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Abstract. A weighted string, also known as a position weight matrix,
is a sequence of probability distributions over some alphabet. We revisit
the Weighted Shortest Common Supersequence (WSCS) problem, intro-
duced by Amir et al. [SPIRE 2011], that is, the SCS problem on weighted
strings. In the WSCS problem, we are given two weighted strings W1

and W2 and a threshold 1
z

on probability, and we are asked to compute
the shortest (standard) string S such that both W1 and W2 match sub-
sequences of S (not necessarily the same) with probability at least 1

z
.

Amir et al. showed that this problem is NP-complete if the probabilities,
including the threshold 1

z
, are represented by their logarithms (encoded

in binary).
We present an algorithm that solves the WSCS problem for two

weighted strings of length n over a constant-sized alphabet in O(n2√z
log z) time. Notably, our upper bound matches known conditional lower
bounds stating that the WSCS problem cannot be solved in O(n2−ε)
time or in O∗(z0.5−ε) with time, where the O∗ notation suppresses fac-
tors polynomial with respect to the instance size (with numeric values
encoded in binary), unless there is a breakthrough improving upon long-
standing upper bounds for fundamental NP-hard problems (CNF-SAT

and Subset Sum, respectively).
We also discover a fundamental difference between the WSCS prob-

lem and the Weighted Longest Common Subsequence (WLCS) problem,
introduced by Amir et al. [JDA 2010]. We show that the WLCS problem
cannot be solved in O(nf(z)) time, for any function f(z), unless P = NP.
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1 Introduction

Consider two strings X and Y . A common supersequence of X and Y is a
string S such that X and Y are both subsequences of S. A shortest common
supersequence (SCS) of X and Y is a common supersequence of X and Y
of minimum length. The Shortest Common Supersequence problem (the
SCS problem, in short) is to compute an SCS of X and Y . The SCS problem
is a classic problem in theoretical computer science [18,23,25]. It is solvable in
quadratic time using a standard dynamic-programming approach [13], which also
allows computing a shortest common supersequence of any constant number of
strings (rather than just two) in polynomial time. In case of an arbitrary number
of input strings, the problem becomes NP-hard [23] even when the strings are
binary [25].

A weighted string of length n over some alphabet Σ is a type of uncertain
sequence. The uncertainty at any position of the sequence is modeled using a
subset of the alphabet (instead of a single letter), with every element of this
subset being associated with an occurrence probability; the probabilities are
often represented in an n × |Σ| matrix. These kinds of data are common in
various applications where: (i) imprecise data measurements are recorded; (ii)
flexible sequence modeling, such as binding profiles of molecular sequences, is
required; (iii) observations are private and thus sequences of observations may
have artificial uncertainty introduced deliberately [2]. For instance, in computa-
tional biology they are known as position weight matrices or position probability
matrices [26].

In this paper, we study the Weighted Shortest Common Superse-

quence problem (the WSCS problem, in short) introduced by Amir et al. [5],
which is a generalization of the SCS problem for weighted strings. In the WSCS

problem, we are given two weighted strings W1 and W2 and a probability thresh-
old 1

z , and the task is to compute the shortest (standard) string such that both
W1 and W2 match subsequences of S (not necessarily the same) with probabil-
ity at least 1

z . In this work, we show the first efficient algorithm for the WSCS

problem.
A related problem is the Weighted Longest Common Subsequence

problem (the WLCS problem, in short). It was introduced by Amir et al. [4]
and further studied in [14] and, very recently, in [20]. In the WLCS problem, we
are also given two weighted strings W1 and W2 and a threshold 1

z on probability,
but the task is to compute the longest (standard) string S such that S matches
a subsequence of W1 with probability at least 1

z and S matches a subsequence
of W2 with probability at least 1

z . For standard strings S1 and S2, the length
of their shortest common supersequence |SCS(S1, S2)| and the length of their
longest common subsequence |LCS(S1, S2)| satisfy the following folklore relation:

|LCS(S1, S2)| + |SCS(S1, S2)| = |S1| + |S2|. (1)

However, an analogous relation does not connect the WLCS and WSCS prob-
lems, even though both problems are NP-complete because of similar reductions,
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which remain valid even in the case that both weighted strings have the same
length [4,5]. In this work, we discover an important difference between the two
problems.

Kociumaka et al. [21] introduced a problem called Weighted Consensus,
which is a special case of the WSCS problem asking whether the WSCS of two
weighted strings of length n is of length n, and they showed that the Weighted

Consensus problem is NP-complete yet admits an algorithm running in pseudo-
polynomial time O(n +

√
z log z) for constant-sized alphabets1. Furthermore, it

was shown in [21] that the Weighted Consensus problem cannot be solved
in O∗(z0.5−ε) time for any ε > 0 unless there is an O∗(2(0.5−ε)n)-time algorithm
for the Subset Sum problem. Let us recall that the Subset Sum problem, for
a set of n integers, asks whether there is a subset summing up to a given integer.
Moreover, the O∗(2n/2) running time for the Subset Sum problem, achieved by
a classic meet-in-the-middle approach of Horowitz and Sahni [15], has not been
improved yet despite much effort; see e.g. [6].

Abboud et al. [1] showed that the Longest Common Subsequence prob-
lem over constant-sized alphabets cannot be solved in O(n2−ε) time for ε > 0
unless the Strong Exponential Time Hypothesis [16,17,22] fails. By (1), the
same conditional lower bound applies to the SCS problem, and since standard
strings are a special case of weighted strings (having one letter occurring with
probability equal to 1 at each position), it also applies to the WSCS problem.

The following theorem summarizes the above conditional lower bounds on
the WSCS problem.

Theorem 1 (Conditional hardness of the WSCS problem; see [1,21]).
Even in the case of constant-sized alphabets, the Weighted Shortest Com-

mon Supersequence problem is NP-complete, and for any ε > 0 it cannot be
solved:

1. in O(n2−ε) time unless the Strong Exponential Time Hypothesis fails;
2. in O∗(z0.5−ε) time unless there is an O∗(2(0.5−ε)n)-time algorithm for the

Subset Sum problem.

Our Results. We give an algorithm for the WSCS problem with pseudo-
polynomial running time that depends polynomially on n and z. Note that such
algorithms have already been proposed for several problems on weighted strings:
pattern matching [9,12,21,24], indexing [3,7,8,11], and finding regularities [10].
In contrast, we show that no such algorithm is likely to exist for the WLCS

problem.
Specifically, we develop an O(n2

√
z log z)-time algorithm for the WSCS prob-

lem in the case of a constant-sized alphabet2. This upper bound matches the
conditional lower bounds of Theorem 1. We then show that unless P = NP , the
WLCS problem cannot be solved in O(nf(z)) time for any function f(·).
1 Note that in general z /∈ O∗(1) unless z is encoded in unary.
2 We consider the case of |Σ| = O(1) just for simplicity. For a general alphabet, our

algorithm can be modified to work in O(n2|Σ|√z log z) time.
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Model of Computations. We assume the word RAM model with word size
w = Ω(log n+log z). We consider the log-probability representation of weighted
sequences, that is, we assume that the non-zero probabilities in the weighted
sequences and the threshold probability 1

z are all of the form c
p

2dw , where c and
d are constants and p is an integer that fits in O(1) machine words.

2 Preliminaries

A weighted string W = W [1] · · · W [n] of length |W | = n over alphabet Σ is a
sequence of sets of the form

W [i] = {(c, π
(W )
i (c)) : c ∈ Σ}.

Here, π
(W )
i (c) is the occurrence probability of the letter c at the position i ∈

[1 . . n].3 These values are non-negative and sum up to 1 for a given index i.
By W [i . . j] we denote the weighted substring W [i] · · · W [j]; it is called a

prefix if i = 1 and a suffix if j = |W |.
The probability of matching of a string S with a weighted string W , with

|S| = |W | = n, is

P(S,W ) =
n∏

i=1

π
(W )
i (S[i]) =

n∏

i=1

P(S[i] = W [i]).

We say that a (standard) string S matches a weighted string W with probability
at least 1

z , denoted by S ≈z W , if P(S,W ) ≥ 1
z . We also denote

Matchedz(W ) = {S ∈ Σn : P(S,W ) ≥ 1
z }.

For a string S we write W ⊆z S if S′ ≈z W for some subsequence S′ of S.
Similarly we write S ⊆z W if S ≈z W ′ for some subsequence W ′ of W .

Our main problem can be stated as follows.

Weighted Shortest Common Supersequence (WSCS(W1,W2, z))
Input: Weighted strings W1 and W2 of length up to n and a threshold 1

z .
Output: A shortest standard string S such that W1 ⊆z S and W2 ⊆z S.

Example 2. If the alphabet is Σ = {a, b}, then we write the weighted string as
W = [p1, p2, . . . , pn], where pi = π

(W )
i (a); in other words, pi is the probability

that the ith letter W [i] is a. For

W1 = [1, 0.2, 0.5], W2 = [0.2, 0.5, 1], and z = 5
2 ,

we have WSCS(W1, W2, z) = baba since W1 ⊆z baba, W2 ⊆z baba (the witness
subsequences are underlined), and baba is a shortest string with this property.
3 For any two integers � ≤ r, we use [� . . r] to denote the integer range {�, . . . , r}.
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We first show a simple solution to WSCS based on the following facts.

Observation 3 (Amir et al. [3]). Every weighted string W matches at most
z standard strings with probability at least 1

z , i.e., |Matchedz(W )| ≤ z.

Lemma 4. The set Matchedz(W ) can be computed in O(nz) time if |Σ| = O(1).

Proof. If S ∈ Matchedz(W ), then S[1 . . i] ∈ Matchedz(W [1 . . i]) for every index i.
Hence, the algorithm computes the sets Matchedz for subsequent prefixes of W .
Each string S ∈ Matchedz(W [1 . . i]) is represented as a triple (c, p, S′), where
c = S[i] is the last letter of S, p = P(S,W [1 . . i]), and S′ = S[1 . . i−1] points to
an element of Matchedz(W [1 . . i− 1]). Such a triple is represented in O(1) space.

Assume that Matchedz(W [1 . . i − 1]) has already been computed. Then, for
every S′ = (c′, p′, S′′) ∈ Matchedz(W [1 . . i − 1]) and every c ∈ Σ, if p := p′ ·
π
(W )
i (c) ≥ 1

z , then the algorithm adds (c, p, S′) to Matchedz(W [1 . . i]).
By Observation 3, |Matchedz(W [1 . . i−1])| ≤ z and |Matchedz(W [1 . . i])| ≤ z.

Hence, the O(nz) time complexity follows. �	
Proposition 5. The WSCS problem can be solved in O(n2z2) time if |Σ| =
O(1).

Proof. The algorithm builds Matchedz(W1) and Matchedz(W2) using Lemma 4.
These sets have size at most z by Observation 3. The result is the shortest
string in

{SCS(S1, S2) : S1 ∈ Matchedz(W1), S2 ∈ Matchedz(W2)}.

Recall that the SCS of two strings can be computed in O(n2) time using a
standard dynamic programming algorithm [13]. �	
We substantially improve upon this upper bound in Sects. 3 and 4.

2.1 Meet-in-the-Middle Technique

In the decision version of the Knapsack problem, we are given n items with
weights wi and values vi, and we seek for a subset of items with total weight
up to W and total value at least V . In the classic meet-in-the-middle solution to
the Knapsack problem by Horowitz and Sahni [15], the items are divided into
two sets S1 and S2 of sizes roughly 1

2n. Initially, the total value and the total
weight is computed for every subset of elements of each set Si. This results in
two sets A,B, each with O(2n/2) pairs of numbers. The algorithm needs to pick
a pair from each set such that the first components of the pairs sum up to at
most W and the second components sum up to at least V . This problem can be
solved in linear time w.r.t. the set sizes provided that the pairs in both sets A
and B are sorted by the first component.
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Let us introduce a modified version this problem.

Merge(A,B,w)
Input: Two sets A and B of points in 2 dimensions and a threshold w.
Output: Do there exist (x1, y1) ∈ A, (x2, y2) ∈ B such that x1x2, y1y2 ≥ w?

A linear-time solution to this problem is the same as for the problem in the
meet-in-the-middle solution for Knapsack. However, for completeness we prove
the following lemma (see also [21, Lemma 5.6]):

Lemma 6 (Horowitz and Sahni [15]). The Merge problem can be solved in
linear time assuming that the points in A and B are sorted by the first component.

Proof. A pair (x, y) is irrelevant if there is another pair (x′, y′) in the same set
such that x′ ≥ x and y′ ≥ y. Observe that removing an irrelevant point from A
or B leads to an equivalent instance of the Merge problem.

Since the points in A and B are sorted by the first component, a single
scan through these pairs suffices to remove all irrelevant elements. Next, for
each (x, y) ∈ A, the algorithm computes (x′, y′) ∈ B such that x′ ≥ w/x and
additionally x′ is smallest possible. As the irrelevant elements have been removed
from B, this point also maximizes y′ among all pairs satisfying x′ ≥ w/x. If the
elements (x, y) are processed by non-decreasing values x, the values x′ do not
increase, and thus the points (x′, y′) can be computed in O(|A| + |B|) time in
total. �	

3 Dynamic Programming Algorithm for WSCS

Our algorithm is based on dynamic programming. We start with a less efficient
procedure and then improve it in the next section. Henceforth, we only con-
sider computing the length of the WSCS; an actual common supersequence of
this length can be recovered from the dynamic programming using a standard
approach (storing the parent of each state).

For a weighted string W , we introduce a data structure that stores, for every
index i, the set {P(S,W [1 . . i]) : S ∈ Matchedz(W [1 . . i])} represented as an
array of size at most z (by Observation 3) with entries in the increasing order.
This data structure is further denoted as Freq i(W, z). Moreover, for each ele-
ment p ∈ Freq i+1(W, z) and each letter c ∈ Σ, a pointer to p′ = p/π

(W )
i+1 (c) in

Freq i(W, z) is stored provided that p′ ∈ Freq i(W, z). A proof of the next lemma
is essentially the same as of Lemma 4.

Lemma 7. For a weighted string W of length n, the arrays Freq i(W, z), with
i ∈ [1 . . n], can be constructed in O(nz) total time if |Σ| = O(1).

Proof. Assume that Freq i(W, z) is computed. For every c ∈ Σ, we create a list

Lc = {p · π
(W )
i+1 (c) : p ∈ Freq i(W, z), p · π

(W )
i+1 (c) ≥ 1

z }.



Weighted Shortest Common Supersequence Problem Revisited 227

The lists are sorted since Freq i(W, z) was sorted. Then Freq i+1(W, z) can be
computed by merging all the lists Lc (removing duplicates). This can be done
in O(z) time since σ = O(1). The desired pointers can be computed within the
same time complexity. �	
Let us extend the WSCS problem in the following way:

WSCS
′(W1,W2, �, p, q):

Input: Weighted strings W1,W2, an integer �, and probabilities p, q.
Output: Is there a string S of length � with subsequences S1 and S2 such
that P(S1,W1) = p and P(S2,W2) = q?

In the following, a state in the dynamic programming denotes a quadruple
(i, j, �, p), where i ∈ [0 . . |W1|], j ∈ [0 . . |W2|], � ∈ [0 . . |W1| + |W2|], and p ∈
Freq i(W1, z).

Observation 8. There are O(n3z) states.

In the dynamic programming, for all states (i, j, �, p), we compute

DP[i, j, �, p] = max{q : WSCS
′(W1[1 . . i],W2[1 . . j], �, p, q) = true}. (2)

Let us denote πk
i (c) = π

(Wk)
i (c). Initially, the array DP is filled with zeroes,

except that the values DP[0, 0, �, 1] for � ∈ [0 . . |W1| + |W2|] are set to 1. In
order to cover corner cases, we assume that π1

0(c) = π2
0(c) = 1 for any c ∈ Σ

and that DP[i, j, �, p] = 0 if (i, j, �, p) is not a state. The procedure Compute
implementing the dynamic-programming algorithm is shown as Algorithm1.

Algorithm 1. Compute(W1,W2, z)

for � = 0 to |W1| + |W2| do
DP[0, 0, �, 1] := 1;

foreach state (i, j, �, p) in lexicographic order do

foreach c ∈ Σ do

x := π1
i (c); y := π2

j (c);
DP[i, j, �, p] := max{

DP[i, j, �, p],
DP[i − 1, j, � − 1, p

x ],
y · DP[i, j − 1, � − 1, p],
y · DP[i − 1, j − 1, � − 1, p

x ]
};

return min {� : DP[|W1|, |W2|, �, p] ≥ 1
z for some p ∈ Freq |W1|(W1, z)};
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The correctness of the algorithm is implied by the following lemma:

Lemma 9 (Correctness of Algorithm 1). The array DP satisfies (2). In
particular, Compute(W1,W2, z) = WSCS(W1,W2, z).

Proof. The proof that DP satisfies (2) goes by induction on i+ j. The base case
of i + j = 0 holds trivially. It is simple to verify the cases that i = 0 or j = 0.
Let us henceforth assume that i > 0 and j > 0.

We first show that

DP[i, j, �, p] ≤ max{q : WSCS
′(W1[1 . . i],W2[1 . . j], �, p, q) = true}.

The value q = DP[i, j, �, p] was derived from DP[i − 1, j, � − 1, p/x] = q, or
DP[i, j − 1, � − 1, p] = q/y, or DP[i − 1, j − 1, � − 1, p/x] = q/y, where x = π1

i (c)
and y = π2

j (c) for some c ∈ Σ. In the first case, by the inductive hypothesis, there
exists a string T that is a solution to WSCS

′(W1[1 . . i−1],W2[1 . . j], �−1, p/x, q).
That is, T has subsequences T1 and T2 such that

P(T1,W1[1 . . i − 1]) = p/x and P(T2,W2[1 . . j]) = q.

Then, for S = Tc, S1 = T1c, and S2 = T2, we indeed have

P(S1,W1[1 . . i]) = p and P(S2,W2[1 . . j]) = q.

The two remaining cases are analogous.

Let us now show that

DP[i, j, �, p] ≥ max{q : WSCS
′(W1[1 . . i],W2[1 . . j], �, p, q) = true}.

Assume a that string S is a solution to WSCS
′(W1[1 . . i],W2[1 . . j], �, p, q). Let

S1 and S2 be the subsequences of S such that P(S1,W1) = p and P(S2,W2) = q.
Let us first consider the case that S1[i] = S[�] 
= S2[j]. Then T1 = S1[1 . . i−1]

and T2 = S2 are subsequences of T = S[1 . . � − 1]. We then have

p′ := P(T1,W1[1 . . i − 1]) = p/π1
i (S1[i]).

By the inductive hypothesis, DP[i − 1, j, � − 1, p′] ≥ q. Hence, DP[i, j, �, p] ≥ q
because DP[i− 1, j, �− 1, p′] is present as the second argument of the maximum
in the dynamic programming algorithm for c = S[�].

The cases that S1[i] 
= S[�] = S2[j] and that S1[i] = S[�] = S2[j] rely on
the values DP[i, j − 1, � − 1, p] ≥ q/y and DP[i − 1, j − 1, � − 1, p/x] ≥ q/y,
respectively.

Finally, the case that S1[i] 
= S[�] 
= S2[j] is reduced to one of the previous
cases by changing S[�] to S1[i] so that S is still a supersequence of S1 and S2

and a solution to WSCS
′(W1[1 . . i],W2[1 . . j], �, p, q). �	

Proposition 10. The WSCS problem can be solved in O(n3z) time if |Σ| =
O(1).
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Proof. The correctness follows from Lemma 9. As noted in Observation 8, the
dynamic programming has O(n3z) states. The number of transitions from a
single state is constant provided that |Σ| = O(1).

Before running the dynamic programming algorithm of Proposition 10, we
construct the data structures Freq i(W1, z) for all i ∈ [1 . . n] using Lemma 7.
The last dimension in the DP[i, j, �, p] array can then be stored as a position in
Freq i(W1, z). The pointers in the arrays Freq i are used to follow transitions. �	

4 Improvements

4.1 First Improvement: Bounds on �

Our approach here is to reduce the number of states (i, j, �, p) in Algorithm 1
from O(n3z) to O(n2z log z). This is done by limiting the number of values of �
considered for each pair of indices i, j from O(n) to O(log z).

For a weighted string W , we define H(W ) as a standard string generated by
taking the most probable letter at each position, breaking ties arbitrarily. The
string H(W ) is also called the heavy string of W . By dH(S, T ) we denote the
Hamming distance of strings S and T . Let us recall an observation from [21].

Observation 11 ([21, Observation 4.3]). If S ≈z W for a string S and a
weighted string W , then dH(S,H(W )) ≤ log2 z.

The lemma below follows from Observation 11.

Lemma 12. If strings S1 and S2 satisfy S1 ≈z W1 and S2 ≈z W2, then

|SCS(S1, S2) − SCS(H(W1),H(W2))| ≤ 2 log2 z.

Proof. By Observation 11,

dH(S1,H(W1)) ≤ log2 z and dH(S2,H(W2)) ≤ log2 z.

Due to the relation (1) between LCS and SCS, it suffices to show the following.

Claim. Let S1,H1, S2,H2 be strings such that |S1| = |H1| and |S2| = |H2|. If
dH(S1,H1) ≤ d and dH(S2,H2) ≤ d, then |LCS(S1, S2) − LCS(H1,H2)| ≤ 2d.

Proof. Notice that if S′
1, S

′
2 are strings resulting from S1, S2 by removing up to

d letters from each of them, then LCS(S′
1, S

′
2) ≥ LCS(S1, S2) − 2d.

We now create strings S′
k for k = 1, 2, by removing from Sk letters at positions

i such that Sk[i] 
= Hk[i]. Then, according to the observation above, we have

LCS(S′
1, S

′
2) ≥ LCS(S1, S2) − 2d.

Any common subsequence of S′
1 and S′

2 is also a common subsequence of H1 and
H2 since S′

1 and S′
2 are subsequences of H1 and H2, respectively. Consequently,

LCS(H1,H2) ≥ LCS(S1, S2) − 2d.

In a symmetric way, we can show that LCS(S1, S2) ≥ LCS(H1,H2) − 2d. This
completes the proof of the claim. �	
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We apply the claim for H1 = H(W1), H2 = H(W2), and d = log2 z. �	
Let us make the following simple observation.

Observation 13. If S = WSCS(W1,W2, z), then S = SCS(S1, S2) for some
strings S1 and S2 such that W1 ⊆z S1 and W2 ⊆z S2.

Using Lemma 12, we refine the previous algorithm as shown in Algorithm2.

Algorithm 2. Improved1(W1,W2, z)

In the beginning, we apply the classic O(n2)-time dynamic-programming
solution to the standard SCS problem on H1 = H(W1) and H2 = H(W2).
It computes a 2D array T such that

T [i, j] = SCS(H1[1 . . i],H2[1 . . j]).

Let us denote an interval

L[i, j] = [T [i, j] − �2 log2 z� . . T [i, j] + �2 log2 z�].

We run the dynamic programming algorithm Compute restricted to states
(i, j, �, p) with � ∈ L[i, j].
Let DP′ denote the resulting array, restricted to states satisfying � ∈ L[i, j].
We return min {� : DP′[|W1|, |W2|, �, p] ≥ 1

z for some p ∈ Freq |W1|(W1, z)}.

Lemma 14 (Correctness of Algorithm 2). For every state (i, j, �, p), an
inequality DP′[i, j, �, p] ≤ DP[i, j, �, p] holds. Moreover, if S = SCS(S1, S2),
|S| = �, P(S1,W1[1 . . i]) = p ≥ 1

z and P(S2,W2[1 . . j]) = q ≥ 1
z , then

DP′[i, j, �, p] ≥ q. Consequently, Improved1(W1,W2, z) = WSCS(W1,W2, z).

Proof. A simple induction on i+j shows that the array DP′ is lower bounded by
DP. This is because Algorithm 2 is restricted to a subset of states considered by
Algorithm 1, and because DP′[i, j, �, p] is assumed to be 0 while DP[i, j, �, p] ≥ 0
for states (i, j, �, p) ignored in Algorithm 2.

We prove the second part of the statement also by induction on i + j. The
base cases satisfying i = 0 or j = 0 can be verified easily, so let us henceforth
assume that i > 0 and j > 0.

First, consider the case that S1[i] = S[�] 
= S2[j]. Let T = S[1 . . � − 1] and
T1 = S1[1 . . i − 1]. We then have

p′ := P(T1,W1[1 . . i − 1]) = p/π1
i (S1[i]).

Claim. If S1[i] = S[�] 
= S2[j], then T = SCS(T1, S2).

Proof. Let us first show that T is a common supersequence of T1 and S2. Indeed,
if T1 was not a subsequence of T , then T1S1[i] = S1 would not be a subsequence
of TS1[i] = S, and if S2 was not a subsequence of T , then it would not be a
subsequence of TS1[i] = S since S1[i] 
= S2[j].
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Finally, if T1 and S2 had a common supersequence T ′ shorter than T , then
T ′S1[i] would be a common supersequence of S1 and S2 shorter than S. �	
By the claim and the inductive hypothesis, DP′[i − 1, j, � − 1, p′] ≥ q. Hence,
DP′[i, j, �, p] ≥ q due to the presence of the second argument of the maximum in
the dynamic programming algorithm for c = S[�]. Note that (i, j, �, p) is a state
in Algorithm 2 since � ∈ L[i, j] follows from Lemma 12.

The cases that S1[i] 
= S[�] = S2[j] and that S1[i] = S[�] = S2[j] use the val-
ues DP′[i, j−1, �−1, p] ≥ q/y and DP′[i−1, j−1, �−1, p/x] ≥ q/y, respectively.
Finally, the case that S1[i] 
= S[�] 
= S2[j] is impossible as S = SCS(S1, S2). �	
Example 15. Let W1 = [1, 0], W2 = [0] (using the notation from Example 2),
and z ≥ 1. The only strings that match W1 and W2 are S1 = ab and S2 = b,
respectively. We have DP[2, 1, 3, 1] = 1 which corresponds, in particular, to a
solution S = abb which is not an SCS of S1 and S2. However, DP[2, 1, 2, 1] =
DP′[2, 1, 2, 1] = 1 which corresponds to S = ab = SCS(S1, S2).

Proposition 16. The WSCS problem can be solved in O(n2z log z) time if
|Σ| = O(1).

Proof. The correctness of the algorithm follows from Lemma 14. The number of
states is now O(n2z log z) and thus so is the number of considered transitions. �	

4.2 Second Improvement: Meet in the Middle

The second improvement is to apply a meet-in-the-middle approach, which is
possible due to following observation resembling Observation 6.6 in [21].

Observation 17. If S ≈z W for a string S and weighted string W of length n,
then there exists a position i ∈ [1 . . n] such that

S[1 . . i − 1] ≈√
z W [1 . . i − 1] and S[i + 1 . . n] ≈√

z W [i + 1 . . n].

Proof. Select i as the maximum index with S[1 . . i − 1] ≈√
z W [1 . . i − 1]. �	

We first use dynamic programming to compute two arrays,
−−→
DP and

←−−
DP. The

array
−−→
DP contains a subset of states from DP′; namely the ones that satisfy

p ≥ 1√
z
. The array

←−−
DP is an analogous array defined for suffixes of W1 and W2.

Formally, we compute
−−→
DP for the reversals of W1 and W2, denoted as

−−→
DPR,

and set
←−−
DP[i, j, �, p] =

−−→
DPR[|W1|+1− i, |W2|+1− j, �, p]. Proposition 16 yields

Observation 18. Arrays
−−→
DP and

←−−
DP can be computed in O(n2

√
z log z) time.
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Henceforth, we consider only a simpler case in which there exists a solution
S to WSCS(W1,W2, z) with a decomposition S = SL · SR such that

W1[1 . . i] ⊆√
z SL and W1[i + 1 . . |W1|] ⊆√

z SR (3)

holds for some i ∈ [0 . . |W1|].
In the pseudocode, we use the array L[i, j] from the first improvement,

denoted here as
−→
L [i, j], and a symmetric array

←−
L from right to left, i.e.:

←−
T [i, j] = SCS(H(W1)[i . . |W1|],H(W2)[j . . |W2|]),
←−
L [i, j] = [

←−
T [i, j] − �2 log2 z� . .

←−
T [i, j] + �2 log2 z�].

Algorithm 3 is applied for every i ∈ [0 . . |W1|] and j ∈ [0 . . |W2|].

Algorithm 3. Improved2(W1,W2, z, i, j)

res := ∞;

foreach �L ∈ −→
L [i, j], �R ∈ ←−

L [i + 1, j + 1] do

A := {(p, q) :
−−→
DP[i, j, �L, p] = q};

B := {(p, q) :
←−−
DP[i + 1, j + 1, �R, p] = q};

if Merge(A,B, z) then

res := min(res, �L + �R);
return res;

Lemma 19 (Correctness of Algorithm 3). Assuming that there is a solution
S to WSCS(W1,W2, z) that satisfies (3), we have

WSCS(W1,W2, z) = min
i,j

(Improved2(W1,W2, z, i, j)).

Proof. Assume that WSCS(W1,W2, z) has a solution S = SL · SR that satisfies
(3) for some i ∈ [0 . . |W1|] and denote �L = |SL|, �R = |SR|. Let S′

L and S′
R be

subsequences of SL and SR such that

pL := P(S′
L,W1[1 . . i]) ≥ 1√

z
and pR := P(S′

R,W1[i + 1 . . |W1|]) ≥ 1√
z
.

Let S′′
L and S′′

R be subsequences of SL and SR such that

P(S′′
L,W2[1 . . j]) = qL and P(S′′

R,W2[j + 1 . . |W2|]) = qR

for some j and qLqR ≥ 1
z .

By Lemma 14,
−−→
DP[i, j, �L, pL] ≥ qL and

←−−
DP[i+1, j +1, �R, pR] ≥ qR. Hence,

the set A will contain a pair (pL, q′
L) such that q′

L ≥ qL and the set B will contain
a pair (pR, q′

R) such that q′
R ≥ qR. Consequently, Merge(A,B, z) will return a

positive answer.
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Similarly, if Merge(A,B, z) returns a positive answer for given i, j, �L and
�R, then

−−→
DP[i, j, �L, pL] ≥ qL and

←−−
DP[i + 1, j + 1, �R, pR] ≥ qR

for some pLpR, qLqR ≥ 1
z . By Lemma 14, this implies that

WSCS
′(W1[1 . . i],W2[1 . . j], �L, pL, qL)

and
WSCS

′(W1[i + 1 . . |W1|],W2[j + 1 . . |W2|], �R, pR, qR)

have a positive answer, so

WSCS
′(W1,W2, �L + �R, pLpR, qLqR)

has a positive answer too. Due to pLpR, qLqR ≥ 1
z , this completes the proof. �	

Proposition 20. The WSCS problem can be solved in O(n2
√

z log2 z) time if
|Σ| = O(1).

Proof. We use the algorithm Improved2, whose correctness follows from Lemma 19
in case (3) is satisfied. The general case of Observation 17 requires only a minor
technical change to the algorithm. Namely, the computation of

−−→
DP then addition-

ally includes all states (i, j, �, p) such that � ∈ −→
L [i, j], p ≥ 1

z , and p = π1
i (c)p′ for

some c ∈ Σ and p′ ∈ Freq i−1(W1,
√

z). Due to |Σ| = O(1), the number of such
states is still O(n2

√
z log z).

For every i and j, the algorithm solves O(log2 z) instances of Merge, each
of size O(

√
z). This results in the total running time of O(n2

√
z log2 z). �	

4.3 Third Improvement: Removing One log z Factor

The final improvement is obtained by a structural transformation after which
we only need to consider O(log z) pairs (�L, �R).

For this to be possible, we compute prefix maxima on the �-dimension
of the

−−→
DP and

←−−
DP arrays in order to guarantee monotonicity. That is, if

Merge(A,B, z) returns true for �L and �R, then we make sure that it would
also return true if any of these two lengths increased (within the corresponding
intervals).

This lets us compute, for every �L ∈ −→
L [i, j] the smallest �R ∈ ←−

L [i, j] such
that Merge(A,B, z) returns true using O(log z) iterations because the sought
�R may only decrease as �L increases. The pseudocode is given in Algorithm 4.
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Algorithm 4. Improved3(W1,W2, z, i, j)

foreach state (i, j, �, p) of
−−→
DP in lexicographic order do−−→

DP[i, j, �, p] := max(
−−→
DP[i, j, �, p],

−−→
DP[i, j, � − 1, p]);

foreach state (i, j, �, p) of
←−−
DP in lexicographic order do←−−

DP[i, j, �, p] := max(
←−−
DP[i, j, �, p],

←−−
DP[i, j, � − 1, p]);

[a . . b] :=
−→
L [i, j]; [a′ . . b′] :=

←−
L [i + 1, j + 1];

�L := a; �R := b′ + 1; res := ∞;
while �L ≤ b and �R ≥ a′ do

A := {(p, q) :
−−→
DP[i, j, �L, p] = q};

B := {(p, q) :
←−−
DP[i + 1, j + 1, �R − 1, p] = q};

if Merge(A,B, z) then � �R is too large for the current �L

�R := �R − 1;
else � �R reached the target value for the current �L

if �R ≤ b′ then res := min(res, �L + �R);
�L := �L + 1;

return res;

Theorem 21. The WSCS problem can be solved in O(n2
√

z log z) time if
|Σ| = O(1).

Proof. Let us fix indices i and j. Let us denote Freq i(W, z) by
−−→
Freq i(W, z) and

introduce a symmetric array

←−−
Freq i(W, z) = {P(S,W [i . . |W |]) : S ∈ Matchedz(W [i . . |W |])}.

In the first loop of prefix maxima computation, we consider all � ∈ −→
L [i, j] and

p ∈ −−→
Freq i(W1,

√
z), and in the second loop, all � ∈ ←−

L [i, j] and p ∈ ←−−
Freq i(W1,

√
z).

Hence, prefix maxima take O(
√

z log z) time to compute.
Each step of the while-loop in Improved3 increases �L or decreases �R. Hence,

the algorithm produces only O(log z) instances of Merge, each of size O(
√

z).
The time complexity follows. �	

5 Lower Bound for WLCS

Let us first define the WLCS problem as it was stated in [4,14].

Weighted Longest Common Subsequence (WLCS(W1,W2, z))
Input: Weighted strings W1 and W2 of length up to n and a threshold 1

z .
Output: A longest standard string S such that S ⊆z W1 and S ⊆z W2.
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We consider the following well-known NP-complete problem [19]:

Subset Sum

Input: A set S of positive integers and a positive integer t.
Output: Is there a subset of S whose elements sum up to t?

Theorem 22. The WLCS problem cannot be solved in O(nf(z)) time if P 
= NP.

Proof. We show the hardness result by reducing the NP-complete Subset Sum

problem to the WLCS problem with a constant value of z.
For a set S = {s1, s2, . . . , sn} of n positive integers, a positive integer t, and

an additional parameter p ∈ [2 . . n], we construct two weighted strings W1 and
W2 over the alphabet Σ = {a, b}, each of length n2.

Let qi = si

t . At positions i · n, for all i = [1 . . n], the weighted string W1

contains letter a with probability 2−qi and b otherwise, while W2 contains a with
probability 2

1
p−1 (qi−1) and b otherwise. All the other positions contain letter b

with probability 1. We set z = 2.
We assume that S contains only elements smaller than t (we can ignore the

larger ones and if there is an element equal to t, then there is no need for a
reduction). All the weights of a are then in the interval (12 , 1) since −qi ∈ (−1, 0)
and 1

p−1 (qi − 1) ∈ (−1, 0). Thus, since z = 2, letter b originating from a position
i · n can never occur in a subsequence of W1 or in a subsequence of W2. Hence,
every common subsequence of W1 and W2 is a subsequence of (bn−1a)n.

For I ⊆ [1 . . n], we have

∏

i∈I

π
(W1)
i·n (a) =

∏

i∈I

2−si/t ≥ 2−1 = 1
z ⇐⇒

∑

i∈I

si ≤ t

and
∏

i∈I

π
(W2)
i·n (a) =

∏

i∈I

2
1

p−1 (si/t−1) ≥ 2−1 = 1
z ⇐⇒

1
t(p−1)

(
∑

i∈I

si

)
− |I|

p−1 ≥ −1 ⇐⇒
∑

i∈I

si ≥ t(1 − p + |I|).

If I is a solution to the instance of the Subset Sum problem, then for p =
|I| there is a weighted common subsequence of length n(n − 1) + p obtained by
choosing all the letters b and the letters a that correspond to the elements of I.

Conversely, suppose that the constructed WLCS instance with a parameter
p ∈ [2 . . n] has a solution of length at least n(n−1)+p. Notice that a at position
i · n in W1 may be matched against a at position i′ · n in W2 only if i = i′.
(Otherwise, the length of the subsequence would be at most (n − |i − i′|)n ≤
(n − 1)n < n(n − 1) + p). Consequently, the solution yields a subset I ⊆ [1 . . n]
of at least p indices i such that a at position i · n in W1 is matched against a at
position i · n in W2. By the relations above, we have (a) |I| ≥ p, (b)

∑
i∈I si ≤ t,
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and (c)
∑

i∈I si ≥ t(1 − p + |I|). Combining these three inequalities, we obtain∑
i∈I si = t and conclude that the Subset Sum instance has a solution.
Hence, the Subset Sum instance has a solution if and only if there exists

p ∈ [2 . . n] such that the constructed WLCS instance with p has a solution of
length at least n(n − 1) + p. This concludes that an O(nf(z))-time algorithm for
the WLCS problem implies the existence of an O(n2f(2)+1) = O(nO(1))-time
algorithm for the Subset Sum problem. The latter would yield P = NP . �	
Example 23. For S = {3, 7, 11, 15, 21} and t = 25 = 3 + 7 + 15, both weighted
strings W1 and W2 are of the form:

b4 ∗ b4 ∗ b4 ∗ b4 ∗ b4 ∗ ,

where each ∗ is equal to either a or b with different probabilities.
The probabilities of choosing a’s for W1 are equal respectively to

(
2− 3

25 , 2− 7
25 , 2− 11

25 , 2− 15
25 , 2− 21

25
)
,

while for W2 they depend on the value of p, and are equal respectively to

(
2− 22

25(p−1) , 2− 18
25(p−1) , 2− 14

25(p−1) , 2− 10
25(p−1) , 2− 4

25(p−1)
)
.

For p = 3, we have: WLCS(W1,W2, 2) = b4 a b4 a b4 b4 a b4, which corresponds
to taking the first, the second, and the fourth a. The length of this string is equal
to 23 = n(n − 1) + p, and its probability of matching is 1

2 = 2− 22
50 · 2− 18

50 · 2− 10
50 .

Thus, the subset {3, 7, 15} of S consisting of its first, second, and fourth element
is a solution to the Subset Sum problem.
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approximation algorithms for weighted LCS problem. Discrete Appl. Math. 204,
38–48 (2016). https://doi.org/10.1016/j.dam.2015.11.011

15. Horowitz, E., Sahni, S.: Computing partitions with applications to the knapsack
problem. J. ACM 21(2), 277–292 (1974). https://doi.org/10.1145/321812.321823

16. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci.
62(2), 367–375 (2001). https://doi.org/10.1006/jcss.2000.1727

17. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001). https://doi.org/10.1006/
jcss.2001.1774

18. Jiang, T., Li, M.: On the approximation of shortest common supersequences and
longest common subsequences. SIAM J. Comput. 24(5), 1122–1139 (1995). https://
doi.org/10.1137/S009753979223842X

19. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Symposium on the Complexity of Computer Computations.
pp. 85–103. The IBM Research Symposia Series, Plenum Press, New York (1972).
https://doi.org/10.1007/978-1-4684-2001-2 9

20. Kipouridis, E., Tsichlas, K.: Longest common subsequence on weighted sequences
(2019). http://arxiv.org/abs/1901.04068

21. Kociumaka, T., Pissis, S.P., Radoszewski, J.: Pattern matching and consensus prob-
lems on weighted sequences and profiles. Theory Comput. Syst. 63(3), 506–542
(2019). https://doi.org/10.1007/s00224-018-9881-2

22. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on
the Exponential Time Hypothesis. Bull. EATCS 105, 41–72 (2011).
http://eatcs.org/beatcs/index.php/beatcs/article/view/92

23. Maier, D.: The complexity of some problems on subsequences and supersequences.
J. ACM 25(2), 322–336 (1978). https://doi.org/10.1145/322063.322075

https://doi.org/10.1016/j.ic.2019.104462
https://doi.org/10.1016/j.ic.2019.104462
https://doi.org/10.4230/LIPIcs.CPM.2016.4
https://doi.org/10.4230/LIPIcs.CPM.2016.4
https://doi.org/10.1016/j.tcs.2016.04.029
https://doi.org/10.1016/j.tcs.2016.04.029
https://doi.org/10.1007/s00453-016-0266-0
https://doi.org/10.1007/s00453-016-0266-0
https://doi.org/10.1007/978-3-319-77404-6_22
https://doi.org/10.1007/978-3-319-77404-6_22
https://doi.org/10.1016/j.ic.2019.01.001
https://doi.org/10.1016/j.ic.2019.01.001
https://mitpress.mit.edu/books/introduction-algorithms-third-edition
https://mitpress.mit.edu/books/introduction-algorithms-third-edition
https://doi.org/10.1016/j.dam.2015.11.011
https://doi.org/10.1145/321812.321823
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1137/S009753979223842X
https://doi.org/10.1137/S009753979223842X
https://doi.org/10.1007/978-1-4684-2001-2_9
http://arxiv.org/abs/1901.04068
https://doi.org/10.1007/s00224-018-9881-2
http://eatcs.org/beatcs/index.php/beatcs/article/view/92
https://doi.org/10.1145/322063.322075


238 P. Charalampopoulos et al.

24. Radoszewski, J., Starikovskaya, T.: Streaming k-mismatch with error correct-
ing and applications. In: Bilgin, A., Marcellin, M.W., Serra-Sagristà, J., Storer,
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