotational disks (100s of MiB/s) may
become a bottleneck when dealing with SSD speeds (currently around 10 GiB/s).
Furthermore, most of the index software packages had no built-in provisioning for
utilizing multi-core parallelism. While we were able to accelerate embarrassingly
parallel parts of the construction using bash (like creating Bloom filters for each
file), in some software the main index build was still sequential. On the other
hand, one can argue that index construction time is not as important as query
performance, but it still limits scalability.

Table 2 shows our results from all eight software packages for only 1 000
microbial DNA documents. The steps in the construction of each index are
shown as separate rows if it was possible to measure these independently.

Table 2. Construction wall-clock time, CPU time, memory usage, and resulting index
size for 1 000 microbial documents and all k-mer index software in our experiment

Phase SBT SSBT AllSome-SBT HowDe-SBT Seq-Othello Mantis BIGSI ClaBS COBS

Construction wall-clock time in seconds

Count 2 018 1 974 1 954 1 959

Bloom 114 117 140 144 295 232 1 881

Build 3 097 21 378 1 401 68 034 2 225 987 2 574 99 43

Compress 1 768 5 187 80 3 802 45

Total 6 996 28 657 3 576 73 939 2 520 1 264 4 455 99 43

Construction CPU (User) time in seconds

Count 4 574 4 511 4 475 4 488

Bloom 11 133 10 967 10 234 10 278 28 123 19 162 169 345

Build 855 5 178 449 66 872 2 198 943 1 767 1 604 1 430

Compress 1 569 4 832 1 663 2 857 3 423

Total 18 131 25 489 16 821 84 495 30 320 23 527 171 113 1 604 1 430

Construction maximum RSS memory usage in MiB

Count 518 518 518 518

Bloom 641 640 640 640 634 1 756 4 244

Build 11 028 1 523 7 140 108 147 12 137 88 357 246 806 16 245 2 616

Compress 10 953 992 560 963 16 613

Maximum 11 028 1 523 7 140 108 147 12 137 88 357 246 806 16 245 2 616

Index size in MiB

Size 19 844 3 254 21 335 1 911 4 410 16 486 27 794 16 236 3 022

COBS: A Compact Bit-Sliced Signature Index 297

We show both wall-clock time and CPU user time such that parallelized construc-
tion can highlight its speedup without obscuring the actual amount of computa-
tion. Table 3 considers the time to run the query sets. We only show wall-clock
for queries due to space; all query computations are performed with a single
thread such that this is a fair comparison. Furthermore, for ClaBS and COBS
the index is completely loaded into RAM such that the comparison with the
others is fair. In future, it will become important to measure how many bytes
were read from the disks per query, but in the current comparison we assume all
index data is resident in RAM.

Considering construction wall-clock time, COBS is clearly the fastest index
taking only 43 s on 1 000 documents. ClaBS is a factor 2.3 slower, Mantis a
factor 30 slower, SeqOthello a 59 factor, and AllSome-SBT a factor 83 slower
than COBS. The same is reflected in construction CPU time, with COBS being
fastest and taking 1430 s. ClaBS is a factor 1.12 slower, AllSome-SBT a factor
11.8 slower, and Mantis a factor 16.5.

Table 3. Query wall-clock time for 1 000 microbial documents and all k-mer index
software in our experiment

Phase SBT SSBT AllSome-SBT HowDe-SBT Seq-Othello Mantis BIGSI ClaBS COBS

� Query wall-clock time in seconds

31 bp r0 31 80 20 34 62 12 281 10 8

31 bp r2 26 76 19 33 62 13 289 9 8

100 bp r0 663 3183 100 600 73 22 783 14 9

100 bp r2 649 3153 95 588 73 23 455 14 9

1000 bp r0 794 3466 112 670 63 21 660 15 10

1000 bp r2 781 3435 108 659 64 27 310 13 10

10000 bp r0 802 3273 112 622 62 23 699 16 11

10000 bp r2 790 3243 111 613 62 22 316 15 11

Total r0–r2 6 775 29 833 1 007 5 710 783 252 5 177 154 114

Document false positive rate for 31 bp queries

Rate 0.004 0.004 0.004 0.004 0.001 0.000 0.027 0.024 0.227

One can also see that we parallelized the Bloom filter construction (the
“bloom” row) effectively for all indexes, while the build steps are usually only
partially parallelized. COBS has a CPU/wall-clock speedup of 33, while BIGSI
has 38, Mantis has 18, and SeqOthello 12. However, since COBS performs the
least amount of computation and has among the highest speedups, the combina-
tion of these two factors really diminishes wall-clock construction time. Consid-
ering CPU user time, the index requiring most work for construction is BIGSI,
probably due to the Python implementation. It however is parallelized, such that
the wall-clock time is on par with the SBTs.

The amount of RAM required by the indexing software also limits their
applicability, especially if the complete index itself needs to be constructed in
RAM. BIGSI, HowDe-SBT, and Mantis have the highest main memory usage

298 T. Bingmann et al.

in the experiment. For BIGSI and Mantis memory was the limiting scalability
factor, while for HowDe-SBT the construction time grew too long.

The index sizes of all packages for the 1 000 microbial documents was smaller
than the input in McCortex format (41 GiB input size). The software with the
smallest index was the HowDe-SBT with only 1.9 GiB, followed by COBS with
around 3.0 GiB and SSBT with 3.3 GiB.

In terms of query performance, the fastest index was COBS with 114 s to run
all query sets three times, followed by ClaBS with 154 s. Mantis was a factor 2.2
slower, SeqOthello a factor 6.9 slower, and the fastest SBT version, AllSome-
SBT, was a factor 8.8 slower.

Fig. 6. Construction time, index size, query time for 200 000 · 31 bp, 20 000 · 1 000 bp,
and for 2 000 · 10 000 bp round 2 after disk cache warm-up.

COBS: A Compact Bit-Sliced Signature Index 299

Using result checkers we verified that all software packages calculated correct
results and counted the false positives contained in the returned list of the single
k-mer query set (� = 31). The notable exception was SeqOthello, which produced
false positives consistently for each multi-k-mer query and started returning
false negative (missing) results when run on the 10 000 dataset. We could not
investigate this issue further. The SBT variants and SeqOthello showed a very
low false positive rate less than 0.5 %. Mantis produced zero false positives as
expected. BIGSI and ClaBS are nearly identical in underlying data structure
design, and deliver around 2.6 % false positives on single k-mer queries. COBS
is designed to deliver about the prescribed error rate of 0.3, hence the 22.7 %

Fig. 7. Construction time, index size, query time for 200 000 · 31 bp, 20 000 · 1 000 bp,
and for 2 000 · 10 000 bp in the first round divided by the number of documents |D|.

300 T. Bingmann et al.

false positives, which enables us to construct a more compact index. We also
calculated the number of false positives in larger multi-k-mer query sets, and
found all indexes except SeqOthello but including COBS to return zero false
positives for all queries with � ≥ 100 in the experiment.

Figure 6 shows scaling results for all software packages on increasing subsets
of the indexed microbial document set. We skipped running the SBT variants for
data sets larger than 10 000 because their construction time was growing super-
linearly. SeqOthello and Mantis scaled much better in terms of construction time
per document. Figure 7 shows construction time per document. These plots show
that COBS scales well, with an order of magnitude faster construction time per
document than Mantis and SeqOthello, both in wall-clock and CPU time. While
ClaBS’s index size appears to increase with the number of documents (due to
the maximum document size), the size per document of COBS actually decreases
because it can better pack documents into blocks.

As expected COBS’ query time for single k-mers increases linearly with the
number of documents in the index, due to the scoring method without pruning.
The query time of all other indexes also increases with the number of documents,
but not quite linearly. The best index in terms of query time increase per docu-
ment is the AllSome-SBT followed by HowDe-SBT, but only COBS index scales
to our full 100 000 microbial dataset.

4 Conclusion and Future Work

With COBS we presented a signature index based on Bloom filters which enables
approximate pattern matching on large q-gram datasets. It outperforms all other
q-gram indexes in both construction and query time for multi-q-gram queries due
to its simple data structure.

There are many avenues for future work on possible improvements to COBS’
ideas. For example, dynamic operations on the index such as insertion, replace-
ment, and removal of documents are very important for practical applications.
We already provide a merge operation for classic indexes, but not for compact
ones. Our current COBS implementation also already supports querying of mul-
tiple index files, such that a frontend may select different datasets or categories.
Another important topic is better support for batch or bulk queries. And for
further scalability it is important to explore distributed index construction and
query processing.

Deriving from the simplicity of COBS are research avenues which could
explore compression of rows in the Bloom filter matrix using techniques from
information retrieval. And similar to Mantis’ use of the CQF one could explore
how to adapt other Bloom filter variants to the indexing problem with allowed
false positives.

COBS: A Compact Bit-Sliced Signature Index 301

References

1. Almodaresi, F., Pandey, P., Patro, R.: Rainbowfish: a succinct colored de Bruijn
graph representation. In: 17th International Workshop on Algorithms in Bioinfor-
matics (WABI). LIPIcs, vol. 88, pp. 18:1–18:15. Schloss Dagstuhl, August 2017.
preprint bioRxiv:138016

2. Almodaresi, F., Sarkar, H., Srivastava, A., Patro, R.: A space and time-efficient
index for the compacted colored de Bruijn graph. Bioinformatics 34(13), i169–i177
(2018)

3. Bingmann, T.: NVMe “disk” bandwidth and latency for batched block
requests, March 2019. Online Article, http://panthema.net/2019/0322-nvme-
batched-block-access-speed

4. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

5. Bradley, P., den Bakker, H.C., Rocha, E.P.C., McVean, G., Iqbal, Z.: Ultrafast
search of all deposited bacterial and viral genomic data. Nat. Biotechnol. 37, 152–
159 (2019)

6. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Comput. Networks ISDN Syst. 30(1–7), 107–117 (1998)

7. Broder, A.Z., Mitzenmacher, M.: Network applications of Bloom filters: a survey.
Internet Math. 1(4), 485–509 (2003)

8. Chikhi, R., Holub, J., Medvedev, P.: Data structures to represent sets of k-long
DNA sequences. Computing Research Repository (CoRR), arXiv:1903.12312:1–16,
March 2019

9. Collet, Y.: xxHash: extremely fast non-cryptographic hash algorithm, 2014. Git
repository. https://github.com/Cyan4973/xxHash. Accessed July 2019

10. Cook, C.E., Lopez, R., Stroe, O., Cochrane, G., Brooksbank, C., Birney, E.,
Apweiler, R.: The European Bioinformatics Institute in 2018: tools, infrastructure
and training. Nucleic Acids Res. 47(D1), D15–D22 (2019)

11. Crainiceanu, A., Lemire, D.: Bloofi: multidimensional bloom filters. Inf. Syst. 54,
311–324 (2015)

12. Faloutsos, C., Christodoulakis, S.: Signature files: an access method for documents
and its analytical performance evaluation. ACM Trans. Inf. Syst. (TOIS) 2(4),
267–288 (1984)

13. Gauger, F.: Engineering a compact bit-sliced signature index for approximate
search on genomic data. Master Thesis. Karlsruhe Institute of Technology, Ger-
many, February 2018

14. Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: plug and play
with succinct data structures. In: Gudmundsson, J., Katajainen, J. (eds.) SEA
2014. LNCS, vol. 8504, pp. 326–337. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-07959-2 28

15. Goodwin, B., et al.: BitFunnel: revisiting signatures for search. In: 40th ACM
SIGIR Conference on Research and Development in Information Retrieval, pp.
605–614. ACM, August 2017

16. Harris, R.S., Medvedev, P.: Improved representation of sequence Bloom trees.
bioRxiv, pp. 501452, December 2018

17. Harrison, P.W., et al.: The european nucleotide archive in 2018. Nucleic Acids Res.
D47(1), D84–D88 (2019)

18. Heinz, S., Zobel, J., Williams, H.E.: Burst tries: a fast, efficient data structure for
string keys. ACM Trans. Inf. Syst. (TOIS) 20(2), 192–223 (2002)

http://panthema.net/2019/0322-nvme-batched-block-access-speed
http://panthema.net/2019/0322-nvme-batched-block-access-speed
http://arxiv.org/abs/1903.12312:1--16
https://github.com/Cyan4973/xxHash
https://doi.org/10.1007/978-3-319-07959-2_28
https://doi.org/10.1007/978-3-319-07959-2_28

302 T. Bingmann et al.

19. Holley, G., Wittler, R., Stoye, J.: Bloom filter trie: an alignment-free and reference-
free data structure for pan-genome storage. Algorithms Mol. Biol. 11(1), 3 (2016)

20. Iqbal, Z., Caccamo, M., Turner, I., Flicek, P., McVean, G.: De novo assembly and
genotyping of variants using colored de Bruijn graphs. Nat. Genet. 44(2), 226
(2012)

21. Iqbal, Z., Turner, I., McVean, G.: High-throughput microbial population genomics
using the cortex variation assembler. Bioinformatics 29(2), 275–276 (2012)

22. Krugel, J.: Approximate Pattern Matching with Index Structures. Ph.D. thesis,
Technische Universität München, Germany, February 2016

23. Marçais, G., Kingsford, C.: A fast, lock-free approach for efficient parallel counting
of occurrences of k-mers. Bioinformatics 27(6), 764–770 (2011)

24. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)

25. Mohamadi, H., Khan, H., Birol, I.: ntCard: a streaming algorithm for cardinality
estimation in genomics data. Bioinformatics 33(9), 1324–1330 (2017)

26. Muggli, M.D., et al.: Succinct colored de Bruijn graphs. Bioinformatics 33(20),
3181–3187 (2017). preprint bioRxiv:040071

27. Navarro, G., Baeza-Yates, R.A., Sutinen, E., Tarhio, J.: Indexing methods for
approximate string matching. IEEE Bull. Tech. Committee Data Eng. 24(4), 19–
27 (2001)

28. Pandey, P., Almodaresi, F., Bender, M.A., Ferdman, M., Johnson, R., Patro, R.:
Mantis: a fast, small, and exact large-scale sequence-search index. Cell Systems,
June 2018. preprint bioRxiv:217372

29. Pandey, P., Bender, M.A., Johnson, R., Patro, R.: A general-purpose counting
filter: making every bit count. In: ACM International Conference on Management
of Data, pp. 775–787. ACM (2017)

30. Pandey, P., Bender, M.A., Johnson, R., Patro, R.: Squeakr: an exact and approx-
imate k-mer counting system. Bioinformatics 34(4), 568–575 (2018). preprint
bioRxiv:122077

31. Raman, R., Raman, V., Srinivasa Rao, S.: Succinct indexable dictionaries with
applications to encoding k-ary trees and multisets. In: 13th ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pp. 233–242. SIAM, January 2002

32. Solomon, B., Kingsford, C.: Fast search of thousands of short-read sequencing
experiments. Nat. Biotechnol. 34(3), 300–312 (2016)

33. Solomon, B., Kingsford, C.: Improved search of large transcriptomic sequencing
databases using split sequence Bloom trees. J. Comput. Biol. 25(7), 755–765 (2018)

34. Sun, C., Harris, R.S., Chikhi, R., Medvedev, P.: AllSome sequence Bloom trees. J.
Computat. Biol. 25(5), 467–479 (2018)

35. Turner, I., Garimella, K.V., Iqbal, Z., McVean, G.: Integrating long-range connec-
tivity information into de Bruijn graphs. Bioinformatics 34(15), 2556–2565 (2018)

36. Ukkonen, E.: Approximate string-matching with q-grams and maximal matches.
Theoret. Comput. Sci. 92(1), 191–211 (1992)

37. Wong, H.K.T., Liu, H.-F., Olken, F., Rotem, D., Wong, L.: Bit transposed files.
In 11th International Conference on Very Large Data Bases (VLDB), pp. 448–457.
VLDB Endowment, August 1985

38. Ye, Y., Belazzougui, D., Qian, C., Zhang, Q.: Memory-efficient and ultra-fast net-
work lookup and forwarding using othello hashing. IEEE/ACM Trans. Networking
26(3), 1151–1164 (2018)

39. Ye, Y., et al.: SeqOthello: querying RNA-seq experiments at scale. Genome Biol.
19(1), 167 (2018). preprint bioRxiv:258772

COBS: A Compact Bit-Sliced Signature Index 303

40. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Comput. Surveys
(CSUR) 38(2), 6 (2006)

41. Zobel, J., Moffat, A., Ramamohanarao, K.: Inverted files versus signature files for
text indexing. ACM Trans. Database Syst. (TODS) 23(4), 453–490 (1998)

	COBS: A Compact Bit-Sliced Signature Index
	1 Introduction
	1.1 Related Work

	2 A Compact Bit-Sliced Signature Index
	2.1 Approximate Matching with Bloom Filters of Signatures
	2.2 Bit-Slicing and Compaction
	2.3 Implementation and Engineering

	3 Experimental Evaluation
	3.1 Results

	4 Conclusion and Future Work
	References

