
A New Linear-Time Algorithm
for Centroid Decomposition

Davide Della Giustina1, Nicola Prezza2(B), and Rossano Venturini2

1 Scuola Superiore, University of Udine, Udine, Italy
dellagiustina.davide@spes.uniud.it

2 Department of Computer Science, University of Pisa, Pisa, Italy
nicola.prezza@di.unipi.it, rossano.venturini@unipi.it

Abstract. The centroid of a tree is a node that, when removed, breaks
the tree in connected components of size at most half of that of the
original tree. By recursing this procedure on the components, one obtains
the centroid decomposition of the tree, also known as centroid tree. The
centroid tree has logarithmic height and its construction is a powerful
pre-processing step in several tree-processing algorithms. The folklore
recursive algorithm for computing the centroid tree runs in O(n log n)
time. To the best of our knowledge, the only result claiming O(n) time
is unpublished and relies on (dynamic) heavy path decomposition of the
original tree. In this short paper, we describe a new simple and practical
linear-time algorithm for the problem based on the idea of applying the
folklore algorithm to a suitable decomposition of the original tree.

1 Introduction

The centroid decomposition of a tree T (also known as separator decomposi-
tion) is a popular and powerful technique to obtain a tree TC of logarithmic
height. The centroid tree in employed in several applications: cache-oblivious
string B-trees [2,5,6], dynamic farthest point queries [1], balanced decomposi-
tion of simple polygons [9], jumbled pattern matching on trees [7], counting of
square substrings in a tree [11], just to cite a few.

The decomposition is based on a theorem proved by Jordan in 1869 [10]:
Any tree T of n nodes has at least a node, called centroid, whose removal leaves
connected components of size at most n/2.

The centroid decomposition is defined recursively. Given T , we identify a
centroid node u, which is chosen to be the root of the new tree TC . Then, we
remove u from T and recurse on each connected component to get u’s subtrees
in TC . The resulting decomposition is a new tree TC on the same nodes whose
height is O(log n). Tree TC preserves some information about the topology of

Partially supported by the project MIUR-SIR CMACBioSeq (“Combinatorial methods
for analysis and compression of biological sequences”) grant n. RBSI146R5L and by
the project MIUR-PRIN 2017 “Algorithms, Data Structures and Combinatorics for
Machine Learning”.

c© Springer Nature Switzerland AG 2019
N. R. Brisaboa and S. J. Puglisi (Eds.): SPIRE 2019, LNCS 11811, pp. 274–282, 2019.
https://doi.org/10.1007/978-3-030-32686-9_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32686-9_20&domain=pdf
https://doi.org/10.1007/978-3-030-32686-9_20


Linear-Time Centroid Decomposition 275

the original tree T . For example, for any pair of nodes u and v, the path from u
to v in T can be decomposed in two subpaths of TC : the path from u to w and
the path from w to v, where w is the lowest common ancestor of u and v in TC .

A folklore algorithm computes the centroid decomposition in Θ(n log n) time
as follows. We first observe that a centroid node of T can be easily identified in
linear time. Indeed, we can arbitrary choose a root in T and visit the tree to
compute the size of each subtree. Then, we start from the root and move to the
largest subtree until we reach a node whose subtrees have size at most n/2. This
node is a centroid of the tree. Thus, it easily follows that the decomposition of
the tree can be computed in Θ(n log n) time.

The first linear time algorithm to compute the centroid decomposition of
a tree is due to Giubas et al. [9] but it assumes that T is a binary tree. The
first linear time algorithm for arbitrary trees is by Brodal et al. [3]. Actually
paper [3] claims the result which is described in its unpublished extension [4].
This algorithm is based on the heavy path decomposition [12] of T which is kept
updated after subtrees removal. Let us say a node u is heavy if u is the children of
its parent with the largest subtree (ties are broken arbitrarily). The heavy path
decomposition is the set of paths, called heavy paths, that connect heavy nodes.
Brodal et al. [3] show that the use of this decomposition leads to an alternative
description of the folklore algorithm. First the algorithm computes the heavy
path decomposition of T , and then searches for the centroid node which must
be a node in the heavy path that contains the root. The algorithm can now recur
on each connected component. The main inefficiency of this algorithm is that it
recomputes the sizes of all subtrees and the heavy paths for each recursive call.
Brodal et al. [3] improves the algorithm by showing how to update the already
computed heavy paths in O(log2 k) time, where k is the number of nodes of the
component processed by the current recursive call. This requires to keep a binary
search tree for each heavy path supporting split, join and successor operations,
and a priority queue for each node of T .

In this short paper, we describe a new simple and practical linear-time algo-
rithm for the problem based on the idea of applying the folklore algorithm to a
suitable (static) decomposition of the original tree.

2 The Algorithm

The overall idea of our algorithm is to break the input tree in Θ(n/ log n) subtrees
of size O(log n) and replace each group with a node to form a new meta-tree. The
core property that we exploit is that a centroid can be identified by navigating
this meta-tree of size Θ(n/ log n), plus O(log n) nodes of the original tree. The
strategy is then applied recursively on the connected components obtained by
removing the centroid. After some level of recursion, we obtain components that
are small enough so that their centroid decomposition can be pre-computed in
a small table and thus retrieved in linear time.

Tree Cover. Let T be a rooted tree of size n. The notation π(x), where x is a
node of T , denotes the parent of x (or NULL for the root). When two nodes u and



276 D. Della Giustina et al.

v are connected, we assume that both the edges (u, v) and (v, u) are present (this
simplifies the description). We use the tree covering procedure described in [8,
Sec. 2.1] to decompose T in Θ(n/ log n) sub-trees containing Θ(log n) nodes each
(except, possibly, the root). Two subtrees are either disjoint or intersect only at
their common root. We make all subtrees disjoint as follows, with a procedure
that also colors nodes in red or black. At the beginning, all nodes of T are colored
black. When k > 1 subtrees share a common root x, we (i) delete x, (ii) create
k new red nodes x1, . . . , xk and make each of them be the root of each of the k
subtrees, and (iii) create a new black node x′ with parent π(x′) = π(x) and let
x1, . . . , xk be its children. The new node x′ belongs to a new subtree containing
only x′. We denote as T ′ the tree obtained from T by performing these splitting
and coloring operations, and keep a map β mapping black nodes of T ′ to the
corresponding nodes of T (note that there is a bijection between black nodes of
T ′ and nodes of T ). Let π′(x) denote the parent of node x in T ′. We extend β to
red nodes x as β(x) = β(π′(x)) (i.e., we take the black parent of x and apply β).
Figures 1 and 2 illustrate our tree covering procedure. In the example, we have
β(0̄) = 0, . . . , β(7̄) = 7, β(8̄′) = β(8̄1) = β(8̄2) = 8, β(9̄) = 9, . . . , β(19) = 19.

From now on, when we say subtree of T ′ we always refer to the subtrees
obtained by our modified tree covering procedure. Note that T ′ is divided in
Θ(n/ log n) subtrees, each containing O(log n) nodes (some of these subtrees
may contain just one node, read above). We denote as T ′′ the tree whose nodes
are the subtrees (now disjoint) of T ′. Note that T ′′ has Θ(n/ log n) nodes as well.
We store explicitly T ′′ and keep a map α mapping nodes of T ′′ to the roots of the
corresponding subtrees in T ′. Figure 3 illustrates the tree T ′′ obtained from the
previous example (in the next paragraph we describe the meaning of the weights
associated with nodes and edges). In the example, we have α(A) = 0̄, α(B) =
3̄, α(C) = 8̄′, α(D) = 8̄1, α(E) = 13, and α(F ) = 8̄2.

For each node u′′ of T ′′, we compute and store the number δ(u′′) of black
nodes contained in the subtree of T ′ rooted in α(u′′). We call δ(u′′) the weight
of u′′. After that, with a visit of T ′′ we cumulate those weights and extend them
to edges as follows. Let (u′′, v′′) be an edge of T ′′. With δ(u′′, v′′) we denote the
sum of all weights δ(w′′) in the connected component rooted in v′′ obtained after
removing u′′ from T ′′. Said otherwise, δ(u′′, v′′) is the sum of the weights δ(w′′)
for all nodes w′′ reached traversing (u′′, v′′) only once (and without counting
δ(u′′)). We store δ(u′′, v′′) for each edge (u′′, v′′) of T ′′ (remember also that,
for each edge (u′′, v′′), also the reversed edge (v′′, u′′) exists therefore δ(v′′, u′′)
is also defined). Intuitively, δ(u′′, v′′) corresponds to the number of black nodes
in one of the connected components (the one containing node α(v′′)) obtained
after removing the subtree rooted in α(u′′) from T ′. In turn, this is exactly the
number of nodes in the corresponding connected component of T , and will be
used to quickly compute a centroid. Figure 3 illustrates our construction.

Finding a Centroid. We now show that a centroid of T can be found in
O(n/ log n) time by visiting T ′′ and a small (logarithmic) number of nodes of
T ′. We prove the following lemma:

Lemma 1. The following two properties hold:



Linear-Time Centroid Decomposition 277

Fig. 1. Input tree T , covered using the
procedure described in [8, Sec. 2.1] with
parameter M = 4.

Fig. 2. Modified tree T ′. We overline
node names to distinguish them from
those in T . Note that sub-trees are
disjoint.

Fig. 3. Tree T ′′, obtained by collapsing each sub-tree of T ′ into a node. Between square
brackets, we show each node’s weight (For example, δ(B) = 5). We also show weights
on the edges: for example, δ(C, F ) = 3 and δ(F, C) = 17.

1. If c is a centroid of T , then there exist a subtree R = (VR, ER) of T ′ and a
node x′ ∈ VR such that β(x′) = c and δ(x′′, y′′) ≤ n/2 for all (x′′, y′′) in T ′′

such that α(x′′) is the root of R.
2. If u′′ is a node of T ′′ such that δ(u′′, v′′) ≤ n/2 for all (u′′, v′′) in T ′′, then

the subtree R rooted in α(u′′) contains a node x′ such that β(x′) is a centroid
of T .

Proof. Consider the function δ extended to edges of T ′ (we call it δ′ to distin-
guish it from δ): δ′(u′, v′) is the number of black nodes in the tree containing
v′ obtained after removing node u′. Similarly, we will talk about the weights of
edges of T (which are defined analogously). We start by proving claim (1), and
consider two main cases.



278 D. Della Giustina et al.

(1.a) The centroid c is mapped to a black node c′ of T ′ (i.e., β(c′) = c) having
only black children. Since c is a centroid and c is mapped to a node c′ with black
children, also its edges are preserved and thus we have that δ′(c′, v′) ≤ n/2 for
all edges leaving c′ (see, in contrast, case 1.b: in that case, edges leaving c are
distributed among red children of c′ and this property no longer holds). Let
(c′, v′) be such an edge. Clearly, also δ′(v′, w′) ≤ n/2 holds for all edges leaving
v′ such that w′ �= c′: this follows from the fact that δ′(c′, v′) ≤ n/2 implies that
the tree containing v′ obtained after removing c′ contains at most n/2 black
nodes. Let R = (VR, ER) be the subtree of T ′ containing c′. Iterating the above
reasoning, we obtain that all edges (u′, v′) leaving R (i.e., such that u′ ∈ VR
and v′ /∈ VR) satisfy δ′(u′, v′) ≤ n/2. Let z′ be the root of R, and let x′′ be
the node of T ′′ such that α(x′′) = z′. Then, by definition of δ we have that
δ(x′′, y′′) ≤ n/2 for all (x′′, y′′) in T ′′, since δ′ and δ coincide on edges leaving R
and x′′, respectively, and our claim holds for x′ = c′.

(1.b) The centroid c is mapped to a black node c′ of T ′ (i.e., c′ is the only
black node with β(c′) = c) with only red children. Let c′

1, . . . , c
′
k be the red

children of c′. By construction of our tree decomposition, the edges leaving c
have been partitioned. Each class of the partition contains either just the original
edge connecting c with its parent in T , or at least one edge connecting c with
its children. The former class corresponds to the edge in T ′ connecting c′ with
its parent. Classes of the latter kind correspond to edges in T ′ connecting c′

with red children. For example, in Figs. 1 and 2 the edges leaving node 8 have
been partitioned in {(8, 0)}, {(8, 9), (8, 11)}, and {(8, 17)}. The first class {(8, 0)}
contains just the edge connecting 8 with its parent, and becomes edge (8̄′, 0̄) in
T ′. The latter two classes become edges (8̄′, 8̄1) and (8̄′, 8̄2) in T ′. Now, the
fact that we collapse edges means that δ′(c′, v′) ≤ n/2 does not necessarily hold
when v′ is a red node (it surely holds only if v′ is the black parent of c′), since
δ′(c′, v′) corresponds to a sum of the weights of multiple edges. For example,
in Fig. 2, δ′(8̄′, 8̄1) = 8 corresponds to the sum of the weights δ′(8̄1, 9̄) = 2 and
δ′(8̄1, 1̄1) = 6. While the weights of the latter two are surely at most n/2 (by
definition of centroid), their sum could exceed n/2 (this is not the case of Fig. 2,
where n/2 = 10). We consider two further sub-cases. (1.b.1) δ′(c′, c′

k) ≤ n/2 for
all edges leaving c′ (this is the case of Fig. 2). Then, the same argument used
in case (1.a) applies (it is actually simpler, since the subtree containing c′ is
a singleton subtree), and our claim holds with x′ = c′ = α(x′′) and R being
the singleton subtree containing c′. (1.b.2) δ′(c′, c′

k) > n/2 for at least one edge
(c′, c′

k) leaving c′. Then, our claim holds for x′ = c′
k = α(x′′) and R being the

subtree containing c′
k: since δ′(c′, c′

k) > n/2, then δ′(c′
k, c

′) ≤ n/2. Moreover, the
other edges (c′

k, w
′) leaving c′

k correspond to edges of the original tree T (i.e.,
not to group of edges), therefore δ′(c′

k, w
′) ≤ n/2. We can apply the argument

used in case (1.a) and conclude that δ(x′′, y′′) ≤ n/2 for all edges leaving x′′.
We now prove claim (2). Let u′′ be a node of T ′′ such that δ(u′′, v′′) ≤ n/2

for all (u′′, v′′) in T ′′. Let moreover R be the subtree rooted in α(u′′) = y′. Then,
δ′(y′, w′) ≤ n/2, where w′ is the parent of y′ in T ′. We have two cases. (2.a)
δ′(y′, w′) ≤ n/2 for all children w′ of y′ in T ′. Then, clearly β(y′) is a centroid



Linear-Time Centroid Decomposition 279

of T : if y′ is a red node, then the weights of edges leaving β(y′) are at most
n/2. If y′ is a black node then the weights of edges leaving β(y′) correspond
precisely to those leaving y′. (2.b) δ′(y′, w′) > n/2 for some child w′ of y′.
Then, δ′(w′, y′) ≤ n/2 (i.e., the edge leading to the parent of w′ weights at
most n/2) and we can recurse the above reasoning to the children of w′. Clearly,
sooner or later we will find a node q′ in R such that δ′(q′, w′) ≤ n/2 for all
edges leaving q′ (including the edge leading to its parent, for which the property
always holds true if we have moved to q′). Otherwise, it is easy to see that
we obtain a contradiction. Suppose we reach a node q′ of R such that some of
its children lie outside R. Denote q′

1, . . . , q
′
k the children of q′ leaving R. Then,

clearly δ′(q′, q′
i) ≤ n/2 for all i = 1, . . . , k must hold since we are assuming that

δ(u′′, v′′) ≤ n/2 for all edges (u′′, v′′) leaving u′′ in T ′′. This shows that we can
recurse only on children internal to R. However, at some point we will reach a
node x′ whose children (all of them) lie outside R. Then, clearly all edges leaving
x′ must weight at most n/2. ��

By Lemma 1, this algorithm finds a centroid of T in O(n/ log n+log n) time:
(i) visit T ′′ and find a node u′′ such that δ(u′′, v′′) ≤ n/2 for all edges (u′′, v′′)
leaving u′′. Let R be the subtree of T ′ associated with u′′, i.e., the subtree rooted
in α(u′′). (ii) Visit R and find a node u′ such that, if removed, it splits T ′ into
connected components having at most n/2 black nodes each. (iii) Return β(u′).

Step (i) takes O(n/ log n) time. Step (ii) can be implemented with a visit
of R. Note that the weights we store on T ′′’s edges are precisely the sizes of
the connected components of T obtained after removing nodes u′ in R whenever
(u′, v′) is an edge that leaves R. Since we can afford visiting the whole R, those
weights can be easily used to compute the sizes of the subtrees of T obtained
after removing any node u′ in R. Steps (i), (ii) run in O(n/ log n + log n) time.

In the above example, we have n = 20. The node of T ′′ whose outgoing edges
weight at most n/2 = 10 is C (its outgoing edges weight 8, 8, and 3). In this
particular case, C corresponds to a unary subtree therefore step (ii) finds node
8̄′, and step (iii) returns β(8̄′) = 8.

Recursion. Note that Lemma 1 does not make any assumption on the subtree-
decomposition of T ′. It follows that the above algorithm for finding a centroid
can be iterated as follows. After finding a node u′ of T ′ such that β(u′) is a
centroid of T , we remove from T ′ all nodes v′ such that β(v′) = β(u′) (i.e., all
nodes that map to the centroid). We break every subtree R of T ′ containing
one of the removed nodes into one singleton subtree (i.e., a subtree consisting
of just one node) per remaining node of R (i.e., one subtree for each node that
was not removed). The process of removing nodes breaks the original tree T ′

into q trees T ′
1, . . . ,T ′

q, for some q ≥ 2, each of which contains at most n/2 black
nodes. Crucially, note that each T ′

i with ni nodes is partitioned into at most
O(ni/ log n)+O(log n) subtrees: those of the original tree T ′ that have not been
split into singleton subtrees, and at most O(log n) singleton subtrees. Similarly,
we break T ′′ into a forest. Some of the trees belonging to this forest will contain
new nodes corresponding to newly-created singleton subtrees in T ′. Each such
new node u′′ gets a weight δ(u′′) = 1. The weight of the other nodes does not



280 D. Della Giustina et al.

change, since they correspond to subtrees of T ′ that have not been modified. At
this point, we can re-compute the weights δ(u′′, v′′) on the edges of the forest
in overall O(n/ log n + log n) time by using the stored weights δ(u′′) for each
node u′′ of the forest. Figure 4 shows how the trees of Figs. 2 and 3 change after
removing all the nodes u′ such that β(u′) = 8.

 

Fig. 4. The figure shows how T ′ changes after returning the centroid β(8̄′) = 8 and
removing nodes 8̄′, 8̄1, and 8̄2. Each subtree of T ′ that contains a removed node (in
particular, the subtrees D,F ) has been split in singleton subtrees: D has been split in
D1, . . . , D4, and F has been split in F1, . . . , F3. Note that node C disappears since it
corresponds to a subtree of T ′ containing only a removed node (8̄′). Tree T ′′ changes
similarly: it is broken into four trees whose nodes are the subtrees shown in the figure.

Lemma 1 can then be applied again recursively on T ′
1, . . . ,T ′

q. It is easy
to see that each connected component at recursion depth j has at most n/2j

black nodes and is divided into at most n/(log n · 2j) + O(j · log n) subtrees
(note that each recursive iteration adds at most O(log n) singleton subtrees to
each component). The complexity of finding a centroid in such a tree using
Lemma 1 is O(n/(log n · 2j) + j · log n + log n) (i.e., number of subtrees plus
size of a subtree). We stop recursion as soon as we obtain components of size
at most log3 n, i.e., at recursive depth j = log(n/ log3 n). In this way, each
component is a tree having at most log3 n black nodes and divided into at most
n/(log n · 2j) + O(j · log n) = O(log2 n) subtrees. Note that the base case of
log3 n for the tree size is the minimum (asymptotically) guaranteeing that the
two components contributing to the number of subtrees (i.e., n/(log n · 2j) and
j · log n) sum up to O(n′/ log n), n′ being the subtree’s size. The total number of
nodes contained in the trees at each recursion depth j is O(n) and, by the above
observation, applying Lemma 1 to one tree of size n′ at any recursion depth
takes time O(n′/ log n). Overall, this adds up to O(n/ log n) time per recursion
level. Since the recursion depth is O(log n), the overall procedure terminates in
O(n) time. We obtain the following lemma.



Linear-Time Centroid Decomposition 281

Lemma 2. In O(n) time we can reduce the centroid decomposition problem to
the same problem on a certain number of trees with at most log3 n nodes each,
whose union contains at most n nodes.

We note that, in a practical implementation of the above algorithm, it is
sufficient to apply the folklore algorithm to the trees of Lemma 2 (which are
small enough to fit in cache). From the theoretical perspective, however, this
solution runs in O(n log log n) time. We now show how to reach linear time
(though with a less practical solution).

Intuitively, we perform one more round of our recursive strategy on the trees
of Lemma 2, obtaining trees of size z = O(log3 log n). Finally, we use tabulation:
there are o(n/ log n) possible trees with z nodes, so we can pre-compute their
centroid decomposition in O(n) time with the folklore algorithm. The following
theorem states our final result.

Theorem 1. The centroid decomposition of a tree with n nodes can be computed
in O(n) time and O(n) space.

Proof. By Lemma 2, we obtain trees of size at most log3 n. Our idea is to apply
one more round of our recursive strategy to those trees. As a result, in O(n)
additional time we reduce the problem to that of computing the centroid decom-
position of a certain number of trees of size at most (log log3 n)3 = 27 log3 log n
whose union contains at most n nodes. The trees are now small enough to use
tabulation. The number of distinct (rooted) trees with at most z = 27 log3 log n

nodes is upper-bounded by N = 22z = 254 log3 logn. We compute the centroid
decomposition of each of them in total O(N · z log z) = o(n) time using the
folklore algorithm. We store the centroid tree of each of these trees in a table
U [k][p] indexed by the number k of nodes of the tree and a unique identifier p
representing the rank of the tree among all trees with k nodes. This identifier can
be, for example, the 2k-bits integer corresponding to the balanced parentheses
representation of the tree, which can be computed in linear time with a DFS
visit. Table U takes O(N · z2) words of space, which is again o(n).

We use the table as follows. Given an unrooted tree T ∗ with k′ ≤ 27 log3 log n
nodes, we root it arbitrarily1 (storing the permutation associating nodes of the
rooted and unrooted versions of T ∗), we compute its DFS-identifier p′, and access
U [k′][p′]. This entry contains the centroid tree decomposition of the (rooted
version) of T ∗. The process takes O(k′) (linear) time, therefore by applying the
procedure to all those small trees we complete the centroid decomposition of our
input tree T in additional O(n) time. ��

References

1. Aronov, B., et al.: Data structures for halfplane proximity queries and incre-
mental voronoi diagrams. In: Proceedings of the 7th Latin American Symposium
on Theoretical Informatics (LATIN), pp. 80–92 (2006). https://doi.org/10.1007/
11682462 12

1 Note that the centroid decomposition does not depend on how the tree is rooted.

https://doi.org/10.1007/11682462_12
https://doi.org/10.1007/11682462_12


282 D. Della Giustina et al.

2. Bender, M.A., Farach-Colton, M., Kuszmaul, B.C.: Cache-oblivious string b-trees.
In: Proceedings of the Twenty-Fifth ACM SIGACT-SIGMOD-SIGART Sympo-
sium on Principles of Database Systems (PODS), pp. 233–242 (2006). https://doi.
org/10.1145/1142351.1142385

3. Brodal, G.S., Fagerberg, R., Pedersen, C.N.S., Östlin, A.: The complexity of con-
structing evolutionary trees using experiments. In: Proceedings of the 28th Inter-
national Colloquium on Automata, Languages and Programming (ICALP), pp.
140–151 (2001). https://doi.org/10.1007/3-540-48224-5 12

4. Brodal, G.S., Fagerberg, R., Pedersen, C.N.S., Östlin, A.: The complexity of con-
structing evolutionary trees using experiments. Technical Report BRICS-RS-01-1,
BRICS, Department of Computer Science, University of Aarhus (2001). https://
www.brics.dk/RS/01/1/BRICS-RS-01-1.pdf

5. Ferragina, P.: On the weak prefix-search problem. Theoret. Comput. Sci. 483,
75–84 (2013). https://doi.org/10.1016/j.tcs.2012.06.011

6. Ferragina, P., Venturini, R.: Compressed cache-oblivious string b-tree. ACM Trans.
Algorithms (TALG) 12(4), 52:1–52:17 (2016). https://doi.org/10.1145/2903141

7. Gagie, T., Hermelin, D., Landau, G.M., Weimann, O.: Binary jumbled pattern
matching on trees and tree-like structures. Algorithmica 73(3), 571–588 (2015).
https://doi.org/10.1007/s00453-014-9957-6

8. Geary, R.F., Raman, R., Raman, V.: Succinct ordinal trees with level-ancestor
queries. ACM Trans. Algorithms (TALG) 2(4), 510–534 (2006)

9. Guibas, L.J., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.E.: Linear-time algo-
rithms for visibility and shortest path problemsinside triangulated simple polygons.
Algorithmica 2, 209–233 (1987). https://doi.org/10.1007/BF01840360

10. Jordan, C.: Sur les assemblages de lignes. Journal für die reine und angewandte
Mathematik 70, 185–190 (1869)

11. Kociumaka, T., Pachocki, J., Radoszewski, J., Rytter, W., Walen, T.: Efficient
counting of square substrings in a tree. Theoret. Comput. Sci. 544, 60–73 (2014).
https://doi.org/10.1016/j.tcs.2014.04.015

12. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst.
Sci. 26(3), 362–391 (1983). https://doi.org/10.1016/0022-0000(83)90006-5

https://doi.org/10.1145/1142351.1142385
https://doi.org/10.1145/1142351.1142385
https://doi.org/10.1007/3-540-48224-5_12
https://www.brics.dk/RS/01/1/BRICS-RS-01-1.pdf
https://www.brics.dk/RS/01/1/BRICS-RS-01-1.pdf
https://doi.org/10.1016/j.tcs.2012.06.011
https://doi.org/10.1145/2903141
https://doi.org/10.1007/s00453-014-9957-6
https://doi.org/10.1007/BF01840360
https://doi.org/10.1016/j.tcs.2014.04.015
https://doi.org/10.1016/0022-0000(83)90006-5

	A New Linear-Time Algorithm for Centroid Decomposition
	1 Introduction
	2 The Algorithm
	References




