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Abstract. In this paper we propose a variant of the induced suffix sort-
ing algorithm by Nong (TOIS, 2013) that computes simultaneously the
Lyndon array and the suffix array of a text in O(n) time using σ +O(1)
words of working space, where n is the length of the text and σ is the
alphabet size. Our result improves the previous best space requirement
for linear time computation of the Lyndon array. In fact, all the known
linear algorithms for Lyndon array computation use suffix sorting as a
preprocessing step and use O(n) words of working space in addition to
the Lyndon array and suffix array. Experimental results with real and
synthetic datasets show that our algorithm is not only space-efficient but
also fast in practice.

Keywords: Lyndon array · Suffix array · Induced suffix sorting ·
Lightweight algorithms

1 Introduction

The suffix array is a central data structure for string processing. Induced suffix
sorting is a remarkably powerful technique for the construction of the suffix array.
Induced sorting was introduced by Itoh and Tanaka [10] and later refined by Ko
and Aluru [11] and by Nong et al. [18,19]. In 2013, Nong [17] proposed a space
efficient linear time algorithm based on induced sorting, called SACA-K, which
uses only σ+O(1) words of working space, where σ is the alphabet size and the
working space is the space used in addition to the input and the output. Since a
small working space is a very desirable feature, there have been many algorithms
adapting induced suffix sorting to the computation of data structures related to
the suffix array, such as the Burrows-Wheeler transform [21], the Φ-array [8], the
LCP array [4,14], and the document array [13].
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The Lyndon array of a string is a powerful tool that generalizes the idea of
Lyndon factorization. In the Lyndon array (LA) of string T = T [1] . . . T [n] over
the alphabet Σ, each entry LA[i], with 1 ≤ i ≤ n, stores the length of the longest
Lyndon factor of T starting at that position i. Bannai et al. [2] used Lyndon
arrays to prove the conjecture by Kolpakov and Kucherov [12] that the number
of runs (maximal periodicities) in a string of length n is smaller than n. In [3] the
authors have shown that the computation of the Lyndon array of T is strictly
related to the construction of the Lyndon tree [9] of the string $T (where the
symbol $ is smaller than any symbol of the alphabet Σ).

In this paper we address the problem of designing a space economical linear
time algorithm for the computation of the Lyndon array. As described in [5,15],
there are several algorithms to compute the Lyndon array. It is noteworthy that
the ones that run in linear time (cf. [1,3,5,6,15]) use the sorting of the suffixes (or
a partial sorting of suffixes) of the input string as a preprocessing step. Among
the linear time algorithms, the most space economical is the one in [5] which, in
addition to the n log σ bits for the input string plus 2n words for the Lyndon
array and suffix array, uses a stack whose size depends on the structure of the
input. Such stack is relatively small for non pathological texts, but in the worst
case its size can be up to n words. Therefore, the overall space in the worst case
can be up to n log σ bits plus 3n words.

In this paper we propose a variant of the algorithm SACA-K that computes
in linear time the Lyndon array as a by-product of suffix array construction. Our
algorithm uses overall n log σ bits plus 2n+σ+O(1) words of space. This bound
makes our algorithm the one with the best worst case space bound among the
linear time algorithms. Note that the σ + O(1) words of working space of our
algorithm is optimal for strings from alphabets of constant size. Our experiments
show that our algorithm is competitive in practice compared to the other linear
time solutions to compute the Lyndon array.

2 Background

Let T = T [1] . . . T [n] be a string of length n over a fixed ordered alphabet Σ of
size σ, where T [i] denotes the i-th symbol of T . We denote T [i, j] as the factor
of T starting from the i-th symbol and ending at the j-th symbol. A suffix of
T is a factor of the form T [i, n] and is also denoted as Ti. In the following we
assume that any integer array of length n with values in the range [1, n] takes n
words (n log n bits) of space.

Given T = T [1] . . . T [n], the i-th rotation of T begins with T [i + 1], corre-
sponding to the string T ′ = T [i + 1] . . . T [n]T [1] . . . T [i]. Note that, a string of
length n has n possible rotations. A string T is a repetition if there exists a string
S and an integer k > 1 such that T = Sk, otherwise it is called primitive. If a
string is primitive, all of its rotations are different.

A primitive string T is called a Lyndon word if it is the lexicographical least
among its rotations. For instance, the string T = abanba is not a Lyndon word,
while it is its rotation aabanb is. A Lyndon factor of a string T is a factor of T
that is a Lyndon word. For instance, anb is a Lyndon factor of T = abanba.
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Definition 1. Given a string T = T [1] . . . T [n], the Lyndon array (LA) of T is
an array of integers in the range [1, n] that, at each position i = 1, . . . , n, stores
the length of the longest Lyndon factor of T starting at i:

LA[i] = max{� | T [i, i + � − 1] is a Lyndon word}.

The suffix array (SA) [16] of a string T = T [1] . . . T [n] is an array of integers
in the range [1, n] that gives the lexicographic order of all suffixes of T , that is
TSA[1] < TSA[2] < · · · < TSA[n]. The inverse suffix array (ISA) stores the inverse
permutation of SA, such that ISA[SA[i]] = i. The suffix array can be computed
in O(n) time using σ + O(1) words of working space [17].

Usually when dealing with suffix arrays it is convenient to append to the
string T a special end-marker symbol $ (called sentinel) that does not occur
elsewhere in T and $ is smaller than any other symbol in Σ. Here we assume
that T [n] = $. Note that the values LA[i], for 1 ≤ i ≤ n − 1 do not change when
the symbol $ is appended at the position n. Also, string T = T [1] . . . T [n − 1]$
is always primitive.

Given an array of integers A of size n, the next smaller value (NSV) array of
A, denoted NSVA, is an array of size n such that NSVA[i] contains the smallest
position j > i such that A[j] < A[i], or n + 1 if such a position j does not exist.
Formally:

NSVA[i] = min
{{n + 1} ∪ {i < j ≤ n | A[j] < A[i]}}

.

As an example, in Fig. 1 we consider the string T = banaananaanana$, and
its Suffix Array (SA), Inverse Suffix Array (ISA), Next Smaller Value array of
the ISA (NSVISA), and Lyndon Array (LA). We also show all the Lyndon factors
starting at each position of T .

If the SA of T is known, the Lyndon array LA can be computed in linear time
thanks to the following lemma that rephrases a result in [9]:

Lemma 1. The factor T [i, i + � − 1] is the longest Lyndon factor of T starting
at i iff Ti < Ti+k, for 1 ≤ k < �, and Ti > Ti+�. Therefore, LA[i] = �. ��

Lemma 1 can be reformulated in terms of the inverse suffix array [5], such
that LA[i] = � iff ISA[i] < ISA[i + k], for 1 ≤ k < �, and ISA[i] > ISA[i + �]. In
other words, i+ � = NSVISA[i]. Since given ISA we can compute NSVISA in linear
time using an auxiliary stack [7,20] of size O(n) words, we can then derive LA,
in the same space of NSVISA, in linear time using the formula:

LA[i] = NSVISA[i] − i, for 1 ≤ i ≤ n. (1)

Overall, this approach uses n log σ bits for T plus 2n words for LA and ISA, and
the space for the auxiliary stack.

Alternatively, LA can be computed in linear time from the Cartesian tree [22]
built for ISA [3]. Recently, Franek et al. [6] observed that LA can be computed
in linear time during the suffix array construction algorithm by Baier [1] using
overall n log σ bits plus 2n words for LA and SA plus 2n words for auxiliary
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Fig. 1. SA, ISA, NSVISA, LA and all Lyndon factors for T = banaananaanana$

integer arrays. Finally, Louza et al. [15] introduced an algorithm that computes
LA in linear time during the Burrows-Wheeler inversion, using n log σ bits for T
plus 2n words for LA and an auxiliary integer array, plus a stack with twice the
size as the one used to compute NSVISA (see Sect. 4).

Summing up, the most economical linear time solution for computing the
Lyndon array is the one based on (1) that requires, in addition to T and LA,
n words of working space plus an auxiliary stack. The stack size is small for
non pathological inputs but can use n words in the worst case (see also Sect. 4).
Therefore, considering only LA as output, the working space is 2n words in the
worst case.

2.1 Induced Suffix Sorting

The algorithm SACA-K [17] uses a technique called induced suffix sorting to
compute SA in linear time using only σ + O(1) words of working space. In this
technique each suffix Ti of T [1, n] is classified according to its lexicographical
rank relative to Ti+1.

Definition 2. A suffix Ti is S-type if Ti < Ti+1, otherwise Ti is L-type. We
define Tn as S-type. A suffix Ti is LMS-type (leftmost S-type) if Ti is S-type and
Ti−1 is L-type.

The type of each suffix can be computed with a right-to-left scanning of
T [18], or otherwise it can be computed on-the-fly in constant time during Nong’s
algorithm [17, Section 3]. By extension, the type of each symbol in T can be clas-
sified according to the type of the suffix starting with such symbol. In particular
T [i] is LMS-type if and only if Ti is LMS-type.

Definition 3. An LMS-factor of T is a factor that begins with a LMS-type sym-
bol and ends with the following LMS-type symbol.
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We remark that LMS-factors do not establish a factorization of T since each
of them overlaps with the following one by one symbol. By convention, T [n, n]
is always an LMS-factor. The LMS-factors of T = banaananaanana$ are shown
in Fig. 2, where the type of each symbol is also reported. The LMS types are
the grey entries. Notice that in SA all suffixes starting with the same symbol
c ∈ Σ can be partitioned into a c-bucket. We will keep an integer array C[1, σ]
where C[c] gives either the first (head) or last (tail) available position of the
c-bucket. Then, whenever we insert a value into the head (or tail) of a c-bucket,
we increase (or decrease) C[c] by one. An important remark is that within each
c-bucket S-type suffixes are larger than L-type suffixes. Figure 2 shows a running
example of algorithm SACA-K for T = banaananaanana$.

Given all LMS-type suffixes of T [1, n], the suffix array can be computed as
follows:

Steps:

1. Sort all LMS-type suffixes recursively into SA1, stored in SA[1, n/2].
2. Scan SA1 from right-to-left, and insert the LMS-suffixes into the tail of

their corresponding c-buckets in SA.
3. Induce L-type suffixes by scanning SA left-to-right: for each suffix SA[i], if

TSA[i]−1 is L-type, insert SA[i] − 1 into the head of its bucket.
4. Induce S-type suffixes by scanning SA right-to-left: for each suffix SA[i], if

TSA[i]−1 is S-type, insert SA[i] − 1 into the tail of its bucket.

Step 1 considers the string T 1 obtained by concatenating the lexicographic
names of all the consecutive LMS-factors (each different string is associated with
a symbol that represents its lexicographic rank). Note that T 1 is defined over
an alphabet of size O(n) and that its length is at most n/2. The SACA-K
algorithm is applied recursively to sort the suffixes of T 1 into SA1, which is
stored in the first half of SA. Nong et al. [18] showed that sorting the suffixes of
T 1 is equivalent to sorting the LMS-type suffixes of T . We will omit details of
this step, since our algorithm will not modify it.

Step 2 obtains the sorted order of all LMS-type suffixes from SA1 scanning
it from right-to-left and bucket sorting then into the tail of their corresponding
c-buckets in SA. Step 3 induces the order of all L-type suffixes by scanning SA
from left-to-right. Whenever suffix TSA[i]−1 is L-type, SA[i] − 1 is inserted in its
final (corrected) position in SA.

Finally, Step 4 induces the order of all S-type suffixes by scanning SA from
right-to-left. Whenever suffix TSA[i]−1 is S-type, SA[i] − 1 is inserted in its final
(correct) position in SA.

Theoretical Costs. Overall, algorithm SACA-K runs in linear time using only
an additional array of size σ + O(1) words to store the bucket array [17].
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Fig. 2. Induced suffix sorting steps (SACA-K) for T = banaananaanana$

3 Inducing the Lyndon Array

In this section we show how to compute the Lyndon array (LA) during Step 4 of
algorithm SACA-K described in Sect. 2.1. Initially, we set all positions LA[i] = 0,
for 1 ≤ i ≤ n. In Step 4, when SA is scanned from right-to-left, each value SA[i],
corresponding to TSA[i], is read in its final (correct) position i in SA. In other
words, we read the suffixes in decreasing order from SA[n],SA[n − 1], . . . ,SA[1].
We now show how to compute, during iteration i, the value of LA[SA[i]].

By Lemma 1, we know that the length of the longest Lyndon factor starting
at position SA[i] in T , that is LA[SA[i]], is equal to �, where TSA[i]+� is the next
suffix (in text order) that is smaller than TSA[i]. In this case, TSA[i]+� will be the
first suffix in TSA[i]+1, TSA[i]+2 . . . , Tn that has not yet been read in SA, which
means that TSA[i]+� < TSA[i]. Therefore, during Step 4, whenever we read SA[i],
we compute LA[SA[i]] by scanning LA[SA[i] + 1, n] to the right up to the first
position LA[SA[i] + �] = 0, and we set LA[SA[i]] = �.
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The correctness of this procedure follows from the fact that every position in
LA[1, n] is initialized with zero, and if LA[SA[i]+1], LA[SA[i]+2], . . . , LA[SA[i]+�−
1] are no longer equal to zero, their corresponding suffixes has already been read
in positions larger than i in SA[i, n], and such suffixes are larger (lexicographi-
cally) than TSA[i]. Then, the first position we find LA[SA[i] + �] = 0 corresponds
to a suffix TSA[i]+� that is smaller than TSA[i], which was still not read in SA. Also,
TSA[i]+� is the next smaller suffix (in text order) because we read LA[SA[i]+1, n]
from left-to-right.

Figure 3 illustrates iterations i = 15, 9, and 3 of our algorithm for T =
banaananaanana$. For example, at iteration i = 9, the suffix T5 is read at
position SA[9], and the corresponding value LA[5] is computed by scanning
LA[6], LA[7], . . . , LA[15] up to finding the first empty position, which occurs at
LA[7 = 5 + 2]. Therefore, LA[5] = 2.

At each iteration i = n, n − 1, . . . , 1, the value of LA[SA[i]] is computed in
additional LA[SA[i]] steps, that is our algorithm adds O(LA[i]) time for each
iteration of SACA-K.

Therefore, our algorithm runs in O(n · avelyn) time, where avelyn =∑n
i=1 LA[i]/n. Note that computing LA does not need extra memory on top of

the space for LA[1, n]. Thus, the working space is the same as SACA-K, which
is σ + O(1) words.

Lemma 2. The Lyndon array and the suffix array of a string T [1, n] over an
alphabet of size σ can be computed simultaneously in O(n · avelyn) time using
σ + O(1) words of working space, where avelyn is equal to the average value in
LA[1, n]. ��

In the next sections we show how to modify the above algorithm to reduce
both its running time and its working space.

3.1 Reducing the Running Time to O(n)

We now show how to modify the above algorithm to compute each LA entry in
constant time. To this end, we store for each position LA[i] the next smaller posi-
tion � such that LA[�] = 0. We define two additional pointer arrays NEXT[1, n]
and PREV[1, n]:

Definition 4. For i = 1, . . . , n − 1, NEXT[i] = min{�|i < � ≤ n and LA[�] = 0}.
In addition, we define NEXT[n] = n + 1.

Definition 5. For i = 2, . . . , n, PREV[i] = �, such that NEXT[�] = i and
LA[�] = 0. In addition, we define PREV[1] = 0.

The above definitions depend on LA and therefore NEXT and PREV are
updated as we compute additional LA entries. Initially, we set NEXT[i] = i + 1
and PREV[i] = i − 1, for 1 ≤ i ≤ n. Then, at each iteration i = n, n − 1, . . . , 1,
when we compute LA[j] with j = SA[i] setting:

LA[j] = NEXT[j] − j (2)
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Fig. 3. Running example for T = banaananaanana$.

we update the pointers arrays as follows:

NEXT[PREV[j]] = NEXT[j], if PREV[j] > 0 (3)
PREV[NEXT[j]] = PREV[j], if NEXT[j] < n + 1 (4)

The cost of computing each LA entry is now constant, since only two additional
computations (Eqs. 3 and 4) are needed. Because of the use of the arrays PREV
and NEXT the working space of our algorithm is now 2n + σ + O(1) words.

Theorem 1. The Lyndon array and the suffix array of a string T [1, n] over an
alphabet of size σ can be computed simultaneously in O(n) time using 2n + σ +
O(1) words of working space. ��

3.2 Getting Rid of a Pointer Array

We now show how to reduce the working space of Sect. 3.1 by storing only one
array, say A[1, n], keeping NEXT/PREV information together. In a glace, we store
NEXT initially into the space of A[1, n], then we reuse A[1, n] to store the (useful)
entries of PREV.

Note that, whenever we write LA[j] = �, the value in A[j], that is NEXT[j]
is no more used by the algorithm. Then, we can reuse A[j] to store PREV[j + 1].
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Also, we know that if LA[j] = 0 then PREV[j+1] = j. Therefore, we can redefine
PREV in terms of A:

PREV[j] =

{
j − 1 if LA[j − 1] = 0
A[j − 1] otherwise.

(5)

The running time of our algorithm remains the same since we have added
only one extra verification to obtain PREV[j] (Eq. 5). Observe that whenever
NEXT[j] is overwritten the algorithm does not need it anymore. The working
space is therefore reduced to n + σ + O(1) words.

Theorem 2. The Lyndon array and the suffix array of a string T [1, n] over an
alphabet of size σ can be computed simultaneously in O(n) time using n+σ+O(1)
words of working space. ��

3.3 Getting Rid of both Pointer Arrays

Finally, we show how to use the space of LA[1, n] to store both the auxiliary array
A[1, n] and the final values of LA. First we observe that it is easy to compute
LA[i] when Ti is an L-type suffix.

Lemma 3. LA[j] = 1 iff Tj is an L-type suffix, or i = n.

Proof. If Tj is an L-type suffix, then Tj > Tj+1 and LA[j] = 1. By definition
LA[n] = 1. ��

Notice that at Step 4 during iteration i = n, n − 1, . . . , 1, whenever we read
an S-type suffix Tj , with j = SA[i], its succeeding suffix (in text order) Tj+1 has
already been read in some position in the interval SA[i+1, n] (Tj+1 have induced
the order of Tj). Therefore, the LA-entries corresponding to S-type suffixes are
always inserted on the left of a block (possibly of size one) of non-zero entries in
LA[1, n].

Moreover, whenever we are computing LA[j] and we have NEXT[j] = j + k
(stored in A[j]), we know the following entries LA[j + 1], LA[j + 2], . . . , LA[j +
k − 1] are no longer zero, and we have to update A[j + k − 1], corresponding to
PREV[j+k] (Eq. 5). In other words, we update PREV information only for right-
most entry of each block of non empty entries, which corresponds to a position
of an L-type suffix because S-type are always inserted on the left of a block.

Then, at the end of the modified Step 4, if A[i] < i then Ti is an L-type suffix,
and we know that LA[i] = 1. On the other hand, the values with A[i] > i remain
equal to NEXT[i] at the end of the algorithm. And we can use them to compute
LA[i] = A[i] − i (Eq. 2).

Thus, after the completion of Step 4, we sequentially scan A[1, n] overwriting
its values with LA as follows:

LA[j] =

{
1 if A[j] < j

A[j] − j otherwise.
(6)
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The running time of our algorithm is still linear, since we added only a linear
scan over A[1, n] at the end of Step 4. On the other hand, the working space is
reduced to σ + O(1) words, since we need to store only the bucket array C[1, σ].

Theorem 3. The Lyndon array and the suffix array of a string of length n over
an alphabet of size σ can be computed simultaneously in O(n) time using σ+O(1)
words of working space. ��

Note that the bounds on the working space given in the above theorems
assume that the output consists of SA and LA. If one is interested in LA only,
then the working space of the algorithm is n+σ+O(1) words which is still smaller
that the working space of the other linear time algorithms that we discussed in
Sect. 2.

4 Experiments

We compared the performance of our algorithm, called SACA-K+LA, with
algorithms to compute LA in linear time by Franek et al. [5,9] (NSV-Lyndon),
Baier [1,6] (Baier-LA), and Louza et al. [15] (BWT-Lyndon). We also com-
pared a version of Baier’s algorithm that computes LA and SA together (Baier-
LA+SA). We considered the three linear time alternatives of our algorithm
described in Sects. 3.1, 3.2 and 3.3. We tested all three versions since one could
be interested in the fastest algorithm regardless of the space usage. We used
four bytes for each computer word so the total space usage of our algorithms
was respectively 17n, 13n and 9n bytes. We included also the performance of
SACA-K [17] to evaluate the overhead added by the computation of LA in
addition to the SA.

The experiments were conducted on a machine with an Intel Xeon Pro-
cessor E5-2630 v3 20M Cache 2.40-GHz, 384GB of internal memory and a
13 TB SATA storage, under a 64 bits Debian GNU/Linux 8 (kernel 3.16.0-4)
OS. We implemented our algorithms in ANSI C. The time was measured with
clock() function of C standard libraries and the memory was measured using
malloc_count library1. The source-code is publicly available at https://github.
com/felipelouza/lyndon-array/.

We used string collections from the Pizza & Chili dataset2. In particular, the
datasets einstein-de, kernel, fib41 and cere are highly repetitive texts3, and
the english.1G is the first 1GB of the original english dataset. We also created
an artificial repetitive dataset, called bbba, consisting of a string T with 100×220

copies of b followed by one occurrence of a, that is, T = bn−2a$. This dataset
represents a worst-case input for the algorithms that use a stack (NSV-Lyndon
and BWT-Lyndon).

1 https://github.com/bingmann/malloc_count.
2 http://pizzachili.dcc.uchile.cl/texts.html.
3 http://pizzachili.dcc.uchile.cl/repcorpus.html.

https://github.com/felipelouza/lyndon-array/
https://github.com/felipelouza/lyndon-array/
https://github.com/bingmann/malloc_count
http://pizzachili.dcc.uchile.cl/texts.html
http://pizzachili.dcc.uchile.cl/repcorpus.html
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Table 1. Running time (μs/input byte).
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pitches 133 53 0.15 0.20 0.20 0.26 0.26 0.22 0.18 0.13
sources 230 201 0.26 0.28 0.32 0.37 0.46 0.41 0.34 0.24
xml 97 282 0.29 0.31 0.35 0.42 0.52 0.47 0.38 0.27
dna 16 385 0.39 0.28 0.49 0.43 0.69 0.60 0.52 0.36
english.1GB 239 1,047 0.46 0.39 0.56 0.57 0.84 0.74 0.60 0.42
proteins 27 1,129 0.44 0.40 0.53 0.66 0.89 0.69 0.58 0.40
einstein-de 117 88 0.34 0.28 0.38 0.39 0.57 0.54 0.44 0.31
kernel 160 246 0.29 0.29 0.39 0.38 0.53 0.47 0.38 0.26
fib41 2 256 0.34 0.07 0.45 0.18 0.66 0.57 0.46 0.32
cere 5 440 0.27 0.09 0.33 0.17 0.43 0.41 0.35 0.25
bbba 2 100 0.04 0.02 0.05 0.03 0.05 0.04 0.03 0.03

Table 1 shows the running time of each algorithm in μs/input byte. The
results show that our algorithm is competitive in practice. In particular, the ver-
sion SACA-K+LA-9n was only about 1.35 times slower than the fastest algo-
rithm (Baier-LA) for non-repetitive datasets, and 2.92 times slower for repeti-
tive datasets. Also, the performance of SACA-K+LA-9n and Baier-LA+SA
were very similar. Finally, the overhead of computing LA in addition to SA was
small: SACA-K+LA-9n was 1.42 times slower than SACA-K, whereas Baier-
LA+SA was 1.55 times slower than Baier-LA, on average. Note that SACA-
K+LA-9n was consistently faster than SACA-K+LA-13n and SACA-K+LA-
17n, so using more space does not yield any advantage.

Table 2 shows the peak space consumed by each algorithm given in bytes
per input symbol. The smallest values were obtained by NSV-Lyndon, BWT-
Lyndon and SACA-K+LA-9n. In details, the space used by NSV-Lyndon and
BWT-Lyndon was 9n bytes plus the space used by the stack. The stack space
was negligible (about 10KB) for almost all datasets, except for bbba where the
stack used 4n bytes for NSV-Lyndon and 8n bytes for BWT-Lyndon (the
number of stack entries is the same, but each stack entry consists of a pair of
integers). On the other hand, our algorithm, SACA-K+LA-9n, used exactly
9n + 1024 bytes for all datasets.
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Table 2. Peak space (bytes/input size).

Dataset σ n/220 LA LA and SA SA
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pitches 133 53 9 17 9 17 17 13 9 5
sources 230 201 9 17 9 17 17 13 9 5
xml 97 282 9 17 9 17 17 13 9 5
dna 16 385 9 17 9 17 17 13 9 5
english.1GB 239 1, 047 9 17 9 17 17 13 9 5
proteins 27 1, 129 9 17 9 17 17 13 9 5
einstein-de 117 88 9 17 9 17 17 13 9 5
kernel 160 246 9 17 9 17 17 13 9 5
fib41 2 256 9 17 9 17 17 13 9 5
cere 5 440 9 17 9 17 17 13 9 5
bbba 2 100 13 17 17 17 17 13 9 5

5 Conclusions

We have introduced an algorithm for computing simultaneously the suffix array
and Lyndon array (LA) of a text using induced suffix sorting. The most space-
economical variant of our algorithm uses only n + σ + O(1) words of working
space making it the most space economical LA algorithm among the ones running
in linear time; this includes both the algorithm computing the SA and LA and
the ones computing only the LA. The experiments have shown our algorithm is
only slightly slower than the available alternatives, and that computing the SA
is usually the most expensive step of all linear time LA construction algorithms.
A natural open problem is to devise a linear time algorithm to construct only
the LA using o(n) words of working space.
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