
Weighted Shortest Common
Supersequence Problem Revisited

Panagiotis Charalampopoulos1 , Tomasz Kociumaka2,3 , Solon P. Pissis4 ,
Jakub Radoszewski3(B) , Wojciech Rytter3 , Juliusz Straszyński3 ,

Tomasz Waleń3 , and Wiktor Zuba3

1 Department of Informatics, King’s College London, London, UK
panagiotis.charalampopoulos@kcl.ac.uk

2 Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
3 Institute of Informatics, University of Warsaw, Warsaw, Poland

{kociumaka,jrad,rytter,jks,walen,w.zuba}@mimuw.edu.pl
4 CWI, Amsterdam, The Netherlands

solon.pissis@cwi.nl

Abstract. A weighted string, also known as a position weight matrix,
is a sequence of probability distributions over some alphabet. We revisit
the Weighted Shortest Common Supersequence (WSCS) problem, intro-
duced by Amir et al. [SPIRE 2011], that is, the SCS problem on weighted
strings. In the WSCS problem, we are given two weighted strings W1

and W2 and a threshold 1
z

on probability, and we are asked to compute
the shortest (standard) string S such that both W1 and W2 match sub-
sequences of S (not necessarily the same) with probability at least 1

z
.

Amir et al. showed that this problem is NP-complete if the probabilities,
including the threshold 1

z
, are represented by their logarithms (encoded

in binary).
We present an algorithm that solves the WSCS problem for two

weighted strings of length n over a constant-sized alphabet in O(n2√z
log z) time. Notably, our upper bound matches known conditional lower
bounds stating that the WSCS problem cannot be solved in O(n2−ε)
time or in O∗(z0.5−ε) with time, where the O∗ notation suppresses fac-
tors polynomial with respect to the instance size (with numeric values
encoded in binary), unless there is a breakthrough improving upon long-
standing upper bounds for fundamental NP-hard problems (CNF-SAT

and Subset Sum, respectively).
We also discover a fundamental difference between the WSCS prob-

lem and the Weighted Longest Common Subsequence (WLCS) problem,
introduced by Amir et al. [JDA 2010]. We show that the WLCS problem
cannot be solved in O(nf(z)) time, for any function f(z), unless P = NP.

Tomasz Kociumaka was supported by ISF grants no. 824/17 and 1278/16 and by an
ERC grant MPM under the EU’s Horizon 2020 Research and Innovation Programme
(grant no. 683064).
Jakub Radoszewski and Juliusz Straszyński were supported by the “Algorithms for
text processing with errors and uncertainties” project carried out within the HOMING
program of the Foundation for Polish Science co-financed by the European Union under
the European Regional Development Fund.

c© Springer Nature Switzerland AG 2019
N. R. Brisaboa and S. J. Puglisi (Eds.): SPIRE 2019, LNCS 11811, pp. 221–238, 2019.
https://doi.org/10.1007/978-3-030-32686-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32686-9_16&domain=pdf
http://orcid.org/0000-0002-6024-1557
http://orcid.org/0000-0002-2477-1702
http://orcid.org/0000-0002-1445-1932
http://orcid.org/0000-0002-0067-6401
http://orcid.org/0000-0002-9162-6724
http://orcid.org/0000-0003-2207-0053
http://orcid.org/0000-0002-7369-3309
http://orcid.org/0000-0002-1988-3507
https://doi.org/10.1007/978-3-030-32686-9_16

222 P. Charalampopoulos et al.

1 Introduction

Consider two strings X and Y . A common supersequence of X and Y is a
string S such that X and Y are both subsequences of S. A shortest common
supersequence (SCS) of X and Y is a common supersequence of X and Y
of minimum length. The Shortest Common Supersequence problem (the
SCS problem, in short) is to compute an SCS of X and Y . The SCS problem
is a classic problem in theoretical computer science [18,23,25]. It is solvable in
quadratic time using a standard dynamic-programming approach [13], which also
allows computing a shortest common supersequence of any constant number of
strings (rather than just two) in polynomial time. In case of an arbitrary number
of input strings, the problem becomes NP-hard [23] even when the strings are
binary [25].

A weighted string of length n over some alphabet Σ is a type of uncertain
sequence. The uncertainty at any position of the sequence is modeled using a
subset of the alphabet (instead of a single letter), with every element of this
subset being associated with an occurrence probability; the probabilities are
often represented in an n × |Σ| matrix. These kinds of data are common in
various applications where: (i) imprecise data measurements are recorded; (ii)
flexible sequence modeling, such as binding profiles of molecular sequences, is
required; (iii) observations are private and thus sequences of observations may
have artificial uncertainty introduced deliberately [2]. For instance, in computa-
tional biology they are known as position weight matrices or position probability
matrices [26].

In this paper, we study the Weighted Shortest Common Superse-

quence problem (the WSCS problem, in short) introduced by Amir et al. [5],
which is a generalization of the SCS problem for weighted strings. In the WSCS

problem, we are given two weighted strings W1 and W2 and a probability thresh-
old 1

z , and the task is to compute the shortest (standard) string such that both
W1 and W2 match subsequences of S (not necessarily the same) with probabil-
ity at least 1

z . In this work, we show the first efficient algorithm for the WSCS

problem.
A related problem is the Weighted Longest Common Subsequence

problem (the WLCS problem, in short). It was introduced by Amir et al. [4]
and further studied in [14] and, very recently, in [20]. In the WLCS problem, we
are also given two weighted strings W1 and W2 and a threshold 1

z on probability,
but the task is to compute the longest (standard) string S such that S matches
a subsequence of W1 with probability at least 1

z and S matches a subsequence
of W2 with probability at least 1

z . For standard strings S1 and S2, the length
of their shortest common supersequence |SCS(S1, S2)| and the length of their
longest common subsequence |LCS(S1, S2)| satisfy the following folklore relation:

|LCS(S1, S2)| + |SCS(S1, S2)| = |S1| + |S2|. (1)

However, an analogous relation does not connect the WLCS and WSCS prob-
lems, even though both problems are NP-complete because of similar reductions,

Weighted Shortest Common Supersequence Problem Revisited 223

which remain valid even in the case that both weighted strings have the same
length [4,5]. In this work, we discover an important difference between the two
problems.

Kociumaka et al. [21] introduced a problem called Weighted Consensus,
which is a special case of the WSCS problem asking whether the WSCS of two
weighted strings of length n is of length n, and they showed that the Weighted

Consensus problem is NP-complete yet admits an algorithm running in pseudo-
polynomial time O(n +

√
z log z) for constant-sized alphabets1. Furthermore, it

was shown in [21] that the Weighted Consensus problem cannot be solved
in O∗(z0.5−ε) time for any ε > 0 unless there is an O∗(2(0.5−ε)n)-time algorithm
for the Subset Sum problem. Let us recall that the Subset Sum problem, for
a set of n integers, asks whether there is a subset summing up to a given integer.
Moreover, the O∗(2n/2) running time for the Subset Sum problem, achieved by
a classic meet-in-the-middle approach of Horowitz and Sahni [15], has not been
improved yet despite much effort; see e.g. [6].

Abboud et al. [1] showed that the Longest Common Subsequence prob-
lem over constant-sized alphabets cannot be solved in O(n2−ε) time for ε > 0
unless the Strong Exponential Time Hypothesis [16,17,22] fails. By (1), the
same conditional lower bound applies to the SCS problem, and since standard
strings are a special case of weighted strings (having one letter occurring with
probability equal to 1 at each position), it also applies to the WSCS problem.

The following theorem summarizes the above conditional lower bounds on
the WSCS problem.

Theorem 1 (Conditional hardness of the WSCS problem; see [1,21]).
Even in the case of constant-sized alphabets, the Weighted Shortest Com-

mon Supersequence problem is NP-complete, and for any ε > 0 it cannot be
solved:

1. in O(n2−ε) time unless the Strong Exponential Time Hypothesis fails;
2. in O∗(z0.5−ε) time unless there is an O∗(2(0.5−ε)n)-time algorithm for the

Subset Sum problem.

Our Results. We give an algorithm for the WSCS problem with pseudo-
polynomial running time that depends polynomially on n and z. Note that such
algorithms have already been proposed for several problems on weighted strings:
pattern matching [9,12,21,24], indexing [3,7,8,11], and finding regularities [10].
In contrast, we show that no such algorithm is likely to exist for the WLCS

problem.
Specifically, we develop an O(n2

√
z log z)-time algorithm for the WSCS prob-

lem in the case of a constant-sized alphabet2. This upper bound matches the
conditional lower bounds of Theorem 1. We then show that unless P = NP , the
WLCS problem cannot be solved in O(nf(z)) time for any function f(·).
1 Note that in general z /∈ O∗(1) unless z is encoded in unary.
2 We consider the case of |Σ| = O(1) just for simplicity. For a general alphabet, our

algorithm can be modified to work in O(n2|Σ|√z log z) time.

224 P. Charalampopoulos et al.

Model of Computations. We assume the word RAM model with word size
w = Ω(log n+log z). We consider the log-probability representation of weighted
sequences, that is, we assume that the non-zero probabilities in the weighted
sequences and the threshold probability 1

z are all of the form c
p

2dw , where c and
d are constants and p is an integer that fits in O(1) machine words.

2 Preliminaries

A weighted string W = W [1] · · · W [n] of length |W | = n over alphabet Σ is a
sequence of sets of the form

W [i] = {(c, π
(W)
i (c)) : c ∈ Σ}.

Here, π
(W)
i (c) is the occurrence probability of the letter c at the position i ∈

[1 . . n].3 These values are non-negative and sum up to 1 for a given index i.
By W [i . . j] we denote the weighted substring W [i] · · · W [j]; it is called a

prefix if i = 1 and a suffix if j = |W |.
The probability of matching of a string S with a weighted string W , with

|S| = |W | = n, is

P(S,W) =
n∏

i=1

π
(W)
i (S[i]) =

n∏

i=1

P(S[i] = W [i]).

We say that a (standard) string S matches a weighted string W with probability
at least 1

z , denoted by S ≈z W , if P(S,W) ≥ 1
z . We also denote

Matchedz(W) = {S ∈ Σn : P(S,W) ≥ 1
z }.

For a string S we write W ⊆z S if S′ ≈z W for some subsequence S′ of S.
Similarly we write S ⊆z W if S ≈z W ′ for some subsequence W ′ of W .

Our main problem can be stated as follows.

Weighted Shortest Common Supersequence (WSCS(W1,W2, z))
Input: Weighted strings W1 and W2 of length up to n and a threshold 1

z .
Output: A shortest standard string S such that W1 ⊆z S and W2 ⊆z S.

Example 2. If the alphabet is Σ = {a, b}, then we write the weighted string as
W = [p1, p2, . . . , pn], where pi = π

(W)
i (a); in other words, pi is the probability

that the ith letter W [i] is a. For

W1 = [1, 0.2, 0.5], W2 = [0.2, 0.5, 1], and z = 5
2 ,

we have WSCS(W1, W2, z) = baba since W1 ⊆z baba, W2 ⊆z baba (the witness
subsequences are underlined), and baba is a shortest string with this property.
3 For any two integers � ≤ r, we use [� . . r] to denote the integer range {�, . . . , r}.

Weighted Shortest Common Supersequence Problem Revisited 225

We first show a simple solution to WSCS based on the following facts.

Observation 3 (Amir et al. [3]). Every weighted string W matches at most
z standard strings with probability at least 1

z , i.e., |Matchedz(W)| ≤ z.

Lemma 4. The set Matchedz(W) can be computed in O(nz) time if |Σ| = O(1).

Proof. If S ∈ Matchedz(W), then S[1 . . i] ∈ Matchedz(W [1 . . i]) for every index i.
Hence, the algorithm computes the sets Matchedz for subsequent prefixes of W .
Each string S ∈ Matchedz(W [1 . . i]) is represented as a triple (c, p, S′), where
c = S[i] is the last letter of S, p = P(S,W [1 . . i]), and S′ = S[1 . . i−1] points to
an element of Matchedz(W [1 . . i− 1]). Such a triple is represented in O(1) space.

Assume that Matchedz(W [1 . . i − 1]) has already been computed. Then, for
every S′ = (c′, p′, S′′) ∈ Matchedz(W [1 . . i − 1]) and every c ∈ Σ, if p := p′ ·
π
(W)
i (c) ≥ 1

z , then the algorithm adds (c, p, S′) to Matchedz(W [1 . . i]).
By Observation 3, |Matchedz(W [1 . . i−1])| ≤ z and |Matchedz(W [1 . . i])| ≤ z.

Hence, the O(nz) time complexity follows. �	
Proposition 5. The WSCS problem can be solved in O(n2z2) time if |Σ| =
O(1).

Proof. The algorithm builds Matchedz(W1) and Matchedz(W2) using Lemma 4.
These sets have size at most z by Observation 3. The result is the shortest
string in

{SCS(S1, S2) : S1 ∈ Matchedz(W1), S2 ∈ Matchedz(W2)}.

Recall that the SCS of two strings can be computed in O(n2) time using a
standard dynamic programming algorithm [13]. �	
We substantially improve upon this upper bound in Sects. 3 and 4.

2.1 Meet-in-the-Middle Technique

In the decision version of the Knapsack problem, we are given n items with
weights wi and values vi, and we seek for a subset of items with total weight
up to W and total value at least V . In the classic meet-in-the-middle solution to
the Knapsack problem by Horowitz and Sahni [15], the items are divided into
two sets S1 and S2 of sizes roughly 1

2n. Initially, the total value and the total
weight is computed for every subset of elements of each set Si. This results in
two sets A,B, each with O(2n/2) pairs of numbers. The algorithm needs to pick
a pair from each set such that the first components of the pairs sum up to at
most W and the second components sum up to at least V . This problem can be
solved in linear time w.r.t. the set sizes provided that the pairs in both sets A
and B are sorted by the first component.

226 P. Charalampopoulos et al.

Let us introduce a modified version this problem.

Merge(A,B,w)
Input: Two sets A and B of points in 2 dimensions and a threshold w.
Output: Do there exist (x1, y1) ∈ A, (x2, y2) ∈ B such that x1x2, y1y2 ≥ w?

A linear-time solution to this problem is the same as for the problem in the
meet-in-the-middle solution for Knapsack. However, for completeness we prove
the following lemma (see also [21, Lemma 5.6]):

Lemma 6 (Horowitz and Sahni [15]). The Merge problem can be solved in
linear time assuming that the points in A and B are sorted by the first component.

Proof. A pair (x, y) is irrelevant if there is another pair (x′, y′) in the same set
such that x′ ≥ x and y′ ≥ y. Observe that removing an irrelevant point from A
or B leads to an equivalent instance of the Merge problem.

Since the points in A and B are sorted by the first component, a single
scan through these pairs suffices to remove all irrelevant elements. Next, for
each (x, y) ∈ A, the algorithm computes (x′, y′) ∈ B such that x′ ≥ w/x and
additionally x′ is smallest possible. As the irrelevant elements have been removed
from B, this point also maximizes y′ among all pairs satisfying x′ ≥ w/x. If the
elements (x, y) are processed by non-decreasing values x, the values x′ do not
increase, and thus the points (x′, y′) can be computed in O(|A| + |B|) time in
total. �	

3 Dynamic Programming Algorithm for WSCS

Our algorithm is based on dynamic programming. We start with a less efficient
procedure and then improve it in the next section. Henceforth, we only con-
sider computing the length of the WSCS; an actual common supersequence of
this length can be recovered from the dynamic programming using a standard
approach (storing the parent of each state).

For a weighted string W , we introduce a data structure that stores, for every
index i, the set {P(S,W [1 . . i]) : S ∈ Matchedz(W [1 . . i])} represented as an
array of size at most z (by Observation 3) with entries in the increasing order.
This data structure is further denoted as Freq i(W, z). Moreover, for each ele-
ment p ∈ Freq i+1(W, z) and each letter c ∈ Σ, a pointer to p′ = p/π

(W)
i+1 (c) in

Freq i(W, z) is stored provided that p′ ∈ Freq i(W, z). A proof of the next lemma
is essentially the same as of Lemma 4.

Lemma 7. For a weighted string W of length n, the arrays Freq i(W, z), with
i ∈ [1 . . n], can be constructed in O(nz) total time if |Σ| = O(1).

Proof. Assume that Freq i(W, z) is computed. For every c ∈ Σ, we create a list

Lc = {p · π
(W)
i+1 (c) : p ∈ Freq i(W, z), p · π

(W)
i+1 (c) ≥ 1

z }.

Weighted Shortest Common Supersequence Problem Revisited 227

The lists are sorted since Freq i(W, z) was sorted. Then Freq i+1(W, z) can be
computed by merging all the lists Lc (removing duplicates). This can be done
in O(z) time since σ = O(1). The desired pointers can be computed within the
same time complexity. �	
Let us extend the WSCS problem in the following way:

WSCS
′(W1,W2, �, p, q):

Input: Weighted strings W1,W2, an integer �, and probabilities p, q.
Output: Is there a string S of length � with subsequences S1 and S2 such
that P(S1,W1) = p and P(S2,W2) = q?

In the following, a state in the dynamic programming denotes a quadruple
(i, j, �, p), where i ∈ [0 . . |W1|], j ∈ [0 . . |W2|], � ∈ [0 . . |W1| + |W2|], and p ∈
Freq i(W1, z).

Observation 8. There are O(n3z) states.

In the dynamic programming, for all states (i, j, �, p), we compute

DP[i, j, �, p] = max{q : WSCS
′(W1[1 . . i],W2[1 . . j], �, p, q) = true}. (2)

Let us denote πk
i (c) = π

(Wk)
i (c). Initially, the array DP is filled with zeroes,

except that the values DP[0, 0, �, 1] for � ∈ [0 . . |W1| + |W2|] are set to 1. In
order to cover corner cases, we assume that π1

0(c) = π2
0(c) = 1 for any c ∈ Σ

and that DP[i, j, �, p] = 0 if (i, j, �, p) is not a state. The procedure Compute
implementing the dynamic-programming algorithm is shown as Algorithm1.

Algorithm 1. Compute(W1,W2, z)

for � = 0 to |W1| + |W2| do
DP[0, 0, �, 1] := 1;

foreach state (i, j, �, p) in lexicographic order do

foreach c ∈ Σ do

x := π1
i (c); y := π2

j (c);
DP[i, j, �, p] := max{

DP[i, j, �, p],
DP[i − 1, j, � − 1, p

x],
y · DP[i, j − 1, � − 1, p],
y · DP[i − 1, j − 1, � − 1, p

x]
};

return min {� : DP[|W1|, |W2|, �, p] ≥ 1
z for some p ∈ Freq |W1|(W1, z)};

228 P. Charalampopoulos et al.

The correctness of the algorithm is implied by the following lemma:

Lemma 9 (Correctness of Algorithm 1). The array DP satisfies (2). In
particular, Compute(W1,W2, z) = WSCS(W1,W2, z).

Proof. The proof that DP satisfies (2) goes by induction on i+ j. The base case
of i + j = 0 holds trivially. It is simple to verify the cases that i = 0 or j = 0.
Let us henceforth assume that i > 0 and j > 0.

We first show that

DP[i, j, �, p] ≤ max{q : WSCS
′(W1[1 . . i],W2[1 . . j], �, p, q) = true}.

The value q = DP[i, j, �, p] was derived from DP[i − 1, j, � − 1, p/x] = q, or
DP[i, j − 1, � − 1, p] = q/y, or DP[i − 1, j − 1, � − 1, p/x] = q/y, where x = π1

i (c)
and y = π2

j (c) for some c ∈ Σ. In the first case, by the inductive hypothesis, there
exists a string T that is a solution to WSCS

′(W1[1 . . i−1],W2[1 . . j], �−1, p/x, q).
That is, T has subsequences T1 and T2 such that

P(T1,W1[1 . . i − 1]) = p/x and P(T2,W2[1 . . j]) = q.

Then, for S = Tc, S1 = T1c, and S2 = T2, we indeed have

P(S1,W1[1 . . i]) = p and P(S2,W2[1 . . j]) = q.

The two remaining cases are analogous.

Let us now show that

DP[i, j, �, p] ≥ max{q : WSCS
′(W1[1 . . i],W2[1 . . j], �, p, q) = true}.

Assume a that string S is a solution to WSCS
′(W1[1 . . i],W2[1 . . j], �, p, q). Let

S1 and S2 be the subsequences of S such that P(S1,W1) = p and P(S2,W2) = q.
Let us first consider the case that S1[i] = S[�]
= S2[j]. Then T1 = S1[1 . . i−1]

and T2 = S2 are subsequences of T = S[1 . . � − 1]. We then have

p′ := P(T1,W1[1 . . i − 1]) = p/π1
i (S1[i]).

By the inductive hypothesis, DP[i − 1, j, � − 1, p′] ≥ q. Hence, DP[i, j, �, p] ≥ q
because DP[i− 1, j, �− 1, p′] is present as the second argument of the maximum
in the dynamic programming algorithm for c = S[�].

The cases that S1[i]
= S[�] = S2[j] and that S1[i] = S[�] = S2[j] rely on
the values DP[i, j − 1, � − 1, p] ≥ q/y and DP[i − 1, j − 1, � − 1, p/x] ≥ q/y,
respectively.

Finally, the case that S1[i]
= S[�]
= S2[j] is reduced to one of the previous
cases by changing S[�] to S1[i] so that S is still a supersequence of S1 and S2

and a solution to WSCS
′(W1[1 . . i],W2[1 . . j], �, p, q). �	

Proposition 10. The WSCS problem can be solved in O(n3z) time if |Σ| =
O(1).

Weighted Shortest Common Supersequence Problem Revisited 229

Proof. The correctness follows from Lemma 9. As noted in Observation 8, the
dynamic programming has O(n3z) states. The number of transitions from a
single state is constant provided that |Σ| = O(1).

Before running the dynamic programming algorithm of Proposition 10, we
construct the data structures Freq i(W1, z) for all i ∈ [1 . . n] using Lemma 7.
The last dimension in the DP[i, j, �, p] array can then be stored as a position in
Freq i(W1, z). The pointers in the arrays Freq i are used to follow transitions. �	

4 Improvements

4.1 First Improvement: Bounds on �

Our approach here is to reduce the number of states (i, j, �, p) in Algorithm 1
from O(n3z) to O(n2z log z). This is done by limiting the number of values of �
considered for each pair of indices i, j from O(n) to O(log z).

For a weighted string W , we define H(W) as a standard string generated by
taking the most probable letter at each position, breaking ties arbitrarily. The
string H(W) is also called the heavy string of W . By dH(S, T) we denote the
Hamming distance of strings S and T . Let us recall an observation from [21].

Observation 11 ([21, Observation 4.3]). If S ≈z W for a string S and a
weighted string W , then dH(S,H(W)) ≤ log2 z.

The lemma below follows from Observation 11.

Lemma 12. If strings S1 and S2 satisfy S1 ≈z W1 and S2 ≈z W2, then

|SCS(S1, S2) − SCS(H(W1),H(W2))| ≤ 2 log2 z.

Proof. By Observation 11,

dH(S1,H(W1)) ≤ log2 z and dH(S2,H(W2)) ≤ log2 z.

Due to the relation (1) between LCS and SCS, it suffices to show the following.

Claim. Let S1,H1, S2,H2 be strings such that |S1| = |H1| and |S2| = |H2|. If
dH(S1,H1) ≤ d and dH(S2,H2) ≤ d, then |LCS(S1, S2) − LCS(H1,H2)| ≤ 2d.

Proof. Notice that if S′
1, S

′
2 are strings resulting from S1, S2 by removing up to

d letters from each of them, then LCS(S′
1, S

′
2) ≥ LCS(S1, S2) − 2d.

We now create strings S′
k for k = 1, 2, by removing from Sk letters at positions

i such that Sk[i]
= Hk[i]. Then, according to the observation above, we have

LCS(S′
1, S

′
2) ≥ LCS(S1, S2) − 2d.

Any common subsequence of S′
1 and S′

2 is also a common subsequence of H1 and
H2 since S′

1 and S′
2 are subsequences of H1 and H2, respectively. Consequently,

LCS(H1,H2) ≥ LCS(S1, S2) − 2d.

In a symmetric way, we can show that LCS(S1, S2) ≥ LCS(H1,H2) − 2d. This
completes the proof of the claim. �	

230 P. Charalampopoulos et al.

We apply the claim for H1 = H(W1), H2 = H(W2), and d = log2 z. �	
Let us make the following simple observation.

Observation 13. If S = WSCS(W1,W2, z), then S = SCS(S1, S2) for some
strings S1 and S2 such that W1 ⊆z S1 and W2 ⊆z S2.

Using Lemma 12, we refine the previous algorithm as shown in Algorithm2.

Algorithm 2. Improved1(W1,W2, z)

In the beginning, we apply the classic O(n2)-time dynamic-programming
solution to the standard SCS problem on H1 = H(W1) and H2 = H(W2).
It computes a 2D array T such that

T [i, j] = SCS(H1[1 . . i],H2[1 . . j]).

Let us denote an interval

L[i, j] = [T [i, j] − �2 log2 z� . . T [i, j] + �2 log2 z�].

We run the dynamic programming algorithm Compute restricted to states
(i, j, �, p) with � ∈ L[i, j].
Let DP′ denote the resulting array, restricted to states satisfying � ∈ L[i, j].
We return min {� : DP′[|W1|, |W2|, �, p] ≥ 1

z for some p ∈ Freq |W1|(W1, z)}.

Lemma 14 (Correctness of Algorithm 2). For every state (i, j, �, p), an
inequality DP′[i, j, �, p] ≤ DP[i, j, �, p] holds. Moreover, if S = SCS(S1, S2),
|S| = �, P(S1,W1[1 . . i]) = p ≥ 1

z and P(S2,W2[1 . . j]) = q ≥ 1
z , then

DP′[i, j, �, p] ≥ q. Consequently, Improved1(W1,W2, z) = WSCS(W1,W2, z).

Proof. A simple induction on i+j shows that the array DP′ is lower bounded by
DP. This is because Algorithm 2 is restricted to a subset of states considered by
Algorithm 1, and because DP′[i, j, �, p] is assumed to be 0 while DP[i, j, �, p] ≥ 0
for states (i, j, �, p) ignored in Algorithm 2.

We prove the second part of the statement also by induction on i + j. The
base cases satisfying i = 0 or j = 0 can be verified easily, so let us henceforth
assume that i > 0 and j > 0.

First, consider the case that S1[i] = S[�]
= S2[j]. Let T = S[1 . . � − 1] and
T1 = S1[1 . . i − 1]. We then have

p′ := P(T1,W1[1 . . i − 1]) = p/π1
i (S1[i]).

Claim. If S1[i] = S[�]
= S2[j], then T = SCS(T1, S2).

Proof. Let us first show that T is a common supersequence of T1 and S2. Indeed,
if T1 was not a subsequence of T , then T1S1[i] = S1 would not be a subsequence
of TS1[i] = S, and if S2 was not a subsequence of T , then it would not be a
subsequence of TS1[i] = S since S1[i]
= S2[j].

Weighted Shortest Common Supersequence Problem Revisited 231

Finally, if T1 and S2 had a common supersequence T ′ shorter than T , then
T ′S1[i] would be a common supersequence of S1 and S2 shorter than S. �	
By the claim and the inductive hypothesis, DP′[i − 1, j, � − 1, p′] ≥ q. Hence,
DP′[i, j, �, p] ≥ q due to the presence of the second argument of the maximum in
the dynamic programming algorithm for c = S[�]. Note that (i, j, �, p) is a state
in Algorithm 2 since � ∈ L[i, j] follows from Lemma 12.

The cases that S1[i]
= S[�] = S2[j] and that S1[i] = S[�] = S2[j] use the val-
ues DP′[i, j−1, �−1, p] ≥ q/y and DP′[i−1, j−1, �−1, p/x] ≥ q/y, respectively.
Finally, the case that S1[i]
= S[�]
= S2[j] is impossible as S = SCS(S1, S2). �	
Example 15. Let W1 = [1, 0], W2 = [0] (using the notation from Example 2),
and z ≥ 1. The only strings that match W1 and W2 are S1 = ab and S2 = b,
respectively. We have DP[2, 1, 3, 1] = 1 which corresponds, in particular, to a
solution S = abb which is not an SCS of S1 and S2. However, DP[2, 1, 2, 1] =
DP′[2, 1, 2, 1] = 1 which corresponds to S = ab = SCS(S1, S2).

Proposition 16. The WSCS problem can be solved in O(n2z log z) time if
|Σ| = O(1).

Proof. The correctness of the algorithm follows from Lemma 14. The number of
states is now O(n2z log z) and thus so is the number of considered transitions. �	

4.2 Second Improvement: Meet in the Middle

The second improvement is to apply a meet-in-the-middle approach, which is
possible due to following observation resembling Observation 6.6 in [21].

Observation 17. If S ≈z W for a string S and weighted string W of length n,
then there exists a position i ∈ [1 . . n] such that

S[1 . . i − 1] ≈√
z W [1 . . i − 1] and S[i + 1 . . n] ≈√

z W [i + 1 . . n].

Proof. Select i as the maximum index with S[1 . . i − 1] ≈√
z W [1 . . i − 1]. �	

We first use dynamic programming to compute two arrays,
−−→
DP and

←−−
DP. The

array
−−→
DP contains a subset of states from DP′; namely the ones that satisfy

p ≥ 1√
z
. The array

←−−
DP is an analogous array defined for suffixes of W1 and W2.

Formally, we compute
−−→
DP for the reversals of W1 and W2, denoted as

−−→
DPR,

and set
←−−
DP[i, j, �, p] =

−−→
DPR[|W1|+1− i, |W2|+1− j, �, p]. Proposition 16 yields

Observation 18. Arrays
−−→
DP and

←−−
DP can be computed in O(n2

√
z log z) time.

232 P. Charalampopoulos et al.

Henceforth, we consider only a simpler case in which there exists a solution
S to WSCS(W1,W2, z) with a decomposition S = SL · SR such that

W1[1 . . i] ⊆√
z SL and W1[i + 1 . . |W1|] ⊆√

z SR (3)

holds for some i ∈ [0 . . |W1|].
In the pseudocode, we use the array L[i, j] from the first improvement,

denoted here as
−→
L [i, j], and a symmetric array

←−
L from right to left, i.e.:

←−
T [i, j] = SCS(H(W1)[i . . |W1|],H(W2)[j . . |W2|]),
←−
L [i, j] = [

←−
T [i, j] − �2 log2 z� . .

←−
T [i, j] + �2 log2 z�].

Algorithm 3 is applied for every i ∈ [0 . . |W1|] and j ∈ [0 . . |W2|].

Algorithm 3. Improved2(W1,W2, z, i, j)

res := ∞;

foreach �L ∈ −→
L [i, j], �R ∈ ←−

L [i + 1, j + 1] do

A := {(p, q) :
−−→
DP[i, j, �L, p] = q};

B := {(p, q) :
←−−
DP[i + 1, j + 1, �R, p] = q};

if Merge(A,B, z) then

res := min(res, �L + �R);
return res;

Lemma 19 (Correctness of Algorithm 3). Assuming that there is a solution
S to WSCS(W1,W2, z) that satisfies (3), we have

WSCS(W1,W2, z) = min
i,j

(Improved2(W1,W2, z, i, j)).

Proof. Assume that WSCS(W1,W2, z) has a solution S = SL · SR that satisfies
(3) for some i ∈ [0 . . |W1|] and denote �L = |SL|, �R = |SR|. Let S′

L and S′
R be

subsequences of SL and SR such that

pL := P(S′
L,W1[1 . . i]) ≥ 1√

z
and pR := P(S′

R,W1[i + 1 . . |W1|]) ≥ 1√
z
.

Let S′′
L and S′′

R be subsequences of SL and SR such that

P(S′′
L,W2[1 . . j]) = qL and P(S′′

R,W2[j + 1 . . |W2|]) = qR

for some j and qLqR ≥ 1
z .

By Lemma 14,
−−→
DP[i, j, �L, pL] ≥ qL and

←−−
DP[i+1, j +1, �R, pR] ≥ qR. Hence,

the set A will contain a pair (pL, q′
L) such that q′

L ≥ qL and the set B will contain
a pair (pR, q′

R) such that q′
R ≥ qR. Consequently, Merge(A,B, z) will return a

positive answer.

Weighted Shortest Common Supersequence Problem Revisited 233

Similarly, if Merge(A,B, z) returns a positive answer for given i, j, �L and
�R, then

−−→
DP[i, j, �L, pL] ≥ qL and

←−−
DP[i + 1, j + 1, �R, pR] ≥ qR

for some pLpR, qLqR ≥ 1
z . By Lemma 14, this implies that

WSCS
′(W1[1 . . i],W2[1 . . j], �L, pL, qL)

and
WSCS

′(W1[i + 1 . . |W1|],W2[j + 1 . . |W2|], �R, pR, qR)

have a positive answer, so

WSCS
′(W1,W2, �L + �R, pLpR, qLqR)

has a positive answer too. Due to pLpR, qLqR ≥ 1
z , this completes the proof. �	

Proposition 20. The WSCS problem can be solved in O(n2
√

z log2 z) time if
|Σ| = O(1).

Proof. We use the algorithm Improved2, whose correctness follows from Lemma 19
in case (3) is satisfied. The general case of Observation 17 requires only a minor
technical change to the algorithm. Namely, the computation of

−−→
DP then addition-

ally includes all states (i, j, �, p) such that � ∈ −→
L [i, j], p ≥ 1

z , and p = π1
i (c)p′ for

some c ∈ Σ and p′ ∈ Freq i−1(W1,
√

z). Due to |Σ| = O(1), the number of such
states is still O(n2

√
z log z).

For every i and j, the algorithm solves O(log2 z) instances of Merge, each
of size O(

√
z). This results in the total running time of O(n2

√
z log2 z). �	

4.3 Third Improvement: Removing One log z Factor

The final improvement is obtained by a structural transformation after which
we only need to consider O(log z) pairs (�L, �R).

For this to be possible, we compute prefix maxima on the �-dimension
of the

−−→
DP and

←−−
DP arrays in order to guarantee monotonicity. That is, if

Merge(A,B, z) returns true for �L and �R, then we make sure that it would
also return true if any of these two lengths increased (within the corresponding
intervals).

This lets us compute, for every �L ∈ −→
L [i, j] the smallest �R ∈ ←−

L [i, j] such
that Merge(A,B, z) returns true using O(log z) iterations because the sought
�R may only decrease as �L increases. The pseudocode is given in Algorithm 4.

234 P. Charalampopoulos et al.

Algorithm 4. Improved3(W1,W2, z, i, j)

foreach state (i, j, �, p) of
−−→
DP in lexicographic order do−−→

DP[i, j, �, p] := max(
−−→
DP[i, j, �, p],

−−→
DP[i, j, � − 1, p]);

foreach state (i, j, �, p) of
←−−
DP in lexicographic order do←−−

DP[i, j, �, p] := max(
←−−
DP[i, j, �, p],

←−−
DP[i, j, � − 1, p]);

[a . . b] :=
−→
L [i, j]; [a′ . . b′] :=

←−
L [i + 1, j + 1];

�L := a; �R := b′ + 1; res := ∞;
while �L ≤ b and �R ≥ a′ do

A := {(p, q) :
−−→
DP[i, j, �L, p] = q};

B := {(p, q) :
←−−
DP[i + 1, j + 1, �R − 1, p] = q};

if Merge(A,B, z) then � �R is too large for the current �L

�R := �R − 1;
else � �R reached the target value for the current �L

if �R ≤ b′ then res := min(res, �L + �R);
�L := �L + 1;

return res;

Theorem 21. The WSCS problem can be solved in O(n2
√

z log z) time if
|Σ| = O(1).

Proof. Let us fix indices i and j. Let us denote Freq i(W, z) by
−−→
Freq i(W, z) and

introduce a symmetric array

←−−
Freq i(W, z) = {P(S,W [i . . |W |]) : S ∈ Matchedz(W [i . . |W |])}.

In the first loop of prefix maxima computation, we consider all � ∈ −→
L [i, j] and

p ∈ −−→
Freq i(W1,

√
z), and in the second loop, all � ∈ ←−

L [i, j] and p ∈ ←−−
Freq i(W1,

√
z).

Hence, prefix maxima take O(
√

z log z) time to compute.
Each step of the while-loop in Improved3 increases �L or decreases �R. Hence,

the algorithm produces only O(log z) instances of Merge, each of size O(
√

z).
The time complexity follows. �	

5 Lower Bound for WLCS

Let us first define the WLCS problem as it was stated in [4,14].

Weighted Longest Common Subsequence (WLCS(W1,W2, z))
Input: Weighted strings W1 and W2 of length up to n and a threshold 1

z .
Output: A longest standard string S such that S ⊆z W1 and S ⊆z W2.

Weighted Shortest Common Supersequence Problem Revisited 235

We consider the following well-known NP-complete problem [19]:

Subset Sum

Input: A set S of positive integers and a positive integer t.
Output: Is there a subset of S whose elements sum up to t?

Theorem 22. The WLCS problem cannot be solved in O(nf(z)) time if P
= NP.

Proof. We show the hardness result by reducing the NP-complete Subset Sum

problem to the WLCS problem with a constant value of z.
For a set S = {s1, s2, . . . , sn} of n positive integers, a positive integer t, and

an additional parameter p ∈ [2 . . n], we construct two weighted strings W1 and
W2 over the alphabet Σ = {a, b}, each of length n2.

Let qi = si

t . At positions i · n, for all i = [1 . . n], the weighted string W1

contains letter a with probability 2−qi and b otherwise, while W2 contains a with
probability 2

1
p−1 (qi−1) and b otherwise. All the other positions contain letter b

with probability 1. We set z = 2.
We assume that S contains only elements smaller than t (we can ignore the

larger ones and if there is an element equal to t, then there is no need for a
reduction). All the weights of a are then in the interval (12 , 1) since −qi ∈ (−1, 0)
and 1

p−1 (qi − 1) ∈ (−1, 0). Thus, since z = 2, letter b originating from a position
i · n can never occur in a subsequence of W1 or in a subsequence of W2. Hence,
every common subsequence of W1 and W2 is a subsequence of (bn−1a)n.

For I ⊆ [1 . . n], we have

∏

i∈I

π
(W1)
i·n (a) =

∏

i∈I

2−si/t ≥ 2−1 = 1
z ⇐⇒

∑

i∈I

si ≤ t

and
∏

i∈I

π
(W2)
i·n (a) =

∏

i∈I

2
1

p−1 (si/t−1) ≥ 2−1 = 1
z ⇐⇒

1
t(p−1)

(
∑

i∈I

si

)
− |I|

p−1 ≥ −1 ⇐⇒
∑

i∈I

si ≥ t(1 − p + |I|).

If I is a solution to the instance of the Subset Sum problem, then for p =
|I| there is a weighted common subsequence of length n(n − 1) + p obtained by
choosing all the letters b and the letters a that correspond to the elements of I.

Conversely, suppose that the constructed WLCS instance with a parameter
p ∈ [2 . . n] has a solution of length at least n(n−1)+p. Notice that a at position
i · n in W1 may be matched against a at position i′ · n in W2 only if i = i′.
(Otherwise, the length of the subsequence would be at most (n − |i − i′|)n ≤
(n − 1)n < n(n − 1) + p). Consequently, the solution yields a subset I ⊆ [1 . . n]
of at least p indices i such that a at position i · n in W1 is matched against a at
position i · n in W2. By the relations above, we have (a) |I| ≥ p, (b)

∑
i∈I si ≤ t,

236 P. Charalampopoulos et al.

and (c)
∑

i∈I si ≥ t(1 − p + |I|). Combining these three inequalities, we obtain∑
i∈I si = t and conclude that the Subset Sum instance has a solution.
Hence, the Subset Sum instance has a solution if and only if there exists

p ∈ [2 . . n] such that the constructed WLCS instance with p has a solution of
length at least n(n − 1) + p. This concludes that an O(nf(z))-time algorithm for
the WLCS problem implies the existence of an O(n2f(2)+1) = O(nO(1))-time
algorithm for the Subset Sum problem. The latter would yield P = NP . �	
Example 23. For S = {3, 7, 11, 15, 21} and t = 25 = 3 + 7 + 15, both weighted
strings W1 and W2 are of the form:

b4 ∗ b4 ∗ b4 ∗ b4 ∗ b4 ∗ ,

where each ∗ is equal to either a or b with different probabilities.
The probabilities of choosing a’s for W1 are equal respectively to

(
2− 3

25 , 2− 7
25 , 2− 11

25 , 2− 15
25 , 2− 21

25
)
,

while for W2 they depend on the value of p, and are equal respectively to

(
2− 22

25(p−1) , 2− 18
25(p−1) , 2− 14

25(p−1) , 2− 10
25(p−1) , 2− 4

25(p−1)
)
.

For p = 3, we have: WLCS(W1,W2, 2) = b4 a b4 a b4 b4 a b4, which corresponds
to taking the first, the second, and the fourth a. The length of this string is equal
to 23 = n(n − 1) + p, and its probability of matching is 1

2 = 2− 22
50 · 2− 18

50 · 2− 10
50 .

Thus, the subset {3, 7, 15} of S consisting of its first, second, and fourth element
is a solution to the Subset Sum problem.

References

1. Abboud, A., Backurs, A., Williams, V.V.: Tight hardness results for LCS and other
sequence similarity measures. In: Guruswami, V. (ed.) 56th IEEE Annual Sympo-
sium on Foundations of Computer Science, pp. 59–78. IEEE Computer Society
(2015). https://doi.org/10.1109/FOCS.2015.14

2. Aggarwal, C.C., Yu, P.S.: A survey of uncertain data algorithms and applications.
IEEE Trans. Knowl. Data Eng. 21(5), 609–623 (2009). https://doi.org/10.1109/
TKDE.2008.190

3. Amir, A., Chencinski, E., Iliopoulos, C.S., Kopelowitz, T., Zhang, H.: Property
matching and weighted matching. Theor. Comput. Sci. 395(2–3), 298–310 (2008).
https://doi.org/10.1016/j.tcs.2008.01.006

4. Amir, A., Gotthilf, Z., Shalom, B.R.: Weighted LCS. J. Discrete Algorithms 8(3),
273–281 (2010). https://doi.org/10.1016/j.jda.2010.02.001

5. Amir, A., Gotthilf, Z., Shalom, B.R.: Weighted shortest common supersequence.
In: Grossi, R., Sebastiani, F., Silvestri, F. (eds.) SPIRE 2011. LNCS, vol. 7024, pp.
44–54. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24583-1 6

6. Bansal, N., Garg, S., Nederlof, J., Vyas, N.: Faster space-efficient algorithms for
subset sum, k-sum, and related problems. SIAM J. Comput. 47(5), 1755–1777
(2018). https://doi.org/10.1137/17M1158203

https://doi.org/10.1109/FOCS.2015.14
https://doi.org/10.1109/TKDE.2008.190
https://doi.org/10.1109/TKDE.2008.190
https://doi.org/10.1016/j.tcs.2008.01.006
https://doi.org/10.1016/j.jda.2010.02.001
https://doi.org/10.1007/978-3-642-24583-1_6
https://doi.org/10.1137/17M1158203

Weighted Shortest Common Supersequence Problem Revisited 237

7. Barton, C., Kociumaka, T., Liu, C., Pissis, S.P., Radoszewski, J.: Indexing weighted
sequences: neat and efficient. Inf. Comput. (2019). https://doi.org/10.1016/j.ic.
2019.104462

8. Barton, C., Kociumaka, T., Pissis, S.P., Radoszewski, J.: Efficient index for
weighted sequences. In: Grossi, R., Lewenstein, M. (eds.) 27th Annual Sympo-
sium on Combinatorial Pattern Matching, CPM 2016. LIPIcs, vol. 54, pp. 4:1–4:13.
Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2016). https://doi.org/10.4230/
LIPIcs.CPM.2016.4

9. Barton, C., Liu, C., Pissis, S.P.: Linear-time computation of prefix table for
weighted strings & applications. Theor. Comput. Sci. 656, 160–172 (2016). https://
doi.org/10.1016/j.tcs.2016.04.029

10. Barton, C., Pissis, S.P.: Crochemore’s partitioning on weighted strings and appli-
cations. Algorithmica 80(2), 496–514 (2018). https://doi.org/10.1007/s00453-016-
0266-0

11. Charalampopoulos, P., Iliopoulos, C.S., Liu, C., Pissis, S.P.: Property suffix array
with applications. In: Bender, M.A., Farach-Colton, M., Mosteiro, M.A. (eds.)
LATIN 2018. LNCS, vol. 10807, pp. 290–302. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-77404-6 22

12. Charalampopoulos, P., Iliopoulos, C.S., Pissis, S.P., Radoszewski, J.: On-line
weighted pattern matching. Inf. Comput. 266, 49–59 (2019). https://doi.org/10.
1016/j.ic.2019.01.001

13. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algo-
rithms, 3rd edn. MIT Press (2009). https://mitpress.mit.edu/books/introduction-
algorithms-third-edition

14. Cygan, M., Kubica, M., Radoszewski, J., Rytter, W., Waleń, T.: Polynomial-time
approximation algorithms for weighted LCS problem. Discrete Appl. Math. 204,
38–48 (2016). https://doi.org/10.1016/j.dam.2015.11.011

15. Horowitz, E., Sahni, S.: Computing partitions with applications to the knapsack
problem. J. ACM 21(2), 277–292 (1974). https://doi.org/10.1145/321812.321823

16. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci.
62(2), 367–375 (2001). https://doi.org/10.1006/jcss.2000.1727

17. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001). https://doi.org/10.1006/
jcss.2001.1774

18. Jiang, T., Li, M.: On the approximation of shortest common supersequences and
longest common subsequences. SIAM J. Comput. 24(5), 1122–1139 (1995). https://
doi.org/10.1137/S009753979223842X

19. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Symposium on the Complexity of Computer Computations.
pp. 85–103. The IBM Research Symposia Series, Plenum Press, New York (1972).
https://doi.org/10.1007/978-1-4684-2001-2 9

20. Kipouridis, E., Tsichlas, K.: Longest common subsequence on weighted sequences
(2019). http://arxiv.org/abs/1901.04068

21. Kociumaka, T., Pissis, S.P., Radoszewski, J.: Pattern matching and consensus prob-
lems on weighted sequences and profiles. Theory Comput. Syst. 63(3), 506–542
(2019). https://doi.org/10.1007/s00224-018-9881-2

22. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on
the Exponential Time Hypothesis. Bull. EATCS 105, 41–72 (2011).
http://eatcs.org/beatcs/index.php/beatcs/article/view/92

23. Maier, D.: The complexity of some problems on subsequences and supersequences.
J. ACM 25(2), 322–336 (1978). https://doi.org/10.1145/322063.322075

https://doi.org/10.1016/j.ic.2019.104462
https://doi.org/10.1016/j.ic.2019.104462
https://doi.org/10.4230/LIPIcs.CPM.2016.4
https://doi.org/10.4230/LIPIcs.CPM.2016.4
https://doi.org/10.1016/j.tcs.2016.04.029
https://doi.org/10.1016/j.tcs.2016.04.029
https://doi.org/10.1007/s00453-016-0266-0
https://doi.org/10.1007/s00453-016-0266-0
https://doi.org/10.1007/978-3-319-77404-6_22
https://doi.org/10.1007/978-3-319-77404-6_22
https://doi.org/10.1016/j.ic.2019.01.001
https://doi.org/10.1016/j.ic.2019.01.001
https://mitpress.mit.edu/books/introduction-algorithms-third-edition
https://mitpress.mit.edu/books/introduction-algorithms-third-edition
https://doi.org/10.1016/j.dam.2015.11.011
https://doi.org/10.1145/321812.321823
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1137/S009753979223842X
https://doi.org/10.1137/S009753979223842X
https://doi.org/10.1007/978-1-4684-2001-2_9
http://arxiv.org/abs/1901.04068
https://doi.org/10.1007/s00224-018-9881-2
http://eatcs.org/beatcs/index.php/beatcs/article/view/92
https://doi.org/10.1145/322063.322075

238 P. Charalampopoulos et al.

24. Radoszewski, J., Starikovskaya, T.: Streaming k-mismatch with error correct-
ing and applications. In: Bilgin, A., Marcellin, M.W., Serra-Sagristà, J., Storer,
J.A. (eds.) Data Compression Conference, DCC 2017, pp. 290–299. IEEE (2017).
https://doi.org/10.1109/DCC.2017.14

25. Räihä, K., Ukkonen, E.: The shortest common supersequence problem over binary
alphabet is NP-complete. Theor. Comput. Sci. 16, 187–198 (1981). https://doi.
org/10.1016/0304-3975(81)90075-X

26. Stormo, G.D., Schneider, T.D., Gold, L., Ehrenfeucht, A.: Use of the ‘perceptron’
algorithm to distinguish translational initiation sites in E. coli. Nucl. Acids Res.
10(9), 2997–3011 (1982). https://doi.org/10.1093/nar/10.9.2997

https://doi.org/10.1109/DCC.2017.14
https://doi.org/10.1016/0304-3975(81)90075-X
https://doi.org/10.1016/0304-3975(81)90075-X
https://doi.org/10.1093/nar/10.9.2997

	Weighted Shortest Common Supersequence Problem Revisited
	1 Introduction
	2 Preliminaries
	2.1 Meet-in-the-Middle Technique

	3 Dynamic Programming Algorithm for WSCS
	4 Improvements
	4.1 First Improvement: Bounds on
	4.2 Second Improvement: Meet in the Middle
	4.3 Third Improvement: Removing One log z Factor

	5 Lower Bound for WLCS
	References

