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Abstract. We revisit the problem of longest common property preserv-
ing substring queries introduced by Ayad et al. (SPIRE 2018, arXiv
2018). We consider a generalized and unified on-line setting, where we
are given a set X of k strings of total length n that can be pre-processed
so that, given a query string y and a positive integer k′ ≤ k, we can deter-
mine the longest substring of y that satisfies some specific property and
is common to at least k′ strings in X. Ayad et al. considered the longest
square-free substring in an on-line setting and the longest periodic and
palindromic substring in an off-line setting. In this paper, we give efficient
solutions in the on-line setting for finding the longest common square,
periodic, palindromic, and Lyndon substrings. More precisely, we show
that X can be pre-processed in O(n) time resulting in a data structure
of O(n) size that answers queries in O(|y| log σ) time and O(1) working
space, where σ is the size of the alphabet, and the common substring
must be a square, a periodic substring, a palindrome, or a Lyndon word.

Keywords: Squares · Periodic substrings · Palindromes · Lyndon
words

1 Introduction

The longest common substring of two strings x and y is a longest string that is
a substring of both x and y. It is well known that the problem can be solved in
linear time, using the generalized suffix tree of x and y [12,19].

Ayad et al. [1,2] proposed a class of problems called longest common property
preserved substring, where the aim is to find the longest substring that has some
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property and is common to a subset of the input strings. They considered several
problems in two different settings.

In the first on-line setting, one is given a string x that can be pre-processed,
and the problem is to answer, for any given query string y, the longest square-
free substring that is common to both x and y. Their solution takes O(|x|) time
for preprocessing and O(|y| log σ) time for queries, where σ is the alphabet size.

In the second off-line setting, one is given a set of k strings of total length
n and a positive integer k′ ≤ k, and the problem is to find the longest periodic
substring, as well as the longest palindromic substring, that is common to at
least k′ of the strings. Their solution works in O(n) time and space. However, it
does not (at least directly) give a solution for the on-line setting.

In this paper, we consider a generalized and unified on-line setting, where
we are given a set X of k strings with total length n that can be pre-processed,
and the problem is to answer, for any given query string y and positive integer
k′ ≤ k, the longest property preserved substring that is common to y and at least
k′ of the strings. We give solutions to the following properties in this setting, all
working in O(n) time and space preprocessing, and O(|y| log σ) time and O(1)
working space for answering queries: squares, periodic substrings, palindromes,
and Lyndon words. Furthermore, we note that solutions for the off-line setting
can be obtained by using our solutions for the on-line setting. We also note that
our algorithms can be modified to remove the log σ factor in the off-line setting.

As related work, the off-line version of property preserved subsequences have
been considered for some properties. The longest common square subsequence
between two strings can be computed in O(n6) time [14]. The longest common
palindromic subsequence between two strings of length n can be computed in
O(n4) time [3].

2 Preliminaries

2.1 Strings

Let Σ be a set of symbols, or alphabet, and Σ∗ the set of strings over Σ. We
assume a constant or linearly-sortable integer alphabet1 and use σ to denote the
size of the alphabet, i.e. |Σ| = σ. For any string x ∈ Σ∗, let |x| denote its length.
For any integer 1 ≤ i ≤ |x|, x[i] is the ith symbol of x, and for any integers
1 ≤ i ≤ j ≤ |x|, x[i..j] = x[i] · · · x[j]. For convenience, x[i..j] is the empty string
when i > j. If a string w satisfies w = xyz, then, strings x, y, z are respectively
called a prefix, substring, and suffix of w. A prefix (resp. substring, suffix) is
called a proper prefix (resp. substring, suffix) if it is shorter than the string.

Let xR denote the reverse of x, i.e., xR = x[|x|] · · · x[1]. A string x is said to
be a palindrome if x = xR. A string y is a square if y = xx for some string x,
called the root of y. A string y is primitive if there does not exist any x such that
y = xk for some integer k ≥ 2. A square is called a primitively rooted square, if

1 Note that a string of length n on a general ordered alphabet can be transformed into
a string on an integer alphabet in O(n log σ) time.
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its root is primitive. An integer p, 1 ≤ p ≤ |x|, is called a period of a string x,
if x[i] = x[i + p] for all 1 ≤ i ≤ |x| − p. A string x is periodic, if the smallest
period p of x is at most |x|/2. A run in a string is a maximal periodic substring,
i.e., a periodic substring x[i..j] with smallest period p is a run, if the period of
any string x[i′..j′] with i′ ≤ i ≤ j ≤ j′ and either i′ �= i or j′ �= j, is not p. The
following is the well known (weak) periodicity lemma concerning periods:

Lemma 1 ((Weak) Periodicity Lemma [8]). If p and q are two periods of
a string w, and p + q ≤ |w|, then, gcd(p, q) is also a period of w.

Let ≺ denote a total order on Σ, as well as the lexicographic order on Σ∗

it induces. That is, for any two strings x, y, x ≺ y if and only if either x is a
prefix of y, or there exist strings w, x′, y′ ∈ Σ∗ such that x = wx′ and y = wy′,
and x′[1] ≺ y′[1]. A string is a Lyndon word [17] if it is lexicographically smaller
than any of its non-empty proper suffixes.

2.2 Suffix Trees

The suffix tree [19] ST (x) of a string x is a compacted trie of the set of non-
empty suffixes of x$, where $ denotes a unique symbol that does not occur in
x. More precisely, it is (1) a rooted tree where edges are labeled by non-empty
strings, (2) the concatenation of the edge-labels on root to leaf paths correspond
to all and only suffixes of x$, 3) any non-leaf node has at least two children, and
the first letter of the label on the edges to its children are distinct.

A node in ST (x) is called an explicit node, while a position on the edges
corresponding to proper prefixes of the edge label are called implicit nodes. For
a (possibly implicit) node v in ST (x), let str(v) denote the string obtained by
concatenating the edge labels on the path from the root to v. The locus of a
string p in ST (x) is a (possibly implicit) node v in ST (x) such that str(v) = p.
Each explicit node v of the suffix tree can be augmented with a suffix link, that
points to the node u, such that str(v) = str(v)[1]str(u). It is easy to see that
because v is an explicit node, u is also always an explicit node.

It is well known that the suffix tree (and suffix links) can be represented in
O(|x|) space and constructed in O(|x| log σ) time [18] for general ordered alpha-
bets, or in O(|x|) time for constant [19] or linearly-sortable integer alphabets [7].
The suffix tree can also be defined for a set of strings X = {x1, . . . , xk}, and
again can be constructed in O(n log σ) time for general ordered alphabets or
in O(n) time for constant or linearly-sortable integer alphabets, where n is the
total length of the strings. This is done by considering and building the suffix
tree for the string x1$ · · · xk$ and pruning edges below any $. It is also easy to
process ST (X) to compute for each explicit node v, the length |str(v)|, as well
as an occurrence (s, b) of str(v) in X, where xs[b..b+ |str(v)|−1] = str(v). Also,
these values can be computed in constant time for any implicit node, given the
values for the closest descendant explicit node.

We will later use the following lemma to efficiently find the loci of a given
set of substrings, and to make these loci explicit (by subdividing the edges of
the suffix tree containing loci that were originally implicit).
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Lemma 2 ([16, Corollary 7.3]). Given a collection of substrings s1, . . . , sk of
a string w of length n, each represented by an occurrence in w, in O(n + k)
total time we can compute the locus of each substring si in the suffix tree of w.
Moreover, these loci can be turned into explicit nodes in O(n + k) extra time.

For a string x of length n, a longest common extension query, given positions
1 ≤ i, j ≤ n asks for the longest common prefix between x[i..n] and x[j..n]. It
is known that the string can be pre-processed in O(n) time so that the longest
common extension query can be answered in O(1) time for any i, j (e.g. [9]).

2.3 Matching Statistics

For two strings x and y, the matching statistics of y with respect to x is an array
MSy,x[1..|y|], where

MSy,x[i] = max{l ≥ 0 : ∃j∈{1,...,|x|} x[j..j + l − 1] = y[i..i + l − 1]}
for any 1 ≤ i ≤ |y|. That is, for each position i of y, MSy,x[i] is the length of
the longest prefix of y[i..|y|] that occurs in x. The concept of matching statistics
can be generalized to a set of strings. For a set X = {x1, . . . , xk} of k strings
and a string y, the k′-matching statistics of y with respect to X is an array
MSk′

y,X [1..|y|] where

MSk′
y,X [i] = max{l ≥ 0 : |{x ∈ X : ∃j∈{1,...,|x|} x[j..j+l−1] = y[i..i+l−1]}| ≥ k′}.

That is, for each position i of y, MSk′
y,X [i] is the length of the longest prefix of

y[i..|y|] that occurs in at least k′ of the strings in X.

2.4 Longest Common Property Preserved Substring Queries

Let a function P : Σ∗ → {true, false} be called a property function.
In this paper, we will consider the following property functions Psqf ,
Psqr,Pper,Ppal,PLyn, which return true if and only if a string is respectively
a square-free, square, periodic string, palindrome, or a Lyndon word.

The following is the on-line version of the problem considered in [1], where a
solution was given for the longest common square free substring, i.e., P = Psqf .

Problem 3 (Longest common property preserved substring query). Let P be a
property function. Consider a string x which can be pre-processed. For a query
string y, compute a longest string z that is a substring of both x and y, and also
satisfies P (z) = true.

The following is the generalized version of the on-line setting that we consider
in this paper.

Problem 4 (Generalized longest common property preserved substring query).
Let P be a property function. Consider a set of strings X = {x1, . . . , xk} that
can be pre-processed. For a query string y and positive integer k′ ≤ k, compute
a longest substring z of y that is a substring of at least k′ strings in X, and also
satisfies P (z) = true.
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Below is a summary of our results. Here, the working space of the query is the
amount of memory that is required in excess to the data structure constructed in
the pre-processing. All memory other than the working space can be considered
as read-only.

Theorem 5. For any property function P ∈ {Psqf ,Psqr,Pper,Ppal,PLyn}, Prob-
lem 4 can be answered in O(|y| log σ) time and O(1) working space by construct-
ing an O(n) space data structure in O(n) time, where n =

∑k
i=1 |xi| is the total

length of the strings in X.

We further note that our algorithms do not require random access to y during
the query and thus work in the same time/space bounds even if each symbol of
y is given in a streaming fashion.

The proof of the Theorem for each property function is given in the next
section.

3 Algorithms

In this section we present our algorithms, starting from the common outline.
The preprocessing consists of the following steps:

1. Construct the generalized suffix tree ST (X) of X.
2. For each explicit node v of ST (X), compute the number of strings in X that

contain str(v) as a substring.
3. Process ST (X) and construct a data structure so that, given any position on

ST (X), we can efficiently find a candidate for the solution.

Then, queries are answered as follows:

4. For each position i in y, compute MSk′
y,X [i], i.e., the k′-matching statistics of

y with respect to X, as the locus vi of y[i..ei] in ST (X).
5. For each such locus vi, compute a candidate using the data structure com-

puted in Step 3 of the pre-processing.
6. Output the longest string computed in the previous step.

As mentioned in Sect. 2.2, Step 1 can be performed in O(n) time and space.
The task of Step 2 is known as the color set size problem, and it can also be
executed in O(n) time [13].

Using ST (X), the outcome of Step 4, i.e., the locus vi of the substring
y[i..ei] where ei − i + 1 = MSk′

y,X [i], can be computed for all 1 ≤ i ≤ |y| in
O(|y| log σ) total time and O(1) working space, with a minor modification to the
algorithm for computing the matching statistics with respect to a single string
[12, Theorem 7.8.1]. The algorithm for a single string first searches the longest
prefix of y[1..|y|] in the suffix tree to compute the locus corresponding to
MSy,x[1]. Let this prefix be y[1..e1]. Given a locus vi of y[i..ei] for some
1 ≤ i < |y|, the suffix link of the closest ancestor of vi is used in order to
first efficiently find the locus of y[i + 1..ei]. Then, the suffix tree is further tra-
versed to obtain the locus of y[i + 1..ei+1]. The time bound for the traversal
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follows from a well known amortized analysis which considers the depth of the
traversed nodes, similar to that in the online construction of suffix trees [18]. For
computing MSk′

y,X , we can simply imagine that subtrees below edges leading to
a node v of ST (X) are pruned if str(v) is contained in less than k′ strings of X.
This can be simulated by aborting the traversal of y[i..|y|] when we encounter
such an edge, detected using the information obtained in Step 2. It is easy to
see that the algorithm still works in the same time bound since the suffix link of
any remaining node still points to a node that is not pruned (i.e., if a string is
contained in at least k′ strings, then its suffix will also be contained in the same
strings). Thus, we can visit each locus corresponding to MSk′

y,X in O(|y| log σ)
total time and O(1) working space.

The crux of our algorithm is therefore in the details of Step 3 and Step 5:
designing what the candidates are and how to compute them given vi. Notice
that the solution is the longest string z which satisfies P (z) = true and is a
substring of y[i..ei] for some i = 1, . . . , n.

3.1 Square-Free Substrings

Ayad et al. [1,2] gave a solution to the on-line longest common square-free sub-
string query problem for a single string (Problem3), in O(|x|) time and space
preprocessing and O(|y| log σ) time and O(1) space query. We note that their
algorithm easily extends to the generalized version (Problem 4). The only dif-
ference lies in that MSk′

y,X is computed instead of MSy,x, which can be done
in O(|y| log σ) time and O(1) space, as described above. Details can be found
in [1,2].

3.2 Squares

As mentioned in the introduction, Ayad et al. [1,2] also considered longest com-
mon periodic substrings, but in the off-line setting. However, their algorithm is
not readily extendible to the on-line setting. It relies on the fact that the ending
position of a longest common periodic substring must coincide with an ending
position of some run in the set of strings, and solved the problem by computing
all loci corresponding to runs in X. To utilize this observation in the on-line
setting, the loci of all runs in the query string y must be identified in ST (X),
which seems difficult to do in time not depending on X.

Here, we first show how to efficiently solve the problem in the on-line setting
for squares, and then we extend that solution to obtain an efficient solution for
periodic substrings. Below is an important property of squares which we exploit.

Lemma 6 ([10, Theorem 1]). A given position can be the right-most occur-
rence of at most two distinct squares.

It follows from the above lemma that the number of distinct squares in a given
string is linear in its length [10]. Also, it gives us the following Corollary.
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Corollary 7. On a given edge of a suffix tree, there can only be at most two
implicit nodes which correspond to a square.

Proof. The right-most occurrence of a square is the maximum position corre-
sponding to leaves in the subtree rooted at the square. Since implicit nodes that
correspond to squares on the same edge share the right-most occurrence, a third
implicit node would contradict Lemma 6. 	


For squares, we first compute the locus in ST (X) of all distinct squares that
are substrings of strings in X, and we make them explicit nodes in ST (X). Note
that these additional nodes will not have suffix links, but since there are only a
constant number of them on each edge of the original suffix tree, it will only add
a constant factor to the amortized analysis when computing Step 4. The loci of
all squares can be computed in O(n) total time using the algorithm of [4]. We
further add to each explicit node in ST (X) (including the ones we introduced
above) a pointer to the nearest ancestor that is the locus of a square (see Fig. 1
for an example of the pointers). Notice that a node that is the locus of a square
is explicit and points to itself. This can be also done in linear time by a simple
depth-first traversal on ST (X).

The candidate, which we will compute in Step 5 for each locus vi, is the
longest square that is a prefix of y[i..ei]. It can be determined for each locus
vi by using the pointers. When vi is an explicit node, the pointer of vi is the
answer. When vi is an implicit node, the pointer of the parent of vi is the answer.
The longest such square for all loci is the answer to the query. This is because
the longest common square must be a prefix of the string corresponding to the
k′-matching statistics of some position. Thus, we have a solution as claimed in
Theorem 5 for P = Psqr.

3.3 Periodic Substrings

Next, we extend the solution for squares to periodic substrings as follows.
We first explain the data structure, which is again an augmented ST (X). For

each primitively rooted square substring w, we make the locus of w in ST (X)
an explicit node. (The non-primitively rooted squares are redundant since they
will lead to the same periodic substrings.) Furthermore, we also make explicit
the deepest locus v in ST (X) obtained by periodically extending a primitively
rooted square w, i.e., w is a prefix of str(v) and the smallest period of str(v)
is 1

2 |w|. We add to each explicit node, a pointer to the nearest explicit ancestor
(including itself) that is a locus of some square or its extension. If an explicit node
is an extension of a square, it will also hold information to identify which square
it is an extension of (in our case, the smallest period of the square suffices).
Note that the pointer of an explicit node that lies between a square and its
extension will point to itself. Figure 2 shows an example of ST (X) for a single
string X = {aababababbababab$}, where loci corresponding to squares and
their rightmost-maximal extensions are depicted.

We first show how the above augmentation of ST (X) can be executed in O(n)
time. We first make explicit all loci of squares as in Sect. 3.2, which can be done
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Fig. 1. Example of ST (X) for a single string X = {babbababbaaa$} augmented with
nodes and pointers for P = Psqr. The solid dark circles show the loci corresponding to
squares which are made explicit. The dotted arrows show the pointers which point to
the nearest ancestor which is a square. Pointers which point to the root (i.e., there is
no non-empty prefix that is a square) are omitted.

in O(n) time. Then, we start from the locus of each primitively rooted square
and extend the square periodically towards the leaves of ST (X) as deep as pos-
sible. For each explicit node we encounter during this extension, the pointer will
point to itself, and the node will also store the period of the underlying square.
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Fig. 2. Example of ST (X) for a single string X = {aababababbababab$} augmented
with nodes and pointers for P = Pper. The solid dark circles show the loci corresponding
to squares, which are made explicit, and the grey circles show the loci corresponding
to their extensions, where the ones with a solid border are made explicit. The dotted
arrows show the pointers which point to the nearest ancestor (longest prefix) which is
periodic. The pointers which point to the root are omitted. The total number of solid
dark circles, as well as grey circles with a solid border is O(n). The total number of
implicit grey circles without the solid border is not necessarily O(n), but since they
occur consecutively from a solid node, they can be represented in O(n) space.

The total cost of this extension can be bounded as follows. Due to the periodic-
ity lemma (Lemma 1), any locus of a primitively rooted square or its extension
cannot be an extension of a shorter square; if it was, a (proper) divisor of the
period of the longer square would also be a period of the square, and would
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contradict that the longer square is primitively rooted. Thus, we can naturally
discard all non-primitive squares by doing the extensions in increasing order of
the length of squares (which can be obtained in linear time by radix sort). Dur-
ing the extension, if the square is non-primitive, then the pointers of nodes will
already have been determined by a square of a shorter period, and this situation
can be detected. From the above arguments, any edge of ST (X) is traversed at
most once, and thus the extension can be done by traversing a total of O(n)
nodes and edges. Because we know the period of the square we wish to extend,
and for any locus v in ST (X), an occurrence b in some xs ∈ X, we can compute
the extension in O(1) time per edge of ST (X) by using longest common exten-
sion queries. Therefore, the total time for building the augmented ST (X) can
be done in O(n) time.

Queries can be answered in the same way as for squares, except for a small
modification. For any locus vi, if vi is an explicit node, then the pointer of vi
gives the answer. When vi is an implicit node, we check vi’s parent and its
immediate descendant. If these nodes are both extensions originating from the
same square (i.e., their labels have the same period), then, the answer is vi itself,
since it is also an extension of the square. Otherwise, the pointer of the parent
node provides the answer.

Thus, we have a solution as claimed in Theorem 5 for P = Pper.

3.4 Palindromes

It is well known that the number of non-empty distinct palindromes in a string
of length n is at most n, since only the longest palindrome starting at some
position can be the right-most occurrence of that palindrome in the string.

Lemma 8 ([6, Proposition 1]). A given position can be the right-most occur-
rence of at most one distinct palindrome.

All distinct palindromes in a string can be computed in linear time [11]. The locus
of each palindrome in ST (X) can be computed in O(n) time by Lemma 2. The
rest is the same as for squares; we make all loci corresponding to a palindrome
an explicit node, and do a linear time depth-first traversal on ST (X) to make
pointers to the nearest ancestor that is a palindrome. As in the case of squares,
we can bound the number of palindromes which will be on an edge of the original
suffix tree.

Corollary 9. On a given edge of a suffix tree, there can only be at most one
implicit node that corresponds to a palindrome.

Proof. Analogous to the proof of Corollary 7. 	

The rest of the algorithm and analysis is the same, thus we obtain a solution

for P = Ppal of Theorem 5.



172 K. Kai et al.

3.5 Lyndon Words

For Lyndon words, we use the following result by Kociumaka [15]. A minimal
suffix query (MSQ) on a string T , given indices �, r such that 1 ≤ � ≤ r ≤ |T |,
determines the lexicographically smallest suffix of T [�..r].

Lemma 10 ([15, Theorem 17]). For any string T of length n, there exists a
data structure of size O(n) which can be constructed in O(n) time, which can
answer minimal suffix queries on T in constant time.

Using Lemma 10, we can find the longest Lyndon word ending at a given position.

Lemma 11. For any string w, the lexicographically smallest suffix is the longest
Lyndon word that is a suffix of w.

Proof. From the definition of Lyndon words, it is clear that the minimal suffix
must be a Lyndon word, and that a longer suffix cannot be a Lyndon word. 	


For Step 3, we process all strings in X so that MSQ can be answered in
constant time.

For Step 5, the situation is a bit different from squares, periodic strings, and
palindromes, in that we can have multiple candidates for each vi rather than
just one. For convenience, let e0 = 0. For each 0 ≤ i < n, suppose we have
obtained the locus vi of y[i..ei], and the next locus vi+1 of y[i + 1..ei+1]. Notice
that ei ≤ ei+1 and for all positions e′ such that ei < e′ ≤ ei+1, y[i + 1..e′] is
the longest substring of y that ends at e′ and is a substring of y[j..ej ] for some
j = 1, . . . , n. As mentioned in Sect. 2.2, we can obtain an occurrence (s, b) of
y[i+1..ei+1] such that y[i+1..ei+1] = xs[b..b+MSk′

y,X [i]−1]. Then, we use MSQ
on substrings xs[b..r] such that b+ei−i ≤ r ≤ b+ei+1−(i+1), which is equivalent
to using MSQ on substrings y[i + 1..e′] for all ei < e′ ≤ ei+1. The longest suffix
Lyndon word obtained in all the queries is therefore the longest Lyndon word
that is a substring of y[j..ej ] for some j = 1, . . . , n. Since we perform ei+1 − ei
MSQs for each position i + 1 of y, the total number of MSQs is |y|, which takes
O(|y|) time. Thus, we have a solution as claimed in Theorem5 for P = PLyn.

3.6 Solutions in the Off-Line Setting

We note that a solution for the on-line setting gives a solution for the off-line set-
ting, since, for any X = {x1, . . . , xk}, we can consider the string y = x1# · · · #xk,
where # is again a symbol that doesn’t appear elsewhere. Since |y| = O(n), the
preprocessing time is O(n), and the query time is O(n log σ).

Furthermore, we can remove the log σ factor by processing ST (X) for level
ancestor queries. Level ancestor queries, given a node v of tree T and integer d,
answer the ancestor of v at (node) depth d. It is known that level ancestor queries
can be answered in constant time, after linear time preprocessing of T (e.g. [5]).
The log σ factor came from determining which child of a branching node we
needed to follow when traversing ST (X) with some suffix of y. Since, in this
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case, we can identify the leaf in ST (X) that corresponds to the current suffix of
y (i.e. some suffix of xi in X) that is being traversed, we can use level ancestor
query to determine, in constant time, the child of the branching node that is an
ancestor of that leaf, thus getting rid of the log σ factor.

4 Conclusion

We considered the generalized on-line variant of the longest common property
preserved substring problem proposed by Ayad et al. [1,16], and (1) unified
the two problem settings, and (2) proposed algorithms for several properties,
namely, squares, periodic substrings, palindromes, and Lyndon words. For all
these properties, we can answer queries in O(|y| log σ) time and O(1) working
space, with O(n) time and space preprocessing.
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