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Preface

SPIRE 2019, held October 7–9, 2019, in Segovia, Spain, was the 26th International
Symposium on String Processing and Information Retrieval. SPIRE started in 1993 as
the South American Workshop on String Processing, therefore it was held in Latin
America until 2000, when SPIRE traveled to Europe. From then on, SPIRE meetings
have been held in Australia, Japan, UK, Spain, Italy, Finland, Portugal, Israel, Brazil,
Chile, Colombia, Mexico, Argentina, Bolivia, and Peru.

In this edition, again in Spain, we continued the long and well-established tradition
of encouraging high-quality research at the broad nexus of algorithms and data
structures for sequences and graphs, data compression, databases, data mining,
information retrieval, and computational biology. As usual, SPIRE 2019 continues to
provide an opportunity to bring together specialists and young researchers working in
these areas.

This volume contains the 36 papers, out of a total of 59 submissions accepted to be
presented in SPIRE 2019. Each submission received at least three reviews. Authors of
accepted papers come from 17 countries, across five continents (Africa, Asia, Europe,
North America, South America). We thank all authors who submitted their work for
consideration to SPIRE 2019 and we especially thank the Program Committee and the
external reviewers, whose many thorough reviews helped us select the papers
presented. The success of the scientific program is due to their hard work.

Besides the 36 accepted papers, the scientific program included three invited
lectures, given by:

– Veli Mäkinen on “When Stringology Meets Graphs”
– Alistair Moffat on “User-Based Evaluation in Information Retrieval”
– Gonzalo Navarro on “Repetitiveness and Indexability”

We thank the invited speakers for accepting our invitation and for their excellent
presentations at the conference.

To complete the event, this year for the fourth year running, SPIRE 2019 had a Best
Paper Award, sponsored by Springer that was announced during the conference.
Besides Springer, we thank the EU project BIRDS (H2020-MSCA-RISE-2015 GA No
690941) for its financial support and the ICT Research Center CITIC at the University
of A Coruña and the Segovia Campus of the University of Valladolid whose
administrative and financial support we gratefully acknowledge.

October 2019 Nieves R. Brisaboa
Simon J. Puglisi
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Repetitiveness and Indexability

Gonzalo Navarro

CeBiB—Center for Biotechnology and Bioengineering,
IMFD—Millennium Institute for Foundational Research on Data,
Department of Computer Science, University of Chile, Chile

gnavarro@dcc.uchile.cl

Abstract. Compressed indexes for highly repetitive text collections can reduce
the data size by orders of magnitude while still supporting efficient searches.
Compression of this kind of data requires dictionary-based methods, because
statistical compression fails to capture repetitiveness. Unlike statistical com-
pression, where the state of the art is mature and indexes reaching entropy size
are already several years old, there is not even a clear concept of entropy for
highly repetitive collections. There is a wealth of measures, some more ad-hoc
and some more principled. Some relations are known between them, other
relations are unknown. It is known that no compressor can reach some measures,
it is known how to reach others, and for some it is unknown whether this is
possible. From the reachable ones, some allow random access to the compressed
text, for others it is unknown how to do it. Finally, some admit indexed searches,
for others we do not know if this is possible. In this talk I will survey this zoo of
measures, show their properties and known relations, show what is known and
unknown about them, and point out several open questions that relate repeti-
tiveness with indexability.

Keywords: Repetitive text collections � Compressed text indexing � Entropy

Partially supported by Basal Funds B0001, Conicyt, Chile and by the Millennium Institute
for Foundational Research on Data, Mideplan, Chile.



C/W/L Spells “Cool”: User-Based Evaluation
in Information Retrieval

Alistair Moffat

The University of Melbourne, Australia

Abstract. The Information Retrieval community pride themselves on the
strength of their evaluation protocols: working with large test collections; exe-
cuting dozens or hundreds of queries taken to be representative of typical
information requirements; and, in many cases, employing expert assessors to
form relevance judgments. System scores using these resources are then com-
puted using an effectiveness metric such as precision at depth k, expected
reciprocal rank, or average precision; and champion-versus-challenger evalua-
tions are carried out by considering the two system means through the lens of a
statistical significance test.
This presentation focuses on the effectiveness metrics that are at the heart of

this batch evaluation pipeline. After describing a range of traditional approaches
to measuring effectiveness, the “C/W/L” framework [2, 3] is motivated and
defined, and a range of implications of this approach to IR evaluation then
explored. Notable in the C/W/L structure is the explicit correspondence between
metrics and user models. This relationship makes it possible for metrics to be
evaluated and compared in terms of their suitability for different types of search
task, based on the extent to which the user model associated with each candidate
metric correlates with observed user behavior when performing that task [1, 4,
5]. Measurement accuracy is also considered for C/W/L metrics, together with
the implications that certain types of user behavior then have on experimental
design.

Keywords: Information retrieval evaluation � Web search � User model �
Effectiveness metric

Acknowledgment. The work presented in this talk was carried out in collaboration with Peter
Bailey, Falk Scholer, Paul Thomas, Alfan Wicaksono, and Justin Zobel. Their various contri-
butions are gratefully acknowledged.
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When Stringology Meets Graphs

Veli Mäkinen

Department of Computer Science, University of Helsinki, Finland
veli.makinen@helsinki.fi

Abstract. Consider a directed acyclic graph (DAG) G with nodes labelled with
characters. We say that a string pattern P occurs in G if there is a path spelling
P. When G is deterministic, that is, no node has two edges leading to nodes with
the same character label, there is a trivial algorithm to locate P in G: Start at all
places and check if path spelling P exists. This trivial algorithm turns out to be
optimal under the Strong Exponential Time Hypothesis (SETH). The talk starts
by explaining this result by Equi, Grossi, Mäkinen, and Tomescu (ICALP 2019).
Quadratic running time for matching pattern P against graph G can slightly be

improved without violating SETH, by using bit-parallelism. The talk discusses
extensions of Shift-And and Myers’ algorithms for exact and approximate
pattern matching on graphs as studied by Rautiainen, Mäkinen, and Marschall
(Bioinformatics, to appear).
Sparse dynamic programming is another technique that can evade the quad-

ratic bound, assuming a sub-quadratic size set of anchors is given as input to
limit the alignment options. An anchor defines a plausible alignment of a sub-
string against a subpath. An ordered subset of anchors forms a co-linear chain if
the corresponding substrings are in linear order in P and the corresponding
subpaths are in linear order in some path of G. Consider the problem of finding a
co-linear chain that maximally covers P. This problem is studied by Mäkinen,
Tomescu, Kuosmanen, Paavilainen, Gagie, and Chikhi (ACM Transactions on
Algorithms, 2019), who give an algorithm whose running time depends on the
number of paths needed to cover G; the algorithm is optimal once G is just a
string. The talk covers the main insights of this algorithm.
The talk concludes with another alignment problem related to path covers.

Consider two DAGs G1 and G2 each of which is coverable by at most two paths.
Such DAGs can be seen as simplest extension of strings into graphs and are also
representing diploid genomes. A covering alignment asks for path covers (A, B)
and (C, D) of G1 and G2, respectively, that minimize the sum of edit distance
between A and C and between B and D. Covering alignment turns out to be
NP-hard as shown by Rizzi, Cairo, Mäkinen, Tomescu, and Valenzuela
(IEEE/ACM Transactions on Computational Biology and Bioinformatics).
The talk gives an overview of the reduction.

Keywords: String matching � Graphs � SETH � Bit-parallelism �
Sparse dynamic programming � Covering alignment

Partially supported by the Academy of Finland (grant 309048).
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Approximation Ratios of RePair,
LongestMatch and Greedy

on Unary Strings

Danny Hucke(B)

University of Siegen, Siegen, Germany
hucke@eti.uni-siegen.de

Abstract. A grammar-based compressor computes for a given input w
a context-free grammar that produces only w. So-called global grammar-
based compressors (RePair, LongestMatch and Greedy) achieve impressive
practical compression results, but the recursive character of those algo-
rithms makes it hard to achieve strong theoretical results. To this end,
this paper studies the approximation ratio of those algorithms for unary
input strings, which is strongly related to the field of addition chains. We
show that in this setting, RePair and LongestMatch produce equal size
grammars that are by a factor of at most log2(3) larger than a smallest
grammar. We also provide a matching lower bound. The main result of
this paper is a new lower bound for Greedy of 1.348..., which improves
the best known lower bound for arbitrary (not necessarily unary) input
strings.

Keywords: Data compression · Grammar-based compression ·
Approximation algorithm · Addition chain

1 Introduction

The goal of grammar-based compression is to represent a word w by a small
context-free grammar that produces exactly {w}. Such a grammar is called a
straight-line program (SLP) for w. In the best case, one gets an SLP of size
Θ(log n) for a word of length n, where the size of an SLP is the total length of
all right-hand sides of the rules of the grammar. A grammar-based compressor
is an algorithm that produces an SLP for a given word w. There are various
grammar-based compressors that can be found at many places in the literature.
Well-known examples are the classical LZ78-compressor1 of Lempel and Ziv [21],
BISECTION [12] and SEQUITUR [17], just to mention a few. In this paper, we
study the class of global grammar-based compressors which are also called global
algorithms. A key concept of those algorithms are maximal strings. A maximal
string of an SLP A is a word that has length at least two and occurs at least twice
1 While LZ78 was not introduced as a grammar-based compressor, it is straightforward

to compute from the LZ78-factorization of w an SLP for w of roughly the same size.

c© Springer Nature Switzerland AG 2019
N. R. Brisaboa and S. J. Puglisi (Eds.): SPIRE 2019, LNCS 11811, pp. 3–15, 2019.
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4 D. Hucke

without overlap as a factor of the right-hand sides of the rules of A. Further,
no strictly longer word appears at least as many times without overlap as a
factor of the right-hand sides of A. For an input word w, a global grammar-based
compressor starts with the SLP that has a single rule S → w, where S is the start
nonterminal of the grammar. The SLP is then recursively updated by choosing
a maximal string γ of the current SLP and replacing a maximal set of pairwise
non-overlapping occurrences of γ by a fresh nonterminal X. Additionally, a new
rule X → γ is introduced. The algorithm stops when the obtained SLP has
no maximal string. The probably best known example for a global algorithm is
RePair [13], which selects in each round a most frequent maximal string. Note
that the RePair algorithm as it is proposed in [13] always selects a word of length
2, but in this paper we follow the definition of [8], where the algorithm possibly
selects longer words. However, both definitions coincide for unary input strings
as considered in this work. Other global algorithms are LongestMatch [11], which
chooses a longest maximal string in each round, and Greedy [2–4], which selects a
maximal string that minimizes the size of the SLP obtained in the current round.
It is again worth mentioning that the Greedy algorithm as originally presented
in [2–4] is different from the version studied in this work as well as in [8]: The
original Greedy algorithm only considers the right-hand side of the start rule for
the choice and the replacement of the maximal string. In particular, all other
rules do not change after they are introduced.

In the seminal work of Charikar et al. [8], the worst case approximation ratio
of grammar-based compressors is studied. For a grammar-based compressor C
that computes an SLP C(w) for a given word w, one defines the approxima-
tion ratio of C on w as the quotient of the size of C(w) and the size g(w) of a
smallest SLP for w. The approximation ratio αC(n) is the maximal approxima-
tion ratio of C among all words of length n. In [8] the authors provide upper
and lower bounds for the approximation ratios of several grammar-based com-
pressors (among them are all compressors mentioned so far), but for none of
the compressors the lower and upper bounds match. For LZ78 and BISECTION
those gaps were closed in [15]. For all global algorithms, the best upper bound
on the approximation ratio is O((n/ log n)2/3) [8], while the best known lower
bounds are Ω(log n/ log log n) for RePair [14], Ω(log log n) for LongestMatch and
5/(3 log3(5)) = 1.137... for Greedy [8]. In the context of our work, it is worth
mentioning that the lower bound for Greedy uses words over a unary alphabet.
In general, the achieved bounds “leave a large gap of understanding surrounding
the global algorithms” as the authors in [8] conclude.

We aim to strengthen the understanding of global grammar-based compres-
sors in this paper by studying the behavior of these algorithms on unary inputs,
i.e., words of the form an for some symbol a. Grammar-based compression on
unary words is strongly related to the field of addition chains, which has been
studied for decades (see [16, Chapter 4.6.3] for a survey) and still is an active
topic due to the strong connection to public key cryptosystems (see [18] for a
review from that point of view). An addition chain for an integer n of size m is
a sequence of integers 1 = k1, k2, . . . , km = n such that for each d (2 ≤ d ≤ m),
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there exists i, j (1 ≤ i, j < d) such that ki + kj = kd. It is straightforward to
compute from an addition chain for an integer n of size m an SLP for an of size
2m − 2. Vice versa, an SLP for an of size m yields an addition chain for n of
size m. So this paper can also be interpreted as a study of global algorithms
as addition chain solvers. For RePair and LongestMatch, the restriction to unary
inputs allows a full understanding of the produced SLPs and it turns out that
for all unary inputs the SLP produced by RePair has the same size as the SLP
produced by LongestMatch. In fact, both algorithms are basically identical to
the binary method that produces an addition chain for n by creating powers of
two using repeated squaring, and then the integer n is represented as the sum of
those powers of two that correspond to a one in the binary representation of n.
Based on that information, we show that for any unary input w the produced
SLPs of RePair and LongestMatch have size at most log2(3)·g(w), and we provide
a matching lower bound.

Unfortunately, even for unary inputs it is hard to analyze the general behav-
ior of Greedy due to the discrete optimization problem in each round of the
algorithm. The (probably weak) upper bound that we achieve for the approxi-
mation ratio of Greedy on unary inputs is O(n1/4/ log n). We derive this bound
by estimating the size of the SLP obtained by Greedy after three rounds, which
already indicates space for improvement. For the original Greedy algorithm where
only the start rule is compressed, it is a direct consequence of our analysis that
the approximation ratio on unary input strings is Θ(

√
n/ log n). On the positive

side, we provide a new lower bound of 1.348... for the approximation ratio of
Greedy (in the variant where all right-hand sides are considered) that improves
the best known lower bound for inputs over arbitrary alphabets. The key to
achieve the new bound is the sequence yk = y2

k−1 + 1 with y0 = 2, which has
been studied in [1] (among other sequences), where it is shown that yk = �γ2k�
for γ = 2.258.... In order to prove the lower bound, we show that the SLP pro-
duced by Greedy on input ayk has size 3 · 2k − 1, while a smallest SLP for ayk

has size 3 · log3(γ) · 2k + o(2k) (this follows from a construction used to prove
the lower bound for Greedy in [8]).

Related Work. One of the first appearances of straight-line programs in the
literature are [6,9], where they are called word chains (since they generalize
addition chains from numbers to words). In [6], Berstel and Brlek prove that the
function g(k, n) = max{g(w) | w ∈ {1, . . . , k}n} is in Θ(n/ logk n). Recall that
g(w) is the size of a smallest SLP for the word w and thus g(k, n) measures the
worst case SLP-compression over all words of length n over a k-letter alphabet.

The smallest grammar problem is the problem of computing a smallest SLP
for a given input word. It is known from [8,20] that in general no grammar-based
compressor can solve the smallest grammar problem in polynomial time unless
P = NP. Even worse, unless P = NP one cannot compute in polynomial time for
a given word w an SLP of size at most 8569

8568 · g(w) [8]. One should mention that
the constructions to prove those hardness results use alphabets of unbounded
size. While in [8] it is remarked that the construction in [20] works for words over
a ternary alphabet, Casel et al. [7] argue that this is not clear at all and provide
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a construction for fixed alphabets of size at least 24. However, for grammar-
based compression on unary strings as it is studied in this work (as well as for
the problem of computing a smallest addition chain), there is no NP-hardness
result, so there might be an optimal polynomial-time algorithm even though it
is widely believed that there is none.

Other notable systematic investigations of grammar-based compression are
provided in [11,19]. Whereas in [11], grammar-based compressors are used for
universal lossless compression (in the information-theoretical sense), it is shown
in [19] that the size of so-called irreducible SLPs (that include SLPs produced
by global algorithms) can be upper bounded by the (unnormalized) k-th order
empirical entropy of the produced string plus some lower order terms.

2 Preliminaries

For i, j ∈ N, let [i, j] = {i, i + 1, . . . , j} for i ≤ j and [i, j] = ∅ otherwise. For
integers m,n, we denote by m div n the integer division of m and n. We denote
by m mod n the modulo of m and n, i.e., m mod n ∈ [0, n − 1] and

m = (m div n) · n + (m mod n).

If m/n or m
n is used, then this refers to the standard division over R. Note that

m div n = �m/n� and (m div n) + (m mod n) ≥ m/n.
For an alphabet Σ, let w = a1 · · · an (a1, . . . , an ∈ Σ) be a word or string

over Σ. The length |w| of w is n and we denote by ε the word of length 0. A
unary word is a word of the form an for a ∈ Σ. Let Σ+ = Σ∗ \ {ε} be the set
of all nonempty words. For w ∈ Σ+, we call v ∈ Σ+ a factor of w if there exist
x, y ∈ Σ∗ such that w = xvy.

2.1 Straight-Line Programs

A straight-line program, briefly SLP, is a context-free grammar that produces a
single word w ∈ Σ+. Formally, it is a tuple A = (N,Σ,P, S), where N is a finite
set of nonterminals with N ∩ Σ = ∅, S ∈ N is the start nonterminal, and P is a
finite set of productions (or rules) of the form A → w for A ∈ N , w ∈ (N ∪ Σ)+

such that:

– For every A ∈ N , there exists exactly one production of the form A → w,
and

– the binary relation {(A,B) ∈ N × N | (A → w) ∈ P, B occurs in w} is
acyclic.

Every nonterminal A ∈ N produces a unique, nonempty word. The word defined
by the SLP A is the word produced by the start nonterminal S. The size of the
SLP A is |A| =

∑
(A→w)∈P |w|. We denote by g(w) the size of a smallest SLP

producing the word w ∈ Σ+. We will use the following inequalities that can be
found in [8]:
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Lemma 1 ([8]). For all unary words w of length n, we have

3 log3(n) − 3 ≤ g(w) ≤ 3 log3(n) + o(log n).

Note that the first inequality also holds when w is a word over an arbitrary
alphabet. The proof of the first inequality can be found in Lemma 1 of [8] and
the second inequality is shown in the proof of Theorem 11 of [8].

Approximation Ratio. A grammar-based compressor C is an algorithm that com-
putes for a nonempty word w an SLP C(w) that produces the word w. The
approximation ratio αC(w) of C for an input w is defined as |C(w)|/g(w). The
worst-case approximation ratio αC(k, n) of C is the maximal approximation ratio
over all words of length n over an alphabet of size k:

αC(k, n) = max{αC(w) | w ∈ [1, k]n} = max{|C(w)|/g(w) | w ∈ [1, k]n}

In this paper we are mainly interested in the case k = 1, i.e., we are interested
in grammar-based compression on unary words.

3 Global Algorithms

For a given SLP A = (N,Σ,P, S), a word γ ∈ (N ∪ Σ)+ is called a maximal
string of A if

– |γ| ≥ 2,
– γ appears at least twice without overlap as a factor of the right-hand sides of
A,

– and no strictly longer word appears at least as many times as a factor of the
right-hand sides of A without overlap.

A global grammar-based compressor starts on input w with the SLP A0 =
({S}, Σ, {S → w}, S). In each round i ≥ 1, the algorithm selects a maximal
string γ of Ai−1 and updates Ai−1 to Ai by replacing a largest set of pairwise
non-overlapping occurrences of γ in Ai−1 by a fresh nonterminal X. Addition-
ally, the algorithm introduces the rule X → γ in Ai. The algorithm stops when
no maximal string occurs. Note that the replacement is not unique, e.g. the
word a5 has a unique maximal string γ = aa, which yields SLPs with rules
S → XXa,X → aa or S → XaX,X → aa or S → aXX,X → aa. We assume
the first variant in this paper, i.e., maximal strings are replaced from left to
right.

3.1 Greedy

The global grammar-based compressor Greedy selects in each round i ≥ 1 a
maximal string of Ai−1 such that Ai has minimal size among all possible choices
of maximal strings of Ai−1.
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We start with the main result of this paper, which is a new lower bound for
the approximation ratio of Greedy. The best known lower bound [8] so far is

αGreedy(k, n) ≥ 5
3 log3(5)

= 1.13767699...

for all k ≥ 1 and infinitely many n. This bound is achieved using unary input
strings. A key concept to prove a better lower bound is the sequence xn described
in the following lemma by [1]:

Lemma 2 ([1, Example 2.2]). Let xn+1 = x2
n + 1 with x0 = 1 and

β = exp

( ∞∑

i=1

1
2i

log
(

1 +
1
x2
i

))

.

We have xn =
⌊
β2n

⌋
.

In this work, we use the shifted sequence yn = xn+1, i.e., we start with
y0 = 2. It follows that yn =

⌊
γ2n

⌋
, where γ = β2 = 2.25851845.... Additionally,

we need the following lemma:

Lemma 3. Let m ≥ 1 be an integer. Let fm : R>0 → R with

fm(x) = x +
m2 + 1

x
.

We have fm(x) > 2m for all x > 0.

Proof. The unique minimum of fm(x) is 2
√

m2 + 1 for x =
√

m2 + 1. It follows
that fm(x) ≥ 2

√
m2 + 1 > 2

√
m2 = 2m.

Now we are able to prove the new lower bound for Greedy:

Theorem 1. For all k ≥ 1 and infinitely many n, we have

αGreedy(k, n) ≥ 1
log3(γ)

= 1.34847194... .

Proof. Let Σ = {a} be a unary alphabet. We define wk = ayk . By Lemma 2, we
have |wk| ≤ γ2k . Applying Lemma 1 yields

g(wk) ≤ 3 · log3(γ) · 2k + o(2k).

In the remaining proof we show that on input wk, Greedy produces an SLP of
size 3 · 2k − 1, which directly implies αGreedy(1, n) ≥ 3/(3 log3(γ)). We start with
the SLP A0 which has the single rule S → ayk . Consider now the first round
of the algorithm, i.e., we need to find a maximal string ax of A0 such that the
grammar A1 with rules

X1 → ax, S → Xyk div x
1 ayk mod x
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has minimal size. We have |A1| = x + (yk div x) + (yk mod x) ≥ x + yk/x. By
the definition of yk we have |A1| ≥ x + (y2

k−1 + 1)/x. Applying Lemma 3 yields
|A1| ≥ 2yk−1 + 1. Note that for x = yk−1 this minimum is achieved, i.e., we can
assume that Greedy selects the maximal string ayk−1 and A1 is

X1 → ayk−1 , S → X
yk−1
1 a.

S → ayk

X1 → ayk−1

X2 → ayk−2 X1 → X
yk−2
2 a

S → X
yk−1
1 a

X3 → X
yk−2
1 S → X

yk−2
3 X1a

Fig. 1. Three rounds of Greedy on input ayk .

Each maximal string of A1 is either a unary word over X or a unary word over a,
i.e., we can analyze the behavior of Greedy on both rules independently. The rule
X1 → ayk−1 is obviously treated similarly as the initial SLP A0, so we continue
with analyzing S → X

yk−1
1 a. But again, the same arguments as above show that

Greedy introduces a rule X3 → X
yk−2
1 which yields S → X

yk−2
3 X1a as the new

start rule. This process can be iterated using the same arguments for the leading
unary strings of length yi for some i ∈ [1, k].

The reader might think of this process as a binary tree, where each node is
labelled with a rule (the root is labelled with S → ayk) and the children of a
node are the two rules obtained by Greedy when the rule has been processed. We
assume that the left child represents the rule for the chosen maximal string and
the right child represents the parent rule where all occurrences of the maximal
string are replaced by the fresh nonterminal. In Fig. 1 this binary tree is depicted
for the steps we discussed above. Note that when a rule is processed, the longest
common factor of the two new rules has length 1 (the remainder). More gener-
ally, after each round there is no word of length at least two that occurs as a
factor in two different rules, since a possibly shared remainder has length 1 and
otherwise only fresh nonterminals are introduced. It follows that we can iterate
this process independently for each rule until no maximal string occurs. This is
the case when each rule starts with a unary string of length y0 = 2 or, in terms
of the interpretation as a binary tree, when a full binary tree of height k is pro-
duced. Each right branch occurring in this tree adds a new remainder to those
remainders that already occur in the parent rule and a left branch introduces a
new (smaller) instance of the start problem. We show by induction that on level
i ∈ [0, k] of this full binary tree of height k, there is one rule of size yk−i + i
and 2i−j−1 many rules of size yk−i + j for j ∈ [0, i − 1]. On level 0, this is true
since there is only a single rule of size yk + 0. Assuming that our claim is true
on level i < k, we derive from each rule on level i two new rules on level i+1: A
right branch yields a rule that starts with a leading unary string of size yk−i−1
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and adds a new remainder to the parent rule. A left branch yields a rule that
contains only a unary string of size yk−i−1. If we first consider the left branches,
we derive that each of the 2i many rules on level i adds a rule of size yk−i−1 on
level i+1. For the right branches, the single rule of size yk−i + i on level i yields
a rule of size yk−i−1 + i + 1 on level i + 1. Further, each of the 2i−j−1 many
rules of size yk−i + j (j ∈ [0, i − 1]) yields a rule of size yk−i−1 + j + 1. When we
put everything together, we get that on level i + 1 there is a single rule of size
yk−i−1 + i + 1 and 2i−j many rules of size yk−i−1 + j for j ∈ [0, i]. That finishes
the induction. It follows that the final SLP (which consists of the rules on level
k) has a single rule of size y0 + k = 2 + k and 2k−j−1 many rules of size 2 + j
for j = 0, . . . , k − 1. This gives a total size of

2 + k +
k−1∑

j=0

2k−j−1(2 + j) = 2 + k + 2k
k−1∑

j=0

2−j + 2k
k−1∑

j=0

2−j−1j

= 2 + k + 2k(2 − 2−k+1) + 2k(−2−kk − 2−k + 1)

= 2 + k + 2k+1 − 2 − k − 1 + 2k

= 2k+1 + 2k − 1

= 3 · 2k − 1.

In the remaining part of this section, we prove an upper bound on the size
of the SLP produced by Greedy on input an:

Theorem 2. The SLP produced by Greedy (after three rounds) on input an has
size O(n1/4).

Proof. Consider an input an with n ≥ 4 (otherwise S → an is the final SLP
since there is no maximal string). The SLP A1 obtained by Greedy after the first
round has the form

X → ax, S → Xn div xan mod x, (1)

where ax is the selected maximal string. We first show

1
3
√

n ≤ x ≤ 3
√

n,
1
3
√

n ≤ n div x ≤ 3
√

n, n mod x < 3
√

n.

Assume x = �√n in Eq. (1). In this case, the size of the SLP is

⌈√
n
⌉

+
⌊

n

�√n
⌋

+ n mod
⌈√

n
⌉ ≤ 3

√
n + 1.

Since the maximal string ax is selected greedily such that A1 has minimal size,
we have |A1| ≤ 3

√
n + 1. It follows that x ≤ 3

√
n, because otherwise the size of

A1 would be at least 3
√

n+2 due to the fact that a maximal string (represented
by the nonterminal X) occurs at least twice. It follows that n mod x < 3

√
n and
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n div x ≥ 1/3
√

n. Further, we have n div x ≤ 3
√

n because otherwise the size of
A1 would be at least 3

√
n + 2 due to the fact that x ≥ 2 (a maximal string has

length at least two). It follows that x ≥ 1/3
√

n. Actually, a slightly more careful
analysis allows sharper bounds for x, n div x and n mod x, but for the matter
of this proof it is easier to work with the constants 3 and 1/3.

Now the only maximal strings occurring in A1 are of the form Xy or az (for
integers y, z ≥ 2) since no other factor of the right-hand sides of A1 occurs at least
twice. Note that both optimization problems (for Xy and az) are independent,
so we assume the chosen maximal string in the second round has the form Xz,
afterwards we proceed with az. Let d = n div x, where ax is again the maximal
string that has been selected in the first round. Then the SLP A2 obtained after
the second round of Greedy has the form

X → ax, Y → Xy, S → Y d div yXd mod yan mod x. (2)

Let g(x) = x + (n mod x), which is the size of those parts of A2 that are inde-
pendent of the choice of the maximal string Xy. Assume y = �n1/4 in (2) and
let n be large enough such that Y occurs at least twice in the start rule. This
yields an SLP of size

�n 1
4  +

⌊
d

�n 1
4 

⌋

+ d mod �n 1
4  + g(x) ≤ 5n

1
4 + 1 + g(x).

The inequality is achieved by using d = n div x ≤ 3
√

n as argued above. It
follows again from the greedy nature of the algorithm that |A2| ≤ 5n1/4+1+g(x)
and similar arguments as above show that the exponents y, d div y and d mod y
can be upper bounded by 5n1/4.

All maximal strings occurring in A2 are again unary words, but since ax has
length at least 1/3

√
n and the lengths of all other unary factors over X or Y are

bounded by 5n1/4, we can assume that (for n large enough) Greedy selects az

for some integer z ≥ 2 as the maximal string in order to achieve a minimal size
SLP A3. Note that if we would have assumed that the chosen maximal string in
round two is az instead of Xy, then similar arguments would show that Xy is
selected in round three if n is large enough. Now, let e = n mod x, then the SLP
A3 obtained after the third round has the form

Z → az, X → Zx div zax mod z, Y → Xy,

S → Y d div yXd mod yZe div zae mod z.
(3)

Let h(y) = y + (d div y) + (d mod y), which is the size of those parts of A3 that
are independent of the choice of the maximal string az. Assume now z = �n1/4
and let n be large enough such that Z occurs at least twice in the right-hand
sides of (3). The obtained SLP has size

�n1/4 +
⌊

x

�n1/4
⌋

+ (x mod �n1/4) +
⌊

e

�n1/4
⌋

+ (e mod �n1/4) + h(y).
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Using x ≤ 3
√

n and e = n mod x < 3
√

n we can upper bound this size by
9n1/4+1+h(y). Note that we have already bounded the size of h(y) by 5n1/4+1
in the previous step, so the SLP A3 obtained by Greedy after three rounds has
size at most 14n1/4 + 2.

The bound on the approximation ratio is now achieved using Lemma 1, which
shows that a smallest grammar for an has size Ω(log n).

Corollary 1. We have αGreedy(1, n) ∈ O(n1/4/ log n).

The reader might wonder why our estimation stops after three rounds of Greedy.
The most important reason is that a precise invariant is missing in order to
iterate our arguments for a non constant number of rounds. On the other hand,
it seems likely that similar arguments as provided in the proof of Theorem 2 can
be used to show that the SLP produced by Greedy after some more rounds has
size O(n1/8) and maybe again after some rounds has size O(n1/16). However,
further analysis would require more and more case distinctions since it is not
clear anymore that the selected maximal string is always unary as the reader
can see in (3), where factors of the form Z∗a∗ can occur more than once on the
right-hand sides. It seems therefore necessary to apply some new information in
order to improve the upper bound beyond O(n1/2k) for some fixed k.

An interesting consequence of the proof of Proposition 2 applies to the orig-
inally proposed Greedy variant [2–4]. Recall from the introduction that in this
setting, the algorithm recursively chooses the maximal string only in dependence
on the right-hand side of the start rule and replaces the occurrences of the cho-
sen string only there. In other words, the right-hand side of the start rule is
compressed in a greedy way and all other rules do not change after they are
introduced. Note that in the first round both variants of Greedy (the one studied
here and the original one) are identical, because in this case the only rule of the
SLP is the start rule S → an. Hence, our analysis of the first step in the proof
of Proposition 2 applies to the original variant as well. We have shown that the
selected maximal string in the first round (and thus the right-hand side of the
introduced rule) has length Θ(

√
n) and since the original variant does not modify

the corresponding rule any further, it follows directly that the SLP produced by
the original algorithm has size Ω(

√
n). But since the modified start rule has also

size Θ(
√

n) after the first step, it follows that the SLP produced by the original
algorithm has size O(

√
n) as well (the size of the SLP does not increase later).

Together with Lemma 1, it follows that this variant of the Greedy algorithm has
approximation ratio Θ(

√
n/ log n) on unary inputs of length n.

3.2 RePair and LongestMatch

In this section we analyze the global grammar-based compressors RePair and
LongestMatch. In each round i, RePair selects a most frequent maximal string of
Ai−1 and LongestMatch selects a longest maximal string of Ai−1.

We will abbreviate the approximation ratio αLongestMatch by αLM for better
readability. We will first show that RePair and LongestMatch produce SLPs of



Approximation Ratios of RePair, LongestMatch and Greedy on Unary Strings 13

equal size for unary inputs an and we prove the exact size of those SLPs in
dependency on n. In a second step, we use this information to obtain our result
for αRePair(1, n), respectively αLM(1, n). Fix an integer n ≥ 2 and consider the
binary representation

n =
�log2 n�∑

i=0

bi · 2i (4)

of n, where bi ∈ {0, 1} for i ∈ [0, �log2 n�]. We denote by ν(n) the number of 1’s
in the binary representation of n, i.e.,

ν(n) =
�log2 n�∑

i=0

bi.

For example, we have 11 = 1 ·23 +0 ·22 +1 ·21 +1 ·20 and thus b0 = b1 = b3 = 1,
b2 = 0 and ν(11) = 3.

Proposition 1. For n ≥ 2, let A be the SLP produced by RePair on input an

and B be the SLP produced by LongestMatch on input an. We have

|A| = |B| = 2�log2 n� + ν(n) − 1.

Proof. If n = 2 or n = 3 (we only consider n ≥ 2), then an has no maximal
string and thus the final SLP of any global algorithm has a single rule S → an.
The reader can easily verify the claimed result for those cases.

We assume n ≥ 4 in the following. Let m = �log2 n� − 1. We prove the claim
for RePair first, afterwards we proceed with LongestMatch. On input an, RePair
runs for exactly m rounds and creates rules X1 → aa and Xi → Xi−1Xi−1 for
i ∈ [2,m], i.e., the nonterminal Xi produces the string a2i . This rules have total
size 2m. After this steps, the start rule is

S → XmXmXbm
m X

bm−1
m−1 · · · Xb1

1 ab0 ,

where the bi’s are the coefficients occurring in the binary representation of n,
see Eq. (4). In other words, the symbol a only occurs in the start rule if the least
significant bit b0 = 1, and the nonterminal Xi (i ∈ [1,m− 1]) occurs in the start
rule if and only if bi = 1. Since RePair only replaces words with at least two
occurrences, the most significant bit bm+1 = 1 is represented by XmXm. A third
Xm occurs in the start rule if and only if bm = 1. The size of the start rule is
2+

∑m
i=0 bi. It follows that the total size of the SLP produced by RePair on input

an is 2m + 2 +
∑m

i=0 bi, which together with m = �log n� − 1 and b�logn� = 1
(the most significant bit is always 1) yields the claimed size.

Now we prove the same result for LongestMatch. In the first round, the chosen
maximal string is a�n/2�, which yields rules X1 → a�n/2� and S → X1X1a

b0 , i.e.,
the symbol a occurs in the start rule if and only if n is odd and thus the least
significant bit b0 = 1. Assuming n ≥ 8, this procedure is now repeated for the rule
X1 → a�n/2� (for n < 8 there is no maximal string and the algorithm stops after
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the first round). This yields X2 → a�n/4�, X1 → X2X2a
b1 and S → X1X1a

b0

(note that �(�n/2�)/2� = �n/4�). After m = �log n�−1 steps, the iteration of that
process results in the final SLP with rules S → X1X1a

b0 , Xi → Xi+1Xi+1a
bi

for i ∈ [1,m− 1] and Xm → aaabm . The size of this SLP is 2 · (m+1)+
∑m

i=0 bi,
which directly implies the claimed result for LongestMatch.

Using Proposition 1, we prove the matching bounds for αRePair(1, n),
αLM(1, n):

Theorem 3. For all n, we have αRePair(1, n) = αLM(1, n) ≤ log2(3).

Proof. As a consequence of Proposition 1, RePair and LongestMatch produce on
input an SLPs of size at most 3 log2 n, since ν(n) − 1 ≤ log2 n. By Lemma 1,
we have g(an) ≥ 3 log3 n − 3. The equality log2 n/ log3 n = log2(3) finishes the
proof.

Theorem 4. For infinitely many n, we have αRePair(1, n) = αLM(1, n) ≥ log2(3).

Proof. Let wk = a2k−1. We have 2k − 1 =
∑k−1

i=0 2i and thus ν(2k − 1) = k.
By Proposition 1, the size of the SLPs produced by RePair and LongestMatch is
3k − 3. By Lemma 1, we have

g(wk) ≤ 3 log3(2
k − 1) + o(log(2k − 1) ≤ 3 log3(2) · k + o(k).

The equality 1/ log3(2) = log2(3) finishes the proof.

4 Future Work

The obvious question concerns the gap between the lower and upper bound for
Greedy. First of all, it might be possible to improve our lower bound by finding
a similar sequence such that Greedy produces larger remainders in each round,
but care has to be taken since for larger remainders it is not true anymore that
the rules can be analyzed independently because the rules could share factors
of length greater 1. Concerning the upper bound, we conjecture that Greedy
achieves logarithmic compression for all unary inputs and thus the approximation
ratio is constant, but the direct analysis of the algorithm as we tried in Theorem 2
misses a clear invariant for a non constant number of rounds. For arbitrary
alphabets, a non-constant lower bound for Greedy as well as an improvement of
the upper bound of O((n/ log n)2/3) for any global algorithm seems to be natural
starting points for future work.
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Abstract. We consider lossless image compression using a technique
similar to bZip2 for sequential data. Given an image represented with
a matrix of pixel values, we consider different approaches for linearis-
ing the image into a sequence and then encoding the sequence using the
Move-To-Front list update algorithm. In both linearisation and encoding
stages, we exploit the locality present in the images to achieve encod-
ings that are as compressed as possible. We consider a few approaches,
and in particular Hilbert space-filling curves, for linearising the image.
Using a natural model of locality for images introduced by Albers et al.
[J. Comput. Syst. Sci. 2015], we establish the advantage of Hilbert space-
filling curves over other linearisation techniques such as row-major or
column-major curves for preserving the locality during the linearisation.
We also use a result by Angelopoulos and Schweitzer [J. ACM 2013]
to select Move-To-Front as the best list update algorithm for encoding
the linearised sequence. In summary, our theoretical results show that a
combination of Hilbert space-filling curves and Move-To-Front encoding
has advantage over other approaches. We verify this with experiments
on a dataset consisting of different categories of images.

Keywords: Lossless image compression · Move-To-Front encoding ·
Hilbert space-filling curve · List update

1 Introduction

Lossless compression is a data encoding mechanism that allows reconstruction
of the original data from the code without having it altered. For digital images,
commonly used encoding schemes such as JPEG offer good compression via a
lossy encoding of images. In these schemes, the original image is different from
the encoded one. Such difference, however, is often not visible to human eyes and
hence lossy compression remains popular for everyday use. Nevertheless, lossless
image compression is important in applications where there is a need to save
bandwidth and storage through compression while the actual image content is
also required. Notable applications of lossless image compression include medical
and scientific imaging [1–3].
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In the past few decades, various algorithms and industry standards have been
proposed for lossless image compression (see Sect. 4 for a summary of previous
work). Generally speaking, a compression algorithm exploits the redundancy and
locality of information that is present in images to encode them in a compressed
manner. A good compression algorithm is desired to output encodings that are
as compressed as possible. This is measured with compression ratio, which is the
ratio between the size of the encoded data and the original data. In addition
to achieving good compression ratio, a compression scheme should be efficient
in terms of using computational resources. Naturally, using more resources, in
particular spending more time, can help in getting further compression to a
certain limit.

An image is often represented with three “channels” for three primary col-
ors. For each channel, a pixel receives an integer value (typically in the range
[0,256)). In order to compress an image, the three channels that form the image
are encoded separately. Consequently, encoding an image translates to encod-
ing three matrices formed by non-negative integer values. In most images, pixel
values are similar to those nearby. That is, images have a high locality of pixel
values in the sense that the number of distinct pixel values in any sub-image is
relatively small compared to the size of the sub-image. In order to exploit the
locality present in images, various entropy-reduction techniques are embedded
in compression schemes. These include prediction-based (e.g., [4,5]), wavelet-
transform-based (e.g., [6]), and deep learning (e.g., [7,8]) approaches. The trade
off between the achieved compression ratio and and the amount of computa-
tional resources that is used (particularly the time complexity) implies that
most existing compression schemes are not directly comparable, and depending
on the application, one might have an advantage over the other.

When it comes to sequential (one-dimensional) data, a promising family of
algorithms use list update encodings. Given a sequence σ formed by characters
from a universe U , these algorithms store members of U in a list that is main-
tained by a list update algorithm, typically the Move-To-Front (Mtf) algorithm.
When encoding σ, the index of the next character x in σ is encoded in the com-
pressed file using a self-delimiting code (e.g., Elias gamma code [9]), and the list
is subsequently updated by the list update algorithm. When using the Mtf rule,
x is simply moved to the front of the list. In the likely case that x appears again
in σ (as implied by locality), the index encoded for the next appearances of x
will be smaller and hence will be encoded using a shorter code. The Mtf encod-
ing lies at the heart of practical data compression schemes such as bZip2 [10],
where it is a part of a pipeline that includes the Burrows-Wheeler Transform
(BWT) [11] at the beginning and run-length encoding at the end.

Image compression schemes often work with implicit or explicit linearising
of a 2-dimensional image into a 1-dimensional sequence and then encoding this
sequence using various compression techniques. While some compression schemes
use simple linearisation techniques such as row-major (row by row visit of pix-
els), others use more involved linearisation methods such as Hilbert space-filling
curves. Using Hilbert curves for image compression was first suggested by Lempel
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and Ziv [12] who showed applying Lempel-Ziv dictionary-based encodings (e.g.,
LZ encoding of [13]) in conjunction with Hilbert curve results in asymptotically
optimal compression schemes for large images in terms of information entropy.
These dictionary-based approaches, however, are very sensitive to dictionary
size [14] and are generally slow compared to other schemes such as bZip2 [15,16].

Contribution

In this paper, we study the application of list update algorithms, and in par-
ticular the Move-To-Front algorithm, for lossless image compression. Different
linearisation methods paired with different list update algorithms result in var-
ious compression schemes that can be enhanced with some pre-processing and
post-processing stages. The main contribution of the paper is to show Hilbert
curve linearisation followed by Move-To-Front encoding has a strict advantage
over schemes that use other practical linearisation and list-update algorithms. In
our analysis, we extend the concept “Max-Model” model of locality introduced
by Albers [17] for sequential data into 2-dimensional images. An image has local-
ity under the Max-Model iff the number of distinct pixel values in any square
sub-image formed by k2 pixels is at most f(k2) where f is a concave function. We
prove that an image has locality under the Max-Model if and only if the sequence
formed by the Hilbert curve of the image also has locality under Max-Model,
that is, the number of different values in any window of size x in the sequence is
upper bounded by a concave function of x. This result certifies that Hilbert curve
linearisation “preserves” the locality of images. Meanwhile, we show that some
of the basic linearisation techniques do not provide such guarantee and hence
Hilbert curve traversal has a strict advantage over these linearisation meth-
ods. The sequence formed by the Hilbert curve can be encoded using any list
update algorithm. We use a result of Angelopoulos and Schweitzer [18] to show
that Move-To-Front is strictly better than any other list update algorithm for
sequences that have locality under the Max-Model. In summary, our theoretical
results show the advantage of Hilbert curve in conjunction with the Mtf encod-
ing over other linearisation and list update algorithms. We verify these results
using an experimental study of different linearisation techniques combined with
the Mtf encoding and observe the advantage of Hilbert curve over other lineari-
sation methods as well as the effectiveness of the Mtf encoding for improving
the compression ratio.

2 Proposed Approach

Our proposed approach consists of two main stages in a compression pipeline,
namely, linearising an image into a sequence using a space-filling curve such as a
Hilbert curve, and then using a list update algorithm such as Move-To-Front to
encode such sequence. In what follows, we discuss the details of each step with
the motivation and theoretical grounds for them.
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2.1 Linearisation of an Image into a Sequence

Linearisation involves defining a sequential order for the pixels in the image.
The simplest way to linearise an image is to visit pixels row by row, pretty
much in the same way that pixels are sequentially stored in a 2-dimensional
array. Column-major traversal is defined similarly by visiting columns one by
one. Another way to define ordering of pixels is to use space-filling curves, which
are ways to continuously “traverse” all pixels in the image. While the continuity
is not necessary for image compression, it often helps in preserving locality. The
simplest space filling curve is a snake-move curve that visits pixels row by row
from top to bottom such that pixels in the odd rows are visited from left to
right and pixels in the even rows are visited from right to left. Another space
filling curve is a spiral curve which visits pixels in clockwise order and in the
non-increasing order of their distance to the closest image boundary.

Hilbert space filling curves, also known as Hilbert curves, are relatively simple
space filling curves with properties that makes them suitable for linearisation
purposes (see, e.g., [19–21]). A Hilbert curve of order 1 is simply a (rotated)
u-shape curve covering a square of size 2 × 2. A Hilbert curve of order k covers
a square of size 2k × 2k and is defined by connecting four copies of Hilbert curve
of order k − 1 which are placed in the four quadrants of the square. The copies
in the lower-left and lower-right are rotated 90 degrees in respectively clockwise
and counter-clockwise directions, while the copies in the upper quadrants appear
without rotation. Given an image of size 2k ×2k, a Hilbert curve of order k visits
every pixel once. The Hilbert curves of the first four orders are shown in Fig. 1.
We note that Hilbert curves can be computed efficiently using bit operations [22]
and lookup tables [23]. In general cases where the images are not squared or have
a length that is not a power of 2, we assume the image is placed at the bottom
left of a larger squared image whose length is the power of 2 that is next to the
larger length of the image, as shown in Fig. 2.

A good linearisation method should preserve the locality present in images.
To capture this locality, we consider the“Max-Model” model of locality intro-
duced by Albers [17] for sequential data. Given a sequence σ, a window of size w
in σ is defined as a subsequence of w consecutive requests in σ. Now, σ is said to
be consistent with some increasing concave function f if the number of distinct
requests in any window of size w is at most f(w), for any w ∈ N. We extend the

Fig. 1. Recursive construction of the Hilbert curves of the first four orders.
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Fig. 2. Linearisation of a non-square image using the Hilbert curve of a larger square
whose side-lengths are a power of 2.

Max-Model from sequential data to 2-dimensional images by defining a window
to be a square sub-image of size y = x × x. As before, an image is said to be
consistent with a function g if the number of distinct pixel values in any window
of size y is at most g(y). For example, an image is consistent with g(y) = log(y)
if there are at most log(y) distinct requests in any square with y pixels.

Theorem 1. An image is consistent with a concave function g if and only if its
Hilbert curve is consistent with some concave function f .

Proof. First, assume an image is consistent with a concave function g. We need
to present a concave function f such that the Hilbert sequence is consistent
with f . Consider a window of length w in the Hilbert sequence. Define j as the
smallest integer such that 2j ×2j ≥ w; we have 22j < 4w. Partition the (possibly
larger) squared image which defines the Hilbert curve into squares of length 2j .
The recursive definition of Hilbert curve implies that it never leaves a partition
before visiting all its pixels. Consequently, the window w includes pixels from at
most two partitions. Since each partition is a square of 22j pixels, by the locality
of image, there are at most g(22j) different pixel values in each partition. Hence,
there are at most 2 × g(22j) < 2g(4w) different pixel values in the windows w.
So, if we define f(w) = 2g(4w), the Hilbert curve sequence will be consistent
with f . Note that since g is concave, f is also concave.

Next, assume a Hilbert traversal of an image is consistent with a concave
function f . We show that the image itself is consistent with a concave function g.
Consider any squared window s of size y = x × x, and define j as the smallest
integer such that 2j ×2j ≥ y; we have 22j < 4y. As before, partition the squared
image that defines the Hilbert curve into partitions of size 2j × 2j . The square s
will intersect at most four partitions. Since the curve will not leave any partition
before visiting all its pixels, there are four subsquences of the Hilbert sequence,
each of length 2j × 2j , that cover these four partitions. By the locality of the
the Hilbert sequence, we know there are at most f(22j) different pixel values
in each of these four subsequences, that is, there are at most 4f(22j) different
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pixel values in the four partitions. Since these four partitions cover the square
s, there are at most 4f(22j) < 4f(4y) different pixel values in s. So, if we define
g(y) = 4f(4y), the Hilbert curve sequence will be consistent with g. Note that
since f is concave, g will be concave as well. ��

While the above theorem implies that Hilbert curve traversal preserves the
locality of images, other simple linearisation methods do not have this property.
Consider images of size n×n in which pixels take values from 1 to n in the same
order that they are arranged by the linearisation method (see Fig. 3). Clearly,
any window of size n in the linearised sequence includes n distinct pixel values.
On the other hand, one can check that any square s of x×x pixels includes O(x)
different pixel values. For row-major and column-major methods, s includes one
pixel per column and per row, respectively; so there are x different pixel values
in s. For the snake method, each column takes at most two distinct values, which
gives at most 2x different pixel values. For the spiral move, each diagonal ray in s
takes at most 3 values, which gives a total of at most 3x different pixel values. In
summary, the number of different pixel values in each square of y = x2 pixels is
at most 3×√

y, which is a concave function and ensures locality under the Max-
Model, while the number of different values in every window in the linearised
sequence is y. Hence, these linearisation methods do not preserve locality.
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Fig. 3. Examples that show simple linearisation methods do not preserve locality. From
left to right, figures correspond to row-major, column-major, snake-move, and spiral
linearisation methods. In all cases, the number of distinct pixel values in any square
of size x2 is upper bounded by 3x while the linearised sequence includes x2 different
pixel values in a window of size x2 ≤ n, where n is the side-length of the image (here
n = 8).

Proposition 1. The Hilbert curve preserves the locality of images under the
Max-Model while simple linearisation methods like row-major, column-major,
snake curve, and spiral curve fail to preserve locality.

2.2 List Update Encoding

The second step in our image compression scheme involves applying a list update
algorithm to encode the linearised sequence. An instance of the list update prob-
lem involves a sequence formed by requests to items in a universe U that are
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stored in a linked list. To answer each request, a list update algorithm performs
a linear scan of the list to access the item. Accessing an item at position i has an
access cost of i. After the access, the item can be moved closer to the front of the
list at no additional cost using a free exchange. In addition, the algorithm can
re-arrange the list using paid exchanges each swapping two consecutive items
in the list at a cost of 1. Move-To-Front is a simple list update algorithm that
moves an accessed item to the front of the list using a free exchange. Transpose
is another simple algorithm that moves the accessed item one unit closer to the
front using a free exchange. List update is an important problem in the context
of online algorithms where it has contributed a lot to the concept of competitive
analysis, which is a worst-case measure for comparing online algorithms. We
refer the reader to [24] for a review of the list update problem.

List update is widely used in compression algorithms. Consider each value in
a (linearised) sequence as an item in the list. A list update encoding writes an
arbitrary initial configuration in the compressed file, as well as the access costs of
a list update algorithm A for accessing each character in the list. For decoding,
the algorithm initiates the list using the stored configuration and follows the
same steps by reading the access costs written in the encoded text.

Any list update algorithm can be used to encode an input sequence (see,
e.g., [25–28]). Different algorithms perform differently from one sequence to
another. We note that the results for competitive analysis are not useful for
comparing list update algorithms in the context of data compression as compet-
itive analysis only compares algorithms over their worst-case sequences. A more
practical measure for comparing list update algorithms is bijective analysis [29].
Consider all sequences of a given length n for a given list. An algorithm A is said
to be no worse than algorithm B under bijective analysis iff there is a bijection
(one to one mapping) b between sequences such that the cost of A for serving
any sequence σ is no more than that of B for serving b(σ). If A is no worse than
B, then the two algorithms are said to be equal if B is also no worse than A;
otherwise, A is strictly better than B. Competitive analysis involves comparing
algorithms over all sequences in a given universe and hence provides theoretical
guarantees for typical performance of algorithms, which is more relevant for data
compression.

Theorem 2 [30]. For sequences with locality under the Max-Model, Move-To-
Front is strictly better than any other algorithm under bijective analysis.

The above theorem can be used to conclude that Mtf encodings are strictly
better for encoding sequences formed by Hilbert curve traversal of images. We
have to make two points, however, before drawing such a conclusion. First, while
Theorem 2 concerns the “total cost” of list update algorithm (the cost over all
requests), the bijections in its proof are defined in a way that the cost of Mtf
for each individual access in σ is no more the cost of the other algorithm for the
request at the same index in b(σ). This implies that if we change the cost model
such that accessing an item at position i has access cost �log i� + O(log log i)
instead of i, Theorem 2 still holds. This particular cost model is more relevant
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for compression [26,28] as it is consistent with the length of a self-delimiting
code for storing an index i. Second, Theorem 1 implies that any sequence which
has locality under the Max-Model can be looked at as the Hilbert curve traversal
of some image which has locality under the Max-Model (this is because the two
directions hold in the theorem). Consequently, Theorem 2 implies that the Mtf
encoding has advantage over other list update encodings for images with locality
under Max-Model.

Proposition 2. Under bijective analysis, Move-To-Front is strictly better than
any other list update algorithm for encoding Hilbert sequence of images which
have locality under Max-Model.

3 Experimental Results

In this section, we provide an experimental evaluation of different linearisation
algorithms when paired with list update encoding for lossless image compression.
Our focus in our experiments is comparing the effect of different linearisation
methods, and therefore we have not applied other optimization stages of the
bzip2 scheme, assuming these optimizations are orthogonal generally benefit all
schemes equally [26].

In the light of Proposition 2 and previous work that show advantage of Mtf
over other list update algorithms (e.g., [26,28]), we fix the Move-To-Front as
the list update encoding and experiment on different linearisation methods. We
assume that the Mtf encoding is followed by the Huffman entropy encoding to
capitalized the reduction in the entropy resulted from the Mtf encoding

We use entropy ratio and compression ratio to compare different compression
schemes. The entropy ratio is defined as the ratio between the entropy of the
linearised sequences after and before applying the Mtf encoding. Given the
fact that the goal of the linearisation and Mtf encoding is mainly reducing
the entropy, the entropy ratio provides a good measure to compare different
linearisation methods separately from other stages of a compression pipeline.
We also consider compression ratio as the ratio between the the original file
size and compressed file size. Since we are aimed at reducing the entropy and
eventually the size of compressed file, smaller entropy and higher compression
ratios imply better results.

Dataset. Similarly to previous works, (e.g., [31]) we use four publicly available
datasets named Classic, Medical, Kodak, and Digital-Camera images. The Clas-
sic dataset is composed of four images widely used by image processing commu-
nity (see Fig. 4a. The set of Medical images consists of several Positron Emission
Tomography (PET) images of human brain, digital camera images for eyes and
eye-grounds, and endoscope images of the human intestine (see Fig. 4b for some
of these images). The Kodak set contains 24 scene images from “Kodak Photo
CD Photo Sampler”, which are photographic quality images of a variety of sub-
jects in many locations and under a variety of lighting conditions (see Fig. 4c for
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some of the Kodak images). We note that Kodak dataset has been widely used
in testing previous lossless image compression schemes [32,33]. Finally, Digital-
Camera images are images from commercial digital cameras including Nikon D90
and Olympus E-P1 (see Fig. 4d for sample images from this data set). We refer
the reader to [31] for details about the datasets used in our experiments.

Entropy Ratio. The linearisation stage, followed by the Mtf encoding, are
aimed at producing a sequence with small information entropy. The entropy
ratio of different linearisation techniques for the Classic and Medical datasets
are respectively presented in Tables 1 and 2. Similar results for the Kodak and
Digital-Camera datasets are provided in Tables 3 and 4. In all cases, we achieve
better entropy reduction using Hilbert space-filling curve linearisation. These
results are consistent with Proposition 1 and confirm that the Hilbert curve
traversal preserves the locality in practice (as it theoretically does under Max-
Model) and consequently there is a bigger reduction in entropy when using
Hilbert curve linearisation.

Table 1. Entropy ratio of different linearisation methods for images in the Classic
dataset.

Image Column major Row major Snake Spiral Hilbert curve

Mandrill 0.9656 0.9519 0.9480 0.9537 0.9094

Peppers 0.8904 0.8718 0.8664 0.8735 0.7746

Barbara 0.9054 0.8837 0.8791 0.8962 0.8102

Average 0.9112 0.8810 0.8755 0.8922 0.8110

Compression Ratio. Tables 5, 6, 7, and 8 show the compression ratio of dif-
ferent linearisation methods when paired with the Mtf encoding1. As expected,
the Hilbert linearisation method results in the highest compression. These results
are in line with our theoretical results and show the advantage of using Hilbert
curve linearisation when paired with the Move-To-Front coding before applying
the entropy coding (e.g., Huffman coding).

As reported in [14], applying Huffman encoding just after the linearisation
step (without the Mtf encoding) does not give a promising compression ratio.
The results in Table 9 show the compression ratio of different images in the
absence and presence of Mtf encoding before applying Huffman coding when
images are linearised by the Hilbert curve. In all cases, applying the Mtf
encoding results in significant improvement in compression ratio. This high-
lights the importance of an entropy reduction step like the Mtf encoding in
the compression pipeline for image compression. We note that the Mtf encod-
ing can be preceded and succeeded with other stages of a compression pipeline

1 Note that each image has three color channels and hence the reported file sizes are
three times the size of mono-chrome images associated with each color.
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Mandrill                           Peppers                                   Barbara

(a) Images in the Classic dataset.

PET1                     PET2                    Endoscope1 Endoscope2 Eyeground

(b) Sample images from the Medical dataset.

Kodak1                                          Kodak2 Kodak3 Kodak4

(c) Sample images from the Kodak dataset.

Locks                                         Sunset Ceiling Flamingo

(d) Sample images from the Digital-Camera dataset.

Fig. 4. Some of the images from the four datasets used in our experiments. (Color
figure online)

(e.g., Burrows-Wheeler transform at the beginning and run-length encoding at
the end). Assuming that all linearisation methods benefit from these extra stages,
we excluded these steps in our experiments. The reported compression ratios are
expected to improve when adding more stages (this comes at the price of spend-
ing more computational resources).
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Table 2. Entropy ratio of different linearisation methods for images in the Medical
dataset.

Image Column major Row major Snake Spiral Hilbert curve

PET1 0.5309 0.5740 0.5686 0.4745 0.4722

PET2 0.5428 0.6024 0.5953 0.5193 0.4901

PET3 0.5294 0.5749 0.5701 0.4892 0.4701

Endoscope1 0.7197 0.6876 0.6803 0.6763 0.6070

Endoscope2 0.6021 0.6016 0.5905 0.5903 0.4454

Eyeground 0.4896 0.4963 0.4921 0.4632 0.3866

Average 0.5690 0.5894 0.5828 0.5354 0.4786

Running Time. In order to compare the running time of different linearisation
methods, we compare their performance on the datasets with larger images,
namely Kodak and Digital-Camera datasets. These running times are reported
in Table 10. In an efficient implementation of Hilbert curve linearisation, the
mapping from indices in the curve to the pixels in the image is pre-computed
and stored in a lookup table. As such, the computation of Hilbert curve does not
cause an overhead, and the running times of different methods are comparable
as reflected in the table.

4 Previous Works

Image compression is a widely studied problem in both academia and industry. In
this section, we briefly review the more relevant lossless compression algorithms
and industry standards. We start by noting that general-purpose compression
algorithms like Huffman coding do not perform well for images on their own.
This is because these encodings rely on the redundancy of codewords or entropy
of information and do not exploit the spatial locality that is inherent in images.
As such, image compression algorithms often have a mechanism to utilize the
spatial locality of images to reduce the entropy before using any entropy or
arithmetic coding. Accordingly, image compression algorithms fall broadly into
two categories: prediction based and transformation based.

In the prediction based approaches, a prediction of the next pixel is generated
from previous pixels and the error of prediction is compressed with entropy cod-
ing or arithmetic coding. Intuitively, the error codes utilize the locality of pixel
intensities to reduce entropy. The first remarkable prediction based approach was
the median-edge predictor used in the JPEG-LS [34]. This method generates a
prediction of each pixel based on three previous pixels (left, top, top-left) and
encodes the prediction error. The context-based, adaptive, lossless image codec
(CALIC) family of schemes [5] generate a prediction that is based on the local
gradient information. Several other prediction based models [35,36] have been
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Table 3. Entropy ratio of different linearisation methods for the Kodak dataset.

Image Column major Row major Snake-like Spiral Hilbert curve

Kodak01 0.9212 0.9378 0.9332 0.9237 0.888

Kodak02 0.8022 0.8228 0.8145 0.8041 0.7523

Kodak03 0.6992 0.7214 0.7106 0.7097 0.6074

Kodak04 0.8181 0.8486 0.8375 0.8242 0.7219

Kodak05 0.9612 0.9748 0.9701 0.9601 0.8993

Kodak06 0.8104 0.8813 0.8699 0.8466 0.7869

Kodak07 0.7802 0.8157 0.8085 0.7849 0.7101

Kodak08 0.9469 0.9296 0.9242 0.9389 0.8856

Kodak09 0.8128 0.7775 0.7687 0.7824 0.7065

Kodak10 0.8313 0.8266 0.817 0.8133 0.7212

Kodak11 0.8366 0.8853 0.8793 0.8584 0.8008

Kodak12 0.7295 0.7902 0.7738 0.7515 0.6707

Kodak13 0.9534 0.9846 0.9782 0.965 0.9162

Kodak14 0.8966 0.9416 0.934 0.9044 0.8317

Kodak15 0.7886 0.7433 0.7315 0.7734 0.6625

Kodak16 0.7474 0.8749 0.8598 0.808 0.7268

Kodak17 0.8623 0.8441 0.8364 0.8572 0.7439

Kodak18 0.949 0.9606 0.9535 0.9524 0.8847

Kodak19 0.867 0.8415 0.8308 0.8544 0.77

Kodak20 0.785 0.8544 0.8488 0.8174 0.7389

Kodak21 0.8251 0.8902 0.8827 0.8506 0.7982

Kodak22 0.8591 0.8821 0.8701 0.8713 0.7872

Kodak23 0.7915 0.7511 0.7392 0.7781 0.6392

Kodak24 0.9033 0.886 0.8806 0.8978 0.8157

Average 0.8412 0.8604 0.8516 0.8458 0.77

Table 4. Entropy ratio of different linearisation methods for the Digital-Camera
dataset.

Image Column major Row major Snake-like Spiral Hilbert curve

Locks 0.7076 0.7301 0.7252 0.7315 0.6393

Sunset 0.5034 0.591 0.5841 0.5289 0.4899

Ceiling 0.8043 0.8565 0.8524 0.8077 0.6969

Flamingo 0.529 0.5551 0.5504 0.5508 0.4421

Berry 0.7178 0.7343 0.7314 0.73 0.6165

Fireworks 0.648 0.6594 0.6583 0.6557 0.553

Flower 0.7615 0.7676 0.7637 0.7658 0.6042

Park 0.566 0.6095 0.6051 0.5795 0.545

Average 0.655 0.6888 0.6837 0.671 0.5725
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Table 5. Compression ratio of different linearisation methods for images in the Classic
dataset.

Image Size Pixels Column major Row major Snake Spiral Hilbert curve

Mandrill 3 × 512 × 512 786,432 1.06 1.08 1.09 1.08 1.12

Peppers 3 × 512 × 512 786,432 1.16 1.19 1.19 1.19 1.33

Barbara 3 × 640 × 512 983,040 1.15 1.18 1.18 1.12 1.28

Average - - 1.12 1.15 1.15 1.13 1.24

Table 6. Compression ratio of different linearisation methods for images in the Medical
dataset.

Image Size Pixels Column major Row major Snake Spiral Hilbert curve

PET1 3 × 256 × 256 196,608 4.0 3.85 3.85 4.35 4.55

PET2 3 × 256 × 256 196,608 3.85 3.57 3.57 4.0 4.17

PET3 3 × 256 × 256 196608 3.85 3.7 3.7 4.17 4.35

Endoscope1 3 × 603 × 552 998,568 1.54 1.59 1.61 1.61 1.82

Endoscope2 3 × 568 × 506 862,224 1.79 1.79 1.82 1.79 2.38

Eyeground 3 × 1600 × 1216 5,836,800 2.63 2.56 2.56 2.63 3.23

Average - - 2.94 2.84 2.85 3.09 3.42

proposed which mainly differ in the method of generating prediction. Differential
encoding schemes [37] are also used as a prediction method for lossless image
compression.

Variants of wavelet transforms [6] are widely used in both lossy and lossless
image compression schemes. Most of the wavelet-based lossless image compres-
sion methods (e.g., [38,39]) use discrete, or integer variants of wavelet transform
that are reversible, and encode the transformed coefficients. Integer to integer
wavelet transforms [40] and binary wavelet transform [41] are also proposed for
lossless image compression. Variants of cosine transforms [42,43] are also pro-
posed for lossless image compression.

Entropy coding is frequently used as the final step of most of the lossless
image compression. Run length Coding, Huffman Coding, Golomb Rice cod-
ing [44] and Arithmetic Coding are the most widely used as entropy coding
scheme. Adaptive run-length coding with Move-To-Front transform [45] has been
used for lossless image compression. Huffman coding and Golomb Rice coding
use variable length codewords. Arithmetic coding is a variant of entropy coding
where a set of codewords are encoded as a whole. Several adaptive arithmetic
codings [46] have been proposed for lossless image compression. We note that
these methods can be used in conjunction with the Mtf encoding studied in
this paper.

More recently, approaches that are based on deep-learning [7] or a combi-
nation of deep-learning with a transform based approach [8] are also proposed.
Medical images generally have more locality of pixels. consequently, there have
been a range of solutions especially designed for medical images (e.g., [1,2]).
Other popular industry standards for lossless image compression schemes include
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Table 7. Compression ratio of different linearisation methods for the Kodak dataset.

Image Size Pixels Column major Row major Snake-like Spiral Hilbert curve

kodak01.ppm (3 × 768 × 512) 1,179,648 1.18 1.16 1.16 1.09 1.22

kodak02.ppm (3 × 768 × 512) 1,179,648 1.45 1.43 1.43 1.33 1.56

kodak03.ppm (3 × 768 × 512) 1,179,648 1.54 1.47 1.52 1.39 1.75

kodak05.ppm (3 × 768 × 512) 1,179,648 1.11 1.1 1.1 1.02 1.19

kodak04.ppm (3 × 768 × 512) 1,179,648 1.3 1.25 1.27 1.19 1.47

kodak06.ppm (3 × 768 × 512) 1,179,648 1.3 1.2 1.22 1.15 1.35

kodak07.ppm (3 × 768 × 512) 1,179,648 1.39 1.33 1.35 1.27 1.54

kodak08.ppm (3 × 768 × 512) 1,179,648 1.1 1.11 1.12 1.02 1.18

kodak09.ppm (3 × 768 × 512) 1,179,648 1.37 1.43 1.45 1.3 1.56

kodak10.ppm (3 × 768 × 512) 1,179,648 1.33 1.33 1.35 1.27 1.54

kodak11.ppm (3 × 768 × 512) 1,179,648 1.33 1.25 1.27 1.19 1.39

kodak12.ppm (3 × 768 × 512) 1,179,648 1.49 1.37 1.41 1.33 1.61

kodak13.ppm (3 × 768 × 512) 1,179,648 1.11 1.08 1.08 1.01 1.15

kodak14.ppm (3 × 768 × 512) 1,179,648 1.18 1.11 1.12 1.06 1.27

kodak15.ppm (3 × 768 × 512) 1,179,648 1.33 1.43 1.45 1.27 1.59

kodak16.ppm (3 × 768 × 512) 1,179,648 1.45 1.25 1.27 1.23 1.49

kodak17.ppm (3 × 768 × 512) 1,179,648 1.25 1.28 1.28 1.16 1.45

kodak18.ppm (3 × 768 × 512) 1,179,648 1.18 1.16 1.18 1.09 1.27

kodak19.ppm (3 × 768 × 512) 1,179,648 1.22 1.25 1.27 1.14 1.37

kodak20.ppm (3 × 768 × 512) 1,179,648 1.67 1.54 1.54 1.47 1.79

kodak21.ppm (3 × 768 × 512) 1,179,648 1.33 1.23 1.25 1.19 1.37

kodak22.ppm (3 × 768 × 512) 1,179,648 1.25 1.22 1.23 1.14 1.37

kodak23.ppm (3 × 768 × 512) 1,179,648 1.32 1.39 1.41 1.23 1.64

kodak24.ppm (3 × 768 × 512) 1,179,648 1.23 1.25 1.27 1.15 1.37

Average - - 1.31 1.28 1.29 1.2 1.44

Table 8. Compression ratio of different linearisation methods for the Digital-Camera
dataset.

Image Size Pixels Column major Row major Snake-like Spiral Hilbert curve

locks.ppm (3 × 4288 × 2848) 36636672 1.47 1.43 1.43 1.32 1.64

fireworks.ppm (3 × 3024 × 4032) 36578304 2.13 2.08 2.08 1.96 2.5

sunset.ppm (3 × 4288 × 2848) 36636672 2.08 1.75 1.79 1.82 2.13

flower.ppm (3 × 4032 × 3024) 36578304 1.33 1.32 1.32 1.27 1.67

park.ppm (3 × 4032 × 3024) 36578304 2.0 1.85 1.85 1.89 2.08

flamingo.ppm (3 × 2848 × 4288) 36636672 2.04 1.96 1.96 1.82 2.44

ceiling.ppm (3 × 4288 × 2848) 36636672 1.39 1.3 1.32 1.27 1.61

berry.ppm (3 × 2848 × 4288) 36636672 1.41 1.37 1.39 1.28 1.64

Average - - 1.73 1.63 1.64 1.58 1.96

CALIC [47], Lossless JPEG and it’s derivatives JPEG-LS and JPEG 2000 (see,
e.g., [48,49]), LZ77, LZW [50], and Free Lossless Image Format (FLIF) [51].
These methods generally use a combination of methods in a pipeline for com-
pressing image file.

In this work, we studied the Hilbert space-filling curve and Mtf encodings for
reducing entropy. Our solution, when boosted with other stages of compression
pipeline (e.g., Burrows-Wheeler transform and run-length encoding) could pro-
vide a simple and efficient compression scheme. Such a scheme would not neces-
sarily give a compression ratio better than more complicated methods discussed
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Table 9. The impact of the Mtf encoding in improving compression ratio for some of
the images is from the four datasets when linearised using Hilbert curve.

Compression Ratio
Image Huffman MTF+Huffman

Mandrill 0.9751 0.886

Peppers 0.9618 0.7467

Barbara 0.9665 0.7828

PET1 0.4072 0.2226

PET2 0.4325 0.2373

PET3 0.4254 0.2287

Endoscope1 0.9054 0.5522

Endoscope2 0.9324 0.4175

Compression Ratio
Image Huffman MTF+Huffman

Kodak01 0.9188 0.8173

Kodak02 0.854 0.6436

Kodak03 0.9363 0.5685

Kodak04 0.94 0.6797

Locks 0.9618 0.6148

Fireworks 0.7204 0.4009

Sunset 0.9484 0.4715

Flower 0.9881 0.5981

Park 0.8828 0.4838

Table 10. Running time of different linearisation methods (in seconds).

Image Pixels Column major Row major Snake Spiral Hilbert curve

kodak01 1,179,648 3.2 3.5 3.3 3.5 3.4

kodak02 1,179,648 2.6 2.7 2.6 2.8 2.8

kodak03 1,179,648 2.7 2.8 2.7 3.0 2.7

kodak04 1,179,648 3.0 3.2 3.0 3.3 2.9

kodak05 1,179,648 3.6 3.7 3.7 4.1 3.6

kodak06 1,179,648 2.9 3.5 3.2 3.4 3.1

kodak07 1,179,648 2.9 3.0 2.9 3.3 3.0

kodak08 1,179,648 3.8 3.7 3.6 4.1 3.6

kodak09 1,179,648 3.0 2.8 2.7 3.1 2.9

kodak10 1,179,648 3.0 2.9 2.8 3.1 2.9

kodak11 1,179,648 2.9 3.1 3.1 3.3 3.0

kodak12 1,179,648 2.7 2.8 2.7 3.1 2.8

kodak13 1,179,648 3.5 3.8 3.7 4.0 3.7

kodak14 1,179,648 3.4 3.6 3.5 3.6 3.2

kodak15 1,179,648 3.1 2.9 2.7 3.2 2.9

kodak16 1,179,648 2.6 3.2 3.0 3.2 2.9

kodak17 1,179,648 3.2 3.0 3.0 3.4 2.9

kodak18 1,179,648 3.3 3.2 3.2 3.5 3.3

kodak19 1,179,648 3.2 3.0 3.0 3.4 3.2

kodak20 1,179,648 2.6 3.1 2.9 3.1 2.8

kodak21 1,179,648 2.9 3.2 3.2 3.3 3.2

kodak22 1,179,648 3.0 3.1 3.0 3.3 3.1

kodak23 1,179,648 3.1 2.9 2.8 3.5 2.8

kodak24 1,179,648 3.1 3.2 3.1 3.4 3.1

Average (Kodak dataset) - 3.1 3.2 3.1 3.4 3.1

locks 36,636,672 88.0 92.0 101.8 112.6 92.4

fireworks 36,578,304 82.5 84.1 83.4 89.3 77.7

sunset 36,636,672 71.5 79.6 76.9 79.8 84.2

flower 36,578,304 99.7 102.8 96.8 101.9 84.2

park 36,578,304 75.3 78.7 77.7 78.5 78.8

flamingo 36,636,672 71.9 74.8 72.8 80.3 81.5

ceiling 36,636,672 89.7 91.5 91.5 93.3 89.0

berry 36,636,672 104.7 108.0 107.1 114.5 94.4

Average (Digital-Camera dataset) - 85.4 88.9 88.5 93.8 85.3
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above (e.g., deep learning methods). It could, however, be used in applications
where simplicity and time complexity are more important.

5 Concluding Remarks

In this paper, we presented a simple and efficient lossless image compression
method that is based on the Hilbert space-filling curve and Move-To-Front
encoding. Our theoretical and experimental results show the advantage of Hilbert
curves over other simple linearisation techniques and also effectiveness of Mtf
encodings for image compression. These results, paired with the simplicity and
efficiency of computing Hilbert curves and Mtf codes, the benefit of using them
in certain practical applications. From a theoretical point of view, it is interesting
to study other (possibly more complex) space-filling curves for image linearisa-
tion. A natural question is whether there is a space-filling curve that preserves
locality “better” than Hilbert curves do. To answer this question, it is necessary
to quantify the locality in the Max-Model or use another measure of locality. We
conjecture that Hilbert curves are as good as any other space-filling curve such
as Morton curves [52] for image compression schemes that use Mtf codes, and
leave the study of other curves in this context as a topic for future work. The
compression scheme proposed in this paper might be useful for encoding multi-
spectral images. Finally, the techniques in this paper might be paired with other
techniques that enable querying a compressed image without decompressing it
(e.g., [53,54]); investigating such hybrid compression schemes is another topic
for future work.
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Abstract. Data compression is a powerful tool for managing massive
but repetitive datasets, especially schemes such as grammar-based com-
pression that support computation over the data without decompressing
it. In the best case such a scheme takes a dataset so big that it must
be stored on disk and shrinks it enough that it can be stored and pro-
cessed in internal memory. Even then, however, the scheme is essentially
useless unless it can be built on the original dataset reasonably quickly
while keeping the dataset on disk. In this paper we show how we can
preprocess such datasets with context-triggered piecewise hashing such
that afterwards we can apply RePair and other grammar-based compres-
sors more easily. We first give our algorithm, then show how a variant
of it can be used to approximate the LZ77 parse, then leverage that to
prove theoretical bounds on compression, and finally give experimental
evidence that our approach is competitive in practice.

1 Introduction

Dictionary compression has proved to be an effective tool to exploit the repeti-
tiveness that most of the fastest-growing datasets feature [24]. Lempel-Ziv (LZ77
for short) [23,33] stands out as the most popular and effective compression
method for repetitive texts. Further, it can be run in linear time and even in
external memory [18]. LZ77 has the important drawback, however, that accessing
random positions of the compressed text requires, essentially, to decompress it
from the beginning. Therefore, it is not suitable to be used as a compressed data
structure that represents the text in little space while simulating direct access
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to it. Grammar compression [19] is an alternative that offers better guarantees
in this sense. The aim is to build a small context-free grammar (or Straight-Line
Program, SLP) that generates (only) the text. The smallest SLP generating a
text is always larger than its LZ77 parse, but only by a logarithmic factor that
is rarely reached in practice. With an SLP we can access any text substring
with only an additive logarithmic time penalty [3,5], which has led to the devel-
opment of various self-indexes building on SLPs [4,9,12,13,15,26]. Many other
richer queries on sequences have also been supported by associating summary
information with the nonterminals of the SLP [1,2,5,7,10,11]. There are appli-
cations in which SLPs are preferable to LZ77 for other reasons, as well; see,
e.g., [22,25].

Although finding the smallest SLP for a text is NP-complete [8,28], there are
several grammar construction algorithms that guarantee at most a logarithmic
blowup on the LZ77 parse [8,16,17,28,29]. In practice, however, they are sharply
outperformed by RePair [21], a heuristic that runs in linear time and obtains
grammars of size very close to that of the LZ77 parse in most cases. This has
made RePair the compressor of choice to build grammar-based compressed data
structures [1,7,10,11]. A serious problem with RePair, however, is that, despite
running in linear time and space, in practice the constant of proportinality is
high and it can be built only on inputs that are about one tenth of the available
memory. This significantly hampers its applicability on large datasets.

In this paper we introduce a scalable SLP compression algorithm that uses
space very close to that of RePair and can be applied on very large inputs. We
prove a constant-approximation factor with respect to any SLP construction
algorithm to which our technique is applied. Our experimental results show that
we can compress a very repetitive 50 GB text in less than an hour, using less
than 650MB of RAM and obtaining very competitive compression ratios.

2 Preliminaries

For the sake of brevity, we assume the reader is familiar with SLPs, LZ77, and
the links between the two. To prove theoretical bounds for our approach, we
consider a variant of LZ77 in which if S[i..j] is a phrase then either i = j and
S[i] is the first occurrence of a distinct character, or S[i..j] occurs in S[1..j − 1]
and S[i..j + 1] does not occur in S[1..j]. We refer to this variant as LZSS due to
its similarity to Storer and Szymanski’s version of LZ77 [30], even though they
allow substrings to be stored as raw text and we do not.

The best-known algorithm for building SLPs is probably RePair [21], for
which there are many implementations (see [14] and references therein). It works
by repeatedly finding the most common pair of symbols and replacing them with
a new non-terminal. Although it is not known to have a good worst-case approx-
imation ratio with respect to the size of LZ77 parsing, in practice it outperforms
other constructions. RePair uses linear time and space but the coefficient in the
space bound is quite large and so the standard implementations are practical
only on small inputs. A more recent and more space economical alternative to
RePair is SOLCA [31] that we will consider in Sect. 5.
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Algorithm 1. Rpair: use Rsync parsing to build an SLP for a given string S

1. build an Rsync dictionary and parse for S;
2. generate SLPs for the distinct blocks as follows:

(a) append a unique separator character to each block in the dictionary and then
concatenate the blocks (in the order of their first appearances in S) into a
string D;

(b) build an SLP for D;
(c) delete from the SLP any non-terminal that occurs only once in the parse tree

(and any rule including it);
(d) delete from the SLP the separator characters (and any rules including them);
(e) list the non-terminals at the roots of the maximal remaining subtrees of the

parse tree;
(f) divide the list into sublists such that the concatenation of the expansions of

the non-terminals in the ith sublist is the i block in D;
(g) create a set of rules generating the ith sublist from a new non-terminal Xi;

3. build an SLP for the parse P ;
4. replace by Xi each occurrence in P of the terminal for the ith block in D;
5. combine the SLP for P with the SLPs for the blocks.

Context-triggered piecewise hashing (CTPH) is a technique for parsing
strings into blocks such that long repeated substrings are parsed the same
way (except possibly at the beginning or end of the substrings). The name
CTPH seems to be due to Kornblum [20] but the ideas go back to Tridgell’s
Rsync [32] and Spamsum (https://www.samba.org/ftp/unpacked/junkcode/
spamsum/README): “The core of the spamsum algorithm is a rolling hash
similar to the rolling hash used in ‘rsync’. The rolling hash is used to produce
a series of ’reset points’ in the plaintext that depend only on the immediate
context (with a default context width of seven characters) and not on the earlier
or later parts of the plaintext.”

Specifically, in this paper we choose a rolling hash function and a threshold p,
run a sliding window of fixed size w over S and end the current block whenever
the window contains a triggering substring, which is a substring of length w
whose hash is congruent to 0 modulo p. When we end a block, we shift the
window ahead w characters so all the blocks are disjoint and form a parse, which
we call the Rsync parse. We call the set of distinct blocks the Rsync dictionary:
if the input text contains many repetitions, we expect the dictionary to be much
smaller than the text.

3 Algorithms

Given a string S, we can use Rsync parsing to help build an SLP for S with
Algorithm 1 (“Rpair”). The final SLP can be viewed as first generating the parse,
then replacing each block ID in the parse by the sublist of non-terminals that
generate each block, and finally replacing the sublists by the blocks themselves.

https://www.samba.org/ftp/unpacked/junkcode/spamsum/README
https://www.samba.org/ftp/unpacked/junkcode/spamsum/README
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Algorithm 2. Rparse: use Rsync to build an LZSS-like parse for a string S

1. build an Rsync dictionary and parse for S;
2. append a unique separator character to each block in the dictionary and concate-

nate the blocks (in the order of their first appearances in S) into a string D;
3. compute the LZSS parse of D;
4. compute the LZSS parse of the parse P , treating each block as a meta-character;
5. map D’s and P ’s parses onto S:

(a) discard any separator character D[j] in D;
(b) turn the first occurrence D[j] of any other character in D into the first occur-

rence S[j′] of that character in S;
(c) turn each phrase D[j..j+�−1] in block B with source D[i..i+�−1] in block B′,

into a phrase S[j′..j′ + �− 1] with source S[i′..i′ + �− 1], where S[j′] and S[i′]
have the same respective offsets from the beginnings of the first occurrences of
B and B′ in S, as D[j] and D[i] have from the beginnings of B and B′ in D;

(d) discard the first occurrence P [j] of each block in P ;
(e) turn each phrase P [j..j + � − 1] with source P [i..i + � − 1], into a phrase

S[j′..j′ + �′ − 1] with source S[i′..i′ + �′ − 1], where S[j′] and S[i′] are the first
characters in the jth and ith blocks, respectively, and �′ is the total length of
the jth through (j + � − 1)st blocks (and thus also the total length of the ith
through (i + � − 1)st blocks).

Since each separator character appears only once in D and its parse tree,
any non-terminal whose expansion includes a separator character also appears
only once and is deleted. Since the parse tree of an SLP is binary and each
non-terminal we delete appears only once, the number of distinct non-terminals
we delete is at least the length of the list of non-terminals at the roots of the
maximal remaining subtrees of the parse tree, minus one. Therefore, creating
rules to generate the sublists does not cause the number of distinct non-terminals
to grow to more than the number in the original SLP for D, plus one.

Algorithm 1 works with any algorithm for building SLPs for D and P . In
Sect. 4 we show that, if we choose an algorithm that builds SLPs for D and
P at most an α-factor larger than their LZ77 parses, then we obtain an SLP
an O(α)-factor larger than the LZ77 parse of S. In the process we will refer to
Algorithm 2 (“Rparse”), which produces an LZSS-like parse of S but is intended
only to simplify our analysis of Algorithm 1 (not to compete with cutting-edge
LZ-based compressors). By “LZSS-like” we mean a parse in which each phrase
is either a single character that has not occurred before, or a copy of an earlier
substring. We note in passing that, if the parse in Step 3 is still too big for a
normal construction, then we can apply Algorithm 1 to it. We will show in the
full version of this paper that, if we recurse only a constant number of times,
then we worsen our compression bounds by only a constant factor.
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4 Analysis

The main advantage of using Rsync parsing to preprocess S is that Rsync pars-
ing is quite easy to parallelize, apply over streamed data, or apply in external
memory. The resulting dictionary and parse may be significantly smaller than
S, making it easier to apply grammar-based compression. In the full version of
this paper we will analyze how much time and workspace Algorithms 1 and 2
use in terms of the total size of the dictionary and parse, but for now we are
mainly concerned with the quality of the compression.

Let b be the number of distinct blocks in the Rsync parse of S, and let z be
the number of phrases in the LZ77 parse of S. The first block is obviously the
first occurrence of that substring and if S[i..j] is the first occurrence of another
block, then S[i−w..j] (i.e., the block extended backward to include the previous
triggering substring) is the first occurrence of that substring. Since the first
occurrence of any non-empty substring overlaps or ends at a phrase boundary
in the LZ77 parse, we can charge S[i..j] to such a boundary in S[i − w..j]. Since
blocks have length at least w and overlap by only w characters when extended
backwards, each boundary has the first occurrences of at most two blocks charged
to it, so b = O(z).

In Step 5 of Algorithm 2, we discard O(b) of the phrases in the LZSS parses
of D and P when mapping to the phrases in the LZSS-like parse of S. Therefore,
by showing that the number of phrases in the LZSS-like parse of S is O(z), we
show that the total number of phrases in the LZSS parses of D and P is also
O(z + b) = O(z), so the total number of phrases in their LZ77 parses is O(z) as
well.

Lemma 1. If the t-th phrase in the LZSS parse of S is S[j..j + � − 1] then the
5t-th phrase resulting from Algorithm 2, if it exists, ends at or after S[j + �− 1].

Proof. Our claim is trivially true for t = 1, since the first phrases in both parses
are the single character S[1], so let t be greater than 1 and assume our claim
is true for t − 1, meaning the 5(t − 1)st phrase in our parse ends at S[k − 1]
with k ≥ j. If k ≥ j + � then our claim is also trivially true for t, so assume
j ≤ k < j + �. We must show that our parse divides S[k..j + � − 1] into at most
five phrases, in order to prove our claim for t.

First suppose that S[k..j + � − 1] does not completely contain a triggering
substring, so it overlaps at most two blocks. (It can overlap two blocks without
containing a triggering substring if and only if a prefix of length less than w lies
in one block and the rest lies in the next block.) Let S[i..i+�−1] be S[j..j+�−1]’s
source and let k′ = i + k − j, so in the LZSS parse S[k..j + � − 1] is copied from
S[k′..i + � − 1]. Since S[k′..i + � − 1] does not completely contain a triggering
substring either, it too overlaps at most two blocks.

Without loss of generality (since the other cases are easier), assume S[k..j +
� − 1] and S[k′..i + � − 1] each overlap two blocks and they are split differently:
S[k..k + d − 1] lies in one block and S[k + d..j + � − 1] lies in the next, and
S[k′..k′ +d′ −1] lies in one block and S[k′ +d′..i+ �−1] in the next, with d �= d′.
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Assume also that d < d′, since the other case is symmetric. Since S[k..k + d − 1]
is completely contained in a block and occurs earlier completely contained in a
block, as S[k′..k′ + d − 1], our parse does not divide it. Similarly, since S[k +
d..k + d′ − 1] and S[k + d′..j + � − 1] are each completely contained in a block
and occur earlier each completely contained in a block, as S[k′ + d..k′ + d′ − 1]
and S[k′ + d′..i + � − 1], respectively, our parse does not divide them. Therefore,
our parse divides S[k..j + � − 1] into at most three phrases.

Now suppose the first and last triggering substrings completely contained in
S[k..j+�−1] are S[x..x+w−1] and S[y..y+w−1] (possibly with x = y). By the
arguments above, our parse divides S[k..x + w − 1] into at most three phrases.
Since S[x + w..y + w − 1] is a sequence of complete blocks that have occurred
earlier (in S[k′..i + � − 1]), our parse does not divide it unless S[k..x + w − 1]
is a complete block that has occurred before as a complete block, in which case
it may divide S[k..y + w − 1] once between S[x + w] and S[y + w − 1]. Since
S[y+w..j+�−1] is completely contained in a block and occurs earlier completely
contained in a block (in S[k′..i + � − 1]), our parse does not divide it. Therefore,
our parse divides S[k..j + � − 1] into at most five phrases. ��

We note that we can quite easily can reduce the five in Lemma 1, at the cost
of complicating our algorithm slightly. We leave a detailed analysis for the full
version of this paper.

Corollary 1. Algorithm 2 yields an LZSS-like parse of S with at most five times
as many phrases as its LZSS parse.

Proof. If the LZSS parse has t phrases then the t-th phrase ends at S[n] so, by
Lemma 1, Algorithm 2 yields a parse with at most 5t phrases. ��
Theorem 1. Algorithm 2 yields an LZSS-like parse of S with O(z) phrases.

Proof. It is well known that the LZSS parse of S has at most twice as many
phrases as the its LZ77 parse (since dividing each LZ77 phrase into a prefix with
an earlier occurrence and a mismatch character yields an LZSS-like parse with
at most twice as many phrases, and the LZSS parse has the fewest phrases of
any LZSS-like parse). Therefore, by Corollary 1, Algorithm 2 yields a parse with
at most O(z) phrases. ��
Corollary 2. The LZ77 parses of D and P have O(z) phrases.

Proof. Immediate, from Theorem 1, the fact that the LZ77 parse is no larger
than the LZSS parse, and inspection of Algorithm 1. ��

Let A be any algorithm that builds an SLP at most an α-factor larger than
the LZ77 parse of its input. For example, with Rytter’s construction [28] we have
α = O(log(|S|/z)).

By Corollary 2, applying A to D—Step 2b in Algorithm 1—yields an SLP
for D with O(αz) rules. As explained in Sect. 3, Steps 2c to 2g then increase
the number of rules by at most one while modifying the SLP such that, for each
block in the dictionary, there is a non-terminal whose expansion is that block.
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Similarly, applying A to P—Step 3—yields an SLP for P with O(z) rules.
Replacing the terminals in the SLP by the non-terminals generating the blocks
and then combining the two SLPs—Steps 4 and 5—yields an SLP for S with
O(αz) rules. This gives us our main result of this section:

Theorem 2. Using A in Steps 2b and 3 of Algorithm 1 yields an SLP for S
with O(αz) rules.

5 Experiments

We use two genome collections in our experiments: cN consists of N concate-
nated variants of the human chromosome chr19, of about 59 MB each; sN consists
of N concatenated variants of salmonella genomes, of widely different sizes.

The chr19 collection was downloaded from the 1000 Genomes Project. Each
chr19 sequence was derived by using the bcftools consensus tool to combine the
haplotype-specific (maternal or paternal) variant calls for an individual with
the chr19 sequence in the GRCH37 human reference. The salmonella genomes
were downloaded from NCBI (BioProject PRJNA183844) and preprocessed by
assembling each individual sample with IDBA-UD [27] setting kMaxShortSe-
quence to 1024 per public advice from the author to accommodate the longer
paired end reads that modern sequencers produce. More details of the collections
are available in previous work [6, Sec. 4].

We compare two grammar compressors: RePair [21] produces the best known
compression ratios but uses a lot of main memory space, whereas SOLCA [31]
aims at optimizing main memory usage. Their versions combined with paral-
lelized CTPH parsing are BigRepair and BigSOLCA. RePair could be run only on
the smaller collections. Our experiments ran on a Intel(R) I7-4770 @ 3.40 GHz
machine with 32 GB memory using 8 threads; currently only the CTPH parsing
takes advantage of the multiple threads.

For RePair we use Navarro’s implementation for large files, at http://www.
dcc.uchile.cl/gnavarro/software/repair.tgz, letting it use 10 GB of main mem-
ory, whereas the implementation of SOLCA is at https://github.com/tkbtkysms/
solca. To measure their compression ratios in a uniform way, we consider the fol-
lowing encodings of their output: if RePair produces r (binary) rules and an
initial rule of length c, we account 2r bits to encode the topology of the pruned
parse tree (where the nonterminal ids become the preorder of their internal node
in this tree) and (r+c)�log2 r� bits to encode the leaves of the tree and the initial
rule. SOLCA is similar, with c = 1. Our code is available at https://gitlab.com/
manzai/bigrepair.

Table 1 shows the results in terms of compression ratio, time, and space in
RAM. On the more repetitive chr19 genomes, BigRePair is clearly the best choice
for large files. It loses to RePair in compression ratio, but RePair takes 11 h just to
process 5.5 GB, so it is not a choice for larger files. Instead, BigRepair processes
55 GB in about 20 min and 6.5 GB. Similarly, SOLCA obtains better compression
but more compression time than BigSOLCA, though the latter uses more space.

http://www.dcc.uchile.cl/gnavarro/software/repair.tgz
http://www.dcc.uchile.cl/gnavarro/software/repair.tgz
https://github.com/ tkbtkysms/solca
https://github.com/ tkbtkysms/solca
https://gitlab.com/manzai/bigrepair
https://gitlab.com/manzai/bigrepair
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Table 1. Performance of the compressors. File sizes are expressed in GB, compression
ratios in percentage of compressed file over uncompressed file, compression times in
seconds per input GB, and compression main memory usage in MBs per input GB.

File Size RePair BigRePair SOLCA BigSOLCA

Ratio Time Spc Ratio Time Spc Ratio Time Spc Ratio Time Spc

c50 2.75 0.80% 1832 3842 0.91% 29.30 454.7 1.35% 244.1 107.4 1.54% 66.47 183.4

c100 5.51 0.30% 7311 3155 0.48% 25.05 246.4 0.77% 236.4 53.67 0.86% 56.96 130.4

c250 13.8 0.23% 22.10 119.8 0.40% 239.0 29.78 0.44% 48.55 95.00

c500 27.5 0.14% 22.31 118.0 0.28% 237.4 17.05 0.30% 47.46 84.72

c1000 55.1 0.10% 22.61 117.3 0.22% 237.3 13.56 0.23% 47.79 78.82

s815 3.75 1.72% 8478 3726 1.93% 51.70 2254 3.01% 317.7 161.0 3.50% 104.1 291.4

s2073 9.72 2.01% 55.48 1055 3.01% 370.9 153.1 3.53% 116.9 285.9

s4570 22.0 2.61% 201.1 534.2 3.57% 480.6 154.4 4.24% 142.8 335.1

s11264 53.1 1.51% 2560 294.2 2.20% 620.2 92.60 2.61% 113.1 206.7

The comparison between the two compressors shows that BigRepair performs
better than both SOLCA and BigSOLCA in both compression ratio (reaching
nearly half the compressed size of SOLCA on the largest files) and time (half the
time of BigSOLCA). Still SOLCA uses much less space: it compresses 55 GB in
3.6 h, but using less than 750 MB.

The results start similarly on the less compressible salmonella collection,
but, as the size of the input grows, there are significant differences. The time of
BigRePair on chr19 was stable around 2GBs per minute, but on salmonella it is
not: When moving from 10 GB to 20 GB of input data, the time per processed
GB of BigRePair jumps by a factor of 3.6, and when moving from 20 GB to
50 GB it jumps by more than 10. To process the largest 53 GB file, BigRePair
requires more than 37 h and over 15 GB of RAM. SOLCA, instead, handles this
file in nearly 9 h and less than 5 GB, and BigSOLCA in less than 2 h and 11 GB,
being the fastest. What happens is that, being less compressible, the output of
the CTPH parse is still too large for RePair, and thus it slows down drastically
as soon as it cannot fit its structures in main memory. The much lower memory
footprint of SOLCA, instead, pays off on these large and less compressible files,
though its compression ratio is worse than that of BigRePair. In the full version
of this paper we will investigate applying BigRePair and BigSOLCA recursively,
following the strategy mentioned at the end of Sect. 3.
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15. Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: LZ77-based
self-indexing with faster pattern matching. In: Pardo, A., Viola, A. (eds.) LATIN
2014. LNCS, vol. 8392, pp. 731–742. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54423-1 63
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18. Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Lempel-Ziv parsing in external memory.
In: DCC, pp. 153–162 (2014)

19. Kieffer, J.C., Yang, E.-H.: Grammar-based codes: a new class of universal lossless
source codes. IEEE Trans. Inf. Theory 46(3), 737–754 (2000)

20. Kornblum, J.D.: Identifying almost identical files using context triggered piecewise
hashing. Digit. Invest. 3, 91–97 (2006)

21. Larsson, J., Moffat, A.: Off-line dictionary-based compression. Proc. IEEE 88(11),
1722–1732 (2000)

22. Lasch, R., Oukid, I., Dementiev, R., May, N., Demirsoy, S.S., Sattler, K.-U.: Fast &
strong: The case of compressed string dictionaries on modern CPUs. In: DaMoN,
pp. 4:1–4:10 (2019)

23. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. Inf. Theory
22(1), 75–81 (1976)

24. Navarro, G.: Indexing highly repetitive collections. In: Arumugam, S., Smyth, W.F.
(eds.) IWOCA 2012. LNCS, vol. 7643, pp. 274–279. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-35926-2 29

https://doi.org/10.1007/978-3-319-77404-6_25
https://doi.org/10.1007/978-3-319-77404-6_25
https://doi.org/10.1007/978-3-319-02432-5_12
https://doi.org/10.1007/978-3-642-34109-0_19
https://doi.org/10.1007/978-3-642-34109-0_19
https://doi.org/10.1007/978-3-642-54423-1_63
https://doi.org/10.1007/978-3-642-54423-1_63
https://doi.org/10.1007/978-3-642-35926-2_29


44 T. Gagie et al.

25. Nevill-Manning, C.G., Witten, I.H.: Identifying hierarchical structure in sequences:
a linear-time algorithm. J. Artif. Intell. Res. 7, 67–82 (1997)

26. Nishimoto, T., I, T., Inenaga, S., Bannai, H., Takeda, M.: Dynamic index, LZ
factorization, and LCE queries in compressed space. CoRR, abs/1504.06954 (2015)

27. Peng, Y., Leung, H.C.M., Yiu, S.M., Chin, F.Y.L.: IDBA-UD: a de novo assem-
bler for single-cell and metagenomic sequencing data with highly uneven depth.
Bioinformatics 28(11), 1420–1428 (2012)

28. Rytter, W.: Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theor. Comput. Sci. 302(1–3), 211–222 (2003)

29. Sakamoto, H.: A fully linear-time approximation algorithm for grammar-based
compression. J. Discr. Algorithm 3(2–4), 416–430 (2005)

30. Storer, J.A., Szymanski, T.G.: Data compression via textual substitution. J. ACM
29(4), 928–951 (1982)

31. Takabatake, Y., I, T., Sakamoto, H.: A space-optimal grammar compression. In:
ESA, pp. 67:1–67:15 (2017)

32. Tridgell, A.: Efficient Algorithms for Sorting and Synchronization. Ph.D. thesis,
The Australian National University (1999)

33. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Trans. Inf. Theory IT–23(3), 337–349 (1977)



Information Retrieval



Position Bias Estimation for Unbiased
Learning-to-Rank in eCommerce Search

Grigor Aslanyan(B) and Utkarsh Porwal

eBay Inc., 2025 Hamilton Avenue, San Jose, CA 95125, USA
{gaslanyan,uporwal}@ebay.com

Abstract. The Unbiased Learning-to-Rank framework [16] has been
recently proposed as a general approach to systematically remove biases,
such as position bias, from learning-to-rank models. The method takes
two steps - estimating click propensities and using them to train unbiased
models. Most common methods proposed in the literature for estimat-
ing propensities involve some degree of intervention in the live search
engine. An alternative approach proposed recently uses an Expectation
Maximization (EM) algorithm to estimate propensities by using ranking
features for estimating relevances [21]. In this work we propose a novel
method to directly estimate propensities which does not use any interven-
tion in live search or rely on modeling relevance. Rather, we take advan-
tage of the fact that the same query-document pair may naturally change
ranks over time. This typically occurs for eCommerce search because of
change of popularity of items over time, existence of time dependent
ranking features, or addition or removal of items to the index (an item
getting sold or a new item being listed). However, our method is general
and can be applied to any search engine for which the rank of the same
document may naturally change over time for the same query. We derive
a simple likelihood function that depends on propensities only, and by
maximizing the likelihood we are able to get estimates of the propensities.
We apply this method to eBay search data to estimate click propensities
for web and mobile search and compare these with estimates using the
EM method [21]. We also use simulated data to show that the method
gives reliable estimates of the “true” simulated propensities. Finally, we
train an unbiased learning-to-rank model for eBay search using the esti-
mated propensities and show that it outperforms both baselines - one
without position bias correction and one with position bias correction
using the EM method.

1 Introduction

Modern search engines rely on machine learned methods for ranking the match-
ing results for a given query. Training and evaluation of models for ranking is
commonly known as Learning-to-Rank (LTR) [18]. There are two common
approaches for collecting the data for LTR - human judgements and implicit
user feedback. For human judgements samples of documents are gathered
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for a sample of queries and sent to human judges who analyze and label each
document. The labels can be as simple as relevant vs. not relevant or can involve
more levels of relevance. This labeled data is then used for training and/or eval-
uation of LTR models. Collecting human judged data can be expensive and
time consuming and often infeasible. On the other hand, data from implicit user
feedback, such as clicks, is essentially free and abundant. For that reason it is
often the preferred method for collecting data for LTR. A major drawback of
this method is that the data can be heavily biased. For example, users can only
click on documents that have been shown to them (presentation bias) and are
more likely to click on higher ranked documents (position bias). A lot of work
in the LTR literature has focused on accounting for and removing these biases.
In particular, the recent paper by Joachims et al. [16] has proposed a framework
for systematically removing the biases from user feedback data. Following the
title of the paper we will refer to this framework as Unbiased Learning-to-
Rank. In particular, the authors have focused on removing the position bias by
first estimating the click propensities and then using the inverse propensities as
weights in the loss function. They have shown that this method results in an
unbiased loss function and hence an unbiased model.

Unbiased Learning-to-Rank is an appealing method for removing the inher-
ent biases. However, to apply it one needs to first get a reliable estimate of click
propensities. The method proposed in [16] uses result randomization in the live
search engine to estimate propensities. This can negatively impact the quality of
the search results, which will in turn result in poor user experience and potential
loss of revenue for the company [21]. It also adds bookkeeping overhead. Wang
et al. [21] have proposed a regression-based Expectation Maximization (EM)
method for estimating click propensities which does not require result random-
ization. However, this method uses the ranking features to estimate relevances
and can result in a biased estimate of propensities unless the relevance estimates
are very reliable, which is difficult to achieve in practice.

In this paper we propose a novel method for estimating click propensities
without any intervention in the live search results page, such as result random-
ization. We use query-document pairs that appear more than once at different
ranks to estimate click propensities. In comparison to the EM-based algorithm in
[21] our method does not rely on modeling the relevance using ranking features.
In fact, we completely eliminate the relevances from the likelihood function and
directly estimate the propensities by maximizing a simple likelihood function.

Agarwal et al. [1] have proposed a similar approach for estimating propensi-
ties without interventions, which has been done in parallel to our work. The app-
roach developed there relies on having multiple different rankers in the system,
such as during A/B tests. They also derive a likelihood function to estimate the
propensities, called an AllPairs estimator, which depends on terms for all com-
binations of rank pairs. In comparison to the method in [1] our method is more
general and does not rely on having multiple rankers in the system. Although
requiring multiple rankers is better than intervention it may still have a similar
cost. For example, a different ranker could result in a different user experience
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and extra book keeping overhead. In contrast, our proposed approach leverages
the organic ranking variation because of time dependent features and does not
result in extra costs. That said, our method can naturally take advantage of
having multiple rankers, if available. More importantly, our likelihood function
depends on the propensities only, rather than terms for all combinations of pairs.
The number of unknown parameters to estimate for our method is linear, rather
than quadratic, in the number of ranks, which is a major advantage. Our method
can therefore give reliable estimates for much lower ranks using much less data.

We use simulated data to test our method and get good results. We then
apply our method on actual data from eBay search logs to estimate click propen-
sities for both web and mobile platforms and compare them with estimates using
the EM method [21]. Finally, we use our estimated propensities to train an unbi-
ased learning-to-rank model for eBay search and compare it with two baseline
models - one which does not correct for position bias and one which uses EM-
based estimates for bias correction. Our results show that both unbiased models
significantly outperform the “biased” baseline on our offline evaluation metrics,
with our model also outperforming the EM method [21].

The main novel contributions of this work can be summarized as follows:

– We present a new approach for directly estimating click propensities without
any interventions in live search. Compared with other approaches in the lit-
erature [1,21], our approach does not require multiple rankers in the system
and large amounts of data for each pair of ranks from different rankers. More-
over, our proposal gives direct estimates of the propensity without having to
model relevance. This makes our approach more robust and general.

– Under a mild assumption we derive a simple likelihood function that depends
on the propensities only. This allows for propensity estimation for much lower
ranks. We also prove the validity of the method through simulations.

– We estimate propensities up to rank 500 using our method for a large eCom-
merce search engine. This is a much lower rank than previous methods in the
literature have been able to obtain (around rank 20). This may not be impor-
tant for some search engines but is especially important in the eCommerce
domain where people typically browse and purchase items from much lower
ranks than for web search.

– To the best of our knowledge this is the first paper to do a detailed study of
the unbiased learning-to-rank approach for eCommerce search.

The rest of the paper is organized as follows. In Sect. 2 we discuss some of
the related work in the literature. In Sect. 3 we introduce our method for esti-
mating click propensities. In Sect. 4 we apply our method to eBay search logs
and estimate propensities for web and mobile search, and compare them with
EM-based estimates. In Sect. 5 we train and evaluate unbiased learning-to-rank
models for eBay search using our estimated propensities as well as the propensi-
ties estimated with the EM method [21], and show that our model outperforms
both baselines - one without position bias correction and one with bias correction
using estimates from the EM method. We summarize our work in Sect. 6 and
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discuss future directions for this research. The derivation of our likelihood func-
tion is presented in AppendixA. Finally, in Appendix B we apply our method
to simulated data and show that we are able to obtain reliable estimates of the
“true” simulated propensities.

2 Related Work

Implicit feedback such as clicks are commonly used to train user facing machine
learned systems such as ranking or recommender systems. Clicks are preferred
over human judged labels as they are available plentifully, are available readily
and are collected in a natural environment. However, such user behavior data can
only be collected over the items shown to the users. This injects a presentation
bias in the collected data. This affects the machine learned systems as they are
trained on user feedback data as positives and negatives. It is not feasible to
present many choices to the user and it affects the performance of these systems
as we can not get an accurate estimate of positives and negatives for training with
feedback available only on selective samples. This situation is aggravated by the
fact that the feedback of the user not only depends on the presentation, it also
depends on where the item was presented. This is a subclass of the presentation
bias called position bias. Joachims et al. [16] proved that if the collected user
behavior data discounts the position bias accurately then the learned system
will be the same as the one learned on true relevance signals.

Several approaches have been proposed to de-bias the collected user behavior
data. One of the most common approaches is the use of click models. Click models
are used to make hypotheses about the user behavior and then the true relevance
is estimated by optimizing the likelihood of the collected clicks. There are several
types of click models. One such model is a random click model (RCM) [9] where
it is assumed that every document has the same probability of getting clicked
and that probability is the model parameter. In a rank based click through
rate model (RCTR) it is assumed that the probability of every document being
clicked depends on its rank. Therefore, the total number of model parameters is
the total number of ranks in the ranking system. Another model is the document
based CTR model (DCTR) [8] where the click through rates are estimated for
each query-document pair. In this model the total number of model parameters
is the total number of query-document pairs. This model is prone to overfitting
as the number of parameters grows with the training data size. Most commonly
used click models are the position based model (PBM) [8,15] and the cascade
model (CM) [8]. In PBM the hypothesis is that a document is only clicked if it
is observed and the user found it attractive or relevant. In CM the hypothesis
is that the user sequentially scans the whole document top to bottom and clicks
when the document is found to be relevant. In this model the top document is
always observed and consecutive documents are only observed if the previous
ones were observed and were not deemed relevant. In our proposed method
we make a similar hypothesis such as the position based method where the
observation probability depends on the rank and the probability of relevance
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only depends on the query-document pair. However, our approach is to learn
the click propensities instead of learning the true relevance by optimizing the
likelihood of the collected clicks. More advanced click models, such as the user
browsing model (UBM) [9], the dependent click model (DCM) [12], the click
chain model (CCM) [11], and the dynamic Bayesian network model (DBN) [6]
are also proposed. Chuklin et al. [7] provides a comprehensive overview of click
models.

Click models are trained on the collected user behavior data. Interleaving is
another option that is deployed at the time of data collection. In interleaving
different rank lists can be interleaved together and presented to the user. By
comparing the clicks on the swapped results one can learn the unbiased user
preference. Different methods for interleaving have been proposed. In the bal-
anced interleave method [17] a new interleaved ranked list is generated for every
query. The document constraint method [13] accounts for the relation between
documents. Hofmann et al. [14] proposed a probabilistic interleaving method
that addressed some of the drawbacks of the balanced interleave method and
the document constraint method. One limitation of the interleaving method is
that often the experimentation platform in eCommerce companies is not tied to
just search. It supports A/B testing for all teams, such as checkout and adver-
tisements. Therefore, the interleaving ranked list may not be supported as it is
pertinent only for search ranking.

A more recent approach to address presentation bias is the unbiased learning-
to-rank approach. In this click propensities are estimated and then the inverse
propensities are used as weights in the loss function. Click propensities are esti-
mated by presenting the same items at different ranks to account for click biases
without explicitly estimating the query-document relevance. Click propensity
estimation can either be done randomly or in a more principled manner. Radlin-
ski et al. [19] presented the FairPairs algorithm that randomly flips pairs of
results in the ranking presented to the user. They called it randomization with
minimal invasion. Carterette et al. [4] also presented a minimally invasive algo-
rithm for offline evaluation. Joachims et al. [16] proposed randomized interven-
tion to estimate the propensity model. Radlinski et al. [20], on the other hand,
proposed alteration in ranking in a more informed manner using Multi-Armed
Bandits. The main drawback of randomization for propensity estimation is that
it can cause bad user experience, book keeping overhead, and a potential loss in
revenue. Wang et al. [21] proposed a method to estimate propensities without
randomization using the EM algorithm. In most of the existing methods, propen-
sity estimation is done first. Once the propensities are learned, an unbiased
ranker is trained using the learned propensities. Recently Ai et al. [2] proposed
a dual learning algorithm that learns an unbiased ranker and the propensities
together.

3 Propensity Estimation Method

The method proposed by Joachims et al. [16] for estimating click propensities
is running an experimental intervention in the live search engine, where the
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documents at two selected ranks are swapped. By comparing the click through
rates at these ranks before and after swapping one can easily estimate the ratios
of propensities at these ranks (one only needs the ratio of propensities for remov-
ing the position bias [16]). Here we propose a novel methodology for estimating
click propensities without any intervention. For some search engines, especially
in eCommerce, the same query-document pair may naturally appear more than
once at different ranks. Using the click data on such documents we can accurately
estimate click propensities. It is not required that the same query-document pair
should appear at different ranks a large number of times.

We model clicks by the following simple model (also used in [16]) - The
probability of a click on a given document is the product of the probability of
observing the document and the probability of clicking on the document for the
given query assuming that it has been observed. We assume that the probability
of observing a document depends only on its rank and the probability of clicking
on the document for a given query if it is observed depends only on the query
and the document. Mathematically:

p(c = 1|q, y) = p(o = 1|q, y)p(c = 1|q, y, o = 1)
= p(o = 1|rank(y))p(c = 1|q, y, o = 1)
= prank(y)p(c = 1|q, y, o = 1)

(1)

where q denotes a query, y denotes a document, c denotes a click (0 or 1), o
denotes observation (0 or 1), and pi denotes the propensity at rank i.

Let us assume that our data D consists of N query-document pairs xj for
j ∈ [1, N ]. For a query-document pair xj we will denote the probability of clicking
on the document after observing it by zj . For each query-document pair xj we
have a set of ranks rjk where the document has appeared for the query, and
clicks cjk denoting if the document was clicked or not (1 or 0) when it appeared
at rank rjk, for k ∈ [1,mj ]. Here we assume that the query-document pair xj

has appeared mj separate times. For now we do not assume that mj must be
greater than 1 - it can be any positive integer.

The probability of a click for query-document pair xj where the document
appeared at rank rjk is, according to (1) p(c = 1) = prjkzj . It follows that
p(c = 0) = 1 − prjkzj . We can now introduce the following likelihood function:

L(pi, zj |D) =
N∏

j=1

mj∏

k=1

[
cjkprjkzj + (1 − cjk)(1 − prjkzj)

]
. (2)

Here the parameters are the propensities pi and the “relevances” zj (relevance
here means probability of clicking for a given query-document pair assuming
that the document has been observed). Theoretically, the parameters can be
estimated by maximizing the likelihood function above. However, this can be
challenging due to the large number of parameters zj . In fact, we are not even
interested in estimating the zj - we only need to estimate the propensities pi,
and the zj are nuisance parameters.
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The likelihood function above can be simplified under mild and generally
applicable assumptions. Firstly, only query-document pairs that appeared at
multiple different ranks and got at least one click are of interest. This is because
we need to compare click activities for the same query-document pair at differ-
ent ranks to be able to gain some useful information about propensities with the
same “relevance”. Secondly, we make the assumption that overall click proba-
bilities are not large (i.e. not close to 1). We discuss this assumption in detail in
AppendixA. As we will see in Sect. 4 this is a reasonable assumption for eBay
search. This assumption is generally valid for lower ranks (below the top few),
and in AppendixA we discuss how to make small modifications to the data in
case the assumption is violated for topmost ranks. We also discuss alternative
approaches for estimating the click propensities for cases when the our assump-
tion might not work very well (our methodology of simulations in Appendix B
can be used to verify the validity of the assumption).

The likelihood can then be simplified to take the following form:

log L(pi|D) =
N∑

j=1

(
log(prjlj ) − log

mj∑

k=1

prjk

)
. (3)

The detailed derivation is presented in AppendixA. Note that the simplified
likelihood function (3) only depends on the propensities, which is one of the most
important contributions of this work. By maximizing the likelihood function
above we can get an estimate of the propensities. Because the likelihood function
depends on the propensities only we can estimate the propensities up to much
lower ranks than previously done in the literature without having to rely on a
large amount of data.

4 Click Propensities for eBay Search

In this section we apply the method developed above on eBay search data to
estimate propensities. For comparison, we also estimate the propensities using
the EM method [21].

We collected a small sample (0.2%) of queries for four months of eBay search
traffic. For each query we keep the top 500 items (in this work we use the
terms “item” and “document” interchangeably). There are multiple sort types
on eBay (such as Best Match, Price Low to High, Time Ending Soonest) and
click propensities may differ for different sort types. In this paper we present our
results on Best Match sort, and hence we keep only queries for that sort type.
Furthermore, there are multiple different platforms for search (such as a web
browser or a mobile app) which can have different propensities. We separate our
dataset into two platforms - web and mobile, and estimate click propensities for
each platform separately. For web queries we estimate the propensities for list
view with 50 items per page (the most common option).

Next, we identify same query-document pairs and find cases where the doc-
ument appeared at multiple different ranks. We apply certain filters to ensure
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Fig. 1. Click propensity estimated for eBay search for web data (left) and mobile data
(right). The solid blue line is the direct estimation of propensities for each rank, the
red dashed line is the estimation using interpolation, and the black dotted curve is the
estimation using the EM method. For comparison, on the right side we also plot the
propensities for web data using interpolation in solid green, which is the same as the
red dashed line from the left side. (Color figure online)

that the “relevance” of the document has not changed for the query between
multiple appearances, and different click probabilities are only due to different
ranks. Namely, we check that the price of the item has not changed and exclude
auction items (since their relevance depends strongly on the current bid and
the amount of time left). We also keep the same query-document pairs from the
same day only to make sure that seasonality effects do not affect the popularity
of the item. For the query side we identify two queries to be the same if they
have the same keywords, as well as the same category and aspect (such as color,
size) constraints. We then keep only those query-document pairs that appeared
at two different ranks and got one click in one rank and no click in the other.1

We have also verified our assumption of not very large click probabilities for
our dataset. Note that the validity of the assumption is also verified through
simulations in AppendixB where the simulated data has similar click through
rates to the actual eBay data.

We first estimate propensities for web queries. Our dataset consists of about
40,000 query-item pairs, each of which appeared at two different ranks and
received a click at one of the ranks. We use two methods for estimating propen-
sities - direct and interpolation. In the direct method we treat the propensity at
each rank as a separate parameter. We therefore get 500 different parameters to
estimate. In the interpolation method we fix a few different ranks and use the
propensities at those ranks as our parameters to estimate. The propensities for
all the other ranks are computed as a linear interpolation in the log-log space,
i.e. we approximate the log of the propensity as a linear function of the log of
the rank. This results in the propensity being a power law of the rank. For the

1 Note that keeping only query-document pairs that appeared at two ranks exactly
is in no way a requirement of our method. The method is general and can be used
for query-document pairs that appeared more than twice. This is just intended to
simplify our analysis without a significant loss in data, since it is rare for the same
query-document pair to appear at more than two ranks.
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interpolation method our fixed ranks are 1, 2, 4, 8, 20, 50, 100, 200, 300, and
500. We choose a denser grid for higher ranks since there is more data and less
noise for higher ranks, and the propensities can be estimated more accurately.

Our resulting propensity for web search is shown in Fig. 1 (left). The solid
blue line shows the propensities estimated through the direct method, and the
red dashed curve shows the propensities estimated through interpolation. Even
though we estimate propensities up to rank 500, we plot them only up to rank
200 so that the higher ranks can be seen more clearly. The red dashed curve
passes smoothly through the blue solid curve, which is reassuring. Note that the
red dashed curve is not a fit to the blue one. The two are estimated directly from
the data. For the blue curve the parameters are all of the propensities at each
rank, whereas for the red dashed curve we only parametrize the propensities at
select ranks and interpolate in between. We then maximize the likelihood for
each case to estimate the parameters. The fact that the red dashed line appears
to be a smooth fit to the solid blue shows that the interpolation method is useful
in obtaining a smooth and less noisy propensity curve which is still very close
to the direct estimation.

The propensities estimated from eBay mobile search data are shown in Fig. 1
(right). As in the left plot (web data), the blue solid curve shows direct estima-
tion, and the red dashed curve is estimation using interpolation. For comparison,
we plot the propensities from web using interpolation in solid green. The blue
solid curve shows a certain periodicity - the propensities seem to drop sharply
near rank 25, then go back up at rank 40, drop again around rank 65, then back
at rank 80, and so on. In fact, this reflects the way results are loaded in mobile
search - 40 at a time. The blue curve seems to indicate that users observe the
results at higher ranks with the usual decrease in interest, then they tend to
scroll faster to the bottom skipping the results towards the bottom, then as the
new batch is loaded they regain interest. The red dashed curve matches the blue
one reasonable well, but it fails to capture the periodic dips. This is due to our
choice of knots for the linear spline. One can use the blue curve to choose new
locations of the knots to be able to get a better interpolation for the propensities.
The green solid curve matches fairly well with the blue one except for the dips.
This means that the propensities for web and mobile are very similar, except for
the periodic dips for mobile. The web results are shown 50 items per page, but
we have not found any periodic dips for web search. Perhaps this indicates that
for web search users do not tend to scroll quickly towards the end of the page and
then regain interest as a new page is loaded. The smooth decline in propensities
indicates that for web search users steadily lose interest as they scroll down, but
the number of items per page does not affect their behavior.

We have also estimated propensities using the regression-based EM method
by Wang et al. [21]. The results are plotted with black dotted lines in Fig. 1.
The two methods are very different and use different kinds of data so it is hard
to have a fair comparison. However, we have used datasets of similar sizes with
similar numbers of queries to make the comparison as fair as possible. For the
regression method we have used gradient boosted decision trees [10] using our
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top 25 ranking features. The estimates obtained with the EM method are in
general higher than the estimates using our method. We have obtained similar
periodicity patterns for mobile data from both methods which is reassuring. We
do not have the ground truth for comparison since we have not performed any
randomization experiments. However, our simulations in the next Section show
that our method’s predictions are close to the ground truth. We have also used
these estimates in Sect. 5 to train unbiased learning-to-rank models and have
obtained better offline metrics using our estimates compared to the EM-based
estimates.

5 Unbiased Learning-to-Rank Models

In this section we study the improvement in ranking models by using the esti-
mated click propensities for eBay search data. Previous studies have consistently
shown that unbiased learning-to-rank models significantly improve ranking met-
rics compared to their biased counterparts. Specifically, Joachims et al. [16] have
shown that an unbiased learning-to-rank model significantly improves the aver-
age rank of relevant results for simulated data. Furthermore, they have performed
an online interleaving experiment on a live search engine for scientific articles,
which resulted in a significant improvement for the unbiased model. Wang et al.
[21] have shown an improvement in MRR (Mean Reciprocal Rank) for the unbi-
ased learning-to-rank models for personal search.

We train ranking models to check if unbiased ranking models show improve-
ments over their biased counterparts and to compare our method of propensity
estimation to the EM method. For our training data we collect a sample of
about 40,000 queries which have received at least one click. The sample is col-
lected from four days of search logs. We train listwise ranking models using the
LambdaMART algorithm [3]. We use the DCG metric [18] as our loss function.
We define relij to be 1 if document j was clicked, and 0 otherwise. We train
three models - one without position bias correction (baseline biased), one with
position bias correction using propensity estimates from the EM method (base-
line EM ), and finally a model with position bias correction using propensity
estimates from our method (proposed method). All models use DCG as a loss
function, with baseline biased using no position bias correction and the other
models using inverse-propensity weighted relevances [16]. We use the propensi-
ties estimated for eBay web search as shown in Fig. 1 (left) - red dashed curve
for proposed method and black dotted curve for baseline EM. Our training and
test data are also from web search (i.e. browser) only. We use 25 features for all
models, selected from our top ranking features. We use the same hyperparame-
ters for all the models: the number of trees is 100 and the shrinkage is 0.1 (we
have fixed the number of trees and tuned the shrinkage for the baseline model,
which is then applied to all models).2

2 Note that these ranking models are significantly different from the eBay production
ranker, the details of which are proprietary.
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Table 1. AUC improvement of the proposed method compared to two baselines -
baseline biased and baseline EM [21]. The validation set contains documents from a
fixed rank, shown in the first column. The next two columns show the improvements in
AUC. Error bars are obtained using 1,000 bootstrap samples of the test data - we show
the mean and standard deviation of the improvement over the bootstrap samples.

Rank Improvement over baseline biased Improvement over baseline EM

1 3.4 ± 1.0% 1.0 ± 0.4%

2 2.4 ± 1.1% 0.6 ± 0.4%

4 4.2 ± 1.2% 0.7 ± 0.4%

8 3.3 ± 1.3% 1.2 ± 0.5%

16 6.8 ± 1.7% 1.1 ± 0.6%

32 0.8 ± 1.8% 0.8 ± 0.7%

Our test data contains a sample of about 10,000 queries from four days of
eBay search logs. Since the test data also has the same position bias as the
training data we cannot rely on standard ranking metrics such as DCG, NDCG
(Normalized Discounted Cumulative Gain), or MRR (Mean Reciprocal Rank).
Another option would be to use inverse-propensity-weighted versions of these
metrics to remove the presentation bias. However, the true propensities are
unknown to us and we obviously cannot use estimated propensities for eval-
uation since part of the evaluation is checking if our estimate of propensities is a
good one. For that reason we choose a different approach for evaluation. Namely,
we fix the rank of items in the test data, i.e. we select items from different queries
that appeared at a given fixed rank. By selecting the items from a fixed rank
in the evaluation set we effectively eliminate position bias since all of the items
will be affected by position bias the same way (the observation probability is
the same for all the items since the rank is the same). Then we compare the two
ranking models as classifiers for those items, which means that we evaluate how
well the models can distinguish items that were clicked from ones that were not.
We use AUC (Area Under the Receiver Operating Characteristic Curve) as our
evaluation metric.

The results are presented in Table 1, where we show results for fixed ranks
1, 2, 4, 8, 16, and 32. To estimate statistical significance of the improvements
we have performed 1,000 bootstrap samples of the test data and computed the
improvements on these samples. In Table 1 we show the mean and standard devi-
ation on the bootstrap samples (the distribution of the results on the bootstrap
samples is close to Gaussian, as expected, so the mean and standard devia-
tion are enough to describe the full distribution). As we can see, for all ranks the
proposed method outperforms both baselines. Both unbiased models significantly
outperform baseline biased. However, our proposed method outperforms baseline
EM as well. The improvements are statistically significant for all ranks, except
for rank 32, where the improvements are not as large. For ranks below 32 the
improvements become minor.
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6 Summary and Future Work

In this work we have introduced a new method for estimating click propensities
for eCommerce search without randomizing the results during live search. Our
method uses query-document pairs that appear more than once and at different
ranks. Although we have used eCommerce search as our main example, the
method is general and can be applied to any search engine for which ranking
naturally changes over time. The clear advantage of our method over result
randomization is that it does not affect live search results, which can have a
negative impact on the engine as has been shown in the literature [21]. We have
compared our method to the EM (Expectation Maximization) based method
proposed in [21] and have shown that our proposed method outperforms the EM
based method for eBay data. There is another approach proposed in parallel to
our work [1] for direct estimation of propensities. However, our method has a few
clear advantages, such as not relying on multiple rankers in the system and not
requiring a large amount of data for each pair of ranks. This has allowed us to
estimate propensities up to ranks that are much lower than previously computed
in the literature. Our proposed approach is robust and we believe that it will
find widespread use for unbiased learning-to-rank modeling, especially in the
eCommerce domain.

We have used simulated data to show that our method can give accurate
estimates of the true propensities. We have applied our method to eBay search
results to separately estimate propensities for web and mobile search. We have
also trained ranking models and compared the performance of the unbiased
model using the estimated propensities to two baselines - one without bias cor-
rection and one that corrects position bias using estimates from the EM method.
Using a validation dataset of documents from a fixed rank we have shown that
our unbiased model outperforms both baselines in terms of the AUC metric.

The focus of this work is propensity estimation from query-document pairs
that appear at multiple different ranks. Importantly, we have addressed the case
when the same query-document pair appears only a few times at different ranks
(can be as few as twice). This method can be generalized to use query-document
pairs that appeared at a single rank only by incorporating appropriate priors and
using Gibbs sampling to estimate the posterior distribution for propensities. We
plan to study this approach in a future work. We are also planning to estimate
and compare propensities for different classes of queries (such as queries for
electronics versus fashion categories) and user demographics, as well as different
sort types, such as sort by price.

A Likelihood Function Simplification

There are multiple approaches that one can take to estimate the propensities
depending on the data itself. Let us first consider the query-document pairs
that appeared only at one rank. The parameters pi and zj appear only as a
product of each other in the likelihood function (2). These query-document pairs
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could be helpful in estimating the product of the propensity at the rank that
they appeared at and the relevance zj but not each one individually. With zj
unknown, this would not help to estimate the propensity. We should mention
that in the presence of a reliable prior for zj and/or pi the likelihood function
above can be used even for those query-document pairs that appeared only at
one rank. In this case it would be more useful to take a Bayesian approach and
estimate the posterior distribution for the propensities, for example using Gibbs
sampling [5].

From now on we will assume that the query-document pairs appear at least
at two different ranks. Another extreme is the case when each query-document
pair appears a large number of times at different ranks. This will mean that we
will get a large number of query-document pairs at each rank. In this case the
propensity ratios for two ranks can be simply estimated by taking the ratio of
click through rates of same query-document pairs at these ranks.

Let us now consider the case when the data consists of a large number of
query-document pairs that appeared a few times (can be as few as twice) at
different ranks, but the query-document pairs do not appear a large enough
number of times to be able to get reliable estimates of propensities from taking
the ratio of click through rates. In this case we will actually need to maximize
the likelihood above and somehow eliminate the nuisance parameters zj to get
estimates for the pi. We will focus the rest of this work on this case. Also, the
data we have collected from eBay search logs falls in this category, as discussed
in Sect. 4.

If a query-document pair appeared only a few times there is a good chance
that it did not receive any clicks. These query-document pairs will not help in
estimating the propensities by likelihood maximization because of the unknown
parameter zj . Specifically, for such query-document pairs we will have the terms∏mj

k=1(1−prjkzj). If we use the maximum likelihood approach for estimating the
parameters then the maximum will be reached by zj = 0 for which the terms
above will be 1. So the query-document pairs without any clicks will not change
the maximum likelihood estimate of the propensities. For that reason we will only
keep query-document pairs that received at least one click. However, we cannot
simply drop the terms from the likelihood function for query-document pairs that
did not receive any clicks. Doing so would bias the data towards query-document
pairs with a higher likelihood of click. Instead, we will replace the likelihood
function above by a conditional probability. Specifically, the likelihood function
(2) computes the probability of the click data {cjk} obtained for that query-
document pair. We need to replace that probability by a conditional probability
- the probability of the click data {cjk} under the condition that there was at least
one click received:

∑
k cjk > 0. The likelihood function for the query-document

pair xj will take the form:
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Lj(pi, zj |Dj) = P

(
Dj |

∑

k

cjk > 0

)

=
P (Dj ∩ ∑

k cjk > 0)
P (

∑
k cjk > 0)

=
P (Dj)

P (
∑

k cjk > 0)

=
∏mj

k=1

[
cjkprjkzj + (1 − cjk)(1 − prjkzj)

]

1 − ∏mj

k=1(1 − prjkzj)
.

(4)

Here Lj denotes the likelihood function for the query-document pair xj , Dj =
{cjk} denotes the click data for query-document pair j, and P denotes probabil-
ity.

∑
k cjk > 0 simply means that there was at least one click. In the first line

above we have replaced the probability of data Dj by a conditional probability.
The second line uses the formula for conditional probability. The probability of
Dj and at least one click just equals to probability of Dj since we are only keep-
ing query-document pairs that received at least one click. This is how the second
equality of the second line is derived. Finally, in the last line we have explicitly
written out P (Dj) in the numerator as in (2) and the probability of at least one
click in the denominator (the probability of no click is

∏mj

k=1(1 − prjkzj) so the
probability of at least one click is 1 minus that).

The full likelihood is then the product of Lj for all query-document pairs:

L(pi, zj |D) =
N∏

j=1∑
k cjk>0

∏mj

k=1

[
cjkprjkzj + (1 − cjk)(1 − prjkzj)

]

1 − ∏mj

k=1(1 − prjkzj)
. (5)

From now on we will assume by default that our dataset contains only query-
document pairs that received at least one click and will omit the subscript∑

k cjk > 0.
Our last step will be to simplify the likelihood function (5). Typically the click

probabilities pizj are not very large (i.e. not close to 1). This is the probability
that the query-document pair j will get a click when displayed at rank i. To
simplify the likelihood for each query-document pair we will only keep terms
linear in pizj and drop higher order terms like pi1zj1pi2zj2 . We have verified
this simplifying assumption for our data in Sect. 4. In general, we expect this
assumption to be valid for most search engines. It is certainly a valid assumption
for lower ranks since click through rates are typically much smaller for lower
ranks. Since we are dropping product terms the largest ones would be between
ranks 1 and 2. For most search engines the click through rates at rank 2 are
around 10% or below, which we believe is small enough to be able to safely ignore
the product terms mentioned above (they would be at least 10 times smaller than
linear terms). We empirically show using simulations in AppendixB that this
assumption works very well for data similar to eBay data. If for other search
engines the click through rates are much larger for topmost ranks we suggest
keeping only those query-document pairs that appeared at least once at a lower
enough rank. Also, using the methodology of simulations from AppendixB one
can verify how well this assumption works for their particular data.
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Under the simplifying assumption we get for the denominator in (5):

1 −
mj∏

k=1

(1 − prjkzj) � 1 −
(

1 −
mj∑

k=1

prjkzj

)
= zj

mj∑

k=1

prjk . (6)

Let us now simplify the numerator of (5). Firstly, since the click probabilities
are not large and each query-document pair appears only a few times we can
assume there is only one click per query-document pair3. We can assume cjlj = 1
and cjk = 0 for k �= lj . The numerator then simplifies to

mj∏

k=1

[
cjkprjkzj + (1 − cjk)(1 − prjkzj)

]
= prjlj zj

mj∏

k=1
k �=lj

(1 − prjkzj) � prjlj zj . (7)

Using (6) and (7) the likelihood function (5) simplifies to

L(pi, zj |D) =
N∏

j=1

prjlj zj

zj
∑mj

k=1 prjk
=

N∏

j=1

prjlj∑mj

k=1 prjk
. (8)

In the last step zj cancels out from the numerator and the denominator.
Our assumption of small click probabilities, together with keeping only query-
document pairs that received at least one click allowed us to simplify the likeli-
hood function to be only a function of propensities. Now we can simply maximize
the likelihood (8) to estimate the propensities.

Equation (8) makes it clear why we need to include the requirement that
each query-document pair should appear more than once at different ranks. If
we have a query-document pair that appeared only once (or multiple times but
always at the same rank) then the numerator and the denominator would cancel
each other out in (8). For that reason we will keep only query-document pairs
that appeared at two different ranks at least.

It is numerically better to maximize the log-likelihood, which takes the form:

log L(pi|D) =
N∑

j=1

(
log(prjlj ) − log

mj∑

k=1

prjk

)
. (9)

B Results on Simulations

In this Appendix we use simulated data to verify that the method of estimating
propensities developed in Sect. 3 works well. For our simulations we choose the
following propensity function as truth:

psimi = min
(

1
log i

, 1
)

(10)

3 This is true for our data as discussed in Sect. 4. For the cases when most query-
document pairs receive multiple clicks we suggest using a different method, such as
computing the ratios of propensities by computing the ratios of numbers of clicks.
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Fig. 2. Propensity estimated from simulated data. The green solid curve shows the
“true” propensity (10). The blue solid curve is the estimated propensity using the
direct estimation method. The red dashed curve is the estimation using interpolation.
(Color figure online)

which assigns propensity of 1 for ranks 1 and 2, and then decreases as the inverse
of the log of the rank.

Other than choosing our own version of propensities we simulate the data
to be as similar to the eBay dataset as possible. We generate a large number
of query-document pairs and randomly choose a mean rank rankmean for each
query-document pair uniformly between 1 and 500. We randomly generate a
click probability z for that query-document pair depending on the mean rank
rankmean. We choose the distribution from which the click probabilities are
drawn such that the click through rates at each rank match closely with the click
through rates for real data, taking into account the “true” propensities (10). We
then generate two different ranks drawn from N (rankmean, (rankmean/5)2). For
each rank i we compute the probability of a click as zpsimi . Then we keep only
those query-document pairs which appeared at two different ranks and got at
least one click, in agreement with our method used for real eBay data. Finally,
we keep about 40,000 query-document pairs so that the simulated data is similar
to the eBay web search data in size. This becomes the simulated data.

The estimated propensities on the simulated dataset are shown in Fig. 2. The
green solid curve shows the true propensity (10), the blue solid curve shows the
estimated propensity using the direct estimation method, and the red dashed
curve is the estimated propensity using interpolation. As we can see, the estima-
tions closely match with the truth. Furthermore, we can see that the interpola-
tion method gives a better result by reducing the noise in the estimate. These
results show that the propensity estimation method developed in this paper
works well.
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Abstract. The massive growth of information produced and shared
online has made retrieving relevant documents a difficult task. Query
Expansion (QE) based on term co-occurrence statistics has been widely
applied in an attempt to improve retrieval effectiveness. However, select-
ing good expansion terms using co-occurrence graphs is challenging. In
this paper, we present an adapted version of the BM25 model, which
allows measuring the similarity between terms. First, a context window-
based approach is applied over the entire corpus in order to construct the
term co-occurrence graph. Afterward, using the proposed adapted ver-
sion of BM25, candidate expansion terms are selected according to their
similarity with the whole query. This measure stands out by its ability
to evaluate the discriminative power of terms and select semantically
related terms to the query. Experiments on two ad-hoc TREC collec-
tions (the standard Robust04 collection and the new TREC Washington
Post collection) show that our proposal outperforms the baselines over
three state-of-the-art IR models and leads to significant improvements
in retrieval effectiveness.

Keywords: Query expansion · Co-occurrence graph · BM25 · Term
discriminative power · Ad-hoc IR

1 Introduction

The main purpose of information retrieval (IR) systems is to provide a set of
relevant documents according to a user’s specified need. A number of ranking
models have been proposed in the literature [4,22,32], all of which intend to
retrieve the most relevant documents in response to a query. The difference in
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retrieval results from one model to another is manifested in the set of returned
documents and in the order of their appearance. Among these models, Okapi
BM25 [22] is a pre-eminent probabilistic model, which has proven its effectiveness
as a state-of-the-art IR model and has been widely used, especially in TREC
experiments. The BM25 model incorporates information about both terms and
documents, which includes local terms frequencies, global terms frequencies and
document length. Since it was introduced, several studies have been presented
proposing extensions and improvements [5,13,15,21,23,26].

However, despite the improvements that can be made to ranking models, the
user’s query remains the key factor that controls the relevance of retrieval results.
Indeed, it is often too short and insufficient to allow the selection of documents
that meet the user needs. In most cases, the latter does not know exactly what
he wants or how to express it. Therefore, the returned results are unlikely to be
relevant. To overcome this problem, Query Expansion (QE) refers to techniques
that reformulate the original query by adding new terms to those entered by the
user to better express his need and improve retrieval performance.

A main challenge in QE is the selection of good expansion terms which do not
hurt, but improve, retrieval performance. The strength of the BM25 model is that
it allows capturing the behavior of terms not only in a document, but also in the
entire collection. It assumes that a good document descriptor is a quite frequent
term in this document, which is relatively infrequent in the entire document
collection [14]. Based on these assumptions, we propose an approach to QE by
adapting BM25 to work on term co-occurrence graphs. The main motivation
is to model the discriminative power of terms using a measure analogous to
the inverse document frequency (IDF) factor of TF-IDF [25]. We define a good
expansion term as one that frequently co-occurs with the query terms and has
a relatively rare co-occurrence with the rest of the vocabulary.

We evaluate our proposal using two ad-hoc TREC collections: the standard
TREC Robust04 collection with 249 queries (TREC 2004 Robust Track) and the
newest TREC Washington Post collection with 50 queries (TREC 2018 Com-
mon Core Track). Experimental results show that our proposal outperforms the
baselines by significant margins in terms of MAP and precision.

The remainder of the paper is organized as follows. In the next section, we
discuss some related work on QE. We describe the proposed adapted version of
BM25 for QE in Sect. 3. The Experimental setup and the obtained results are
presented in Sect. 4. Finally, Sect. 5 concludes the paper and provides insights
for future work.

2 Related Work

For several years, great effort has been devoted to the development of new
QE approaches [8]. Corpus-based QE approaches are among the most popu-
lar techniques that have been widely applied [29]. The corpus itself serves as a
source for selecting expansion terms. Indeed, the broad range of corpus-based
QE approaches can be divided into two main classes: local approaches and global
approaches [28,29].
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Local approaches use the top-ranked documents, retrieved in response to the
initial query, in order to select expansion terms, mostly using pseudo-relevance
feedback (PRF), where the top k ranked documents in the initial retrieval results
are assumed to be relevant. For example, authors in [28] presented a PRF tech-
nique called LCA (Local Context Analysis) in which candidate expansion terms
are selected on the basis of their co-occurrence relationship with query terms
within pseudo-relevant documents. They showed the effectiveness of the pro-
posed PRF technique using different languages. In [12], authors presented a
concept-based PRF technique. They built a directed query relations graph to
extract concepts that are related to the query. The query relations were mined
using association rules. Authors in [27] discussed the contribution of linear meth-
ods for PRF. They used an inter-term similarity matrix to get expansion terms.
In [31], authors presented a matrix factorization technique using pseudo-relevant
documents. They considered PRF as a recommendation task for selecting useful
expansion terms. They demonstrated the effectiveness of this technique on two
retrieval models: the language model and the vector space model.

Unlike local QE, global approaches allow selecting expansion terms with-
out regard to the initial retrieval results. In this case, expansion terms are
selected by analyzing the entire corpus in order to discover term associations
and co-occurrence relationships [29]. For example, authors in [33] proposed a
technique to expand short queries for microblog retrieval. They explored the
use of Wikipedia, DBpedia and association rules mining for selecting semanti-
cally related terms to the queries. In [6], authors addressed QE by using co-
occurrence relationships and inferential relationships between terms. They pro-
posed to integrate QE into language modeling and demonstrated the feasibility
of this integration.

The use of term co-occurrence statistics is one of the earliest QE approaches,
in which terms that are statistically related to the query are considered as poten-
tial expansion candidates. However, a basic issue in this approach is the selection
of discriminative terms using co-occurrence statistics. Usually, the selected terms
tend to occur frequently in the entire collection and thus are unlikely to be dis-
criminative. This limitation is mainly due to the way in which the similarity
between terms is measured [19].

Several measures have been used to evaluate the similarity between pairs of
terms. We may cite Cosine similarity, Jaccard index, Dice coefficient and Mutual
Information [8]. Recently, QE based on word embedding [1,3,30] leads to an
interesting improvement on retrieval effectiveness by exploring word relation-
ships from embedding vectors. In these methods, term co-occurrence statistics
are employed to learn word vector representations using word embedding algo-
rithms such as word2vec [18] and Glove [20]. Indeed, terms co-occurrence within
the same context window is used to produce word vectors [30]. We use the same
approach, i.e. a context window-based approach applied over the entire corpus,
in order to build our term co-occurrence graphs.
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3 An Adaptation of BM25 for Query Expansion Based
on Term Co-occurrence Graphs

In this section, we describe our QE approach and we present the proposed adap-
tation of BM25 for term co-occurrence graphs. Figure 1 depicts the general archi-
tecture of our QE system. We select semantically related terms to the query
following two steps. First, a term co-occurrence graph is constructed over the
entire corpus using a context window-based approach. This approach has been
used in multiple IR and Natural Language Processing (NLP) tasks such as word
embedding [18,20]. Indeed, the co-occurrence of terms within a specified con-
text window is used to capture semantic relations between terms. For instance,
given the sentence “The SPIRE conference covers research on string processing
and information retrieval.” and taking “conference” as the target term with a
window-size equal to 2, its context terms will be “The”, “SPIRE”, “covers” and
“research”. Second, using an adapted version of the BM25 model to measure
the similarity of terms in co-occurrence graphs, candidate expansion terms are
scored according to their similarity with the query as a whole.

Fig. 1. General architecture of the proposed QE approach.

The Okapi BM25 model calculates the score of a document D given a query
Q as follows [22]:

BM25(Q,D) =
∑

t∈Q

IDF (t) × (k1 + 1) × tf(t,D)
k1 × (1 − b + b × dl

avgdl ) + tf(t,D)
(1)

where:

– IDF (t) is the Inverse Term Frequency of t and it is computed as follows:

IDF (t) = log
N − df(t) + 0.5

df(t) + 0.5
(2)

– N is the number of documents in the collection.
– df(t) is the number of documents containing term t.
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– tf(t,D) is the term frequency of t, i.e., the number of occurrences of term t
in the document D.

– dl and avgdl denote the length of document D and the average document
length in the collection, respectively.

– k1 and b are free hyper-parameters.

We propose to contribute in developing one-to-many association measures
which are computed on a symmetric co-occurrence graph. This measure is
inspired from Okapi BM25 [22]. A symmetric co-occurrence graph is an undi-
rected graph G = (V,E), where V is a set of nodes and E is a set of weighted
edges. We also define the symbols cited hereafter as follows:

– ni: the node number i in the graph.
– e(ni, nc) = e(nc, ni): the weight of the edge linking ni and nc.
– co degree(ni): the number of nodes in G having ni as destination.
– sum e(nc): the sum of the weights of the edges having nc as destination.
– avgsum e: the average of the previous parameter (i.e. sum e(nc)) over all the

possible destination nodes in G.
– N is the number of all possible destination nodes in G.

Fig. 2. Example of a query projected on the graph. n1, n2 are the query terms and n3,
n4, n5 are candidate expansion terms.

We formalize similarity calculus in graphs as follows. Let C = {n1, . . . , nm}
be the projection of query Q = {t1, . . . , tm} on the co-occurrence graph G and nc

be a candidate node in G. An example of a query Q projected on a co-occurrence
subgraph is illustrated in Fig. 2. We propose to compute the relevance of a node
nc given C in a co-occurrence graph. C is considered as a query, nc as a document
and the relevance is assessed using an adapted version of BM25. That is, we follow
other research which used IR models to compute similarities between queries and
terms [9,10]. We define the relevance of a node nc given another node ni as a
product of a local weight Li,c and a global weight Gi:

Sim(ni, nc) = Li,c × Gi (3)
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Local Weights. The main hypothesis behind local weights is that terms which
co-occur frequently are likely to be similar. Local weights apply to the following
constraints:

– Li,c = 0 if e(ni, nc) = 0.
– Li,c increases with e(ni, nc).
– Li,c approaches a maximum value of 1.

In classical document indexing with TF-IDF [25], local weights are normalized
by document length, which is equivalent in our case to the sum of the weights of
the edges linking to nc (cf. Formula 4). A term which appears n times in a short
document is more significant compared to the case in which it appears the same
number of times in a longer one. In our case, ni is more relevant to nc when the
latter has a lower degree.

Li,c =
e(ni, nc)

sum e(nc)
(4)

In BM25, local weights are computed as parameterized frequencies based on a
2-Poison model:

Li,c =
e(ni, nc)

k1 + e(ni, nc)
(5)

Li,c is nonlinear to k1. This is justified by Robertson et al. [24] by the fact
that “the information gained on observing a term the first time is greater than
the information gained on subsequently seeing the same term”. Robertson and
Walker [22] considered two hypotheses, namely Verbosity and Scope. The first
hypothesis allows to handle synonyms. Let consider two synonyms represented
by the nodes n1

c and n2
c (i.e. both terms are similar to an input node ni). Let

also suppose that n1
c has a greater co-occurrence value with ni (i.e. e(ni, n

1
c) >

e(ni, n
2
c)). We say that one of the two nodes is more verbose (i.e. more likely to

be used) than the other. According to this hypothesis, we should normalize the
co-occurrence values to obtain close values of similarity for both nodes. However,
applying to the scope hypothesis, we should not normalize as we would prefer to
return n1

c . We suppose in this case that the more frequent term is more likely to
represent the sense which is shared by both nodes. However, n2

c is less frequent
and thus unable to add much information to the original query. Both hypotheses
are complementary. In real co-occurrence graphs, both scenarios are present,
each of them constitutes a partial explanation. To insure that both hypotheses
are respected, document lengths are normalized. In our case, we compute the
average of the weighted degrees of nodes as follows:

avgsum e =
∑

i sum e(ni)
N

(6)

Then weighted degrees are normalized as follows:

norm sum e(ni) =
sum e(ni)
avgsum e

(7)



BM25 Beyond Query-Document Similarity 71

To allow adjust and tune this score, it is reformulated as follows:

norm sum e(ni) = 1 − b + b × sum e(ni)
avgsum e

(8)

The constant b determines the scaling by the degree of the target node (document
length in query-document matching). b = 1 means fully scaling the term weight,
while b = 0 disables normalization. The quantity obtained by Eq. 8 is used to
normalize the local weight computed by Eq. 5. Thus we have:

Li,c =
e(ni, nc) × (k1 + 1)

k1 × (1 − b + b × sum e(nc)
avgsum e ) + e(ni, nc)

(9)

Global Weights. Global weights are defined according to the Probabilistic
Model of Robertson and Spärck-Jones [16]. Given a node ni, we would like to
know if a node nc is relevant (i.e. similar to ni) based on the probabilistic IR
framework [7]. The contingency table (Table 1) defines the main parameters used
to estimate the probability of relevance of nc. This table is defined in a scenario
of relevance feedback where a user selects the terms which are relevant to a given
query.

Table 1. Contingency table of main parameters

nc is relevant nc is not relevant Total

nc co-occurs with ni s co degree(ni)-s co degree(ni)

nc does not co-occur with ni S-s (N - co degree(ni))-(S-s) N -co degree(ni)

Total S N-S N

In this table, s is the number of terms which are relevant to the query which
co-occur with ni . The relevance of nc may be estimated as follows:

INF (ni) = log
s

S−s

co degree(ni)−s
(N−co degree(ni))−(S−s)

(10)

In this model, it is fairly standard to add 0.5 to the quantities which may be null
(i.e. the cells of the second and the third column of the contingency table) [16].
A second variant is thus defined as follows:

INF (ni) = log
s+0.5

S−s+0.5

co degree(ni)−s+0.5
(N−co degree(ni))−(S−s+0.5)

(11)

Using 0.5 is a kind of smoothing which is justified by the limits of maximum
likelihood estimate (or MLE) which penalizes rare events. Smoothing allows
handling events which has never been seen nor observed [16]. In the absence of
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relevance feedback, we have s=S=0. If we adopt Formula 10 (without smooth-
ing), we obtain:

INF (ni) = log
N − co degree(ni)

co degree(ni)
(12)

With smoothing (Formula 11), we get:

INF (ni) = log
N − co degree(ni) + 0.5

co degree(ni) + 0.5
(13)

In all the cases, INF (ni) reflects how much a term is distributed over the others.
It just checks if it is common or rare across all the other terms. That is, terms
which tend to co-occur with many terms (e.g. stop words) will get null or low
values. However, it provides an absolute evaluation of the discriminative power
of a term which does not depend on the original query.

In Eq. 3, we replace global and local weights computed respectively by For-
mulas 13 and 9. Besides, we compute the sum of the similarity of nc and all
the terms of C. Thus, using an adapted version of BM25, noted here BM25cog
(BM25 for co-occurrence graphs), we calculate the score of each candidate node
nc as follows:

BM25cog(C, nc) =
∑

ni∈C

INF (ni) × (k1 + 1) × e(ni, nc)

k1 × (1 − b + b × sum e(nc)
avgsum e ) + e(ni, nc)

(14)
The constant k1 determines how relevance changes when the number of co-
occurrence e(ni, nc) increases. A null value of k1 means disabling term weight
(using only INF (ni)). If k1 is large, the term weight component would increase
nearly linearly with e(ni, nc). Using the default value of this parameter means
that after three or four co-occurrences, additional co-occurrences will have a
little impact [24].

This adapted version of the BM25 model stands out by the following aspects.
First, it allows both one-to-one and one-to-many associations. On the other hand,
the INF factor allows to evaluate the discriminative power of terms. That is,
terms that co-occur with many other terms are penalized. Moreover, it has two
hyper-parameters, which may be tuned to enhance results. We used BM25cog
in a PRF scenario in [2]. The obtained results showed significant improvements
over the state-of-the-art baselines.

4 Experiments

In this section, we first present our test collections and describe the experimental
setup. Then we discuss the experimental results.

4.1 Experimental Setup

We used two TREC collections in our experiments. The first is the standard
Robust04 collection which is available in TREC disks 4 and 51. It consists of
1 https://trec.nist.gov/data/cd45/.

https://trec.nist.gov/data/cd45/
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news articles from different sources. This collection was used in TREC 2004
Robust Track. The second is the newest TREC Washington Post collection2

provided by TREC 2018 Common Core Track, which consists of news articles
and blog posts published by Washington Post from January 2012 through August
2017. Statistics of these collections are presented in Table 2.

Table 2. TREC collections statistics.

Collection Document set #docs Size #query #qrels

Robust04 TREC Disks 4 & 5 minus Congressional Record 528k 1.9 GB 249 17,412

WAPOST TREC Washington Post Corpus 608k 6.9 GB 50 3,948

All experiments were conducted using the Terrier 4.2 IR platform3. For both
collections, preprocessing involved stopword removal using the Terrier’s standard
stopword list and stemming using the Porter stemmer. We only considered the
title of the TREC topics as queries (i.e., short queries).

We use Mean Average Precision (MAP), precision at top 5 documents (P@5)
and precision at top 10 documents (P@10) as evaluation measures. MAP serves
as the objective evaluation measure for parameter tuning. Statistically significant
differences in terms of retrieval performance are computed using the two-tailed
paired t-test at a 95% confidence level.

4.2 Parameter Tuning

In order to construct the term co-occurrence graph, we need to choose the value
of the window size parameter. We explored different values of this parameter
to see the effect they have on effectiveness. Window size values of 2–10, plus a
window size equal to sentence length, were tested. We found that a window size of
7 terms gives the best results on the Robust04 collection, whereas best results on
the Washington Post collection are obtained using a dynamic window size equal
to sentence length. This is consistent with previous research [11,17], stating that
the best choice of context window size is collection-dependent. We should note
that we used a symmetric window size, i.e., a window size of n means n terms
to the left and n terms to the right of the target term. The optimal parameter
value for each collection was used to construct the term co-occurrence graph.

The model hyper-parameters were tuned using 5-fold cross-validation over
the queries of each collection, where topics were randomly split into 5 folds. The
hyper-parameters were tuned on 4-of-5 folds and tested on the final fold. This
process is carried out 5 times, each time using one fold. The results presented
are the mean of the 5 runs. We varied the value of b from 0.1 to 0.9 and the
value of k1 from 0.1 to 3.0 in increments of 0.1. The number of expansion terms
was empirically set to 10.
2 https://trec.nist.gov/data/wapost/.
3 http://terrier.org/.

https://trec.nist.gov/data/wapost/
http://terrier.org/
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4.3 Results

In this subsection, we evaluate the effectiveness of the proposed approach. We
consider three state-of-the-art IR models as baselines, namely: Okapi BM25
model [22], Language Model with Jelinek-Mercer smoothing [32] and Divergence
from Randomness (DFR) PL2 model [4]. Besides, we consider the classical PRF
approach and embedding-based QE approach by using word2vec4 (W2V) to
train word vectors over the target corpus. The obtained results are reported
in Tables 3 and 4. Superscripts 1/2/3 indicate that the improvements over the
unexpanded baselines, PRF and W2V, respectively, are statistically significant
(t-test with p value < 0.05).

Table 3. Retrieval results on the Robust04 collection.

Retrieval model Method MAP P@5 P@10

BM25 Baseline 0.2363 0.4691 0.4100

PRF 0.2537 0.4378 0.3835

W2V 0.2396 0.4627 0.4133

BM25cog 0.25891,3 0.47232 0.42891,2,3

LM Baseline 0.2155 0.3952 0.3651

PRF 0.2437 0.4008 0.3747

W2V 0.2259 0.4201 0.3743

BM25cog 0.24691,3 0.43941,2,3 0.39401

PL2 Baseline 0.2239 0.4578 0.4032

PRF 0.2287 0.4185 0.3763

W2V 0.2303 0.4683 0.4092

BM25cog 0.24641,2,3 0.46672 0.42211,2,3

According to these tables, the proposed QE approach outperforms the state-
of-the-art baselines in terms of MAP, P@5 and P@10 in all cases. The MAP
improvements are always statistically significant in both collections. As for pre-
cision, we can see that improvements are also statistically significant in most
cases. This shows that our QE approach, which generates semantically related
terms to the query as a whole, leads to improvement in retrieval performance of
the state-of-the-art models.

Comparing our QE and the classical PRF approach, we observe in Table 4
that the latter outperforms our approach in terms of MAP in the Washington
Post collection. This shows in this case the advantage of local analysis over global
analysis. Whereas, we see in Table 3 that our approach outperforms PRF in terms
of MAP in the Robust04 collection. In terms of precision, we can remark that our
approach outperforms PRF by significant margins in both collections. Besides,

4 We used the CBOW implementation of word2vec and we set the vectors dimension
to 300.
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Table 4. Retrieval results on the Washington post collection.

Retrieval model Method MAP P@5 P@10

BM25 Baseline 0.2385 0.4920 0.4300

PRF 0.2865 0.4640 0.4160

W2V 0.2436 0.4400 0.4080

BM25cog 0.26871,3 0.51203 0.44003

LM Baseline 0.2065 0.3760 0.3560

PRF 0.2612 0.4000 0.3780

W2V 0.2119 0.3600 0.3560

BM25cog 0.25051,3 0.47201,3 0.40801,3

PL2 Baseline 0.2274 0.4880 0.4100

PRF 0.2754 0.4400 0.4080

W2V 0.2330 0.4800 0.4080

BM25cog 0.25991,3 0.51202 0.46401,2,3

by comparing PRF and the unexpanded baselines, it can be observed that PRF
hurts the precision in the majority of cases. This shows that our proposal is able
to generate better expansion terms and can filter out non-discriminative ones,
which co-occur with too many terms, thus improving the precision at top-ranked
documents.

By comparing our results to those obtained using word embedding-based QE,
we can remark that our proposal yields better results on both collections with
significant margins in the majority of cases. This confirms the effectiveness of
the proposed approach for QE.

In this set of experiments, retrieval models were used with their suggested
default parameters. These default settings are unlikely to be optimal for dif-
ferent collections and query lengths. Therefore, we next investigate the impact
of parameters tuning on retrieval performance in both collections. To this end,
the three models were extensively tuned using 5-fold cross-validation over the
queries of each collection. Optimal parameter settings are listed in Table 5. We
tuned parameters b and λ for the BM25 model and the LM model, respectively,
from 0.10 to 0.90 in increments of 0.01. For the PL2 model, parameter c was
tuned from 1.0 to 20.0 in increments of 0.1. We tuned the k1 parameter of the
BM25 model but it had little impact on retrieval effectiveness. We therefore
used the default value in Terrier (k1=1.2). Table 6 presents the MAP results
achieved by the proposed QE approach and the baselines for each of the three
IR models. Superscript 1 indicates that the improvements over the baselines are
statistically significant (t-test with p value < 0.05). We can see that, in both
collections, our QE outperforms the unexpanded baselines with statistically sig-
nificant improvements in all cases. These results confirm the effectiveness of our
proposal regardless of the ranking model. Furthermore, it is worth noting that
our best result on the Washington Post collection is equal to the result of the
best official automatic run in TREC 2018 Common Core Track.
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Table 5. Optimal parameter settings.

Query Original Expanded

Retrieval model BM25 LM PL2 BM25 LM PL2

Parameter b λ c b λ c

Robust04 0.322 0.616 8.480 0.404 0.684 7.500

WAPOST 0.418 0.470 5.380 0.545 0.478 4.460

Table 6. Comparison of MAP results between the expanded queries and the baselines
with optimal parameter settings for the three retrieval models.

Collection Retrieval model Baseline BM25cog

Robust04 BM25 0.2498 0.26431 (+5.80%)

LM 0.2285 0.25931 (+13.48%)

PL2 0.2529 0.26971 (+6.64%)

WAPOST BM25 0.2506 0.27251 (+8.74%)

LM 0.2180 0.26421 (+21.19%)

PL2 0.2481 0.27611 (+11.29%)

5 Conclusion

In this paper, we proposed an adaptation of the state-of-the-art probabilistic
model BM25 to measure the similarity between terms in a co-occurrence graph
for QE. The proposed measure allows to evaluate the discriminative power of
terms and to obtain semantically related terms to the whole query. Besides, it
takes advantage of the BM25’s hyper-parameters that can be adjusted to improve
retrieval results.

Experiments on the TREC Robust04 and Washington Post collections show
significant improvements over the baselines in terms of MAP and precision for
three state-of-the-art IR models.

As part of our future work, we plan to investigate the use of external resources
(e.g. Wikipedia) to build the term co-occurrence graph. In addition, investigating
the use of asymmetric context windows to construct the co-occurrence graph is
also an interesting research direction. Another direction for extending this work
is to study the use of the new similarity measure for other IR tasks, such as
Query Reweighting and Word Sense Disambiguation (WSD).
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Abstract. Topic modeling with tweets is difficult due to the short and informal
nature of the texts. Tweet-pooling (aggregation of tweets into longer documents
prior to training) has been shown to improve model outputs, but performance
varies depending on the pooling scheme and data set used. Here we investigate
a new tweet-pooling method based on network structures associated with Twitter
content. Using a standard formulation of the well-known Latent Dirichlet Alloca-
tion (LDA) topic model, we trained various models using different tweet-pooling
schemes on three diverse Twitter datasets. Tweet-pooling schemes were created
based on mention/reply relationships between tweets and Twitter users, with sev-
eral (non-networked) established methods also tested as a comparison. Results
show that pooling tweets using network information gives better topic coher-
ence and clustering performance than other pooling schemes, on the majority
of datasets tested. Our findings contribute to an improved methodology for topic
modeling with Twitter content.

Keywords: Microblogs · LDA · Information retrieval · Aggregation · User
networks

1 Introduction

Micro-blogging platforms such as Twitter have witnessed a rapid and impressive expan-
sion, creating a popular new mode of public communication. Currently, Twitter has
6000 tweets written every second per day on average1. Twitter has become a signifi-
cant source of information for a broad variety of applications, but the volume of data
makes human analysis intractable. There is therefore considerable interest in adaptation
of computational techniques for large-scale analyses, such as opinion mining, machine
translation, and social information retrieval, among others. Application of topic model-
ing techniques to Twitter content is non-trivial due to the noisy and short texts associated
with individual tweets. In the literature, topic models such as Latent Dirichlet Alloca-
tion (LDA) [1] or the Author Topic Model (ATM) [2] have proved their success in
several applications (e.g. news articles, academic abstracts). However, results are more
mixed when applied on short texts due to the data sparsity in each individual document.

Several approaches have been proposed to design longer pseudo-documents by
aggregating multiple short texts (tweets). Each document results from a pooling strategy

1 http://www.internetlivestats.com/twitter-statistics/ Date of access: 28th Jul 2019.
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applied in a pre-processing stage. In [3], an author-based tweet pooling scheme is used
which builds documents by combining all tweets posted by the same author. A hashtag-
based tweet pooling method is proposed by [4], which creates documents consisting
of all tweets containing the same hashtag. The main goal behind these approaches is
to improve topic model performance by training on the pooled documents, with effi-
cacy measured against similar topic models trained on the unpooled tweets. Empirical
studies with these approaches highlight inconsistencies in the homogeneity of gener-
ated topics. To overcome this problem, [5] propose a conversation-based pooling tech-
nique which aggregates tweets occurring in the same user-to-user conversation. This
approach outperforms other pooling methods in terms of clustering quality and docu-
ment retrieval. More recently, [6] propose to prune irrelevant tweets through a pooling
strategy based on information retrieval (IR) in order to place related tweets in the same
cluster. This method provides an interesting improvement in a variety of measures for
topic coherence, in comparison to unmodified LDA baseline and a variety of other pool-
ing schemes.

Several IR applications in context of microblogs use network representations [7]
(e.g. document retrieval, document content). Here, we evaluate a novel network-based
tweet pooling method that aggregates tweets based on user interactions around each
item of content. Our intuition behind this method is to expose connections between
users and their interest in a given topic; by pooling tweets based on relational informa-
tion (user interactions) we hope to create an improved training corpus. To evaluate this
method, we perform a comprehensive empirical comparison against four state-of-the-
art pooling techniques chosen after a literature survey. Across three Twitter datasets, we
evaluate the pooling techniques in terms of topic coherence and clustering quality. The
experimental results show that the proposed technique yields superior performance for
all metrics on the majority of datasets and takes considerably less time to train.

2 Tweet-Pooling Methods

Tweet texts are qualitatively different to conventional texts, being typically short (≤ 280
characters2) with a messy structure including platform-specific objects (e.g. hashtags,
shortened urls, user names, emoticons/emojis). In this context, tweet-pooling has been
developed to better capture reliable document-level word co-occurrence patterns. Here,
we evaluate four existing unsupervised tweet pooling schemes alongside our proposed
network-based scheme:

Unpooled Scheme: The default approach used as a baseline in which each tweet is
considered as a single document.

Author Pooling: Each tweet authored by a single user is aggregated as a single doc-
ument, so the number of documents is the same as the number of unique users. This
approach outperforms the unpooled scheme [9].

2 In September 2017, Twitter expanded the original 140-character limit to 280 characters. See:
https://blog.twitter.com/official/en us/topics/product/2017/tweetingmadeeasier.html. Date of
access: 11th Feb 2019.

https://blog.twitter.com/official/en_us/topics/product/2017/tweetingmadeeasier.html
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Hashtag Pooling: Tweets using similar hashtags are aggregated as a single document.
The number of documents is equal to the number of unique hashtags, but a tweet can
appear in several documents if it contains multiple hashtags. Tweets without hashtags
are considered as individual documents. This method was shown [5] to outperform
unpooled schemes. (Note that [4] showed improved performance by assigning hashtag
labels to tweets without hashtags, but this technique adds computational cost and was
not used here).

Conversation Pooling: Each document consists of all tweets in the corpus that belong
to the conversation tree for a chosen seed tweet. The conversation tree includes tweets
written in reply to an original tweet, as well as replies to those replies, and so on. Tweets
without replies are considered as individual documents. In [5], conversation pooling
outperforms alternative pooling schemes.

Fig. 1. Network-based tweet pooling. Each document is initialised with a seed tweet. In Step 1,
the first layer of direct replies to the seed tweet are added. In Step 2, all tweets by users mentioned
in the set of tweets resulting from Step 1 are also added.

Fig. 2. Example content of a document created by network-based tweet pooling.

Network-Based Pooling: In this novel scheme, each document is aggregated from all
tweets within the corpus that are associated with the seed tweet by a simple network
structure (Figs. 1 and 2). In Step 1, tweets are aggregated that were written in reply to
the seed tweet. In Step 2, we identify all mentioned users in the set of tweets from Step
1 (i.e. all users that are referenced in tweet text using the @ symbol). We then aggregate
to the document all other tweets in the corpus that are authored by this user set.

This scheme differs from conversation pooling in two aspects. First, only direct
replies are aggregated i.e. the first layer of replies from the conversation tree. Manual
inspection of full tweet conversation trees showed that the conversation thread can shift
in topic as the tree increases in depth. Use of the full tree can thereby capture topics
which are not anymore related to those of the seed tweet. To identify reply tweets, we
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used the in reply to status id field returned by the Twitter API for each tweet.
Second, exploiting tweets of all mentioned users allows the network-based pooling to
access additional content from users interested in the topics of the original seed tweet.
Leveraging this information, we construct a network based on both interactions and
connections between users.

3 Tweet Corpus Building

Table 1. Distribution of latent categories in the datasets (labelled by search theme)

Dataset No. of tweets Category / % of Documents

Generic 658,492 Music/24.4 - Business/10.2 - Movie/18.5 - Health/14.7 -
Family/7.4 - Sport/24.8

Specific 445,852 Arts&entertainment/9.7 - Business/12.4 - Law
Enforcement&Armed Forces/6.2 - Science&technology/36.8 -
Healthcare&medicine/25.5 - Service/9.4

Events 188,000 Natural disasters/37.1 - Transport/15.4 - Industrial/10.2 -
Health/9.7 - Terrorism/27.6

To evaluate the portability of different pooling schemes we collected three tweet
datasets with different levels of underlying thematic/topical heterogeneity. Data was
collected using the public Twitter Search API3 during 2018 and 2019. Each collection
was created with a different list of API keywords and included tweets collected on
different themes. For each chosen theme a list of terms was manually created. All tweets
returned were collated in a single corpus, labelled by the theme. The three datasets
collected were:

Generic. A wide range of themes. Tweets from 11 Dec’18 to 30 Jan’19 collected using
keywords related to a range of themes (‘music’, ‘business’, ‘movies’, ‘health’, ‘family’,
‘sports’).

Event. Tweets from 23 Mar’18 to 22 Jan’19 associated with various events (‘natural
disasters’, ‘transport’, ‘industrial’, ‘health’, ‘terrorism’). Search terms were manually
collated based on reading a sample of posts about disaster events.

Specific. Tweets from 21 Feb’18 to 11 Feb’19 associated with job adverts for differ-
ent industries (‘arts & entertainment’, ‘business’, ‘law enforcement & armed forces’,
‘science & technology’, ‘healthcare & medicine’, ‘service’). Search terms manually
collated based on reading a sample of posts about job advertisements.

For each dataset, tweets retrieved by more than one query have been removed in
order to preserve uniqueness of tweet labels. Table 1 illustrates the distribution of latent
categories in each dataset. Each retrieved tweet was labeled according to a category
corresponding to the query submitted. We leverage these labels to evaluate the topics
produced by each model in term of clustering quality.

3 https://dev.twitter.com/rest/public/search. Date of access: 19th Feb 2019.

https://dev.twitter.com/rest/public/search
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4 Evaluation Metrics

According to metrics used in previous studies [4–6], we evaluate models both in terms
of clustering quality (purity and normalized mutual information (NMI)) and semantic
topic coherence (pointwise mutual information (PMI)).

Formally, let Ti be the set of tweets assigned to topic i and let T =
{
T1, . . . ,T|T |

}
be

the set of topic clusters arising from a LDA model that produces |T | topics. Then let
Lj be the set of tweets with ground-truth topic j and let L =

{
L1, . . . ,L|L|

}
be the set

of of ground-truth topic labels with |L| labels in total. Our clustering-based metrics are
defined as follows:

Purity: Purity score is used to measure the fraction of tweets in each assigned LDA
topic cluster with the true label for that cluster, where the ‘true’ label is defined as the
most frequent ground-truth label found in that cluster. Formally:

Purity(T,L) =
1

|T | ∑
i∈(1,|T |)

max
j∈(1,|L|)

|Ti ∩Lj|

Higher purity scores indicate better reconstruction of the original ‘true’ topic assign-
ments by the model.

Normalized Mutual Information (NMI): The NMI score estimates how much infor-
mation is shared between assigned topics T and the ground-truth labeling L. NMI is
defined as follows:

NMI(T,L) =
2I(T,L)

H(T )+H(L)

where respectively, I(·, ·) corresponds to mutual information and H(·) is entropy as
defined in [8]. NMI is a number between 0 and 1. A score close to 1 means an exact
matching of the clustering results.

Pointwise Mutual Information (PMI): The PMI score [10] evaluates the quality of
inferred topics based on the top-10 words associated with each modeled topic. This
measure is based on PMI which is computed as PMI(u,v) = log( p(u,v)

p(u)p(v) ) where u and v

are a given pair of words. The probability p(x) is derived empirically as the frequency of
word x in the whole tweet corpus, while probability p(x,y) is the likelihood of observing
both x and y in the same tweet. Coherence of a topic k is computed as the average
score of PMI for all possible pairs of the ten highest probability words for topic k (i.e.
Wk = {w1, ...,w10}). Formally:

PMI−Score(Tk) =
1

100

10

∑
i=1

10

∑
j=1

PMI(wi,wj)

where wi,wj ∈Wk. Then coherence of a whole topic model is calculated as the average
PMI-Score for all topics generated by the model.



Network-Based Pooling for Topic Modeling on Microblog Content 85

5 Results

For each combination of the three datasets (Sect. 3) and five pooling schemes (Sect. 2),
we calculated three evaluation metrics (purity scores, NMI scores and PMI scores;
Sect. 4) by training LDA models with 10 topics.

Table 2 presents various statistics of the training sets obtained by applying the differ-
ent pooling schemes. We filtered the datasets to keep only tweets written in English and
those with more than three tokens. Tweets were converted to lowercase and all URLs,
mentions (except with the network pooling scheme) and stop-words were removed.
After the tokenization process, all tokens based only on non-alphanumeric characters
(emoticons) and all short tokens (with < 3 characters) were also deleted. Test sets have
been randomly extracted (30%) from each dataset preserving the same distribution of
tweet categories. For each topic model we conduct five cross-validations.

Table 2. Corpus statistics.

Scheme No. of documents No. of tokens

general specific event general specific event

Unpooled 658492 445852 188000 18991 14794 9454

Author pooling 504253 340826 157377 18339 14091 9222

Conversation Pooling 649389 440682 185737 19301 15061 9668

Hashtag pooling 585171 387522 174501 19868 15185 9348

Network pooling 585171 402687 171266 19868 20065 13051

Table 3. Clustering metrics and coherence scores for different schemes and datasets.

Scheme Purity NMI PMI score

general specific event general specific event general specific event

Unpooled 0.396 0.316 0.220 0.176 0.108 0.058 −0.131 0.224 0.307

Author pooling 0.377 0.399 0.326 0.181 0.176 0.124 0.892 −0.116 0.338

Conversation pooling 0.341 0.359 0.310 0.136 0.141 0.110 −0.131 0.062 −0.131

Hashtag pooling 0.337 0.250 0.245 0.145 0.045 0.071 0.293 0.347 0.851

Network Pooling 0.418 0.503 0.362 0.173 0.228 0.155 0.912 0.582 0.794

Table 3 summarises the average results obtained with each pooling scheme and
dataset. According to the clustering evaluation metrics (purity and NMI), Network Pool-
ing produced the best model performance on all datasets, with the exception of NMI
scores on the General dataset, where it was narrowly outperformed by Unpooled and
Author Pooling.

Results for other pooling schemes vary by metric and dataset. Author Pooling is the
second-ranked scheme for most metrics/datasets, with Conversation Pooling also out-
performing the Unpooled scheme in most cases. It is interesting to notify that Hashtag
Pooling is mostly ineffective and gives performance worse than the baseline in most
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cases. This finding can perhaps be explained by the observation that hashtags are typ-
ically present in a minority of tweets (e.g. 19.6% of tweets have hashtags in the Spe-
cific dataset). Concerning the measure of the topic interpretability, coherence scores
show that the Network Pooling scheme gives better performance on all datasets, with
the exception on the Event dataset, where it was narrowly outperformed by Hashtag
Pooling.

6 Conclusion

Methods for aggregating tweets to form longer documents more amenable to topic mod-
eling have been shown here and elsewhere to improve model performance. Here we
have proposed a new network-based pooling scheme for topic modeling with Twit-
ter data, that takes into account the network of users that engage with a particular
tweet. Our approach improves topic extraction despite different levels of underlying the-
matic/topical heterogeneity of each dataset. While similar to conversation-based pool-
ing in its use of reply tweets, the network approach includes otherwise un-linked con-
tent from users who authored replies. Experimental results showed that for the tests
performed in this study, the network-based pooling scheme considerably outperformed
other methods and was portable between datasets. Model outputs were improved on
both clustering metrics (purity and NMI) and topic coherence (PMI).

Although the experiments presented have been conducted on the corpora collected
on specific time intervals which reduces the shifting of conversation threads, especially
when we collect documents authored by a cited user in response to the seed tweet. On a
larger scale, topic shifting might be handled by adding conditions on document times-
tamps or topic correlation. In addition, the experimental findings suggest that network-
based approaches might offer a useful technique for topic modeling with Twitter data,
subject to further testing and validation with other datasets.

Acknowledgements. This work was supported by the Institute of Coding which received fund-
ing from the Office for Students (OfS) in the United Kingdom.
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Abstract. The edit distance is a metric of dissimilarity between strings,
widely applied in computational biology, speech recognition, and machine
learning. Let ek(n) denote the average edit distance between random,
independent strings of n characters from an alphabet of a given size k.
An open problem is the exact value of αk(n) = ek(n)/n. While it is
known that, for increasing n, αk(n) approaches a limit αk, the exact
value of this limit is unknown, for any k ≥ 2. This paper presents an
upper bound to αk based on the exact computation of some αk(n) and
a lower bound to αk based on combinatorial arguments on edit scripts.
Statistical estimates of αk(n) are also obtained, with analysis of error and
of confidence intervals. The techniques are applied to several alphabet
sizes k. In particular, for a binary alphabet, the rigorous bounds are
0.1742 ≤ α2 ≤ 0.3693 while the obtained estimate is α2 ≈ 0.2888; for
a quaternary alphabet, 0.3598 ≤ α4 ≤ 0.6318 and α4 ≈ 0.5180. These
values are more accurate than those previously published.

Keywords: Edit distance · Average analysis · Upper and lower
bounds · Statistical estimates

1 Introduction

Measuring distance between strings is a fundamental problem in computer sci-
ence, with applications in computational biology, speech recognition, machine
learning, and other fields. One commonly used metric is the edit distance (or
Levenshtein distance), defined as the minimum number of substitutions, dele-
tions, and insertions necessary to transform one string into the other.

It is natural to ask what is the average distance between two randomly gen-
erated strings, as the string size grows; knowledge of the asymptotic behavior
has proved useful in computational biology (Ganguly et al. [10]) and in near-
est neighbour search (Rubinstein [14]). In computational biology, for example,
the edit distance can be used to the test the hypothesis that two subsequences
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originated from the same portion of DNA. Even for the case of uniform and
independent strings, the study of average edit distance appears to be challeng-
ing and little work has been reported on the problem. In contrast, the closely
related problem of finding the average length of the longest common subsequence
has been extensively studied, since the seminal work by Chvátal and Sankoff [8].

Using Fekete’s lemma, it can be shown that both metrics tend to grow linearly
with n (Steele [18]). Let ek(n) denote the average edit distance between two
random, independent strings of length n on a k-ary alphabet; then αk(n) =
ek(n)/n approaches a limit αk ∈ [0, 1]. Similarly, let �k(n) denote the length of
the longest common subsequence; then γk(n) = �k(n)/n approaches a limit γk ∈
[0, 1]. The γk’s are known as the Chvátal-Sankoff constants. The determination
of the exact values of αk and γk is an open problem. This paper addresses the
problem of estimating and bounding αk, for various alphabet sizes k.

Related Work. There is limited literature directly pursuing bounds and estimates
for αk. It is also interesting to review results on γk: on the one hand, bounds
to γk give bounds to αk; on the other hand, techniques for analyzing γk can be
adapted for analyzing αk.

The only published estimates of αk can be found in [10] which gives α4 ≈
0.518 for the quaternary alphabet and α2 ≈ 0.29 for the binary alphabet. For γk,
the best available estimates are given by Bundschuh [5], in particular γ2 ≈ 0.8126
and γ4 ≈ 0.6544. Estimates of γk by sampling are given by Ning and Choi [13],
their results, however, appear in contrast with estimates of [5]. In particular they
conjectured that γ2 > 0.82 contradicting the estimate of γ2 given in [5].

The best published analytical lower bounds to αk are α4 ≥ 0.3383 for qua-
ternary alphabet and α2 ≥ 0.1578 for binary alphabet [10]. To the best of our
knowledge, no systematic study of upper bounds to αk have been published. The
best known analytical lower and upper bounds to γ2 are given by Lueker [11],
who obtained 0.7881 ≤ γ2 ≤ 0.8263. For larger alphabets, the best results appear
in Danćık [9], including 0.5455 ≤ γ4 ≤ 0.7082. From known relations between
edit distance and the length of the longest common subsequence, it follows that
1−γk ≤ αk ≤ 2(1−γk). Thus, upper and lower bounds to αk can be respectively
obtained from lower and upper bounds to γk. From γ2 ≤ 0.8263 [11], we obtain
α2 ≥ 0.1737, which is tighter than the bound given in [10]. Instead γ4 ≤ 0.7082
[9] yields α4 ≥ 0.2918, which is weaker than the bound α4 ≥ 0.3383 [10]. From
the weaker relation (1−γ4)/2 ≤ α4, [14] obtained the looser bound α2 ≥ 0.0869.
Improved bounds, for both α2 and α4, are derived in this paper. Some of our
techniques resemble those used in Baeza-Yates et al. [4] for estimating γk.

1.1 Paper Contributions

The contributions of this paper include:

– statistical estimates of αk(n) with error analysis,
– upper bounds to αk by exhaustive computation of αk(n) for small n, and
– lower bounds to αk through analytical counting arguments.
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Our numerical results for k = 2 and k = 4 are compared with previously known
values in Table 1. The methods used to derive such values are presented through-
out the paper, which is organized as follows. Section 2 introduces notation and
definitions. Section 3 presents statistical estimates, with error analysis. Section 4
describes an algorithm for computing upper bounds. Section 5 develops lower
bounds analysis based on counting edit scripts. Section 6 shows and discusses
numerical results on bounds and estimates of αk. Finally, Sect. 7 gives conclu-
sions and future directions of investigation.

Table 1. Our results on α2 and α4 compared with previously published ones.

Lower bound Estimate Upper bound

Previous This work Previous This work Previous This work

α2 0.1737 [11] 0.1742 0.290 [10] 0.2888 - 0.3693

α4 0.3383 [10] 0.3598 0.518 [10] 0.5180 - 0.6318

2 Preliminaries

2.1 Notation and Definitions

Let Σk be a finite alphabet of size k ≥ 2 and let n ≥ 1 be an integer; a string x
is a sequence of symbols x[1]x[2] . . . x[n] where x[i] ∈ Σk; n is called the length
of x, also denoted by |x|. Σn

k is the set of all strings of length n.

Edit Distance. We consider the following edit operations on a string x: the match
of x[i], the substitution of x[i] with a different symbol b ∈ Σk \{x[i]}, the deletion
of x[i], and the insertion of b ∈ Σk in position j = 0, . . . , n (insertion in j means b
goes after x[j] or at the beginning if j = 0); an edit script is an ordered sequence
of edit operations. To each type of edit operation is associated a cost; throughout
this paper, matches have cost 0 and other operations have cost 1. The cost of a
script is the sum of the costs of its operations. The edit distance between x and
y, dE(x, y), is the minimum cost of any script transforming x into y. It is easy
to see that ||x| − |y|| ≤ dE(x, y) ≤ max(|x|, |y|).

Random Strings and the Limit Constant. A random string X = X[1]X[2] . . .
X[n] is a sequence of random symbols X[i] each generated according to some
distribution. We will assume X[i] uniformly and independently sampled from
Σk, hence P[X = x] = k−n for every x ∈ Σn

k . For a string x we define the
eccentricity, ecc(x), as its expected distance from a random string Y ∈ Σn

k :

ecc(x) = k−n
∑

y∈Σn
k

dE(x, y). (1)
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The expected edit distance between two random, independent strings of Σn
k is:

ek(n) = k−2n
∑

x∈Σn
k

∑

y∈Σn
k

dE(x, y)

= k−n
∑

x∈Σn
k

ecc(x). (2)

Let αk(n) = ek(n)/n; it can be shown (Fekete’s lemma from ergodic theory;
see, for example, Lemma 1.2.1 in [18]) that there exists a real number αk ∈ [0, 1],
depending only on k, such that

lim
n→∞ αk(n) = αk.

The main objective of this paper is to derive estimates and bounds to αk.

2.2 Computing the Edit Distance

Edit distance and length of the longest common subsequence (LCS) can be
computed using a dynamic programming algorithm. For the edit distance, given
two strings x and y with length n and m respectively, the algorithm fills an
(n + 1) × (m + 1) matrix M. The values of M are computed according to the
following recurrence:

Mi,0 = i for i = 0, . . . , n

M0,j = j for j = 0, . . . ,m (3)
Mi,j = min {Mi−1,j−1 + ξi,j ;Mi−1,j + 1;Mi,j−1 + 1} otherwise

where ξi,j = 0 if x[i] = y[j] and ξi,j = 1 otherwise.1 The edit distance between x
and y is the value computed in the entry Mn,m. This algorithm takes O(nm) time
and space. From the matrix M, an edit script realizing the transformation of x
into y can be obtained using backtracking which produces a path from cell (n,m)
to cell (0, 0) of M. For both problems, the approach by Masek and Paterson [12]
(using the method of the Four Russians) reduces the time to O( n2

log n ) (assuming
n ≥ m). It is known that both the edit distance and the length of the LCS cannot
be computed in time O(n2−ε), unless the Strong Exponential Time Hypothesis
(SETH) is false (Abboud et al. [1], Backurs and Indyk [3]). For the edit distance,
a (log n)O(1/ε) approximation, computable in time O(n1+ε), is given by Andoni et
al. [2], while a constant approximation algorithm with running time O(n1+5/7) is
given by Chakraborty et al. [7]. A very recent work by Rubinstein and Song [15],
gives a reduction from approximate length of the longest common subsequence
to approximate edit distance, proving that the algorithm in [7] can also be used
to approximate the length of the LCS.

1 A similar algorithm computes the length of the LCS. The recurrence (3) becomes
Mi,0 = 0, M0,j = 0, and Mi,j = max {Mi−1,j−1 + (1 − ξi,j); Mi−1,j ; Mi,j−1}.
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In order to compute upper bounds to αk, we propose an algorithm related to
the approaches developed by Calvo-Zaragoza et al. [6] and [11]. In these works,
portions of the dynamic programming matrix are associated to states of a finite
state machine. Our algorithm conceptually simulates all possible execution of a
machine similar to the one defined in [6].

3 Statistical Estimates of αk

In this section, we discuss how to develop statistical estimates of αk(n), by
sampling. In Table 2, we show results for k = 4, a case of special interest in DNA
analysis [10]. Although αk < αk(n) for every finite n, when n is sufficiently large,
estimates of αk(n) provide approximations to αk.

3.1 Estimates of αk(n) and Confidence Interval

Let (x1, y1), . . . , (xN , yN ) be N random and independent pairs of strings from
Σn

k . The sample mean

ẽk(n) =
1
N

N∑

i=1

dE(xi, yi) (4)

provides an estimate of ek(n). We determine confidence intervals of such an
estimate, using the sample variance

S2
k(n) =

1
N − 1

N∑

i=1

(dE(xi, yi) − ẽk(n))2. (5)

Table 2 presents values of ẽ4(n) and S2
4(n) for N = 5000 and n = 24, 25, . . . , 214.

Our analysis on confidence intervals is based on the work by Saw et al. [16], which
extends Chebyshev’s inequality to the cases where both mean and variance are
not known, but rather estimated with (4) and (5), respectively. For this analysis
to apply, it is sufficient for a random variable to have finite first and second order
moments, a condition certainly satisfied by the edit distance of a random pair
of strings of a given length.

Proposition 1 (Eq. (2.2) in [16]). Let ẽk(n) and S2
k(n) be given by (4) and

(5), respectively. For any t ≥ 1,

P[|ek(n) − ẽk(n)| ≤
√

(N + 1)/NtSk(n)] ≥ 1 −
(

N − 1
N

1
t2

+
1
N

)
. (6)

From (6) we get the confidence interval on αk(n)

P[αk(n) ∈ [ẽk(n)/n ±
√

(N + 1)/NtSk(n)]] ≥ 1 −
(

N − 1
N

1
t2

+
1
N

)
.
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Table 2. Results of statistical estimates of α4(n) for n = 24, 25, . . . , 214 obtained from
N = 5000 samples. The table shows: n, sample mean ẽ4(n), sample variance S2

4(n),
estimate α̃4(n), and the value S4(n)/n used to the compute confidence intervals.

n ẽ4(n) S2
4(n) α̃4(n) S4(n)/n

16 10.0164 2.0814 0.6260 0.0902

32 18.9460 3.3306 0.5920 0.0570

64 36.4370 5.4487 0.5693 0.0365

128 70.5634 9.1274 0.5513 0.0236

256 138.0370 14.4977 0.5392 0.0149

512 272.1636 24.3117 0.5315 0.0096

1024 538.7120 39.6606 0.5261 0.0062

2048 1070.2178 65.2186 0.5226 0.0039

4096 2131.4744 111.4540 0.5204 0.0026

8192 4251.1936 178.6490 0.5189 0.0016

16384 8486.4712 323.7883 0.5180 0.0011

The values S4(n)/n are shown in Table 2 for each n. For example with n = 214,
N = 5000, and t = 5, we get

P[α4(214) ∈ [0.518 ± 0.0055]] ≥ 1 −
(

4999
5000

1
52

+
1

5000

)
= 0.9598.

Since αk < αk(n), we conclude that

P[α4 < 0.5235] ≥ 0.9598. (7)

3.2 The (2w + 1)-bandwidth Algorithm for Approximate Distance

Although better approximations of αk can, in principle, be obtained using larger
values of n, the quadratic complexity of the dynamic programming algorithm
limits the values of n we can practically test. To partially circumvent this obsta-
cle, for n > 214, we have estimated αk(n) resorting to an algorithm that computes
an approximation (from above) to dE(x, y). The algorithm is parameterized by
an integer w ≥ 0 called bandwidth. It computes the portion of a matrix Q corre-
sponding to the 2w + 1 central diagonals. The algorithm performs the following
steps.

1. For h = 0, . . . , w + 1, set Qh,0 = h and Q0,h = h.
2. For h = w + 2, . . . , n, set Qh−w−1,h and Qh,h−w−1 to h.
3. For j = 1, . . . , n and i = max (1, j − w), . . . ,min (j + w, n), apply (3) to Qi,j .

We observe that the values of the entries of Q on the boundary of the region
where such matrix is computed (steps 1 and 2) are set to upper bounds to the
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corresponding entries of the matrix M, reviewed in Sect. 2.2. Since the function
that updates an entry in terms of its neighbours (step 3) is monotone non-
decreasing, we have that Qi,j ≥ Mi,j , whence the output Qn,n of the bandwidth
algorithm computes an upper bound to dE(x, y). It can be shown that Qn,n =
dE(x, y) whenever there exists an optimal path in M confined to the 2w + 1
central diagonals, a condition that is always met if dE(x, y) ≤ w.

We carried out simulations setting w =
√

n, so that the bandwidth algorithm
runs in time is O(n3/2). Application of Eq. (6) to n = 220 with t = 5, gives
for ê4(220)/220, the confidence interval [0.5162, 0.5174] with probability at least
0.9598. Since ê4(n)/n is an estimate of an upper bound to e4(n)/n, we obtain

P[α4 < 0.5174] ≥ 0.9598. (8)

We observe that bound (8) improves on bound (7), obtained via the exact dis-
tance algorithm. This indicates that the loss of precision due to the use of an
approximate algorithm is more than compensated by the ability to process larger
string sizes.

4 Upper Bounds for αk

This section presents methods to derive upper bounds to αk based on the exact
computation of αk(n) = ek(n)/n for some n, and on the relation αk ≤ αk(n),
valid for all n ≥ 1. The computation of ek(n) can be reduced to that of the
eccentricity, as in Eq. (2) repeated here for convenience:

ek(n) = k−n
∑

x∈Σn
k

ecc(x). (9)

If ecc(x) is computed according to Eq. (2) and the distance dE(x, y) is com-
puted by the O(n2)-time dynamic programming algorithm for each of the kn

strings y ∈ Σn
k , then the overall computation time is O(n2kn) for ecc(x) and

O(n2k2n) for ek(n), since the eccentricity of each of the kn strings x ∈ Σn
k

is needed in Eq. (9). Below, we propose a more efficient algorithm to speed
up the computation of ecc(x) and, in turn, that of ek(n), achieving time
O(n2 min (k, 3)n

kn) = O(n23nkn). We also show how to exploit some symme-
tries of ecc(x) in order to limit its evaluation to a suitable subset of Σn

k .

4.1 The Coalesced Dynamic Programming Algorithm
for Eccentricity

Let M(x, y) be the matrix produced by the dynamic programming algorithm
(reviewed in Sect. 2.2) to compute dE(x, y), with x, y ∈ Σn

k . We develop a strat-
egy to coalesce the computations of M(x, y) for different y ∈ Σn

k , while keeping
x fixed. To this end, we choose to generate the entries of M(x, y), according
to Eq. (3), in column-major order. Clearly, the j-th column is fully determined
by x and by the prefix of y of length j. Define now the column multiset Cj
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Algorithm 1. Coalesced dynamic programming algorithm to compute ecc(x)
1: procedure Eccentricity(x)
2: n ← |x|
3: C0 ← {((0, 1, . . . , n), 1)}
4: for j ← 1 to n do
5: Cj ← ∅
6: for c ∈ Cj−1 do
7: for b ∈ Σk do
8: c′ ← NextColumn(x, c, j, b)
9: Insert(Cj , (c

′, μ(c)))
10: end for
11: end for
12: end for
13: e ← 0
14: for c ∈ Cn do
15: e ← e + μ(c) ∗ c[n]
16: end for
17: return e/kn

18: end procedure

containing the j-th (i.e., the last) column of M(x, y[1] . . . y[j]) for each string
y[1] . . . y[j] ∈ Σj

k. Multiset Cj is a function of (just) x, although, for simplicity,
the dependence upon x is not reflected in our notation.

The Coalesced Dynamic Programming (CDP) algorithm described below
(referring also to the line numbers of Algorithm 1), constructs the sequence
of multisets C0, C1, . . . , Cn. A column multiset C will be represented as a set of
pairs (c, μ(c)), one for each distinct member c, with μ(c) being the multiplicity
of c in C. The eccentricity of x is obtained (lines 13–17) as the weighted average
of the n-th element of all columns in Cn:

ecc(x) = k−n
∑

c∈Cn

μ(c)c[n]. (10)

As can be seen from Eq. (3), multiset C0 contains just column (0, 1, . . . , n), with
multiplicity 1 (line 3). For j = 1, . . . , n, Cj is obtained by scanning all c ∈ Cj−1

(line 6) and all b ∈ Σk (line 7), and by

– computing the j-th column c′ resulting from Eq. (3) when the (j − 1)-st
column is c and ξi,j = 0 if x[i] = b or else ξi,j = 1 (call to NextCol-
umn(x, c, j, b), line 8);

– inserting μ(c) copies of c′ in Cj , by either creating a new pair (c′, μ(c)) when
c′ is not present in the multiset or by incrementing its multiplicity by μ(c)
otherwise (call to Insert(Cj , (c′, μ(c))), line 9).

The correctness of the CDP algorithm is pretty straightforward to establish. A
few observations are however necessary in order to describe and analyze a data
structure that can efficiently implement, in our specific context, multisets with
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the insertion operation. The key property is that, for j = 0, 1 . . . , n, the column
of M(x, y) with index j satisfies the conditions (a) M0,j = j and (b) (Mi,j −
Mi−1,j) ∈ {−1, 0, 1}, for i = 1, . . . , n. Using this property, the set of distinct
columns that belong to the multiset Cj can be represented as a ternary tree where
each arc has a label from the set {−1, 0, 1} and a column (M0,j ,M1,j , . . . ,Mn,j)
is mapped to a leaf v such that the n arcs in the path from the root to v have
labels (M1,j − M0,j), . . . , (Mn,j − Mn−1,j). Each leaf stores the multiplicity of
the corresponding column. The size of the tree for Cj is O(min(3n, kj)), since
there are at most 3n columns satisfying the constrains and kj k-ary strings that
contribute (not necessarily distinct) columns. Hence, the body of the loop whose
iteration space is defined in lines 4, 6, and 7 is executed nkO(min(3n, kj)) times.
Considering that one call to NextColumn() as well as one call to Insert() can
be easily performed in O(n) time, we can summarize the previous discussion as
follows, where we also consider that, at any given time, the algorithm only needs
to store two consecutive column multisets.

Proposition 2. The CPD algorithm computes the eccentricity ecc(x) of a
string x of length n over a k-ary alphabet in time T = O(n2k min(3n, kn)) and
space S = O(min(3n, kn)). Correspondingly, the average distance ek(n) can be
computed in time T = O(n2kn+1 min(3n, kn)) and space S = O(min(3n, kn)).

4.2 Exploiting Symmetries of ecc(x) in the Computation of ek(n)

The edit distance enjoys some useful symmetries, which can be easily derived
from the definition. One is that, if we let xR = x[n] . . . x[1] denote the reverse
of string x = x[1] . . . x[n], then dE(x, y) = dE(xR, yR). Another one is that if
π : Σk → Σk is a permutation of the alphabet and π(x) denotes the string
π(x[1]) . . . π(x[n]), then dE(x, y) = dE(π(x), π(y)). The following is a simple,
but useful corollary of these properties.

Proposition 3. For any x ∈ Σn
k , we have ecc(xR) = ecc(x). Furthermore, for

any permutation π of Σk, we have ecc(π(x)) = ecc(x).

It is useful to define the equivalence class of x as the set of strings that have the
same eccentricity as x, due to Proposition 3, and denote by ν(x) the cardinality
of such set. If Rk,n ⊆ Σn

k contains exactly one (representative) member for each
equivalence class, then Eq. (9) can be rewritten as

ek(n) = k−n
∑

x∈Rk,n

ν(x)ecc(x). (11)

Computing ek(n) according to Eq. (11) enables one to reduce the number of
strings for which the eccentricity has to be computed (via the CDP algorithm)
by a factor slightly smaller than (2k!), with a practically appreciable reduction
in computation time.

The strategy outlined in this section has been implemented in C++ and run
on a 32 core IBM Power7 server. For several alphabet sizes k, we have considered
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values of n up to a maximum value nub
k , under the constraint that the running

time would not exceed one week. The resulting values ek(nub
k ) are presented and

discussed in Sect. 6.

5 Lower Bounds for αk

In this section, we prove the theoretical results that are used to obtain the lower
bounds αlb

k shown in Sect. 6. To obtain such lower bounds, we will derive lower
bounds to ecc(x) by ignoring the contribution of the strings inside the ball of
radius r centered at x and by setting to r + 1 the contribution of the string
outside the same ball. The objective is to determine the largest value r∗ of r for
which (it can be shown that) the ball of radius r contains a fraction of Σn

k that
vanishes with n; then r∗ will effectively represent a lower bound to αkn. Below,
we formalize this idea and show that we can choose r∗ = βn for suitable values
of β independent on n; this establishes that αk ≥ β.

5.1 Lower Bounds to ecc(x) Using Upper Bounds to Ball Size

In this subsection, we show how to derive lower bounds to ecc(x) starting from
upper bounds to the size of the ball of radius r centered at x. We also show
that, when such bounds are valid for every x, they can be used to compute lower
bounds to αk.

Definition 1. For a string x ∈ Σn
k , the ball of radius r centered at x is defined

as the set of strings having distance at most r from x:

Br(x) = {y ∈ Σn
k : dE(x, y) ≤ r}.

Similarly, the shell of radius r centered at x is defined as the set of strings having
distance exactly r from x:

Sr(x) = {y ∈ Σn
k : dE(x, y) = r}.

For a given r, each string in Σn
k \ Br(x) has distance at least r + 1 from

x; therefore its contribution to ecc(x) is at least r + 1. Given an upper bound
ur(x) ≥ |Br(x)|, the consequent lower bound |Σn

k \ Br(x)| ≥ (kn − ur(x)) yields
the following lower bound to ecc(x).

Lemma 1. Let ur(x) ≥ |Br(x)|, then for every r∗ = 0, 1, . . . , n:

ecc(x) ≥ r∗ (
1 − k−nur∗(x)

)
(12)
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Proof. We can rewrite (1) as

ecc(x) = k−n
r∗∑

r=0

r|Sr(x)| + k−n
n∑

r=r∗+1

r|Sr(x)|

≥ k−n(r∗ + 1)
n∑

r=r∗+1

|Sr(x)|

= k−n(r∗ + 1) (|Bn(x)| − |Br∗(x)|)
> r∗ (

1 − k−n|Br∗(x)|)

≥ r∗ (
1 − k−nur∗(x)

)
.

	

In particular when ur∗ ≥ |Br∗(x)| for every x ∈ Σn

k , simple manipulations of
Eq. (2), recalling that αk = limn→∞

ek(n)
n , yield

αk ≥ lim
n→∞

r∗

n

(
1 − k−nur∗

)
. (13)

The bounds presented next are based on (13). We will show that, for suitable
values of β, the quantity (k−nuβn) converges to 0, so that αk ≥ β.

5.2 Upper Bounds on Ball Size

To use Lemma 1 we need an upper bound to |Br(x)|. The next proposition
develops such an upper bound by (i) associating every string in Br(x) to a
script of certain type with cost r or r − 1 and (ii) counting such scripts.

Proposition 4. For any x ∈ Σn
k and for any r = 1, . . . , n

|Br(x)| ≤ (k − 1)r

�r/2	∑

d=0

(
n

d

)2(
n − d + 1

r − 2d

)(
k

(k − 1)2

)d

. (14)

Proof. We introduce the notion of simple script of cost r ∈ {0, 1, . . . , n}, con-
structed by the following sequence of choices (shown within square brackets is
the number of possible choices):

– d ∈ {0, 1, . . . , �r/2�}
– d positions to delete from x [

(
n
d

)
]

– (r − 2d) of the remaining (n − d) positions to be substituted [
(

n−d
r−2d

)
]

– d positions to insert in y [
(
n
d

)
]

– the symbols in the substitutions [(k − 1)r−2d]
– the symbols in the insertions [kd]
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Straightforwardly, the number of simple scripts of cost r is

sr =
�r/2	∑

d=0

(
n

d

)2(
n − d

r − 2d

)
(k − 1)r−2dkd. (15)

It is easy to see that optimal scripts are simple.
Next, we prove that any y ∈ Br(x) can be obtained from x via a simple

script of cost r − 1 or r. Let r′ = dE(x, y) ≤ r, we will focus to the case where
r′ < r − 1, since in the complementary case the argument is trivial. Consider an
optimal, simple script of cost r′ that transforms x into y. By augmenting this
script with �(r − r′)/2� pairs of deletions and insertions, each pair acting on a
matched position, we obtain a simple script of cost r, if r − r′ is even, or of cost
r − 1 if r − r′ is odd. The prescribed augmentation is always possible since the
number of matches is at least n − r′ ≥ r − r′ ≥ (r − r′)/2.

The thesis is then established by the following sequence of inequalities

|Br(x)| ≤ sr + sr−1

≤
�r/2�∑

d=0

(n
d

)2( n − d

r − 2d

)
(k − 1)r−2dkd +

�(r−1)/2�∑

d=0

(n
d

)2( n − d

r − 1 − 2d

)
(k − 1)r−1−2dkd

≤
�r/2�∑

d=0

(n
d

)2( n − d

r − 2d

)
(k − 1)r−2dkd +

�r/2�∑

d=0

(n
d

)2( n − d

r − 1 − 2d

)
(k − 1)r−2dkd

≤
�r/2�∑

d=0

(n
d

)2(n − d+ 1

r − 2d

)
(k − 1)r−2dkd,

where we have made use of the identity
(

n − d

r − 2d

)
+

(
n − d

r − 1 − 2d

)
=

(
n − d + 1

r − 2d

)
.

	


5.3 Asymptotic Behavior of Ball Size and Bounds for αk

The next results show that (14), divided by kn, is bounded by an exponential
function where we can choose the exponent in such a way that this function
vanishes with n. This can then be used in (13) to obtain lower bounds to αk.

Definition 2. Let H(β) denote the binary entropy function

H(β) = −β log2 β − (1 − β) log2 (1 − β).

Definition 3. For β ∈ [0, 1] and δ ∈ [0, β/2] we define the function

gk(β, δ) =(β − 2δ) log2 (k − 1) − (1 − δ) log2 k

+ 2H(δ) + (1 − δ)H
(

β − 2δ

1 − δ

)
. (16)
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Lemma 2. Let ur be given by the right hand side of (14) and gk(β, δ) given by
(16). For every β ∈ [0, 1]

k−nuβn ≤ (n + 1)
�βn/2	∑

d=0

2ngk(β, d
n ). (17)

Proof. Using the relation
(

n − d + 1
r − 2d

)
=

n − d + 1
n − r + d + 1

(
n − d

r − 2d

)
≤ (n + 1)

(
n − d

r − 2d

)
,

the bound
(
n
k

) ≤ 2nH(k/n) (see, e.g., Eq. (5.31) in Spencer [17]), and defining
β = r/n we get

k−nur ≤k−n(k − 1)r

�r/2	∑

d=0

(
n

d

)2(
n − d + 1

r − 2d

) (
k

(k − 1)2

)d

≤(n + 1)
�r/2	∑

d=0

22nH( d
n )+(n−d)H( r−2d

n−d )+(r−2d) log2 (k−1)2+(d−n) log2 k

=(n + 1)
�βn/2	∑

d=0

2ngk(β, d
n ).

	

Theorem 1. Letting Ak = {β ∈ [0, 1] : ∀δ ∈ [0, β/2] (gk(β, δ) < 0)}, we have:

αk ≥ supAk.

Proof. We begin by observing that Ak is not empty, since 0 ∈ Ak. In fact, when
β = 0, the condition δ ∈ [0, β/2] is satisfied only by δ = 0, and gk(0, 0) =
− log2 k < 0. Since, by definition, Ak ⊆ [0, 1], we conclude that supAk is finite.
Next, we define the function

Gk(β) = max
0≤δ≤β/2

gk(β, δ).

This definition of Gk(β) is well posed, since gk(β, δ) is a continuous function,
hence it does have a maximum in the compact set 0 ≤ δ ≤ β/2. Furthermore, it
follows from the definitions of Gk(β) and Ak that Gk(β) < 0, for any β ∈ Ak.

For any β ∈ Ak, we see from Lemma 2 that

k−nuβn ≤ (n + 1)
�βn/2	∑

d=0

2ngk(β, d
n ) ≤ f(n)2nGk(β),

where we have used the relation gk

(
β, d

n

) ≤ Gk(β) (which follows from the
definition of Gk(β) and the fact that for, any d in the summation range,
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0 ≤ d
n ≤ β/2) and we have let f(n) = (n + 1)

(⌊
βn
2

⌋
+ 1

)
. Taking now the

limit in (13) with r∗ = βn yields:

αk ≥ lim
n→∞ β

(
1 − f(n)2nGk(β)

)
= β,

as f(n) = O(n2) and 2nGk(β) is a negative exponential. In conclusion, since αk

is no smaller than any member of Ak, it is also no smaller than supAk. 	

Theorem 1 gives a criterion to find lower bounds to αk: choose β such that

g(β, δ) < 0 for every δ. The lower bounds presented in Sect. 6 are computed
using a numerical evaluation of supAk.

6 Numerical Results and Discussion

In this section, we present and discuss some numerical results obtained by apply-
ing the methodologies developed in previous sections, to alphabets of various size
k. These values are reported in the Table 3 along with the indication of the string
size nub

k used in the computation of αub
k .

Table 3. Results on αk for several alphabet sizes k. The table shows lower bounds
αlb
k , statistical estimates α̃k, upper bounds αub

k . The values of αlb
k are obtained by

numerically evaluating sup Ak (Sect. 5, Theorem 1). Each statistical estimate α̃k is
based on N = 5000 sample pairs of strings of length n = 214 (Sect. 3.1). The values
of αub

k are based on the exact determination of αk(n
ub
k ) (Sect. 4). We can observe that

αlb
k < α̃k < αub

k .

k αlb
k α̃k αub

k nub
k

2 0.1742 0.2888 0.3693 24

3 0.2837 0.4292 0.5343 17

4 0.3598 0.5180 0.6318 15

5 0.4152 0.5806 0.7020 13

6 0.4578 0.6277 0.7515 12

7 0.4918 0.6645 0.7903 11

8 0.5199 0.6946 0.8122 12

16 0.6648 0.8196 0.8955 10

32 0.7387 0.8999 0.9659 6

As already mentioned in the introduction, 1 − γk ≤ αk. Since γk vanishes
with k (Theorem 1 in [8]), we have that limk→∞ αk = 1. The data in Table 3
show a trend consistent with this asymptotic behavior of αk.

The gap between lower and upper bound indicates that there is room
for improving both. Improving the current upper bounds requires substantial
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improvements in the way we compute exact values of αk(n). Improving the
lower bounds appears viable by tightening the upper bound to the volume of
Br(x), in Proposition 4. To this end, an avenue to be explored is a refinement
of script counting that exploits properties of optimal scripts, not considered in
the present arguments.

We observe that, for fixed k and variable n, the values αk(n) form a sequence
of computable upper bounds to αk that converges to αk. It would be interesting
to find a sequence of computable lower bounds to αk that converges to αk.
Together, these two sequences would establish the computability of αk, providing
an algorithm that, given as input any ε > 0, would output a rational number
η such that |αk − η| < ε. To the best of our knowledge, whether the αk’s are
computable is an open question. In contrast, it is a simple corollary of known
results that the γk’s are computable. On the one hand, a sequence of computable
lower bounds converging to γk is straightforwardly provided by the values γk(n).
On the other hand, a sequence of computable upper bounds converging to γk has
been established, by a rather sophisticated approach, in [11] (see, in particular,
Theorem 3.13).

7 Conclusions

In this paper, we have explored approaches to obtain statistical estimates, upper
bounds, and lower bounds to the asymptotic constant characterizing the average
edit distance between random, independent strings. We used such approaches
to obtain results for some alphabet sizes k. These numerical results (Table 3)
improve over previously known values [10]. There is still a gap between upper
and lower bounds which deserves further investigation. The approaches proposed
here can be extended to the study of other statistical properties of the edit
distance (e.g., the standard deviation, widely studied in the context of the longest
common subsequence).

It is interesting to explore the role of statistical properties of the edit distance
in string alignment and other key problems in DNA processing. One motivation
is provided by the increasing availability of reads coming from third genera-
tion sequencers (e.g., PacBio) where sequencing errors can be modelled as edit
operations. In this case it will be necessary to study the behaviour of the aver-
age edit distance, when strings are generated from non-uniform distributions
or from empirical distributions (e.g., the distribution of substrings from the
human DNA).
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Abstract. Given a string T of length n, a substring u = T [i..j] of T
is called a shortest unique substring (SUS) for an interval [s, t] if (a) u
occurs exactly once in T , (b) u contains the interval [s, t] (i.e. i ≤ s ≤
t ≤ j), and (c) every substring v of T with |v| < |u| containing [s, t] occurs
at least twice in T . Given a query interval [s, t] ⊂ [1, n], the interval SUS
problem is to output all the SUSs for the interval [s, t]. In this article, we
propose a 4n+ o(n) bits data structure answering an interval SUS query
in output-sensitive O(occ) time, where occ is the number of returned
SUSs. Additionally, we focus on the point SUS problem, which is the
interval SUS problem for s = t. Here, we propose a �(log2 3+1)n�+o(n)
bits data structure answering a point SUS query in the same output-
sensitive time.

Keywords: String processing algorithm · Shortest unique substring ·
Compact data structure

1 Introduction

A substring u = T [i..j] of a string T is called a shortest unique substring (SUS)
for an interval [s, t] if (a) u occurs exactly once in T , (b) u contains the interval
[s, t] (i.e., i ≤ s ≤ t ≤ j), and (c) every substring v of T with |v| < |u| containing
[s, t] occurs at least twice in T . Given a query interval [s, t] ⊂ [1, n], the interval
SUS problem is to output all the SUSs for [s, t]. When a query interval consists
of a single position (i.e., s = t), the SUS problem becomes a so-called point SUS
problem.

Point SUS Problem. The point SUS problem was introduced by Pei et al. [12].
This problem is motivated by applications in bioinformatics like genome com-
parisons [4] or PCR primer design [12]. Pei et al. tackled this problem with an
O(n) words data structure that can return one SUS for a given query position in
constant time. They can compute this data structure in O(n2) time with O(n)
space. Based on that result, Tsuruta et al. [13] provided an O(n) words data
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structure answering the same query (returning one SUS) in constant time. Their
data structure can be constructed in O(n) time. İleri et al. [7] independently
showed another data structure with the same time complexities. For the general
point SUS problem, Tsuruta et al. [13] can also resort to their proposed data
structure returning all SUSs for a query position in optimal O(occ) time, where
occ is the number of returned SUSs.

The aforementioned data structures all take Θ(n) words. This space can
become problematic for large n. This problem was perceived by Hon et al. [5],
who proposed a data structure consisting of the input string T and two integer
arrays, each of length n. Both arrays store, respectively, the beginning and the
ending position of a SUS for each position i with 1 ≤ i ≤ n. Hon et al. provided
an algorithm that can construct these two arrays in linear time with O(log n) bits
of additional working space, given that both arrays are stored in 2n log n bits and
that σ ≤ n. Instead of building a data structure, Ganguly et al. [3] proposed a
time-space trade-off algorithm using O(n/τ) words of additional working space,
answering a given query in O(nτ2 log n

τ ) time directly, for a trade-off parame-
ter τ ≥ 1. They also proposed the first compact data structure of size 4n + o(n)
bits that can answer a query in constant time. They can construct this data
structure in O(n log n) time using O(n log σ) bits of additional working space.

Interval SUS Problem. Hu et al. [6] were the first to consider the interval
SUS problem. They proposed a data structure answering a query returning all
SUSs for the respective query interval in O(occ) optimal time after O(n) time
preprocessing. In the compressed setting, Mieno et al. [11] considered the interval
SUS problem when the input string T is given run-length encoded (RLE), and
proposed a data structure of size O(r) words answering a query by returning all
SUSs for the respective query interval in O(

√
log r/ log log r + occ) time, where

r is the number of single character runs in T .

Our Contribution. In this paper, we propose the following two data structures:

(A) A data structure of size 2n+2m+o(n) bits answering an interval SUS query
in O(occ) time, where m is the number of minimal unique substrings of the
input string1, and occ is the number of SUSs of T for the respective query
interval (Theorem 1).

(B) A data structure of size �(log2 3 + 1)n� + o(n) bits answering a point SUS
query in O(occ) time, where occ is the number of SUSs of T for the respective
query point (Theorem 2).

Instead of outputting the answer as a list of substrings of T , it is sometimes
sufficient to output only the intervals corresponding to the respective substrings.
In such a case, both data structures can answer a query without the need of the
input string. The data structure (A) is the first data structure of size O(n)
bits for the interval SUS problem. Also, the data structure (B) is the first data

1 We show later in Lemma 1 that the number of minimal unique substrings m is at
most n.
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structure of size O(n) bits for the point SUS problem, returning all SUSs for a
given query position. Notice that the data structure of Ganguly et al. [3] uses
4n + o(n) bits of space, but returns only one SUS for a point SUS query.

2 Preliminaries

Our model of computation is the word RAM with machine word size Ω(log n).

2.1 Strings

Let Σ be an alphabet. An element of Σ∗ is called a string. For |Σ| = 2, we
call a string also a bit array. The length of a string T is denoted by |T |. The
empty string ε is the string of length 0. Given a string T , the i-th character
of T is denoted by T [i], for an integer i with 1 ≤ i ≤ |T |. For two integers i
and j with 1 ≤ i ≤ j ≤ |T |, a substring of T starting at position i and end-
ing at position j is denoted by T [i..j]. Namely, T [i..j] = T [i]T [i + 1] · · · T [j].
For two strings T and w, the number of occurrences of w in T is denoted
by #T (w) := |{i | T [i..i + |w| − 1] = w}|. For two intervals [i, j] and [x, y],
let cover([i, j], [x, y]) := [min{i, x},max{j, y}] denote the shortest interval that
contains the text positions i, j, x, and y. If the interval [x, y] consists of a single
point, i.e., x = y, cover([i, j], [x, y]) is denoted by cover([i, j], x) when we want
to emphasize on the fact that x = y.

In what follows, we fix a string T of length n ≥ 1 whose characters are drawn
from an integer alphabet Σ of size σ = nO(1).

2.2 MUSs and SUSs

Let u be a non-empty substring of T . u is called a repeating substring of T if
#T (u) ≥ 2, and u is called a unique substring of T if #T (u) = 1. Since every
unique substring u = T [i..j] of T occurs exactly once in T , we identify u with
its corresponding interval [i, j]. We also say that the interval [i, j] is unique iff
the corresponding substring T [i..j] is a unique substring of T .

A unique substring u = T [i..j] of T is said to be a minimal unique sub-
string (MUS ) of T iff every proper substring of u is a repeating substring, i.e.,
#T (T [i′..j′]) ≥ 2 for every integer i′ and every integer j′ with [i′, j′] ⊂ [i, j]
and j′ − i′ < j − i. Let MUST := {[i, j] | T [i..j] is a MUS of T} be the set of
all intervals corresponding to the MUSs of T . From the definition of MUSs, the
next lemma follows:

Lemma 1 ([13, Lemma 2]). No element of MUST is nested in another element
of MUST , i.e., two different MUSs [i, j], [k, l] ∈ MUST satisfy [i, j] �⊂ [k, l] and
[k, l] �⊂ [i, j]. Therefore, 0 < |MUST | ≤ |T |.

We use the following two sets containing interval and point SUSs, which were
defined at the beginning of the introduction: Given an interval [s, t] ⊂ [1, n],
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Fig. 1. The string T = bcaacaabcaaababca, and its set MUST = {[4, 5], [5, 8], [6, 9],
[7, 11], [10, 12], [13, 14]}. MUST corresponds to the set {ac, caab, aabc, abcaa, aaa, ba}
of all MUSs of T . The substrings T [6..10] = aabca, T [7..11] = abcaa, and T [8..12] =
bcaaa are SUSs for the query interval [8, 10]. Also, the substrings T [4..7] = acaa,
T [5..8] = caab, and T [6..9] = aabc are SUSs for the query position 7. The later
defined leftmost/rightmost SUS and MUS (cf. Sect. 6) for p = 7 are lmSUSp

T = [4, 7]
lmSUSp

T = [4, 7], lmMUSp
T = [4, 5], rmSUSp

T = [6, 9], and rmMUSp
T = [6, 9].

SUST ([s, t]) denotes the set of the interval SUSs of T for the interval [s, t]. Given
a text position p ∈ [1, n], SUST (p) denotes the set of the point SUSs of T for the
point p.

Given a query position p ∈ [1, n] (resp. a query interval [s, t] ⊂ [1, n]), the
point (resp. interval) SUS problem is to compute SUST (p) (resp. SUST ([s, t])).
See Fig. 1 for an example depicting MUSs and SUSs.

3 Tools

In this section, we introduce the data structures needed for our approach solving
both SUS problems.

3.1 Rank and Select

Given a string X of length n over the alphabet [1, σ]. For an integer i with
1 ≤ i ≤ n and a character c ∈ [1, σ], the rank query rankX(c, i) returns the
number of the character c in the prefix X[1..i] of X. Also, the select query
selectX(c, i) returns the position of X containing the i-th occurrence of the
character c (or returns the invalid symbol nil if such a position does not exist).
For σ = 2 (i.e., X is a bit array), we can make use of the following lemma:

Lemma 2 ([1,8]). We can endow a bit array X of length n with a data structure
answering rankX and selectX in constant time. This data structure takes o(n)
bits of space, and can be built on X in O(n) time with O(log n) bits of additional
working space.
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3.2 Predecessor and Successor

Let Y be an array of length k whose entries are positive integers in strictly
increasing order. Further suppose that these integers are less than or equal to n.
Given an integer d with 1 ≤ d ≤ n, the predecessor and the successor query on
Y with d are defined as PredY (d) := max{i | Y [i] ≤ d} and SuccY (d) := min{i |
Y [i] ≥ d}, where we stipulate that min{} = max{} = nil.

Let BITY be a bit array of length n marking all integers present in Y , i.e.,
BITY [i] = 1 iff there is an integer j with 1 ≤ j ≤ k and Y [j] = i, for every i with
1 ≤ i ≤ n. By endowing BITY with a rank/select data structure, we yield an
n+o(n) bits data structure answering PredY (d) = selectBITY

(1, rankBITY
(1, d))

and SuccY (d)2 in constant time for each d with 1 ≤ d ≤ n.

3.3 RmQ and RMQ

Given an integer array Z of length n and an interval [i, j] ⊂ [1, n], the range
minimum query RmQZ(i, j) (resp. the range maximum query RMQZ(i, j)) asks
for the index p of a minimum element (resp. a maximum element) of the subarray
Z[i..j], i.e., p ∈ arg mini≤k≤j Z[k], or respectively p ∈ arg maxi≤k≤j Z[k]. We use
the following well-known data structure to handle these kind of queries:

Lemma 3 ([2]). Given an integer array Z of length n, there is an RmQ (resp.
RMQ) data structure taking 2n+o(n) bits of space that can answer an RmQ (resp.
RMQ) query on Z in constant time. This data structure can be constructed in
O(n) time with o(n) bits of additional working space.

3.4 Suffix Array, Inverse Suffix Array and LCP Array

We define the three integer arrays SAT [1..n], ISAT [1..n], and LCPT [1..n + 1].
The suffix array SAT of T is the array with the property that T [SAT [i]..n] is
lexicographically smaller than T [SAT [i+1]..n] for every i with 1 ≤ i ≤ n−1 [10].
The inverse suffix array ISAT of T is the inverse of SAT , i.e., SAT [ISAT [i]] = i for
every i with 1 ≤ i ≤ n. The LCP array LCPT of T is the array with the property
that LCPT [1] = LCPT [n+1] = 0 and LCPT [i] = lcp(T [SAT [i]..n], T [SAT [i−1]..n])
for every i with 2 ≤ i ≤ n, where lcp(P,Q) denotes the length of the longest
common prefix of P and Q for two given strings P and Q.

4 Computing MUSs in Compact Space

For computing SUSs efficiently, it is advantageous to have a data structure avail-
able that can retrieve MUSs starting or ending at specific positions, as the fol-
lowing lemma gives a crucial connection between MUSs and SUSs:

Lemma 4 ([13, Lemma 2]). Every point SUS contains exactly one MUS.

2 SuccY (d) can be computed similarly by considering the case whether BITY [d] = 1.
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Figure 2 gives an overview of our introduced data structure and shows the
connections between this section and the following sections that focus on our two
SUS problems. For our data structure retrieving MUSs, we propose a compact
representation and an algorithm to compute this representation space-efficiently.
Our data structure is based on the following two bit arrays MBT and MET of
length n with the properties that

– MBT [i] = 1 iff i is the beginning position of a MUS, and
– MET [i] = 1 iff i is the ending position of a MUS.

For the rest of this paper, let m be the number of MUSs in T . We rank the MUSs
by their starting positions in the text, such that the j-th MUS starts before the
(j + 1)-th MUS, for every integer j with 1 ≤ j ≤ m − 1.

Since MUSs are not nested (see Lemma 1), the number of 1’s in MBT and
MET is exactly m. Hence, the starting position, the ending position, and the
length of the j-th MUS can be computed with rank/select queries for every
integer j with 1 ≤ j ≤ m. How MBT and MET can be computed is shown in the
following lemma:

Lemma 5. Let DT be a data structure that can access ISAT [i] and LCPT [i] in
πa(n) time for every position i with 1 ≤ i ≤ n. Suppose that we can construct it
in πc(n) time with πs(n) bits of working space including the space for DT . Then
MBT and MET can be computed in O(πc(n) + n · πa(n)) total time while using
2n + πs(n) bits of total working space including the space for MBT and MET .

Proof. Given a text position i with 1 ≤ i ≤ n, T [i..i + 	i − 1] with 	i =
max{LCPT [ISAT [i]], LCPT [ISAT [i]+1]} is the longest repeating substring starting
at i. If we extend this substring by the character to its right, it becomes unique.
Thus, T [i..i + 	i] is the shortest unique substring starting at i, except for the case
that i + 	i − 1 = n as we cannot extend it to the right (hence, there is no unique
substring starting at i in this case). Additionally, the substring T [i..i + 	i] is a
MUS iff T [i + 1..i + 	i] is not unique (we already checked that T [i..i + 	i − 1] is
not unique). T [i+ 1..i+ 	i] is not unique iff 	i ≤ 	i+1 since T [i+ 1..i+ 1 + 	i+1] is
the smallest unique substring starting at i + 1. Since each 	i can be computed in
O(πa(n)) time for every 1 ≤ i ≤ n, the starting and ending positions of all MUSs
(and hence, MBT and MET ) can be computed in O(n ·πa(n)) time by a linear scan
of the text. Therefore, the total computing time is O(πc(n) + n · πa(n)) and the
total working space is 2n + πs(n) bits including the space for MBT and MET . 	


5 Compact Data Structure for the Interval SUS Problem

In this section, we propose a compact data structure for the interval SUS prob-
lem. It is based on the data structure of Mieno et al. [11], which we review in
the following. We subsequently provide a compact representation of this data
structure.
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Fig. 2. Overview of the data structures proposed for solving the interval SUS and point
SUS problem. Nodes are data structures. Edges of the same label (labeled by a certain
lemma) describe an algorithm taking a set of input data structures to produce a data
structure.

Data Structures. The data structure proposed by Mieno et al. [11] consists
of three arrays, each of length m: XT , YT , and MUSlenT . The arrays XT and
YT store, respectively, the beginning positions and ending positions of all MUSs
sorted by their beginning positions such that the interval [XT [i],YT [i]] is the i-th
MUS, for every integer i with 1 ≤ i ≤ m. Further, MUSlenT [i] = YT [i]−XT [i]+1
stores the length of i-th MUS. During a preprocessing phase, XT and YT are
endowed with a successor and a predecessor data structure, respectively. Fur-
ther, MUSlenT is endowed with an RmQ data structure.

Answering Queries. Given a query interval [s, t], let 	 = PredYT
(t) be the

index in YT of the largest ending position of a MUS that is at most t, and
r = SuccXT

(s) be the index in XT of the smallest starting position of a MUS
that is at least s. Then, SUST ([s, t]) ⊂ {cover([s, t], [XT [i], YT [i]]) | 	 ≤ i ≤ r}.
That is because the shortest intervals in {cover([s, t], [XT [i], YT [i]]) | 	 ≤
i ≤ r} correspond to the shortest unique substrings (SUSs) among all sub-
strings covering the interval [s, t]. Thus, one of the SUSs for [s, t] can be
detected by considering cover([s, t], [XT [	], YT [	]]) (as a candidate for the left-
most SUS), cover([s, t], [XT [r], YT [r]]) (as a candidate for the rightmost SUS),
and RmQMUSlenT (	+1, r − 1). To output all SUSs, it is sufficient to answer RmQ
queries on subintervals of MUSlenT [	+1..r−1] recursively. In detail, suppose that
there is a MUS in MUSlenT [	 + 1..r − 1] that is a SUS for [s, t]. Further suppose



114 T. Mieno et al.

that this is the j-th MUS having length k. Then we query MUSlenT [	 + 1..j − 1]
and MUSlenT [j + 1..r − 1] for all other MUSs of minimal length k.

Compact Representation. Having the two bit arrays MBT and MET of Sect. 4,
we can simulate the three arrays XT , YT , and MUSlenT . By endowing these
two bit arrays with rank/select data structures of Lemma 2, we can compute
rank/select in constant time, which allows us to compute the value of XT [p],
YT [p], MUSlenT [p], PredYT

(q) and SuccXT
(q) for every index p with 1 ≤ p ≤

m and every text position q with 1 ≤ q ≤ n in constant time while using
only 2n + o(n) bits of total space. By endowing MUSlenT with the RmQ data
structure of Lemma 3, we can answer an RmQ query on MUSlenT in constant
time. This data structure takes 2m + o(m) bits of space. Altogether, with these
data structures we yield the following theorem:

Theorem 1. For the interval SUS problem, there exists a data structure of size
2n+2m+o(n) bits that can answer an interval SUS query in O(occ) time, where
occ is the number of SUSs of T for the respective query interval.

Also, the data structure can be constructed space-efficiently:

Lemma 6. Given MBT and MET , the data structure proposed in Theorem 1 can
be constructed in O(n) time using 2m + o(n) bits of total working space, which
includes the space for this data structure.

Proof. The data structure proposed in Theorem 1 consists of the two bit arrays
MBT , MET , and an RmQ data structure on MUSlenT , which is simulated by
rank/select data structures on MBT and MET . Since MBT and MET are already
given, it is left to endow MBT and MET with rank/select data structures
(using Lemma 2), and to compute the RmQ data structure on MUSlenT (using
Lemma 3). 	


6 Compact Data Structure for the Point SUS Problem

Before solving the point SUS problem, we borrow some additional notations
from Tsuruta et al. [13] to deal with point SUS queries. This is necessary since
some of the MUSs never take part in finding a SUS such that there is no mean-
ing to compute and store them. Since we want to provide an output-sensitive
algorithm answering a query in optimal time, we only want to store MUSs that
are candidates for being a SUS.

We say that the interval [x, y] ∈ MUST is a meaningful MUS if T [x..y] is
a substring of (or equal to) a point SUS, i.e., cover([x, y], p) ∈ SUST (p) for a
position p. Also, we say that the interval [x, y] ∈ MUST is a meaningless MUS
if [x, y] is not a meaningful MUS. Let

MMUST := {[i, j] ∈ MUST | there exists a p with 1 ≤ p ≤ n

such that cover([i, j], p) ∈ SUST (p)}
denote the set of all meaningful MUSs of T .



Compact Data Structures for Shortest Unique Substring Queries 115

Let lmSUSp
T denote the interval in SUST (p) with the leftmost starting posi-

tion, and let lmMUSp
T denote the MUS contained in lmSUSp

T . We say that
lmSUSp

T is the leftmost SUS for p, and lmMUSp
T is the leftmost MUS for p. Sim-

ilarly, we define the rightmost SUS rmSUSp
T and the rightmost MUS rmMUSp

T

for p by symmetry. See Fig. 1 for an example for the leftmost/rightmost SUS
and MUS.

Let LT be an array of length n such that LT [i] is the length of a SUS3 of T
containing i for each position i with 1 ≤ i ≤ n. Let BT be a bit array of length
n such that BT [i] = 1 iff i is the beginning position of a meaningful MUS of T .

From the definition of LT , we yield the following observation:

Observation 1. For every position p with 1 ≤ p ≤ n and every interval [x, y] ∈
SUST (p), p − LT [p] + 1 ≤ x ≤ p ≤ y ≤ p + LT [p] − 1.

Next, we define the following four functions related to LT and BT . For a
position q with 1 ≤ q ≤ n let

– pred1posBT
(q) := max{i | i ≤ q and BT [i] = 1},

– succ1posBT
(q) := min{i | i ≥ q and BT [i] = 1},

– predneqLT
(q) := max{i | i < q and LT [i] �= LT [q]}, and

– succneqLT
(q) := min{i | i > q and LT [i] �= LT [q]}.

For all four functions, we stipulate that min{} = max{} = nil. See Fig. 3 for
an example of the arrays and functions defined above.

6.1 Finding SUSs with L and B

Our idea is to answer point SUS queries with LT and BT . For that, we first think
about how to find the leftmost and rightmost SUS for a given query (Obser-
vation 1 gives us the range in which to search). Having this leftmost and the
rightmost SUS, we can find all other SUSs with BT marking the beginning posi-
tions of the meaningful MUSs that correspond to the SUSs we want to output.
Before that, we need some properties of LT that help us to prove the follow-
ing lemmas in this section: Lemma 7 gives us a hint on the shape of LT , while
Lemma 8 shows us how to find SUSs based on two consecutive values of LT with
a connection to MUSs.

Lemma 7. |LT [p] − LT [p + 1]| ≤ 1 for every position p with 1 ≤ p ≤ n − 1.

Proof. Let 	 = LT [p] and 	′ = LT [p + 1]. From the definition of LT , there exists
a unique substring of length 	 containing the position p. If 	 < 	′, there is no
unique substring of length 	 containing p + 1. Thus, T [p − 	 + 1..p] is unique,
and consequently T [p − 	 + 1..p + 1] is also unique. Hence, 	′ = 	 + 1. Similarly,
in the case of 	 > 	′, it can be proven that 	′ = 	 − 1. 	


3 Although there can be multiple SUSs containing i, their lengths are all equal.
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Fig. 3. MUST ,BT , LT , and the four functions defined in at the beginning of Sect. 6
for the string T = bcaacaabcaaababca. BT [7] = 0 because the MUS T [7..11] = abcaa

is meaningless.

Lemma 8. Let p be a position with 1 ≤ p ≤ |T | − 1, and let 	 := LT [p]. If
LT [p + 1] = 	 + 1, then

– T [p − 	 + 1..p] ∈ SUST (p),
– T [p − 	 + 1..p + 1] ∈ SUST (p + 1), and
– p − 	 + 1 is the starting position of a MUS of T .

If L[p + 1] = 	 − 1 then

– T [p..p + 	 − 1] ∈ SUST (p),
– T [p + 1..p + 	 − 1] ∈ SUST (p + 1), and
– p + 	 − 1 is the ending position of a MUS of T .

Proof. First, we consider the case that LT [p + 1] = 	 + 1. From the proof of
Lemma 7, T [p − 	 + 1..p] and T [p − 	 + 1..p + 1] are unique substrings in T .
Thus, T [p − 	 + 1..p] ∈ SUST (p) and T [p − 	 + 1..p + 1] ∈ SUST (p + 1). Since
every point SUS contains exactly one MUS (cf. Lemma 4), there exists a MUS
[b, e] ⊂ [p − 	 + 1, p]. Assume that b > p − 	 + 1, then T [b..p] is the shortest
unique substring among all substrings containing the text position p. Its length
is p − b + 1 < 	. This contradicts that T [p − 	 + 1..p] ∈ SUST (p), and therefore
b = p − 	 + 1 must hold. The remaining case LT [p + 1] = 	 − 1 can be proven
analogously by symmetry. 	


In the following two lemmas (Lemmas 9 and 10), we focus on finding the
leftmost SUS and the rightmost SUS for a given query point. That is because
the leftmost SUS and the rightmost SUS give us an interval containing the
starting positions of the remaining SUSs we want to report4.
4 The actual reporting of those SUSs is done in Lemma 14.
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Fig. 4. Example of the proof of Lemma 9 with LT [p] = � = 6. The example (as well
as all later examples in this section) still works when replacing the number � = 6 with
another number as long as the relative differences to the other entries in LT and the
search range in T is kept.

Lemma 9. Let p be a position with 1 ≤ p ≤ n, and let 	 = LT [p], q =
predneqLT

(p), and b = succ1posBT
(max{1, p−	+1}). Then, b ≤ min{p+	−1, n}

and

lmSUSp
T =

⎧
⎪⎨

⎪⎩

[p, p + 	 − 1] if b ≥ p, (1a)
[q + 1, q + 	] if b < p and q ≥ p − 	 + 1 and LT [q] > 	, (1b)
[b, b + 	 − 1] otherwise. (1c)

Proof. If 	 = 1, it is clear that the interval [p, p] of length 1 is a MUS of T ,
thus b = p and lmSUSp

T = [p, p]. For the rest of the proof, we focus on the
case that 	 ≥ 2. Since LT [p] = 	, there exists a unique substring of length 	
containing the position p, and there exists at least one MUS that is a subinterval
of [p − 	 + 1, p + 	 − 1]. Thus, b ≤ min{p + 	 − 1, n}. See Fig. 4 for an illustration
of each of the above cases we consider in the following:

(1a) Assume that there exists a unique substring T [p′..p′ + 	 − 1] containing
the position p with p′ < p. Since b ≥ p > p′, T [p′ + 1..p′ + 	 − 1] is
also unique and contains position p. It contradicts LT [p] = 	; therefore,
lmSUSp

T = [p, p + 	 − 1].
(1b) From the definition of q and Lemma 7, LT [q] = 	+1 and LT [q+1] = 	. From

Lemma 8, [q +1, q + 	] is unique. Also, [q +1, q + 	] ∈ SUST (p) because p ∈
[q +1, q + 	]. Since LT [q] = 	+1, there is no unique substring that contains
the position q and is shorter than 	+1. Therefore, lmSUSp

T = [q + 1, q + 	].
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(1c) We divide this case into two subcases:
(1c-1) b < p and q ≥ p − 	 + 1 and LT [q] < 	, or
(1c-2) b < p and q < p − 	 + 1.

In Subcase (1c-1), from the definition of q and Lemma 7, LT [q] = 	−1 and
LT [i] = 	 for all i ∈ [q + 1, p]. From Lemma 8, the interval [q − 	 + 2, q]
of length 	 − 1 is unique. Since [p − 	 + 1, q] ⊂ [q − 	 + 2, q], LT [i] ≤ 	 − 1
for all i ∈ [p − 	 + 1, q]. In Subcase (1c-2), it is clear that LT [i] = 	 for
all i ∈ [p − 	 + 1, p]. Therefore, LT [i] ≤ 	 for all i ∈ [p − 	 + 1, p] in both
subcases. Let e be the ending position of the meaningful MUS [b, e] starting
at the position b, and 	′ = e − b + 1 be the length of this MUS. We assume
	′ > 	 for the sake of contradiction (and thus [b, e] cannot be lmMUSp

T

whose length is at most 	). Since b ≥ p− 	+1 and 	′ > 	, e > p must hold.
Let [b′, e′] = lmMUSp

T . Since (a) there is no interval [x, y] ∈ SUST (p) such
that x < min{b, p}, and (b) MUSs cannot be nested, we follow that b′ > b
and e′ > e. Thus, lmSUSp

T = cover([b′, e′], p) = [e′ − 	 + 1, e′] and LT [i] ≤ 	
for all p ≤ i ≤ e′. Since [b, e] ⊂ [p − 	 + 1, e′], LT [i] ≤ 	 for all b ≤ i ≤ e.
This contradicts that the MUS [b, e] of length 	′ > 	 is a meaningful MUS.
Therefore, 	′ ≤ 	 and lmSUSp

T = cover([b, e], p) = [b, b + 	 − 1]. 	

From Lemma 9 we yield the following corollary:

Corollary 1. If we can compute LT [i], predneqLT
(i) and succ1posBT

(i) in con-
stant time for each i with 1 ≤ i ≤ n, we can compute lmSUSp

T in constant time
for each position p with 1 ≤ p ≤ n.

Fig. 5. Example of the proof of Lemma 10 with LT [p] = � = 6.

Lemma 10. Let p be a position with 1 ≤ p ≤ n, and let 	 = LT [p], q =
succneqLT

(p), and b = pred1posBT
(p). Then,
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rmSUSp
T =

⎧
⎪⎨

⎪⎩

[p, p + 	 − 1] if q = p + 1 and LT [q] < 	, (2a)
[q − 	, q − 1] if q ≤ p + 	 − 1 and LT [q] > 	, (2b)
[b, b + 	 − 1] otherwise. (2c)

Proof. If 	 = 1, it is clear that the interval [p, p] of length 1 is a MUS of T , thus
b = p and rmSUSp

T = [p, p]. We consider the condition of 	 ≥ 2. See Fig. 5 for an
illustration of each of the above cases we consider in the following:

(2a) From Lemma 8, [p, p + 	 − 1] is a SUS for p, which is by definition the
rightmost one.

(2b) In this case, LT [q] = 	+1 and LT [q−1] = 	. From Lemma 8, [q−	, q−1] is
unique. Since p ∈ [q−	, q+1], [q−	, q−1] is a SUS for p. Additionally, there
is no unique interval [x, y] ∈ SUST (p) such that y ≥ q because LT [q] = 	+1.
Thus, rmSUSp

T = [q − 	, q − 1].
(2c) We divide this case into two subcases:

(2c-1) p + 1 < q ≤ p + 	 − 1 and LT [q] < 	, or
(2c-2) q > p + 	 − 1.

In Subcase (2c-1), LT [p + 1] = 	 and LT [q] = 	 − 1 and LT [i] = 	 for all
p+2 ≤ i ≤ q−1. From Lemma 8, [q, q+	−2] (of length 	−1) is unique. Since
[q, p+	−1] ⊂ [q, q+	−2], LT [i] ≤ 	−1 for all q ≤ i ≤ p+	−1. In Subcase
(2c-2), from the definition of q, LT [i] = 	 for all p ≤ i ≤ p+	−1. Therefore,
LT [p + 1] = 	 and LT [i] ≤ 	 for all integers i with p + 2 ≤ i ≤ p + 	 − 1 in
both subcases.
For the sake of contradiction, assume that there is a MUS [b′, e′] such that
b′ > p and cover([b′, e′], p) = [p, e′] ∈ SUST (p). Since LT [p] = 	, [p, e′] is
a unique substring of length 	. Hence, cover([b′, e′], p + 1) = [p + 1, e′] is
a unique substring of length 	 − 1. It contradicts LT [p + 1] = 	; therefore,
the beginning position of the rightmost MUS for p is at most p. Next,
we show that the MUS starting at b is the rightmost meaningful MUS
for p. Let e be its ending position, and 	′ = e − b + 1 be its length. We
assume that 	′ > 	 for the sake of contradiction (and thus, [b, e] is not
rmMUSp

T whose length is at most 	). Since LT [p] = 	, b ≥ p − 	 + 1 and
e > p. Let [b′′, e′′] = rmMUSp

T . Since MUSs cannot be nested, b′′ < b. Since
e′′ − b′′ + 1 ≤ 	, LT [i] ≤ 	 for all i with b′′ ≤ i ≤ p + 	 − 1. We consider two
cases to obtain a contradiction:
– If e ≤ p + 	 − 1 then it is clear that LT [i] ≤ 	 for all i with b ≤ i ≤ e.

This contradicts that the MUS [b, e] of length 	′ is a meaningful MUS.
– If e > p + 	 − 1, it is clear that |cover([b, e], p + 	 − 1)| = |[b, e]| = 	′.

Since LT [p + 	 − 1] ≤ 	, there exists a unique substring [s, t] such that
s ≤ p + 	 − 1 ≤ t and t − s + 1 ≤ 	. Hence, LT [i] ≤ 	 for all i with
s ≤ i ≤ t. Since [b, e] is a MUS and p ≤ s, b < s < e < t. Consequently,
LT [i] ≤ 	 for all i with b ≤ i ≤ e and this contradicts that the MUS [b, e]
of length 	′ is a meaningful MUS.

Therefore, 	′ ≤ 	 and rmSUSp
T = cover([b, e], p) = [b, b + 	 − 1]. 	
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Corollary 2. If we can compute LT [i], succneqLT
(i) and pred1posBT

(i) in con-
stant time for each i with 1 ≤ i ≤ n, we can compute rmSUSp

T in constant time
for each position p with 1 ≤ p ≤ n.

6.2 Compact Representations of L

We now propose a succinct representation of the array LT consisting of the
integer array LDT of length n defined as LDT [1] = 0 and LDT [i] = LT [i]−LT [i−
1] ∈ {−1, 0, 1} for every i with 2 ≤ i ≤ n.

Lemma 11. The data structure of Theorem 1 can compute LT [p] in constant
time with O(log n) bits of additional working space for each p with 1 ≤ p ≤ n.

Proof. Suppose that we have the data structure D of Theorem 1 and want to
know LT [p]. We query D with the interval [p, p] to retrieve one SUS for the query
interval [p, p] in constant time. This can be achieved by stopping the retrieval
after the first SUS [i, j] ∈ SUST ([p, p]) has been reported. Since all SUSs for [p, p]
have the same length, LT [p] = j − i+1. The additional working space is O(log n)
bits. 	


Table 1. Working space used during the construction of the data structure proposed in
Theorem 2. We can free up space of no longer needed data structures between several
steps. See also Fig. 2 for the dependencies of the execution, and other possible ways to
build the final data structure. However, these other ways need more maximum working
space (at some step) than the way listed in this table.

No. Process Total working space in bits
(excluding MBT and MET )

1 input MBT , MET -

2 construct RmQ on MUSlenT 2m + o(n) Lemma 6

3 construct LDT , LT [1] 2n + 2m + o(n) Lemma 11

4 free RmQ on MUSlenT 2n + o(n)

5 construct Huffman-shaped Wavelet
Tree for LDT

2n + �n log2 3� + o(n) Lemma 12

6 free LDT �n log2 3� + o(n)

7 construct RMQ on LT 2n + �n log2 3� + o(n) Lemma 13

8 construct BT 3n + �n log2 3� + o(n) Lemma 13

Lemma 11 allows us to compute LDT in O(n) time, which we represent as an
integer array with bit width two, thus using 2n bits of space. In the following,
we build a compressed rank/select data structure on LDT . This data structure
is a self-index such that we no longer need to keep LDT in memory. With LDT

we can access LT , as can be seen by the following lemma:
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Lemma 12. There exists a data structure of size �n log2 3� + o(n) bits that can
access LT [i], and can compute predneqLT

(i) and succneqLT
(i) in constant time

for each position i with 1 ≤ i ≤ n. Given MBT and MET , the data structure can
be constructed in O(n) time using 2n + max{�n log2 3�, 2m} + o(n) bits of total
working space, which includes the space for this data structure.

Proof. The following equations hold for every text position i with 1 ≤ i ≤ n:

LT [i] = LT [1] + rankLDT
(1, i) − rankLDT

(−1, i),
predneqLT

(i) = max{selectLDT
(c, rankLDT

(c, i)) − 1 | c ∈ {−1, 1}},

succneqLT
(i) = min{selectLDT

(c, rankLDT
(c, i) + 1) | c ∈ {−1, 1}}.

We can compute the value of LT [1] and LDT with Lemma 11. With a rank/select
data structure on LDT we can compute the above functions. Such a data struc-
ture is the Huffman-shaped wavelet tree [9]. This data structure can be con-
structed in linear time and takes �n log2 3�+o(n) bits of space, since the possible
number of different values in LDT is three. Therefore, it can also provide answers
to rank/select queries in constant time. 	


Finally, we show how to compute BT :

Lemma 13. There exists a data structure of size n+o(n) bits that can compute
succ1posBT

(i) and pred1posBT
(i) in constant time for each position 1 ≤ i ≤ n.

Given MBT and MET , this data structure can be constructed in O(n) time using
3n+ �n log2 3�+o(n) bits of total working space including the space for this data
structure.

Proof. Our idea is to compute BT since the following equations hold for every
text position i with 1 ≤ i ≤ n (cf. BITY in Sect. 3.2):

pred1posBT
(i) =

{
i if BT [i] = 1,

selectBT
(1, rankBT

(1, i)) if BT [i] = 0.

succ1posBT
(i) =

{
i if BT [i] = 1,

selectBT
(1, rankBT

(1, i) + 1) if BT [i] = 0.

In the following we show how to compute BT from MBT and MET in linear
time with linear number of bits of working space. Let bi = selectMBT

(1, i) and
ei = selectMET

(1, i) be the starting position and the ending position of the i-th
MUS respectively, for each 1 ≤ i ≤ m. Given xi = RMQLT

(bi, ei), LT [xi] ≤
ei − bi + 1 since bi ≤ xi ≤ ei and [bi, ei] is unique. If LT [xi] < ei − bi + 1, there
is no position p with cover([bi, ei], p) ∈ SUST (p), i.e., [bi, ei] is a meaningless
MUS. Otherwise (LT [xi] = ei − bi + 1), cover([bi, ei], xi) = [bi, ei] ∈ SUST (xi),
i.e., [bi, ei] is a meaningful MUS. Hence, it can be detected in constant time
whether a MUS is meaningful by an RMQ query on LT . We can compute the
compact representation of LT described in Lemma 12. The data structure takes
�n log2 3� + o(n) bits and can be constructed with 2n + max{�n log2 3�, 2m} +
o(n) bits of total working space. Subsequently, we endow it with the RMQ data
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structure of Lemma 3 in O(n) time using 2n + o(n) bits of space. Therefore,
the computing time of BT is O(n) and the working space is, asides from the
space for MBT and MET , 3n + �n log2 3� + o(n) bits, including the space for BT .
Finally, we can endow BT with rank/select data structures, which allows us to
compute each of the above two functions pred1posBT

and succ1posBT
in constant

time. 	

Actually, having MBT and MET available, we can simulate an access to LT [i]

in constant time with Lemma 11 by using the RmQ data structure on MUSlenT .
This allows us to compute the RMQ data structure on LT directly without the
need for computing BT at first place, i.e., we can replace the working space of
Lemma 13 with 2n+2m+ o(n) additional bits of working space. However, since
our final data structure needs LDT , computing BT before LDT would require
more working space in the end than in the other way around, since we no longer
need the RmQ data structure on MUSlenT after having built the rank/select data
structure of Lemma 12.

Before stating our final theorem, we need a property for meaningful MUSs:

Lemma 14. On the one hand, cover([si, ei], p) ∈ SUST (p) for every meaningful
MUS [si, ei] starting with or after the leftmost MUS for p and starting before
or with the rightmost MUS for p. On the other hand, each element (i.e., an
interval) of SUST (p) starting with or after the leftmost MUS for p and starting
before or with the rightmost MUS for p contains exactly one distinct MUS.

Proof. The first part is shown by Tsuruta et al. [13, Lemma 3]. The second part
is due to Lemma 4. 	

Theorem 2. For the point SUS problem, there exists a data structure of size
n+�n log2 3�+o(n) bits that can answer a point SUS query in O(occ) time, where
occ is the number of SUSs of T for the respective query point. Given MBT and
MET , the data structure can be constructed in O(n) time using 3n+ �n log2 3�+
o(n) bits of total working space, which includes the space for this data structure.

Proof. Let p be a query position, and suppose that the number of SUSs for
p is occ. Like the MUSs in Sect. 4, we rank the SUSs for p by their starting
positions. Let [sj , ej ] be the j-th SUS for p with 1 ≤ j ≤ occ such that [s1, e1]
and [socc, eocc] are the leftmost SUS and the rightmost SUS for p, respectively.
If s1 = p then [s1, e1] = [socc, eocc], and thus the output consists of this single
interval. Otherwise (s1 �= p), we can compute si iteratively from si−1 by si =
selectBT

(1, rankBT
(1, si−1) + 1) in constant time for each i with 2 ≤ i ≤ occ − 1,

allowing us to answer the query in time linear to the number of SUSs. As occ is
not known in advance, we stop the iteration whenever we computed an si that is
larger than the starting position of the rightmost SUS for p. A detailed analysis
of the claimed working space is given in Table 1. 	

Corollary 3. The data structure of Theorem 2 can compute the number of SUSs
for a query position in constant time.
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Proof. Let [sl, el] and [sr, er] be the leftmost and the rightmost SUS for a given
query position, respectively. All MUSs starting between sl and sr (excluding sl

and sr) are SUSs for this query position. Let occ′ be their number. Therefore,
the number we want to output is occ = occ′ + 2. With Lemmas 9 and 10, we
can find [sl, el] and [sr, er] in constant time. Further, we can compute occ′ in
constant time since occ′ = rankBT

(1, sr − 1) − rankBT
(1, sl). 	
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Abstract. Cartesian tree matching is the problem of finding all sub-
strings of a given text which have the same Cartesian trees as that of
a given pattern. So far there is one linear-time solution for Cartesian
tree matching, which is based on the KMP algorithm. We improve the
running time of the previous solution by introducing new representa-
tions. We present the framework of a binary filtration method and an
efficient verification technique for Cartesian tree matching. Any exact
string matching algorithm can be used as a filtration for Cartesian tree
matching on our framework. We also present a SIMD solution for Carte-
sian tree matching suitable for short patterns. By experiments we show
that known string matching algorithms combined on our framework of
binary filtration and efficient verification produce algorithms of good
performances for Cartesian tree matching.

Keywords: Cartesian tree matching · Global-parent representation ·
Filtration algorithms

1 Introduction

String matching is one of fundamental problems in computer science. There are
generalized matchings such as parameterized matching [3,5], swapped matching
[1,4], overlap matching [2], jumbled matching [6], and so on. These problems are
characterized by the way of defining a match, which depends on the application
domains of the problems. In particular, order-preserving matching [17,18,20] and
Cartesian tree matching [21] deal with the order relations between numbers.

The Cartesian tree [23] is a tree data structure that represents a string,
focusing on the orders between elements of the string. Park et al. [21] intro-
duced a metric of match called Cartesian tree matching. It is the problem of
finding all substrings of a text T which have the same Cartesian trees as that
of a pattern P . Cartesian tree matching can be applied to finding patterns in
time series data such as share prices in stock markets, like order-preserving
matching, but sometimes it may be more appropriate as indicated in [21].
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Fig. 1. Cartesian tree matching, and Cartesian tree corresponding to pattern.

Figure 1 shows an example of Cartesian tree matching. Suppose T =
(10, 12, 16, 15, 6, 14, 9, 12, 11, 14, 9, 17, 12, 10, 12) and P = (3, 1, 6, 4, 8, 6, 7, 5, 9).
The Cartesian tree of substring u = (15, 6, 14, 9, 12, 11, 14, 9, 17) is the same as
that of P . Note that if we use order-preserving matching instead of Cartesian
tree matching as a metric, u does not match P .

String matching algorithms have been designed over the years. To speed
up the search phase of string matching, algorithms based on automata and
bit-parallelism were developed [12,14]. In recent years, the SIMD instruction
set architecture gave rise to packed string matching, where one can compare
packed data elements in parallel. In the last few years, many solutions for order-
preserving matching have been proposed. Given a text of length n and a pattern
of length m, Kubica et al. [20] and Kim et al. [18] gave O(n+m log m) time solu-
tions based on the KMP algorithm. Cho et al. [11] presented an algorithm using
the Boyer–Moore approach. Chhabra and Tarhio [10] presented a new practical
solution based on filtration, and Chhabra et al. [9] gave a filtration algorithm
using the Boyer-Moore-Horspool approach and SIMD instructions. Cantone et
al. [7] proposed filtration methods using the q-neighborhood representation and
SIMD instructions. These filtration methods [7,9,10] take sublinear time on
average.

In this paper we introduce new representations, prefix-parent representation
and prefix-child representation, which can be used to decide whether two strings
have the same Cartesian trees or not. Using these representations, we improve
the running time of the previous Cartesian tree matching algorithm in [21].
We also present a binary filtration method for Cartesian tree matching, and
give an efficient verification technique for Cartesian tree matching based on the
global-parent representation. On the framework of our binary filtration method
and efficient verification technique, we can apply any known string matching
algorithm [8,12,15] as a filtration for Cartesian tree matching. In addition, we
present a SIMD solution for Cartesian tree matching based on the global-parent
representation, which is suitable for short patterns. We conduct experiments
comparing many algorithms for Cartesian tree matching, which show that known
string matching algorithms combined on the framework of our binary filtration
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and efficient verification for Cartesian tree matching produce algorithms of good
performances for Cartesian tree matching.

This paper is organized as follows. In Sect. 2, we describe notations and the
problem definition. In Sect. 3, we present an improved linear-time algorithm
using new representations. In Sect. 4, we present the framework of binary filtra-
tion and efficient verification. In Sect. 5, we present a SIMD solution for short
patterns. In Sect. 6, we give the experimental results of the previous algorithm
and the proposed algorithms.

2 Preliminaries

2.1 Basic Notations

A string is defined as a finite sequence of elements in an alphabet Σ. In this
paper, we will assume that Σ has a total order <. For a string S, S[i] represents
the ith element of S, and S[i..j] represents a substring of S from the ith element
to the jth element. If i > j then S[i..j] is an empty string.

We will say S[i] ≺ S[j], if and only if S[i] < S[j], or S[i] and S[j] have the
same value with i < j. Note that S[i] = S[j] (as elements of the string) if and
only if i = j. Unless stated otherwise, the minimum is defined by ≺.

2.2 Cartesian Tree Matching

A string S can be associated with its corresponding Cartesian tree CT (S) [23]
according to the following rules:

– If S is an empty string, then CT (S) is an empty tree.
– If S[1..n] is not empty and S[i] is the minimum value among S, then CT (S)

is the tree with S[i] as the root, CT (S[1..i − 1]) as the left subtree, and
CT (S[i + 1..n]) as the right subtree.

Cartesian tree matching is to find all substrings of the text which have the same
Cartesian trees as that of the pattern. Formally, Park et al. [21] define it as
follows:

Definition 1. (Cartesian tree matching) Given two strings text T [1..n] and
pattern P [1..m], find every 1 ≤ i ≤ n − m + 1 such that CT (T [i..i + m − 1]) =
CT (P [1..m]).

Instead of building the Cartesian tree for every position in the text to solve
Cartesian tree matching, Park et al. [21] use the following representation for a
Cartesian tree.

Definition 2. (Parent-distance representation) Given a string S[1..n], the
parent-distance representation of S is a function PDS , which is defined as fol-
lows:

PDS(i) =

{
i − max1≤j<i{j : S[j] ≺ S[i]} if such j exists
0 otherwise.

Since the parent-distance representation has a one-to-one mapping to the Carte-
sian tree [21], it can replace the Cartesian tree without any loss of information.
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idx 1 2 3 4 5 6 7 8 9
S 3 1 6 4 8 6 7 5 9

PPS 1 2 2 2 4 4 6 4 8

PCS 1 1 3 3 5 5 7 6 9

GPS 2 2 4 2 6 8 6 4 8

PPS

PCS

GPS

3 1 6 4 8 6 7 5 9

3 1 6 4 8 6 7 5 9

3 1 6 4 8 6 7 5 9

Fig. 2. PPS , PCS , GPS for S = (3, 1, 6, 4, 8, 6, 7, 5, 9).

3 Fast Linear Cartesian Tree Matching

The previous algorithm for Cartesian tree matching due to Park et al. [21] is
based on the KMP algorithm [19]. They changed the pattern and the text to
parent-distance representations and found matches using the KMP algorithm.
To compute the parent-distance representations of substrings of the text using
O(m) space, however, they used a deque data structure. We improve the text
search phase of the previous algorithm by removing the overhead of computing
parent-distance representations including deque operations.

In the text search phase of the previous algorithm, the parent-distance of each
element T [i] in T [i − q..i] is computed to check whether it matches PDP (q + 1)
when we know that PDP [1..q] matches PDT [i−q..i−1]. We can do it directly with-
out computing the parent-distances of text elements by using following repre-
sentations: prefix-parent representation and prefix-child representation.

Definition 3. (prefix-parent representation) Given a string S[1..n], the prefix-
parent representation of S is a function PPS , which is defined as follows:

PPS(i) =

{
max1≤j<i{j : S[j] ≺ S[i]} if such j exists
i otherwise.

Since PPS(i) = i − PDS(i), the prefix-parent representation also has a one-to-
one mapping to the Cartesian tree.

Definition 4. (prefix-child representation) Given a string S[1..n], the prefix-
child representation of S is a function PCS , which is defined as follows: PCS(1) =
1, and for i ≥ 2,

PCS(i) =

⎧
⎪⎨

⎪⎩

j such that S[j] is minimum for 1 ≤ j < i if PPS(i) = i

i if PPS(i) = i − 1

j such that S[j] is minimum for PPS(i) < j < i if PPS(i) < i − 1.

In other words, S[PCS(i)] is a child of S[i], because S[PCS(i)] is the root of
CT (S[PPS(i) + 1..i − 1]) when PPS(i) < i − 1, and S[PCS(i)] is the root of
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Algorithm 1. Text search of Cartesian tree matching
1: procedure CARTESIAN-TREE-MATCH(T [1..n], P [1..m])
2: (PPP , PCP ) ← PREFIX-PARENT-CHILD-REP(P )
3: π ← FAILURE-FUNC(P )
4: q ← 0
5: for i ← 1 to n do
6: while q �= 0 do
7: if T [i − q − 1 + PPP (q + 1)] � T [i] � T [i − q − 1 + PCP (q + 1)] then
8: break
9: else

10: q ← π[q]

11: q ← q + 1
12: if q = m then
13: print “Match occurred at i − m + 1”
14: q ← π[q]

CT (S[1..i−1]) when PPS(i) = i. When PPS(i) = i−1, there is no child of S[i]
in CT (S[1..i]), and thus we set PCS(i) as i.

Figure 2 shows the prefix-parent representation (resp. the prefix-child repre-
sentation) of string S = (3, 1, 6, 4, 8, 6, 7, 5, 9) by arrows. The arrow starting from
S[i] indicates PPS(i) (resp. PCS(i)). If PPS(i) = i (resp. PCS(i) = i), we omit
the arrow.

The advantage of using the prefix-child representation and the prefix-parent
representation is that we can check whether each text element matches the
corresponding pattern element in constant time without computing its parent-
distance [21].

Theorem 1. Given two strings P and S, assume that P [1..q] and S[1..q] have
the same prefix-parent representations. If S[PPP (q+1)] � S[q+1] � S[PCP (q+
1)], then P [1..q + 1] and S[1..q + 1] have the same prefix-parent representations,
and vice versa.

Proof. (=⇒) If q = 0, P [1] and S[1] always have the same prefix-parent 1.
Now let’s assume q ≥ 1. There are three cases, in each of which we show that
PPP (q + 1) = PPS(q + 1).

1. Case PPP (q + 1) = q + 1: Since P [PCP (q + 1)] is the minimum element
in P [1..q] and PPP (i) = PPS(i) for 1 ≤ i ≤ q, S[PCP (q + 1)] is also the
minimum element in S[1..q]. Therefore, if S[q + 1] � S[PCP (q + 1)] holds,
then we have PPS(q + 1) = q + 1.

2. Case PPP (q + 1) = q: Since S[q] � S[q + 1], we have PPS(q + 1) = q.
3. Case PPP (q + 1) < q: Since P [PCP (q + 1)] is the minimum element in

P [PPP (q+1)+1..q] and PPP (i) = PPS(i) for 1 ≤ i ≤ q, S[PCP (q+1)] is also
the minimum element in S[PPP (q +1)+1..q]. Therefore, if S[PPP (q +1)] �
S[q + 1] � S[PCP (q + 1)] holds, then PPS(q + 1) = PPP (q + 1).

(⇐=) It is trivial by definitions of PP and PC. �	
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Algorithm 2. Computing prefix-parent and prefix-child representations
1: procedure PREFIX-PARENT-CHILD-REP(P [1..m])
2: ST ← an empty stack
3: for i ← 1 to m do
4: jnext ← i
5: while ST is not empty do
6: j ← ST.top
7: if P [j] ≺ P [i] then
8: break
9: ST.pop

10: jnext ← j

11: PCP (i) ← jnext

12: if ST is empty then
13: PPP (i) ← i
14: else
15: PPP (i) ← j

16: ST.push(i)

17: return (PPP , PCP )

With the prefix-parent representation and the prefix-child representation of
pattern P , we can simplify the text search. For each element T [i], we can check
PPP (q+1) = PPT [i−q..i](q+1) by comparing T [i] with the elements in T [i−q..i]
whose indices correspond to PPP (q+1) and PCP (q+1) in P . Using this idea, we
don’t have to compute PPT [i−q..i](q + 1). Algorithm 1 describes the algorithm
to do this. We compute the failure function π in the same way as [21] does.

Given a string P [1..m], we can compute the prefix-child representation and
the prefix-parent representation simultaneously in linear time using a stack.
PPP (i) = j means that P [j] ≺ P [k] for j < k < i. The same is true for
PCP (i). On the stack, therefore, we maintain only j’s which satisfy P [j] ≺ P [k]
for j < k < i while scanning from i = 1 to m. Suppose that j1, j2, . . . , jr are
on the stack when we are computing PPP (i) and PCP (i). (We assume that
jr+1 = i.) Then, (P [j1], P [j2], . . . , P [jr]) forms an increasing subsequence of P .
When we consider a new index i, we pop the indices jr, jr−1, . . . , jt+1 repeatedly
until we have P [jt] ≺ P [i]. If there exists such an index jt, we set PPP (i) = jt
and PCP (i) = jt+1. (If t = r, then PCP (i) = jt+1 = i.) Otherwise, P [i] is the
minimum element in P [1..i], and thus PPP (i) = i and PCP (i) = j1. Finally,
we push i onto the stack. Algorithm 2 describes the algorithm to compute PPP

and PCP simultaneously.

4 Fast Cartesian Tree Matching with Filtration

In this section we present a practical solution based on filtration. Our solution
for Cartesian tree matching consists of two phases: filtration and verification.
First, the text is filtered with some exact string matching algorithm using a
binary representation. In the second phase, the potential candidates are verified
using a global-parent representation.
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4.1 Filtration

In the filtration phase, a string S is translated into a binary representation βS

as follows.

Definition 5. (binary representation) Given a string S[1..n], the binary repre-
sentation of S is a binary string βS of length n − 1, which is defined as follows:

βS [i] =

{
0 if PPS(i + 1) = i

1 otherwise,

for each 1 ≤ i ≤ n − 1.

One can easily check whether PPS(i + 1) = i is true or not by comparing S[i]
and S[i+1]: PPS(i+1) = i if and only if S[i] ≺ S[i+1]. The following theorem
proves that the binary representation can be used to filter a text T to search for
all Cartesian tree matching occurrences of a pattern P .

Theorem 2. Let P and T be two strings of lengths m and n, respectively,
and let βP and βT be the binary representations associated with P and T ,
respectively. If CT (P [1..m]) = CT (T [i..i + m − 1]), then βP [j] = βT [i + j − 1]
for 1 ≤ j ≤ m − 1.

Proof. The prefix-parent representation has a one-to-one mapping to the Carte-
sian tree. Therefore, if CT (P [1..m]) = CT (T [i..i + m − 1]), then PPP (j + 1) =
PPT (i + j) for 0 ≤ j ≤ m − 1. If PPP (j + 1) = PPT (i + j), then βP [j] =
βT [i + j − 1] for 1 ≤ j ≤ m − 1.

Theorem 2 guarantees that any standard exact string matching algorithm can
be used as a filtration procedure. As the exact string matching algorithm returns
matches of βP in βT , these matches are only possible candidates of Cartesian
tree matching which should be verified.

Cantone et al. [7] presented two filtration methods other than the binary
representation to solve order-preserving matching. They used the property that
T doesn’t match P at position i if there are two positions j and k such that
P [j] � P [k] ⇔ T [i+j−1] � T [i+k−1] doesn’t hold. Thus any comparison result
between two positions can be used for filtration. In Cartesian tree matching,
however, even if there exist such j and k, the corresponding Cartesian trees can
be the same when |j − k| > 1. Therefore, we cannot use these filtration methods
for Cartesian tree matching.

4.2 Verification

In the verification phase, we have to check whether the candidates found by the
filtration phase are actual matches or not. This checking can be done using prefix-
parent and prefix-child representations by Theorem 1, which takes 2 comparisons
per element. In order to reduce the number of comparisons to 1, we introduce
another representation as follows.
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Definition 6. (Global-parent representation) Given a string S[1..n], the global-
parent representation of S is a function GPS , which is defined as follows:

GPS(i) =

{
j such that PCS(j) = i for j > i

PPS(i) if such j doesn’t exist.

GPS(i) is well-defined because there is at most one j > i which satisfies PCS(j) =
i. Figure 2 shows the global-parent representation by arrows. The arrow starting
from S[i] indicates the global parent of S[i]. If GPS(i) = i, we omit the arrow.

Theorem 3. Two strings P [1..m] and S[1..m] have the same Cartesian trees if
and only if S[GPP (i)] � S[i] for all 1 ≤ i ≤ m.

Proof. We will prove that S[PPP (i)] � S[i] � S[PCP (i)] for all 1 ≤ i ≤ m if
and only if S[GPP (i)] � S[i] for all 1 ≤ i ≤ m.

(=⇒) It is trivial by definition of GP.
(⇐=) Assume S[GPP (i)] � S[i] for all 1 ≤ i ≤ m. For any 1 ≤ k ≤ m, we

first show S[k] � S[PCP (k)], and then we show S[PPP (k)] � S[k].

1. (Proof of S[k] � S[PCP (k)]) There are two cases: PCP (k) = k and PCP (k) �=
k. If PCP (k) = k, then S[k] � S[PCP (k)] holds trivially. Otherwise, since
GPP (PCP (k)) = k, S[k] = S[GPP (PCP (k))] � S[PCP (k)]. Therefore, S[k] �
S[PCP (k)] holds.

2. (Proof of S[PPP (k)] � S[k]) If GPP (k) = PPP (k), then S[PPP (k)] =
S[GPP (k)] � S[k]. So we only have to consider the case that there is k1 > k
which satisfies PCP (k1) = k. Let k = k0 < k1 < · · · < kr ≤ m be a
sequence such that PCP (kl+1) = kl, and there is no kr+1 > kr which satis-
fies PCP (kr+1) = kr. Since (k0, k1, . . . , kr) is a strictly increasing sequence,
such kr always exists. Note that GPP (kl) = kl+1 except for GPP (kr). On the
sequence, there may or may not exist j such that PPP (kj) = kj .
Suppose that there exists some j such that PPP (kj) = kj . Since
kj−1 = PCP (kj), P [kj−1] is the minimum element in P [1..kj − 1], and so
PPP (kj−1) = kj−1. Proceeding inductively, PPP (kl) = kl for all l ≤ j. Thus
S[PPP (k)] � S[k] holds trivially.
Now we consider the case that PPP (kj) �= kj for all j. Then, we have S[k0] �
S[k1] � · · · � S[kr] � S[GPP (kr)] = S[PPP (kr)] by the assumption that
S[GPP (i)] � S[i] for all i. We now show PPP (kr) = PPP (k) as follows. Since
PCP (kr) = kr−1, P [kr−1] is the minimum element in P [PPP (kr)+1..kr −1],
and P [kr−1] � P [PPP (kr)]. Hence, we have PPP (kr−1) = PPP (kr). Induc-
tively, we can show that PPP (k0) = PPP (k1) = · · · = PPP (kr). Therefore,
S[PPP (k)] � S[k] holds. �	
By Theorem 3, we only have to compare once for each element in the ver-

ification phase. For a potential candidate obtained from the filtration phase
(say, it starts from T [i]), we compare T [i + q − 1] and T [i + GPP (q) − 1]
from q = 1 to m. The candidate is discarded when there exists q such that
T [i + q − 1] ≺ T [i + GPP (q) − 1].
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Algorithm 3. Compare integers in parallel
1: procedure CompareUsingSIMD(T [1..n], i)
2: m128i a ← mm loadu si128(( m128i *)(T + i))
3: m128i b ← mm loadu si128(( m128i *)(T + i + 1))
4: m128i r ← mm cmpgt epi32(a, b)
5: return mm movemask ps( mm castsi128 ps(r))

We compute the global-parent representation using a stack, as in computing
the prefix-parent and the prefix-child representations. The only difference is that
first we set GPP (i) as PPP (i), and then if we find j such that PCP (j) = i we
update GPP (i) to j.

4.3 Sublinear Time on Average

The proof of sublinearity is similar to the analysis of order-preserving matching
with filtration [10]. Let’s assume that the elements in the pattern P and the text
T are independent of each other and the distribution is uniform. The verification
phase takes time proportional to the pattern length times the number of poten-
tial candidates. When alphabet size is |Σ|, the probability that βP [i] = 0 (i.e.,
probability that P [i] ≺ P [i+1]) is (|Σ|2+ |Σ|)/(2|Σ|2), since there are |Σ|2 pairs
and |Σ| pairs among them have equal elements. Similarly, the probability that
βP [i] = 1 is (|Σ|2−|Σ|)/(2|Σ|2), and it is the same for βT [i]. Therefore, the prob-
ability that βP [i] = βT [i] is ((|Σ|2 + |Σ|)/(2|Σ|2))2 + ((|Σ|2 − |Σ|)/(2|Σ|2))2 =
1/2+1/(2|Σ|2). As the pattern length increases, the number of potential candi-
dates decreases exponentially, and the verification time approaches zero. Hence,
the filtration time dominates. So if the filtration method takes a sublinear time
in the average case, the total algorithm takes a sublinear time in the average
case, too.

4.4 SIMD Instructions

When we use the Boyer-Moore-Horspool algorithm [15] and the Alpha skip
search algorithm [8] as the filtration method, we pack four 32-bit numbers or six-
teen 8-bit numbers into a register, as in order-preserving matching algorithms
[7,9]. Each pair of two corresponding packed data elements can be compared
in parallel using streaming SIMD extensions (SSE) [16]. In the case of 32-bit
integers, for example, we compute (T [i + 3] > T [i + 4]), (T [i + 2] > T [i + 3]),
(T [i + 1] > T [i + 2]), and (T [i] > T [i + 1]) in parallel as in Algorithm3, where
instruction mm loadu si128(( m128i *)(T + i)) loads four 32-bit integers from
memory T+i into a 128-bit register, instruction mm cmpgt epi32(a, b) compares
four pairs of packed 32-bit integers and returns the results of the comparisons
into a 128-bit register, instruction mm castsi128 ps casts the integer type to
the float type, and instruction mm movemask ps selects only the most signifi-
cant bits of the 4 floats. Comparing a pair of sixteen 8-bit numbers can be done
similarly.
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5 SIMD Solution for Short Patterns

In this section we present an algorithm that works when the alphabet consists of
1-byte characters and the pattern length m is at most 16. As shown in Sect. 4.2,
we test T [s+ i−1] � T [s+GPP (i)−1] for 1 ≤ i ≤ m to check for an occurrence
at position s of the text T .

Let W be a word of 16 bytes containing the current window of the text, i.e.,
W = T [s..s + 15]. For 1 ≤ i ≤ m, we define Wi (word obtained from W by
shifting i − GPP (i) positions to the left or to the right, depending on the sign
of i − GPP (i)) as follows:

Wi =

{
W  (GPP (i) − i) if i < GPP (i)
W � (i − GPP (i)) if i > GPP (i).

For fixed i, we can find the positions j which satisfy W [j + i − 1] � W [j +
GPP (i) − 1] for 0 ≤ j ≤ 15 in parallel by comparing Wi to W using SIMD
instructions. The satisfying positions for all 1 ≤ i ≤ m are the occurrences
of the pattern. The details of the algorithm are as follows. We test whether
Wi[j] � W [j] for 0 ≤ j ≤ 15 in parallel using the SIMD instruction Ri =
mm cmpgt epi8(W,Wi) for i < GPP (i) or Ri = ∼ mm cmpgt epi8(Wi,W ) for

i > GPP (i). (In order to get only significant bits when computing Ri, we use
instruction mm movemask epi8.) Then we compute q = ANDm

i=1(Ri  (i−1)).
Finally, we report a match at position s + j of the text if q[j] = 1.

Example 1. Let’s consider an example of the pattern P = (3, 1, 6, 4, 8) and the
window of the text W = (10, 12, 16, 15, 6, 14, 9, 12, 11, 14, 9, 17, 12, 13, 12, 10). We
observe that since 1 − GPP (1) = 3 − GPP (3), R1 = R3. Moreover we do not
need to compute R2, since 2 − GPP (2) = 0. Hence we compute R1, R4, and R5.

W = 10, 12, 16, 15, 06, 14, 09, 12, 11, 14, 09, 17, 12, 13, 12, 10
W1 = 12, 16, 15, 06, 14, 09, 12, 11, 14, 09, 17, 12, 13, 12, 10
R1 = 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, −
W = 10, 12, 16, 15, 06, 14, 09, 12, 11, 14, 09, 17, 12, 13, 12, 10
W4 = 10, 12, 16, 15, 06, 14, 09, 12, 11, 14, 09, 17, 12, 13
R4 = −, −, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1
W = 10, 12, 16, 15, 06, 14, 09, 12, 11, 14, 09, 17, 12, 13, 12, 10
W5 = 10, 12, 16, 15, 06, 14, 09, 12, 11, 14, 09, 17, 12, 13, 12
R5 = −, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0

The final result q can be computed as follows:

R1 = 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, −
R3  2 = 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, −, 0, 0
R4  3 = 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0
R5  4 = 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0
q = 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0
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Table 1. Execution times in seconds for random patterns in texts (Random datasets:
for 100 patterns, Seoul temperatures dataset: for 1000 patterns).

Dataset m KMPCT IKMPCT SBNDMCT BMHCT SKSCT PMCT

2 4 6 4 8 12 16 4 8 12 16

Random int 5 10.52 6.84 4.99 4.42 4.17 3.31

9 10.71 6.83 2.71 2.31 1.95 1.95 1.64 1.91 2.26

17 10.69 6.83 1.39 1.34 0.95 1.31 0.80 0.86 1.60 1.13 0.45 0.61 3.91

33 10.69 6.83 0.72 0.70 0.65 1.07 0.51 0.51 1.01 0.76 0.32 0.30 0.48

65 10.71 6.83 0.72 0.71 0.66 0.98 0.44 0.43 0.71 0.61 0.27 0.24 0.28

Seoul temp 5 5.08 3.07 2.67 2.91 2.52 2.27

9 5.11 3.14 1.56 1.45 1.55 1.55 1.23 1.27 1.77

17 5.51 3.12 0.89 0.81 0.71 1.10 0.62 0.63 0.84 0.88 0.44 0.49 2.55

33 5.56 3.12 0.49 0.48 0.45 0.84 0.40 0.34 0.41 0.68 0.32 0.20 0.25

65 5.52 3.11 0.48 0.48 0.46 0.77 0.26 0.19 0.28 0.57 0.25 0.13 0.12

Random char 5 10.24 6.86 4.80 4.44 3.95 3.22 0.50

7 10.32 6.86 3.53 2.89 4.47 2.39 2.40 0.84

9 10.34 6.85 2.65 2.32 1.94 1.74 1.24 1.91 1.47 1.32

13 10.32 6.85 1.75 1.68 1.10 1.23 0.70 0.68 1.34 0.45 1.15 3.76

17 10.35 6.86 1.28 1.25 0.87 1.04 0.52 0.49 0.79 1.04 0.27 0.32 1.64

33 10.34 6.85 0.61 0.60 0.54 0.78 0.29 0.26 0.43 0.66 0.16 0.09 0.11

65 10.36 6.86 0.63 0.63 0.55 0.74 0.20 0.17 0.27 0.47 0.13 0.04 0.05

Therefore, we can report 3 matches. After we have tested a window of the
text, we shift the current window to the right by 17−m positions. This algorithm
takes O(mn/(17 − m)) SIMD instructions.

6 Experiments

In this section we conduct experiments comparing the following algorithms.

– KMPCT: algorithm of Park, Amir, Landau, and Park [21]
– IKMPCT: our improved linear-time algorithm based on prefix-parent and

prefix-child representations (Sect. 3)
– PMCT: SIMD solution for short patterns (Sect. 5)
– SBNDMCTq: algorithm based on the SBNDMq filtration implemented by

Faro and Lecroq [13] on the binary representations of the text and the pattern
(Sect. 4.1) and verification using the global-parent representation (Sect. 4.2)
[12] (The following algorithms have the same framework as SBNDMCTq; only
SBNDMq is replaced by another filtration method.)

– BMHCTq: algorithm based on the q-gram Boyer-Moore-Horspool filtration
using SIMD instructions [9,15,22]

– SKSCTq: algorithm based on the q-gram Alpha skip search filtration using
SIMD instructions [7,8]

We tested for two random datasets and one real dataset, which is a time series
of Seoul temperatures. The first random dataset consists of 10,000,000 random
integers. The second random dataset consists of 10,000,000 random characters.
The Seoul temperatures dataset consists of 658,795 integers referring to the
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Fig. 3. Execution times for the random character dataset.

hourly temperatures in Seoul (multiplied by ten) in the years 1907-2019. In
general, temperatures rise during the day and fall at night. Therefore, the Seoul
temperatures dataset has more matches than random datasets. We picked 100
random patterns per pattern length from random datasets and 1000 random
patterns per pattern length for the Seoul temperatures dataset.

The experimental environments and parameters are as follows. All algorithms
were implemented in C++11 and compiled with GNU C++ compiler version
4.8.5, and O3 and msse4 options were used. The experiments were performed on
a CentOS Linux 7 with 128 GB RAM and Intel Xeon CPU E5-2630 processor.

Table 1 shows the total execution times of Cartesian tree matching algo-
rithms for random patterns (including the preprocessing). The best results are
boldfaced. We choose the best results of the random character dataset from each
algorithm regardless of q and present them in Fig. 3 (except KMPCT because
of readability). Our linear-time algorithm IKMPCT improves upon algorithm
KMPCT of [21] by about 35%. In the random character dataset, PMCT is the
fastest algorithm for short patterns. However, as the pattern length grows, algo-
rithms based on the filtration method are much faster in practice. It can be seen
that SKSCT is the fastest algorithm in most cases. When the pattern length
is equal to 9, BMHCT utilizing 8-grams is the fastest algorithm, irrespective of
the datasets. As pattern length grows, SKSCT utilizing 12-grams becomes the
fastest algorithm.

Regardless of the data type, the results are almost consistent. In details, how-
ever, there are several differences. First, filtration algorithms, especially SKSCT
algorithms, are slower at the Seoul temperatures dataset relatively. It’s because
there are more matches in the Seoul temperatures dataset. Second, when q
is large, BMHCT and SKSCT algorithms are faster in the random character
dataset than in the random integer dataset. It’s because the maximum number
that we can compute in parallel is 16 in the character dataset while it is 4 in the
integer dataset.
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Abstract. In this paper we propose a variant of the induced suffix sort-
ing algorithm by Nong (TOIS, 2013) that computes simultaneously the
Lyndon array and the suffix array of a text in O(n) time using σ +O(1)
words of working space, where n is the length of the text and σ is the
alphabet size. Our result improves the previous best space requirement
for linear time computation of the Lyndon array. In fact, all the known
linear algorithms for Lyndon array computation use suffix sorting as a
preprocessing step and use O(n) words of working space in addition to
the Lyndon array and suffix array. Experimental results with real and
synthetic datasets show that our algorithm is not only space-efficient but
also fast in practice.

Keywords: Lyndon array · Suffix array · Induced suffix sorting ·
Lightweight algorithms

1 Introduction

The suffix array is a central data structure for string processing. Induced suffix
sorting is a remarkably powerful technique for the construction of the suffix array.
Induced sorting was introduced by Itoh and Tanaka [10] and later refined by Ko
and Aluru [11] and by Nong et al. [18,19]. In 2013, Nong [17] proposed a space
efficient linear time algorithm based on induced sorting, called SACA-K, which
uses only σ+O(1) words of working space, where σ is the alphabet size and the
working space is the space used in addition to the input and the output. Since a
small working space is a very desirable feature, there have been many algorithms
adapting induced suffix sorting to the computation of data structures related to
the suffix array, such as the Burrows-Wheeler transform [21], the Φ-array [8], the
LCP array [4,14], and the document array [13].
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The Lyndon array of a string is a powerful tool that generalizes the idea of
Lyndon factorization. In the Lyndon array (LA) of string T = T [1] . . . T [n] over
the alphabet Σ, each entry LA[i], with 1 ≤ i ≤ n, stores the length of the longest
Lyndon factor of T starting at that position i. Bannai et al. [2] used Lyndon
arrays to prove the conjecture by Kolpakov and Kucherov [12] that the number
of runs (maximal periodicities) in a string of length n is smaller than n. In [3] the
authors have shown that the computation of the Lyndon array of T is strictly
related to the construction of the Lyndon tree [9] of the string $T (where the
symbol $ is smaller than any symbol of the alphabet Σ).

In this paper we address the problem of designing a space economical linear
time algorithm for the computation of the Lyndon array. As described in [5,15],
there are several algorithms to compute the Lyndon array. It is noteworthy that
the ones that run in linear time (cf. [1,3,5,6,15]) use the sorting of the suffixes (or
a partial sorting of suffixes) of the input string as a preprocessing step. Among
the linear time algorithms, the most space economical is the one in [5] which, in
addition to the n log σ bits for the input string plus 2n words for the Lyndon
array and suffix array, uses a stack whose size depends on the structure of the
input. Such stack is relatively small for non pathological texts, but in the worst
case its size can be up to n words. Therefore, the overall space in the worst case
can be up to n log σ bits plus 3n words.

In this paper we propose a variant of the algorithm SACA-K that computes
in linear time the Lyndon array as a by-product of suffix array construction. Our
algorithm uses overall n log σ bits plus 2n+σ+O(1) words of space. This bound
makes our algorithm the one with the best worst case space bound among the
linear time algorithms. Note that the σ + O(1) words of working space of our
algorithm is optimal for strings from alphabets of constant size. Our experiments
show that our algorithm is competitive in practice compared to the other linear
time solutions to compute the Lyndon array.

2 Background

Let T = T [1] . . . T [n] be a string of length n over a fixed ordered alphabet Σ of
size σ, where T [i] denotes the i-th symbol of T . We denote T [i, j] as the factor
of T starting from the i-th symbol and ending at the j-th symbol. A suffix of
T is a factor of the form T [i, n] and is also denoted as Ti. In the following we
assume that any integer array of length n with values in the range [1, n] takes n
words (n log n bits) of space.

Given T = T [1] . . . T [n], the i-th rotation of T begins with T [i + 1], corre-
sponding to the string T ′ = T [i + 1] . . . T [n]T [1] . . . T [i]. Note that, a string of
length n has n possible rotations. A string T is a repetition if there exists a string
S and an integer k > 1 such that T = Sk, otherwise it is called primitive. If a
string is primitive, all of its rotations are different.

A primitive string T is called a Lyndon word if it is the lexicographical least
among its rotations. For instance, the string T = abanba is not a Lyndon word,
while it is its rotation aabanb is. A Lyndon factor of a string T is a factor of T
that is a Lyndon word. For instance, anb is a Lyndon factor of T = abanba.
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Definition 1. Given a string T = T [1] . . . T [n], the Lyndon array (LA) of T is
an array of integers in the range [1, n] that, at each position i = 1, . . . , n, stores
the length of the longest Lyndon factor of T starting at i:

LA[i] = max{� | T [i, i + � − 1] is a Lyndon word}.

The suffix array (SA) [16] of a string T = T [1] . . . T [n] is an array of integers
in the range [1, n] that gives the lexicographic order of all suffixes of T , that is
TSA[1] < TSA[2] < · · · < TSA[n]. The inverse suffix array (ISA) stores the inverse
permutation of SA, such that ISA[SA[i]] = i. The suffix array can be computed
in O(n) time using σ + O(1) words of working space [17].

Usually when dealing with suffix arrays it is convenient to append to the
string T a special end-marker symbol $ (called sentinel) that does not occur
elsewhere in T and $ is smaller than any other symbol in Σ. Here we assume
that T [n] = $. Note that the values LA[i], for 1 ≤ i ≤ n − 1 do not change when
the symbol $ is appended at the position n. Also, string T = T [1] . . . T [n − 1]$
is always primitive.

Given an array of integers A of size n, the next smaller value (NSV) array of
A, denoted NSVA, is an array of size n such that NSVA[i] contains the smallest
position j > i such that A[j] < A[i], or n + 1 if such a position j does not exist.
Formally:

NSVA[i] = min
{{n + 1} ∪ {i < j ≤ n | A[j] < A[i]}}

.

As an example, in Fig. 1 we consider the string T = banaananaanana$, and
its Suffix Array (SA), Inverse Suffix Array (ISA), Next Smaller Value array of
the ISA (NSVISA), and Lyndon Array (LA). We also show all the Lyndon factors
starting at each position of T .

If the SA of T is known, the Lyndon array LA can be computed in linear time
thanks to the following lemma that rephrases a result in [9]:

Lemma 1. The factor T [i, i + � − 1] is the longest Lyndon factor of T starting
at i iff Ti < Ti+k, for 1 ≤ k < �, and Ti > Ti+�. Therefore, LA[i] = �. ��

Lemma 1 can be reformulated in terms of the inverse suffix array [5], such
that LA[i] = � iff ISA[i] < ISA[i + k], for 1 ≤ k < �, and ISA[i] > ISA[i + �]. In
other words, i+ � = NSVISA[i]. Since given ISA we can compute NSVISA in linear
time using an auxiliary stack [7,20] of size O(n) words, we can then derive LA,
in the same space of NSVISA, in linear time using the formula:

LA[i] = NSVISA[i] − i, for 1 ≤ i ≤ n. (1)

Overall, this approach uses n log σ bits for T plus 2n words for LA and ISA, and
the space for the auxiliary stack.

Alternatively, LA can be computed in linear time from the Cartesian tree [22]
built for ISA [3]. Recently, Franek et al. [6] observed that LA can be computed
in linear time during the suffix array construction algorithm by Baier [1] using
overall n log σ bits plus 2n words for LA and SA plus 2n words for auxiliary
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Fig. 1. SA, ISA, NSVISA, LA and all Lyndon factors for T = banaananaanana$

integer arrays. Finally, Louza et al. [15] introduced an algorithm that computes
LA in linear time during the Burrows-Wheeler inversion, using n log σ bits for T
plus 2n words for LA and an auxiliary integer array, plus a stack with twice the
size as the one used to compute NSVISA (see Sect. 4).

Summing up, the most economical linear time solution for computing the
Lyndon array is the one based on (1) that requires, in addition to T and LA,
n words of working space plus an auxiliary stack. The stack size is small for
non pathological inputs but can use n words in the worst case (see also Sect. 4).
Therefore, considering only LA as output, the working space is 2n words in the
worst case.

2.1 Induced Suffix Sorting

The algorithm SACA-K [17] uses a technique called induced suffix sorting to
compute SA in linear time using only σ + O(1) words of working space. In this
technique each suffix Ti of T [1, n] is classified according to its lexicographical
rank relative to Ti+1.

Definition 2. A suffix Ti is S-type if Ti < Ti+1, otherwise Ti is L-type. We
define Tn as S-type. A suffix Ti is LMS-type (leftmost S-type) if Ti is S-type and
Ti−1 is L-type.

The type of each suffix can be computed with a right-to-left scanning of
T [18], or otherwise it can be computed on-the-fly in constant time during Nong’s
algorithm [17, Section 3]. By extension, the type of each symbol in T can be clas-
sified according to the type of the suffix starting with such symbol. In particular
T [i] is LMS-type if and only if Ti is LMS-type.

Definition 3. An LMS-factor of T is a factor that begins with a LMS-type sym-
bol and ends with the following LMS-type symbol.
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We remark that LMS-factors do not establish a factorization of T since each
of them overlaps with the following one by one symbol. By convention, T [n, n]
is always an LMS-factor. The LMS-factors of T = banaananaanana$ are shown
in Fig. 2, where the type of each symbol is also reported. The LMS types are
the grey entries. Notice that in SA all suffixes starting with the same symbol
c ∈ Σ can be partitioned into a c-bucket. We will keep an integer array C[1, σ]
where C[c] gives either the first (head) or last (tail) available position of the
c-bucket. Then, whenever we insert a value into the head (or tail) of a c-bucket,
we increase (or decrease) C[c] by one. An important remark is that within each
c-bucket S-type suffixes are larger than L-type suffixes. Figure 2 shows a running
example of algorithm SACA-K for T = banaananaanana$.

Given all LMS-type suffixes of T [1, n], the suffix array can be computed as
follows:

Steps:

1. Sort all LMS-type suffixes recursively into SA1, stored in SA[1, n/2].
2. Scan SA1 from right-to-left, and insert the LMS-suffixes into the tail of

their corresponding c-buckets in SA.
3. Induce L-type suffixes by scanning SA left-to-right: for each suffix SA[i], if

TSA[i]−1 is L-type, insert SA[i] − 1 into the head of its bucket.
4. Induce S-type suffixes by scanning SA right-to-left: for each suffix SA[i], if

TSA[i]−1 is S-type, insert SA[i] − 1 into the tail of its bucket.

Step 1 considers the string T 1 obtained by concatenating the lexicographic
names of all the consecutive LMS-factors (each different string is associated with
a symbol that represents its lexicographic rank). Note that T 1 is defined over
an alphabet of size O(n) and that its length is at most n/2. The SACA-K
algorithm is applied recursively to sort the suffixes of T 1 into SA1, which is
stored in the first half of SA. Nong et al. [18] showed that sorting the suffixes of
T 1 is equivalent to sorting the LMS-type suffixes of T . We will omit details of
this step, since our algorithm will not modify it.

Step 2 obtains the sorted order of all LMS-type suffixes from SA1 scanning
it from right-to-left and bucket sorting then into the tail of their corresponding
c-buckets in SA. Step 3 induces the order of all L-type suffixes by scanning SA
from left-to-right. Whenever suffix TSA[i]−1 is L-type, SA[i] − 1 is inserted in its
final (corrected) position in SA.

Finally, Step 4 induces the order of all S-type suffixes by scanning SA from
right-to-left. Whenever suffix TSA[i]−1 is S-type, SA[i] − 1 is inserted in its final
(correct) position in SA.

Theoretical Costs. Overall, algorithm SACA-K runs in linear time using only
an additional array of size σ + O(1) words to store the bucket array [17].
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Fig. 2. Induced suffix sorting steps (SACA-K) for T = banaananaanana$

3 Inducing the Lyndon Array

In this section we show how to compute the Lyndon array (LA) during Step 4 of
algorithm SACA-K described in Sect. 2.1. Initially, we set all positions LA[i] = 0,
for 1 ≤ i ≤ n. In Step 4, when SA is scanned from right-to-left, each value SA[i],
corresponding to TSA[i], is read in its final (correct) position i in SA. In other
words, we read the suffixes in decreasing order from SA[n],SA[n − 1], . . . ,SA[1].
We now show how to compute, during iteration i, the value of LA[SA[i]].

By Lemma 1, we know that the length of the longest Lyndon factor starting
at position SA[i] in T , that is LA[SA[i]], is equal to �, where TSA[i]+� is the next
suffix (in text order) that is smaller than TSA[i]. In this case, TSA[i]+� will be the
first suffix in TSA[i]+1, TSA[i]+2 . . . , Tn that has not yet been read in SA, which
means that TSA[i]+� < TSA[i]. Therefore, during Step 4, whenever we read SA[i],
we compute LA[SA[i]] by scanning LA[SA[i] + 1, n] to the right up to the first
position LA[SA[i] + �] = 0, and we set LA[SA[i]] = �.
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The correctness of this procedure follows from the fact that every position in
LA[1, n] is initialized with zero, and if LA[SA[i]+1], LA[SA[i]+2], . . . , LA[SA[i]+�−
1] are no longer equal to zero, their corresponding suffixes has already been read
in positions larger than i in SA[i, n], and such suffixes are larger (lexicographi-
cally) than TSA[i]. Then, the first position we find LA[SA[i] + �] = 0 corresponds
to a suffix TSA[i]+� that is smaller than TSA[i], which was still not read in SA. Also,
TSA[i]+� is the next smaller suffix (in text order) because we read LA[SA[i]+1, n]
from left-to-right.

Figure 3 illustrates iterations i = 15, 9, and 3 of our algorithm for T =
banaananaanana$. For example, at iteration i = 9, the suffix T5 is read at
position SA[9], and the corresponding value LA[5] is computed by scanning
LA[6], LA[7], . . . , LA[15] up to finding the first empty position, which occurs at
LA[7 = 5 + 2]. Therefore, LA[5] = 2.

At each iteration i = n, n − 1, . . . , 1, the value of LA[SA[i]] is computed in
additional LA[SA[i]] steps, that is our algorithm adds O(LA[i]) time for each
iteration of SACA-K.

Therefore, our algorithm runs in O(n · avelyn) time, where avelyn =∑n
i=1 LA[i]/n. Note that computing LA does not need extra memory on top of

the space for LA[1, n]. Thus, the working space is the same as SACA-K, which
is σ + O(1) words.

Lemma 2. The Lyndon array and the suffix array of a string T [1, n] over an
alphabet of size σ can be computed simultaneously in O(n · avelyn) time using
σ + O(1) words of working space, where avelyn is equal to the average value in
LA[1, n]. ��

In the next sections we show how to modify the above algorithm to reduce
both its running time and its working space.

3.1 Reducing the Running Time to O(n)

We now show how to modify the above algorithm to compute each LA entry in
constant time. To this end, we store for each position LA[i] the next smaller posi-
tion � such that LA[�] = 0. We define two additional pointer arrays NEXT[1, n]
and PREV[1, n]:

Definition 4. For i = 1, . . . , n − 1, NEXT[i] = min{�|i < � ≤ n and LA[�] = 0}.
In addition, we define NEXT[n] = n + 1.

Definition 5. For i = 2, . . . , n, PREV[i] = �, such that NEXT[�] = i and
LA[�] = 0. In addition, we define PREV[1] = 0.

The above definitions depend on LA and therefore NEXT and PREV are
updated as we compute additional LA entries. Initially, we set NEXT[i] = i + 1
and PREV[i] = i − 1, for 1 ≤ i ≤ n. Then, at each iteration i = n, n − 1, . . . , 1,
when we compute LA[j] with j = SA[i] setting:

LA[j] = NEXT[j] − j (2)
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Fig. 3. Running example for T = banaananaanana$.

we update the pointers arrays as follows:

NEXT[PREV[j]] = NEXT[j], if PREV[j] > 0 (3)
PREV[NEXT[j]] = PREV[j], if NEXT[j] < n + 1 (4)

The cost of computing each LA entry is now constant, since only two additional
computations (Eqs. 3 and 4) are needed. Because of the use of the arrays PREV
and NEXT the working space of our algorithm is now 2n + σ + O(1) words.

Theorem 1. The Lyndon array and the suffix array of a string T [1, n] over an
alphabet of size σ can be computed simultaneously in O(n) time using 2n + σ +
O(1) words of working space. ��

3.2 Getting Rid of a Pointer Array

We now show how to reduce the working space of Sect. 3.1 by storing only one
array, say A[1, n], keeping NEXT/PREV information together. In a glace, we store
NEXT initially into the space of A[1, n], then we reuse A[1, n] to store the (useful)
entries of PREV.

Note that, whenever we write LA[j] = �, the value in A[j], that is NEXT[j]
is no more used by the algorithm. Then, we can reuse A[j] to store PREV[j + 1].



146 F. A. Louza et al.

Also, we know that if LA[j] = 0 then PREV[j+1] = j. Therefore, we can redefine
PREV in terms of A:

PREV[j] =

{
j − 1 if LA[j − 1] = 0
A[j − 1] otherwise.

(5)

The running time of our algorithm remains the same since we have added
only one extra verification to obtain PREV[j] (Eq. 5). Observe that whenever
NEXT[j] is overwritten the algorithm does not need it anymore. The working
space is therefore reduced to n + σ + O(1) words.

Theorem 2. The Lyndon array and the suffix array of a string T [1, n] over an
alphabet of size σ can be computed simultaneously in O(n) time using n+σ+O(1)
words of working space. ��

3.3 Getting Rid of both Pointer Arrays

Finally, we show how to use the space of LA[1, n] to store both the auxiliary array
A[1, n] and the final values of LA. First we observe that it is easy to compute
LA[i] when Ti is an L-type suffix.

Lemma 3. LA[j] = 1 iff Tj is an L-type suffix, or i = n.

Proof. If Tj is an L-type suffix, then Tj > Tj+1 and LA[j] = 1. By definition
LA[n] = 1. ��

Notice that at Step 4 during iteration i = n, n − 1, . . . , 1, whenever we read
an S-type suffix Tj , with j = SA[i], its succeeding suffix (in text order) Tj+1 has
already been read in some position in the interval SA[i+1, n] (Tj+1 have induced
the order of Tj). Therefore, the LA-entries corresponding to S-type suffixes are
always inserted on the left of a block (possibly of size one) of non-zero entries in
LA[1, n].

Moreover, whenever we are computing LA[j] and we have NEXT[j] = j + k
(stored in A[j]), we know the following entries LA[j + 1], LA[j + 2], . . . , LA[j +
k − 1] are no longer zero, and we have to update A[j + k − 1], corresponding to
PREV[j+k] (Eq. 5). In other words, we update PREV information only for right-
most entry of each block of non empty entries, which corresponds to a position
of an L-type suffix because S-type are always inserted on the left of a block.

Then, at the end of the modified Step 4, if A[i] < i then Ti is an L-type suffix,
and we know that LA[i] = 1. On the other hand, the values with A[i] > i remain
equal to NEXT[i] at the end of the algorithm. And we can use them to compute
LA[i] = A[i] − i (Eq. 2).

Thus, after the completion of Step 4, we sequentially scan A[1, n] overwriting
its values with LA as follows:

LA[j] =

{
1 if A[j] < j

A[j] − j otherwise.
(6)
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The running time of our algorithm is still linear, since we added only a linear
scan over A[1, n] at the end of Step 4. On the other hand, the working space is
reduced to σ + O(1) words, since we need to store only the bucket array C[1, σ].

Theorem 3. The Lyndon array and the suffix array of a string of length n over
an alphabet of size σ can be computed simultaneously in O(n) time using σ+O(1)
words of working space. ��

Note that the bounds on the working space given in the above theorems
assume that the output consists of SA and LA. If one is interested in LA only,
then the working space of the algorithm is n+σ+O(1) words which is still smaller
that the working space of the other linear time algorithms that we discussed in
Sect. 2.

4 Experiments

We compared the performance of our algorithm, called SACA-K+LA, with
algorithms to compute LA in linear time by Franek et al. [5,9] (NSV-Lyndon),
Baier [1,6] (Baier-LA), and Louza et al. [15] (BWT-Lyndon). We also com-
pared a version of Baier’s algorithm that computes LA and SA together (Baier-
LA+SA). We considered the three linear time alternatives of our algorithm
described in Sects. 3.1, 3.2 and 3.3. We tested all three versions since one could
be interested in the fastest algorithm regardless of the space usage. We used
four bytes for each computer word so the total space usage of our algorithms
was respectively 17n, 13n and 9n bytes. We included also the performance of
SACA-K [17] to evaluate the overhead added by the computation of LA in
addition to the SA.

The experiments were conducted on a machine with an Intel Xeon Pro-
cessor E5-2630 v3 20M Cache 2.40-GHz, 384GB of internal memory and a
13 TB SATA storage, under a 64 bits Debian GNU/Linux 8 (kernel 3.16.0-4)
OS. We implemented our algorithms in ANSI C. The time was measured with
clock() function of C standard libraries and the memory was measured using
malloc_count library1. The source-code is publicly available at https://github.
com/felipelouza/lyndon-array/.

We used string collections from the Pizza & Chili dataset2. In particular, the
datasets einstein-de, kernel, fib41 and cere are highly repetitive texts3, and
the english.1G is the first 1GB of the original english dataset. We also created
an artificial repetitive dataset, called bbba, consisting of a string T with 100×220

copies of b followed by one occurrence of a, that is, T = bn−2a$. This dataset
represents a worst-case input for the algorithms that use a stack (NSV-Lyndon
and BWT-Lyndon).

1 https://github.com/bingmann/malloc_count.
2 http://pizzachili.dcc.uchile.cl/texts.html.
3 http://pizzachili.dcc.uchile.cl/repcorpus.html.

https://github.com/felipelouza/lyndon-array/
https://github.com/felipelouza/lyndon-array/
https://github.com/bingmann/malloc_count
http://pizzachili.dcc.uchile.cl/texts.html
http://pizzachili.dcc.uchile.cl/repcorpus.html
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Table 1. Running time (μs/input byte).
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-9
n

S
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[1
7]

pitches 133 53 0.15 0.20 0.20 0.26 0.26 0.22 0.18 0.13
sources 230 201 0.26 0.28 0.32 0.37 0.46 0.41 0.34 0.24
xml 97 282 0.29 0.31 0.35 0.42 0.52 0.47 0.38 0.27
dna 16 385 0.39 0.28 0.49 0.43 0.69 0.60 0.52 0.36
english.1GB 239 1,047 0.46 0.39 0.56 0.57 0.84 0.74 0.60 0.42
proteins 27 1,129 0.44 0.40 0.53 0.66 0.89 0.69 0.58 0.40
einstein-de 117 88 0.34 0.28 0.38 0.39 0.57 0.54 0.44 0.31
kernel 160 246 0.29 0.29 0.39 0.38 0.53 0.47 0.38 0.26
fib41 2 256 0.34 0.07 0.45 0.18 0.66 0.57 0.46 0.32
cere 5 440 0.27 0.09 0.33 0.17 0.43 0.41 0.35 0.25
bbba 2 100 0.04 0.02 0.05 0.03 0.05 0.04 0.03 0.03

Table 1 shows the running time of each algorithm in μs/input byte. The
results show that our algorithm is competitive in practice. In particular, the ver-
sion SACA-K+LA-9n was only about 1.35 times slower than the fastest algo-
rithm (Baier-LA) for non-repetitive datasets, and 2.92 times slower for repeti-
tive datasets. Also, the performance of SACA-K+LA-9n and Baier-LA+SA
were very similar. Finally, the overhead of computing LA in addition to SA was
small: SACA-K+LA-9n was 1.42 times slower than SACA-K, whereas Baier-
LA+SA was 1.55 times slower than Baier-LA, on average. Note that SACA-
K+LA-9n was consistently faster than SACA-K+LA-13n and SACA-K+LA-
17n, so using more space does not yield any advantage.

Table 2 shows the peak space consumed by each algorithm given in bytes
per input symbol. The smallest values were obtained by NSV-Lyndon, BWT-
Lyndon and SACA-K+LA-9n. In details, the space used by NSV-Lyndon and
BWT-Lyndon was 9n bytes plus the space used by the stack. The stack space
was negligible (about 10KB) for almost all datasets, except for bbba where the
stack used 4n bytes for NSV-Lyndon and 8n bytes for BWT-Lyndon (the
number of stack entries is the same, but each stack entry consists of a pair of
integers). On the other hand, our algorithm, SACA-K+LA-9n, used exactly
9n + 1024 bytes for all datasets.
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Table 2. Peak space (bytes/input size).
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pitches 133 53 9 17 9 17 17 13 9 5
sources 230 201 9 17 9 17 17 13 9 5
xml 97 282 9 17 9 17 17 13 9 5
dna 16 385 9 17 9 17 17 13 9 5
english.1GB 239 1, 047 9 17 9 17 17 13 9 5
proteins 27 1, 129 9 17 9 17 17 13 9 5
einstein-de 117 88 9 17 9 17 17 13 9 5
kernel 160 246 9 17 9 17 17 13 9 5
fib41 2 256 9 17 9 17 17 13 9 5
cere 5 440 9 17 9 17 17 13 9 5
bbba 2 100 13 17 17 17 17 13 9 5

5 Conclusions

We have introduced an algorithm for computing simultaneously the suffix array
and Lyndon array (LA) of a text using induced suffix sorting. The most space-
economical variant of our algorithm uses only n + σ + O(1) words of working
space making it the most space economical LA algorithm among the ones running
in linear time; this includes both the algorithm computing the SA and LA and
the ones computing only the LA. The experiments have shown our algorithm is
only slightly slower than the available alternatives, and that computing the SA
is usually the most expensive step of all linear time LA construction algorithms.
A natural open problem is to devise a linear time algorithm to construct only
the LA using o(n) words of working space.
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Abstract. We extend the theory of minimal absent words to (rooted
and unrooted) trees, having edges labeled by letters from an alphabet
Σ of cardinality σ. We show that the set MAW(T ) of minimal absent
words of a rooted (resp. unrooted) tree T with n nodes has cardinal-
ity O(nσ) (resp. O(n2σ)), and we show that these bounds are realized.
Then, we exhibit algorithms to compute all minimal absent words in a
rooted (resp. unrooted) tree in output-sensitive time O(n + |MAW(T )|)
(resp. O(n2 + |MAW(T )|) assuming an integer alphabet of size polyno-
mial in n.

1 Introduction

Minimal absent words (a.k.a. minimal forbidden words or minimal forbidden
factors) are a useful combinatorial tool for investigating words (strings). A word
u is absent from a word w if u does not occur (as a factor) in w, and it is minimal
if all its proper factors occur in w. This definition naturally extends to languages
of words closed under taking factors.

The theory of minimal absent words has been developed in a series of
papers [3,5,14,25,27] (the reader is pointed to [18] for a survey on these
results). Minimal absent words have then found applications in several areas,
e.g., data compression [15–17,28], on-line pattern matching [13], sequence com-
parison [10,11], sequence assembly [20,26], bioinformatics [9,19,31], musical data
extraction [12].

Bounds on the number of minimal absent words have been extensively inves-
tigated. The upper bound on the number of minimal absent words of a word of
length n over an alphabet of size σ is O(nσ) [14,27], and this is tight for integer
alphabets [10]; in fact, for large alphabets, such as when σ ≥ √

n, this bound is
also tight even for minimal absent words having the same length [1].

Several algorithms are known to compute the set of minimal absent words
of a word. State-of-the-art algorithms compute all minimal absent words of a
word of length n over an alphabet of size σ in time O(nσ) [2,14] or in output-
sensitive O(n + |MAW(w)|) time [11,22] for integer alphabets. Space-efficient
data structures based on the Burrows-Wheeler transform can also be applied for
this computation [6,7].
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For a finite set of words P over an alphabet of size σ, the minimal absent
words of the factorial closure of P can be computed in O(|P |2σ) [3], where |P |
is the sum of the lengths of the words of P . Generalizations of minimal absent
words have been considered for circular words [10,21] and multi-dimensional
shifts [4].

In this paper, we extend the theory of minimal absent words to trees. We
consider trees with edges labeled by letters from an integer alphabet Σ of cardi-
nality σ polynomial in n. In the case of a rooted tree T, every node v is associated
with a word str(v), defined as the sequence of edge labels from v to the root. A
rooted tree T can therefore be seen as a set of words LT = {str(v) | v in T}, that
we call the language of T. If T has n nodes, then LT contains at most n distinct
words, each of which has length at most n. We call a rooted tree T proper when
the edges from a node to its children are labeled by pairwise distinct letters.
Throughout the paper we will assume that all rooted trees are proper, which
can be ensured without losing the generality thank to the following lemma.

Lemma 1. Given a rooted T on n nodes we can construct in O(n) time a proper
rooted tree T′ with the same set of corresponding words.

Proof. The depth of a node of T is its distance from the root. We start with sort-
ing, for every d = 1, 2, .., the set of nodes S(d) at depth d according to the labels
of the edges leading to their parents. This can be done in O(n) total time with
counting sort. Then, we construct T′ by processing S(0), S(1), S(2), ... Assum-
ing that we have already identified, for every node u ∈ S(d), its corresponding
node f(u) of T′, we need to construct and identify the nodes f(u′) for every
u′ ∈ S(d+1). We process all nodes u′ ∈ S(d+1) in groups corresponding to the
same letter a on the edge leading to their parent (because of the initial sorting
we already have these groups available). Denoting by u the parent of u′ in T,
we check if f(u) has been already accessed while processing the group of a, and
if so we set f(u′) to be the already created node of T′. Otherwise, we create a
new edge outgoing from f(u) to a new node v in T′ and labeled with a, and set
f(u′) to be v. To check if f(u) has been already accessed while processing the
current group (and retrieve the corresponding f(u′) if this is the case) we simply
allocate an array A of size n indexed by nodes of T′ identified by number from
{1, 2, . . . , n}. For every entry of A we additionally store a timestamp denoting
the most recent group for which the corresponding entry has been modified, and
increase the timestamp after having processed the current group. ��

One could also define the set of words corresponding to a rooted tree T by
considering a set of words from the root to every node v (in the literature this is
sometimes called a forward trie, as opposed to a backward trie, cf. [24]). In our
context, this distinction is meaningless, as the obtained languages are the same
up to reversing all the words.

We say that a word aub, with a, b ∈ Σ, is a minimal absent word of a rooted
tree T if aub is not a factor of any word str(v) in LT but there exist words str(v1)
and str(v2) in LT (not necessarily distinct) such that au is a factor of str(v1) and
ub is a factor of str(v2). That is, the set MAW(T) of minimal absent words of T
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is the set of minimal absent words of the factorial closure of the language LT.
Since any word of length n can be transformed into a unary rooted tree with
n+1 nodes, some of the properties of minimal absent words for usual words can
be transferred to rooted trees. Indeed, rooted trees are a strict generalization of
words.

For unrooted trees, the definition of minimal absent words is analogous: We
identify an unrooted tree T with the language of words L(T) corresponding to
all (concatenations of labels of) simple paths that can be read in T from any of
its nodes. The language L(T) contains O(n2) words, each of which has length
at most n. We therefore define the set MAW(T) of minimal absent words of T
as the set of minimal absent words of the language L(T), which in this case is
already closed under taking factors by definition.

Our Results. We prove that for any rooted tree with n nodes there are O(nσ)
minimal absent words, and we show that this bound is tight. For unrooted trees,
we prove that the previous bound becomes O(n2σ), and we give an explicit
construction that achieves this bound. We also consider the case of minimal
absent words of fixed length and generalize a previously-known construction.

Furthermore, we present an algorithm that computes all the minimal absent
words in a rooted tree T with n nodes in output-sensitive time O(n+|MAW(T)|).
This also yields an algorithm that computes all the minimal absent words in an
unrooted tree T with n nodes in time O(n2 + |MAW(T)|). Note that while it is
plausible that an efficient algorithm could have been designed, as in the case of
words, from a DAWG [22], the size of the DAWG of a backward/forward tree is
superlinear [24], so it is not immediately clear if such an approach would lead
to an optimal algorithm. Excluding the space necessary to store all the results,
our algorithms need O(n) and O(n2) space, respectively.

Our algorithms are designed in the word-RAM model with Ω(log n)-bit
words.

2 Bounds on the Number of Minimal Absent Words

Let T be a rooted tree with n nodes and edges labeled by letters from an integer
alphabet Σ of cardinality σ polynomial in n. Let the language of T be LT =
{str(v) | v in T}, where str(v) is the sequence of edge labels from node v to the
root.

For convenience, we add a new root to T and an edge labeled by a new
letter $ not belonging to Σ from the new root to the old root. This corresponds
to appending $ at the end of each word of LT. We then arrange all the words
of LT in a trie. Each node u of this trie corresponds to a word obtained by
concatenating the edges from the root of the trie to node u, so in this paper
we will implicitly identify a node of the trie with the corresponding word in the
set of prefixes of LT. Following a standard approach, if we compact this trie by
collapsing maximal chains of edges with every inner node having exactly one
child and edges labeled by words, we obtain the suffix tree ST of T. The nodes
in ST (the branching nodes) are called explicit nodes, while the nodes of the trie
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that have been collapsed (the non-branching nodes) are called implicit. Because
$ does not belong to the original alphabet, the leaves of ST are in one-to-one
correspondence with the nodes of T.

A word aub, with a, b ∈ Σ, is a minimal absent word for T if it is a minimal
absent word for the factorial closure of LT, that is, if both au and ub but not
aub are factors of some words in LT. The set of minimal absent words of T is
denoted by MAW(T).

If aub ∈ MAW(T), then au occurs as a factor in some word of LT but never
followed by letter b, hence there exists a letter b′ ∈ Σ ∪ {$} such that ub and
ub′ can be read in ST spelled from the root (possibly terminating in an implicit
node). This implies that u corresponds to an explicit node in ST, and b is the
first letter on its outgoing edge. Consequently, ub can be identified with an edge
of ST, so the number of minimal absent words of T is upper-bounded by the
product of σ and the number of edges of ST.

Theorem 1. The number of minimal absent words of a rooted tree with n nodes
whose edges are labeled by letters from an alphabet of size σ is O(nσ).

Therefore, the same upper bound that holds for words also holds for rooted
trees. As a consequence, we have that all known upper bounds for words, and
constructions that realize them, are still valid for rooted trees.

In particular, one question that has been studied is whether the upper bound
O(nσ) is still tight when one considers minimal absent words of a fixed length.
Almirantis et al. [1, Lemma 2] showed that the upper bound O(nσ) for a fixed
length of minimal absent words is tight if

√
n < σ ≤ n. Actually, they showed

that it is possible to construct words of any length n, with σ ≤ n ≤ σ(σ − 1),
having Ω(nσ) minimal absent words of length 3. We now give a construction
that generalizes this result.

Let Σ = {1, 2, . . . , σ}. For every n, let k > 1 be such that σk ≤ n < σk+1.
Let Σk = {s1, s2, . . . , sσk}. For every 1 ≤ i ≤ σk we define the word

wi = $1si$si1$2si$si2$ · · · $σsi$siσ$,

where $ is a new symbol not belonging to Σ. The length of each word wi is
2σ(k + 2) + 1, which is smaller than n up to excluding small cases 1.

Let � = 	n/|wi|
 and set w = w1w2 · · · w�, so that |w| > n/2. We have that
asib is a minimal absent word of w for every a, b ∈ Σ and 1 ≤ i ≤ �. So, w has
length Θ(kσ�) and there are Θ(σ2�) minimal absent words of w of length k + 2.

Thus, we have proved the following theorem.

Theorem 2. A word of length n over an alphabet of size σ can have
Ω(nσ/ logσ n) minimal absent words all of the same length.

Observe that for
√

n < σ ≤ n, logσ n = Θ(1), therefore Theorem 2 strictly
generalizes Almirantis et al.’s result.
1 The reader may verify that for k = 2, |wi| ≤ σk as soon as σ ≥ 9; for k > 2, |wi| ≤ σk

as soon as σ + k ≥ 7.
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Let now T be an unrooted tree. Then the number of distinct simple paths in
T is O(n2σ), and this is thus an upper bound on the number of minimal absent
words of T.

Theorem 3. The number of minimal absent words of an unrooted tree with n
nodes whose edges are labeled by letters from an alphabet of size σ is O(n2σ).

We now provide an example of an unrooted tree realizing this bound. Let
Σ = {0, 0̄, 1, . . . , s}. Our unrooted tree T is built as follows:

– We first build a sequence of 2N + 1 nodes such that every other node is con-
nected to s terminal nodes with edges labeled by 1, 2, . . . , s and is connected
to the next node of the sequence with an edge labeled by 0 and to the previous
node of the sequence with an edge labeled by 0̄;

– Then, we attach to each of the last nodes of the previous sequence s simple
paths composed of 2N nodes with edges labeled by alternating 0 and 0̄.

See Fig. 1 for an illustration.

0 0̄ 0 0̄ 0 0̄

1
2 s

1
2 s

1
2 s

1
2 s

0 0̄ 0 0̄ 0 0̄

0 0̄ 0 0̄ 0 0̄

0 0̄ 0 0̄ 0 0̄

1
2

s 0 0̄ 0 0̄ 0 0̄

2N + 1 2N + 1

Fig. 1. An unrooted tree realizing the upper bound on the number of minimal absent
words.

In total, T has (s+1)(2N +1)+sN nodes. We therefore set n = (s+1)(2N +
1) + sN , so that n = Θ(sN).

It is readily verified that for every a, b, c in Σ \ {0, 0̄} and for every 0 <
j, k ≤ N , there is a minimal absent word of the form a(00̄)jb(00̄)kc (the prefix
a(00̄)jb(00̄)k can be found reading from the left part to the right part of the
figure, while the suffix (00̄)jb(00̄)kc can be found reading from the right part
to the left part, the letter b being one of the labels of the edges joining the
left and the right part). Hence, the number of minimal absent words of T is
Ω(s3N2) = Ω(n2σ).

Remark 1. The previous construction can be simplified by merging adjacent
edges labeled by 0 and 0̄ into one edge labeled by 0, if one does not require the
condition that edges adjacent to a node must have distinct labels.
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3 Algorithms for Computing Minimal Absent Words

We now present an algorithm that computes the set MAW(T) of all minimal
absent words of a rooted tree T with n nodes in output-sensitive time O(n +
|MAW(T)|).

We construct the suffix tree ST of T in time O(n) [30]. Recall that the leaves
of ST are in one-to-one correspondence with the nodes of T and we can assume
that every node u of T stores a pointer to the leaf of ST corresponding to str(u).

Definition 1. For every (implicit or explicit) node u of ST, we define the set
A(u) as the set of all letters a ∈ Σ such that au can be spelled from the root
of ST, i.e., there exists a node v of T such that str(v) = auz for some (possibly
empty) word z.

As already noted before, if aub is a minimal absent word of T, then au occurs
as a factor in some word of LT followed by a letter b′ ∈ Σ ∪ {$} different from
b, hence u is an explicit node of ST.

Lemma 2. Let u be an explicit node of the suffix tree ST of the tree T. Let
u1, u2, . . . , uk be the children of u in the non-compacted trie from which we
obtained ST, and let b1, b2, . . . , bk be the labels of the corresponding edges. Then,
for every 1 ≤ i ≤ k and every letter

aj ∈ (A(u1) ∪ . . . ∪ A(uk)) \ A(ui),

the word ajubi is a minimal absent word of T.
Conversely, every minimal absent word of T is of the form ajubi described

above.

Proof. Since aj does not belong to A(ui), then by definition the word ajubi does
not belong to LT, but there exists � �= i such that aj ∈ A(u�), that is, ajub� is a
factor of a word in LT. Hence, aju is a factor of a word in LT. Since ubi is also a
factor of a word in LT by construction, we have that ajubi is a minimal absent
word of T.

Conversely, if ajubi is a minimal absent word of T, then u occurs as a factor
in some word of LT followed by different letters in Σ ∪{$}, hence it corresponds
to an explicit node in ST, so all minimal absent words of T are found in this
way. ��
Definition 2. For every leaf u of ST we define the set B(u) as the set of all
letters a ∈ Σ such that au = str(v) for some node v in T.

Lemma 3. For every (implicit or explicit) node u of ST, we have A(u) =⋃{B(u′) | u′ is a leaf in the subtree of ST rooted at u}.
Proof. Let u′ be a leaf in the subtree of ST rooted at u. Thus, the word u is a
prefix of the word u′, i.e., u′ = uz for some word z. By definition, B(u′) is the
set of all letters a ∈ Σ such that au′ = str(v′) for some node v′ in T. That is,
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the set of all letters a ∈ Σ such that au′ = auz is a word in LT. On the other
hand, by definition, A(u) is the set of all letters a ∈ Σ such that str(v) = auz
for some node v of T and word z. That is, the set of all letters a ∈ Σ such that
auz is a word in LT for some word z. ��

We now show how to compute, in time proportional to the output size, the
set MAW(T).

We start with creating, for every letter a ∈ Σ, a list L(a) of all leaves u such
that a ∈ B(u) sorted in preorder. The lists can be obtained in linear time by
traversing all the non-root nodes v ∈ T, following the edge labeled by a from v
to its parent v′, and finally following the pointer from v′ to the leaf v′′ of ST
corresponding to str(v′) and adding v′′ to L(a). Finally, because the preorder
numbers are from [n] the lists can be sorted in linear time with counting sort.

Now we iterate over all letters a ∈ Σ. Due to Lemma 2, the goal is to extract
all explicit nodes u ∈ ST such that, for some child ui of u such that the bi is the
first letter on the edge from u to ui, aubi is a minimal absent word. By Lemma 3,
this is equivalent to u having a descendant u′ ∈ L(a) (where possibly u = u′)
and ui not having any such descendant. This suggests that we should work with
the subtree of ST, denoted ST(a), induced by all leaves v ∈ L(a). Formally,
u ∈ ST(a) when u′ ∈ L(a) for some leaf u′ in the subtree of u. Even though ST
does not contain nodes with just one child, this is no longer the case for ST(a).
Thus, we actually work with its compact version, denoted ST(a). Every node of
ST(a) stores a pointer to its corresponding node of ST. Assuming that ST has
been preprocessed for constant-time Lowest Common Ancestor queries (which
can be done in linear time and space [8,29]), we can construct ST(a) efficiently
due to the following lemma.

Lemma 4. Given L(a), we can construct ST(a) in O(|L(a)|) time.

Proof. The procedure follows the general idea used in the well-known linear time
procedure for creating a Cartesian tree [23]. We process the nodes u ∈ L(a) in
preorder and maintain a compact version of the subtree of ST induced by all the
already-processed nodes. Additionally, we maintain a stack storing the edges on
its rightmost path. Processing u ∈ L(a) requires popping a number of edges from
the stack, possibly splitting the topmost edge into two (with one immediately
popped as well), and pushing a new edge ending at u. Checking if an edge should
be popped, and also determining if (and how) an edge should be split, can be
implemented with LCA queries on ST, assuming that we maintain pointers to
the corresponding nodes of ST. ��

Having constructed ST(a), we need to consider two cases corresponding to
u being an explicit or an implicit node of ST(a). In the former case, we need to
extract the edges outgoing from u in ST such that there is no edge outgoing from
the corresponding node in ST(a) starting with the same letter b, and output aub
as a minimal absent word. Assuming that the outgoing edges are sorted by their
first letters, this can be easily done in time proportional to the degree of u plus
the number of extracted letters. In the latter case, let the implicit node belong
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to an edge connecting u to v in ST(a), and let u′ and v′ be their corresponding
nodes in ST with u′ being an ancestor of v′. We iterate through all explicit nodes
between u′ and v′ in ST and for each such node we extract all of its outgoing
edges. For each such edge we check if v′ belongs to the subtree rooted at its
endpoint other than u, and if not, extract its first letter b to output aub as a
minimal absent word.

The overall time for every letter a ∈ Σ can be bounded by the sum of
the size of ST(a) and the number of generated minimal absent words. Because∑

a∈Σ |L(a)| = O(n) and the size of ST(a) can be bounded by O(|L(a)|), the
total time complexity is O(n + |MAW(T)|).

The previous algorithm can be used to design an algorithm that outputs all
the minimal absent words of an unrooted tree T with n nodes in time O(n2 +
|MAW(T)|) as follows. For every node u of T, we create a rooted tree Tu by
fixing u as the root. Then we merge all trees Tu into a single tree T of size O(n2)
by identifying their roots. Finally, we apply Lemma 1 to make T proper and
apply our algorithm for rooted trees in O(n2) total time.
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5. Béal, M.-P., Mignosi, F., Restivo, A.: Minimal forbidden words and symbolic
dynamics. In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046, pp.
555–566. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-60922-9 45

6. Belazzougui, D., Cunial, F.: A framework for space-efficient string kernels. Algo-
rithmica 79(3), 857–883 (2017)
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2018). We consider a generalized and unified on-line setting, where we
are given a set X of k strings of total length n that can be pre-processed
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property and is common to a subset of the input strings. They considered several
problems in two different settings.

In the first on-line setting, one is given a string x that can be pre-processed,
and the problem is to answer, for any given query string y, the longest square-
free substring that is common to both x and y. Their solution takes O(|x|) time
for preprocessing and O(|y| log σ) time for queries, where σ is the alphabet size.

In the second off-line setting, one is given a set of k strings of total length
n and a positive integer k′ ≤ k, and the problem is to find the longest periodic
substring, as well as the longest palindromic substring, that is common to at
least k′ of the strings. Their solution works in O(n) time and space. However, it
does not (at least directly) give a solution for the on-line setting.

In this paper, we consider a generalized and unified on-line setting, where
we are given a set X of k strings with total length n that can be pre-processed,
and the problem is to answer, for any given query string y and positive integer
k′ ≤ k, the longest property preserved substring that is common to y and at least
k′ of the strings. We give solutions to the following properties in this setting, all
working in O(n) time and space preprocessing, and O(|y| log σ) time and O(1)
working space for answering queries: squares, periodic substrings, palindromes,
and Lyndon words. Furthermore, we note that solutions for the off-line setting
can be obtained by using our solutions for the on-line setting. We also note that
our algorithms can be modified to remove the log σ factor in the off-line setting.

As related work, the off-line version of property preserved subsequences have
been considered for some properties. The longest common square subsequence
between two strings can be computed in O(n6) time [14]. The longest common
palindromic subsequence between two strings of length n can be computed in
O(n4) time [3].

2 Preliminaries

2.1 Strings

Let Σ be a set of symbols, or alphabet, and Σ∗ the set of strings over Σ. We
assume a constant or linearly-sortable integer alphabet1 and use σ to denote the
size of the alphabet, i.e. |Σ| = σ. For any string x ∈ Σ∗, let |x| denote its length.
For any integer 1 ≤ i ≤ |x|, x[i] is the ith symbol of x, and for any integers
1 ≤ i ≤ j ≤ |x|, x[i..j] = x[i] · · · x[j]. For convenience, x[i..j] is the empty string
when i > j. If a string w satisfies w = xyz, then, strings x, y, z are respectively
called a prefix, substring, and suffix of w. A prefix (resp. substring, suffix) is
called a proper prefix (resp. substring, suffix) if it is shorter than the string.

Let xR denote the reverse of x, i.e., xR = x[|x|] · · · x[1]. A string x is said to
be a palindrome if x = xR. A string y is a square if y = xx for some string x,
called the root of y. A string y is primitive if there does not exist any x such that
y = xk for some integer k ≥ 2. A square is called a primitively rooted square, if

1 Note that a string of length n on a general ordered alphabet can be transformed into
a string on an integer alphabet in O(n log σ) time.
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its root is primitive. An integer p, 1 ≤ p ≤ |x|, is called a period of a string x,
if x[i] = x[i + p] for all 1 ≤ i ≤ |x| − p. A string x is periodic, if the smallest
period p of x is at most |x|/2. A run in a string is a maximal periodic substring,
i.e., a periodic substring x[i..j] with smallest period p is a run, if the period of
any string x[i′..j′] with i′ ≤ i ≤ j ≤ j′ and either i′ �= i or j′ �= j, is not p. The
following is the well known (weak) periodicity lemma concerning periods:

Lemma 1 ((Weak) Periodicity Lemma [8]). If p and q are two periods of
a string w, and p + q ≤ |w|, then, gcd(p, q) is also a period of w.

Let ≺ denote a total order on Σ, as well as the lexicographic order on Σ∗

it induces. That is, for any two strings x, y, x ≺ y if and only if either x is a
prefix of y, or there exist strings w, x′, y′ ∈ Σ∗ such that x = wx′ and y = wy′,
and x′[1] ≺ y′[1]. A string is a Lyndon word [17] if it is lexicographically smaller
than any of its non-empty proper suffixes.

2.2 Suffix Trees

The suffix tree [19] ST (x) of a string x is a compacted trie of the set of non-
empty suffixes of x$, where $ denotes a unique symbol that does not occur in
x. More precisely, it is (1) a rooted tree where edges are labeled by non-empty
strings, (2) the concatenation of the edge-labels on root to leaf paths correspond
to all and only suffixes of x$, 3) any non-leaf node has at least two children, and
the first letter of the label on the edges to its children are distinct.

A node in ST (x) is called an explicit node, while a position on the edges
corresponding to proper prefixes of the edge label are called implicit nodes. For
a (possibly implicit) node v in ST (x), let str(v) denote the string obtained by
concatenating the edge labels on the path from the root to v. The locus of a
string p in ST (x) is a (possibly implicit) node v in ST (x) such that str(v) = p.
Each explicit node v of the suffix tree can be augmented with a suffix link, that
points to the node u, such that str(v) = str(v)[1]str(u). It is easy to see that
because v is an explicit node, u is also always an explicit node.

It is well known that the suffix tree (and suffix links) can be represented in
O(|x|) space and constructed in O(|x| log σ) time [18] for general ordered alpha-
bets, or in O(|x|) time for constant [19] or linearly-sortable integer alphabets [7].
The suffix tree can also be defined for a set of strings X = {x1, . . . , xk}, and
again can be constructed in O(n log σ) time for general ordered alphabets or
in O(n) time for constant or linearly-sortable integer alphabets, where n is the
total length of the strings. This is done by considering and building the suffix
tree for the string x1$ · · · xk$ and pruning edges below any $. It is also easy to
process ST (X) to compute for each explicit node v, the length |str(v)|, as well
as an occurrence (s, b) of str(v) in X, where xs[b..b+ |str(v)|−1] = str(v). Also,
these values can be computed in constant time for any implicit node, given the
values for the closest descendant explicit node.

We will later use the following lemma to efficiently find the loci of a given
set of substrings, and to make these loci explicit (by subdividing the edges of
the suffix tree containing loci that were originally implicit).
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Lemma 2 ([16, Corollary 7.3]). Given a collection of substrings s1, . . . , sk of
a string w of length n, each represented by an occurrence in w, in O(n + k)
total time we can compute the locus of each substring si in the suffix tree of w.
Moreover, these loci can be turned into explicit nodes in O(n + k) extra time.

For a string x of length n, a longest common extension query, given positions
1 ≤ i, j ≤ n asks for the longest common prefix between x[i..n] and x[j..n]. It
is known that the string can be pre-processed in O(n) time so that the longest
common extension query can be answered in O(1) time for any i, j (e.g. [9]).

2.3 Matching Statistics

For two strings x and y, the matching statistics of y with respect to x is an array
MSy,x[1..|y|], where

MSy,x[i] = max{l ≥ 0 : ∃j∈{1,...,|x|} x[j..j + l − 1] = y[i..i + l − 1]}
for any 1 ≤ i ≤ |y|. That is, for each position i of y, MSy,x[i] is the length of
the longest prefix of y[i..|y|] that occurs in x. The concept of matching statistics
can be generalized to a set of strings. For a set X = {x1, . . . , xk} of k strings
and a string y, the k′-matching statistics of y with respect to X is an array
MSk′

y,X [1..|y|] where

MSk′
y,X [i] = max{l ≥ 0 : |{x ∈ X : ∃j∈{1,...,|x|} x[j..j+l−1] = y[i..i+l−1]}| ≥ k′}.

That is, for each position i of y, MSk′
y,X [i] is the length of the longest prefix of

y[i..|y|] that occurs in at least k′ of the strings in X.

2.4 Longest Common Property Preserved Substring Queries

Let a function P : Σ∗ → {true, false} be called a property function.
In this paper, we will consider the following property functions Psqf ,
Psqr,Pper,Ppal,PLyn, which return true if and only if a string is respectively
a square-free, square, periodic string, palindrome, or a Lyndon word.

The following is the on-line version of the problem considered in [1], where a
solution was given for the longest common square free substring, i.e., P = Psqf .

Problem 3 (Longest common property preserved substring query). Let P be a
property function. Consider a string x which can be pre-processed. For a query
string y, compute a longest string z that is a substring of both x and y, and also
satisfies P (z) = true.

The following is the generalized version of the on-line setting that we consider
in this paper.

Problem 4 (Generalized longest common property preserved substring query).
Let P be a property function. Consider a set of strings X = {x1, . . . , xk} that
can be pre-processed. For a query string y and positive integer k′ ≤ k, compute
a longest substring z of y that is a substring of at least k′ strings in X, and also
satisfies P (z) = true.
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Below is a summary of our results. Here, the working space of the query is the
amount of memory that is required in excess to the data structure constructed in
the pre-processing. All memory other than the working space can be considered
as read-only.

Theorem 5. For any property function P ∈ {Psqf ,Psqr,Pper,Ppal,PLyn}, Prob-
lem 4 can be answered in O(|y| log σ) time and O(1) working space by construct-
ing an O(n) space data structure in O(n) time, where n =

∑k
i=1 |xi| is the total

length of the strings in X.

We further note that our algorithms do not require random access to y during
the query and thus work in the same time/space bounds even if each symbol of
y is given in a streaming fashion.

The proof of the Theorem for each property function is given in the next
section.

3 Algorithms

In this section we present our algorithms, starting from the common outline.
The preprocessing consists of the following steps:

1. Construct the generalized suffix tree ST (X) of X.
2. For each explicit node v of ST (X), compute the number of strings in X that

contain str(v) as a substring.
3. Process ST (X) and construct a data structure so that, given any position on

ST (X), we can efficiently find a candidate for the solution.

Then, queries are answered as follows:

4. For each position i in y, compute MSk′
y,X [i], i.e., the k′-matching statistics of

y with respect to X, as the locus vi of y[i..ei] in ST (X).
5. For each such locus vi, compute a candidate using the data structure com-

puted in Step 3 of the pre-processing.
6. Output the longest string computed in the previous step.

As mentioned in Sect. 2.2, Step 1 can be performed in O(n) time and space.
The task of Step 2 is known as the color set size problem, and it can also be
executed in O(n) time [13].

Using ST (X), the outcome of Step 4, i.e., the locus vi of the substring
y[i..ei] where ei − i + 1 = MSk′

y,X [i], can be computed for all 1 ≤ i ≤ |y| in
O(|y| log σ) total time and O(1) working space, with a minor modification to the
algorithm for computing the matching statistics with respect to a single string
[12, Theorem 7.8.1]. The algorithm for a single string first searches the longest
prefix of y[1..|y|] in the suffix tree to compute the locus corresponding to
MSy,x[1]. Let this prefix be y[1..e1]. Given a locus vi of y[i..ei] for some
1 ≤ i < |y|, the suffix link of the closest ancestor of vi is used in order to
first efficiently find the locus of y[i + 1..ei]. Then, the suffix tree is further tra-
versed to obtain the locus of y[i + 1..ei+1]. The time bound for the traversal
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follows from a well known amortized analysis which considers the depth of the
traversed nodes, similar to that in the online construction of suffix trees [18]. For
computing MSk′

y,X , we can simply imagine that subtrees below edges leading to
a node v of ST (X) are pruned if str(v) is contained in less than k′ strings of X.
This can be simulated by aborting the traversal of y[i..|y|] when we encounter
such an edge, detected using the information obtained in Step 2. It is easy to
see that the algorithm still works in the same time bound since the suffix link of
any remaining node still points to a node that is not pruned (i.e., if a string is
contained in at least k′ strings, then its suffix will also be contained in the same
strings). Thus, we can visit each locus corresponding to MSk′

y,X in O(|y| log σ)
total time and O(1) working space.

The crux of our algorithm is therefore in the details of Step 3 and Step 5:
designing what the candidates are and how to compute them given vi. Notice
that the solution is the longest string z which satisfies P (z) = true and is a
substring of y[i..ei] for some i = 1, . . . , n.

3.1 Square-Free Substrings

Ayad et al. [1,2] gave a solution to the on-line longest common square-free sub-
string query problem for a single string (Problem3), in O(|x|) time and space
preprocessing and O(|y| log σ) time and O(1) space query. We note that their
algorithm easily extends to the generalized version (Problem 4). The only dif-
ference lies in that MSk′

y,X is computed instead of MSy,x, which can be done
in O(|y| log σ) time and O(1) space, as described above. Details can be found
in [1,2].

3.2 Squares

As mentioned in the introduction, Ayad et al. [1,2] also considered longest com-
mon periodic substrings, but in the off-line setting. However, their algorithm is
not readily extendible to the on-line setting. It relies on the fact that the ending
position of a longest common periodic substring must coincide with an ending
position of some run in the set of strings, and solved the problem by computing
all loci corresponding to runs in X. To utilize this observation in the on-line
setting, the loci of all runs in the query string y must be identified in ST (X),
which seems difficult to do in time not depending on X.

Here, we first show how to efficiently solve the problem in the on-line setting
for squares, and then we extend that solution to obtain an efficient solution for
periodic substrings. Below is an important property of squares which we exploit.

Lemma 6 ([10, Theorem 1]). A given position can be the right-most occur-
rence of at most two distinct squares.

It follows from the above lemma that the number of distinct squares in a given
string is linear in its length [10]. Also, it gives us the following Corollary.
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Corollary 7. On a given edge of a suffix tree, there can only be at most two
implicit nodes which correspond to a square.

Proof. The right-most occurrence of a square is the maximum position corre-
sponding to leaves in the subtree rooted at the square. Since implicit nodes that
correspond to squares on the same edge share the right-most occurrence, a third
implicit node would contradict Lemma 6. 	


For squares, we first compute the locus in ST (X) of all distinct squares that
are substrings of strings in X, and we make them explicit nodes in ST (X). Note
that these additional nodes will not have suffix links, but since there are only a
constant number of them on each edge of the original suffix tree, it will only add
a constant factor to the amortized analysis when computing Step 4. The loci of
all squares can be computed in O(n) total time using the algorithm of [4]. We
further add to each explicit node in ST (X) (including the ones we introduced
above) a pointer to the nearest ancestor that is the locus of a square (see Fig. 1
for an example of the pointers). Notice that a node that is the locus of a square
is explicit and points to itself. This can be also done in linear time by a simple
depth-first traversal on ST (X).

The candidate, which we will compute in Step 5 for each locus vi, is the
longest square that is a prefix of y[i..ei]. It can be determined for each locus
vi by using the pointers. When vi is an explicit node, the pointer of vi is the
answer. When vi is an implicit node, the pointer of the parent of vi is the answer.
The longest such square for all loci is the answer to the query. This is because
the longest common square must be a prefix of the string corresponding to the
k′-matching statistics of some position. Thus, we have a solution as claimed in
Theorem 5 for P = Psqr.

3.3 Periodic Substrings

Next, we extend the solution for squares to periodic substrings as follows.
We first explain the data structure, which is again an augmented ST (X). For

each primitively rooted square substring w, we make the locus of w in ST (X)
an explicit node. (The non-primitively rooted squares are redundant since they
will lead to the same periodic substrings.) Furthermore, we also make explicit
the deepest locus v in ST (X) obtained by periodically extending a primitively
rooted square w, i.e., w is a prefix of str(v) and the smallest period of str(v)
is 1

2 |w|. We add to each explicit node, a pointer to the nearest explicit ancestor
(including itself) that is a locus of some square or its extension. If an explicit node
is an extension of a square, it will also hold information to identify which square
it is an extension of (in our case, the smallest period of the square suffices).
Note that the pointer of an explicit node that lies between a square and its
extension will point to itself. Figure 2 shows an example of ST (X) for a single
string X = {aababababbababab$}, where loci corresponding to squares and
their rightmost-maximal extensions are depicted.

We first show how the above augmentation of ST (X) can be executed in O(n)
time. We first make explicit all loci of squares as in Sect. 3.2, which can be done
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Fig. 1. Example of ST (X) for a single string X = {babbababbaaa$} augmented with
nodes and pointers for P = Psqr. The solid dark circles show the loci corresponding to
squares which are made explicit. The dotted arrows show the pointers which point to
the nearest ancestor which is a square. Pointers which point to the root (i.e., there is
no non-empty prefix that is a square) are omitted.

in O(n) time. Then, we start from the locus of each primitively rooted square
and extend the square periodically towards the leaves of ST (X) as deep as pos-
sible. For each explicit node we encounter during this extension, the pointer will
point to itself, and the node will also store the period of the underlying square.
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Fig. 2. Example of ST (X) for a single string X = {aababababbababab$} augmented
with nodes and pointers for P = Pper. The solid dark circles show the loci corresponding
to squares, which are made explicit, and the grey circles show the loci corresponding
to their extensions, where the ones with a solid border are made explicit. The dotted
arrows show the pointers which point to the nearest ancestor (longest prefix) which is
periodic. The pointers which point to the root are omitted. The total number of solid
dark circles, as well as grey circles with a solid border is O(n). The total number of
implicit grey circles without the solid border is not necessarily O(n), but since they
occur consecutively from a solid node, they can be represented in O(n) space.

The total cost of this extension can be bounded as follows. Due to the periodic-
ity lemma (Lemma 1), any locus of a primitively rooted square or its extension
cannot be an extension of a shorter square; if it was, a (proper) divisor of the
period of the longer square would also be a period of the square, and would
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contradict that the longer square is primitively rooted. Thus, we can naturally
discard all non-primitive squares by doing the extensions in increasing order of
the length of squares (which can be obtained in linear time by radix sort). Dur-
ing the extension, if the square is non-primitive, then the pointers of nodes will
already have been determined by a square of a shorter period, and this situation
can be detected. From the above arguments, any edge of ST (X) is traversed at
most once, and thus the extension can be done by traversing a total of O(n)
nodes and edges. Because we know the period of the square we wish to extend,
and for any locus v in ST (X), an occurrence b in some xs ∈ X, we can compute
the extension in O(1) time per edge of ST (X) by using longest common exten-
sion queries. Therefore, the total time for building the augmented ST (X) can
be done in O(n) time.

Queries can be answered in the same way as for squares, except for a small
modification. For any locus vi, if vi is an explicit node, then the pointer of vi
gives the answer. When vi is an implicit node, we check vi’s parent and its
immediate descendant. If these nodes are both extensions originating from the
same square (i.e., their labels have the same period), then, the answer is vi itself,
since it is also an extension of the square. Otherwise, the pointer of the parent
node provides the answer.

Thus, we have a solution as claimed in Theorem 5 for P = Pper.

3.4 Palindromes

It is well known that the number of non-empty distinct palindromes in a string
of length n is at most n, since only the longest palindrome starting at some
position can be the right-most occurrence of that palindrome in the string.

Lemma 8 ([6, Proposition 1]). A given position can be the right-most occur-
rence of at most one distinct palindrome.

All distinct palindromes in a string can be computed in linear time [11]. The locus
of each palindrome in ST (X) can be computed in O(n) time by Lemma 2. The
rest is the same as for squares; we make all loci corresponding to a palindrome
an explicit node, and do a linear time depth-first traversal on ST (X) to make
pointers to the nearest ancestor that is a palindrome. As in the case of squares,
we can bound the number of palindromes which will be on an edge of the original
suffix tree.

Corollary 9. On a given edge of a suffix tree, there can only be at most one
implicit node that corresponds to a palindrome.

Proof. Analogous to the proof of Corollary 7. 	

The rest of the algorithm and analysis is the same, thus we obtain a solution

for P = Ppal of Theorem 5.
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3.5 Lyndon Words

For Lyndon words, we use the following result by Kociumaka [15]. A minimal
suffix query (MSQ) on a string T , given indices �, r such that 1 ≤ � ≤ r ≤ |T |,
determines the lexicographically smallest suffix of T [�..r].

Lemma 10 ([15, Theorem 17]). For any string T of length n, there exists a
data structure of size O(n) which can be constructed in O(n) time, which can
answer minimal suffix queries on T in constant time.

Using Lemma 10, we can find the longest Lyndon word ending at a given position.

Lemma 11. For any string w, the lexicographically smallest suffix is the longest
Lyndon word that is a suffix of w.

Proof. From the definition of Lyndon words, it is clear that the minimal suffix
must be a Lyndon word, and that a longer suffix cannot be a Lyndon word. 	


For Step 3, we process all strings in X so that MSQ can be answered in
constant time.

For Step 5, the situation is a bit different from squares, periodic strings, and
palindromes, in that we can have multiple candidates for each vi rather than
just one. For convenience, let e0 = 0. For each 0 ≤ i < n, suppose we have
obtained the locus vi of y[i..ei], and the next locus vi+1 of y[i + 1..ei+1]. Notice
that ei ≤ ei+1 and for all positions e′ such that ei < e′ ≤ ei+1, y[i + 1..e′] is
the longest substring of y that ends at e′ and is a substring of y[j..ej ] for some
j = 1, . . . , n. As mentioned in Sect. 2.2, we can obtain an occurrence (s, b) of
y[i+1..ei+1] such that y[i+1..ei+1] = xs[b..b+MSk′

y,X [i]−1]. Then, we use MSQ
on substrings xs[b..r] such that b+ei−i ≤ r ≤ b+ei+1−(i+1), which is equivalent
to using MSQ on substrings y[i + 1..e′] for all ei < e′ ≤ ei+1. The longest suffix
Lyndon word obtained in all the queries is therefore the longest Lyndon word
that is a substring of y[j..ej ] for some j = 1, . . . , n. Since we perform ei+1 − ei
MSQs for each position i + 1 of y, the total number of MSQs is |y|, which takes
O(|y|) time. Thus, we have a solution as claimed in Theorem5 for P = PLyn.

3.6 Solutions in the Off-Line Setting

We note that a solution for the on-line setting gives a solution for the off-line set-
ting, since, for any X = {x1, . . . , xk}, we can consider the string y = x1# · · · #xk,
where # is again a symbol that doesn’t appear elsewhere. Since |y| = O(n), the
preprocessing time is O(n), and the query time is O(n log σ).

Furthermore, we can remove the log σ factor by processing ST (X) for level
ancestor queries. Level ancestor queries, given a node v of tree T and integer d,
answer the ancestor of v at (node) depth d. It is known that level ancestor queries
can be answered in constant time, after linear time preprocessing of T (e.g. [5]).
The log σ factor came from determining which child of a branching node we
needed to follow when traversing ST (X) with some suffix of y. Since, in this
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case, we can identify the leaf in ST (X) that corresponds to the current suffix of
y (i.e. some suffix of xi in X) that is being traversed, we can use level ancestor
query to determine, in constant time, the child of the branching node that is an
ancestor of that leaf, thus getting rid of the log σ factor.

4 Conclusion

We considered the generalized on-line variant of the longest common property
preserved substring problem proposed by Ayad et al. [1,16], and (1) unified
the two problem settings, and (2) proposed algorithms for several properties,
namely, squares, periodic substrings, palindromes, and Lyndon words. For all
these properties, we can answer queries in O(|y| log σ) time and O(1) working
space, with O(n) time and space preprocessing.
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Abstract. The definition of antipower introduced by Fici et al. (ICALP
2016) captures the notion of being the opposite of a power : a sequence
of k pairwise distinct blocks of the same length. Recently, Alamro et al.
(CPM 2019) defined a string to have an antiperiod if it is a prefix of an
antipower, and gave complexity bounds for the offline computation of
the minimum antiperiod and all the antiperiods of a word. In this paper,
we address the same problems in the online setting. Our solutions rely
on new arrays that compactly and incrementally store antiperiods and
antipowers as the word grows, obtaining in the process this information
for all the word’s prefixes. We show how to compute those arrays online
in O(n log n) space, O(n logn) time, and o(nε) delay per character, for
any constant ε > 0. Running times are worst-case and hold with high
probability. We also discuss more space-efficient solutions returning the
correct result with high probability, and small data structures to support
random access to those arrays.

Keywords: Antiperiod · Antipower · Power · Periodicity ·
Repetition · Regularities · Online algorithms

1 Introduction

String properties that highlight regularities such as periodicity, powers, repeti-
tions, palindromes, as well as properties that—dually—highlight diversity (e.g.
being square-free, non-periodic, etc.), have been extensively investigated in liter-
ature. They have been studied both in terms of combinatorial properties [25,26]
and of algorithmic methods to detect or certify them in a single string [9,10], or
finding maximal common factors that share such properties [2,3,5,8,18,19]. In
addition to having a combinatorial interest on their own, such string properties
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are also very relevant for several applications [9,27,28]. For instance, they are at
the core of many problems arising in biological sequence analysis [22,24].

Arguably, one of the most natural notions of regularity is that of an exact
repetition (power), i.e. a substring consisting of two or more consecutive iden-
tical factors. The number of these factors, or blocks, is called the order of the
repetition. The study of powers began in the early 1900s with the work of Thue
[29], who studied a class of strings that do not contain any substrings that are
powers. Recently, a new notion of string diversity in terms of powers has been
introduced: an antipower of order k (k-antipower) is a string that can be decom-
posed into k pairwise-distinct blocks of identical length [14,15]. An antipower is
the opposite of a power; i.e., a concatenation of blocks that have the same length
but are all different.1 Likewise, the concept of antiperiod is symmetrical to that
of period: an integer p is a period for a word w if and only if w is a prefix of a
power with blocks of length p, whereas � is an antiperiod for w if and only if it
is a prefix of an antipower with blocks of length � [1].

With respect to infinite words, in [14] the authors prove that regardless of the
alphabet size, every infinite word must contain powers of any order or antipow-
ers of any order; i.e., the existence of powers or antipowers is an unavoidable
regularity (cf. also [15]). Inspired by this seminal work, Defant [11] studied the
sequence of lengths of the shortest prefixes of the Thue-Morse word that are k-
antipowers, and proved that this grows linearly in k. The latter result is further
extended in [7] to a generalization of k-antipowers defined in [15].

For finite words, the first algorithmic approach concerning antipowers
appeared in [4]. In this work, the authors tackle the problem of finding all the
factors of a string w that are k-antipowers. Specifically, they prove that the
number of such factors over an alphabet of any size is Ω(n2/k), and provide
an algorithm that finds them all in O(n2/k) time and linear space. The latter
results are improved in [21], where the authors give an algorithm that counts and
reports the number C of substrings of a word w of length n that are k-antipowers,
in O(nk log k) and O(nk log k + C) time, respectively. Moreover, they are also
able to test whether a factor w[i, j] is a k-antipower (i.e, answering an antipower
query (i, j, k)) in O(r) time, by constructing a data structure of size O(n2/r)
in O(n2/r) time, for any r ∈ {1, . . . , n}. As far as antiperiods are concerned,
Alamro et al. [1] are the first to give algorithmic results. Specifically, they com-
pute all antiperiods of a string of length n in O(n log n) time, by employing a
split-find data structure with initialization time O(n) and linear space, which
quickly answers monotone weighted level ancestor queries over the suffix tree.
Furthermore, applying recursion to the same solution, they show how to compute
just the smallest antiperiod t in O(n log∗ t) time.

In this paper, we extend the problems considered in [1] to the online setting.
We show how to efficiently update all the antiperiods (in particular, the minimum
one) of a word upon single character extensions. To achieve this, we introduce
the notion of purely antiperiodic array—i.e. the array containing, for each word’s

1 We remark that a word may be a power/antipower for different orders, even though
in some cases [1] the focus is on the smallest such order.
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prefix w[1, i], the smallest block length � such that the prefix is an antipower of
order i/�—and the more relaxed notion of antiperiodic array, which allows the
last block to have length less than �. In addition, we provide the more powerful
notion of complete antipower array, containing for each possible block length
�, the greatest i such that the word’s prefix w[1, i] is an antipower of order
i/�. The complete antipower array stores, implicitly, all antiperiods of all the
word’s prefixes, as well as the value i/� itself, that is the maximum order for
which a prefix of w is an antipower of period i. We show that these arrays can
be computed online in O(n log n) space, O(n log n) time, and o(nε) delay per
character, for any constant ε > 0. We also show that if we allow a small (inverse-
polynomial) probability of failure, then we can compute online the antiperiodic
array in O(n) space, O(n log t) time and O(n log t) delay (all running times
are worst-case and hold with high probability). Finally, we describe small data
structures supporting fast random access to those three arrays, without the need
to explicitly store all of them.

2 Preliminaries and Problem Definitions

Let Σ = {c1, c2, . . . , cσ} be a finite ordered alphabet of size σ with c1 < c2 <
. . . < cσ. Given a word (or string) w = w[1]w[2] · · · w[n] ∈ Σ∗ we denote by |w|
its length n. We use ε to denote the empty word. A factor (or substring) of w
is written as w[i, j] = w[i] · · · w[j] with 1 ≤ i ≤ j ≤ n. A factor of type w[1, j] is
called a prefix of w, while a factor of type w[i, n] is called a suffix of w.

An integer p ≥ 1 is a period of a word w[1]w[2] · · · w[n] where w[i] ∈ Σ if
w[i] = w[i + p] for i = i, . . . , n − p. The smallest period of w is called the period
of w.

A power of order k is a string that is the concatenation of k identical equal-
length blocks of letters. More formally, given a finite word w, wk denotes the
word obtained by concatenating k copies of w. For a power of order k and length
n, the integer n/k is a period.

Definition 1 ([14]). An antipower of order k, or simply a k-antipower, is
defined as a concatenation of k consecutive pairwise distinct blocks of the same
length.

The length of the pairwise distinct blocks is called antiperiod. The notion of
antiperiod to words that are not antipowers has been extended in [1]: w has an
antiperiod � if it is a prefix of some k-antipower w whose antiperiod is �. Holding
this intuition, we formalize a definition of antiperiodic words as follows:

Definition 2. A word w = u1 . . . uk is called �-antiperiodic if (i) ui �= uj, for
all i �= j; (ii) |ui| = �, for all i < k; (iii) |uk| ≤ �. The number � = �n

k � is an
antiperiod for w.

Note that a k-antipower of length n is n
k -antiperiodic. Therefore, we also call it

purely n
k -antiperiodic.
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Example 1. The word abbbaa is a 3-antipower, therefore it is also purely 2-
antiperiodic: the distinct-factors partition ab|bb|aa testifies this.
The word ababaab is not 2-antiperiodic, but it is 3-antiperiodic: aba|baa|b.

We now formally define the three arrays that will be the output of our online
algorithms. The first two arrays respectively store, for each word’s prefix, its
minimum antiperiod and its minimum pure antiperiod:

antiperiodic array (apd)
INPUT: A word w of length n
OUTPUT: An array of length n where apd[i] is the smallest � such that
w[1, i] is �-antiperiodic.

Purely antiperiodic array (papd)
INPUT: A word w of length n
OUTPUT: An array of length n where papd[i] is the smallest � such that
w[1, i] is a i

� -antipower.

We further consider the following question: given i and � is the prefix w[1, i]
(purely) �-antiperiodic? We can answer this question by building our third array,
the complete array cap of w:

Complete antipower array (cap)
INPUT: A word w of length n
OUTPUT: An array of length n where cap[�] is the maximum index i such
that the prefix w[1, i] is purely �-antiperiodic.

Example 2. Let w = abaabaab. The antiperiodic array of w is given by apd =
[1, 1, 2, 2, 2, 2, 2, 4], its purely antiperiodic array papd = [1, 1, 3, 2, 5, 2, 7, 4], and
its complete antipower array is cap = [2, 6, 3, 8, 5, 6, 7, 8].

In the next sections, we show how to build these arrays online, and how to
access them using little space (i.e. less space than the three explicit arrays).

2.1 Basic Properties of Antiperiodic Words

First, we provide some properties of (purely) �-antiperiodic words.

Lemma 1. If � is an antiperiod for some word w of length > �, then � is also
antiperiod for w′ = w[1, |w| − 1].

Proof. First, let us assume � does not divide |w|. By hypothesis, all blocks us =
w[(s − 1)� + 1, s�] for s = 1, ..., � |w|

� � = k − 1 and uk = w[� |w|
� �� + 1, |w|] are

pairwise distinct. Let u′
k = uk[1, |uk| − 1] (possibly the empty word); then the

blocks u1, ..., uk−1 are still distinct, and they are all also distinct from u′
k since

they are of different lengths. Therefore, since w′ = w[1, |w| − 1] = u1 · · · uk−1u
′
k,

� is an antiperiod for w′. If � divides |w|, the proof still holds with last block
being uk−1 instead of uk. �	
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Proposition 1. The following properties hold:

(i) If a word w is �-antiperiodic, then for all i ≥ � the prefix w[1, i] is �-
antiperiodic.

(ii) If a word w is purely �-antiperiodic, then for all i ≥ � such that � divides i,
the prefix w[1, i] is purely �-antiperiodic.

(iii) If a prefix w[1, j] is purely �-antiperiodic, then w[1, i] is �-antiperiodic for
all � ≤ i < j + �.

Proof. Properties (i) and (ii) follow by recursively applying Lemma1. In order to
prove Property (iii), we assume that w[1, j] is purely �-antiperiodic. By part (i)
we have that the thesis holds for i ∈ [�, j]. On the other hand, if w[1, j] is purely
�-antiperiodic, then the blocks us = w[(s−1)�+1, s�] for s = 1, . . . , j

� are pairwise
distinct. Therefore they are also trivially distinct from uh = w[j + 1, h] for all
h < j + �, since they are of different lengths. This ensures the �-antiperiodicity
of w[1, i] for j < i < j + �.

2.2 Algorithmic and Data Structures Toolkits

We make use of Karp-Rabin fingerprinting [20] in the more modern variant,
where the fingerprint is a polynomial modulo a prime number evaluated at a
random point. To make the paper self-contained, we recapitulate these notions.

Definition 3 (Karp-Rabin fingerprinting [20]). The Karp-Rabin hash func-
tion (over integer alphabet) is defined as hq,x(w) =

∑|w|
i=1 w[i] · x|w|−i mod q,

where q is a prime and x is a random integer in [1, q].

The value hq,x(w) will be called hash value or fingerprint of w interchange-
ably. In the following, with high probability (or inverse-polynomial probability)
means with probability at least 1 − n−c for an arbitrarily large constant c fixed
at construction time, where n is the input’s size. We will often say that running
times of our algorithms hold with high probability. This means that the algorithm
terminates in the claimed running time (or has the claimed delay) with proba-
bility 1 − n−c for an arbitrarily large constant c fixed at construction time. On
the other hand, with probability n−c the algorithm (or single operations) could
take polynomial time to terminate.

A crucial property of Karp-Rabin fingerprinting is that, with high probability,
no collision occurs among the factors of a given word. To see this, consider two
words s �= t of length n. The polynomial hq,x(s) − hq,x(t) has at most n roots
modulo (prime) q, so the two words collide (i.e. hq,x(s) − hq,x(t) = 0) with
probability n/q. For big enough q we take care of all possible O(n2) collisions
between the factors of a word of length n:

Lemma 2. For a sufficiently large prime q such that log q ∈ Θ(log n), the hash
function hq,x is collision-free over all factors of any fixed word w[1, n] with high-
probability.
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If n is not known in advance (e.g. in the online setting), in the above lemma
we can take instead log q ∈ Θ(ω), where ω is the machine word size. We thus work
in the word RAM model, where the word size always satisfies ω = Ω(log n) for
any input size n and standard arithmetic operations between Θ(ω)-bits numbers
take constant time.

In our application we will need to check collisions between factors of the
current word in an online fashion, with small delay per added character. The
following standard extension of Karp-Rabin fingerprinting (see also [6]) will allow
us to reach this goal.

Definition 4 (Extended Karp-Rabin fingerprinting). The extended Karp-
Rabin hash function is defined as

κq,x(w) =
〈
hq,x(w[1, 2�log2 |w|�]), hq,x(w[|w| − 2�log2 |w|� + 1, |w|]), |w|

〉

We say that κq,x is collision-free on w if κq,x does not generate collisions
among factors of w. Note that κq,x is collision-free on w if and only if hq,x is
collision-free among the factors of w whose length is a power of two.

A dictionary D is a data structure implementing a set of objects (e.g. inte-
gers). Each object x is associated with some satellite information y (e.g. another
integer), which is retrieved using the notation y ← D[x]. A dynamic dictionary
supports the insertion of pairs (object, satellite information) 〈x, y〉 as D[x] ← y.
In our algorithms we will use the dictionary design of Dietzfelbinger et al. [12]:

Lemma 3 (Dynamic Dictionaries [12]). There exists a linear-space dynamic
dictionary data structure supporting insertion and retrieval operations in con-
stant worst-case time w.h.p.

The probabilities involved in the performance of our algorithms will depend
solely on the random choices they make (e.g. choosing the hash function), not
on the input word w (which may be arbitrary). However, we do require that the
word w is fixed before the algorithm starts, i.e. before the random choices are
made. This is a standard assumption with randomized dynamic data structures;
violating this assumption is equivalent to using fully-deterministic structures, for
which strong lower-bounds apply (see, e.g., the case of dictionaries considered
by Dietzfelbinger et al. [13], who also make the same assumption).

3 Online Algorithms

In this section, we first discuss how to compute the antiperiodic array apd (by
using two different approaches), and then extend the solution to papd and to
cap arrays. The final goal of this section will be proving the following theorems:

Theorem 1. The antiperiodic array (apd) of a word w of length n can be
computed with an online solution working in O(n) space, O(n log t) time, and
O(n log t) delay per character, where t is the smallest antiperiod of w. Running
times are worst-case and hold w.h.p. The returned solution is correct w.h.p.
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Theorem 2. The antiperiodic array (apd), purely antiperiodic array (papd)
and complete antipower array (cap) of a word w of length n can be computed
with an online solution working in O(n log n) space, O(n log n) time, and o(nε)
delay per character for any constant ε > 0. Running times are worst-case and
hold w.h.p.

The proof of Theorem 1 is given in Sect. 3.1 and the proof of Theorem 2
follows immediately from Lemmas 6, 7, and 8.

Whenever we say we use a dictionary or an array, it is assumed we use the
data structure of Lemma 3. This way, we do not need to assume that the final
size n of the text is known. Note that this dictionary offers stronger guarantees
than classic hash tables, where query times are constant only in expectation.
Similarly, a simple array can be used to represent a dynamic text with right-
append operations; however, also in this case resizing operations (e.g. doubling
techniques) require O(n) delay in the worst case. In order to achieve a small
delay in our online algorithms, we cannot afford paying such overheads and thus
opt for the structure of Lemma 3.

The following dynamic string data structure stands at the core of our results.
It extends standard techniques (see e.g. [6]) to the online setting to efficiently
compute the extended Karp-Rabin fingerprint of any factor and check collisions
among them.

Lemma 4. There is a O(n log n)-space data structure on a word w[1, n] that
computes κq,x(w[i, j]) in constant time for any 1 ≤ i ≤ j ≤ n, where κq,x

is collision-free. The structure can be updated in O(log n) time by appending a
new character to the end of w, possibly changing function κq,x if a collision is
detected. Space and update time can be reduced to O(n) and O(1), respectively,
at the cost of using a hash function that is collision-free with high probability
only. In all cases, running times are worst-case and hold w.h.p.

Proof. Similarly to Bille et al. [6] (where they consider more space-efficient vari-
ants), we store the hash value of every prefix of w. Then, the fingerprint value of
any factor can be computed by subtracting (modulo q) the hashes of two prefixes
(the hash of the shortest prefix need also to be multiplied by a suitable power
of x, so we compute also all powers of x modulo q). To extend the structure for
the word w by one character c, it is sufficient to compute the fingerprint of wc.
This can be done with one multiplication and one addition (mod q) to combine
the fingerprints of w and c. This is already sufficient to obtain the linear-space
version of the structure that is correct with high probability and that supports
queries and updates in constant time.

To make the structure collision-free, we check collisions of hq,x among factors
whose length is a power of 2. This suffices to ensure that κq,x is collision-free
among factors of any length. For each e = 1, . . . , log n we keep a dictionary
Ce storing all fingerprints of factors of length 2e. To each such fingerprint X,
we associate a position i such that hq,x(w[i, i + 2e − 1]) = X. Assume that
the function is collision-free among factors of w whose length is a power of
2. To extend the property to w′ = wc, for a character c, first we extend the
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fingerprinting structure as seen above. Then, for e = 1, . . . , log n (in this order)
we do as follows. Assume that the suffix of length 2e−1 of w′ does not generate
collisions, which at the beginning (e = 1) can be checked in constant time by
accessing dictionary C1 and the word. We look for X = hq,x(w′[|w′|−2e+1, |w′|])
in Ce. If it does not occur, then the suffix of w′ of length 2e does not generate
collisions. We insert 〈X, |w′| − 2e + 1〉 in the dictionary and we proceed with
e+1. Otherwise, let i < |w′|−2e+1 be the position found in the dictionary such
that hq,x(w′[i, i+2e − 1]) = X. Since by assumption hq,x is collision-free among
factors of length 2e−1, we can check if w[i, i + 2e − 1] = w′[|w′| − 2e + 1, |w′|] in
constant time by comparing the collision-free fingerprints of their two halves. If
we detect a collision, then we re-build the whole structure with a new random x.
This happens with probability at most n−c for an arbitrarily large constant c,
so updates take O(log n) time w.h.p. �	

The optimal dynamic strings of Gawrychowski et al. [17] could also be used
to replace the structure of Lemma 4. However, they support factor comparison
in O(log n) time2, whereas Lemma 4 achieves O(1) time (at the price of being
less space-efficient and supporting less powerful queries). This is crucial to obtain
the claimed time bounds in our algorithms.

3.1 Online Antiperiodic Array: Linear Space Construction

Our first solution to build the antiperiodic array relies on its monotonicity.

Proposition 2. The antiperiodic array apd is non-decreasing; that is, for all
i < |w|, apd[i] ≤ apd[i + 1].

Proof. We know that apd[i + 1] is an antiperiod for w[1, i + 1]. By Lemma 1,
apd[i+1] is also an antiperiod for w[1, i]. Since apd[i] is the minimum antiperiod
for this word, apd[i] ≤ apd[i + 1] holds. �	

We now describe a simple online solution for computing array apd that
achieves linear space and O(n log t) running time, where t is the smallest
antiperiod of the word, proving Theorem 1.

Proof (Theorem 1). Assume we have processed w[1, i] and computed apd[1, i],
with apd[i] = �. We keep the dynamic linear-space data structure of Lemma 4
on w (i.e. the version that is correct w.h.p. only). We also keep a dictionary R
containing the fingerprints of all blocks of length � up to position i. If � does not
divide i+1, then we write apd[i+1] = � and proceed to i+2. Otherwise, w[i, i+1]
ends a block of length �. We insert the fingerprint of the last block of length � in
the dictionary R. If the fingerprint is not already in the dictionary, we can write
apd[i + 1] = � and proceed to i + 2. Otherwise, � is not an antiperiod of i + 1.
We empty the dictionary R and look for a new antiperiod �′ = � + 1, � + 2, . . . .
2 Using their interface, factor comparisons can be achieved by extracting (splitting) the

factors in logarithmic time, then comparing them in constant time (or, alternatively,
by navigating their grammar in logarithmic time without performing splits).
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Proposition 2 guarantees that only these antiperiods need to be tried, since apd
is non-decreasing. To check antiperiod �′, we insert the fingerprints of all blocks
of length �′ in R in O((i + 1)/�′) time. If a duplicate is found, we empty R
and proceed to �′ + 1. We stop at the smallest integer �′ that does not generate
duplicates in R (and we keep the current elements in R).

Let t be the smallest antiperiod of the whole word w[1, n]. Overall, we spend
time O(

∑t
�=1 n/�) = O(n log t). Since we keep only one dictionary at a time, the

space is O(n). In the worst case, it could be that we are processing a position
i ∈ Θ(n) and that we need to check most of the antiperiods �′ smaller than
t, so also the delay is Θ(n log t) in the worst case. Moreover, since we do not
check collisions between Karp-Rabin fingerprints, the solution is correct with
high probability only. �	

3.2 Online Antiperiodic Array: Reducing the Delay

In this section we improve the delay of the solution described in the previous
section with an algorithm returning always the correct solution (at the cost of
increasing space usage and running time).

Our solution will require to compute the divisors of all numbers i = 1, . . . , n.
With the next lemma we show how to achieve this goal in an online fashion and
constant time per element. Running time is w.h.p. because we assume that n is
not known in advance and we use the dictionary of Lemma 3 to implement a
dynamic array; otherwise, if n is known one can use a simple array and remove
randomization.

Lemma 5. We can list all d(i) divisors of the integers i = 1, . . . , n in O(d(i))
time per integer and O(n log n) total space. The running time is worst-case and
holds w.h.p.

Proof. We show how to build a dictionary D such that D[i] is the multi-set of the
O(log i) prime divisors of i: if d is the largest integer such that pd divides i and p
is prime, D[i] contains d copies of p. D[i] can be implemented as a simple array
(to re-size it, we can simply double its current size: since at most O(log i) primes
can divide i, D[i] can be re-sized with delay O(log i), which is acceptable for our
purposes). At the beginning, we have D[1] = ∅. Given D[i], all divisors of i can
be enumerated in constant time per element by multiplying the integers of any
subset of D[i] (with backtracking, to avoid repeating the same multiplications).
We also return the trivial divisors 1 and i (or just one of them if i = 1).

Suppose we have computed D[1, i]. To proceed to the next position i+1, for
each p ∈ D[i] we insert p in D[j], where j = ((i/p)+1) · p is the next multiple of
p. If D[i+1] is empty, then we insert i+1 in D[i+1]. It is easy to see that now
D[i+1] contains all primes that divide i+1: let p be a prime dividing i+1. We
have two cases. (i) i+1 = q · p, with q > 1. Then, by definition of our procedure
when we processed D[(q−1)·p] we also inserted p in D[(q−1+1)·p] = D[i+1]. (ii)
i+1 = p. Then, D[i+1] is empty when we visit it and our procedure inserts p in
D[i+1]. Now, if a prime p divides i+1 we can find the largest power pd dividing
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i+ 1 by simply computing the remainder between i+ 1 and pe, for e = 1, . . . , d.
We insert d − 1 further copies of p in D[i + 1]. Note that we compute each D[i]
in O(log i) ⊆ O(d(i)) time and delay, and that at any time D contains at most
Θ(n) multi-sets of size O(log n) each (when processing position i, the furthest
cell of D that we touch is D[2 · i]; this happens precisely when i is prime). �	

We can now prove the main result of this section regarding the apd:

Lemma 6. Theorem 2 holds with respect to the antiperiodic array.

Proof. Assume we have processed w[1, i] and computed apd[1, i]. We keep the
O(n log n)-space data structure of Lemma 4 on w (i.e. the version that always
returns the correct result and supports O(log n)-time updates).

We build i dictionaries H1, . . . , Hi, where H� stores all the fingerprints
κq,x(w[� · (j − 1) + 1, � · j]) for j = 1, . . . , �i/��. At each time step, note that
the dictionaries store overall O(n log n) elements.

We also keep a log-time successor data structure B (e.g. a red-black tree)
storing all the values {�1, . . . , �q} ⊆ [1, i] such that �j is an antiperiod of w[1, i].

Now, suppose we extend w[1, i] with a character, obtaining w[1, i + 1], and
assume that the last computed value in the antiperiodic array is apd[i] = �. To
update our structures, we perform the following operations:

1. First, we insert i + 1 in B, since i + 1 is a valid antiperiod of w[1, i + 1].
2. Then, we update the dictionary Hj for all j that divide i + 1, i.e. such that

a block of length j ends at the end of w[1, i + 1]. Each such dictionary Hj is
updated by inserting X = κq,x(w[i − j + 2, i + 1]), i.e. the hash of the last
block of length j. If X is already in the dictionary, then j cannot be anymore
an antiperiod, and we remove it from B. In Lemma 5 we show how to list
all d(i + 1) divisors of i + 1 in constant time per item. Any integer x has
at most eO(log x/ log log x) = o(xε) divisors, for any constant ε > 0, so o(nε)
will become our delay. Overall, these operations amortize to O(n log n) time
(since

∑n
i=1 d(i) = O(n log n), where d(i) is the number of divisors of i).

3. If apd[i] = � does not divide i + 1, then we set apd[i + 1] = �. Otherwise, �
divides i + 1. Then, � is the minimum antiperiod of w[1, i + 1] iff � ∈ B. If it
is, we set apd[i+1] = �. Otherwise, we find the successor �′ of � in B and we
set apd[i + 1] = �′. All these operations take O(log n) time. �	

3.3 Purely Antiperiodic Array

In this section we extend the solution for computing apd of Sect. 3.2 to the
computation of the purely antiperiodic array papd.

Lemma 7. Theorem 2 holds with respect to the purely antiperiodic array.

Proof. We build the dictionaries H1, . . . , Hi as in the proof of Theorem 6. We
mark each dictionary H� with a flag (one bit) recording whether � is no longer
an antiperiod for the current position i. When processing position i + 1, we
scan all divisors of i + 1 (using Lemma 5) and (i) opportunely update the flags
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whenever for some divisor �′ of i+1, the current prefix w[1, i+1] is no longer a
i+1
�′ -antipower (but the prefix w[1, (i + 1) − �′] was), and (ii) find the minimum

divisor � for which w[1, i + 1] is a i+1
� -antipower (i.e. the minimum � such that

H� is not marked). This � is the value we write in papd[i+1]. Our time bounds
follow since we spend constant time per divisor of i + 1. �	

3.4 Complete Antipower Array

In this section we show how to build the complete antipower array cap. Recall
that cap[�] stores the maximum index j such that the prefix w[1, j] is purely
�-antiperiodic. Thus, for any � > �n/2�, cap[�] is trivially equal to its index �.

With an easy adaptation of Theorem 7 we obtain:

Lemma 8. Theorem 2 holds with respect to the complete antipower array.

Proof. We proceed as in the proof of Theorem 7. We keep i dictionaries H�,
� = 1, . . . , i storing the fingerprints of blocks of length � up to position i. We also
mark each dictionary H� with a flag (one bit) recording (when true) whether �
is no longer an antiperiod for the current position i. Assume we have computed
cap[1, i]. When processing position i + 1, we generate all divisors of i + 1 with
Lemma 5. Whenever for some divisor �′ of i + 1, the current prefix w[1, i + 1] is
no longer a i+1

�′ -antipower (but the prefix w[1, (i + 1) − �′] was), we set the flag
associated with dictionary H�′ . Then, for all divisors �′′ of i + 1 such that the
flag of H�′′ is false we write cap[�′′] ← i + 1. Our time and space bounds follow
since the number of divisors is always upper-bounded by o(nε) and the sum of
the number of divisors of all i = 1, . . . , n is O(n log n). �	

4 Relationships Between cap, apd and papd

We observe that the array cap stores more information than arrays apd and
papd, which only record the minimum � for each word’s prefix. Moreover, the
following lemma shows the relation between the array cap and the property of
being �-antiperiodic.

Lemma 9. A prefix w[1, i] is �-antiperiodic if and only if � ≤ i < cap[�] + �.

Proof. If a prefix w[1, i] is �-antiperiodic, it must hold that the length i of the
prefix is at least �. Moreover, by definition of cap, since cap[�] = x is the right-
most index of w such that w[1, x] is purely �-antiperiodic, it also must hold
i < x+ �. Conversely, suppose we have an index i such that � ≤ i < x+ �, where
x = cap[�]. Then the fact that w[1, i] is �-antiperiodic follows by the definition
of cap and part (iii) of Proposition 1. �	

Here we show how cap can be used to directly obtain or access efficiently the
other two structures.

Accessing apd from cap. We show that the array cap allows fast random
access to apd. Indeed, the entry apd[i] is the minimum length � such that the



186 M. Alzamel et al.

prefix w[1, i] is �-antiperiodic. By Lemma 9, the value apd[i] is the smallest �
such that � ≤ i < cap[�] + �. To find such value we need to find the leftmost
entry in cap[1, i] such that cap[�] + � is greater than i.

Given cap, we build a constant-time range maximum data structure (RMQ)
on the array A = [cap[1] + 1, cap[2] + 2, . . . , cap[n] + n], which requires only
2n+o(n) bits and can be built in linear time [16]. The structure returns, for every
range [i, j], the index containing the maximum element in A. Then, accessing
apd[i] corresponds to finding the leftmost entry in A that exceeds i. This can
be solved in O(log n) time with binary search using the RMQ on A.

Obtaining apd from cap. We show that cap may be used to build apd in
O(n) time. Since apd[i] = min{� : w[1, i] is � − antiperiodic}, by Lemma 9 it
holds apd[i] = min{� : � ≤ i < cap[�] + �}. We can thus obtain apd by iterating
over cap[�] and each time setting values of apd that have not already been set.
More formally, we start from � = 1 and set an auxiliary index j = 1. The index
j prevents us from writing twice on the same cell. Given �, we mark apd[i] = �
for all indices i in the range [j, cap[�] + � − 1]. Then, we update the index j by
setting j = cap[�] + � if j < cap[�] + �, and we repeat the procedure for � + 1.
Note that if cap[�]+ �−1 is smaller than j for some �, we do nothing apart from
increasing �. We stop when apd and cap are of the same length.

When we set apd[i] = �, � is the smallest value such that i < cap[�] + �. The
cost is O(n) as each cell of apd is only written once, and each cell of cap only
read once, both arrays having length n.

Accessing papd from cap. We further note that cap allows random access
to papd by performing just o(nε) accesses to cap (for any ε > 0). Indeed,
papd[i] = min{� : w[1, i] is purely � − antiperiodic}. Note that i mod � must
be 0. This means we can find papd[i] by iterating over each divisor x of i and
finding the lowest one such that cap[x] ≥ i. As any integer number i ≤ n has
o(nε) divisors, the process takes o(nε) accesses to cap.

To obtain o(nε) running time, one needs to list the divisors of the index i ≤ n
in constant time per element. One solution could be dividing i by all numbers
j ≤ √

i. This solution successfully finds all divisors in O(
√

n) time. This can be
improved to o(nε) by explicitly factoring i: integer factorization algorithms like
Schnorr-Seysen-Lenstra’s [23] find all factors of i ≤ n in o(nε) expected time.

Obtaining papd from cap. Using the above solution to access each cell of
papd, running time amortizes to O(n log n), i.e. the sum of the number of divisors
of all numbers i ≤ n. In this case, the divisors can be found using Lemma 5.

5 Final Remarks

In this paper, we showed how to efficiently compute in online fashion the antiperi-
odic array, the purely antiperiodic array, and the complete antipower array.

Moreover, using the complete antipower array, we can answer in constant
time the question posed in Sect. 2: given i and � is the prefix w[1, i] (purely)
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�-antiperiodic? Indeed, w[1, i] is purely �-antiperiodic if i mod � = 0 and i ≤
cap[�], and �-antiperiodic if � ≤ i < cap[�] + �.

Note that the definition of �-antiperiodic word w = u1 . . . uk poses no con-
straint on the last block uk when its length is strictly less than �. We may think
of extending/restricting the �-antiperiodic notion by imposing conditions on this
incomplete block, such as uk not being a prefix (or suffix, factor...) of any ui.
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Abstract. A Maximal Common Subsequence (MCS) between two
strings X and Y is an inclusion-maximal subsequence of both X and
Y . MCSs are a natural generalization of the classical concept of Longest
Common Subsequence (LCS), which can be seen as a longest MCS. We
study the problem of efficiently listing all the distinct MCSs between two
strings. As discussed in the paper, this problem is algorithmically chal-
lenging as the same MCS cannot be listed multiple times: for example,
dynamic programming [Fraser et al., CPM 1998] incurs in an exponen-
tial waste of time, and a recent algorithm for finding an MCS [Sakai,
CPM 2018] does not seem to immediately extend to listing. We follow an
alternative and novel graph-based approach, proposing the first output-
sensitive algorithm for this problem: it takes polynomial time in n per
MCS found, where n = max{|X|, |Y |}, with polynomial preprocessing
time and space.

1 Introduction

The widely known Longest Common Subsequence (LCS) is a special case of the
general notion of (inclusion-)Maximal Common Subsequence (MCS) between
two strings X and Y . Defined formally below, the MCS is a subsequence S of
both X and Y such that inserting any character at any position of S no longer
yields a common subsequence. We believe that the enumeration of the distinct
MCSs is an intriguing problem from the point of view of string algorithms, for
which we offer a novel graph-theoretic approach in this paper.

Problem Definition. Let Σ be an alphabet of size σ. A string S over Σ is a
concatenation of any number of its characters. A string S is a subsequence of a
string X, denoted S ⊂ X, if there exist 0 ≤ i0 < ... < i|S|−1 < |X| such that
X[ik] = S[k] for all k ∈ [0, |S| − 1].

Definition 1. Given two strings X,Y , a string S is a Maximal Common Sub-
sequence of X and Y , denoted S ∈ MCS(X,Y ), if

1. S ⊂ X and S ⊂ Y ; that is, S is a common subsequence;
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2. there is no other string W satisfying the above condition 1 such that S ⊂ W ,
namely, S is inclusion-maximal as a common subsequence.

Example 1. Consider X = TGACGA and Y = ATCGTA, where MCS(X,Y ) =
{TCGA, ACGA}. A greedy left-to-right common sequence is not necessarily a MCS:
iteratively finding the nearest common character in X and Y , from left to right,
gives W = TGA, which is not in MCS(X,Y ) as TGA ⊂ TCGA.

The focus of this paper is on the enumeration of MCS(X,Y ) between two
strings X and Y , stated formally below.

Problem 1 (MCS enumeration). Given two strings X,Y of length O(n) over
an alphabet Σ of size σ, list all maximal common subsequences S ∈ MCS(X,Y ).

In enumeration algorithms, the aim is to list all objects of a given set. The
time complexity of these type of algorithms depends on the cardinality of the
set, which is often exponential in the size of the input. This motivates the need
to define a different complexity class, based on the time required to output one
solution.

Definition 2. An enumeration algorithm is polynomial delay if it generates the
solutions one after the other, in such a way that the delay between the output of
any two consecutive solutions is bounded by a polynomial in the input size.

Our aim will be to provide a polynomial delay MCS enumeration algorithm,
more specifically we will prove the following result.

Theorem 1. There is a polynomial-delay enumeration algorithm for Problem 1,
with polynomial preprocessing time and space.

In the full version of this paper, we show how to get a small O(nσ(σ+log n))
polynomial delay, with O(n2(σ + log n)) preprocessing time and O(n2) space.

Motivation and Relation to Previous Work. Maximal common subse-
quences were first introduced in the mid 90s by Fraser et al. [5]. Here, the con-
cept of MCS was a stepping stone for one of the main problems addressed by the
authors: the computation of the length of the Shortest Maximal Common Sub-
sequence (SMCS) (i.e. the shortest string length in MCS(X,Y )), introduced in
the context of LCS approximation. For this, a dynamic programming algorithm
was given to find the length of a SMCS of two strings in cubic time.

While LCSs have thoroughly been studied [3,6,10,12], little is known for
MCSs. In general, LCSs only provide with information about the longest possi-
ble alignment between two strings, while MCSs offer a different range of infor-
mation, possibly revealing slightly smaller but alternative alignments. A recent
paper by Sakai [11] presents an algorithm that deterministically finds one MCS
between two strings of length O(n) in O(n log log n) time, in contrast with the
computation of the length of the LCS, for which a quadratic conditional lower
bound based on SETH has been proved [1]. This same algorithm can also be
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Fig. 1. Visual representation of Sakai’s characterization

used to extend a given sequence to a maximal one in the same time. Further-
more, an O(n)-time algorithm to check whether a given subsequence is maximal
is described in the paper. To this end, Sakai gives a neat characterization of
MCSs, which will be useful later, as stated in Lemma 1 and illustrated in Fig. 1.

Lemma 1 (MCS Characterization [11]). Given a common subsequence W
of X and Y , we define Xk (resp. Yk) as the remaining substring obtained from X
(resp. Y ) by deleting both the shortest prefix containing W [0, k), and the shortest
suffix containing W [k, |W |). Substrings Xk, Yk are called the k-th interspaces.
With this notion, W is maximal if and only if Xk ∩ Yk = ∅ for all k ∈ [0, |W |].

The aforementioned two results seem to be of little help in our case, as neither
of the two can be directly employed to obtain a polynomial-delay enumeration
algorithm to solve Problem 1, which poses a quite natural question.

Consider the dynamic programming approach in [5]: even if the dynamic
programming table can be modified to list the lengths of all MCS in polynomial
time, this result cannot be easily generalized to Problem 1. Indeed we show
below that any incremental approach, including dynamic programming, leads to
an exponential -delay enumeration algorithm.

Example 2. Consider X = TAATAATAAT, Z = TATATATATAT and Y = Z Z. Since
X ⊂ Y , the only string in MCS(X,Y ) is the whole X. But if we were to proceed
incrementally over Y , at half way we would compute MCS(X,Z), which can be
shown to have size O(exp(|X|)). This means that it would require an exponential
time in the size of the input to provide just a single solution as output.

As for the approach in [11], the algorithm cannot be easily generalized to solve
Problem 1, since the specific choices it makes are crucial to ensure maximality
of the output, and the direct iterated application of Lemma 1 does not lead to
an efficient algorithm for Problem 1, as shown next.

Example 3. For a given common subsequence W to start with, first find all values
of k ≤ |W | such that Xk ∩ Yk �= ∅. Then, for these values, compute all distinct
characters c ∈ Xk ∩ Yk, and for each of these recur on the extended sequences
W ′ = W [0, ..., k−1] c W [k, ..., |W |−1]. For instance, given the strings X = ACACA
and Y = ACACACA with starting sequences W = A and W = C, this algorithm
would recur on almost every subsequence of X, just to end up outputting the
single MCS(X,Y ) = {X} an exponential (in the size of X) number of times.
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Getting polynomial-delay enumeration is therefore an intriguing question.
The fact that one maximal solution can be found in polynomial time does not
directly imply an enumeration algorithm: there are cases where this is possible,
but the existence of an output-sensitive enumeration algorithm is an open prob-
lem [8], or would imply P = NP [9]. As we will see, solving Problem 1 can lead
to further pitfalls that we circumvent in this paper.

2 MCS as a Graph Problem

As a starting point we reduce Problem 1 to a graph problem in order to give a
theoretic characterization and get some insight on how to combine MCS. After-
wards, this characterization will be reformulated in an operative way, leading to
an algorithm for MCS enumeration.

2.1 Graph G(X,Y )

Definition 3. Given two strings X,Y , their string bipartite graph G(X,Y ) has
vertex set V = [0, |X| − 1] ∪ [0, |Y | − 1] representing the positions inside X and
Y , and edge set E = {(i, j) | X[i] = Y [j]} where each edge, called pairwise
occurrence, connects positions with the same character in different strings.

Definition 4. A mapping of G(X,Y ) is a subset P of its edges such that for
any two edges (i, j), (h, k) ∈ P we have i < h iff j < k. That is, a mapping is a
non-crossing matching of the string graph.

Each mapping of the string graph spells a common subsequence. Vice versa,
each common subsequence has at least one corresponding mapping. Thus one
might incorrectly think that MCS correspond to inclusion-maximal mappings; as
a counterexample consider X = AGG and Y = AGAG, with MCS(X,Y ) = {AGG}.
G(X,Y ) has an inclusion-maximal mapping corresponding to AG �∈ MCS(X,Y ).

For a string S, let nextS(i) be the smallest j > i with S[j] = S[i] (if any), and
nextS(i) = |S|−1 otherwise; we use the shorthand IS(i) = S[i+1, . . . , nextS(i)].

Definition 5. A mapping of G(X,Y ) is called rightmost if for each edge (i, j)
of the mapping, corresponding to character c ∈ Σ, the next edge (i′, j′) of the
mapping is such that nextX(i) ≥ i′ and nextY (j) ≥ j′. That is, there are no
occurrences of c in X[i+1, . . . , i′−1] and Y [j+1, . . . , j′−1], the portions between
edges (i, j) and (i′, j′). We can symmetrically define a leftmost mapping.

In order to design an efficient and correct enumeration algorithm that uses
also Definition 5, we first need to study how MCS(X,Y ) and MCS(X ′, Y ′)
relate to MCS(X X ′, Y Y ′) for any two pairs of strings X,Y and X ′, Y ′.

Remark 1. A simple concatenation of the pairwise MCS fails: consider for exam-
ple X = AGA, X ′ = TGA, Y = TAG and Y ′ = GAT, with MCS(X X ′, Y Y ′) =
{AGGA, AGAT, TGA}. We have MCS(X,Y ) = {AG} and MCS(X ′, Y ′) = {GA, T}.
Combining the latter two sets we find the sequence AGGA, which is in fact maxi-
mal, but also AGT, which is not maximal as AGT ⊂ AGAT.
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The correct condition for combining MCS is a bit more sophisticated, as
stated in Theorem 2. Here, for a position i of a string S, we denote by S<i the
prefix of S up to position i − 1, and by S>i the suffix of S from position i + 1.

LP RC

Y

X
l

m

i

j

Fig. 2. For their concatenation to be a MCS, P has to be maximal in the red part and
C in the orange one (Color figure online)

Theorem 2. (MCS Combination) Let P and C be common subsequences of
X,Y . Let (l,m) be the last edge of the leftmost mapping LP of P , and (i, j) be
the first edge of the rightmost mapping RC of C (see Fig. 2). Then

P C ∈ MCS(X,Y ) iff P ∈ MCS(X<i, Y<j) and C ∈ MCS(X>l, Y>m).

Proof. To ensure the equivalence, it is sufficient to show that Sakai’s interspaces
for string P C over X,Y are the same as the ones for either P over X<i, Y<j , or
for C over X>l, Y>m. Let |P | = s, |C| = r, and consider an index k.

Case k < s: the shortest suffixes of X,Y containing pk+1, ..., ps, c1, ..., cr are
unchanged from the shortest suffixes of X<i, Y<j containing pk+1, ..., ps, since
C is already in rightmost form starting exactly at (i, j). The shortest prefixes
containing p1, ..., pk are simply the first k edges of the leftmost mapping of P ,
both in X,Y and X<i, Y<j . Therefore, the interspaces for the whole strings are
unchanged from the interspaces for P over X<i, Y<j .

Case k > s: this case is symmetrical to the previous one: the interspaces for
the whole strings are unchanged from the interspaces for C over X>l, Y>m.

Case k = s: The last interspaces for P and the first for C coincide, and they
are X[l + 1, ..., i − 1] and Y [m + 1, ..., j − 1]. Since P is in leftmost form ending
at (l,m) and C is in rightmost form beginning at (i, j), these two strings also
coincide with the k-th interspaces for P C. 
�

Theorem 2 gives a precise characterization on how to combine maximal sub-
sequences, but it cannot be blindly employed to design an enumeration algorithm
for a number of reasons.

Let a string P be called a valid prefix if there exists W ∈ MCS(X,Y ) such
that P is a prefix of W . Suppose that the leftmost mapping for P ends with edge
(l,m), and that we want to expand P by appending characters to it so that it
remains valid. These characters correspond to the edges (i, j) related to (l,m)
as stated by Theorem 2, for some maximal sequence C. The rest of the paper
describes how to perform this task without explicitly knowing C.

Remark 2. It does not work to consider every edge (i, j) satisfying the first
condition in Theorem 2, that is, P ∈ MCS(X<i, Y<j). As a counterexample,
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consider X = AGAGAT and Y = TAGGA. Note that P = AG is a valid prefix,
since AGGA ∈ MCS(X,Y ), and its leftmost mapping ends at edge (l,m) = (1, 2),
labeled with G. Edge (i, j) = (2, 4) corresponding to character A is such that
P ∈ MCS(X<i, Y<j); but P A = AGA is not a valid prefix (and AGA ⊂ AGGA).
Along the same lines, Sakai’s algorithm cannot help here. It generates a MCS
that contains P as a subsequence, but not necessarily as a prefix. Therefore, it
cannot be easily employed to identify the edges (i, j).

We need a more in-depth study of the properties of graph G(X,Y ) to char-
acterize the relationship between (l,m) and (i, j). First, we give the notion of
unshiftable edges, and show that edge (i, j) needs to be unshiftable. Second, as
being unshifable is only a necessary condition, we discuss how to single out the
(i, j)’s suitable for our given (l,m).

2.2 Unshiftable Edges

Definition 6. An edge (i, j) of the bipartite graph G(X,Y ) is called unshiftable
if it belongs to at least one maximal rightmost mapping of G(X,Y ). The set of
unshiftable edges is denoted U . An edge is called shiftable if it is not unshiftable.

Example 4. Consider X = ACCGTTA and Y = TAAGGACTG. The unshiftable edges
for these two strings are the following ones.

A C C G T T A

T A A G G A C T G

Unshiftable edges1 can be characterized in a more immediate way, stated in
Proposition 1.

Proposition 1. An edge (i, j) is unshiftable if and only if either (i) it corre-
sponds to the rightmost pairwise occurrence of X[i] = Y [j] in the strings, or
(ii) there is at least one unshiftable edge in the subgraph G(IX(i), IY (j)).

Proof. (Only if ) It is sufficient to show that all edges of a maximal rightmost
mapping satisfy one of the two conditions. Let R = r1, ..., rN be a rightmost
maximal mapping of G(X,Y ). By definition of rightmost mapping, rN corre-
sponds to the last pairwise occurrence of some character, thus it satisfies the
base case. Consider now p < N , and let rp correspond to some character c. By
definition of unshiftability, rk ∈ U for all k, specifically rp+1 ∈ U . Since the map-
ping is rightmost maximal, there can be no occurrences of c between rp and rp+1;
therefore the unshiftable edge rp+1 belongs to the subgraph G(IX(i), IY (j)).

1 A symmetric definition of left-unshiftable edges can be given by considering maxi-
mal leftmost mappings. The k-dominant edges for LCS [2,4,7] are a subset of left-
unshiftable edges.
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(If ) Let (i, j) satisfy one of the two conditions. If it satisfies the base case,
then (i, j) is in rightmost form, and we can extend it to the left to a rightmost
maximal mapping. On the other hand, let (i, j) satisfy the second condition.
Then, there is an edge (h, k) ∈ U that belongs to the subgraph G(IX(i), IY (j)).
Consider the rightmost maximal mapping R that contains (h, k); if it also con-
tains (i, j) we are done. Otherwise, let R′ ⊂ R be the restriction that only con-
tains (h, k) and subsequent edges. Consider the rightmost mapping (i, j) ∪ R′;
we can extend it to the left until it is rightmost maximal. In any case, we
have obtained a rightmost maximal mapping containing (i, j), which is then
unshiftable. 
�
Remark 3. Although every MCS has a corresponding rightmost maximal map-
ping, and the edges in the latter are unshiftable by Definition 6, it is incorrect to
conclude that the opposite holds too. Not all rightmost maximal mappings give
MCS: consider for example X = AAGAAG and Y = AAGA. In G(X,Y ) we have a
maximal rightmost mapping for AAG, but AAG ⊂ AAGA ∈ MCS(X,Y ).

2.3 Candidate Extensions

We finalize the characterization of the relationship between edges (l,m) and
(i, j) of Theorem 2, where (l,m) is the last edge of the leftmost mapping in
G(X,Y ) of a valid prefix P . We would like to single out a priori the corresponding
possible (i, j)’s, without explicitly knowing their Cs. This in turn will lead to
the incremental discovery of such Cs one character c at a time.

Specifically, we look for edges (i, j) corresponding to the characters c ∈ Σ
such that P c is still a valid prefix.

Definition 7. Given an edge (l,m), its cross χ(l,m) = 〈e, f〉 (see Fig. 3) is given
by (at most) two unshiftable edges e = (e1, e2), f = (f1, f2) such that

e1 = min{h1 > l | ∃h2 > m : (h1, h2) ∈ U} and e2 = min{h2 > m : (e1, h2) ∈ U},

f2 = min{h2 > m | ∃h1 > l : (h1, h2) ∈ U} and f1 = min{h1 > l : (h1, f2) ∈ U}.

l e1 f1

m f2 e2

Fig. 3. Graphical representation of the cross 〈e, f〉 for edge (l, m), drawn in purple:
e = (e1, e2), f = (f1, f2) are the first unshiftable edges soon after (l, m). (Color figure
online)
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Definition 8. Given an edge (l,m), let χ(l,m) = 〈e, f〉 be its cross. We define the
set of its mikado edges as the unshiftable edges of G(X[e1, ..., f1], Y [f2, ..., e2]),

Mk(l,m) = {(i, j) ∈ U | e1 ≤ i ≤ f1 and f2 ≤ j ≤ e2},

and the subset of candidate extensions for (l,m) as

Ext(l,m) = {(i, j) ∈ Mk(l,m) | � ∃(h, k) ∈ Mk(l,m) \ (i, j) such that h ≤ i and k ≤ j}.

It follows immediately from the definition that no two edges in Ext(l,m) have a
common endpoint, and thus |Ext(l,m)| ≤ n.

Definitions 7 and 8 find their application in identifying a valid prefix exten-
sion, as shown in Fig. 4 and discussed next.

l e1 f1

mf2 e2

LP

l e1 f1

mf2 e2

LP

Fig. 4. Extraction of Ext(l,m) from the set Mk(l,m), pictured on the left. The edges
belonging to Mk(l,m) \ Ext(l,m) are dashed.

2.4 Valid Prefix Extensions

Let P be a valid prefix with leftmost mapping LP ending at edge (l,m). We use
shorthands for MkP = Mk(l,m) and ExtP = Ext(l,m). The candidates in ExtP ⊆
MkP are the unshiftable edges soon after LP such that no other unshiftable edge
lies completely delimited between LP and any of them, as illustrated in Fig. 4.

We thus are ready to give our algorithmic characterization of valid extensions
of prefixes to relate edges (l,m) and (i, j) from Theorem 2.

Theorem 3. Let P be a valid prefix of some M ∈ MCS(X,Y ), with leftmost
mapping LP ending at edge (l,m). Then P c is a valid prefix if and only if the
following two conditions hold.

(1) There exists (i, j) ∈ ExtP corresponding to character c, and
(2) P ∈ MCS(X<i, Y<j).

The proof of Theorem 3 is quite involved, and thus postponed to Sect. 4. This
result is crucial for our polynomial-delay binary partition algorithm, as the latter
recursively enumerates MCS(X,Y ) by building increasingly long valid prefixes
and avoiding unfruitful recursive calls.
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3 Polynomial-Delay MCS Enumeration Algorithm

The characterization given in Theorem 3 immediately gives prefix-expanding
enumeration Algorithm 1, which progressively augments prefixes with characters
that keep them valid, until whole MCSs are recursively generated. It is worth
noting that Theorem 3 guarantees that each recursive call yields at least one
MCS; moreover, all the MCSs are listed once.

Algorithm 1 employs a binary partition scheme. First, it builds the necessary
data structures and finds the set of unshiftable edges in a polynomial preprocess-
ing phase, using FindUnshiftables as described in detail in Sect. 3.1. Then, it
begins a recursive computation BinaryPartition where, at each step, it con-
siders the enumeration of the MCSs that start with some valid prefix P . The
partition is made through over characters c ∈ Σ such that P c is valid.

For convenience, we add a dummy character # �∈ Σ at the beginning of both
strings; i.e. at positions (−1,−1). The recursive computation then starts with
P = #, and leftmost mapping LP = {(−1,−1)}. At each step, the procedure

Algorithm 1. EnumerateMCS
1: procedure EnumerateMCS(X, Y , Σ)
2: U = FindUnshiftables((|X|, |Y |))
3: BinaryPartition(#, {(−1, −1)})
4: end procedure

5: procedure FindUnshiftables((i, j))
6: for c ∈ Σ do
7: lX ← the right-most occurrence of c in X<i

8: lY ← the right-most occurrence of c in Y<j

9: if lX �= −1 and lY �= −1 and (lX , lY ) �∈ U then
10: yield (lX , lY ) // which is added to U
11: FindUnshiftables((lX , lY ))
12: end if
13: end for
14: end procedure

15: procedure BinaryPartition(P , LP )
16: compute the set of extensions ExtP using U
17: if ExtP = ∅ then Output P
18: else
19: for (i, j) ∈ ExtP corresponding to some c ∈ Σ do
20: if P ∈ MCS(X<i, Y<j) then
21: let (l, m) be the last edge of LP

22: find leftmost mapping edge (lc, mc) for c in G(X>l, Y>m)
23: BinaryPartition(P c, LP ∪ (lc, mc))
24: end if
25: end for
26: end if
27: end procedure
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finds the valid extensions ExtP for the given prefix P using the unshiftable edges
from U . If ExtP is empty, then P is an MCS, and is returned. Otherwise, for
each character c ∈ Σ corresponding to an edge in ExtP (i.e. condition (1) of
Theorem 3), it checks whether P c satisfies condition (2) of Theorem 3. If it
does, given the last edge (l,m) of LP , the algorithm finds the leftmost mapping
(lc,mc) for character c in G(X>l, Y>m), as to update LP c = LP ∪(lc,mc). Then,
it partitions the MCSs to enumerate into the ones that have P c as a prefix, and
recursively proceeds on P c, and LP ∪ (lc,mc). The correctness of Algorithm 1
immediately follows from Theorem 3.

3.1 Finding Unshiftable Edges

We compute unshiftable edges by going backwards in the strings X and Y , and
exploiting the observation below, which follows immediately from Proposition 1.

Fact 1. Let (i, j) ∈ U and c ∈ Σ. If i′, j′ are the rightmost occurrences of c
respectively in X<i and Y<j, then edge (i′, j′) is also unshiftable.

Symmetrically as we did in the previous section, let us add a special character
$ �∈ Σ at the end of both strings, as to obtain an unshiftable edge at the last
positions (|X|, |Y |). Starting from this edge, we have a natural recursive visiting
procedure that finds unshiftable edges based on the Fact 1. For each character
c ∈ Σ, candidate unshiftable edges are found by taking the rightmost occurrences
of c before the current edge in both strings. Then, we recur in these new edges,
unless already visited. This originates our FindUnshiftables procedure, whose
pseudocode is shown in Algorithm 1.

All unshiftable edges are found in this fashion. The last pairwise occurrences
of every character are visited from edge (|X|, |Y |). If an unshiftable edge (i, j)
is not the last pairwise occurrence, then by Proposition 1 there is at least one
unshiftable edge in G(IX(i), IY (j)). Edge (i, j) will then surely be visited from
the leftmost of these edges, and therefore it will be marked as unshiftable.

3.2 Polynomial Delay

We now show that Algorithm 1 has polynomial delay by analyzing the two main
components of EnumerateMCS.

The following remark is crucial for our complexity analysis:

Remark 4. Unshiftable edges can be dense in G(X,Y ). For example, consider
X = An(CA)n and Y = AnCn. In this situation, every A of Y has out-degree of
unshiftable edges equal to the number of Cs in X, that is O(n). The total number
of unshiftable edges is therefore |U| = O(n · n) = O(n2).

In the rest of the section, we assume that the next and previous occurrences
of a given character with respect to some position of the strings can be performed
in logarithmic time, with a linear-space search tree.
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Preprocessing Phase of FindUnshiftables. This algorithm examines every
unshiftable edge exactly once, adding it to a set if not already found (see Line 9).
For each of these edges it finds the previous pairwise occurrences of every char-
acter and checks whether they are already in the unshiftable set. This takes
O(|U| · σ log n) = O(n2 log n) time.

Recursive BinaryPartition. The height of the recursive binary partition tree
is at most the length of the longest MCS, which is at most min{|X|, |Y |} = O(n).

The first operation at each step consists in computing the set ExtP : by
scanning the unshiftable edges we can trivially find the cross in O(|U|) = O(n2)
time, and by another scan the mikado and ExtP .

When it is nonempty, we check for maximality of P for each of its ele-
ments (recalling |ExtP | = O(n)), which takes O(n) time by employing Sakai’s
maximality test [11]. If the test is positive, we only need to perform a left-
ward re-map of the new edge, which can be done in logarithmic time, totalizing
O(|U| + |ExtP |(n + log n)) = O(n2) time.

Overall, the delay of BinaryPartition is the cost of a root-to-leaf path in
the recursion tree, which has depth ≤ n. This leads to a polynomial-delay algo-
rithm with delay O(n3) and a polynomial-time preprocessing cost of O(n2 log n).
The space required is O(n2), as we need to store the set ExtP for all recursive
calls in a root-to-leaf path plus the set of unshiftable edges U .

In the full version of the paper we provide a more refined algorithm which
achieves O(n log n) delay, with the same preprocessing time and space. An ideal
method would yield each distinct MCS in time proportional to its length: as the
latter can be Θ(n), this would take linear time in n. In our refined algorithm we
only spend a further logarithmic time factor per solution, so it is quite close to
the ideal method. As for space and preprocessing time, the quadratic factor is
unavoidable when employing the possibly quadratic unshiftable edges in U .

4 Proof of Theorem 3

In this section we finalize the proof of Theorem 3, at the heart of our results.
We introduce the concept of certificate edges, and use it to show sufficiency and
necessity of the two conditions (1) and (2) in Theorem 3.

4.1 Certificate Edges

Certificate edges are defined as follows, and illustrated in Fig. 5.

Definition 9. An edge (i′, j′) ∈ U is a certificate for another edge (i, j) if
(i′, j′) ∈ G(IX(i), IY (j)) and no (x, y) ∈ U \ {(i′, j′)} has x ∈ (i, i′], y ∈ (j, j′].
In this case we say that (i′, j′) certifies (i, j). We denote with C(i,j) the set of
certificates of edge (i, j). An edge (i, j) ∈ U is called a root iff C(i,j) = ∅.

Definition 10. A certificate mapping is a mapping in which the rightmost edge
is a root, and each edge except the leftmost is a certificate for the one to its left.



200 A. Conte et al.

c c

c c

Fig. 5. The only certificate for the green edge is drawn in blue. (Color figure online)

Lemma 2. Let M = {r1, ..., rN} be a maximal certificate mapping in G(X ′, Y ′)
of a common subsequence S = S1 · · · SN between X ′ and Y ′, where r1 = (i1, j1).

1. M is a rightmost maximal mapping of unshiftable edges in G(X ′, Y ′), and
2. if G(X ′

<i1
, Y ′

<j1
) ∩ U = ∅, then M ∈ MCS(X ′, Y ′). (proof in full version)

We now define the findR procedure, used to generate certificate mappings.
This procedure implicitly finds the C from Theorem 2. Given an unshiftable
edge, findR chooses one of its certificates and recurs until it gets to a root
edge.

findR(i, j) = {(i, j)} ∪
(
∪(h,k)∈C(i,j)

findR(h, k)
)

Proposition 2. Let (l,m) be any edge of the graph, and (i, j) ∈ Ext(l,m)

in the set of extensions of (l,m). Then findR(i, j) returns a certificate map-
ping with first edge (i, j), such that the corresponding subsequence is M ∈
MCS(X>l, Y>m).

Proof. The procedure findR(i, j) generates a certificate mapping starting with
edge (i, j) by definition. Since (i, j) ∈ Ext(l,m), there cannot be any unshiftable
edges in the subgraph G(X[l +1, ..., i], Y [m+1, ..., j]). By setting X ′ = X>l and
Y ′ = Y>m in Lemma 2, M ∈ MCS(X>l, Y>m) and is rightmost. 
�

4.2 Necessary and Sufficient Conditions

Necessity. First of all, we will prove that conditions (1) and (2) of Theorem 3
are necessary. Let P c be a valid prefix of some W ∈ MCS(X,Y ).

First, we show that condition (1) holds, namely, there exists (i, j) ∈ ExtP
corresponding to character c. We use contradiction below, supposing that none
of the edges in ExtP correspond to c.

By Sakai’s characterization of maximality, for all indices k ≤ |W | we have
Xk ∩ Yk = ∅. Let k̂ = |P |, and thus W = P W>k̂ and W>k̂ starts with c because
P c is a valid prefix of W . By definition, Xk̂ ∩ Yk̂ = ∅, where Xk̂ and Yk̂ are
given by the parts of the strings between the leftmost mapping LP of P and the
rightmost mapping of W>k̂. The first edge of the latter mapping is (i, j) ∈ U
corresponding to character c as W>k̂ starts with c. By contradiction, suppose
(i, j) �∈ ExtP . We now have two cases.



Polynomial-Delay Enumeration of Maximal Common Subsequences 201

Case (i, j) �∈ MkP : this implies that i > f1 or j > e2, where f1 and e1 are
those given in Definition 8. Therefore Xk̂ ∩Yk̂ �= ∅ as there would be at least the
character corresponding respectively to f or e. This is a contradiction.

Case (i, j) ∈ MkP \ ExtP : this implies that ∃(h, k) ∈ MkP \ (i, j) such that
h ≤ i and k ≤ j. Then Xk̂ ∩ Yk̂ �= ∅ as we would have edge (h, k) in G(Xk̂, Yk̂),
giving a contradiction.

Second, we prove the necessity of condition (2), namely, P ∈
MCS(X<i, Y<j).

To this end, we need a brief remark on the restriction of maximals: let W ∈
MCS(X,Y ) and {(x1, y1), ..., (x|W |, y|W |)} any mapping spelling W in the two
strings. Given any k ≤ |W |, we have W<k ∈ MCS(X<xk

, Y<yk
).

Let P c be a valid prefix of some W ∈ MCS(X,Y ), and k̂ = |P |. In the first
part of the proof we have shown that the first edge of the rightmost mapping
of W>k̂ is some (i, j) ∈ ExtP corresponding to c. Therefore, let us consider the
mapping for W consisting of P in leftmost form, and W>k̂ in rightmost form.
Applying the above remark for k = k̂+1 we get W<k̂+1 = P ∈ MCS(X<i, Y<j).

Sufficiency. Suppose that conditions (1) and (2) of Theorem 3 hold. By Propo-
sition 2, findR(i, j) = C ∈ MCS(X>l, Y>m). Since P ∈ MCS(X<i, Y<j) by
hypothesis, we have P C ∈ MCS(X,Y ) by Theorem 2. The latter string starts
with P c, which is therefore a good prefix.

5 Conclusions and Acknowledgements

In this paper we have studied the Maximal Common Subsequences (MCSs),
and investigated their combinatorial nature by familiarizing with some of their
properties. Circumventing various pitfalls, we ultimately provided an efficient,
binary partition-based, polynomial-delay algorithm for listing all MCSs on an
equivalent bipartite graph problem.

The work done in this paper was partially funded by NII, Japan and JST
CREST, Grant Number JPMJCR1401. The work was partially done at author
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Abstract. Runs, or maximal periodic substrings, capture the whole pic-
ture of periodic fragments in a string. Computing all runs of a string in
the usual RAM model is a well-studied problem. We approach this prob-
lem in the streaming model, where input symbols arrive one by one and
the available space is sublinear. We show that no streaming algorithm
can identify all squares, and hence all runs, in a string. Our main contri-
bution is a Monte Carlo algorithm which approximates the set of runs in
the length-n input stream S. Given the error parameter ε = ε(n) ∈ (0, 1

2
],

the algorithm reports a set of substrings such that for each run of expo-
nent β ≥ 2 + ε in S a single its substring is reported, with the same
period and the exponent at least β − ε; for runs of smaller exponent,
zero or one substring with the same period and exponent at least 2 is

reported. The algorithm uses O( log2 n
ε

) words of memory and spends
O(log n) operations, including dictionary operations, per symbol.

1 Introduction

Recall that a string is periodic if its exponent, which is the ratio between its
length and its minimum period, is at least 2. Maximal periodic substrings, or
runs, are quite well studied in both algorithmic and combinatorial setting. Kol-
pakov and Kucherov [15] showed that a length-n string has O(n) runs and con-
jectured that this number is less than n. After several intermediate results, this
conjecture was proved by Bannai et al. [3]; for further studies on the number
of runs see, e.g., [9]. The first run-searching algorithm was proposed in [18]. In
[15], a linear-time algorithm for computing all runs in a string over a polyno-
mial integer alphabet was presented, based on the Lempel-Ziv factorization (a
different approach was later proposed in [3]). However, over a general ordered
alphabet of size σ this factorization requires Θ(n log σ) time [16], while all runs
can be computed faster as was shown in a series of papers [11,17] culminating
in O(n·α(n))-time algorithm by Crochemore et al. [6], where α is the inverse
Ackermann function.

Not much is known about computing runs with restricted memory. The only
paper we are aware of is [10], where two algorithms, computing all runs and
using a small amount of memory in addition to an input string, were given. An
O(n log n) algorithm uses O(1) memory and works over a general alphabet, while
a O(n) algorithm uses o(n) memory over a constant alphabet. In this paper we
go further and attack the streaming version of the problem. We recall that in the
c© Springer Nature Switzerland AG 2019
N. R. Brisaboa and S. J. Puglisi (Eds.): SPIRE 2019, LNCS 11811, pp. 203–220, 2019.
https://doi.org/10.1007/978-3-030-32686-9_15
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streaming model the input symbols arrive in the online fashion and cannot be
accessed after reading; algorithms should somehow “sketch” the processed part
of the input using sublinear space. For most problems, streaming algorithms
are randomized and approximate. Related results about regular structures in
streams include Monte Carlo approximated algorithms for longest palindrome
[12], longest palindrome with d mismatches [13], longest repeated substring and
longest repeated reversed substring [19].

We show that no streaming algorithm can, w.h.p., detect (or count) all runs
in a stream. So we define the approximate version approxRuns of the problem
of computing all runs as follows: given an input string S and a parameter ε =
ε(n) ∈ (0, 1

2 ], report a set of substrings of S such that (i) for each run of exponent
β ≥ 2 + ε in S a single its substring is reported, with the same period and
the exponent at least β − ε, and (ii) for runs of smaller exponent, zero or one
substring is reported, with the same period and the exponent at least 2. Our main
aim is to prove the following result.

Theorem 1. There is a streaming algorithm that solves approxRuns performing
O(log n) operations1 per read and using O( log

2 n
ε ) words of memory.

In Sect. 2 we recall notation, some basic results and prove that no streaming
algorithm can count runs exactly. In Sect. 3 we introduce the main tools and
constructions; the algorithm announced in Theorem 1 is presented in Sect. 4.

2 Preliminaries

Let S denote a string of length n over an alphabet Σ = {1, . . . , σ}, where σ is
polynomial in n. We write S[i] for the ith symbol of S and S[i..j] for its substring
(or factor) S[i]S[i+1] · · · S[j]; thus, S[1..n] = S, S[i..i−1] is an empty string. A
prefix (resp. suffix ) of S is a substring of the form S[1..j] (resp., S[j..n]). If
w = S[i..j], we say that w occurs (or has an occurrence) in S at position i. A
string is primitive if it is not a concatenation of two or more copies of a shorter
string. A period of S is a positive integer p such that S[1..n−p] = S[p+1..n]; the
exponent of S is the ratio exp(S) = |S|/p, where p is the minimum period of S.
We call a period p of S primitive if S[1..p] is primitive, and short if p ≤ |S|/2.
The next lemma is the classical Fine–Wilf theorem [8] written in a suitable form
(the second statement is immediate from the first one).

Lemma 1. (1) A string with primitive periods p and q has length less than
p + q − gcd(p, q).

(2) All short periods of a string are multiples of its minimum period.

A repetition of period p is a string having a minimum short period p. Thus,
S is a repetition iff exp(S) ≥ 2; repetitions of exponent 2 are called squares.
A repetition S[i..j] of period p is called a run (in S) if both S[i−1..j] and
1 We extend the set of elementary operations with dictionary operations (insert, delete,

lookup). The optimal choice of dictionary depends on ε and is discussed in Remark 3.
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S[i..j+1], whenever exist, have no period p. By Lemma 1, it is equivalent to
say that S[i−1..j] and S[i..j+1] are not repetitions. For a fixed S, we denote a
repetition S[l..r] of period p by the triple (l, p, r). The definitions immediately
imply

Observation 1. If (l, p, r) and (h, p, i) are two repetitions and l < h ≤ h+
p − 1 ≤ r < i, then (l, p, i) is a repetition.

We work in the streaming model of computation: the input string S[1..n] (the
stream) is read from left to right, one symbol at a time, and cannot be stored,
because the available space is sublinear in n. The output string can be of size
Ω(n) but cannot be accessed. The space is counted as the number of O(log n)-bit
machine words (in this paper, log stands for the binary logarithm).

A Monte Carlo algorithm gives a correct answer with high probability (at
least 1 − 1

n on a length n input) and has deterministic working time and space.
For the problems of finding longest palindromes and longest repeats in streams
[12,19], Monte Carlo approximated algorithms were used. For computing runs in
a stream, we use the same approach for the same reason: other approaches do not
work. The next theorem demonstrates that no streaming algorithm can correctly
identify, w.h.p., all squares, and hence all runs, in a string. Let midSquare(Σ,n)
be the problem of finding the longest “middle” square, which is a square of the
form S[n

2−i+1..n
2+i], in the input stream of even length n over the alphabet Σ.

Theorem 2. There is a constant γ such that every algorithm solving the prob-
lem midSquare(Σ,n) exactly with probability at least 1 − 1

n uses at least γn log σ
bits of memory.

Proof. We use the same scheme as in [12, Lemma 2]. First we prove that if
a Monte Carlo streaming algorithm solves midSquare exactly using less than
�n
2 log σ� bits of memory, then its error probability is at least 1

nσ . According
to Yao’s minimax principle [20], it is sufficient to construct a probability distri-
bution Q over Σn such that for any deterministic algorithm D using less than
�n
2 log σ� bits of memory, the expected probability of error on a string chosen

according to Q is at least 1
nσ .

Let a ∈ Σ, n′ = n/2. For arbitrary x ∈ Σn′
, c ∈ Σ, and k ∈ {1, . . . , n′} denote

w(x, k, c) = x[1..n′]cx[n′−k+2..n′]an′−k. Let Q be the uniform distribution over
all strings w(x, k, c).

Choose an arbitrary maximal set of disjoint pairs (x, x′) of strings from Σn′

such that D is in the same state after reading either x or x′. Let x = vcs,
x′ = v′c′s, where v, v′, s ∈ Σ∗, c, c′ ∈ Σ, and c �= c′. Then D returns the same
answer on w(x, |s|+1, c) and w(x′, |s|+1, c), because the right halves of these two
strings coincide. However, the correct answers are different. Indeed, w(x, |s|+1, c)
has a middle square of period |s|, while w(x′, |s|+1, c) has no such square; and
if one of two strings has a longer middle square, then the other one has not,
because a letter in the right half cannot match simultaneously c from x and c′

from x′. Therefore, D errs on at least one of the analysed inputs; similarly, it
errs on either w(x, |s|+1, c′) or w(x′, |s|+1, c′).
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Since the memory of D has no more than σn′
/2 states, and at most one string

per state is unpaired, the number of pairs is at least σn′
/4. So the number of

errors is at least σn′
/2 for the total of σn′ · n′ · σ strings, which implies that the

probability of error is ≥ 1
nσ .

Now assume that some Monte Carlo streaming algorithm A solves midSquare
exactly with error probability ε ≤ 1

n using s(n) bits of memory. Then we can
run its k instances simultaneously and return the most frequent answer. The
new algorithm Ak uses O(k · s(n)) bits of memory and its error probability εk

satisfies the inequality εk ≤ ∑
2i<k

(
k
i

)
(1 − ε)iεk−i ≤ 2k · εk/2 = (4ε)k/2. Recall

that σ = O(np) for some constant p. Let k = 2p+3 and take any positive γ ≤ 1
2k .

If s(n) < γn log σ, then algorithm Ak uses less than �n
2 log σ� bits of memory

and has, for n big enough, the error probability less than 1
nσ ; as shown above,

this is impossible, so the theorem holds for the chosen value of γ. �	

3 Tools

3.1 Fingerprints, Frames, Checkpoints

Our algorithm for approxRuns makes use of Karp–Rabin fingerprints [14], which
is a hash function common for many streaming string algorithms. Let p be a fixed
prime from the range [n4, n5], and r be a fixed integer randomly chosen from
{1, . . . , p−1}. For a string S, its hash is defined as φ(S) = (

∑n
i=1 S[i]·ri) mod p.

The probability of hash collision for two strings of length m is at most m/p.
Our algorithm compares hashes of strings having equal lengths of the form 2j .
The probability that a pair of such strings collide is less than n3/p and thus less
than the allowed error probability for Monte Carlo algorithms. Hence all further
considerations assume that no collisions happen. For a string A, its frame is the
tuple (|A|, φ(A), r|A| mod p, r−|A| mod p). The crucial property of frames is the
following.

Lemma 2 ([4]). If the frames of any two of the strings A,B,AB are known,
the frame of the third string can be computed in O(1) time.

All definitions below refer to the input stream S. For any i, the ith iteration of
a streaming algorithm processing S begins with reading S[i] and ends just before
reading S[i+1]. We write I(i) for the frame of S[1..i−1]. Lemma 2 implies that
one can compute I(i+1) in O(1) time from I(i) and S[i].

All information currently stored by the algorithm is associated with check-
points, which form a subset of all positions. Each position k becomes a check-
point at kth iteration and “lives” during ttl(k) iterations, where the time-to-live
function is defined by ttl(k) = 2tε+2+β(k) with tε =

⌈
log 2

ε

⌉
and β(k) being the

maximum power of 2 dividing k. If k + ttl(k) = i, then at the start of ith iter-
ation k “dies” (loses the status of checkpoint) and all associated information is
deleted.
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Lemma 3. (1) The number of checkpoints at i’th iteration is O( log i
ε ).

(2) At most one checkpoint dies at each iteration.

Proof. (1) Partition the range [1..i] into segments (see an example in Fig. 1): two
rightmost segments are of length 2tε+2 each, and each of the other segments is
twice longer than its right neighbor (the leftmost segment can be incomplete).
A position k from the jth segment, counting from the right, is a checkpoint
iff β(k) ≥ j − 1. Thus we have O(log i) segments with O(1ε ) checkpoints in
each, whence the result.

(2) Note that β(k) = β(k + ttl(k)) for any k. Hence if k + ttl(k) = i, one
has β(k) = β(i) and then k = i − 2tε+2+β(i); if k is positive, then it is a
unique checkpoint to die at the ith iteration; otherwise, no such checkpoints
exist. �	

888480767268646056524844403224168
86827874

90 1051

Fig. 1. The checkpoints (black) after the iteration i = 105 (tε = 2). For example,
ttl(52) = 22+2+2 = 64, so the position 52 is a checkpoint until the iteration 116.

3.2 Visible Repetitions and Watch List

Our algorithm works with substrings of length 2j , j = 0, . . . , �log n�. Such a
substring occurring at a checkpoint is called a j-block. Now we introduce the key
notion. Let (h, p, i) be a repetition, j = �log p�, f = i−p−2j +1. The repetition
(h, p, i) is visible if ttl(h), ttl(f) ≥ 2j+2, and f −h ≤ 2j (see Fig. 2). The intuition
is that such a repetition is covered by pairs of occurrences of two overlapping
(or touching) j-blocks; we will show that this repetition can be detected at the
ith iteration using the fact that both h and f are checkpoints at that moment.

Lemma 4. Every repetition (l, p, r) with exponent ≥ 2 + ε contains a visible
repetition of period p as a substring.

Proof. Let j = �log p�, z = 2max(0,j−tε). Then k is divisible by z iff ttl(k) ≥ 2j+2.
Let i = r − (r − 2j − p + 1) mod z, h = i − 2p + 1 − (i − 2p + 1) mod z, and
consider the substring S[h..i]. Its length is ≥ 2p, and r − z + 1 ≤ i ≤ r. Further,

h ≥ (r − z + 1) − 2p + 1 − (z − 1) = r − 2p − 2z + 3

≥ r − 2p − 2j+1−tε + 3 ≥ r − 2p − 
εp� + 1 = l.

pp

ih f

2j2j
S = · · ·

Fig. 2. Visible repetition covered by overlapping occurrences of two j-blocks.
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So, S[h..i] is a substring of S[l..r], has period p and length ≥ 2p; since p
is the minimum period of S[l..r], it is primitive. Hence (h, p, i) is a repetition
by Lemma 1(2). Next note that z divides both f = i − p − 2j + 1 and h, so
ttl(f), ttl(h) ≥ 2j+2. Finally, f − h = p − 2j + (i − 2p + 1) mod z is the smallest
multiple of z which exceeds p − 2j < 2j , so f − h ≤ 2j . Therefore, (h, p, i) is
visible by definition. �	
Lemma 5. Suppose that (h, p, i) is a visible repetition and (h+z, p, i+z) is a
repetition, where j = �log p�, z = 2max(0,j−tε). Then (i) (h+z, p, i+z) is visi-
ble, (ii) (h, p, i+z) is a repetition, and (iii) both (i) and (ii) hold if we replace
(h+z, p, i+z) by (h−z, p, i−z).

Proof. Both h and f = i− p− 2j +1 are divisible by z by definition of a visible
repetition; so the same is true for h+z, f +z, implying ttl(h+z), ttl(f+z) ≥ 2j+2.
Since (f + z) − (h + z) = f − h ≤ 2j , we have (i) by definition. Since z < p,
one has i − (h+z) ≥ p; now (ii) follows from Observation 1. Almost the same
argument works for (iii). �	

By watch list we mean a data structure W containing a list of repetitions as
described below. Initially W is empty. At ith iteration, it is updated as follows.
For all visible repetitions (h, p, i) in the stream, if W contains a repetition (l, p, r)
with the same period, this repetition is updated to (l, p, i); otherwise, (h, p, i) is
added to W . After that, all repetitions (l, p, r) such that r + z = i, where z is
defined as in Lemma 5, are deleted.

Lemma 6. Any streaming algorithm that

– finds all visible repetitions of the form (h, p, i) during ith iteration;
– maintains the watch list;
– outputs repetitions after their deletion from the watch list, solves the problem

approxRuns.

Proof. Let (l, p, r) be a run of exponent α ≥ 2 + ε in S, and let (h, p, i) be
the leftmost visible repetition of period p inside S[l..r]. Define z as above; then
h − z < l: otherwise, the repetition (h−z, p, i−z) would be visible by Lemma 5,
contradicting the choice of (h, p, i). Let k be such that i + kz ≤ r < i + (k+1)z.
Then (h + z, p, i + z), . . . , (h + kz, p, i + kz) are visible repetitions by Lemma 5;
moreover, no other visible repetitions of period p are substrings of S[l..r], because
it is necessary to add at least z to get the positions with required ttl. Consider
the ith iteration. The algorithm finds (h, p, i) and looks into W . If W contains a
repetition of period p, this repetition was added or updated at most z iterations
ago, so S contains a visible repetition (h′, p, i′), where i − z ≤ i′ < i. This repe-
tition is not a substring of S[l..r] but overlaps it by at least 2p − z > p symbols.
Hence (h′, p, r) is a repetition by Observation 1; this repetition properly contains
a run, contradicting definitions. Thus, the watch list contains no repetition of
period p and the algorithm adds (h, p, i) to it.

Now note that the repetition of period p in W will be updated at the iterations
i + z, . . . , i + kz, and deleted at the iteration i+(k+1)z. So the algorithm will
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output the repetition (h, p, i+kz), which is shorter than (l, p, r) by at most 2z −
2 ≤ εp symbols and thus has the exponent at least α − ε.

A run of exponent less than 2 + ε may contain no visible repetition inside;
the remaining argument for such runs is the same as above. �	

Lemma 6 reduces Theorem 1 to the construction of the algorithm which
detects visible repetitions immediately after their appearance, maintains the
watch list, and satisfies the required time/space limitations.

Remark 1. An algorithm satisfying the conditions of Lemma6 finds all runs of
periods p ≤ 4 
log 1/ε� exactly (if a square of such period p is a suffix of S[1..i],
all its positions are checkpoints, so the start and the end of periodicity can be
detected exactly).

3.3 Groups

We are interested in recent occurrences of blocks, and define two types of such
occurrences. At ith iteration, an occurrence of a j-block T at position h of S[1..i]
is fresh if h > i−2j+1+1 and stale if i−3·2j +1 < h ≤ i−2j+1+1. Equivalently,
an occurrence of T is fresh iff it was read less than |T | iterations ago and stale iff
it was fresh |T | iterations ago. Regular occurrences are those that are not fresh
(stale occurrences are regular). Next observation, obvious from Fig. 2, clarifies
one use of fresh occurrences:

Observation 2. If (h, p, i) is a visible repetition, j = �log p�, then at the ith
iteration (i) the suffix T of length 2j of S[1..i] is a j-block occurring at the
checkpoint f = i − p − 2j + 1 and (ii) the substring U of length 2j at position
h+p is a fresh occurrence of the j-block occurring at the checkpoint h.

Lemma 7. (1) Every two fresh occurrences of T overlap.
(2) If T has at least three fresh occurrences, all positions of fresh occurrences

form an arithmetic sequence with the difference equal to the minimum period
of T .

(3) The analogs of 1 and 2 hold for stale occurrences as well.

Proof. Since the range [i − 2j+1 + 2..i] contains less than 2|T | positions, (1) is
obvious. Further note that two of any three fresh occurrences of T overlap by
at least |T |/2, so |T | has a short period; hence (2) follows from Lemma 1, and
the difference is the minimum period of T . Finally, (1) and (2) for ith iteration
imply (3) for (i+|T |)th iteration. �	

We say that each j-block has a (possibly empty) series of fresh (resp., of
stale) occurrences. By Lemma 7, storing such a series requires O(1) space.
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3.4 Data Structures

Let us describe the data structures we use. For each j-block T we maintain a
basic structure BT called “group” and consisting of

– frame of T (we store only hash, other elements are common to all j-blocks);
– doubly-connected lists flist and rlist of all checkpoints, in increasing order,

that are positions, respectively, of fresh and regular occurrences of T ;
– the series fseries and sseries of fresh and stale occurrences of T .

In each node in flist and rlist we store, apart from the checkpoint and links to
next and previous nodes, two auxiliary numbers: period and extension. These
numbers for the checkpoint k in the group BT are computed at the (k+|T |)th
iteration after adding a fresh occurrence of T to BT . We set period to the period
of BT .fseries; if the series is one-element, we set (period, extension) = (0, 0). If
period = p > 0, then S[1..k+|T |] has a repetition of period p as a suffix. If the
watch list contains such a repetition, we set extension to its position; otherwise,
extension is set to the position of the first fresh occurrence of T .

Remark 2. A group can be viewed as a constant-size structure (frame, two
series, links to beginnings and ends of lists) plus a set of constant-size nodes
(position, links to next and previous elements of the list, period, extension). We
can store all groups in an array of constant-size cells endowed with a stack of
empty cells. This allows creating a new group/node and deleting an existing
group/node in O(1) time. The size of the array is proportional to the number of
groups plus the number of occurrences of j-blocks; both numbers are O( log

2 n
ε ).

We also need to discuss how to store and update fseries and sseries. For
each series, we store a tuple (first, period, last, frame1, frame2), consisting of
the positions of the first and the last occurrences, the distance between con-
secutive occurrences (“period”), and the frames for positions of the first and
the second occurrence. Empty and one-element series are stored as (0) and
(first, 0, frame1) respectively. The series of a j-block T should be updated
at ith iteration whenever either a new fresh occurrence of T appears, or a fresh
occurrence becomes stale, or a stale occurrence expires.

Lemma 8. Each update of fseries and sseries requires O(1) time.

Proof. First consider deletion. The occurrence to be deleted is first in the series.
For one-element series the deletion is trivial. For two-element series it suffices
to set first to (first + period) and frame1 to frame2. If the series is longer,
we also need to compute the new value of frame2 (period and last stay the
same). By Lemma 2, we compute, in O(1) time, the frame of the string A =
S[first..first+period− 1] = S[first+period..first+2·period− 1] from frame1
and frame2; then we again use Lemma 2 to compute the new frame2, which
is I(first+2·period), from frame2 and the frame of A.

Now consider insertion. The new occurrence is the last one, so if the series
contained ≥ 2 elements, we just assign a new value to last. For shorter series, we
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also need to know the frame for the position of this occurrence. If we insert to
sseries, this is the frame1 just deleted from fseries. If we insert to fseries, the
new occurrence of T is the suffix of S[1..i], so it can be computed by Lemma 2
from the frames of S[1..i] and T . Thus, a constant number of operations is
performed. �	

For navigation we use six dictionaries, described in the following table. The
values in the first five dictionaries are stored as links.

Id Key Value

H1 j, hash F group of the j-block with hash F

H2 j, checkpoint k group of the j-block occurring at k

H3 j, position k group of the j-block having the first fresh occurrence at k

H4 j, position k group of the j-block having the first stale occurrence at k

HH j, checkpoint k node for k in the group of the j-block occurring at k

HC checkpoint k frame I(k)

We also store the watch list W as a doubly-connected list ordered by periods
of repetitions.

4 Algorithm

Each iteration starts with reading a new symbol S[i] from the stream and com-
puting the frame I(i+1); the new frame is stored in the variable I (the old value
of I is put to HC). The subsequent operations are grouped in four stages:

– Checkpoint deletion. Here we delete all data about the checkpoint that dies
at this iteration. (It is unique by Lemma 3(2)).

– Groups update. Here we add j-blocks of the form S[h..i] to the existing groups
or create new groups for them. In addition, we move the checkpoints of expired
fresh occurrences from flist to rlist and delete expired stale occurrences from
sseries.

– Repetition detection. Here we detect visible repetitions of the form (h, p, i).
As a side effect, we finalize the update of existing groups, adding fresh occur-
rences to fseries and moving expired fresh occurrences to sseries.

– Watch list update. Here we add detected visible repetitions to the watch list,
and then delete and output the repetitions which provably cannot be extended
to the position i.

4.1 Checkpoint Deletion

We process all j-blocks at the checkpoint position, deleting the checkpoints from
their groups and from dictionaries; groups without checkpoints are also deleted.
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Lemma 9. Algorithm 1 works in O(log i) operations.

Proof. The loop in line 4 runs O(log i) times, ttl(i) is computed in O(log i) time,
a group can be deleted in O(1) time (see Remark 2). �	

4.2 Groups Update

The stage is a sequence of three loops. The first loop processes the j-blocks of
the form S[h..i], where h is a checkpoint. For each block we compute its hash
and extract its group B from the table H1; if B does not exist, it is created. The
occurrence at h is fresh, so a node for h is added to B.flist. The period and
extension are computed for this node according to definitions.

The second loop moves checkpoints from fresh lists to regular lists. The check-
point to move depends on j only, so the corresponding group can be extracted
from the table H2.

Algorithm 1. ith iteration, Checkpoint deletion
1: compute ttl(i); h ← i − ttl(i)
2: if h ≥ 1 then
3: delete HC(h)
4: for {j ← 0; h + 2j − 1 < i} do
5: B ← H2(j, h); delete H2(j, h)
6: node ← HH(j, h); delete HH(j, h)
7: delete node from B.flist or B.rlist
8: if B.flist and B.rlist are empty then
9: delete B from H1, H3, H4 � all keys are stored in B

10: delete group B

Algorithm 2. ith iteration, Groups update
1: for {j ← 0; h ← i − 2j + 1 && h ≥ 1 && h + ttl(h) > i} do
2: Ih ← HC(h); F ← φ(S[h..i]); B ← H1(j, F ) � φ(S[h..i]) is computed from Ih, I
3: if B = null then
4: B ← new group; H1(j, F ) ← B; B.frame ← F

5: N ← new node; add N to B.flist; N.checkpoint ← h
6: HH(j, h) ← N ; add h to B.fseries; N.period ← B.fseries.period
7: N.extension ← {t, if (t, N.period, i′)∈W for some i′; B.fseries.first otherwise}
8: for {j ← 0; h ← i − 2j+1 + 1 && h ≥ 1 && h + ttl(h) > i} do
9: B ← H2(j, h)

10: move B.flist.first to B.rlist

11: for {j ← 0; h ← i − 3 · 2j + 1 && h ≥ 1} do
12: B ← H4(j, h)
13: if B �= null then
14: H4(j, h+B.sseries.period) ← B; delete H4(j, h)
15: delete B.sseries.first � see Lemma 8
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The third loop deletes first elements of stale series if these elements are no
longer stale occurrences. The position of such an element is determined by j, so
the corresponding group can be extracted from the table H4.

Lemma 10. Algorithm 2 works in O(log i) operations.

Proof. Each loop runs O(log i) times and contains constant number of calls
to dictionaries. A group is created in O(1) time (Remark 2). Computing ttl(h)
in lines 1,8 requires constant time if the value β(i+1) is computed once (in
logarithmic time) before the loops. In line 7, we consult the watch list W to
compute extension. Since the periods of extensions increase as j increases, in
total we need a single pass over W . By Lemma 12 below, |W | = O(log i). Finally,
a series in line 15 is modified in O(1) time (Lemma 8). �	

4.3 Repetition Detection

At this stage we solve first main task: find visible repetitions that are suffixes of
S[1..i] (see Lemma 6). For each j, we try to detect repetitions with periods in the
range [2j ..2j+1−1]. For such a repetition to exist, the suffix T = S[i−2j+1..i] of
the stream should occur at some checkpoint f (see Fig. 2). In particular, there
is a group for T and we have to find it not knowing the hash φ(T ). Note that
there is no way to find φ(T ) if T has no occurrence at a checkpoint.

Let T occur at checkpoint k. Then T ′ = S[k..k+2j−1−1] = S[i−2j+
1..i−2j−1] is the prefix of T of length 2j−1. Since T ′ occurs at k, it has a
group, say B′, and a fresh occurrence at i−2j+1. This occurrence is first in
B′.fseries, because it becomes stale at this iteration. Then we get I(i−2j +1) =
B′.fseries.frame1 and compute F = φ(T ) by Lemma 2; see Algorithm 3,

Algorithm 3. ith iteration, Repetition detection I (searching groups)
1: for {j ← 0; k = i − 2j + 1 && k ≥ 1} do
2: if j = 0 then
3: F ← φ(S[i])
4: else
5: B′ ← H3(j − 1, k)
6: if B′ = null then
7: continue
8: F ← φ(S[k..i]) � from I(i) and B′.fseries.first
9: add k to B′.sseries; H4(j, B

′.sseries.first) ← B′

10: H3(j, k+B′.fseries.period) ← B′; delete H3(j, k); delete B′.fseries.first

11: B ← H1(j, F )
12: if B = null then
13: continue
14: add k to B.fseries; H3(j, B.fseries.first) ← B
15: search a visible repetition using j, B � Algorithm 4
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lines 5–8. Note that in lines 9–10 we move the mentioned occurrence of T ′ from
fresh to stale, and in line 14 we add a fresh occurrence of T .

Now we know the group B of T . To detect visible repetitions, we find all
candidates to the checkpoint f (see Fig. 2; note that T has a stale occurrence at
f), compute p and h for each f , and check whether (h, p, i) is indeed a repetition.
Below we show how to perform all computation in O(1) time. The two steps are

(i) Choose at most two candidates for f , guaranteeing that no other occurrence
of T can lead to a repetition of the form (h, p, i) with p ∈ [2j ..2j+1−1];

(ii) For a given f , compute p, h, and check whether (h, p, i) is a repetition.

We start with (ii). From i, j, f we get the period p = i−f−2j+1, z = 2max{0,j−tε}

and the checkpoint h =
⌊

i−2p+1
z

⌋ · z. In the group Bh = H2(j, h) we check, in
constant number of arithmetic operations, whether a fresh occurrence exists at
position h+p. If no, there is no repetition of period p. If yes, we know that S[h..i]
has short period p. It remains to check that p is primitive. If it is not, we can
write S[i−2p+1..i] = U2t, where U is primitive, |U | = q, t > 1, p = qt. Then
U is a suffix of T and T is a suffix of U t. Hence T has occurrences ending at
i, i−q, . . . , i−tq and no occurrences “in between”, because U , as a primitive word,
occurs only twice in each substring U2. Since q ≤ p

2 < 2j , the occurrence of T
ending at i−q is fresh by definition, so B.fseries.period = q. The occurrence of
T at f , which ends at i−tq, is stale, so the last stale occurrence of T is at distance
q from its first fresh occurrence: B.fseries.first − B.sseries.last = q. On the
other hand, if q = B.fseries.period divides p and equals B.fseries.first −
B.sseries.last, then the string S[i−p+1..i] has period q which divides its length,
and thus p is not primitive. So we check these two conditions and report the
repetition (h, p, i) iff at least one of them fails. The total number of operations
used is clearly O(1).

Now we approach (i). Let f1 be the top checkpoint in B.rlist. If the occur-
rence of T at f1 is not stale, then T has no stale occurrences and thus there
are no candidates. So we assume that this occurrence is stale and set f1 as a
candidate. If |B.sseries| ≤ 2, only two top nodes in B.rlist can be candidates.
So below we assume |B.sseries| ≥ 3 and make use of periods: now T is peri-
odic with minimum period q = B.sseries.period. Let p = i − f1 − 2j + 1. Then
the possible periods of repetitions, corresponding to stale occurrences of T , are
exactly the numbers p + mq, where m ≥ 0, p + mq < 2j+1 (we should consider
the worst case, where all stale occurrences are at checkpoints).

If S[1..i] ends with a repetition of period p, the strings S[i−2p+1..i−p] and
S[i−p+1..i] are equal and thus share the longest suffix of period q. Let V (resp.,
V ′) be the longest suffix of S[1..i] (resp., S[1..i−p]) of period q. Note that the
suffix of S[1..i] of length p+q has period p due to two occurrences of T at this
distance; if it also has period q, which is primitive, then by Lemma 1 q divides
p. Then neither of the periods p+mq is primitive, so no visible repetition in the
analyzed range of periods exists. Thus below we assume |V | < p+q.

On the other hand, T is a repetition of period q and a suffix of S[i−p+1..i],
so V is a repetition too; let V = (x, q, i). Let l be such that the watch list W
contains a repetition of the form (l, q, r); if W contains no such repetition, let
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l = i−2j +1 be the position of the suffix T of S[1..i]. From Lemma 4 we conclude
that x ∈ [l− �qε� +1..l]. Similarly, V ′ = (x′, q, i − p) is a repetition with suffix
T . The analog of the value l used above is stored as l′ = f1.extension, and we
again use Lemma 4 to conclude x′ ∈ [l′− �qε� +1..l′].

If p is a period of a repetition, then either |V |, |V ′| ≥ p or V = V ′. One
can check in O(1) arithmetic operations whether any of the two conditions may
hold. Depending on the answer yes/no, f1 is/is not a candidate for f . Further,
consider some other checkpoint f2 which corresponds to the period p+mq for
some m ≥ 1, and let V ′′ be the longest suffix of S[1..i−p−mq+1] having period
q. Since |V | < p + mq, V ′′ = V is a necessary condition for having a repetition
of period p+mq. Note that V ′′ is a prefix of V ′ and thus its position is x′. The
known ranges for both x and x′ have length �qε�, and 2· �qε�−1 ≤ q. Hence there
exists at most one period of the form p+mq such that |V ′′| = |V | is possible for
some values of x and x′; all other stale occurrences of T do not correspond to
repetitions. We compute the value of m by arithmetic operations; the position
f2 = f1 − mq is the only possible second candidate for f . We check (e.g., in H2)
whether f2 is a checkpoint; if yes, we make f2 a candidate. Thus we are done
with (i). The above argument justifies the correctness of Algorithm 4 below; an
example is given in Fig. 3. Altogether, we have the following lemma.

h2 f2 h1 f1

B A A B A B A B A A B A B A

2j

i
S = · · ·

Fig. 3. Example of repetition detection. A, B are strings of length 2j−2. The suffix
T = BABA has two stale occurrences at checkpoints f1 and f2 (candidate periods
p1 = 5 · 2j−2, p2 = 7 · 2j−2, respectively). Repetitions (h1, p1, i) and (h2, p2, i)
are detected. The stale series has short period q = 2j−1. One has V = V ′′ =
uABABA, V ′ = uABABABA, where u = lcs(A, B); a candidate checkpoint f1 satis-
fies |V |, |V ′| ≥ p1.

Lemma 11. All visible repetitions which are suffixes of S[1..i] can be computed
in O(log i) operations.

Proof. As j increases, the periods q (line 10 of Algorithm 4) do not decrease.
Thus all requests to the watch list W (line 11 of Algorithm 4) can be done in
O(|W |) time using a pointer. By Lemma 12, |W | = O(log i). Other than that,
for each j Algorithms 3 and 4 perform a constant number of operations. �	

4.4 Updating the Watch List

After the previous stage, we have the list New of visible repetitions detected
at this iteration. We now need to merge New with the watch list W and then
delete from W the “old” repetitions. Our aim is to prove the following.
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Algorithm 4. ith iteration, Repetition detection II (search with j, B)
1: f1 ← B.rlist.top � position of rightmost regular occurrence of T
2: if f1 ≤ i − 3 · 2j then
3: continue � no stale occurrences at checkpoints; proceed to next j in Alg. 3
4: else
5: C ← {f1} � always include f1 to the list C of candidates
6: if |B.sseries| ≤ 2 then
7: if f1.previous > i − 3 · 2j then � stale occurrence at previous checkpoint
8: add f1.previous to C

9: else � define borders of q-periodicity
10: p ← i − f1 − 2j + 1; q ← B.sseries.period; l′ ← f1.extension
11: l ← {t, if (t, q, i′) ∈ W for some i′; B.fseries.first otherwise}
12: if

⌈
l−l′+1−�qε�−p

q

⌉
=

⌊
l−e−1+�qε�−p

q

⌋
then

13: f2 ← f1 −
⌊

l−l′−1+�qε�−p
q

⌋
· q � occurrence possibly satisfying V ′′ = V

14: if H2(j, f2) exists then � f2 is a checkpoint
15: add f2 to C

16: for {f ∈ C} do
17: p ← i − f − 2j + 1; z ← 2max{0,j−tε}; h ← ⌊

i−2p
z

⌋ · z; Bh ← H2(j, h)
18: if h + p ∈ Bh.fseries then � period p detected
19: q ← B.fseries.period � check primitiveness of p
20: if {p �= 0 mod q || B.fseries.first − B.sseries.last �= q} then
21: add (h, p, i) to New � update list of newly detected repetitions

Lemma 12. At ith iteration, the watch list (i) has length O(log i) and (ii) can
be updated in O(log i) operations.

Proof of (i) requires deleting some repetitions from W earlier than it is pre-
scribed by definition, if such repetitions cannot be updated later. The algorithm
for (ii) is Algorithm 5 below. We need two lemmas.

Lemma 13 (Three Square Lemma, [5]). If three squares with primitive
periods p1 < p2 < p3 end at the same position of a string, then p3 ≥ p1 + p2.

Lemma 14. Given repetitions (h, p, i) ∈ New and (l, q, r) ∈ W , where r < i
and 2

3p < q < 3
2p, it is possible to determine, in O(1) operations, whether (l, q, i)

is a repetition.

Proof. Let j = �log p�, T = S[i− 2j +1..i]. Since (h, p, i) is added at the current
iteration, T is the j-block at checkpoint f = i − p − 2j + 1 (solid arcs in Fig. 4).

First consider the case q > p. Since q < 3
2p ≤ p + 2j , the mutual location

of the repetitions (h, p, i) and (l, q, r) is as in Fig. 4a. The repetition (l, q, r)
extends to (l, q, i) iff the suffix T occurs at position i − q − 2j + 1 (dashed arc in
Fig. 4a). Since q − p < 2j , this occurrence overlaps the occurrence at f . Hence,
in the group of T , f.extension is nontrivial. Namely, f.period divides q − p and
f.extension ≤ i − q − 2j + 1. So we extract the node of f as HH(j, f) and check
f.period and f.extension; in total, O(1) operations are performed.
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Fig. 4. Mutual location of a new repetition of period p and a live repetition of period
q, where q is close to p. Black rectangles denote live checkpoints.

Now let q < p. If r − q ≤ i− p, then (l, q, i) is not a repetition: otherwise, the
suffix of length p+q of S[1..i] would have primitive periods p and q, contradicting
Lemma 1. Then the repetitions (h, p, i), (l, q, r) and the occurrences of T are
mutually located as in Fig. 4b–d. If 2j < q (Fig. 4b), then (l, q, i) is a repetition
iff T has a stale occurrence at position i − q − 2j + 1 (dashed arc). If q ≤ 2j ≤
q + i − r (Fig. 4c), the existence of the repetition (l, q, i) is equivalent to the
fresh occurrence of T at i − q − 2j + 1 (dashed arc). Finally, if 2j > q + i − r
(Fig. 4d), we no longer can rely on the occurrences of T . Indeed, it may happen
that l > i−q−2j +1; if we then see no occurrence of T at position i−q−2j +1,
which is outside the repetition with period q, we can derive no useful conclusions.
However, in this case 2j > q > 2

3p, and thus f ′ = i−p−2j−1 +1 is a checkpoint;
indeed, either β(f ′) = j−1 and ttl(f ′) ≥ 2j+1 > p + 2j−1 or β(f ′) = β(f) and
these two positions have the same ttl. Let T ′ = S[i − 2j−1 + 1..i]; this is the
(j−1)-block occurring at the checkpoint f ′. Now (l, q, i) is a repetition iff T ′ has
a stale occurrence at position i − q − 2j−1 + 1 (dashed arc in Fig. 4d). Hence, in
all three cases it is enough to check whether a given block has a (fresh or stale)
occurrence at a given position, which requires O(1) operations. The lemma is
proved. �	
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Algorithm 5. ith iteration, Watch List Maintenance
1: for (h, p, i) ∈ New do � adding new repetitions
2: if (l, p, r) ∈ W for some l, r then
3: update (l, p, r) to (l, p, i)
4: else
5: add (h, p, i) to W

6: for (l, p, r) ∈ W do
7: j ← �log p�; z ← 2max{0,j−tε}

8: if r + z = i then � repetition missed an update
9: delete (l, p, r) from W ; output (l, p, r)

10: for (h, p, i) ∈ W do � deletions/updates by Lemma 14
11: j ← �log p�; f ← i − p − 2j + 1; B ← H2(j, f); B′ ← H2(j−1, i−p−2j−1+1)
12: for {(l, q, r) ∈ W such that 2p/3 < q < p} do
13: if (r − q ≤ l − p) || (q > 2j && i − q − 2j + 1 /∈ B.sseries)
14: || (q ≤ 2j ≤ q + i − r && i − q − 2j + 1 /∈ B.fseries)
15: || (q + i − r ≤ 2j && i − q − 2j−1 + 1 /∈ B′.sseries) then
16: delete (l, q, r) from W ; output (l, q, r)
17: else
18: update (l, q, r) to (l, q, i)

19: for {(l, q, r) ∈ W such that p < q < 3p/2} do
20: if (f.period = 0) || (q − p �= 0 mod f.period)
21: || (f.extension > i−q−2j+1) then
22: delete (l, q, r) from W ; output (l, q, r)
23: else
24: update (l, q, r) to (l, q, i)

Proof (of Lemma 12). We prove by induction on i the following fact:

(∗) for any positive integer r, after i’th iteration the watch list contains at most
two repetitions with periods in the range [r..32r].

The base case is obvious. For the step case consider a range [r..32r] containing the
period of at least one new repetition (otherwise, it is nothing to prove). After
applying the third outer loop of Algorithm 5, all remaining repetitions with
periods in [r..32r] end at position i, and there are at most two of them because
of Lemma 13. Thus (∗) is proved. Clearly, (∗) implies statement (i).

Each of three outer loops of Algorithm 5 can be performed in the time pro-
portional to the total length of involved list(s) with the use of two pointers.
The fact (∗) ensures that the pointer for q in the third outer loop never goes
back by more than two elements. Since |New| = O(log i) by Lemma 13, (i)
implies (ii). �	
Proof (of Theorem 1). The algorithm described in Sect. 4 satisfies Lemma 6 and
thus solves approxRuns. The space bound stems from Lemma 3(1): the number
of keys in each dictionary, the total number of groups, and the total length of
lists of checkpoints are bounded by the number of checkpoints times log n. The
size of the watch list is negligible. The time bound follows from Lemmas 8–12.
For the insertion/deletion of groups and nodes see Remark 2. �	
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In conclusion we say a few words about the choice of dictionaries.

Remark 3. If ε is small (inverse polynomial), it makes sense to use dynamic
perfect hash tables [2,7] as dictionaries. Both cited versions guarantee that with
probability 1−m−c, where m is the dictionary size and c is an arbitrary constant,
all dictionary operations will take O(1) time. Thus the total probability of a
failed run of an algorithm can still be kept below 1/n with O(log n) elementary
operations between reads. However, this is not the case for big (such as constant
or inverse polylog) values of ε. So in this case we suggest to use deterministic

dictionaries by Anderson and Thorup [1] which give us O(
√

log log n
log log log n · log n)

elementary operations between reads.
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Abstract. A weighted string, also known as a position weight matrix,
is a sequence of probability distributions over some alphabet. We revisit
the Weighted Shortest Common Supersequence (WSCS) problem, intro-
duced by Amir et al. [SPIRE 2011], that is, the SCS problem on weighted
strings. In the WSCS problem, we are given two weighted strings W1

and W2 and a threshold 1
z

on probability, and we are asked to compute
the shortest (standard) string S such that both W1 and W2 match sub-
sequences of S (not necessarily the same) with probability at least 1

z
.

Amir et al. showed that this problem is NP-complete if the probabilities,
including the threshold 1

z
, are represented by their logarithms (encoded

in binary).
We present an algorithm that solves the WSCS problem for two

weighted strings of length n over a constant-sized alphabet in O(n2√z
log z) time. Notably, our upper bound matches known conditional lower
bounds stating that the WSCS problem cannot be solved in O(n2−ε)
time or in O∗(z0.5−ε) with time, where the O∗ notation suppresses fac-
tors polynomial with respect to the instance size (with numeric values
encoded in binary), unless there is a breakthrough improving upon long-
standing upper bounds for fundamental NP-hard problems (CNF-SAT
and Subset Sum, respectively).

We also discover a fundamental difference between the WSCS prob-
lem and the Weighted Longest Common Subsequence (WLCS) problem,
introduced by Amir et al. [JDA 2010]. We show that the WLCS problem
cannot be solved in O(nf(z)) time, for any function f(z), unless P = NP.
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1 Introduction

Consider two strings X and Y . A common supersequence of X and Y is a
string S such that X and Y are both subsequences of S. A shortest common
supersequence (SCS) of X and Y is a common supersequence of X and Y
of minimum length. The Shortest Common Supersequence problem (the
SCS problem, in short) is to compute an SCS of X and Y . The SCS problem
is a classic problem in theoretical computer science [18,23,25]. It is solvable in
quadratic time using a standard dynamic-programming approach [13], which also
allows computing a shortest common supersequence of any constant number of
strings (rather than just two) in polynomial time. In case of an arbitrary number
of input strings, the problem becomes NP-hard [23] even when the strings are
binary [25].

A weighted string of length n over some alphabet Σ is a type of uncertain
sequence. The uncertainty at any position of the sequence is modeled using a
subset of the alphabet (instead of a single letter), with every element of this
subset being associated with an occurrence probability; the probabilities are
often represented in an n × |Σ| matrix. These kinds of data are common in
various applications where: (i) imprecise data measurements are recorded; (ii)
flexible sequence modeling, such as binding profiles of molecular sequences, is
required; (iii) observations are private and thus sequences of observations may
have artificial uncertainty introduced deliberately [2]. For instance, in computa-
tional biology they are known as position weight matrices or position probability
matrices [26].

In this paper, we study the Weighted Shortest Common Superse-
quence problem (the WSCS problem, in short) introduced by Amir et al. [5],
which is a generalization of the SCS problem for weighted strings. In the WSCS
problem, we are given two weighted strings W1 and W2 and a probability thresh-
old 1

z , and the task is to compute the shortest (standard) string such that both
W1 and W2 match subsequences of S (not necessarily the same) with probabil-
ity at least 1

z . In this work, we show the first efficient algorithm for the WSCS
problem.

A related problem is the Weighted Longest Common Subsequence
problem (the WLCS problem, in short). It was introduced by Amir et al. [4]
and further studied in [14] and, very recently, in [20]. In the WLCS problem, we
are also given two weighted strings W1 and W2 and a threshold 1

z on probability,
but the task is to compute the longest (standard) string S such that S matches
a subsequence of W1 with probability at least 1

z and S matches a subsequence
of W2 with probability at least 1

z . For standard strings S1 and S2, the length
of their shortest common supersequence |SCS(S1, S2)| and the length of their
longest common subsequence |LCS(S1, S2)| satisfy the following folklore relation:

|LCS(S1, S2)| + |SCS(S1, S2)| = |S1| + |S2|. (1)

However, an analogous relation does not connect the WLCS and WSCS prob-
lems, even though both problems are NP-complete because of similar reductions,
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which remain valid even in the case that both weighted strings have the same
length [4,5]. In this work, we discover an important difference between the two
problems.

Kociumaka et al. [21] introduced a problem called Weighted Consensus,
which is a special case of the WSCS problem asking whether the WSCS of two
weighted strings of length n is of length n, and they showed that the Weighted
Consensus problem is NP-complete yet admits an algorithm running in pseudo-
polynomial time O(n +

√
z log z) for constant-sized alphabets1. Furthermore, it

was shown in [21] that the Weighted Consensus problem cannot be solved
in O∗(z0.5−ε) time for any ε > 0 unless there is an O∗(2(0.5−ε)n)-time algorithm
for the Subset Sum problem. Let us recall that the Subset Sum problem, for
a set of n integers, asks whether there is a subset summing up to a given integer.
Moreover, the O∗(2n/2) running time for the Subset Sum problem, achieved by
a classic meet-in-the-middle approach of Horowitz and Sahni [15], has not been
improved yet despite much effort; see e.g. [6].

Abboud et al. [1] showed that the Longest Common Subsequence prob-
lem over constant-sized alphabets cannot be solved in O(n2−ε) time for ε > 0
unless the Strong Exponential Time Hypothesis [16,17,22] fails. By (1), the
same conditional lower bound applies to the SCS problem, and since standard
strings are a special case of weighted strings (having one letter occurring with
probability equal to 1 at each position), it also applies to the WSCS problem.

The following theorem summarizes the above conditional lower bounds on
the WSCS problem.

Theorem 1 (Conditional hardness of the WSCS problem; see [1,21]).
Even in the case of constant-sized alphabets, the Weighted Shortest Com-
mon Supersequence problem is NP-complete, and for any ε > 0 it cannot be
solved:

1. in O(n2−ε) time unless the Strong Exponential Time Hypothesis fails;
2. in O∗(z0.5−ε) time unless there is an O∗(2(0.5−ε)n)-time algorithm for the

Subset Sum problem.

Our Results. We give an algorithm for the WSCS problem with pseudo-
polynomial running time that depends polynomially on n and z. Note that such
algorithms have already been proposed for several problems on weighted strings:
pattern matching [9,12,21,24], indexing [3,7,8,11], and finding regularities [10].
In contrast, we show that no such algorithm is likely to exist for the WLCS
problem.

Specifically, we develop an O(n2
√

z log z)-time algorithm for the WSCS prob-
lem in the case of a constant-sized alphabet2. This upper bound matches the
conditional lower bounds of Theorem 1. We then show that unless P = NP , the
WLCS problem cannot be solved in O(nf(z)) time for any function f(·).
1 Note that in general z /∈ O∗(1) unless z is encoded in unary.
2 We consider the case of |Σ| = O(1) just for simplicity. For a general alphabet, our

algorithm can be modified to work in O(n2|Σ|√z log z) time.
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Model of Computations. We assume the word RAM model with word size
w = Ω(log n+log z). We consider the log-probability representation of weighted
sequences, that is, we assume that the non-zero probabilities in the weighted
sequences and the threshold probability 1

z are all of the form c
p

2dw , where c and
d are constants and p is an integer that fits in O(1) machine words.

2 Preliminaries

A weighted string W = W [1] · · · W [n] of length |W | = n over alphabet Σ is a
sequence of sets of the form

W [i] = {(c, π
(W )
i (c)) : c ∈ Σ}.

Here, π
(W )
i (c) is the occurrence probability of the letter c at the position i ∈

[1 . . n].3 These values are non-negative and sum up to 1 for a given index i.
By W [i . . j] we denote the weighted substring W [i] · · · W [j]; it is called a

prefix if i = 1 and a suffix if j = |W |.
The probability of matching of a string S with a weighted string W , with

|S| = |W | = n, is

P(S,W ) =
n∏

i=1

π
(W )
i (S[i]) =

n∏

i=1

P(S[i] = W [i]).

We say that a (standard) string S matches a weighted string W with probability
at least 1

z , denoted by S ≈z W , if P(S,W ) ≥ 1
z . We also denote

Matchedz(W ) = {S ∈ Σn : P(S,W ) ≥ 1
z }.

For a string S we write W ⊆z S if S′ ≈z W for some subsequence S′ of S.
Similarly we write S ⊆z W if S ≈z W ′ for some subsequence W ′ of W .

Our main problem can be stated as follows.

Weighted Shortest Common Supersequence (WSCS(W1,W2, z))
Input: Weighted strings W1 and W2 of length up to n and a threshold 1

z .
Output: A shortest standard string S such that W1 ⊆z S and W2 ⊆z S.

Example 2. If the alphabet is Σ = {a, b}, then we write the weighted string as
W = [p1, p2, . . . , pn], where pi = π

(W )
i (a); in other words, pi is the probability

that the ith letter W [i] is a. For

W1 = [1, 0.2, 0.5], W2 = [0.2, 0.5, 1], and z = 5
2 ,

we have WSCS(W1, W2, z) = baba since W1 ⊆z baba, W2 ⊆z baba (the witness
subsequences are underlined), and baba is a shortest string with this property.
3 For any two integers � ≤ r, we use [� . . r] to denote the integer range {�, . . . , r}.
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We first show a simple solution to WSCS based on the following facts.

Observation 3 (Amir et al. [3]). Every weighted string W matches at most
z standard strings with probability at least 1

z , i.e., |Matchedz(W )| ≤ z.

Lemma 4. The set Matchedz(W ) can be computed in O(nz) time if |Σ| = O(1).

Proof. If S ∈ Matchedz(W ), then S[1 . . i] ∈ Matchedz(W [1 . . i]) for every index i.
Hence, the algorithm computes the sets Matchedz for subsequent prefixes of W .
Each string S ∈ Matchedz(W [1 . . i]) is represented as a triple (c, p, S′), where
c = S[i] is the last letter of S, p = P(S,W [1 . . i]), and S′ = S[1 . . i−1] points to
an element of Matchedz(W [1 . . i− 1]). Such a triple is represented in O(1) space.

Assume that Matchedz(W [1 . . i − 1]) has already been computed. Then, for
every S′ = (c′, p′, S′′) ∈ Matchedz(W [1 . . i − 1]) and every c ∈ Σ, if p := p′ ·
π
(W )
i (c) ≥ 1

z , then the algorithm adds (c, p, S′) to Matchedz(W [1 . . i]).
By Observation 3, |Matchedz(W [1 . . i−1])| ≤ z and |Matchedz(W [1 . . i])| ≤ z.

Hence, the O(nz) time complexity follows. �	
Proposition 5. The WSCS problem can be solved in O(n2z2) time if |Σ| =
O(1).

Proof. The algorithm builds Matchedz(W1) and Matchedz(W2) using Lemma 4.
These sets have size at most z by Observation 3. The result is the shortest
string in

{SCS(S1, S2) : S1 ∈ Matchedz(W1), S2 ∈ Matchedz(W2)}.

Recall that the SCS of two strings can be computed in O(n2) time using a
standard dynamic programming algorithm [13]. �	
We substantially improve upon this upper bound in Sects. 3 and 4.

2.1 Meet-in-the-Middle Technique

In the decision version of the Knapsack problem, we are given n items with
weights wi and values vi, and we seek for a subset of items with total weight
up to W and total value at least V . In the classic meet-in-the-middle solution to
the Knapsack problem by Horowitz and Sahni [15], the items are divided into
two sets S1 and S2 of sizes roughly 1

2n. Initially, the total value and the total
weight is computed for every subset of elements of each set Si. This results in
two sets A,B, each with O(2n/2) pairs of numbers. The algorithm needs to pick
a pair from each set such that the first components of the pairs sum up to at
most W and the second components sum up to at least V . This problem can be
solved in linear time w.r.t. the set sizes provided that the pairs in both sets A
and B are sorted by the first component.



226 P. Charalampopoulos et al.

Let us introduce a modified version this problem.

Merge(A,B,w)
Input: Two sets A and B of points in 2 dimensions and a threshold w.
Output: Do there exist (x1, y1) ∈ A, (x2, y2) ∈ B such that x1x2, y1y2 ≥ w?

A linear-time solution to this problem is the same as for the problem in the
meet-in-the-middle solution for Knapsack. However, for completeness we prove
the following lemma (see also [21, Lemma 5.6]):

Lemma 6 (Horowitz and Sahni [15]). The Merge problem can be solved in
linear time assuming that the points in A and B are sorted by the first component.

Proof. A pair (x, y) is irrelevant if there is another pair (x′, y′) in the same set
such that x′ ≥ x and y′ ≥ y. Observe that removing an irrelevant point from A
or B leads to an equivalent instance of the Merge problem.

Since the points in A and B are sorted by the first component, a single
scan through these pairs suffices to remove all irrelevant elements. Next, for
each (x, y) ∈ A, the algorithm computes (x′, y′) ∈ B such that x′ ≥ w/x and
additionally x′ is smallest possible. As the irrelevant elements have been removed
from B, this point also maximizes y′ among all pairs satisfying x′ ≥ w/x. If the
elements (x, y) are processed by non-decreasing values x, the values x′ do not
increase, and thus the points (x′, y′) can be computed in O(|A| + |B|) time in
total. �	

3 Dynamic Programming Algorithm for WSCS

Our algorithm is based on dynamic programming. We start with a less efficient
procedure and then improve it in the next section. Henceforth, we only con-
sider computing the length of the WSCS; an actual common supersequence of
this length can be recovered from the dynamic programming using a standard
approach (storing the parent of each state).

For a weighted string W , we introduce a data structure that stores, for every
index i, the set {P(S,W [1 . . i]) : S ∈ Matchedz(W [1 . . i])} represented as an
array of size at most z (by Observation 3) with entries in the increasing order.
This data structure is further denoted as Freq i(W, z). Moreover, for each ele-
ment p ∈ Freq i+1(W, z) and each letter c ∈ Σ, a pointer to p′ = p/π

(W )
i+1 (c) in

Freq i(W, z) is stored provided that p′ ∈ Freq i(W, z). A proof of the next lemma
is essentially the same as of Lemma 4.

Lemma 7. For a weighted string W of length n, the arrays Freq i(W, z), with
i ∈ [1 . . n], can be constructed in O(nz) total time if |Σ| = O(1).

Proof. Assume that Freq i(W, z) is computed. For every c ∈ Σ, we create a list

Lc = {p · π
(W )
i+1 (c) : p ∈ Freq i(W, z), p · π

(W )
i+1 (c) ≥ 1

z }.
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The lists are sorted since Freq i(W, z) was sorted. Then Freq i+1(W, z) can be
computed by merging all the lists Lc (removing duplicates). This can be done
in O(z) time since σ = O(1). The desired pointers can be computed within the
same time complexity. �	
Let us extend the WSCS problem in the following way:

WSCS′(W1,W2, �, p, q):
Input: Weighted strings W1,W2, an integer �, and probabilities p, q.
Output: Is there a string S of length � with subsequences S1 and S2 such
that P(S1,W1) = p and P(S2,W2) = q?

In the following, a state in the dynamic programming denotes a quadruple
(i, j, �, p), where i ∈ [0 . . |W1|], j ∈ [0 . . |W2|], � ∈ [0 . . |W1| + |W2|], and p ∈
Freq i(W1, z).

Observation 8. There are O(n3z) states.

In the dynamic programming, for all states (i, j, �, p), we compute

DP[i, j, �, p] = max{q : WSCS′(W1[1 . . i],W2[1 . . j], �, p, q) = true}. (2)

Let us denote πk
i (c) = π

(Wk)
i (c). Initially, the array DP is filled with zeroes,

except that the values DP[0, 0, �, 1] for � ∈ [0 . . |W1| + |W2|] are set to 1. In
order to cover corner cases, we assume that π1

0(c) = π2
0(c) = 1 for any c ∈ Σ

and that DP[i, j, �, p] = 0 if (i, j, �, p) is not a state. The procedure Compute
implementing the dynamic-programming algorithm is shown as Algorithm1.

Algorithm 1. Compute(W1,W2, z)

for � = 0 to |W1| + |W2| do
DP[0, 0, �, 1] := 1;

foreach state (i, j, �, p) in lexicographic order do

foreach c ∈ Σ do

x := π1
i (c); y := π2

j (c);
DP[i, j, �, p] := max{

DP[i, j, �, p],
DP[i − 1, j, � − 1, p

x ],
y · DP[i, j − 1, � − 1, p],
y · DP[i − 1, j − 1, � − 1, p

x ]
};

return min {� : DP[|W1|, |W2|, �, p] ≥ 1
z for some p ∈ Freq |W1|(W1, z)};
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The correctness of the algorithm is implied by the following lemma:

Lemma 9 (Correctness of Algorithm 1). The array DP satisfies (2). In
particular, Compute(W1,W2, z) = WSCS(W1,W2, z).

Proof. The proof that DP satisfies (2) goes by induction on i+ j. The base case
of i + j = 0 holds trivially. It is simple to verify the cases that i = 0 or j = 0.
Let us henceforth assume that i > 0 and j > 0.

We first show that

DP[i, j, �, p] ≤ max{q : WSCS′(W1[1 . . i],W2[1 . . j], �, p, q) = true}.

The value q = DP[i, j, �, p] was derived from DP[i − 1, j, � − 1, p/x] = q, or
DP[i, j − 1, � − 1, p] = q/y, or DP[i − 1, j − 1, � − 1, p/x] = q/y, where x = π1

i (c)
and y = π2

j (c) for some c ∈ Σ. In the first case, by the inductive hypothesis, there
exists a string T that is a solution to WSCS′(W1[1 . . i−1],W2[1 . . j], �−1, p/x, q).
That is, T has subsequences T1 and T2 such that

P(T1,W1[1 . . i − 1]) = p/x and P(T2,W2[1 . . j]) = q.

Then, for S = Tc, S1 = T1c, and S2 = T2, we indeed have

P(S1,W1[1 . . i]) = p and P(S2,W2[1 . . j]) = q.

The two remaining cases are analogous.

Let us now show that

DP[i, j, �, p] ≥ max{q : WSCS′(W1[1 . . i],W2[1 . . j], �, p, q) = true}.

Assume a that string S is a solution to WSCS′(W1[1 . . i],W2[1 . . j], �, p, q). Let
S1 and S2 be the subsequences of S such that P(S1,W1) = p and P(S2,W2) = q.

Let us first consider the case that S1[i] = S[�] 
= S2[j]. Then T1 = S1[1 . . i−1]
and T2 = S2 are subsequences of T = S[1 . . � − 1]. We then have

p′ := P(T1,W1[1 . . i − 1]) = p/π1
i (S1[i]).

By the inductive hypothesis, DP[i − 1, j, � − 1, p′] ≥ q. Hence, DP[i, j, �, p] ≥ q
because DP[i− 1, j, �− 1, p′] is present as the second argument of the maximum
in the dynamic programming algorithm for c = S[�].

The cases that S1[i] 
= S[�] = S2[j] and that S1[i] = S[�] = S2[j] rely on
the values DP[i, j − 1, � − 1, p] ≥ q/y and DP[i − 1, j − 1, � − 1, p/x] ≥ q/y,
respectively.

Finally, the case that S1[i] 
= S[�] 
= S2[j] is reduced to one of the previous
cases by changing S[�] to S1[i] so that S is still a supersequence of S1 and S2

and a solution to WSCS′(W1[1 . . i],W2[1 . . j], �, p, q). �	
Proposition 10. The WSCS problem can be solved in O(n3z) time if |Σ| =
O(1).
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Proof. The correctness follows from Lemma 9. As noted in Observation 8, the
dynamic programming has O(n3z) states. The number of transitions from a
single state is constant provided that |Σ| = O(1).

Before running the dynamic programming algorithm of Proposition 10, we
construct the data structures Freq i(W1, z) for all i ∈ [1 . . n] using Lemma 7.
The last dimension in the DP[i, j, �, p] array can then be stored as a position in
Freq i(W1, z). The pointers in the arrays Freq i are used to follow transitions. �	

4 Improvements

4.1 First Improvement: Bounds on �

Our approach here is to reduce the number of states (i, j, �, p) in Algorithm 1
from O(n3z) to O(n2z log z). This is done by limiting the number of values of �
considered for each pair of indices i, j from O(n) to O(log z).

For a weighted string W , we define H(W ) as a standard string generated by
taking the most probable letter at each position, breaking ties arbitrarily. The
string H(W ) is also called the heavy string of W . By dH(S, T ) we denote the
Hamming distance of strings S and T . Let us recall an observation from [21].

Observation 11 ([21, Observation 4.3]). If S ≈z W for a string S and a
weighted string W , then dH(S,H(W )) ≤ log2 z.

The lemma below follows from Observation 11.

Lemma 12. If strings S1 and S2 satisfy S1 ≈z W1 and S2 ≈z W2, then

|SCS(S1, S2) − SCS(H(W1),H(W2))| ≤ 2 log2 z.

Proof. By Observation 11,

dH(S1,H(W1)) ≤ log2 z and dH(S2,H(W2)) ≤ log2 z.

Due to the relation (1) between LCS and SCS, it suffices to show the following.

Claim. Let S1,H1, S2,H2 be strings such that |S1| = |H1| and |S2| = |H2|. If
dH(S1,H1) ≤ d and dH(S2,H2) ≤ d, then |LCS(S1, S2) − LCS(H1,H2)| ≤ 2d.

Proof. Notice that if S′
1, S

′
2 are strings resulting from S1, S2 by removing up to

d letters from each of them, then LCS(S′
1, S

′
2) ≥ LCS(S1, S2) − 2d.

We now create strings S′
k for k = 1, 2, by removing from Sk letters at positions

i such that Sk[i] 
= Hk[i]. Then, according to the observation above, we have

LCS(S′
1, S

′
2) ≥ LCS(S1, S2) − 2d.

Any common subsequence of S′
1 and S′

2 is also a common subsequence of H1 and
H2 since S′

1 and S′
2 are subsequences of H1 and H2, respectively. Consequently,

LCS(H1,H2) ≥ LCS(S1, S2) − 2d.

In a symmetric way, we can show that LCS(S1, S2) ≥ LCS(H1,H2) − 2d. This
completes the proof of the claim. �	
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We apply the claim for H1 = H(W1), H2 = H(W2), and d = log2 z. �	
Let us make the following simple observation.

Observation 13. If S = WSCS(W1,W2, z), then S = SCS(S1, S2) for some
strings S1 and S2 such that W1 ⊆z S1 and W2 ⊆z S2.

Using Lemma 12, we refine the previous algorithm as shown in Algorithm2.

Algorithm 2. Improved1(W1,W2, z)

In the beginning, we apply the classic O(n2)-time dynamic-programming
solution to the standard SCS problem on H1 = H(W1) and H2 = H(W2).
It computes a 2D array T such that

T [i, j] = SCS(H1[1 . . i],H2[1 . . j]).

Let us denote an interval

L[i, j] = [T [i, j] − �2 log2 z� . . T [i, j] + �2 log2 z�].

We run the dynamic programming algorithm Compute restricted to states
(i, j, �, p) with � ∈ L[i, j].
Let DP′ denote the resulting array, restricted to states satisfying � ∈ L[i, j].
We return min {� : DP′[|W1|, |W2|, �, p] ≥ 1

z for some p ∈ Freq |W1|(W1, z)}.

Lemma 14 (Correctness of Algorithm 2). For every state (i, j, �, p), an
inequality DP′[i, j, �, p] ≤ DP[i, j, �, p] holds. Moreover, if S = SCS(S1, S2),
|S| = �, P(S1,W1[1 . . i]) = p ≥ 1

z and P(S2,W2[1 . . j]) = q ≥ 1
z , then

DP′[i, j, �, p] ≥ q. Consequently, Improved1(W1,W2, z) = WSCS(W1,W2, z).

Proof. A simple induction on i+j shows that the array DP′ is lower bounded by
DP. This is because Algorithm 2 is restricted to a subset of states considered by
Algorithm 1, and because DP′[i, j, �, p] is assumed to be 0 while DP[i, j, �, p] ≥ 0
for states (i, j, �, p) ignored in Algorithm 2.

We prove the second part of the statement also by induction on i + j. The
base cases satisfying i = 0 or j = 0 can be verified easily, so let us henceforth
assume that i > 0 and j > 0.

First, consider the case that S1[i] = S[�] 
= S2[j]. Let T = S[1 . . � − 1] and
T1 = S1[1 . . i − 1]. We then have

p′ := P(T1,W1[1 . . i − 1]) = p/π1
i (S1[i]).

Claim. If S1[i] = S[�] 
= S2[j], then T = SCS(T1, S2).

Proof. Let us first show that T is a common supersequence of T1 and S2. Indeed,
if T1 was not a subsequence of T , then T1S1[i] = S1 would not be a subsequence
of TS1[i] = S, and if S2 was not a subsequence of T , then it would not be a
subsequence of TS1[i] = S since S1[i] 
= S2[j].
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Finally, if T1 and S2 had a common supersequence T ′ shorter than T , then
T ′S1[i] would be a common supersequence of S1 and S2 shorter than S. �	
By the claim and the inductive hypothesis, DP′[i − 1, j, � − 1, p′] ≥ q. Hence,
DP′[i, j, �, p] ≥ q due to the presence of the second argument of the maximum in
the dynamic programming algorithm for c = S[�]. Note that (i, j, �, p) is a state
in Algorithm 2 since � ∈ L[i, j] follows from Lemma 12.

The cases that S1[i] 
= S[�] = S2[j] and that S1[i] = S[�] = S2[j] use the val-
ues DP′[i, j−1, �−1, p] ≥ q/y and DP′[i−1, j−1, �−1, p/x] ≥ q/y, respectively.
Finally, the case that S1[i] 
= S[�] 
= S2[j] is impossible as S = SCS(S1, S2). �	
Example 15. Let W1 = [1, 0], W2 = [0] (using the notation from Example 2),
and z ≥ 1. The only strings that match W1 and W2 are S1 = ab and S2 = b,
respectively. We have DP[2, 1, 3, 1] = 1 which corresponds, in particular, to a
solution S = abb which is not an SCS of S1 and S2. However, DP[2, 1, 2, 1] =
DP′[2, 1, 2, 1] = 1 which corresponds to S = ab = SCS(S1, S2).

Proposition 16. The WSCS problem can be solved in O(n2z log z) time if
|Σ| = O(1).

Proof. The correctness of the algorithm follows from Lemma 14. The number of
states is now O(n2z log z) and thus so is the number of considered transitions. �	

4.2 Second Improvement: Meet in the Middle

The second improvement is to apply a meet-in-the-middle approach, which is
possible due to following observation resembling Observation 6.6 in [21].

Observation 17. If S ≈z W for a string S and weighted string W of length n,
then there exists a position i ∈ [1 . . n] such that

S[1 . . i − 1] ≈√
z W [1 . . i − 1] and S[i + 1 . . n] ≈√

z W [i + 1 . . n].

Proof. Select i as the maximum index with S[1 . . i − 1] ≈√
z W [1 . . i − 1]. �	

We first use dynamic programming to compute two arrays,
−−→
DP and

←−−
DP. The

array
−−→
DP contains a subset of states from DP′; namely the ones that satisfy

p ≥ 1√
z
. The array

←−−
DP is an analogous array defined for suffixes of W1 and W2.

Formally, we compute
−−→
DP for the reversals of W1 and W2, denoted as

−−→
DPR,

and set
←−−
DP[i, j, �, p] =

−−→
DPR[|W1|+1− i, |W2|+1− j, �, p]. Proposition 16 yields

Observation 18. Arrays
−−→
DP and

←−−
DP can be computed in O(n2

√
z log z) time.



232 P. Charalampopoulos et al.

Henceforth, we consider only a simpler case in which there exists a solution
S to WSCS(W1,W2, z) with a decomposition S = SL · SR such that

W1[1 . . i] ⊆√
z SL and W1[i + 1 . . |W1|] ⊆√

z SR (3)

holds for some i ∈ [0 . . |W1|].
In the pseudocode, we use the array L[i, j] from the first improvement,

denoted here as
−→
L [i, j], and a symmetric array

←−
L from right to left, i.e.:

←−
T [i, j] = SCS(H(W1)[i . . |W1|],H(W2)[j . . |W2|]),
←−
L [i, j] = [

←−
T [i, j] − �2 log2 z� . .

←−
T [i, j] + �2 log2 z�].

Algorithm 3 is applied for every i ∈ [0 . . |W1|] and j ∈ [0 . . |W2|].

Algorithm 3. Improved2(W1,W2, z, i, j)

res := ∞;

foreach �L ∈ −→
L [i, j], �R ∈ ←−

L [i + 1, j + 1] do

A := {(p, q) :
−−→
DP[i, j, �L, p] = q};

B := {(p, q) :
←−−
DP[i + 1, j + 1, �R, p] = q};

if Merge(A,B, z) then

res := min(res, �L + �R);
return res;

Lemma 19 (Correctness of Algorithm 3). Assuming that there is a solution
S to WSCS(W1,W2, z) that satisfies (3), we have

WSCS(W1,W2, z) = min
i,j

(Improved2(W1,W2, z, i, j)).

Proof. Assume that WSCS(W1,W2, z) has a solution S = SL · SR that satisfies
(3) for some i ∈ [0 . . |W1|] and denote �L = |SL|, �R = |SR|. Let S′

L and S′
R be

subsequences of SL and SR such that

pL := P(S′
L,W1[1 . . i]) ≥ 1√

z
and pR := P(S′

R,W1[i + 1 . . |W1|]) ≥ 1√
z
.

Let S′′
L and S′′

R be subsequences of SL and SR such that

P(S′′
L,W2[1 . . j]) = qL and P(S′′

R,W2[j + 1 . . |W2|]) = qR

for some j and qLqR ≥ 1
z .

By Lemma 14,
−−→
DP[i, j, �L, pL] ≥ qL and

←−−
DP[i+1, j +1, �R, pR] ≥ qR. Hence,

the set A will contain a pair (pL, q′
L) such that q′

L ≥ qL and the set B will contain
a pair (pR, q′

R) such that q′
R ≥ qR. Consequently, Merge(A,B, z) will return a

positive answer.
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Similarly, if Merge(A,B, z) returns a positive answer for given i, j, �L and
�R, then

−−→
DP[i, j, �L, pL] ≥ qL and

←−−
DP[i + 1, j + 1, �R, pR] ≥ qR

for some pLpR, qLqR ≥ 1
z . By Lemma 14, this implies that

WSCS′(W1[1 . . i],W2[1 . . j], �L, pL, qL)

and
WSCS′(W1[i + 1 . . |W1|],W2[j + 1 . . |W2|], �R, pR, qR)

have a positive answer, so

WSCS′(W1,W2, �L + �R, pLpR, qLqR)

has a positive answer too. Due to pLpR, qLqR ≥ 1
z , this completes the proof. �	

Proposition 20. The WSCS problem can be solved in O(n2
√

z log2 z) time if
|Σ| = O(1).

Proof. We use the algorithm Improved2, whose correctness follows from Lemma 19
in case (3) is satisfied. The general case of Observation 17 requires only a minor
technical change to the algorithm. Namely, the computation of

−−→
DP then addition-

ally includes all states (i, j, �, p) such that � ∈ −→
L [i, j], p ≥ 1

z , and p = π1
i (c)p′ for

some c ∈ Σ and p′ ∈ Freq i−1(W1,
√

z). Due to |Σ| = O(1), the number of such
states is still O(n2

√
z log z).

For every i and j, the algorithm solves O(log2 z) instances of Merge, each
of size O(

√
z). This results in the total running time of O(n2

√
z log2 z). �	

4.3 Third Improvement: Removing One log z Factor

The final improvement is obtained by a structural transformation after which
we only need to consider O(log z) pairs (�L, �R).

For this to be possible, we compute prefix maxima on the �-dimension
of the

−−→
DP and

←−−
DP arrays in order to guarantee monotonicity. That is, if

Merge(A,B, z) returns true for �L and �R, then we make sure that it would
also return true if any of these two lengths increased (within the corresponding
intervals).

This lets us compute, for every �L ∈ −→
L [i, j] the smallest �R ∈ ←−

L [i, j] such
that Merge(A,B, z) returns true using O(log z) iterations because the sought
�R may only decrease as �L increases. The pseudocode is given in Algorithm 4.
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Algorithm 4. Improved3(W1,W2, z, i, j)

foreach state (i, j, �, p) of
−−→
DP in lexicographic order do−−→

DP[i, j, �, p] := max(
−−→
DP[i, j, �, p],

−−→
DP[i, j, � − 1, p]);

foreach state (i, j, �, p) of
←−−
DP in lexicographic order do←−−

DP[i, j, �, p] := max(
←−−
DP[i, j, �, p],

←−−
DP[i, j, � − 1, p]);

[a . . b] :=
−→
L [i, j]; [a′ . . b′] :=

←−
L [i + 1, j + 1];

�L := a; �R := b′ + 1; res := ∞;
while �L ≤ b and �R ≥ a′ do

A := {(p, q) :
−−→
DP[i, j, �L, p] = q};

B := {(p, q) :
←−−
DP[i + 1, j + 1, �R − 1, p] = q};

if Merge(A,B, z) then � �R is too large for the current �L

�R := �R − 1;
else � �R reached the target value for the current �L

if �R ≤ b′ then res := min(res, �L + �R);
�L := �L + 1;

return res;

Theorem 21. The WSCS problem can be solved in O(n2
√

z log z) time if
|Σ| = O(1).

Proof. Let us fix indices i and j. Let us denote Freq i(W, z) by
−−→
Freq i(W, z) and

introduce a symmetric array

←−−
Freq i(W, z) = {P(S,W [i . . |W |]) : S ∈ Matchedz(W [i . . |W |])}.

In the first loop of prefix maxima computation, we consider all � ∈ −→
L [i, j] and

p ∈ −−→
Freq i(W1,

√
z), and in the second loop, all � ∈ ←−

L [i, j] and p ∈ ←−−
Freq i(W1,

√
z).

Hence, prefix maxima take O(
√

z log z) time to compute.
Each step of the while-loop in Improved3 increases �L or decreases �R. Hence,

the algorithm produces only O(log z) instances of Merge, each of size O(
√

z).
The time complexity follows. �	

5 Lower Bound for WLCS

Let us first define the WLCS problem as it was stated in [4,14].

Weighted Longest Common Subsequence (WLCS(W1,W2, z))
Input: Weighted strings W1 and W2 of length up to n and a threshold 1

z .
Output: A longest standard string S such that S ⊆z W1 and S ⊆z W2.
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We consider the following well-known NP-complete problem [19]:

Subset Sum

Input: A set S of positive integers and a positive integer t.
Output: Is there a subset of S whose elements sum up to t?

Theorem 22. The WLCS problem cannot be solved in O(nf(z)) time if P 
= NP.

Proof. We show the hardness result by reducing the NP-complete Subset Sum
problem to the WLCS problem with a constant value of z.

For a set S = {s1, s2, . . . , sn} of n positive integers, a positive integer t, and
an additional parameter p ∈ [2 . . n], we construct two weighted strings W1 and
W2 over the alphabet Σ = {a, b}, each of length n2.

Let qi = si

t . At positions i · n, for all i = [1 . . n], the weighted string W1

contains letter a with probability 2−qi and b otherwise, while W2 contains a with
probability 2

1
p−1 (qi−1) and b otherwise. All the other positions contain letter b

with probability 1. We set z = 2.
We assume that S contains only elements smaller than t (we can ignore the

larger ones and if there is an element equal to t, then there is no need for a
reduction). All the weights of a are then in the interval (12 , 1) since −qi ∈ (−1, 0)
and 1

p−1 (qi − 1) ∈ (−1, 0). Thus, since z = 2, letter b originating from a position
i · n can never occur in a subsequence of W1 or in a subsequence of W2. Hence,
every common subsequence of W1 and W2 is a subsequence of (bn−1a)n.

For I ⊆ [1 . . n], we have

∏

i∈I

π
(W1)
i·n (a) =

∏

i∈I

2−si/t ≥ 2−1 = 1
z ⇐⇒

∑

i∈I

si ≤ t

and
∏

i∈I

π
(W2)
i·n (a) =

∏

i∈I

2
1

p−1 (si/t−1) ≥ 2−1 = 1
z ⇐⇒

1
t(p−1)

(
∑

i∈I

si

)
− |I|

p−1 ≥ −1 ⇐⇒
∑

i∈I

si ≥ t(1 − p + |I|).

If I is a solution to the instance of the Subset Sum problem, then for p =
|I| there is a weighted common subsequence of length n(n − 1) + p obtained by
choosing all the letters b and the letters a that correspond to the elements of I.

Conversely, suppose that the constructed WLCS instance with a parameter
p ∈ [2 . . n] has a solution of length at least n(n−1)+p. Notice that a at position
i · n in W1 may be matched against a at position i′ · n in W2 only if i = i′.
(Otherwise, the length of the subsequence would be at most (n − |i − i′|)n ≤
(n − 1)n < n(n − 1) + p). Consequently, the solution yields a subset I ⊆ [1 . . n]
of at least p indices i such that a at position i · n in W1 is matched against a at
position i · n in W2. By the relations above, we have (a) |I| ≥ p, (b)

∑
i∈I si ≤ t,
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and (c)
∑

i∈I si ≥ t(1 − p + |I|). Combining these three inequalities, we obtain∑
i∈I si = t and conclude that the Subset Sum instance has a solution.
Hence, the Subset Sum instance has a solution if and only if there exists

p ∈ [2 . . n] such that the constructed WLCS instance with p has a solution of
length at least n(n − 1) + p. This concludes that an O(nf(z))-time algorithm for
the WLCS problem implies the existence of an O(n2f(2)+1) = O(nO(1))-time
algorithm for the Subset Sum problem. The latter would yield P = NP . �	
Example 23. For S = {3, 7, 11, 15, 21} and t = 25 = 3 + 7 + 15, both weighted
strings W1 and W2 are of the form:

b4 ∗ b4 ∗ b4 ∗ b4 ∗ b4 ∗ ,

where each ∗ is equal to either a or b with different probabilities.
The probabilities of choosing a’s for W1 are equal respectively to

(
2− 3

25 , 2− 7
25 , 2− 11

25 , 2− 15
25 , 2− 21

25
)
,

while for W2 they depend on the value of p, and are equal respectively to

(
2− 22

25(p−1) , 2− 18
25(p−1) , 2− 14

25(p−1) , 2− 10
25(p−1) , 2− 4

25(p−1)
)
.

For p = 3, we have: WLCS(W1,W2, 2) = b4 a b4 a b4 b4 a b4, which corresponds
to taking the first, the second, and the fourth a. The length of this string is equal
to 23 = n(n − 1) + p, and its probability of matching is 1

2 = 2− 22
50 · 2− 18

50 · 2− 10
50 .

Thus, the subset {3, 7, 15} of S consisting of its first, second, and fourth element
is a solution to the Subset Sum problem.

References

1. Abboud, A., Backurs, A., Williams, V.V.: Tight hardness results for LCS and other
sequence similarity measures. In: Guruswami, V. (ed.) 56th IEEE Annual Sympo-
sium on Foundations of Computer Science, pp. 59–78. IEEE Computer Society
(2015). https://doi.org/10.1109/FOCS.2015.14

2. Aggarwal, C.C., Yu, P.S.: A survey of uncertain data algorithms and applications.
IEEE Trans. Knowl. Data Eng. 21(5), 609–623 (2009). https://doi.org/10.1109/
TKDE.2008.190

3. Amir, A., Chencinski, E., Iliopoulos, C.S., Kopelowitz, T., Zhang, H.: Property
matching and weighted matching. Theor. Comput. Sci. 395(2–3), 298–310 (2008).
https://doi.org/10.1016/j.tcs.2008.01.006

4. Amir, A., Gotthilf, Z., Shalom, B.R.: Weighted LCS. J. Discrete Algorithms 8(3),
273–281 (2010). https://doi.org/10.1016/j.jda.2010.02.001

5. Amir, A., Gotthilf, Z., Shalom, B.R.: Weighted shortest common supersequence.
In: Grossi, R., Sebastiani, F., Silvestri, F. (eds.) SPIRE 2011. LNCS, vol. 7024, pp.
44–54. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24583-1 6

6. Bansal, N., Garg, S., Nederlof, J., Vyas, N.: Faster space-efficient algorithms for
subset sum, k-sum, and related problems. SIAM J. Comput. 47(5), 1755–1777
(2018). https://doi.org/10.1137/17M1158203

https://doi.org/10.1109/FOCS.2015.14
https://doi.org/10.1109/TKDE.2008.190
https://doi.org/10.1109/TKDE.2008.190
https://doi.org/10.1016/j.tcs.2008.01.006
https://doi.org/10.1016/j.jda.2010.02.001
https://doi.org/10.1007/978-3-642-24583-1_6
https://doi.org/10.1137/17M1158203


Weighted Shortest Common Supersequence Problem Revisited 237

7. Barton, C., Kociumaka, T., Liu, C., Pissis, S.P., Radoszewski, J.: Indexing weighted
sequences: neat and efficient. Inf. Comput. (2019). https://doi.org/10.1016/j.ic.
2019.104462

8. Barton, C., Kociumaka, T., Pissis, S.P., Radoszewski, J.: Efficient index for
weighted sequences. In: Grossi, R., Lewenstein, M. (eds.) 27th Annual Sympo-
sium on Combinatorial Pattern Matching, CPM 2016. LIPIcs, vol. 54, pp. 4:1–4:13.
Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2016). https://doi.org/10.4230/
LIPIcs.CPM.2016.4

9. Barton, C., Liu, C., Pissis, S.P.: Linear-time computation of prefix table for
weighted strings & applications. Theor. Comput. Sci. 656, 160–172 (2016). https://
doi.org/10.1016/j.tcs.2016.04.029

10. Barton, C., Pissis, S.P.: Crochemore’s partitioning on weighted strings and appli-
cations. Algorithmica 80(2), 496–514 (2018). https://doi.org/10.1007/s00453-016-
0266-0

11. Charalampopoulos, P., Iliopoulos, C.S., Liu, C., Pissis, S.P.: Property suffix array
with applications. In: Bender, M.A., Farach-Colton, M., Mosteiro, M.A. (eds.)
LATIN 2018. LNCS, vol. 10807, pp. 290–302. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-77404-6 22

12. Charalampopoulos, P., Iliopoulos, C.S., Pissis, S.P., Radoszewski, J.: On-line
weighted pattern matching. Inf. Comput. 266, 49–59 (2019). https://doi.org/10.
1016/j.ic.2019.01.001

13. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algo-
rithms, 3rd edn. MIT Press (2009). https://mitpress.mit.edu/books/introduction-
algorithms-third-edition

14. Cygan, M., Kubica, M., Radoszewski, J., Rytter, W., Waleń, T.: Polynomial-time
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Abstract. The ε-approximate φ-heavy hitters problem is, for any ele-
ment from some universe U = [0..n), to maintain its frequency under an
arbitrary data stream of form (xi, Δi) ∈ U×Z that changes the frequency
of xi by Δi, such that one can output every element with frequency
more than φN and no element with frequency no more than (φ− ε)N for
N =

∑
i Δi and prespecified parameters ε, φ ∈ R. To solve this problem

in small space, Cormode and Muthukrishnan (ACM TODS, 2005) have
proposed an O(ρε−1 lg n)-space probabilistic data structure with good
practical performance, where ρ = lg (1/(δφ)) for any failure probability
δ ∈ R. In this paper, we improve its output time from O(ρε−1(lg n + ρ))
to O(ρ2ε−1) for arbitrary updates (Δi ∈ Z) and its update time from
O(ρ lg n) to amortized O(ρ) for constant updates (Δi ∈ O(1)) with the
same space and output guarantee by removing application-specific lg n
terms that are not tunable, unlike other parameters δ, ε, and φ.

1 Introduction

Identifying heavy hitters (also known as frequent items [7], hot items [10], or top-
k items [23]) is one of the most fundamental tasks in data stream models, where
the goal is, given some real φ ∈ R and data stream S of form S[i] = (xi,Δi)
for i ∈ [1, |S|] as input, to output every element x, called a φ-heavy hitter, with
frequency more than φN for N =

∑|S|
i=1 Δi. This task has attracted considerable

attention for a variety of its applications like search query analysis [27], network
anomaly detection [1,28,30], multidimensional data analysis [21], malicious event
detection [3], cache management [13], and so on. For more details on this topic, we
refer the reader to an excellent survey by Cormode and Hadjieleftheriou [8]. This
task is also related to the α-majority problem that has been extensively studied
by the string processing community in various settings [2,12,15,16,20,26], where
Δi = 1 holds for any i and S is regarded as a string of symbols.

In this paper, we study the ε-approximate φ-heavy hitters problem, one of
the most well studied variants of this task, in the strict turnstile model, i.e.,
c© Springer Nature Switzerland AG 2019
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Table 1. Summary of previous [10] and our results that solve the ε-approximate φ-
heavy hitters problem with probability 1 − δ based on the idea of combinatorial group
testing (CGT), in terms of update/query time, where n is the universe size, Δ ∈ Z is
update weights supported, ρ = lg (1/(δφ)). All the results use O(ρε−1 lg n) space.

Techniques Update time Query time Remark

CGT [10] O(ρ lg n) O(ρε−1(lg n + ρ))a |Δ| ∈ N

This work (Sect. 4.1) O(ρ lg n) O(ρ2ε−1) |Δ| ∈ N

This work (Sect. 4.2) O(ρ) amortized O(ρ2ε−1) |Δ| ∈ O(1)
aNote that the authors of [10] claim O(ρ2ε−1 lg n) query time. We argue
that it is too pessimistic and O(ρε−1(lg n + ρ)) query time is possible.

each Δi can be both positive and negative and any frequency never becomes
negative. Hereafter, we give its formal definition and state our main contributions.
Throughout this paper, U = [0..n) denotes the universe of size n from which each
element xi is chosen. As our model of computation, we assume the word RAM
with word size w ≥ max{n,N} for the universe size n and the total frequency N .

1.1 Heavy Hitters Problem

Let x be an element in the universe U = [0..n). For any integer i ≥ 0, we denote
by nx(i) the frequency of x at time i (i.e., after i updates complete) and, if i
is clear from the context, simply denote nx(i) as nx. In this paper, we assume
the strict turnstile model [25] and an input data stream S of length |S| of form
S[i] = (xi,Δi) ∈ U×Z that changes the frequency of xi by Δi, where nx(i) ≥ 0
holds for any element x ∈ U and time i ≥ 0. The data stream S is said to
be (a data stream with) unitary updates if Δi ∈ {±1} and constant updates if
Δi ∈ O(1) for any i. Given any Boolean expression E, we define [E] = 1 if E is
true and [E] = 0 otherwise. Using this notation, nx =

∑
i[x = xi] · Δi holds.

Given some real φ ∈ R, an element x ∈ U is said to be a φ-heavy hitter if
it occurs more than φN times in S, i.e., nx > φN . The ε-approximate φ-heavy
hitters problem (or simply the heavy hitters problem) is then defined as follows:

Definition 1 (The heavy hitters problem). Let ε and φ be some real numbers
with 0 < ε ≤ φ ≤ 1/2. The heavy hitters problem is to implement two operations:

update(x,Δ): updates nx with nx + Δ for (x,Δ) ∈ U × Z.
query(): outputs every φ-heavy hitter and no other that occurs no more

than (φ − ε)N times.

1.2 Main Contributions

In this paper, we study the ε-approximate φ-heavy hitters problem with an
emphasis on its practical aspects. Specifically, we revisit a randomized data struc-
ture of Cormode and Muthukrishnan [10], called Combinatorial Group Testing
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(CGT for short), which is shown to be very competitive in practice by extensive
experiments in [8].

As our main result, we develop two novel techniques that remove its depen-
dence on the lg n term, which can be a bottleneck in practice as explained later,
from its query and update times while keeping the same asymptotic space and
output guarantee. Table 1 compares the update and query times of [10] and
those of ours. Our main contributions are summarized as follows for any failure
probability δ ∈ R and ρ = lg (1/(δφ)):

1. We improve the query time of [10] from O(ρε−1(lg n + ρ)) to O(ρ2ε−1). Our
idea is to identify candidates of heavy hitters at update time and to verify
their frequency at query time, while [10] does both at query time. (Sect. 4.1)

2. We improve the update time of [10] from O(ρ lg n) to amortized O(ρ) for con-
stant updates. Our idea is to maintain an array of lg n bidirectional counters
used by [10] efficiently by exploiting the word-level parallelism. (Sect. 4.2)

3. We conducted experiments on synthetic datasets and showed that, in various
settings, our method for unitary updates outperformed previous competitive
ones [9,10] in query time with comparable update time and space. (Sect. 5)

We argue that the lg n term in update and query times of [10] (and [9])
can be the main bottleneck in practice because it is application-specific and
not flexibly tunable, unlike other parameters δ, ε, and φ, according to available
computational resources. For example, lg n must be 32 and 128 if an element is
an IPv4 and IPv6 address, respectively, and it must be doubled for tracking every
pair of source and destination addresses. The authors of [10], in fact, attempted
to reduce the computational cost of the lg n term in the update time and showed
a tradeoff that replaces the lg n term in the update time by lg n/ lg b and that in
the space and query time by b lg n/ lg b for any integer b ∈ [2..n]. In this study,
we show that this dependence on the lg n term can be completely removed from
the query time for arbitrary updates and (in amortized sense) from the update
time for constant updates without increasing the space.

We note that our techniques can be used to deterministically solve the
dynamic majority problem [10,14] (i.e., the exact (1/2)-heavy hitters problem
under constant updates) in amortized constant update time and optimal con-
stant query time using O(lg n) space. Our result improves Theorem 3.1 of [10],
and, if we can scan the input twice, the linear space of [14] in case of lg n = o(N).

1.3 Related Work

The heavy hitters problem has a long history of research, dating back at least
to the work of Boyer and Moore [5], where they showed an optimal determin-
istic algorithm to find the (1/2)-heavy hitter or the majority element from an
input stream of size N in O(N) time and constant space in the cash register
model with Δi = +1 for any i. Misra and Gries [24] extended the idea of [5] to
any 0 < φ < 1/2 in amortized O(lg 1/φ) update time and O(1/φ) query time
using optimal O(1/φ) space. The same algorithm as [24] was rediscovered by
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Demaine et al. [11], where they showed that the update time can be O(1) in
the worst case for Δi = +1, and by Karp et al. [19] independently. All the
aforementioned algorithms cannot work in the strict turnstile model, in contrast
to ours.

For the ε-approximate φ-heavy hitters problem in the strict turnstile model,
Cormode and Muthukrishnan [10] have proposed a randomized data structure,
called Combinatorial Group Testing. In the same article [10], they also described
a divide-and-conquer technique combined with Count sketch of Charikar et al. [7]
for frequency estimation. In another article [9] of the same authors, they proposed
Count-Min sketch for frequency estimation, which is similar to Count sketch,
and solved the ε-approximate φ-heavy hitters problem by plugging it into their
divide-and-conquer technique. This extension of Count (resp. Count-Min) sketch
is called Hierarchical Count (resp. Count-Min) sketch for its implicit hierarchical
structure of multiple Count (resp. Count-Min) sketch instances.

After seminal work of Cormode and Muthukrishnan [9,10] and Charikar
et al. [7], there have been extensive studies on the heavy hitters problem in the
turnstile model, most of which put on the emphasis on the theoretical aspects. A
recent notable result is by Larsen et al. [22], where they introduced the cluster-
preserving clustering technique and solved the �p heavy hitters problem in the
general turnstile model for any p ∈ (0..2]. The master thesis of Hovmand and
Nygaard [18] is a recent experimental study, where they have empirically com-
pared Hierarchical Count-Min sketch [9] and its variant [22], called Hierarchi-
cal Constant-Min sketch, with Hierarchical Count sketch in the strict turnstile
model. In contrast to our present study, their interest was not in Combinatorial
Group Testing but in Hierarchical Count, Count-Min, and Constant-Min sketch.
Most recently, Bender et al. [3] has introduced the online event detection prob-
lem to check if there is a φ-heavy hitter that occurs exactly �φN� times at time
1 ≤ i ≤ N with no false positives and negatives in an online manner. Due to their
requirements, they focused on exact solutions in the external memory model.

2 A Data Structure of Cormode and Muthukrishnan

In this section, we describe a randomized data structure of Cormode and
Muthukrishnan [10] for the ε-approximate φ-heavy hitters problem, which we
will improve in Sect. 4. Let m = lg n be the size of an element in U in bits, and
ρ and c be some positive integers such that ρ ≥ lg (1/(δφ)) and c ≥ 2ε−1. Their
data structure is composed of three components:

1. a counter N for the total frequency of elements,
2. a three-dimensional counter array count[1..ρ][1..c][0..m], and
3. hash functions h1, . . . , hρ : U �→ [1..c].

Here, every hi is chosen uniformly at random from a family of universal hash func-
tions. Note that hi can be stored and evaluated in constant space and time [6].

Let x be any element in U and bit(x, i) be its i-th least significant (or its
i-th rightmost) bit. Given x ∈ U and Δ ∈ Z, update(x,Δ) increases both N and
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count[i][hi(x)][0] by Δ and, for every (i, k) ∈ [1..ρ] × [1..m], count[i][hi(x)][k] by
bit(x, k) · Δ. To describe how query() works, we introduce two key facts:

Fact 1 (Cormode and Muthukrishnan [10]). Let x be any φ-heavy hitter.
For any i ∈ [1..ρ], with probability at least 1/2, the total frequency of every other
element y (	= x) with hi(x) = hi(y) is no more than φN , that is,

∑

y∈U

[
(y 	= x) ∧ (hi(x) = hi(y))

] · ny ≤ φN.

Fact 2 (Corollary 3.8 of Cormode and Muthukrishnan [10]). Let x be an
element in U and nx be its frequency. Then, n̂x = mini count[i][hi(x)][0] satisfies
nx ≤ n̂x ≤ nx + εN with probability at least 1 − φδ.

By Facts 1 and 2, query() is implemented as follows. We iterate over every
(i, j) ∈ [1..ρ] × [1..c]. Let C = count[i][j] be an array of m + 1 counters. Suppose
that there exists some φ-heavy hitter x with hi(x) = j. We then consider two
inquiries: (i) C[k] > φN and (ii) C[0] − C[k] > φN . Fact 1 then implies that,
with probability at least 1/2, either bit(x, k) = 1 iff (i) is true and (ii) is false
or bit(x, k) = 0 iff (i) is false and (ii) is true for every k ∈ [1..m]. We can thus
identify φ-heavy hitter x from C as follows:

∑

1≤k≤m

[
(C[k] > φN) ∧ (C[0] − C[k] ≤ φN)

] · 2k−1. (1)

Note that we skip to the next iteration if (i) and (ii) are both true or both
false for any k ∈ [1..m] because there is no way to identify x from C, i.e., there
can exist more than one heavy hitters and/or the total frequency of non-heavy
hitters exceeds φN if (i) and (ii) are both true or there must exist no heavy
hitter if (i) and (ii) are both false.

The failure probability of identifying a φ-heavy hitter on ρ independent tests
can be bounded (1/2)ρ = δφ, and thus, from the union bound, that of identifying
any φ-heavy hitter can be bounded by δ. After identified as a candidate of φ-
heavy hitters from C, an element x can be verified in two ways: hi(x) = j and
n̂x > φN . By Fact 2, any element x ∈ U satisfies nx ≤ n̂x ≤ nx + εN , and thus,
from n̂x > φN , it holds that nx > (φ − ε)N with probability at least 1 − δφ.

In summary, we can output every φ-heavy hitter and no other with frequency
no more than φN with probability at least 1 − δ. The update time is obviously
O(ρ lg n). The query time is O(ρε−1(lg n+ρ)) because there are at most O(ρε−1)
candidates, each of which is identified in O(lg n) time and verified in O(ρ) time.

In the next section, we introduce a novel technique, called packed bidirec-
tional counters, to improve the query and update times of [10], which we explain
separately from our final data structure for the ε-approximate φ-heavy hitters
problem since it may be of independent interest. In Sect. 4, we show how to
improve the query and update times of [10] by another simple technique, called
cached candidates, or packed bidirectional counters.
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3 Packed Bidirectional Counters

As observed in Sect. 2, the lg n term in the update and query times of [10] arises
from O(lg n)-time operations of lg n bidirectional counters. Our goal here is thus
to improve such O(lg n)-time operations somehow.

In this section, we introduce an abstract data type, called bidirectional
counter arrays, to support three basic operations on an array of counters defined
as follows:

Definition 2 (The basic operations on bidirectional counter arrays). Let C be an
array of m counters and x be any element in U for m = lg n = O(w). We define
three basic operations on bidirectional counters arrays as follows:

increment(C, x): C[i] ← C[i] + bit(x, i) for i ∈ [1..m].
decrement(C, x): C[i] ← C[i] − bit(x, i) for i ∈ [1..m].
ispositive(C): returns

∑m
i=1 [C[i] > 0] · 2i−1.

In the rest of this section, we present a novel technique, called packed bidirec-
tional counters, to implement this abstract data type efficiently. Specifically, we
show that increment/decrement can be supported in amortized constant time and
ispositive in constant time. This technique will be used in Sect. 4.2 to improve
the update and query times of [10] for constant updates.

The basic idea behind our technique is to maintain multiple counters in par-
allel by exploiting the word-level parallelism of the RAM. The main difficulty
here is how to support bidirectional updates on them in a synchronized way, i.e.,
how to deal with such a situation that one counter needs no carry propagation
while another needs it at all its digits. To handle such a situation, we represent
each counter value using small subcounters or variables and update them in a
regular manner independent of the value. Similar techniques have been proposed
for string matching under Hamming distance [17] and regular expression match-
ing with intervals [4], which can deal with unidirectional updates on multiple
counters in amortized constant time.

For ease of explanation, we assume that C is a single bidirectional counter of
w bits, i.e., m = 1. As explained later, we store the value of a counter in a set of
variables whose value is in {0,±1,±2}. Thus, it is easy to extend our discussion
to m = O(w) by packing the corresponding variables of m counters into O(1)
words and exploiting the word-level parallelism in bitwise operations.

We represent C with two types of variables Di ∈ {0,±1,±2} and Pi ∈ {0,±1}
for i ∈ [0..w], all of which are initialized to 0. For any integer x > 0, we define
rmo(x) to be the position of its rightmost one, i.e., rmo(x) = min{i | bit(x, i) = 1},
and, for convenience, rmo(0) = w. Let Ck =

∑w
i=k Di · 2i be the weighted sum of

Dk, . . . , Dw. We then maintain four invariants at the t-th update for any t ≥ 0:

(1) C = C0.
(2) Di ∈ {0,±1} for any 0 ≤ i < rmo(t) and i = w.
(3) Di ∈ {0,±1,±2} for any rmo(t) ≤ i < w.
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(4) Pi =

⎧
⎪⎨

⎪⎩

+1 Ci ≥ +2i

0 Ci = 0
−1 Ci ≤ −2i

for any 0 ≤ i ≤ w.

To achieve amortized constant update time, we maintain these invariants in
such a way that we access O(rmo(t)) variables at the t-th update, as in previous
techniques [4,17]. First, we explain how increment can maintain invariants (1)–
(3). We start by updating D0 with D0 + x, then ensure that Di ∈ {0,±1} by
propagating the (redundant) carry bit in {0,±1} for every i ∈ [0..rmo(t)), and
finally add the last carry bit to Drmo(t). We implement decrement similarly except
that it subtracts x from D0.

Lemma 3. Invariants (1)–(3) can be maintained correctly.

Proof. Invariants (1)–(3) hold after initialization because Di = 0 for any i ∈
[0..w] and C = C0 = 0. Suppose that invariants (1)–(3) hold at the beginning of
the t-th update. The invariant (1) is satisfied because increment (resp. decrement)
does not change the counter value of C after adding (resp. subtracting) x to
(resp. from) C. Invariants (2) and (3) can be maintained as follows. If t is odd,
rmo(t) = 0 and rmo(t − 1) > 0 hold. By inductive hypothesis, D0 ∈ {0,±1}
and thus D0 ± x ∈ {0,±1,±2} hold, and no other variable changes. If t is
even, rmo(t) > 0 and rmo(t−1) = 0 hold. Then, there must exist t′ = max{0, t−
2rmo(t)} such that rmo(t′) > rmo(t) and Drmo(t) ∈ {0,±1} at the t′-th update. By
inductive hypothesis, the (redundant) carry bit from variables D0, . . . , Drmo(t)−1

must be in {0,±1}, and thus, Drmo(t) must be in {0,±1,±2}. Invariants (1)–(3)
can thus be maintained.

Next, we explain how increment and decrement can maintain invariant (4)
after updating variables Di, in the proof of the next lemma.

Lemma 4. Invariant (4) can be maintained correctly.

Proof. Invariant (4) can be maintained as follows. For any i ∈ [0..w], we show
that Pi can be properly updated from Pi+1, Pi+2, and Di in constant time. It
is enough to show it for i ∈ [0..rmo(t)] because no variable changes for i ∈
(rmo(t)..w] at time t. We focus on Pi = +1 because Pi = −1 is analogous.
We show that we can determine if Ci ≥ 2i in constant time for each value of
Pi+1: (a) Pi+1 = 0; (b) Pi+1 = +1; and (c) Pi+1 = −1. (a) If Pi+1 = 0 and
thus Ci+1 = 0, then Ci = Di · 2i ≥ 2i holds for any Di ∈ {+1,+2}, and can
be examined in constant time. (b) If Pi+1 = +1 and thus Ci+1 ≥ 2i+1, then
Ci = Di · 2i + Ci+1 ≥ 2i holds except for Di = −2 and Ci+1 = 2i+1, and
can be examined in constant time. Note that Ci+1 = 2i+1 can be checked by
(Pi+1 = +1) ∧ (Pi+2 = 0). (c) If Pi+1 = −1 and thus Ci+1 ≤ −2i+1, Ci ≥ 2i

never holds because Ci ≤ 2i+1. Invariant (4) can thus be maintained.

Note again that both types of variables for each i ∈ [0..w] can be maintained
in constant time even for m = O(w) using bitwise operations on packed variables.
More specifically, we encode the k-th bits of variables Di[1], . . . ,Di[m] to an
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integer
∑m

j=1 bit(Di[j], k) · 2j−1, and Pi[1], . . . , Pi[m] are stored similarly, where
Di[j] and Pi[j] are variables for C[j]. Using this “bit-split” representation of
variables, we can maintain Di[j] and Pi[j] in parallel for all j ∈ [1..m] such that
invariants (1)–(4) hold, and obtain the next lemma.

Lemma 5. increment(C, x) and decrement(C, x) can be implemented in amor-
tized constant time for m = O(w).

Proof. Note that rmo(t) = i holds every 2i updates and it can be computed in
amortized constant time by scanning t from its least significant bit to its most
significant bit. The amortized time for increment and decrement is thus bounded
by

∑w
i=0 1/2i = O(1).

Using invariant (4), ispositive can be implemented in constant time.

Lemma 6. ispositive(C) can be implemented in constant time.

Proof. Note that P0 = +1 implies C0 = C ≥ 20 = 1 from invariant (4). Thus,
C > 0 can be determined in constant time by examining P0.

By Lemmas 3–6, we finally obtain the next lemma:

Lemma 7. There exists an O(m)-space data structure that implements
increment and decrement in amortized constant time and ispositive in constant
time on a bidirectional counter array of size m = O(w).

4 Our Faster Data Structures

In this section, we describe our faster randomized data structures for the ε-
approximate φ-heavy hitters problem in the strict turnstile model. First, we
show how to improve the query time of [10] for arbitrary updates. Then, we
show how to improve both the query and update times for constant updates by
using packed bidirectional counters presented in Sect. 3.

4.1 Faster Query by Cached Candidates

First, we show how to improve the query time of Cormode and Muthukrish-
nan [10] from O(ρε−1(lg n + ρ)) to O(ρ2ε−1) in case of arbitrary updates while
keeping the same update time, space, and output guarantee as [10]. To achieve
this, we introduce a simple but effective technique, called the cached candidates.

Remember that query() described in Sect. 2 has two main steps of identifying
candidates of φ-heavy hitters (identification step) and verifying them (verifica-
tion step). Our basic idea is to identify and cache ρ candidates at update time
and to verify all the cached candidates at query time. The main obstacle here is
that the φN terms in (1) can change at every update. Because we can refresh
at most ρ cached candidates at each update to ensure O(ρ) update time, other
candidates can be incoherent with the current φN . Our observation is that, as
long as we keep all the “good” candidates originally identified at query time, we
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can permit the presence of “bad” candidates because we can reject bad ones at
the verification step, where we say that a candidate is good (resp. bad) if its
estimated frequency is more (resp. no more) than φN .

Let cache[1..ρ][1..c] be another two-dimensional array such that cache[i][j]
stores a candidate of φ-heavy hitters identified from count[i][j]. Our update(x,Δ)
is implemented in the same manner described in Sect. 2 except that, after updat-
ing an array C = count[i][hi(x)] of m + 1 counters, we identify a candidate y
of φ-heavy hitters from C (in a modified way explained later) and store y in
cache[i][hi(x)]. The candidate y is identified as follows.

∑

1≤k≤m

[
C[k] > (1/2)C[0]

] · 2k−1. (2)

That is, we just replace the φN terms in (1) with (1/2)C[0], where, for simplicity,
we do not skip to the next iteration but rather continue with bit(y, k) = 0 in case
of C[k] = (1/2)C[0]. Our query is implemented just by verifying each candidate
stored in cache in the exactly same manner described in Sect. 2.

Lemma 8. update can be implemented in O(ρ lg n) time.

Proof. At update time, we modify O(m) counters and identify one candidate
both in O(m) time for every i ∈ [1..ρ]. Thus, update can be implemented in
O(ρ lg n) time for m = log n.

Lemma 9. query can be implemented in O(ρ2ε−1) time.

Proof. At query time, we just read each cached candidate and then output it if
its estimated frequency exceeds φN . By Fact 2, it takes O(ρ) time. Because there
are O(ρε−1) cached candidates, query can be implemented in O(ρ2ε−1) time.

Next, we show that our identification step based on (2) keeps any candidate
identified at the original one based on (1).

Lemma 10. Let R and R′ be sets of the elements identified by (2) and (1),
respectively. Then, R ⊇ R′ holds.

Proof. Let C be an array of m + 1 counters and x′ ∈ R′ be a candidate of
φ-heavy hitters identified from C by (1) Note that bit(x′, k) = 1 iff (C[k] >
φN) ∧ (C[0] − C[k] ≤ φN), i.e., C[k] > (1/2)C[0], for any k ∈ [1..m]. Let x ∈ R
be a candidate identified from C by (2). Because bit(x, i) = 1 iff C[k] > (1/2)C[0],
x = x′ must hold unless x′ is null. We thus obtain R ⊇ R′.

By Lemmas 8, 9, and 10, we obtain the main result of this section:

Theorem 11. There exists an O(ρε−1 lg n)-space randomized data structure
that implements update in O(ρ lg n) and query in O(ρ2ε−1) time with probability
at least 1 − δ for arbitrary updates and ρ = lg (1/(δφ)).
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Algorithm 1. Our update(x,Δ) for unitary updates.
1: n ← n + Δ
2: for i ← {1, . . . , ρ} do
3: count[i][hi(x)][0] ← count[i][hi(x)][0] + Δ
4: if Δ = +1 then
5: if t is odd then increment(count[i][hi(x)], x)
6: else decrement(count[i][hi(x)], ∼x)
7: else
8: if t is odd then decrement(count[i][hi(x)], x)
9: else increment(count[i][hi(x)], ∼x)

Algorithm 2. Our query() for unitary updates.
1: for i ← [1..ρ] do
2: for j ← [1..c] do
3: x ← ispositive(count[i][j])]
4: n̂x ← mink count[k][hk(x)][0]
5: if (hi(x) = j) ∧ (n̂x > φN) then report x as a φ-heavy hitter

4.2 Faster Update by Packed Bidirectional Counters

Next, we show how to improve the update time of Cormode and Muthukrish-
nan [10] from O(ρ lg n) to amortized O(ρ) and the query time of [10] from
O(ρε−1(lg n+ ρ)) to O(ρ2ε−1) in case of constant updates. To obtain this result,
we use the packed bidirectional counters presented in Sect. 3.

We focus on update(x,Δ) for unitary updates because it is easy to implement
update(x,Δ) for constant updates by repeating update(x,Δ/|Δ|) for |Δ| times.
We implement update(x,Δ) for unitary updates as follows. We represent every
array C = count[i][j] of m + 1 bidirectional counters used by [10] (see Sect. 2 for
details) by explicitly storing C[0] and replacing C[1..m] with packed bidirectional
counters in Sect. 3. We then maintain C[k] to hold the next value for k ∈ [1..m]:

|S|∑

t=1

[hi(xt) = j] · bit(xt, k) · Δt − �(1/2)C[0]� . (3)

Note that C[k] originally stores
∑|S|

t=1 [hi(xt) = j] · bit(xt, k) · Δt. The above
value (3) thus implies that our identification step described in Sect. 4.1 can be
reduced to ispositive. Because every unitary update can change (3) by at most ±1,
we can still update C in amortized constant time using increment and decrement
on packed bidirectional counters. Algorithms 1 and 2 describe our update and
query for unitary updates, respectively. Note that cache used in Sect. 4.1 is no
longer necessary because ispositive can return each candidate of heavy hitters in
constant time. By Lemma 7 and Theorem 11, we obtain the main result of this
section:
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Fig. 1. The frequency distribution of our datasets of size N = 107 on U = [0..264). The
red dashed lines indicate thresholds φN for each φ ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01}.
(Color figure online)

Theorem 12. There exists an O(ρε−1 lg n)-space randomized data structure
that implements update in amortized O(ρ) time and query in O(ρ2ε−1) time
with probability at least 1 − δ for unitary updates and ρ = lg (1/(δφ)).

5 Experimental Results

In this section, we give an empirical comparison of three randomized approaches
to the ε-approximate φ-heavy hitters problem in the strict turnstile model under
unitary updates, in terms of space, recall/precision, and update/query time.

We implemented Hierarchical Count-Min sketch [9], Combinatorial Group
Testing [10], and our method in Sect. 4.2 in C++ using multiply-shift hash func-
tions described in [29], all of which were compiled by g++ 9.1.0 with -Ofast and
-march=native options. All of them except for ours have a tradeoff parameter b,
called base, to speed up their update time at the cost of their query time and
space. We tested the method of [9] with base b = 2 (CMH2) and b = 16 (CMH16),
that of [10] with base b = 2 (CGT2) and b = 16 (CGT16), and ours (Ours). As
in an experimental study [8], we used 4 (resp. 2ε−1) for parameter ρ (resp. c)
of the Combinatorial Group Testing family (CGT2, CGT, and Ours) and for the
depth (resp. width) of internal Count-Min sketches of the Hierarchical Count-
Min sketch family (CMH2 and CMH16).

We generated 14 datasets of 10M integers chosen from U ∈ {[0, 232), [0, 264)}
according to the Zipf distribution of skewness z ∈ {0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0},
and then tested with threshold φ ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01} and ε = φ.
The frequency distribution of our datasets on U = [0, 264) is shown in Fig. 1
as reference. Using each dataset, we conducted 5 trials with different random
seeds, at each of which we executed 10M updates and then 100 queries on
every method. We measured average update and query times at each trial and
reported the median of the 5 trials. All the experiments were run on MacBook
Pro with Intel(R) Core(TM) i7-8559U running at 2.7 GHz and 16 GB main mem-
ory. Because our main concern is practical scenarios where lg n is large, we mainly
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Fig. 2. Space for thresholds φ ∈ {0.0001, 0.0005, 0.001, 0.005, 0.01} on U = [0..264).

discussed experimental results on U = [0, 264). We showed those on U = [0, 232)
to verify that our update and query time were independent of the lg n term.

5.1 Space

Figure 2 shows the space usages in MB on U = [0..264). In terms of space,
CMH16 was the clear winner especially for φ = 0.0001. Nevertheless, all the
others required less than 100 MB for φ ≥ 0.0005 and were small enough to reside
in main memory. As suggested in [8], both Hierarchical Count-Min sketch [9]
and Combinatorial Group Testing [10] can have constant depth (4 in our exper-
iments) to obtain reasonable recall and precision in practice. This means that
CMH16 needs just 16/64 = 1/4 of levels of sketches compared to CMH2 with-
out changing their depth and width. The space used by CGT2 and CMH2 are
same in theory. As in [8], however, our implementation of CMH2 tracked exact
counts at lower levels, and thus it saved the space for some Count-Min sketches.
Ours (resp. CGT16) required about 6 (resp. 4) times as much space as CGT2
because Ours (resp. CGT16) replaced each array of m = 64 words with our
packed bidirectional counter array implemented using 6m words (resp. an array
of �m/ lg b� · (b − 1) words).

5.2 Recall and Precision

Figures 3(a) and 4(a) show the precision of all the methods on universes U =
[0..232) and U = [0..264), respectively. We omitted the recall because they never
missed any heavy hitter and thus their recall was 100%. As mentioned above,
we focus on experimental results on U = [0..264), i.e., Fig. 4. We observed that
Ours showed much lower precision than others on datasets with z ≤ 1.2. The
easiest way to avoid its degradation of precision is to use more appropriate
ε > φ. However, such an ε must increase its space and query time. Another and
perhaps better approach is to add another Count-Min sketch with appropriate
ε for frequency estimation. As z increased, Ours has improved its precision and
finally reached the same level of precision as the others. It should be noted that
for φ = 0.01 and z = 0.8, Ours, CGT2, and CMH16 output only one false positive
and their precision became 0 because there was no heavy hitter.
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Fig. 3. (a) Precision, (b) Update speed, and (c) Query speed on U = [0..232).

5.3 Update and Query Time

Figures 3(b) and 4(b) show the update speed (in updates per microsecond) on
universes U = [0..232) and U = [0..264), respectively. We focus on CMH16, CGT16,
and Ours because CMH2 and CGT2 were not competitive in terms of update time.
Although their update time complexity is independent of both the threshold
φ and skewness z in our experimental setup, their update times were much
affected by φ and z, most likely due to cache effects. In fact, our experimental
result is consistent with an intuition that the cache hit ratio can be improved
as φ decreases (resp. z increases), because smaller φ (resp. larger z) reduces the
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Fig. 4. (a) Precision, (b) Update speed, and (c) Query speed on U = [0..264).

memory footprint (resp. the number of distinct elements) and thus can improve
locality of memory access.

Figures 3(c) and 4(c) show the query speed (in queries per millisecond) on
universes U = [0..232) and U = [0..264), respectively. First, we discuss experimen-
tal results for U = [0..264) in Fig. 4. Overall, Ours outperformed all the others
except for φ = 0.0001 and a few points with z = 0.8. In case of φ = 0.0001, Ours
was not dominant because its query time complexity has a linear dependence
on 2/ε (and thus 2/φ in our experiments). In addition, Ours, CGT2, and CGT16
have to examine all of ρ × c candidates, while CMH2 and CMH16 can be more
output sensitive by pruning the search space of candidates using the estimated
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frequency of their prefixes. Next, we verify that our update and query times are
independent of lg n. As shown in (a) and (b) of Figs. 3 and 4, our update and
query times were less affected by the lg n term than those of the others.

6 Conclusion

In this paper, we presented two novel techniques for improving a randomized
data structure of [10] for the ε-approximate φ-heavy hitters problem in the strict
turnstile model. We showed that our first technique of caching candidates of
heavy hitters improves the query time of [10] from O(ρε−1(lg n+ρ)) to O(ρ2ε−1)
for arbitrary updates and that our second technique of packing bidirectional
counters improves the update time from O(ρ lg n) to amortized O(ρ) for constant
updates. Thus, our improved randomized data structure for constant updates has
no dependence on lg n in both update time (in amortized sense) and query time
(in worst case sense) keeping the same space and output guarantee. Our exper-
iments confirmed that our data structure for constant updates outperformed
previous ones in query time for various combinations of thresholds and synthetic
skewed datasets while keeping competitive update time and space.
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Abstract. Let T[1, n] be a string of length n and T[i, j] be the sub-
string of T starting at position i and ending at position j. A substring
T[i, j] of T is a repeat if it occurs more than once in T; otherwise, it is a
unique substring of T. Repeats and unique substrings are of great inter-
est in computational biology and in information retrieval. Given string
T as input, the Shortest Unique Substring problem is to find a shortest
substring of T that does not occur elsewhere in T. In this paper, we intro-
duce the range variant of this problem, which we call the Range Shortest
Unique Substring problem. The task is to construct a data structure over
T answering the following type of online queries efficiently. Given a range
[α, β], return a shortest substring T[i, j] of T with exactly one occurrence
in [α, β]. We present an O(n log n)-word data structure with O(logw n)
query time, where w = Ω(log n) is the word size. Our construction is
based on a non-trivial reduction allowing us to apply a recently intro-
duced optimal geometric data structure [Chan et al. ICALP 2018].

Keywords: Shortest unique substring · Suffix tree · Heavy-light
decomposition · Range queries · Geometric data structures

1 Introduction

Finding regularities in strings is one of the main topics of combinatorial pattern
matching and its applications. Among the most well-studied types of string reg-
ularities is the notion of repeat. Let T[1, n] be a string of length n. A substring
T[i, j] of T is called a repeat if it occurs more than once in T. The notion of
unique substring is thus dual: it is a substring T[i, j] of T that does not occur
more than once in T. Computing repeats and unique substrings has applications
in computational biology [14,23] and in information retrieval [19,22].
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In this paper, we are interested in the notion of shortest unique substring.
All shortest unique substrings of T can be computed in O(n) time using the
suffix tree data structure [9,29]. Many different problems based on this notion
have already been studied. Pei et al. [22] considered the following problem on the
so-called position (or point) queries. Given a position i of T, return a shortest
unique substring of T covering i. The authors gave an O(n2)-time and O(n)-space
algorithm, which finds the shortest unique substring covering every position of
T. Since then, the problem has been revisited and optimal O(n)-time algorithms
have been presented by Ileri et al. [16] and by Tsuruta et al. [27]. Several other
variants of this problem have been investigated [2,10,11,15,18,20,21,24,28].

We introduce a natural generalization of the shortest unique substring prob-
lem. Specifically, our focus is on the range version of the problem, which we call
the Range Shortest Unique Substring (rSUS) problem. The task is to construct
a data structure over T to be able to answer the following type of online queries
efficiently. Given a range [α, β], return a shortest substring T[k, k + h − 1] of T
with exactly one occurrence in [α, β]; i.e., k ∈ [α, β], there is no k′ ∈ [α, β] such
that T[k, k + h − 1] = T[k′, k′ + h − 1], and h is minimal.

Range queries are a classic data structure topic [6,7,30]. A range query q =
f(A, i, j) on an array of n elements over some set S, denoted by A[1, n], takes
two indices 1 ≤ i ≤ j ≤ n, a function f defined over arrays of elements of S,
and outputs f(A[i, j]) = f(A[i], . . . , A[j]). Range query data structures have also
been considered specifically for strings [1,3,4,12]. For instance, in bioinformatics
applications we are often interested in finding regularities in certain regions of a
DNA sequence [5,17]. In the Range-LCP problem, defined by Amir et al. [3], the
task is to construct a data structure over T to be able to answer the following
type of online queries efficiently. Given a range [α, β], return i, j ∈ [α, β] such
that the length of the longest common prefix of T[i, n] and T[j, n] is maximal
among all pairs of suffixes within this range. The state of the art is an O(n)-word
data structure supporting O(logO(1) n)-time queries [1] (see also [12]).

Main Problem and Main Result

An alphabet Σ is a finite nonempty set of elements called letters. We fix a string
T[1, n] = T[1] · · ·T[n] over Σ. The length of T is denoted by |T| = n. By T[i, j] =
T[i] · · ·T[j], we denote the substring of T starting at position i and ending at
position j of T. We say that another string P has an occurrence in T or, more
simply, that P occurs in T if P = T[i, i+|P|−1], for some i. Thus, we characterize
an occurrence of P by its starting position i in T. A prefix of T is a substring of
T of the form T[1, i] and a suffix of T is a substring of T of the form T[i, n].

We next formally define the main problem considered in this paper.

Problem rSUS
Preprocess: String T[1, n].
Query: Range [α, β], where 1 ≤ α ≤ β ≤ n.
Output: (p, �) such that T[p, p + � − 1] is a shortest string with exactly one
occurrence in [α, β].
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If α = β the answer (α, 1) is trivial. So, in the rest we assume that α < β.

Example 1. Given T = c
1

a
2

a
3

b
4

c
5

a
6

d
7

d
8

a
9

a
10

c
11

a
12

d
13

d
14

a
15

a
16

a
17

a
18

b
19

a
20

c
21

and a query [α, β] =
[5, 16], we need to find a shortest substring of T with exactly one occurrence
in [5, 16]. The output here is (p, �) = (10, 2), because T[10, 11] = ac is the short-
est substring of T with exactly one occurrence in [5, 16].

In what follows, we prove our main result (Theorem1).

Theorem 1. We can construct an O(n log n)-word data structure which
answers rSUS queries in O(logw n) time per query in the word RAM model,
where w = Ω(log n) is the word size.

Our construction is based on ingredients such as the suffix tree [29], heavy-
light decomposition [25], and a geometric data structure for rectangle stab-
bing [8].

2 Our Data Structure

Let us start with some definitions.

Definition 1. For a position k ∈ [1, n] and h ≥ 1, we define Prev(k, h) and
Next(k, h) as follows:

Prev(k, h) = max
j

{{j < k | T[k, k + h − 1] = T[j, j + h − 1]} ∪ {−∞}}
Next(k, h) = min

j
{{j > k | T[k, k + h − 1] = T[j, j + h − 1]} ∪ {+∞}}.

Intuitively, let x and y be the occurrences of T[k, k + h − 1] right before and
right after the position k, respectively. Then, Prev(k, h) = x and Next(k, h) = y.
If x (resp., y) does not exist, then Prev(k, h) = −∞ (resp., Next(k, h) = +∞).

Definition 2. Let k ∈ [a, b]. We define λ(a, b, k) as follows:

λ(a, b, k) = min{h | Prev(k, h) < a and Next(k, h) > b}.

Intuitively, λ(a, b, k) denotes the length of the shortest substring that starts
at position k with exactly one occurrence in [a, b].

Definition 3. For a position k ∈ [1, n], we define Ck as follows:

Ck = {h | (Next(k, h),Prev(k, h)) �= (Next(k, h − 1),Prev(k, h − 1))}.

Example 2 (Running Example). Let T = c
1
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a
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a
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a
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b
19

a
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21

and k = 10. We have that (Next(10, 1),Prev(10, 1)) = (12, 9), (Next(10, 2),
Prev(10, 2)) = (20,−∞), and (Next(10, 3),Prev(10, 3)) = (+∞,−∞). Thus,
C10 = {2, 3}.
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Fig. 1. Illustration of the problem reduction: (k, h) is the output of the rSUS problem
with query range [α, β], where h = λ(α, β, k) ∈ Ck. Rk,h is the lowest weighted rectangle
in R containing the point (α, β).

Intuitively, Ck stores the set of candidate lengths for shortest unique sub-
strings starting at position k. We make the following observation.

Observation 1. λ(a, b, k) ∈ Ck, for any 1 ≤ a ≤ b ≤ n.

Example 3 (Running Example). Let T = c
1
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and
k = 10. We have that C10 = {2, 3}. For a = 5 and b = 16, λ(5, 16, 10) = 2,
denoting substring ac. For a = 5 and b = 20, λ(5, 20, 10) = 3, denoting sub-
string aca.

The following combinatorial lemma is crucial for efficiency.

Lemma 1.
∑

k |Ck| = O(n log n).

The proof of Lemma 1 is deferred to Sect. 3.
We are now ready to present our construction. By Observation 1, for a given

query range [α, β], the answer (p, �) we are looking for is the pair (k, h) with the
minimum h under the following conditions: k ∈ [α, β], h ∈ Ck, Prev(k, h) < α
and Next(k, h) > β. Equivalently, (p, �) is the pair (k, h) with the minimum h,
such that h ∈ Ck, α ∈ (Prev(k, h), k], and β ∈ [k,Next(k, h)). We map each
h ∈ Ck into a weighted rectangle Rk,h with weight h and defined as follows:

Rk,h = [Prev(k, h) + 1, k] × [k,Next(k, h) − 1].
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Let R be the set of all such rectangles, then the lowest weighted rectangle in
R stabbed by the point (α, β) is Rp,�. In short, an rSUS query on T[1, n] with
an input range [α, β] can be reduced to an equivalent top-1 rectangle stabbing
query on a set R of rectangles with input point (α, β), where the task is to
report the lowest weighted rectangle in R containing the point (α, β) (see Fig. 1
for an illustration). By Lemma1, we have that |R| = O(n log n). Therefore,
by employing the optimal data structure for top-1 rectangle stabbing presented
by Chan et al. [8], which takes O(|R|)-word space supporting O(logw |R|)-time
queries, we obtain the space-time trade-off in Theorem 1. This completes our
construction.

3 Proof of Lemma1

Let lcp(i, j) denote the length of the longest common prefix of the suffixes of T
starting at positions i and j in T. Also, let S denote the set of all (x, y) pairs,
such that 1 ≤ x < y ≤ n and lcp(x, y) > lcp(x, z), for all z ∈ [x + 1, y − 1].

The proof of Lemma 1 can be broken down into the following two lemmas.

Lemma 2.
∑

k |Ck| = O(|S|).
Lemma 3. |S| = O(n log n).

3.1 Proof of Lemma 2

Let us fix a position k. Let

C ′
k = {h | Prev(k, h) �= Prev(k, h − 1)}

C ′′
k = {h | Next(k, h) �= Next(k, h − 1)}.

Clearly we have that Ck = C ′
k ∪ C ′′

k .
The following statements can be deduced by a simple contradiction argument:

1. Let i = Prev(k, h) �= −∞, where h ∈ C ′
k, then i = Prev(k, lcp(i, k))

2. Let j = Next(k, h) �= ∞, where h ∈ C ′′
k , then j = Next(k, lcp(k, j)).

Figure 2 illustrates the proof for the first statement. The second one can be
proved in a similar fashion.

Clearly, |C ′
k| is proportional to the number of (i, k) pairs such that lcp(i, k) �=

0 and i = Prev(k, lcp(i, k)). Similarly, |C ′′
k | is proportional to the number of (k, j)

pairs such that lcp(k, j) �= 0 and j = Next(k, lcp(k, j)). Therefore,
∑

k |Ck| is
proportional to the number of (x, y) pairs, such that lcp(x, y) �= 0 and lcp(x, y) >
lcp(x, z), for all z ∈ [x + 1, y − 1]. This completes the proof of Lemma 2.
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Fig. 2. Let h ∈ C′
k and i = Prev(k, h). By contradiction, assume that there exists j ∈

(i, k) such that j = Prev(k, lcp(i, k)). Since h ≤ lcp(i, k), T[j, j +h−1] = T[k, k+h−1].
This is a contradiction with i = Prev(k, h). Thus, i = Prev(k, lcp(i, k)).

3.2 Proof of Lemma 3

Consider the suffix tree data structure of string T[1, n], which is a compact trie of
the n suffixes of T appended with a letter $ /∈ Σ [29]. This suffix tree consists of
n leaves (one for each suffix of T) and at most n−1 internal nodes. The edges are
labeled with substrings of T. Let u be the lowest common ancestor of the leaves
corresponding to the strings T[x, n]$ and T[y, n]$. Then, the concatenation of
the edge labels on the path from the root to u is exactly the longest common
prefix of T[x, n]$ and T[y, n]$. For any node u, we denote by size(u) the total
number of leaf nodes of the subtree rooted at u.

We decompose the nodes in the suffix tree into light and heavy nodes. The
root node is light and for any internal node, exactly one child is heavy. Specifi-
cally, the heavy child is the one having the largest number of leaves in its subtree
(ties are broken arbitrarily). All other children are light. This tree decomposition
is known as heavy-light decomposition. We have the following critical observa-
tion. Any path from the root to a leaf node contains many nodes, however, the
number of light nodes is at most log n [13,25]. We have the following lemma.

Lemma 4 ([25]). The sum of subtree sizes over all light nodes is O(n log n).

We are now ready to complete the proof. Let Su ⊆ S denote the set of pairs
(x, y), such that the lowest common ancestor of the leaves corresponding to
suffixes T[x, n]$ and T[y, n]$ is u. Clearly, the paths from the root to the leaves
corresponding to suffixes T[x, n]$ and T[y, n]$ pass from two distinct children of
node u and then at least one of the two must be a light node. Therefore, |Su| is
at most twice the sum of size(·) over all light children of u. Since |S| =

∑
u |Su|,

we can bound |S| by the sum of size(·) over all light nodes in the suffix tree,
which is O(n log n) by Lemma 4. This completes the proof of Lemma 3.

4 Open Questions

We leave the following related questions unanswered:

1. Can we design an efficient O(n)-word data structure for the rSUS problem?
2. Can we design an efficient solution for the k mismatches/edits variation of

the rSUS problem, perhaps using the framework of [26]?
3. Can our reduction be extended to other types of string regularities?
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Abstract. A tournament graph T = (V, E) is an oriented complete
graph, which can be used to model a round-robin tournament between n
players. In this short paper, we address the problem of finding a champion
of the tournament, also known as Copeland winner, which is a player that
wins the highest number of matches. Our goal is to solve the problem
by minimizing the number of arc lookups, i.e., the number of matches
played. We prove that finding a champion requires Ω(�n) comparisons,
where � is the number of matches lost by the champion, and we present
a deterministic algorithm matching this lower bound without knowing �.
Solving this problem has important implications on several Information
Retrieval applications including Web search, conversational AI, machine
translation, question answering, recommender systems, etc.

Keywords: Tournament graph · Round-robin tournament · Copeland
winner

1 Introduction

A tournament graph is an oriented complete graph T = (V,E) [13]. This graph
can be used to model a round-robin tournament between n players, where each
player plays a match with any other player. The orientation of an arc in E tells
the winner of the match, i.e., we have the arc (u, v) ∈ E iff u beats v in their
match. In this short paper, we address the problem of finding a champion of the
tournament, also known as Copeland winner [6], which is a vertex in V with the
maximum out-degree, i.e., a player that wins the highest number of matches.
Our goal is to find a champion by minimizing the number of arc lookups, i.e.,
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the number of played matches. Note that a tournament graph may have more
than one champion. In this case, we aim at finding any of them, even if all the
algorithms are able to find all of them without increasing the complexity.

If the tournament is transitive (i.e., if u wins against v and v wins against
w, then u wins against w), we can trivially identifying the (unique) champion
with Θ(n) arc lookups. Indeed, the champion is the only vertex that wins all its
matches and, thus, we can perform a knock-out tournament where the loser of
any match is immediately eliminated. However, finding the champion of general
tournament graphs requires Ω(n2) arc lookups [7] and, thus, there is nothing
better to do than playing all the matches. This means that the structure of the
underlying tournament graph heavily impacts the complexity of the problem.

In this paper we parametrize the problem with the number � of matches
lost by the champion. We first show that Ω(�n) arc lookups are required, then
we present an optimal deterministic (and non-trivial) algorithm for finding a
champion and achieving this bound without knowing �. This parametrization is
motivated by applications in Information Retrieval and Machine Learning where
we expect that a champion (e.g., the best item in a set) loses only few matches.

Motivations. The identification of the best candidate of a set of items is a cru-
cial task in many Information Retrieval (IR) applications, also known as P@1,
including Web search, conversational AI, machine translation, question answer-
ing, recommender systems, etc. [8,11]. The task can be solved in two different
ways: (i) by piggybacking state-of-the-art Machine Learning (ML) techniques for
ranking, and by selecting the candidate with the highest rank in the list; (ii) by
employing a pairwise ML classifier, which is trained to identify the best among
two candidates, and then by selecting the champion of the resulting tournament.
While the former approach exploits only the information of a single candidate
for computing the ranking, the latter approach is potentially more powerful
because it exploits the information of two candidates while comparing pairs of
items. However, the latter approach is more expensive than the former one due
to the lack of efficient algorithms to reduce the number of time-consuming com-
parisons. This work aims at filling this gap since the P@1 problem can be solved
by finding a champion of the tournament graph induced by the pairwise ML clas-
sifier. As it is possible to design very accurate ML classifiers for several tasks, we
expect a very low number of matches � lost by the best item, thus a quasi-linear
number of arc lookups is required by our algorithm to find it.

2 Related Work

Tournament graphs are a well-known model that has been applied to sev-
eral different areas such as sociology, psychology, statistics, and computer sci-
ence. Examples of applications are round-robin tournaments, paired-comparison
experiments, majority voting, communication networks, etc. [4,9,10,12,13].

For the purpose of this work, we identify two different research lines. The first
one aims at defining different notions of tournament winner, while the second
one aims at efficiently ranking the list of candidates using pairwise approaches.
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Tournament Winner. According to previous works [4,10,12], there is no unique
definition of the notion of a tournament winner. Nevertheless, all of them agree
on defining the winner whenever there is a candidate, called Condorcet win-
ner, which beats all the others. Different definitions of winner requires different
complexities of the algorithms used to identify it.

The easiest cases to consider are the transitive tournament graphs, i.e.,
directed acyclic graphs, where it is trivial to find the Condorcet winner in linear
time by performing a knock-out tournament. Instead, in the general case, the
complexity of finding a winner is usually much higher and strictly depends on the
definition of winner. The winner as defined by Slater [15], called Slater solution,
is the Condorcet winner in a modified tournament graph T ′. T ′ is obtained by
reversing the minimum number of arcs of T that make it a transitive tournament.
However, the computation of the Slater solution is NP-hard. The NP-hardness
derives by reduction to the Feedback Arc Set Problem [5]. A winner as defined
by Banks [3] is the Condorcet winners of a maximal transitive sub-tournament
of T . As there may be several of these sub-tournaments, the Banks solution is
the set of all these winners. The problem of finding just one winner can be com-
puted in Θ(n2) arc lookups, while finding all of them is a NP-hard problem [9].
A third definition of winner is given by Copeland [6], called Copeland solution,
where a winner is the candidate winning the majority of the matches. This is the
definition used in this paper. As we already mentioned, the Copeland solution
requires Ω(n2) arc lookups and there is a trivial algorithm to match it [7].

There are several other notions of winner, and most of them can be computed
in polynomial time. We refer to Hudry [9] for a complete survey on this topic.

Tournament Ranking. Several works deal with the problem of efficiently ranking
vertices according to the structure of the tournament graph, see e.g., [1,2,9,13,14].

The result by Shen et al. [14] provides a ranking based on the definition of
king. A vertex u ∈ V is a king if for each v ∈ V either (1) (u, v) ∈ E, or (2)
∃w ∈ V such that (u,w) ∈ E and (w, v) ∈ E. Equivalently, u is a king if for every
vertex v there is a directed path from u to v of length at most 2 in T . Every
tournament has at least a king and it can be easily computed in linear time.
The ranking algorithm by Jian et al. [14] finds a sorted sequences of vertices
u1, u2, . . . , un such that for every i (1) ui beast ui+1, and (2) ui is a king in the
sub-tournament induced by the items ui+1, ui+2, . . . , un. The authors provide a
O(n3/2) algorithm to compute this sequence.

Ailon et al. [1,2] provide a bound to the error achieved by the Quicksort
algorithm when used to sort vertices of the tournament graph. The error is
defined as the number of mis-ordered pairs of vertices, i.e., u, v ∈ V is such that
u beats v, but v is ranked higher than u. Ailon et al. show that the expected error
is at most two times the best possible error. It is apparent that the proposed
algorithm requires Ω(n log n) arc lookups with high probability.

We observe that the two results above are not suitable in our setting. Indeed,
the definition of king is weaker than the one of Copeland winner, since the latter
implies the former [13]. Moreover, it is easy to show that the algorithm by Ailon
et al. fails in finding a winner w every time one of the Quicksort pivots beats w.
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3 Algorithm

An adversarial argument is used by Gutin et al. [7] to prove that finding a
champion requires Ω

(
n2

)
arc lookups. Therefore, the trivial algorithm that finds

a champion by performing all the possible matches is optimal in general. The
problem is indeed much more interesting if we parameterize with �, the number
of matches lost by the champion. Note that � is unknown to the algorithm.

The goal of this section is to prove the following theorem which states that
Ω(�n) arc lookups are necessary to find a champion and to present an optimal
algorithm requiring exactly that number of lookups.

Theorem 1. Given a tournament graph T with n vertices and with � matches
lost by a champion, then

– finding a champion requires Ω(�n) arc lookups;
– there is an algorithm that finds every champion by requiring Θ(�n) arc lookups

and time. The algorithm requires linear space.

Lower Bound. The lower bound is proved by using a simple adversarial argu-
ment. Assume that there is an algorithm that claims that a vertex u, losing �
matches, is a champion by performing 1

2�(n − 1) arc lookups. There must exist
a node v such that the algorithm has unfolded less than � arcs incident to v. We
thus can make v win more matches than u by setting v’s unfolded matches, then
let the algorithm be incorrect. In other words any correct algorithm, claiming
that a vertex u is a champion with � matches lost, must be able to certificate
its answer exhibiting (1) a list of n − 1 − � matches won by u, and (2) a list of �
matches lost by v, for every vertex v ∈ V \ {u}.

Upper Bound. To understand the difficulty of the problem, let us think about
it in terms of the (unknown) adjacency matrix of the tournament graph. A
reasonable strategy to solve the problem is by applying a row-wise approach: we
process all the vertices, one after the other, and we try to discard each of them,
say v, by finding at least � matches lost by v, i.e., we try to certificate that v
cannot be a champion. Through an adversarial argument, we can see that the
best possible way to process any vertex v in this row-wise approach is to select
random opponents until we are able to discard v (or recognize v as a champion).
We can exploit properties of the global structure of the tournament to prove
that this approach requires Θ (�n log n) arc lookups with high probability. Thus,
this algorithm is randomized and is log n times worse than the lower bound.

We design a simple, deterministic, and optimal algorithm to find the cham-
pion (Algorithm 1). The number � of matches lost by the champion is unknown to
the algorithm. Thus, it performs an exponential search to find the suitable value
of α such that α/2 ≤ � < α (line 2) and tries to solve the problem by assuming
that the champion loses less than α matches. At each iteration, the algorithm
maintains a set A of alive vertices that is initially equal to V . Then, it performs
an elimination tournament among the vertices in A by eliminating a player each
time it loses α matches (line 12) until only 2α vertices remain alive (line 6).
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Algorithm 1.
1: procedure FindChampion(T = (V, E))
2: for (α = 1; true; α = 2α) do
3: A = V
4: S = {(u, u) | u ∈ V }
5: ∀u ∈ V lost[u] = 0 � Initialize the number of lost matches of each vertex
6: while |A| > 2α do
7: choose a pair of vertices u, v in A2 \ S
8: S = S ∪ {(u, v), (v, u)} � Avoid selecting the same pair twice
9: loser = if (u, v) ∈ E then v else u

10: ++ lost[loser]
11: if lost[loser] ≥ α then
12: A = A \ {loser}
13: c, lostc = FindChampionBruteForce(A, E)
14: if lostc < α then return c

The matches are selected arbitrarily avoiding to play the same match multiple
times (line 7). When the elimination tournament ends, a candidate champion
is found via FindChampionBruteForce procedure, which exhaustively finds
the vertex c of A with the maximum out-degree in T . Whenever the candidate
c loses at least α matches (line 14), the value of α is not the correct one and the
champion may have been erroneously eliminated before. Thus, c could be not a
champion and the algorithm continues with the next value of α (line 2).

Correctness. Let us first assume that the value of α is such that α/2 ≤ � < α.
We prove now that, under this assumption, the algorithm correctly identifies
a champion. First, we observe that the algorithm cannot eliminate the cham-
pions as any of them loses less than α matches. Thus, if we prove that the
algorithm terminates, the set A contains all the champions and the FindCham-
pionBruteForce procedure will identify any (potentially, all) of them. Note
that a champion of T may not be a champion of the sub-tournament restricted
to only the vertices in A. That is why FindChampionBruteForce procedure
computes the out-degrees of all vertices in A by looking at the original tour-
nament T . We use the following lemma to prove that eventually the condition
|A| = 2α is met and the algorithm terminates.

Lemma 1. In any tournament T of n vertices there is at least one vertex having
in-degree (n − 1)/2.

Proof. The sum of the in-degrees of all vertices of T is exactly
(
n
2

)
= n(n−1)

2 .
Since there are n vertices, there must be at least one vertex with in-degree n−1

2 .

Thus, each tournament of 2α + 1 vertices, or more, has at least one vertex
losing at least α matches. This means that the algorithm has always the oppor-
tunity to eliminate a vertex from A until there are 2α vertices left. Notice that
the above discussion is valid for any value of α smaller than the target one. Thus,
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any iterations of the exponential search will terminate and it eventually finds a
suitable value of α, i.e., α/2 ≤ � < α, where a champion will be identified.

Complexity. Let us now analyze the complexity of the algorithm. Let us first
consider the cost of an iteration of the exponential search. Observe that each arc
lookup increases one entry of lost by one and that none of these entries is ever
greater than α. Thus, the elimination tournament takes no more than nα arc
lookups. Moreover, the FindChampionBruteForce procedure takes less than
2nα arc lookups since it just unfolds every arc of the remaining 2α alive nodes.
Thus, an iteration of the exponential search takes less than 3nα arc lookups.

We get the complexity of the overall algorithm by summing up over all the
possible values of α, which are all the powers of 2 from 1 up to 2�. Thus, we
have at most 3n

∑�log2(2�)�
i=0 2i = Θ(�n) arc lookups.

Technical Details. We are left with the proof that the Algorithm1 can be imple-
mented in Θ(�n) time and linear space. We do this by exploiting the fact that
Algorithm 1 allows us to choose any arc as soon as its vertices are alive and it has
never looked up before. An efficient implementation is achieved by maintaining
two arrays of n elements each: an array A storing alive vertices, and an array
lost storing the number of matches lost by each vertex. A counter numAlive
stores the number of alive vertices. Our implementation maintains the invariant
that the prefix A[1, numAlive] contains only alive vertices. We use two cursors
p1 and p2 to iterate over the elements in A. At the beginning p1 = 1, p2 = 2
and numAlive = n. Our implementation performs a series of matches involving
vertex A[p1] and all other vertices in A[p1 + 1, numAlive]. Then, it moves p1 to
the next position. After every match between A[p1] and A[p2], we increment lost
of the loser, say vertex v. Whenever lost[v] equals α we eliminate v according to
the following two cases. The first case occurs when v is A[p1]. We swap A[p1] and
A[numAlive], we end the current series of matches, and we start a new one. The
second case occurs when v is A[p2]. Here, we swap A[p2] and A[numAlive], and
we continue the current series of matches. In both cases, we decrease numAlive
by 1 so that we preserve the invariant.

4 Conclusions and Future Work

We addressed the problem of finding champions in tournament graphs by min-
imizing the number of arc lookups. We showed that, given the number � of
matches lost by the champion, Ω(�n) arc lookups are required to find a cham-
pion. Then, we presented an optimal deterministic algorithm that solves the
problem and matches the lower bound without knowing �. As future work, we
plan to experimentally evaluate the proposed algorithm to solve the Information
Retrieval tasks outlined in the Introduction. We also plan to study the impact
of randomization on this problem to design a Monte Carlo algorithm that lowers
the complexity in charge of providing an incorrect output with small probability.
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Abstract. The centroid of a tree is a node that, when removed, breaks
the tree in connected components of size at most half of that of the
original tree. By recursing this procedure on the components, one obtains
the centroid decomposition of the tree, also known as centroid tree. The
centroid tree has logarithmic height and its construction is a powerful
pre-processing step in several tree-processing algorithms. The folklore
recursive algorithm for computing the centroid tree runs in O(n log n)
time. To the best of our knowledge, the only result claiming O(n) time
is unpublished and relies on (dynamic) heavy path decomposition of the
original tree. In this short paper, we describe a new simple and practical
linear-time algorithm for the problem based on the idea of applying the
folklore algorithm to a suitable decomposition of the original tree.

1 Introduction

The centroid decomposition of a tree T (also known as separator decomposi-
tion) is a popular and powerful technique to obtain a tree TC of logarithmic
height. The centroid tree in employed in several applications: cache-oblivious
string B-trees [2,5,6], dynamic farthest point queries [1], balanced decomposi-
tion of simple polygons [9], jumbled pattern matching on trees [7], counting of
square substrings in a tree [11], just to cite a few.

The decomposition is based on a theorem proved by Jordan in 1869 [10]:
Any tree T of n nodes has at least a node, called centroid, whose removal leaves
connected components of size at most n/2.

The centroid decomposition is defined recursively. Given T , we identify a
centroid node u, which is chosen to be the root of the new tree TC . Then, we
remove u from T and recurse on each connected component to get u’s subtrees
in TC . The resulting decomposition is a new tree TC on the same nodes whose
height is O(log n). Tree TC preserves some information about the topology of
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the original tree T . For example, for any pair of nodes u and v, the path from u
to v in T can be decomposed in two subpaths of TC : the path from u to w and
the path from w to v, where w is the lowest common ancestor of u and v in TC .

A folklore algorithm computes the centroid decomposition in Θ(n log n) time
as follows. We first observe that a centroid node of T can be easily identified in
linear time. Indeed, we can arbitrary choose a root in T and visit the tree to
compute the size of each subtree. Then, we start from the root and move to the
largest subtree until we reach a node whose subtrees have size at most n/2. This
node is a centroid of the tree. Thus, it easily follows that the decomposition of
the tree can be computed in Θ(n log n) time.

The first linear time algorithm to compute the centroid decomposition of
a tree is due to Giubas et al. [9] but it assumes that T is a binary tree. The
first linear time algorithm for arbitrary trees is by Brodal et al. [3]. Actually
paper [3] claims the result which is described in its unpublished extension [4].
This algorithm is based on the heavy path decomposition [12] of T which is kept
updated after subtrees removal. Let us say a node u is heavy if u is the children of
its parent with the largest subtree (ties are broken arbitrarily). The heavy path
decomposition is the set of paths, called heavy paths, that connect heavy nodes.
Brodal et al. [3] show that the use of this decomposition leads to an alternative
description of the folklore algorithm. First the algorithm computes the heavy
path decomposition of T , and then searches for the centroid node which must
be a node in the heavy path that contains the root. The algorithm can now recur
on each connected component. The main inefficiency of this algorithm is that it
recomputes the sizes of all subtrees and the heavy paths for each recursive call.
Brodal et al. [3] improves the algorithm by showing how to update the already
computed heavy paths in O(log2 k) time, where k is the number of nodes of the
component processed by the current recursive call. This requires to keep a binary
search tree for each heavy path supporting split, join and successor operations,
and a priority queue for each node of T .

In this short paper, we describe a new simple and practical linear-time algo-
rithm for the problem based on the idea of applying the folklore algorithm to a
suitable (static) decomposition of the original tree.

2 The Algorithm

The overall idea of our algorithm is to break the input tree in Θ(n/ log n) subtrees
of size O(log n) and replace each group with a node to form a new meta-tree. The
core property that we exploit is that a centroid can be identified by navigating
this meta-tree of size Θ(n/ log n), plus O(log n) nodes of the original tree. The
strategy is then applied recursively on the connected components obtained by
removing the centroid. After some level of recursion, we obtain components that
are small enough so that their centroid decomposition can be pre-computed in
a small table and thus retrieved in linear time.

Tree Cover. Let T be a rooted tree of size n. The notation π(x), where x is a
node of T , denotes the parent of x (or NULL for the root). When two nodes u and
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v are connected, we assume that both the edges (u, v) and (v, u) are present (this
simplifies the description). We use the tree covering procedure described in [8,
Sec. 2.1] to decompose T in Θ(n/ log n) sub-trees containing Θ(log n) nodes each
(except, possibly, the root). Two subtrees are either disjoint or intersect only at
their common root. We make all subtrees disjoint as follows, with a procedure
that also colors nodes in red or black. At the beginning, all nodes of T are colored
black. When k > 1 subtrees share a common root x, we (i) delete x, (ii) create
k new red nodes x1, . . . , xk and make each of them be the root of each of the k
subtrees, and (iii) create a new black node x′ with parent π(x′) = π(x) and let
x1, . . . , xk be its children. The new node x′ belongs to a new subtree containing
only x′. We denote as T ′ the tree obtained from T by performing these splitting
and coloring operations, and keep a map β mapping black nodes of T ′ to the
corresponding nodes of T (note that there is a bijection between black nodes of
T ′ and nodes of T ). Let π′(x) denote the parent of node x in T ′. We extend β to
red nodes x as β(x) = β(π′(x)) (i.e., we take the black parent of x and apply β).
Figures 1 and 2 illustrate our tree covering procedure. In the example, we have
β(0̄) = 0, . . . , β(7̄) = 7, β(8̄′) = β(8̄1) = β(8̄2) = 8, β(9̄) = 9, . . . , β(19) = 19.

From now on, when we say subtree of T ′ we always refer to the subtrees
obtained by our modified tree covering procedure. Note that T ′ is divided in
Θ(n/ log n) subtrees, each containing O(log n) nodes (some of these subtrees
may contain just one node, read above). We denote as T ′′ the tree whose nodes
are the subtrees (now disjoint) of T ′. Note that T ′′ has Θ(n/ log n) nodes as well.
We store explicitly T ′′ and keep a map α mapping nodes of T ′′ to the roots of the
corresponding subtrees in T ′. Figure 3 illustrates the tree T ′′ obtained from the
previous example (in the next paragraph we describe the meaning of the weights
associated with nodes and edges). In the example, we have α(A) = 0̄, α(B) =
3̄, α(C) = 8̄′, α(D) = 8̄1, α(E) = 13, and α(F ) = 8̄2.

For each node u′′ of T ′′, we compute and store the number δ(u′′) of black
nodes contained in the subtree of T ′ rooted in α(u′′). We call δ(u′′) the weight
of u′′. After that, with a visit of T ′′ we cumulate those weights and extend them
to edges as follows. Let (u′′, v′′) be an edge of T ′′. With δ(u′′, v′′) we denote the
sum of all weights δ(w′′) in the connected component rooted in v′′ obtained after
removing u′′ from T ′′. Said otherwise, δ(u′′, v′′) is the sum of the weights δ(w′′)
for all nodes w′′ reached traversing (u′′, v′′) only once (and without counting
δ(u′′)). We store δ(u′′, v′′) for each edge (u′′, v′′) of T ′′ (remember also that,
for each edge (u′′, v′′), also the reversed edge (v′′, u′′) exists therefore δ(v′′, u′′)
is also defined). Intuitively, δ(u′′, v′′) corresponds to the number of black nodes
in one of the connected components (the one containing node α(v′′)) obtained
after removing the subtree rooted in α(u′′) from T ′. In turn, this is exactly the
number of nodes in the corresponding connected component of T , and will be
used to quickly compute a centroid. Figure 3 illustrates our construction.

Finding a Centroid. We now show that a centroid of T can be found in
O(n/ log n) time by visiting T ′′ and a small (logarithmic) number of nodes of
T ′. We prove the following lemma:

Lemma 1. The following two properties hold:
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Fig. 1. Input tree T , covered using the
procedure described in [8, Sec. 2.1] with
parameter M = 4.

Fig. 2. Modified tree T ′. We overline
node names to distinguish them from
those in T . Note that sub-trees are
disjoint.

Fig. 3. Tree T ′′, obtained by collapsing each sub-tree of T ′ into a node. Between square
brackets, we show each node’s weight (For example, δ(B) = 5). We also show weights
on the edges: for example, δ(C, F ) = 3 and δ(F, C) = 17.

1. If c is a centroid of T , then there exist a subtree R = (VR, ER) of T ′ and a
node x′ ∈ VR such that β(x′) = c and δ(x′′, y′′) ≤ n/2 for all (x′′, y′′) in T ′′

such that α(x′′) is the root of R.
2. If u′′ is a node of T ′′ such that δ(u′′, v′′) ≤ n/2 for all (u′′, v′′) in T ′′, then

the subtree R rooted in α(u′′) contains a node x′ such that β(x′) is a centroid
of T .

Proof. Consider the function δ extended to edges of T ′ (we call it δ′ to distin-
guish it from δ): δ′(u′, v′) is the number of black nodes in the tree containing
v′ obtained after removing node u′. Similarly, we will talk about the weights of
edges of T (which are defined analogously). We start by proving claim (1), and
consider two main cases.
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(1.a) The centroid c is mapped to a black node c′ of T ′ (i.e., β(c′) = c) having
only black children. Since c is a centroid and c is mapped to a node c′ with black
children, also its edges are preserved and thus we have that δ′(c′, v′) ≤ n/2 for
all edges leaving c′ (see, in contrast, case 1.b: in that case, edges leaving c are
distributed among red children of c′ and this property no longer holds). Let
(c′, v′) be such an edge. Clearly, also δ′(v′, w′) ≤ n/2 holds for all edges leaving
v′ such that w′ �= c′: this follows from the fact that δ′(c′, v′) ≤ n/2 implies that
the tree containing v′ obtained after removing c′ contains at most n/2 black
nodes. Let R = (VR, ER) be the subtree of T ′ containing c′. Iterating the above
reasoning, we obtain that all edges (u′, v′) leaving R (i.e., such that u′ ∈ VR
and v′ /∈ VR) satisfy δ′(u′, v′) ≤ n/2. Let z′ be the root of R, and let x′′ be
the node of T ′′ such that α(x′′) = z′. Then, by definition of δ we have that
δ(x′′, y′′) ≤ n/2 for all (x′′, y′′) in T ′′, since δ′ and δ coincide on edges leaving R
and x′′, respectively, and our claim holds for x′ = c′.

(1.b) The centroid c is mapped to a black node c′ of T ′ (i.e., c′ is the only
black node with β(c′) = c) with only red children. Let c′

1, . . . , c
′
k be the red

children of c′. By construction of our tree decomposition, the edges leaving c
have been partitioned. Each class of the partition contains either just the original
edge connecting c with its parent in T , or at least one edge connecting c with
its children. The former class corresponds to the edge in T ′ connecting c′ with
its parent. Classes of the latter kind correspond to edges in T ′ connecting c′

with red children. For example, in Figs. 1 and 2 the edges leaving node 8 have
been partitioned in {(8, 0)}, {(8, 9), (8, 11)}, and {(8, 17)}. The first class {(8, 0)}
contains just the edge connecting 8 with its parent, and becomes edge (8̄′, 0̄) in
T ′. The latter two classes become edges (8̄′, 8̄1) and (8̄′, 8̄2) in T ′. Now, the
fact that we collapse edges means that δ′(c′, v′) ≤ n/2 does not necessarily hold
when v′ is a red node (it surely holds only if v′ is the black parent of c′), since
δ′(c′, v′) corresponds to a sum of the weights of multiple edges. For example,
in Fig. 2, δ′(8̄′, 8̄1) = 8 corresponds to the sum of the weights δ′(8̄1, 9̄) = 2 and
δ′(8̄1, 1̄1) = 6. While the weights of the latter two are surely at most n/2 (by
definition of centroid), their sum could exceed n/2 (this is not the case of Fig. 2,
where n/2 = 10). We consider two further sub-cases. (1.b.1) δ′(c′, c′

k) ≤ n/2 for
all edges leaving c′ (this is the case of Fig. 2). Then, the same argument used
in case (1.a) applies (it is actually simpler, since the subtree containing c′ is
a singleton subtree), and our claim holds with x′ = c′ = α(x′′) and R being
the singleton subtree containing c′. (1.b.2) δ′(c′, c′

k) > n/2 for at least one edge
(c′, c′

k) leaving c′. Then, our claim holds for x′ = c′
k = α(x′′) and R being the

subtree containing c′
k: since δ′(c′, c′

k) > n/2, then δ′(c′
k, c

′) ≤ n/2. Moreover, the
other edges (c′

k, w
′) leaving c′

k correspond to edges of the original tree T (i.e.,
not to group of edges), therefore δ′(c′

k, w
′) ≤ n/2. We can apply the argument

used in case (1.a) and conclude that δ(x′′, y′′) ≤ n/2 for all edges leaving x′′.
We now prove claim (2). Let u′′ be a node of T ′′ such that δ(u′′, v′′) ≤ n/2

for all (u′′, v′′) in T ′′. Let moreover R be the subtree rooted in α(u′′) = y′. Then,
δ′(y′, w′) ≤ n/2, where w′ is the parent of y′ in T ′. We have two cases. (2.a)
δ′(y′, w′) ≤ n/2 for all children w′ of y′ in T ′. Then, clearly β(y′) is a centroid
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of T : if y′ is a red node, then the weights of edges leaving β(y′) are at most
n/2. If y′ is a black node then the weights of edges leaving β(y′) correspond
precisely to those leaving y′. (2.b) δ′(y′, w′) > n/2 for some child w′ of y′.
Then, δ′(w′, y′) ≤ n/2 (i.e., the edge leading to the parent of w′ weights at
most n/2) and we can recurse the above reasoning to the children of w′. Clearly,
sooner or later we will find a node q′ in R such that δ′(q′, w′) ≤ n/2 for all
edges leaving q′ (including the edge leading to its parent, for which the property
always holds true if we have moved to q′). Otherwise, it is easy to see that
we obtain a contradiction. Suppose we reach a node q′ of R such that some of
its children lie outside R. Denote q′

1, . . . , q
′
k the children of q′ leaving R. Then,

clearly δ′(q′, q′
i) ≤ n/2 for all i = 1, . . . , k must hold since we are assuming that

δ(u′′, v′′) ≤ n/2 for all edges (u′′, v′′) leaving u′′ in T ′′. This shows that we can
recurse only on children internal to R. However, at some point we will reach a
node x′ whose children (all of them) lie outside R. Then, clearly all edges leaving
x′ must weight at most n/2. ��

By Lemma 1, this algorithm finds a centroid of T in O(n/ log n+log n) time:
(i) visit T ′′ and find a node u′′ such that δ(u′′, v′′) ≤ n/2 for all edges (u′′, v′′)
leaving u′′. Let R be the subtree of T ′ associated with u′′, i.e., the subtree rooted
in α(u′′). (ii) Visit R and find a node u′ such that, if removed, it splits T ′ into
connected components having at most n/2 black nodes each. (iii) Return β(u′).

Step (i) takes O(n/ log n) time. Step (ii) can be implemented with a visit
of R. Note that the weights we store on T ′′’s edges are precisely the sizes of
the connected components of T obtained after removing nodes u′ in R whenever
(u′, v′) is an edge that leaves R. Since we can afford visiting the whole R, those
weights can be easily used to compute the sizes of the subtrees of T obtained
after removing any node u′ in R. Steps (i), (ii) run in O(n/ log n + log n) time.

In the above example, we have n = 20. The node of T ′′ whose outgoing edges
weight at most n/2 = 10 is C (its outgoing edges weight 8, 8, and 3). In this
particular case, C corresponds to a unary subtree therefore step (ii) finds node
8̄′, and step (iii) returns β(8̄′) = 8.

Recursion. Note that Lemma 1 does not make any assumption on the subtree-
decomposition of T ′. It follows that the above algorithm for finding a centroid
can be iterated as follows. After finding a node u′ of T ′ such that β(u′) is a
centroid of T , we remove from T ′ all nodes v′ such that β(v′) = β(u′) (i.e., all
nodes that map to the centroid). We break every subtree R of T ′ containing
one of the removed nodes into one singleton subtree (i.e., a subtree consisting
of just one node) per remaining node of R (i.e., one subtree for each node that
was not removed). The process of removing nodes breaks the original tree T ′

into q trees T ′
1, . . . ,T ′

q, for some q ≥ 2, each of which contains at most n/2 black
nodes. Crucially, note that each T ′

i with ni nodes is partitioned into at most
O(ni/ log n)+O(log n) subtrees: those of the original tree T ′ that have not been
split into singleton subtrees, and at most O(log n) singleton subtrees. Similarly,
we break T ′′ into a forest. Some of the trees belonging to this forest will contain
new nodes corresponding to newly-created singleton subtrees in T ′. Each such
new node u′′ gets a weight δ(u′′) = 1. The weight of the other nodes does not
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change, since they correspond to subtrees of T ′ that have not been modified. At
this point, we can re-compute the weights δ(u′′, v′′) on the edges of the forest
in overall O(n/ log n + log n) time by using the stored weights δ(u′′) for each
node u′′ of the forest. Figure 4 shows how the trees of Figs. 2 and 3 change after
removing all the nodes u′ such that β(u′) = 8.

 

Fig. 4. The figure shows how T ′ changes after returning the centroid β(8̄′) = 8 and
removing nodes 8̄′, 8̄1, and 8̄2. Each subtree of T ′ that contains a removed node (in
particular, the subtrees D,F ) has been split in singleton subtrees: D has been split in
D1, . . . , D4, and F has been split in F1, . . . , F3. Note that node C disappears since it
corresponds to a subtree of T ′ containing only a removed node (8̄′). Tree T ′′ changes
similarly: it is broken into four trees whose nodes are the subtrees shown in the figure.

Lemma 1 can then be applied again recursively on T ′
1, . . . ,T ′

q. It is easy
to see that each connected component at recursion depth j has at most n/2j

black nodes and is divided into at most n/(log n · 2j) + O(j · log n) subtrees
(note that each recursive iteration adds at most O(log n) singleton subtrees to
each component). The complexity of finding a centroid in such a tree using
Lemma 1 is O(n/(log n · 2j) + j · log n + log n) (i.e., number of subtrees plus
size of a subtree). We stop recursion as soon as we obtain components of size
at most log3 n, i.e., at recursive depth j = log(n/ log3 n). In this way, each
component is a tree having at most log3 n black nodes and divided into at most
n/(log n · 2j) + O(j · log n) = O(log2 n) subtrees. Note that the base case of
log3 n for the tree size is the minimum (asymptotically) guaranteeing that the
two components contributing to the number of subtrees (i.e., n/(log n · 2j) and
j · log n) sum up to O(n′/ log n), n′ being the subtree’s size. The total number of
nodes contained in the trees at each recursion depth j is O(n) and, by the above
observation, applying Lemma 1 to one tree of size n′ at any recursion depth
takes time O(n′/ log n). Overall, this adds up to O(n/ log n) time per recursion
level. Since the recursion depth is O(log n), the overall procedure terminates in
O(n) time. We obtain the following lemma.
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Lemma 2. In O(n) time we can reduce the centroid decomposition problem to
the same problem on a certain number of trees with at most log3 n nodes each,
whose union contains at most n nodes.

We note that, in a practical implementation of the above algorithm, it is
sufficient to apply the folklore algorithm to the trees of Lemma 2 (which are
small enough to fit in cache). From the theoretical perspective, however, this
solution runs in O(n log log n) time. We now show how to reach linear time
(though with a less practical solution).

Intuitively, we perform one more round of our recursive strategy on the trees
of Lemma 2, obtaining trees of size z = O(log3 log n). Finally, we use tabulation:
there are o(n/ log n) possible trees with z nodes, so we can pre-compute their
centroid decomposition in O(n) time with the folklore algorithm. The following
theorem states our final result.

Theorem 1. The centroid decomposition of a tree with n nodes can be computed
in O(n) time and O(n) space.

Proof. By Lemma 2, we obtain trees of size at most log3 n. Our idea is to apply
one more round of our recursive strategy to those trees. As a result, in O(n)
additional time we reduce the problem to that of computing the centroid decom-
position of a certain number of trees of size at most (log log3 n)3 = 27 log3 log n
whose union contains at most n nodes. The trees are now small enough to use
tabulation. The number of distinct (rooted) trees with at most z = 27 log3 log n

nodes is upper-bounded by N = 22z = 254 log3 logn. We compute the centroid
decomposition of each of them in total O(N · z log z) = o(n) time using the
folklore algorithm. We store the centroid tree of each of these trees in a table
U [k][p] indexed by the number k of nodes of the tree and a unique identifier p
representing the rank of the tree among all trees with k nodes. This identifier can
be, for example, the 2k-bits integer corresponding to the balanced parentheses
representation of the tree, which can be computed in linear time with a DFS
visit. Table U takes O(N · z2) words of space, which is again o(n).

We use the table as follows. Given an unrooted tree T ∗ with k′ ≤ 27 log3 log n
nodes, we root it arbitrarily1 (storing the permutation associating nodes of the
rooted and unrooted versions of T ∗), we compute its DFS-identifier p′, and access
U [k′][p′]. This entry contains the centroid tree decomposition of the (rooted
version) of T ∗. The process takes O(k′) (linear) time, therefore by applying the
procedure to all those small trees we complete the centroid decomposition of our
input tree T in additional O(n) time. ��
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Abstract. We present COBS, a COmpact Bit-sliced Signature index,
which is a cross-over between an inverted index and Bloom filters. Our
target application is to index k-mers of DNA samples or q-grams from
text documents and process approximate pattern matching queries on
the corpus with a user-chosen coverage threshold. Query results may
contain a number of false positives which decreases exponentially with
the query length. We compare COBS to seven other index software pack-
ages on 100 000 microbial DNA samples. COBS’ compact but simple data
structure outperforms the other indexes in construction time and query
performance with Mantis by Pandey et al. in second place. However,
unlike Mantis and other previous work, COBS does not need the com-
plete index in RAM and is thus designed to scale to larger document sets.

1 Introduction

In this paper we present an approximate q-gram index named COBS [13],
short for COmpact Bit-sliced Signature index, which is a cross-over between
an inverted index and Bloom filters. The current focus of COBS is to index
DNA and protein k-mers from sequencing experiments, but the data structure
can also be used for indexing q-grams from other domains such as English text.

In living cells, DNA exists as long contiguous molecules, typically textu-
ally encoded as strings of A, C, G, and T. Experimental methods for “reading”
DNA have been developing rapidly; there are various approaches, but all involve
breaking the DNA and “reading” (typically called “sequencing”) those frag-
ments (these short strings are typically called “reads”). Read lengths started
out moderately long (500–1000 characters) in the late 1990s, dropped down to
30 characters in 2008 with the advent of massively parallel technologies, and in
the recent past, bleeding edge technologies have enabled reading of fragments as
long as 1 million characters, albeit with a higher error rate.

The output of sequencing experiments are stored both in raw format (text
files of the read strings) and “assembled format” – semi-heuristic best approxima-
tions to the underlying genome, also in text format, but of very variable quality,
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in particular when based on short read data. Unambiguous reconstruction of
the original string from the substrings is mathematically impossible unless the
fragments are longer than the longest repeated substring. Another complication
is that a great deal of data is generated by sequencing unknown mixtures of dif-
ferent genomes (e.g. mixtures of bacteria from within the human gut, or samples
from humans infected by three different types of malaria parasite), making it
very hard to reconstruct the underlying genomes.

As sequencing technology has advanced, it has also become much cheaper and
more widespread, and its output has been stored in publicly available archives,
e.g. the European Nucleotide Archive (ENA) and the Sequence Read Archive
(SRA) which maintain mirrors of all the data. These archives now double in
size every 18 months, and it is progressively more important to be able to search
within the stored datasets, to find important genes or mutations, or combinations
of mutations which are informative of function or ancestry. All of these search
queries can be expressed in terms of exact or approximate matching of strings. In
2018, the ENA encompassed 1.5 · 109 microbial sequences and 8 · 1015 base pairs
(i.e. characters) of read data [17], while the European Bioinformatics Institute
reached 160 PB of storage capacity [10].

Despite the obvious similarities to standard document retrieval problems, the
properties of DNA k-mer data are very different from traditional text corpora.
Google’s index is reported to have in the order of 1013 documents containing
108 unique terms [6], whereas the small benchmark set of 100 000 microbial
sequences used in our experiments already contain 2.2 · 1010 distinct 31-mers, of
which 1.8 ·1010 occur only once. The frequency of terms in a natural language is
power-law distributed, with underlying terms generated over hundreds of years,
resulting in just a few new terms per document. Microbial genomes however
encode many billions of years of evolution; each new genome generates thousands
of novel k-mers. There are also two other aspects whereby searching biological
data differs from standard text retrieval. The first is that the index must support
approximate queries allowing detection of closely related DNA to the query.
Approximate pattern matching however is a notoriously difficult subject for text
indices [22,27]. The second is that users often want all hits, not just the top few
as is typical in web search.

For COBS we chose the robust q-gram indexing approach [36] and combined
it with Bloom filters to reduce the term space size. This can be considered a vari-
ant of signature files, which have a long history in information retrieval [12] but
were pushed to the sidelines for text search by inverted indexes [41]. Recently,
they have been reconsidered as acceleration filters for large text search cor-
pora [15] by engineering them to adapt to the collection’s characteristics. With
COBS we venture to combine signature files with one-sided errors introduced by
Bloom filters and inverted files to design an ultra fast and scalable q-gram index
which supports approximate queries delivering a small reasonable number of
expected false positives. Our contribution of making the signature files compact
first enables the index to be applied to corpora with highly varying document
sizes, such as microbial DNA samples.
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After reviewing related work in the following subsection, we present the new
COBS index design in Sect. 2. In Sect. 3 we then report on our experimental
evaluation of COBS and seven other k-mer indexing software packages.

1.1 Related Work

Considering q-grams or k-mers of a sequence are a staple in bioinformatics [8].
The earliest use of Bloom filters as an index for a collection of independent

documents we could find is called Bloofi by Crainiceanu and Lemire [11]. They
propose to use a Bloom filter for each document and to arrange them either in
a B-tree or as a Flat-Bloofi. The latter is similar to BIGSI and COBS without
compaction.

The currently most cited line of work on DNA k-mer indices for approxi-
mate search are the Sequence Bloom Trees (SBTs) first proposed by Solomon
and Kingsford [32]. In an SBT the k-mers of each document are indexed into
individual Bloom filters, which are then arranged as the leaves of a binary tree.
The inner nodes of the binary tree are union Bloom filters of their descendants.
A query can then breadth-first traverse the tree, pruning search paths which no
longer sufficiently cover a given threshold Θ of the query k-mers.

In the original SBT [32] a simple greedy clustering method is used, the bit
union is stored in each inner node, and all nodes are RRR compressed [31] using
SDSL [14]. The first improvement, the Split Sequence Bloom Tree (SSBT) [33],
splits the inner nodes into two Bloom filters: a similarity filter and a remainder
filter, where the first contains all bits in both child filters and the second those set
in either child minus the similarity filter. This representation allows descendant
nodes to omit storing the bits in the similarity filter explicitly, hence reducing
space requirements while retaining the same information.

Simultaneously, Sun, Harris, Chikhi, and Medvedev proposed the AllSome
Sequence Bloom Tree (AllSome-SBT) [34], which splits each inner node into
an all and a some subfilter. The all filter contains bits in all leaves below the
node, excluding those already set in the parent node, and the some filter all
bits in some leaves but not all. Again, this representation allows exclusion of
bits already known from the parent node’s filters, and thus reducing space and
enabling better compression. Furthermore, the AllSome-SBT also improves on
the clustering methods by employing an agglomerative hierarchical technique
and by constructing batch Bloom filters for large query sets.

The currently smallest SBT variant is called HowDe Sequence Bloom Tree
(HowDe-SBT) by Harris and Medvedev [16]. It decomposes the Bloom filters in
each inner node into two bit vectors: the det vector signals if a particular bit is
determined at this inner node, meaning that it is equal in all descendant leaves,
and the how vector signals if it is determined as zero or one. All determined
bits can be omitted from any children. These two bit vectors are exactly the
information needed to perform an efficient breadth-first search down the tree.
Furthermore, the authors introduce a culling process to remove sparse inner
nodes which don’t reveal much information and thus speed up queries.
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A completely different approach to indexing k-mers is taken by Mantis from
Pandey et al. [28]. In Mantis, a counting quotient filter (CQF) [29] is used to
construct a mapping from k-mers to color classes, wherein k-mers with iden-
tical occurrence vectors for all documents are mapped to the same color class.
Incidence of color classes to documents can then be represented as a matrix, in
which columns are associated with documents and each row corresponds to a
color class. Hence, bits set in the rows signal occurrence of any k-mer mapping
to the color in the corresponding document list. Mantis then compresses the bit
vectors in the color matrix using RRR or with a spanning tree based approach.
The k-mer mapping is built from CQFs constructed by Squeakr [30], a k-mer
counting tool. Mantis differs from the other k-mer indexes referenced in this
paper by being able to deliver exact approximate matching results without false
positives.

SeqOthello [39] is another k-mer index software package. It contains an
“ensemble” of encoding techniques for compressing the occurrence maps of
k-mers in the document set. Occurrence maps are then grouped depending on
their density and encoding into disjoint buckets. To locate the correct occurrence
map for a k-mer, a hierarchy of Othellos is built inside each bucket and over all
bucket Othellos. An Othello [38] is a minimum perfect hash function mapping,
which is fast and scalable but can introduce false positive results due to mapping
of alien k-mers to random results.

BIGSI (BItsliced Genomic Signature Index) by Bradley et al. [5] is the direct
ancestor of COBS and also a combination of Bloom filters and inverted indexes.
BIGSI however is a prototype programmed in Python and uses a key-value
database such as BerkeleyDB or RocksDB as storage back-end. It also does
not contain the compaction feature introduced in COBS.

Related to k-mer indexing are colored de Bruijn graph representation data
structures, which often contain an exact k-mer index but do not support approx-
imate k-mer pattern searches. The original implementation, Cortex [20,21],
stored k-mers in a hash table, along with booleans for the four possible for-
ward and backward edges in a single byte. This was then followed by McCortex
[35], which added a second data structure to encode paths in the graph present
in the original reads. By contrast, VARI [26], Rainbowfish [1], and pufferfish [2]
explore use of succinct data structures, the Burrows-Wheeler transform, and
minimal perfect hash functions to save space and possibly even accelerate oper-
ations. The Bloom Filter Trie by Holley et al. [19] is another colored de Bruijn
graph representation based on the burst trie [18], wherein lookups for suffixes at
compressed inner nodes are accelerated with Bloom filters.

2 A Compact Bit-Sliced Signature Index

In this section we present the index structure used in COBS. We first generally
review Bloom filters as a q-gram index in Subsect. 2.1, then turn to COBS’ more
compact bit-sliced representation in Subsect. 2.2, and discuss implementation
details and algorithm engineering aspects in Subsect. 2.3.
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2.1 Approximate Matching with Bloom Filters of Signatures

Given are an ordered set of documents D = [d0, . . . , d|D|−1], where each doc-
ument d is composed of a set of strings {t0, . . . , t|d|−1}. The number of items
in a set or array is denoted with | · |. Each string t is a zero-based array of |t|
characters from a finite ordered alphabet Σ. In the context of indexing DNA, the
alphabet is usually {A, C, G, T}, the documents are experiment samples, and the
strings in each document can be reads or assembled genome sequences. When
indexing web sites, the alphabet may be the ASCII characters or English words,
the documents could be web pages, and the substrings may be words, sentences,
or paragraphs.

Fig. 1. Theoretical false positive rate of
Bloom filters given fill and number of hash
functions.

Fig. 2. Access pattern of the classical bit-
sliced index.

To facilitate approximate pattern matching we consider q-grams of the strings
[36], commonly called k-mers for DNA. For each string t with |t| ≥ q there are
|t| − q + 1 consecutive substrings of length q. For a document d, we denote
with Gq(d) the union of all q-grams in the strings in d. Due to similarities with
full-text indexing we also refer to the q-grams in a document as terms.

A COBS index is composed of |D| Bloom filters [4], each representing an
approximate membership data structure with one-sided error. To construct a
Bloom filter for a document d we assume k pairwise independent hash functions
h0, . . . , hk−1 with range [0, w) and set the k bits hi(s) in an array f of w bits for
each q-gram s ∈ Gq(d). Testing for membership of a q-gram s is performed by
checking if all k cells hi(s) are set, which can lead to false positives but never
false negatives.

The entire document collection is thus represented by |D| bit arrays
[f0, . . . , f|D|−1], each a Bloom filter with possibly different parameters. From
previous work, the false positive rate p of a Bloom filter of size w with k hash
functions and v inserted elements is known to be at most (1 − (1 − 1

w )kv)k ≤
(1−e−kv/w)k. Given a desired false positive rate p and number of elements v, one
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can calculate a partial derivative of the last bound to determine good approxi-
mate parameters k = w

v ln 2 and w = − v ln p
(ln 2)2 [7,24].

To perform approximate matching for a pattern P , we follow previous work
[36] and determine the q-gram distance of P to all documents in the collection
D by testing each of the query’s q-grams Gq(P ) on all documents. In COBS
we present this positively as the q-gram score of the query for each document.
The score is used to rank and return all documents containing at least a given
percentage K of the |Gq(P )| terms in the query.

As Solomon and Kingsford already noticed for SBTs, in the case of approxi-
mate pattern search on Bloom filters, we are not interested in the false positive
rate of a single Bloom filter lookup. Instead we are concerned with the false
positive rate of a query P . More precisely, given � = |Gq(P )| q-grams with the
probability that more than K� terms are false positives in the same filter.

Theorem 1 (False Positive Rate of a Query, Theorem 2 in [32]). Let
P be a query pattern containing � = |Gq(P )| distinct terms. If we consider the
terms as being independent, the probability that more than �K�� false-positive
terms occur in a filter f with false positive rate p is 1 − ∑�K��

i=0

(
�
i

)
pi(1 − p)�−i.

This theorem is derived by considering lookups of terms as independent Bernoulli
trials and summing over the probability of zero to �K�� false positives among the
� trials, which yields a binomial distribution. Given K ≥ p, Solomon and Kings-
ford also apply a Chernoff bound and show that the false positive probability
for a query to be detected in a document is ≤ exp(−�(K − p)2/(2(1 − p))).

These repeated trials into the Bloom filter allow us to push the false pos-
itive rate p up higher than commonly used. Figure 1 shows the false positive
rate (1 − e−kv/w)k of Bloom filters depending on its fill v

w and the number of
hash functions k. Traditional uses of Bloom filters for approximate membership
queries consider an error rate of 0.01 or less and multiple hash functions as desir-
able. Due to the inverse exponential relationship of a query’s false positive rate
with its length, coupled with the fact that more hash functions cost more cache
faults or I/Os, the minimum k = 1 and a high false positive rate around 0.3 are
desirable for our q-gram index application.

For example, if we consider a query of length 100 containing � = 70 distinct
31-grams, a false positive rate of p = 0.3, and threshold K = 0.5, then Theorem
1 yields a false positive rate of about 0.000143. Which means there will be about
143 false positive results in one million documents on average.

2.2 Bit-Slicing and Compaction

Provided all Bloom filters are of the same size w, one can store them as a w×|D|
bit matrix such that a row contains all bit cells at one index in the |D| filters (see
left side of Fig. 3). This is also called a “bit-sliced” layout [37] and was chosen for
BIGSI and COBS to reduce the number of random accesses needed to evaluate
a query. Each row of a term can be scanned sequentially, as shown in Fig. 2.
This is particularly important if the index is read from external memory, where
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Fig. 3. Architecture of the bit-sliced signature index and query processing steps.

scanning is much more efficient than random accesses. The approach however
requires all Bloom filters to use the same hash functions and be the same size.

Figure 3 also illustrates how a query P is performed using the bit-sliced Bloom
filter matrix. The q-grams of the query are hashed to determine the correspond-
ing rows. These k|Gq(P )| rows are then scanned and an AND join of k rows
is performed to determine which q-grams occur in which document. This yields
an indicator bit vector ordered by document number. All indicator vectors are
then added together to calculate the score for each document. Only those docu-
ments reaching the query threshold K|Gq(P )| are then reported as approximate
matches. Due to the one-sided error of the Bloom filters, only more documents
may be reported due to hash collisions; false negatives, i.e. missed hits, cannot
occur.

One can also view the Bloom filter bit matrix as an inverted index: each
row simply lists the document numbers containing the corresponding q-gram as
indexes in a bit vector. Unlike a traditional inverted index however, multiple
q-gram terms are superimposed in one row. This leads to false positive matches.
In theory, one could apply all the methods developed by the information retrieval
community [40] to these bit vectors or posting lists.

The current version of a bit-sliced index however relies on all documents
and resulting Bloom filters having the same size. But larger documents result
in denser bit vectors and smaller documents in sparser, as the number of bits
set depends on the number of q-gram terms in the document. Depending on the
dataset, this creates vastly different false positive rates in the bit matrix. Hence,
we propose to adapt the size of each Bloom filter bit array to the document it
indexes and aim to keep the false positive rate constant. We call this a compact
bit-sliced signature index (the CO in COBS).

In theory one could adapt the Bloom filter size and hash function for each doc-
ument. In practice we want to store bits of rows as blocks of size Θ(B) in exter-
nal memory, thus keep the parameters constant for B consecutive documents.
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Furthermore, instead of calculating a new hash function for each filter, we pro-
pose to use only one function with a larger output range and then use a modulo
operation to map it down to each individual filter’s size. Both practical optimiza-
tions only incur a small deviation from the optimal index size and false positive
rates.

Figure 4 shows in light blue the desired Bloom filter size for the 100 000
microbial documents used in our experiments ordered by size and with false
positive rate 0.3 and one hash function. The dark blue staircase function above
the upward sloping curve shows batches of B = 8192 documents encoded with
the maximum Bloom filter size of that block. The visible dark blue area is the
minor overhead for encoding documents block-wise. If one uses only one Bloom
filter size (the classic approach), then the index size would be the entire filled
orange area, which extends upward to ensure the desired false positive rate for
the largest document.

Fig. 4. Compact index composed of small
sub-indexes containing B documents.

Fig. 5. Access pattern of our compact bit-
sliced index.

Due to the variance in size of microbial and other real-world documents,
the compact representation in COBS is essential. In designing COBS, we also
considered that today’s SSD and NVMe storage technology now has orders of
magnitude faster random access speeds [3] compared to rotational disks. Thus
with these new storage devices, the batched random access for many smaller
blocks of size B, as used in the compact layout and illustrated in Fig. 5, first
becomes viable.

2.3 Implementation and Engineering

We implemented COBS as a command line search engine tool using C++ and
plan to provide a Python interface to the underlying algorithm library. The
tool is open source and available from https://panthema.net/cobs/. It can read
DNA FASTA files, multi-document protein FASTA files, McCortex, or text files
as documents and extract q-grams from them. Depending on the format, the
input data is broken into different q-gram sets: DNA reads are for example

https://panthema.net/cobs/
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hashed independently, while English text is processed continuously. We used
xxHash [9] for hashing the q-gram strings. The q-grams or k-mers can optionally
be canonicalized if their reverse complement are considered equivalent.

Classic and Compact. The COBS program can currently construct two index
variants: classic (ClaBS) and compact (COBS). In the classic index all docu-
ments are hashed using the same Bloom filter size, which depends on the desired
false positive rate and the number of q-grams in the largest document. This is
the non-compact version, which is similar to BIGSI, but was written for perfor-
mance in C++ and with direct file accesses. We will refer to it as ClaBS in the
experimental results.

When constructing a compact index, the size of all documents are determined
and the document set is reordered by size. Then a subindex is constructed for
every B documents, as described in Subsect. 2.2. Each subindex is actually a
ClaBS index. The subindices are simply concatenated into one large file.

While classic indexes with the same parameters can be concatenated straight-
forwardly, compact indexes are more difficult to merge. We may implement this
in future versions of COBS by keeping some slack in the Θ(B) blocks and packing
new documents into the best free block or by storing the subindices as separate
files. This would allow incremental augmentation of COBS compact indices.

Parallelization. Due to the massive amount of data to process, we parallelized
construction and query for shared-memory systems. ClaBS index construction
we parallelized by building temporary indexes over batches of the documents
and then merging them into larger indexes. For compact index construction we
parallelized construction of the subindices.

Pattern search in COBS can optionally be parallelized by processing disjoint
partitions of the document scores in parallel and then selecting the top scores
sequentially using a partial sort operation.

Memory Mapped I/O. For querying an index, we map the file into virtual
address space using mmap. The necessary rows of the inverted Bloom filter index
are then read using simple memory transfers. We experimented with directly
issuing asynchronous I/O commands, but found only a negligible performance
advantage that did not outweigh the higher code complexity.

Alternatively, COBS can also read the complete index into RAM and then
run all queries. This was added to compare performance against other indexing
software which only work in RAM, e.g. Mantis, in Sect. 3.

Single-Instruction Multiple-Data (SIMD). Besides the I/O bottleneck,
extracting the bits from the index rows and adding them together required a
considerable amount of running time in the query.

In the ADD step of the query process (Fig. 3), the rows are summed up to
create the query result. In this illustration we hid the fact that the rows that are
output from the AND step are bit-packed: each cell is represented by one bit. In
the output of the ADD step, however, each document’s score is represented by
an integer specifying the number of matched query terms. This poses a problem
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since the bits need to be unpacked before they can be processed. Ideally we
would like to unpack and process multiple bits at once.

We use a straight-forward mapping to expand 8 bits output by the AND
step to the 8 · 16 = 128 bits needed by the ADD step when using 16-bit score
counters. This can be achieved by using one array lookup in a table of length
256 containing items of 128 bits. With these 128 bits, the final result can then be
calculated by summing up the expanded values for each document using a single
128-bit SIMD instruction. The same approach can also be done with 32-bit score
counters with 256-bit or two 128-bit instructions.

3 Experimental Evaluation

In this section we present a comprehensive evaluation of eight software packages
for indexing k-mers from read or assembled genomic sequence data.

Table 1. Software, references, git hashes, and commit dates used in experiments.

Software/Index Git hash and commit date

SBT [32] 977adfa from March 1st 2019

SSBT (Split-SBT) [33] 710c95f from July 10th 2018

AllSome-SBT [34] 4e1f2c5 from October 28th, 2018

HowDe-SBT [16] 76e3c89 from March 1st, 2019

SeqOthello [39] 68d47e0 from September 6th, 2018

Mantis [28] 3853c82 from January 29th, 2019

BIGSI [5] 2ab35e5 from May 15th, 2019 using BerkeleyDB 4.8.30

COBS and ClaBS [this] 5328bd5 from May 24th, 2019

Software Packages. We acquired copies of the original source code of seven
other index software packages via Github. The paper references, git hashes, and
commit dates are listed in Table 1. More information about each package can
be found in the related work Subsect. 1.1. We compiled all software from source
and additionally used ntCard [25] (v1.1.0) as a preprocessing step for the SBTs,
jellyfish [23] (v2.2.10) in other steps and as a library.

Data. Bradley et al. [5] previously indexed the complete global corpus of micro-
bial DNA data, some 450 000 files. In doing this, they processed the raw data
into k-mers. Since this contains low frequency errors from the sequencing instru-
ments, they “de-noised” it using standard methods from McCortex, and stored
the remaining k-mers in a binary format. We downloaded 100 000 of these files
from http://ftp.ebi.ac.uk/pub/software/bigsi/nat biotech 2018/ctx/. For micro-
bial genomic read data k was chosen as 31, as this is large enough to (gener-
ally) guarantee uniqueness within a genome, without being so large as to fre-
quently hit a sequencing error. For scaling experiments we selected random sub-
sets containing 100, 250, 500, 1 000, 2 500, 5 000, 10 000, 25 0000, and 50 000

http://ftp.ebi.ac.uk/pub/software/bigsi/nat_biotech_2018/ctx/
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documents from the 100 000 base set, each contained in the larger subsets.
The 10 000 document subset is the same as used in one of the BIGSI experi-
ments [5]. The average document size is 42.77 MiB stored in McCortex format,
such that the entire 100 000 microbial dataset is 3.984 TiB in total. Each docu-
ment contains 3.4 M 31-mers on average with the minimum being zero and the
largest containing 138 M 31-mers. In total the 100 000 dataset contains 336 846 M
31-mers to index. While building the indexes using the various software all
k-mers were included, without any occurrence threshold or cut-off.

For COBS’ compact index B = 1024 documents were grouped into a sub-
index in the largest instance with 100 000 documents.

Platform. We ran the experimental evaluation on a quad-socket Intel Xeon Gold
6138 2.0 GHz 4× 20-core machine with 768 GiB DDR4-2666 RAM and 4× 2 TB
NVMe Samsung 970 EVO SSD storage devices combined using RAID 0. The
machine was running Ubuntu 18.04 with Linux kernel 4.15.0-48-generic and we
used gcc 7.3.0. The combined SSDs reached 12.2 GiB/s sequential read, 2.3 GiB/s
sequential write, 741 MiB/s random 4 KiB block read, and 1 188 MiB/s random
4 KiB block write speeds.

Queries. We designed four sets of batch queries to measure the perfor-
mance of the indices, each set containing known true positives and true neg-
atives in random order. In each batch all queries are of the same length
� ∈ {31, 100, 1 000, 10 000} base pairs (bp). To generate true positives, we first
extracted all unitigs from the colored de Bruijn graph representation of each doc-
ument using McCortex, and then randomly chose queries from all �-grams in the
unitigs. To generate true negatives, we generated random query strings of length
�, broke these down into k-mers, and checked that none of the k-mers were con-
tained in any document. To balance the size, we selected 100 000 true positives and
100 000 true negatives for � = 31 and � = 100, for � = 1000 we selected 10 000
true positives and negatives each, and for � = 10 000 we selected 1 000 each.

The queries are stored in FASTA format and annotated with their origin
(random negative or the correct document id). After running the queries, we
checked the results of each index software by comparing it against the true
origin. Using the true negatives in the � = k = 31 set we can determine the false
positive rate of each index.

Measurements. To evaluate the software we measured many different perfor-
mance metrics while running construction and the batch queries. The machine
was used exclusively when running the experiments. Using interfaces from the
Linux kernel, we measured wall-clock time, CPU user time which captures time
spent computing in any user thread, the maximum resident set size (RSS) in
memory as returned by the time utility, the number of bytes read and written
to the SSDs in each step, and the change in storage usage. We also recorded the
resulting size of the index data files.

We flushed the disk cache before each build phase or query batch. Each query
batch was run three times: the first round started with a flushed (cold) cache,
and the two subsequent rounds with a warm cache. The rounds are labeled r0,
r1, and r2.
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3.1 Results

In this section we present and discuss the results of our experiments with the
eight index software packages. The machine we selected for the experiments is
a large server-class platform with 80 cores and large amounts of RAM. While
these properties are always good, we primarily chose it due to the 8 TB of fast
SSD storage, which is many times faster than traditional rotational disks. For
rapidly performing the experiments, this storage speed was crucial.

On the other hand the fast storage speed and massive multi-core processing
power in our machine may highlight different aspects in the indexing software
than previous comparisons. Most prominently, algorithms which previously only
had to process data rates known from rotational disks (100s of MiB/s) may
become a bottleneck when dealing with SSD speeds (currently around 10 GiB/s).
Furthermore, most of the index software packages had no built-in provisioning for
utilizing multi-core parallelism. While we were able to accelerate embarrassingly
parallel parts of the construction using bash (like creating Bloom filters for each
file), in some software the main index build was still sequential. On the other
hand, one can argue that index construction time is not as important as query
performance, but it still limits scalability.

Table 2 shows our results from all eight software packages for only 1 000
microbial DNA documents. The steps in the construction of each index are
shown as separate rows if it was possible to measure these independently.

Table 2. Construction wall-clock time, CPU time, memory usage, and resulting index
size for 1 000 microbial documents and all k-mer index software in our experiment

Phase SBT SSBT AllSome-SBT HowDe-SBT Seq-Othello Mantis BIGSI ClaBS COBS

Construction wall-clock time in seconds

Count 2 018 1 974 1 954 1 959

Bloom 114 117 140 144 295 232 1 881

Build 3 097 21 378 1 401 68 034 2 225 987 2 574 99 43

Compress 1 768 5 187 80 3 802 45

Total 6 996 28 657 3 576 73 939 2 520 1 264 4 455 99 43

Construction CPU (User) time in seconds

Count 4 574 4 511 4 475 4 488

Bloom 11 133 10 967 10 234 10 278 28 123 19 162 169 345

Build 855 5 178 449 66 872 2 198 943 1 767 1 604 1 430

Compress 1 569 4 832 1 663 2 857 3 423

Total 18 131 25 489 16 821 84 495 30 320 23 527 171 113 1 604 1 430

Construction maximum RSS memory usage in MiB

Count 518 518 518 518

Bloom 641 640 640 640 634 1 756 4 244

Build 11 028 1 523 7 140 108 147 12 137 88 357 246 806 16 245 2 616

Compress 10 953 992 560 963 16 613

Maximum 11 028 1 523 7 140 108 147 12 137 88 357 246 806 16 245 2 616

Index size in MiB

Size 19 844 3 254 21 335 1 911 4 410 16 486 27 794 16 236 3 022
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We show both wall-clock time and CPU user time such that parallelized construc-
tion can highlight its speedup without obscuring the actual amount of computa-
tion. Table 3 considers the time to run the query sets. We only show wall-clock
for queries due to space; all query computations are performed with a single
thread such that this is a fair comparison. Furthermore, for ClaBS and COBS
the index is completely loaded into RAM such that the comparison with the
others is fair. In future, it will become important to measure how many bytes
were read from the disks per query, but in the current comparison we assume all
index data is resident in RAM.

Considering construction wall-clock time, COBS is clearly the fastest index
taking only 43 s on 1 000 documents. ClaBS is a factor 2.3 slower, Mantis a
factor 30 slower, SeqOthello a 59 factor, and AllSome-SBT a factor 83 slower
than COBS. The same is reflected in construction CPU time, with COBS being
fastest and taking 1430 s. ClaBS is a factor 1.12 slower, AllSome-SBT a factor
11.8 slower, and Mantis a factor 16.5.

Table 3. Query wall-clock time for 1 000 microbial documents and all k-mer index
software in our experiment

Phase SBT SSBT AllSome-SBT HowDe-SBT Seq-Othello Mantis BIGSI ClaBS COBS

� Query wall-clock time in seconds

31 bp r0 31 80 20 34 62 12 281 10 8

31 bp r2 26 76 19 33 62 13 289 9 8

100 bp r0 663 3183 100 600 73 22 783 14 9

100 bp r2 649 3153 95 588 73 23 455 14 9

1000 bp r0 794 3466 112 670 63 21 660 15 10

1000 bp r2 781 3435 108 659 64 27 310 13 10

10000 bp r0 802 3273 112 622 62 23 699 16 11

10000 bp r2 790 3243 111 613 62 22 316 15 11

Total r0–r2 6 775 29 833 1 007 5 710 783 252 5 177 154 114

Document false positive rate for 31 bp queries

Rate 0.004 0.004 0.004 0.004 0.001 0.000 0.027 0.024 0.227

One can also see that we parallelized the Bloom filter construction (the
“bloom” row) effectively for all indexes, while the build steps are usually only
partially parallelized. COBS has a CPU/wall-clock speedup of 33, while BIGSI
has 38, Mantis has 18, and SeqOthello 12. However, since COBS performs the
least amount of computation and has among the highest speedups, the combina-
tion of these two factors really diminishes wall-clock construction time. Consid-
ering CPU user time, the index requiring most work for construction is BIGSI,
probably due to the Python implementation. It however is parallelized, such that
the wall-clock time is on par with the SBTs.

The amount of RAM required by the indexing software also limits their
applicability, especially if the complete index itself needs to be constructed in
RAM. BIGSI, HowDe-SBT, and Mantis have the highest main memory usage
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in the experiment. For BIGSI and Mantis memory was the limiting scalability
factor, while for HowDe-SBT the construction time grew too long.

The index sizes of all packages for the 1 000 microbial documents was smaller
than the input in McCortex format (41 GiB input size). The software with the
smallest index was the HowDe-SBT with only 1.9 GiB, followed by COBS with
around 3.0 GiB and SSBT with 3.3 GiB.

In terms of query performance, the fastest index was COBS with 114 s to run
all query sets three times, followed by ClaBS with 154 s. Mantis was a factor 2.2
slower, SeqOthello a factor 6.9 slower, and the fastest SBT version, AllSome-
SBT, was a factor 8.8 slower.

Fig. 6. Construction time, index size, query time for 200 000 · 31 bp, 20 000 · 1 000 bp,
and for 2 000 · 10 000 bp round 2 after disk cache warm-up.
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Using result checkers we verified that all software packages calculated correct
results and counted the false positives contained in the returned list of the single
k-mer query set (� = 31). The notable exception was SeqOthello, which produced
false positives consistently for each multi-k-mer query and started returning
false negative (missing) results when run on the 10 000 dataset. We could not
investigate this issue further. The SBT variants and SeqOthello showed a very
low false positive rate less than 0.5 %. Mantis produced zero false positives as
expected. BIGSI and ClaBS are nearly identical in underlying data structure
design, and deliver around 2.6 % false positives on single k-mer queries. COBS
is designed to deliver about the prescribed error rate of 0.3, hence the 22.7 %

Fig. 7. Construction time, index size, query time for 200 000 · 31 bp, 20 000 · 1 000 bp,
and for 2 000 · 10 000 bp in the first round divided by the number of documents |D|.
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false positives, which enables us to construct a more compact index. We also
calculated the number of false positives in larger multi-k-mer query sets, and
found all indexes except SeqOthello but including COBS to return zero false
positives for all queries with � ≥ 100 in the experiment.

Figure 6 shows scaling results for all software packages on increasing subsets
of the indexed microbial document set. We skipped running the SBT variants for
data sets larger than 10 000 because their construction time was growing super-
linearly. SeqOthello and Mantis scaled much better in terms of construction time
per document. Figure 7 shows construction time per document. These plots show
that COBS scales well, with an order of magnitude faster construction time per
document than Mantis and SeqOthello, both in wall-clock and CPU time. While
ClaBS’s index size appears to increase with the number of documents (due to
the maximum document size), the size per document of COBS actually decreases
because it can better pack documents into blocks.

As expected COBS’ query time for single k-mers increases linearly with the
number of documents in the index, due to the scoring method without pruning.
The query time of all other indexes also increases with the number of documents,
but not quite linearly. The best index in terms of query time increase per docu-
ment is the AllSome-SBT followed by HowDe-SBT, but only COBS index scales
to our full 100 000 microbial dataset.

4 Conclusion and Future Work

With COBS we presented a signature index based on Bloom filters which enables
approximate pattern matching on large q-gram datasets. It outperforms all other
q-gram indexes in both construction and query time for multi-q-gram queries due
to its simple data structure.

There are many avenues for future work on possible improvements to COBS’
ideas. For example, dynamic operations on the index such as insertion, replace-
ment, and removal of documents are very important for practical applications.
We already provide a merge operation for classic indexes, but not for compact
ones. Our current COBS implementation also already supports querying of mul-
tiple index files, such that a frontend may select different datasets or categories.
Another important topic is better support for batch or bulk queries. And for
further scalability it is important to explore distributed index construction and
query processing.

Deriving from the simplicity of COBS are research avenues which could
explore compression of rows in the Bloom filter matrix using techniques from
information retrieval. And similar to Mantis’ use of the CQF one could explore
how to adapt other Bloom filter variants to the indexing problem with allowed
false positives.
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Abstract. In this article, we show how to transform a colored de Bruijn
graph (dBG) into a practical index for processing massive sets of sequenc-
ing reads. Similar to previous works, we encode an instance of a colored
dBG of the set using BOSS and a color matrix C. To reduce the space
requirements, we devise an algorithm that produces a smaller and more
sparse version of C. The novelties in this algorithm are (i) an incomplete
coloring of the graph and (ii) a greedy coloring approach that tries to
reuse the same colors for different strings when possible. We also propose
two algorithms that work on top of the index; one is for reconstructing
reads, and the other is for contig assembly. Experimental results show
that our data structure uses about half the space of the plain represen-
tation of the set (1 Byte per DNA symbol) and that more than 99% of
the reads can be reconstructed just from the index.

Keywords: de Bruijn graphs · DNA sequencing · Compact data
structures

1 Introduction

A set of sequencing reads is a massive collection R = {R1, . . . , Rn} of n overlap-
ping short strings that together encode the sequence of a DNA sample. Analyzing
this kind of data allows scientists to uncover complex biological processes that
otherwise could not be studied. There are many ways for extracting information
from a set of reads (see [27] for review). However, in most of the cases, the pro-
cess can be reduced to build a de Bruijn graph (dBG) of the collection and then
search for graph paths that spell segments of the source DNA (see [6,15,28] for
some examples).

Briefly, a dBG is a directed labeled graph that stores the transitions of the
substrings of size k, or kmers, in R. Constructing it is relatively simple, and
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the resulting graph usually uses less space than the input text. Nevertheless,
this data structure is lossy, so it is not always possible to know if the label of
a path matches a substring of the source DNA. The only paths that fulfill this
property are those in which all nodes, except the first and last, have indegree
and outdegree one [16]. Still, they represent just a fraction of the complete dBG.

More branched parts of the graph are also informative, but traverse them
requires extra information to avoid spelling incorrect sequences. A simple solu-
tion is to augment the dBG with colors, in other words, we assign a particular
color ci to every string Ri ∈ R, and then we store the same ci in every edge
that represents a kmer of Ri. In this way, we can walk over the graph always
following the successor node colored with the same color of the current node.

The idea of coloring dBGs was first proposed by Iqbal et al. [15]. Their data
structure, however, contemplated a union dBG built from several string collec-
tions, with colors assigned to the collections rather than particular strings. Con-
sidering the potential applications of colored dBGs, Boucher et al. [4] proposed a
succinct version of the data structure of Iqbal et al. In their index, called VARI,
the topology of the graph is encoded using BOSS [5], and the colors are stored
separately from the dBG in a binary matrix C, in which the rows represent the
kmers and the columns represent the colors. Since the work of Boucher et al.,
some authors have tried to compress and manipulate C even further; including
that of [2,13,25], while others, such as [21] and [22] have proposed methods to
store compressed and dynamic versions C.

An instance of a colored dBG for a single set R can also be encoded using
a color matrix. The only difference though is that the number of columns is
proportional to the number of sequences in R. Assigning a particular color to
every sequence is not a problem if the collection is of small or moderated size.
However, massive datasets are rather usual in Bioinformatics, so even using a
succinct representation of C might not be enough. One way to reduce the number
of columns is to reuse colors for those sequences that do not share any kmer in the
dBG. Alpanahi et al. [1] addressed this problem, and showed that it is unlikely
that the minimum-size coloring can be approximated in polynomial time.

Alpanahi et al. also proposed a heuristic for recoloring the colored dBG of
a set of sequences that, in practice, dramatically reduces the number of colors
when R is a set of sequencing reads. Their coloring idea, however, might still
produce incorrect sequences, so the applications of their version of the colored
dBG are still limited.

Our Contributions. In this article, we show how to use a colored dBG to store
and analyze a collection of sequencing reads succinctly. Similarly to VARI, we
use BOSS and the color matrix C to encode the data. However, we reduce the
space requirements by partially coloring the dBG and greedily reusing the same
colors for different reads when possible. We also propose two algorithms that
work on top of the data structure, one for reconstructing the reads directly from
the dBG and other for assembling contigs. We believe that these two algorithms
can serve as a base to perform Bioinformatics analyses in compressed space.
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Our experimental results show that on average, the percentage of nodes in BOSS
that need to be colored is about 12.4%, the space usage of the whole index is
about half the space of the plain representation of R (1 Byte/DNA symbol), and
that more than 99% of the original reads can be reconstructed from the index.

2 Preliminaries

DNA Strings. A DNA sequence R is a string over the alphabet Σ = {a, c, g, t}
(which we map to [2..5]), where every symbol represents a particular nucleotide
in a DNA molecule. The DNA complement is a permutation π[2..σ] that reorders
the symbols in Σ exchanging a with t and c with g. The reverse complement
of R, denoted Rrc, is a string transformation that reverses R and then replaces
every symbol R[i] by its complement π(R[i]). For technical convenience we add
to Σ the so-called dummy symbol $, which is always mapped to 1.

de Bruijn Graph. A de Bruijn graph (dBG) [7] of the string collection R =
{R1, . . . , Rn} is a labeled directed graph G = (V,E) that encodes the transitions
between the substrings of size k of R, where k is a parameter. Every node v ∈ V
is labeled with a unique k − 1 substring of R. Two nodes v and u are connected
by a directed edge (v, u) ∈ E if the k − 2 suffix of v overlaps the k − 2 prefix of
u and the k-string resulted from the overlap exists as substring in R. The label
of the edge is the last symbol of the label of node u.

Rank and Select Data Structures. Given a sequence B[1..n] of elements
over the alphabet Σ = [1..σ], rankb(B, i) with i ∈ [1..n] and b ∈ Σ, returns
the number of times the element b occurs in B[1..i], while selectb(B, i) returns
the position of the ith occurrence of b in B. For binary alphabets, B can be
represented in n + o(n) bits so that rank and select are solved in constant
time [9]. When B has m � n 1s, a compressed representation using m lg n

m +
O(m)+o(n) bits, still solving the operations in constant time, is of interest [26].

BOSS Index. The BOSS data structure [5] is a succinct representation for
dBGs based on the Burrows-Wheeler Transform (BWT ) [8]. In this index, the
labels of the nodes are regarded as rows in a matrix and sorted in reverse lex-
icographical order, i.e., strings are read from right to left. Suffixes and prefixes
in R of size below k − 1 are also included in the matrix by padding them with $
symbols in the right size (for suffixes) or the left side (for prefixes). These padded
nodes are also called dummy. The last column of the matrix is stored as an array
K[1..σ], with K[i] being the number of labels lexicographically smaller than any
other label ending with character i. Additionally, the symbols of the outgoing
edges of every node are sorted and then stored together in a single array E. A
bit vector B[1..|E|] is also set to mark the position in E of the first outgoing
symbol of each node. The complete index is thus composed of the vectors E,
K, and B. It can be stored in |E|(H0(E) + H0(B))(1 + o(1)) + O(σ log n) bits,
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where H0 is the zero-order empirical entropy [23, Sec 2.3]. This space is reached
with a Huffman-shaped Wavelet Tree [18] for E, a compressed bitmap [26] for
B (as it is usually very dense), and a plain array for K. Bowe et al. [5] defined
the following operations over BOSS to navigate the graph:

– outdegree(v): number of outgoing edges of v.
– forward(v, a): node reached by following an edge from v labeled with a.
– indegree(v): number of incoming edges of v.
– backward(v): list of the nodes with an outgoing edge to v.
– nodeLabel(v): label of node v.

The first four operations can be answered in O(log σ) time while the last one
takes O(k log σ) time. For our purposes, we also define the following operations:

– forward r(v, r): node reached by following the r-th outgoing edge of v in
lexicographical order.

– label2Node(S): identifier in BOSS of the node labeled with the (k − 1)-
string S.

The function forward r is a small variation forward, and it maintains the orig-
inal time, while the function label2Node is the opposite of nodeLabel, but it
also maintain its complexity in O(k log σ) time.

Graph Coloring. The problem of coloring a graph G = (V,E) consists of
assigning an integer c(v) ∈ [1..ω] to each node v ∈ V such that (i) no adjacent
nodes have the same color and (ii) ω is minimal. The coloring is complete if all
the nodes of the graph are assigned with one color, and it is proper if constraint
(i) is met for each node. The chromatic number of a graph G, denoted by χ(G),
is the minimum number of colors required to generate a coloring that is complete
and proper. A coloring using exactly χ(G) colors is considered to be optimal.
Determining if there is a feasible ω-coloring for G is well known to be NP-
complete, while the problem of inferring χ(G) is NP-hard [17].

Colored dBG. The first version of the colored dBG [15] was described as
a union graph G built from several dBGs of different string collections. The
edges in G that encode the kmers of the i-th collection are assigned the color
i. The compacted version of this graph [4] represents the topology of G using
the BOSS index and the colors using a binary matrix C, where the position
C[i, j] is set to true if the kmer represented by the i-th edge in the ordering of
BOSS is assigned color j. The rows of C are then stored using the compressed
representation for bit vectors of [26], or using Elias-Fano encoding [10,11,24]
if the rows are very sparse. In the single set version of the colored dBG, the
colors are assigned to every string. Therefore, the number of columns in C grows
with the size of the collection. Alipanahi et al. [1] noticed that we could reduce
the space of C by using the same colors in those strings that have no common
kmers. This new problem was named the CDBG-recoloring, and formally stated
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as follows; given a set R of strings and its dBG G, find the minimum number
of colors such that (i) every string Ri ∈ R is assigned one color and (ii) strings
having two or more kmers in common in G cannot have the same color. Alipanahi
et al. [1] showed that an instance I(G′) of the Graph-Coloring problem can be
reduced in polynomial time to another instance I ′(G) of the CDBG-recoloring
problem. Thus, any algorithm that finds χ(G′), also finds the minimum number
of colors for dBG G. However, they also proved that the decision version of
CDBG-Recoloring is NP-complete.

3 Definitions

Let R = {R1, R2, ...., Rn} be a collection of n DNA sequencing reads, and let
R′ = {R1, R

rc
1 ..Rn, Rrc

n } be a collection of size 2n that contains the strings in
R along with their DNA reverse complements. The dBG of order k constructed
from R′ is defined as Gk

R′ = (V,E), and an instance of BOSS for Gk
R′ is denoted

as BOSS(Gk
R′) = (V ′, E′), where V ′ and E′ include the dummy nodes and their

edges. For simplicity, we will refer to BOSS(Gk
R′) just as BOSS(G). A node

in V ′ is considered an starting node if its k − 1 label is of the form $A, where
$ is a dummy symbol and A is a k − 2 prefix of one or more sequences in R′.
Equivalently, a node is considered an ending node if its k −1 label is of the form
A$, with $ being a dummy and A being a k − 2 suffix of one or more sequences
in R′. Nodes whose labels do not contain dummy symbols are considered solid,
and solid nodes with at least one predecessor node with outdegree more than
one are considered critical. For practical reasons, we define two extra functions,
isStarting and isEnding that are used to check if a node is starting or ending
respectively.

A walk P over the dBG of BOSS(G) is a sequence (v0, e0, v1...vt−1, et, vt)
where v0, v1, ...vt−1, vt are nodes and e1..et are edges, ei connecting vi−1 with vi.
P is a path if all the nodes are different, except possibly the first and the last.
In such case, P is said to be a cycle. A sequence Ri ∈ R is unambiguous if there
is a path in BOSS(G) whose label matches the sequence of Ri and if no pair of
colored nodes in (u, v) ∈ P share a predecessor node v′ ∈ P . In any other case,
Ri is ambiguous. Finally, the path Pi that spells the sequence of Ri is said to be
safe if every one of its branching nodes has only one successor colored with the
color of Ri.

We assume that R is a factor-free set, i.e., no Ri ∈ R is also a substring of
another sequence Rj , with i �= j.

4 Coloring a dBG of Reads

In this section, we define a coloring scheme for BOSS(G) that generates a more
succinct color matrix, and that allows us to reconstruct and assemble unambigu-
ous sequences of R′. We use the dBG of R′ because most of the Bioinformatic
analyses require the inspection of the reverse complements of the reads. Unlike
previous works, the rows in C represent the nodes in BOSS(G) instead of the
edges.
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A Partial Coloring. We make C more sparse by coloring only those nodes
in the graph that are strictly necessary for reconstructing the sequences. We
formalize this idea with the following lemma:

Lemma 1. For the path of an unambiguous sequence Ri ∈ R′ to be safe we have
to color the starting node si that encodes the k − 2 prefix of Ri, the ending node
ei that encodes the k − 2 suffix of Ri and the critical nodes in the path.

Proof. We start a walk from si using the following rules: (i) if the current node
v in the walk has outdegree one, then we follow its only outgoing edge, (ii) if
v is a branching node, i.e., it has outdegree more than one, then we inspect its
successor nodes and follow the one colored with the same color of si and (iii) if
v is equal to ei, then we stop the traversal. ��

Note that the successor nodes of a branching node are critical by definition,
so they are always colored. On the other hand, nodes with outdegree one do not
require a color inspection because they have only one possible way out.

Coloring the nodes si and ei for every Ri is necessary; otherwise, it would be
difficult to know when a path starts or ends. Consider, for example, using the
solid nodes that represent the k − 1 prefix and the k − 1 suffix of Ri as starting
and ending points respectively. It might happen that the starting point of Ri

can also be a critical point of another sequence Rj . If we start a reconstruction
from si and pick the color of Rj , then we will generate an incomplete sequence.
A similar argument can be used for ending nodes. The concepts associated with
our coloring idea are depicted in Figs. 2A and B.

Unsafe Coloring. As explained in Sect. 2, we can use the recoloring idea of [1]
to reduce the number of columns in C. Still, using the same colors for unrelated
strings is not safe for reconstructing unambiguous sequences.

Lemma 2. Using the same color c for two unambiguous sequences Ri, Rj ∈ R′

that do not share any k−1 substring might produce an unsafe path for Ri or Rj.

Proof. Assume there is another pair of sequences Rx, Ry ∈ R′ that do not share
any k−1 subsequence either, to which we assign them color c′. Suppose that the
paths of Rx and Rj crosses the paths of Ri and Rj such that the resulting dBG
topology resembles a grid. In other words, if Ri has the edge (u, u′) and Rj has
the edge (v, v′), then Rx has the edge (u, v) and Ry has the edge (u′, v′). In this
scenario, v will have two successors, node v′ from the path of Rj and some other
node v′′ from the path of Rx. Both v′ and v′′ are critical by definition so they
will be colored with c and c′ respectively. The problem is that node v′ is also a
critical node for Ry, so it will also have color c′. The reason is that u′, a node
that precedes v′, appears in Ri and Ry. As a consequence, the path of Rx is no
longer safe because one of its nodes (v in this example) has to successors colored
with c′. A similar argument can be made for Ri and color c. Figure 1 depicts the
idea of this proof. ��
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Fig. 1. Example of unsafe paths produced by a graph recoloring. (A) The dBG gen-
erated from the unambiguous sequences Ri, Rj , Rx and Ry. Every texture represents
the path of a specific string. (B) Recolored dBG. Sequences Ri and Rj are assigned the
same color c (light gray) as they do not share any k− 1 substring. Similarly, sequences
Rx and Ry are assigned another color c′ (horizontal lines) as they do not share any
k − 1 sequence neither. Nodes u, u′, v, v′ and v′′ are those mentioned in the Proof of
Lemma 2. The sequences of Ri and Rx cannot be reconstructed as their paths become
unsafe after the recoloring.

When spurious edges connect paths of unrelated sequences that are assigned
the same color (as in the proof of Lemma 2), we can generate chimeric strings if,
by error, we follow one of those edges. In the algorithm, we solve this problem
by assigning different colors to those strings with sporadic edges, even if they do
not share any k − 1 substring.

Safer and Greedy Coloring. Our greedy coloring algorithm starts by marking
in a bitmap N = [1..|V ′|] the p nodes of BOSS(G) that need to be colored
(starting, ending and critical). After that, we create an array M of p entries.
Every M [j] with j ∈ [1..p] will contain a dynamic vector that stores the colors
of the j-th colored node in the BOSS ordering. We also add rank1 support to
N to map a node v ∈ V to its array of colors in M . Thus, its position can be
inferred as rank1(N, v).

The only inputs we need for the algorithm are N , R′ and BOSS(G). For
every Ri ∈ R′ we proceed as follows; we append a dummy symbol at the ends
of the string, and then use the function label2Node to find the node v labeled
with the k − 1 prefix of Ri. Note that this prefix will map a starting node as we
append dummies to Ri. From v, we begin a walk on the graph and follow the
edges whose symbols match the characters in the suffix Ri[k..|Ri|]. Note now
that the last node v′ we visit in this walk is an ending node that maps the k − 1
suffix of Ri. As we move through the edges, we store in an array Wi the starting,
ending, and critical nodes associated with Ri. Additionally, we push into another
array Ii the neighbor nodes of the walk that need to be inspected to assign a
color to Ri. The rules for pushing elements into Ii are as follows; (i) if v is a node
in the path of Ri with outdegree more than one, then we push all its successor
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Fig. 2. Succinct colored dBG. (A) The topology of the graph. Colors and textures
represent the paths that spell the input sequences of the dBG. Numbers over the nodes
are their identifiers. Nodes 4,1,6 and 10 are starting nodes (darker borders). Nodes
11,13 and 12 are ending nodes and nodes 3,9,11 and 5 are critical. (B) Our greedy
coloring algorithm. (C) The binary matrix C that encodes the colors of Fig. B. The
left side is C in its uncompressed form and the right side is our succinct version of C
using the arrays N ,M ′, and F .

nodes into Ii, (ii) if v is a node in the path of Ri with indegree more than one,
then we visit every predecessor node v′ of v, and if v′ has outdegree more than
one, then we push into Ii the successor nodes of v′. Once we finish the traversal,
we create a hash map Hi and fill it with the colors that were previously assigned
to the nodes in Ii and Wi. After that, we pick the smallest color c′ that is not
in the keys of Hi, and push it to every array M [rank1(N, j)] with j ∈ Wi. After
we process all the sequences in R′, the final set of colors is represented by the
values in M . The whole processing of coloring a Ri is described in detail by the
procedure greedyCol in Pseudocode (Algorithm 1).

The construction of the sets Wi and Ii is independent for every string in
R′, so it can be done in parallel. However, the construction of the hash map Hi

and the assignment of the color c′ to the elements of Wi has to be performed
sequentially as all the sequences in R′ need concurrent access to M .

Ambiguous Sequences. Our scheme, however, cannot safely retrieve sequ-
ences that are ambiguous.

Lemma 3. Ambiguous sequences of R′ cannot be reconstructed safely from the
color matrix C and BOSS(G).

Proof. Assume that collection R is composed just by one string R1 = XbXc,
where X is a repeated substring and b, c are two different symbols in Σ. Consider
also that the kmer size for BOSS(G) is k = |X| + 1. The instance of BOSS(G)
will have a node v labeled with X, with two outgoing edges, whose symbols are
b and c. Given our coloring scheme, the successor nodes of v will be both colored
with the same color. As a consequence, if during a walk we reach node v, then
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we will get stuck because there is not enough information to decide which is the
correct edge to follow (both successor nodes have the same color). ��

A sequence Ri will be ambiguous if it has the same k − 1 pattern in two
different contexts. Another case in which Ri is ambiguous is when a spurious
edge connects an uncolored node of Ri with two or more critical nodes in the
same path. Note that unlike unambiguous sequences with spurious edges, an
ambiguous sequence will always be encoded by an unsafe path, regardless of the
recoloring algorithm. In general, the number of ambiguous sequences will depend
on the value we use for k.

5 Compressing the Colored dBG

The pair (M,N) can be regarded as a compact representation of C, where the
empty rows were discarded. Every M [i], with i ∈ [1..|M |], is a row with at least
one value, and every color M [i][j], with j ∈ [1..|M [i]|], is a column. However, M
is not succinct enough to make it practical. We are still using a computer word
for every color of M . Besides, we need |M | extra words to store the pointers for
the lists in M .

We compress M by using an idea similar to the one implemented in BOSS to
store the edges of the dBG. The first step is to sort the colors of every list M [i].
Because the greedy coloring generates a set of unique colors for every node,
each M [i] becomes an array of strictly increasing elements after the sorting.
Thus, instead of storing the values explicitly, we encode them as deltas, i.e.,
M [i][j] = M [i][j] − M [i][j − 1]. After transforming M , we concatenate all its
values into one single list M ′ and create a bit map F = [1..|M ′|] to mark the
first element of every M [i] in M ′. We store M ′ using Elias-Fano encoding [10,11]
and F using the compressed representation for bit maps of [26]. Finally, we add
select1 support to F to map a range of elements in M ′ to an array in M . The
complete representation of the color matrix now becomes C = N + F + M ′ (see
Fig. 2C). The complete index of the colored dBG is thus composed of our version
of C and BOSS(G). We now formalize the idea of retrieving the colors of a node
from the succinct representation of C.

– getColors(v): list of colors assigned to node v.

Theorem 1. the function getColors(v) computes in O(c) time the c colors
assigned to node v.

Proof. We first compute the rank r of node v within the colored nodes. This
operation is carried out with r = rank1(N, v). After retrieving r, we obtain
the range [i..j] in M ′ where the values of v lie. For this purpose, we perform
two select1 operations over F , [i, j] = (select1(F, r), select1(F, r + 1) − 1).
Finally, we scan the range [i..j] in M ′, and as we read the values, we incrementally
reconstruct the colors from the deltas. All the rank and select operations takes
O(1), and reading the c = j−i+1 entries from M ′ takes O(c), because retrieving
an element from an Elias-Fano-encoded array also takes O(1). In conclusion,
computing the colors of v takes O(c). ��
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6 Algorithms for the Colored dBG

Reconstructing Unambiguous Sequences. We describe now an online algo-
rithm that works on top of our index and that reconstructs all the unambiguous
sequences in R′. We cannot tell, however, if a reconstructed string Ri was present
in the original set R or if it was its reverse complement Rrc

i . This is not really a
problem, because a sequence and its reverse complement are equivalent in most
of the Bioinformatic analyses.

The algorithm receives as input a starting node v. It first computes an array A
with the colors assigned to v using the function getColors (see Sect. 5), and then
sets a string S = nodeLabel(v). For every color a ∈ A, the algorithm performs
the following steps; initializes two temporary variables, an integer v′ = v and
string S′ = S, and then begins a graph walk from v′. If the outdegree of v′ is
one, then the next node in the walk is the successor node v′ = outgoing r(v′, 1).
On the other hand, if the outdegree of v′ is more than one, then the algorithm
inspects all the successor nodes of v′ to check which one of them is the node v′′

colored with a. If there is only one such v′′, then it sets v′ = v′′. This procedure
continues until v′ becomes an ending node. During the walk, the edge symbols
are pushed into S′. When an ending node is reached, the algorithm reports
S′[1..|S′| − 1] as the reconstructed sequence.

If at some point during a walk, the algorithm reaches a node with outdegree
more than one, and with more than one successor colored with a, then aborts
the reconstruction of the string as the path is unsafe for color a. Then, it returns
to v and continues with the next sequence. The complete procedure is detailed
in the function buildSeqs of Algorithm 2.

Assembling Contigs. Our coloring scheme for the dBG allows us to report
sequences that represent the overlap of two or more strings of R′. There are
several ways in which a set of sequences can be arranged such that they form
valid overlaps, but in practice, we are not interested in all such combinations.
What we want is to compute only those union strings that describe real segments
of the underlying genome of R′, a.k.a contig sequences. In this work we do not go
deep into the complexities of contig assembly (see [14,16,19,20] for some review).
Instead, we propose a simple heuristic, that work on top of our index, and that
it is aimed to produce contigs that are longer than those produced by uncolored
dBGs.

Similar to buildSeqs, this method traverses the graph to reconstruct the
contigs. During the process, it uses the color information to weight the outgoing
edges on the fly, and thus, inferring which is the most probable path that matches
a real segment of the source DNA.

The algorithm receives as input a starting node v and initializes a set L
and hash map Q. Both data structures are used to store information about the
strings that belong to the contig of v. A read Ri ∈ R′ is identified in the index as
a pair (c, v′), where c is a color assigned to Ri and v′ is the starting node of its
path. L contains the reads already traversed while Q contains the active reads.



314 D. Dı́az-Domı́nguez

Fig. 3. Example of the assembly of a contig using our index. (A) Inexact overlap of four
sequences. The circle to the left of every string represents its color in the dBG. Light
gray symbols are mismatches in the overlap. (B) The colored dBG of the sequences.
Circles with darker borders are starting and ending nodes. Light gray values over the
starting nodes are their identifiers. The contig assembly begins in node 5 (denoted with
a dashed arrow) and the threshold x to continue the extension is set to 0.5. The state
of the hash map Q when the walk reaches a branching node (dashed circles) is depicted
below the graph. The assembly ends in the right-most branching node as it has not a
successor node that contains at least 50% of the colors in Q. The final contig is shown
as a light grey path over the graph, and its sequence is stored in S.

The algorithm also initializes a string S = nodeLabel(v) and pushes every pair
Q[ci] = v with ci ∈ getColor(v). After that, it begins a walk from v and pushes
into S the symbols of the edges it visits. For every new node v′ reached during
the walk, the algorithm checks if one of its predecessor nodes, say u, is a starting
node. If so, then for every ci ∈ getColors(u) sets Q[ci] = u if (ci, u) does not
exist in L. On the other hand, if one of the successors of v′, say u′, is an ending
node, then for every ci ∈ getColors(u′) sets L[(c,Q[ci])] and then removes the
entry Q[ci]. After updating Q and L, it selects one of the outgoing edges of v′

to continue the walk. For this purpose, the algorithm uses the following rules;
(i) if v′ has outdegree one, then it takes its only outgoing edge, (ii) if v′ has
outdegree more than one, then it inspects how the colors in Q distribute among
the successors of v′. If there is only one successor node of v′, say v′′, colored with
at least x fraction of the colors of Q, where x is a parameter, then the algorithm
follows v′′, and removes from Q the colors of the other successor nodes of v′.

The algorithm will stop if; (i) there is no such v′′ that meet the x threshold,
(ii) there is more than one successor of v′ with the same color or (iii) v′ has
outdegree one, but the successor node is an ending node. After finishing the walk,
the substring S[2..|S|] is reported as the contig. The procedure contigAssm in
Pseudocode (Algorithm 3) describes in detail the contig assembly algorithm, and
a graphical example is shown in Fig. 3.

7 Experiments

We use a set of reads generated from the E.coli genome1 to test the ideas
described in this article. The raw file was in FASTQ format and contained
1 http://spades.bioinf.spbau.ru/spades test datasets/ecoli mc.

http://spades.bioinf.spbau.ru/spades_test_datasets/ecoli_mc
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14,214,324 reads of 100 characters long each. We preprocessed the file by remov-
ing sequencing errors using the tool of [3], and discarding reads with N symbols.
The preprocessing yielded a data set of 8,655,214 reads (a FASTQ file of 2 GB).
Additionally, we discarded sequencing qualities and the identifiers of the reads
as they are not considered in our data structure. From the resulting set R (a
text file of 833.67 MB), we created another set R′ that considers the elements
in R and their reverse complements.

Our version of the colored dBG, the algorithm for greedy coloring and the
algorithms for reconstructing and assembly reads were implemented in C++2,
on top of the SDSL-lite library [12]. In our implementation, arrays M ′ and F
are precomputed beforehand to store the colors directly to them, because using
the dynamic list M is not cache-friendly. Additionally, all our code, except the
algorithm for contig assembly, can be executed using multiple threads.

We built six instances of our index using R′ as input. We choose different
values for k, from 25 to 50 in steps of five. The coloring of every one of these
instances was carried out using eight threads. Statistics about the graph topolo-
gies are shown in Table 1, and statistics about the coloring process are shown in
Table 2. In every instance, we reconstructed the unambiguous reads (see Table 2).
Additionally, we generated an FM-index of R′ to locate the reconstructed reads
and check that they were real sequences. All the tests were carried out on a
machine with Debian 4.9, 252 GB of RAM and processor Intel(R) Xeon(R) Sil-
ver @ 2.10 GHz, with 32 cores.

8 Results

The average compression rate achieved by our index is 1.89, meaning that, in all
the cases, the data structure used about half the space of the plain representation
of the reads (see Table 1). We also note that the smaller the value for k, the
greater the size of the index. This behavior is expected as the dBG becomes
denser when we decrease k. Thus, we have to store a higher number of colors
per node.

The number of colors of every instance is several orders of magnitude smaller
than the number of reads, being k = 25 the instance with more colors (6552) and
k = 50 the instance with the fewest (1689). Even though the fraction of colored
nodes in every instance is small, the percentage of the index space used by the
color matrix is still high ( 73% on average). Regarding the time for coloring the
graph, it seems to be reasonable for practical purposes if we use several threads.
In fact, building, filling and compacting C took 5,015 s on average, and the value
decreases if we increment k. The working space, however, is still considerable.
We had memory peaks ranging from 3.03 GB to 4.3 GB, depending on the value
for k (see Table 2).

The process of reconstructing the reads yielded a small number of ambiguous
sequences in all the instances (2,760 sequences on average), and decreases with
higher values of k, especially for values above 40 (see Table 2).
2 https://bitbucket.org/DiegoDiazDominguez/colored bos/src/master.

https://bitbucket.org/DiegoDiazDominguez/colored_bos/src/master
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Table 1. Statistics about the different colored dBGs generated in the experiments.
The index size is expressed in MB and considers the space of BOSS(G) plus the space
of our succinct version of C. The compression rate was calculated as the space of the
plain representation of the reads (833.67 MB) divided by the index size.

k Total number
of nodes

Number of
solid nodes

Number of
edges

Index
size

Compression
rate

25 106,028,714 11,257,781 120,610,151 446.38 1.86
30 142,591,410 11,425,646 157,186,548 443.82 1.87
35 179,167,289 11,561,630 193,773,251 441.18 1.88
40 215,751,326 11,667,364 230,365,635 438.23 1.90
45 252,337,929 11,743,320 266,958,709 435.30 1.91
50 288,925,674 11,791,640 303,552,318 432.13 1.92

Table 2. Statistics about our greedy coloring algorithm. The column “Color space
usage” refers to the percentage of the index space used by our succinct version of C.
Elapsed time and memory peak are expressed in seconds and MB, respectively, and
both consider only the process of building, filling, and compacting the color matrix.

k Number of
colored nodes

Number of
colors

Color space
usage

Ambiguous
sequences

Elapsed
time

Memory
peak

25 21,882,874 6,552 83.03 1904 5,835 4,391
30 21,907,324 4,944 79.14 1502 5,551 4,119
35 21,926,687 2,924 75.27 1224 5,131 3,847
40 21,942,083 2,064 71.40 1054 4,872 3,575
45 21,954,138 1,888 67.51 714 4,507 3,303
50 21,964,947 1,689 63.58 176 4,199 3,030

9 Conclusions and Further Work

Experimental results shows our data structure is succinct, and that has a prac-
tical use. Still, we believe that a more careful algorithm for constructing the
index is still necessary to reduce the memory peaks during the coloring. Fur-
ther compaction of the color matrix can be achieved by using more elaborated
compression techniques. However, this extra compression can increase the con-
struction time of the colored dBG and produce a considerable slow down in the
algorithms that work on top of it for extracting information from the reads.
Comparison of our results with other similar data structures is difficult for the
moment. Most of the indexes based on colored dBGs were not designed to handle
huge sets of colors like ours and the greedy recoloring of [1] does not scale well
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and needs extra information for reconstructing the reads. Still, it is a promis-
ing approach that, with further work, can be used in the future as a base for
performing Bioinformatics analyses in compressed space.

A Appendix

A.1 Pseudocodes

Algorithm 1. Function greedyCol

1: procedure greedyCol(G,N ,Ri,M) � G is a dBG, N is a bitmap, Ri is a
string and M is array of lists

2: Ri ← $Ri$ � append dummy symbols at the ends of Ri

3: v ← string2node(Ri[1..k − 1])
4: Wi ← ∅
5: Ii ← Ii ∪ rank1(N, v)
6: for each r ∈ Ri[k − 1..|Ri|] do � traverse the dBG path of Ri

7: o ← outdegree(G, v)
8: if o > 1 then
9: for j ← 1 to o do

10: Ii ← Ii ∪ rank1(N, forward r(G, v, j))
11: i ← indegree(G, v)
12: if i > 1 then
13: for j ← 1 to i do
14: v′ ← incomming r(G, v, j)
15: o′ ← outdegree(G, v′))
16: if o′ > 1 then
17: for j ← 1 to o′ do
18: Ii ← Ii ∪ rank1(N, forward r(G, v′, j))
19: if N [v] is true then
20: Wi ← Wi ∪ rank1(N, v)
21: v ← forward(G, v, r)
22: Wi ← Wi ∪ rank1(N, v)
23: Ii ← Ii ∪ rank1(N, v)
24: for each n ∈ Ii do � compute the colors already used
25: for each c ∈ M [n] do
26: Hi[c] ← true
27: c′ ← minimum color not in Hi

28: for each n ∈ Wi do � color the nodes
29: M [n] ← M [n] ∪ c′



318 D. Dı́az-Domı́nguez

Algorithm 2. Function buildSeqs

1: procedure buildSeqs(G,v) � G is a colored dBG and v is a starting node
2: L ← ∅ � list of rebuilt sequences
3: A ← getColors(G,v)
4: S ← nodeLabel(G, v) � initialize an string with the label of v
5: for each a ∈ C do
6: v′ ← v � temporal dBG node
7: S′ ← S, amb ← false
8: while isEnding(G,v′) is false and amb is false do
9: o ← outdegree(G,v′)

10: if o is 1 then
11: S′ ← S′ ∪ edgeSymbol(G, v′, 1) � push the new symbol into S′

12: v′ ← forward r(G, 1)
13: else
14: m ← 0
15: for u ← 1 to o do � check which successors of v′ has color a
16: if a ∈ getColors(forward r(G, v′, u)) then
17: v′ ← forward r(G, v′, u)
18: m ← m + 1
19: if m > 1 then � more than one successor v′ has color a
20: amb ← true
21: if amb not true then
22: L ← L ∪ S[2..|S| − 1]
23: return L
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Algorithm 3. Function contigAssm

1: procedure contigAssm(G,v,x) � v is a starting node and x is a threshold
2: L ← ∅
3: S ← nodeLabel(G, v)
4: for each ci ∈ getColors(v) do
5: Q[ci] ← v

6: while true do
7: if indegree(G, v) > 1 then
8: v′ ← backward r(G, v, 1))
9: if isStarting(v′) then � add new reads to the contig

10: for each ci ∈ getColors(v′) do
11: if L[(ci, v′)] is not true then
12: Q[ci] ← v′

13: if o ← outdegree(G, v) > 1 then
14: t ← v, v ← 0
15: for i ← 1 to o do � compute the most probable successor node
16: v′ ← forward r(G, t, i)
17: if isEnding(v′) then � discard reads ending at v
18: for each ci ∈ getColors(v′) do
19: L[(ci, Q[ci])] ← true

20: Q ← Q \ A
21: else
22: A ← getColors(v′)
23: w ← (Q ∩ A)/|Q| � weight the successor node
24: if w ≥ x then
25: v ← v′

26: Q ← A
27: S ← S ∪ edgeSymbol(G, t, i)
28: break
29: if v is 0 then break � no successor has the minimum weight x

30: else
31: v ← forward r(G, v, 1)
32: if isEnding(v) then break
33: S ← S ∪ edgeSymbol(G, v, 1)
34: return S[2..|S|]
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Abstract. We study a lossy compression scheme linked to the biological
problem of founder reconstruction: The goal in founder reconstruction is
to replace a set of strings with a smaller set of founders such that the
original connections are maintained as well as possible. A general formu-
lation of this problem is NP-hard, but when limiting to reconstructions
that form a segmentation of the input strings, polynomial time solutions
exist. We proposed in our earlier work (WABI 2018) a linear time solu-
tion to a formulation where minimum segment length was bounded, but
it was left open if the same running time can be obtained when the tar-
geted compression level (number of founders) is bounded and lossyness
is minimized. This optimization is captured by the Maximum Segmen-
tation problem: Given a threshold M and a set R = {R1, . . . ,Rm} of
strings of the same length n, find a minimum cost partition P where for
each segment [i, j] ∈ P , the compression level |{Rk[i, j] : 1 ≤ k ≤ m}|
is bounded from above by M . We give linear time algorithms to solve
the problem for two different (compression quality) measures on P : the
average length of the intervals of the partition and the length of the min-
imal interval of the partition. These algorithms make use of positional
Burrows–Wheeler transform and the range maximum queue, an exten-
sion of range maximum queries to the case where the input string can
be operated as a queue. For the latter, we present a new solution that
may be of independent interest. The solutions work in a streaming model
where one column of the input strings is introduced at a time.

Keywords: Pan-genome indexing · Founder reconstruction · Dynamic
programming · Positional Burrows–Wheeler transform · Range
maximum queue

1 Introduction

Given a set of recombinants R = {R1, . . . ,Rm}, i.e. a set of strings of the same
length, a set of founders is a set of strings of the same length where all the

This work was partially supported by the Academy of Finland (grant 309048).

c© Springer Nature Switzerland AG 2019
N. R. Brisaboa and S. J. Puglisi (Eds.): SPIRE 2019, LNCS 11811, pp. 322–336, 2019.
https://doi.org/10.1007/978-3-030-32686-9_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32686-9_23&domain=pdf
http://orcid.org/0000-0002-1761-4354
http://orcid.org/0000-0002-2909-2952
http://orcid.org/0000-0003-4454-1493
http://orcid.org/0000-0002-8276-0585
https://doi.org/10.1007/978-3-030-32686-9_23


Linear Time Maximum Segmentation Problems 323

recombinants can be mapped on the founders for the common positions, i.e.
for each position k all the characters at the position k of the recombinants are
included in all the characters at the position k of the founders.

Minimizing the number of crossovers, i.e. positions where recombinants
need to change between mapped founders, corresponds to the problem founder
sequence reconstruction [2,8,9]. As this problem is NP-hard [2,8], Ukkonen sug-
gested taking a polynomial variant of this problem through construction of a
segmentation [9]. Here a segmentation is a decomposition of the set of recombi-
nants into blocks. For a partition P , the corresponding segmentation corresponds
to a set of segments where for [i, j] ∈ P , the segment of the interval [i, j] is the
set of strings {Rk[i, j] : 1 ≤ k ≤ m}.

Ukkonen proposed three different measures for segmentations of recombi-
nants: λmin (the minimum size of the intervals), λave (the ratio between the
length of a string of R and the number of segments) and λmax (the maximum
of segment sizes) and gave an optimal solution in O(mn2) time where λmin is
bounded by a given user-defined value M and λmax is minimized (Minimum
Segmentation problem) and an optimal solution in O(mn) time where λave is
bounded and λmax is minimized [9]. Norri et al. improved the first result to
O(mn) time by using the positional Burrows–Wheeler transform (pBWT) [3].
This problem corresponds to finding the segmentation that minimizes the maxi-
mal segment size where each interval of the corresponding partition have length
bigger than a threshold K.

Ukkonen [9] proved that we can find in O(n(m+M3)) time a set of founders
which minimizes the number of crossovers in the case where all the segments
of the segmentation have the same size M . Norri et al. [7] apply the algorithm
of Ukkonen to the case where the segments have different sizes; experimental
results show that this approach works well in practice, although optimality is
not guaranteed in this case.

Instead of minimizing λmax where λmin is bounded as in the Minimum Seg-
mentation problem, in this paper we study the problem where λmax is bounded
and we want to maximize λmin or λave. In other words, we take the dual prob-
lem of Minimum Segmentation problem where we bound the maximum size of
segments, i.e. the number of founders, and we want to optimize the partition
corresponding to this segmentation (either maximize the size of the minimal
interval of the partition or minimize the number of intervals). This formulation
is motivated by the ability to control the size of the pan-genome index proposed
in [10]: Multiple alignment of thousands of human genomes can be replaced with
a multiple alignment of founders. We demonstrated in [7] that reduction from
5009 sequences to 130 founders gives average distance 9358 bases between two
crossovers. Such preservation of continuity is sufficient for the approach in [10].
With our new formulation, we can directly control the target number of founders
without needing to try out different bounds for the segment length. In more
general terms, the approach can be seen as a lossy compression scheme, where
the targeted compression level (number of founders) is fixed and the compres-
sion quality (preservation of continuities) is optimized. Such general formulation
might find other applications beyond genome research.
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We propose two different algorithms to solve maximization of λmin and λave,
respectively. In Sect. 3, we give a greedy algorithm which finds an optimal solu-
tion in O(mn) for the first problem and in Sect. 4, we present a dynamic pro-
gramming algorithm using a Range Maximum Queue to solve the second problem
in linear time. The Range Maximum Queue is an extension of min-queue [5]. A
min-queue supports minimum value queries on queue in constant time, with the
update operations taking also constant time. Our structure supports querying
maximum value over a range of items in the queue in constant time, with the
update operations taking amortized constant time.

We consider all of the Maximum Segmentation problems in a specific stream-
ing data model. As every input of the Maximum Segmentation problems consists
of a bound and a set of strings of the same length, we define the Column Stream
Model such that we are given the bound and a stream that yields the set of
strings of the same length, column-by-column. In essence, at the kth step we
have the kth character of each input string. A justification of this model can be
found in Appendix.

2 Preliminaries

In this section we present the problems of Maximum Segmentation and some
terminologies we will need.

To begin we define some notations for strings and sets. Given a string w =
a1 . . . an, the length of w, denoted by |w|, is n, the ith element of w, denoted by
w[i], is ai and the substring denoted by w[i, j] is ai . . . aj . We use an analogous
notation for the arrays. Given two integers i and j with i ≤ j, we denote by [i, j]
the set of integers between i and j, i.e. {k ∈ Z : i ≤ k ≤ j}. Given a finite set
S, a partition P = {S1, . . . , Sk} is a set of subsets of S such that ∪Si∈P Si = S
and i �= j ⇒ Si ∩ Sj = ∅. The cardinality of S is denoted by |S|.

The input of our problems is a set of recombinants R = {R1, . . . ,Rm} which
is a set of m strings of the same length n (|R1| = . . . = |Rm| = n). In what
follows, we use m as the number of strings of R and n as the length of each
string of R.

For an integer interval [i, j] with 1 ≤ i ≤ j ≤ n, we denote by R[i, j]
the set of all the substrings Rk[i, j] with k ∈ [1,m], i.e. R[i, j] = {Rk[i, j] :
k ∈ [1,m]}. Given a partition P of [1, n], we define the following three mea-
sures: λmin(R, P ) = min[i,j]∈P |[i, j]|, λave(R, P ) = n

|P | and λmax(R, P ) =
max[i,j]∈P |R[i, j]|. When there is no confusion, we just use the notations λmin,
λave and λmax.
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Example 1. The set R of 6 recombinants of size 10:

1 2 3 4 5 6 7 8 9 10

0 1 1 2 2 1 0 2 2 1
0 1 1 2 1 2 0 1 0 1
2 1 0 2 1 2 0 2 1 0
0 2 1 2 2 1 0 2 2 1
2 1 0 2 2 1 0 2 2 1
0 2 1 2 1 2 0 1 0 1

By taking the partition P1 = {[1, 3], [4, 7], [8, 10]},

1 2 3 4 5 6 7 8 9 10

0 1 1 2 2 1 0 2 2 1
0 1 1 2 1 2 0 1 0 1
2 1 0 2 1 2 0 2 1 0
0 2 1 2 2 1 0 2 2 1
2 1 0 2 2 1 0 2 2 1
0 2 1 2 1 2 0 1 0 1

one has λmin(R, P1) = min{|[1, 3]|, |[4, 7]|, |[8, 10]|} = min{3, 4, 3} = 3, λave(R,
P1) = 10

3 and λmax(R, P1) = max{|R[1, 3]|, |R[4, 7]|, |R[8, 10]|} = max{3,
2, 3} = 3.

By taking the partition P2 = {[1, 2], [3, 6], [7, 8], [9, 10]},

1 2 3 4 5 6 7 8 9 10

0 1 1 2 2 1 0 2 2 1
0 1 1 2 1 2 0 1 0 1
2 1 0 2 1 2 0 2 1 0
0 2 1 2 2 1 0 2 2 1
2 1 0 2 2 1 0 2 2 1
0 2 1 2 1 2 0 1 0 1

one has λmin(R, P2) = min{|[1, 2]|, |[3, 6]|, |[7, 8]|, |[9, 10]|} = min{2, 4, 2, 2} = 2,
λave(R, P2) = 10

4 = 2.5 and λmax(R, P2) = max{|R[1, 2]|, |R[3, 6]|, |R[7, 8]|,
|R[9, 10]|} = max{3, 4, 2, 2} = 4.

Definition 1. The problem of λmin-Maximum Segmentation Partition (or
λmin-MSP) is, given a bound M and a set of recombinants R, to find a partition
of [1, n] which maximizes λmin(R, P ) subject to λmax(R, P ) ≤ M . The problem
of λmin-Maximum Segmentation Length (or λmin-MSL) is, given a bound M and
a set of recombinants R, to find the measure λmin for an optimal partition P of
λmin-MSP.
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We denote analogously by λave-Maximum Segmentation Partition (or λave-
MSP) and λave-Maximum Segmentation Length (or λave-MSL) the similar prob-
lems in which λmin(R, P ) is substituted with λave(R, P ).

Hereafter we assume that M is at least max{|R[k, k]| : k ∈ [1, n]}, otherwise
all the Maximum Segmentation problems admit no solution.

Remark 1. The notation of λmin(R, P ) and λave(R, P ) corresponds to the
“λmin” and “λave” of [9]. The Maximum Segmentation Length problem cor-
responds to the segmented version of Maximum fragment length of [9]. The Min-
imum Segmentation problem of [7] corresponds to finding the measure λmax of
a partition P which minimizes λmax where λmin is bounded from below by an
integer in input.

In the two following sections we present different algorithms to find in linear
time (in the size of the input) an optimal solution of λave-MSP and λave-MSL (see
Sect. 3) and λmin-MSP and λmin-MSL (see Sect. 4).

3 λave-Maximum Segmentation Problems

As λave = n
|P | , maximizing λave corresponds to minimizing |P |, i.e. the number

of intervals of P . The idea of our algorithm solving the λave-Maximum Seg-
mentation problems is to use a greedy algorithm from left to right depending
on values given by a special data structure, the positional Burrows–Wheeler
Transform. We begin by explaining which values we want to compute, what is
the positional Burrows–Wheeler Transform and how we can use it to build our
values and finally we give a proof of the correctness for our greedy algorithm.

3.1 Optimal Solution of λave-MSP

Lemma 1. Let i, j, i′ and j′ be four integers such that i ≤ i′ ≤ j′ ≤ j. We
have |R[i′, j′]| ≤ |R[i, j]|.
Proof. The property is due to the fact that each string of R[i′, j′] is a substring
of R[i, j] on the same interval. 	


Hence, for a fixed j, the function |R[i, j]| is decreasing in i. For a bound
M and an integer k, we define ck as the value such that |R[ck, k]| > M and
|R[ck + 1, k]| ≤ M ; in the case |R[1, k]| ≤ M , we take ck = 0.

Remark 2. We can equivalently define ck as follows:

ck = min{j ∈ [1, k] : |R[j, k]| ≤ M} − 1
= max{j ∈ [1, k] : |R[j, k]| > M}.

With all the values of ck for all k ∈ [1, n], we can build an optimal solution
of λave-MSP.
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Lemma 2. The solution P = {[1, bp], . . . , [b3 + 1, b2], [b2 + 1, b1]} is an optimal
solution of the λave-Maximum Segmentation Partition problem where b1 = n,
bk+1 = cbk for k ≥ 1, and cbp = 0.

Proof. The set P = {[1, bp], . . . , [b3 + 1, b2], [b2 + 1, b1]} is a partition of [1, n]
because b1 = n and bk+1 = cbk . We are to prove that P is an optimal solution.
Let Popt = {[1, op′ ], . . . , [o2 + 1, o1] be an optimal partition with o1 = n. We
denote P1 = Popt and Pk = Pk−1 \ ([ok+1 + 1, ok] ∪ [ok + 1, bk−1])

⋃
([ok+1 +

1, bk] ∪ [bk + 1, bk−1]). We are going to prove by induction on k that each Pk

is optimal (for k ∈ [1, p′]). The base of induction k = 1 holds by definition
(P1 = Popt). We assume that Pk−1 is an optimal solution. As bk = cbk−1 , we
have ok ≥ bk.

If bk ≥ ok+1 + 1, by Lemma 1, as ok+1 + 1 ≤ bk ≤ ok, we have |R[ok+1 +
1, bk]| ≤ |R[ok+1 + 1, ok]| ≤ M and thus Pk is a solution and |Pk| = |Pk−1|.
Hence by induction, Pk is an optimal solution.

If bk < ok+1 + 1, P �
k = Pk−1 \ ([ok+2 + 1, ok+1] ∪ [ok+1 + 1, ok] ∪ [ok +

1, bk−1])
⋃

([ok+2 + 1, bk] ∪ [bk + 1, bk−1]) is a solution and |P �
k | = |Pk−1| − 1 and

thus Pk−1 is not optimal which is impossible by induction.
As Pp′ is optimal and Pp′ = P , the partition P is an optimal solution. 	


3.2 pBWT and Linear Algorithm for λave-MSP

Given a string T [1,m] = t1 . . . tm, we denote by
←−
T the string corresponding

to the reverse of T , i.e.
←−
T = tm . . . t1. The positional Burrows–Wheeler Trans-

form [3] (or pBWT) of a set of recombinants R is two sets of n arrays of size m
– an array ak and an array dk for all k ∈ [1, n] – where for k ∈ [1, n], ak[1,m] is
a permutation of [1,m] such that

←−−−−−−−Rak[1][1, k] ≤ . . . ≤ ←−−−−−−−−Rak[m][1, k] lexicographi-
cally and dk[i] = 1 + max{j ∈ [1, k] : Rak[i][j] �= Rak[i−1][j]}, for i ∈ [2,m] and
dk[1] = k + 1.

Durbin [3] showed that we can compute recursively ak and dk from ak−1 and
dk−1 in O(m) time for a binary alphabet and Mäkinen and Norri [6] further
generalized the construction for integer alphabets of size O(m).

Lemma 3 ([6]). The arrays ak and dk can be computed from ak−1 and dk−1 in
O(m) time, assuming the input alphabet is [0, |Σ| − 1] with |Σ| = O(m).

Norri et al. [7] use three different arrays sk, tk, ek to store the array dk in
increasing sorted order where sk contains all distinct elements from dk in the
increasing sorted order (so that the length of sk might be less than m), ek is the
normalized array dk where sk[ek[j]] = dk[j] for all j ∈ [1,m] and tk is an array
of the same length as sk such that, for any j, tk[j] indicates the number of times
the value sk[j] occurs in dk.

Lemma 4 ([7]). The arrays ak, sk, ek and tk can be computed from ak−1, sk−1,
ek−1 and tk−1 in O(m) time, assuming the input alphabet is [0, |Σ| − 1] with
|Σ| = O(m).
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With sk, ek and tk we can redefine ck. As |R[sk[j] − 1, k]| =
∑

i∈[j,|tk|] tk[i],
one has

ck = max{j ∈ [1, |sk|] :
∑

i∈[j,|tk|]
tk[i] > M}. (1)

With this new definition of ck we obtain the following theorem.

Theorem 1. Given a bound M and a set of recombinants R, there is an algo-
rithm that computes an optimal solution of the λave-Maximum Segmentation
Partition problem in a streaming fashion in O(mn) time and O(m + n) space.

Proof. By Lemma 4 and Eq. 1, we can build ck in O(m) time for each value
k ∈ [1, n]. Lemma 2 gives us an optimal solution by using the values ck. Finally
we build and store all the values ck and make a backtracking from n to 0. 	


3.3 Right Greedy and Linear Algorithm for λave-MSL

Lemma 2 gives us a greedy solution from right to left, a “Left greedy” version.
Here we present a “Right greedy” version working from left to right.

Lemma 5. The solution P = {[b1, b2 − 1], [b2, b3 − 1], . . . , [bp, n]} is an optimal
solution of the λave-MSP problem where b1 = 1 and bk+1 = min{j ∈ [bk, n] : cj ≥
bk}.
Proof. By Lemma 1, we know that for all k ∈ [1, n] and for all j ∈ [k, n], ck ≤ cj .
Hence, we can adapt the proof of Lemma 2 by extending the optimal solution
of the right to prove this result. 	


By using the solution of Lemma 5 instead of Lemma 2, we do not need to
store all the array of ck to build the solutions of λave-MSL and of λave-MSP and
we can extend the result of Theorem 1.

Theorem 2. Given a bound M and a set of recombinants R, there is an algo-
rithm that computes an optimal solution of the λave-Maximum Segmentation
Length problem in a streaming fashion in O(mn) time and O(m) space. One can
also find in O(mn) time and O(m + |P |) space the corresponding partition P ,
thus solving the λave-Maximum Segmentation Partition problem.

4 λmin-Maximum Segmentation Problems

In this section, we give an O(mn) time algorithm building an optimal solution
of λmin-MSP and λmin-MSL. We focus on solving the problem λmin-MSL by using
dynamic programming algorithm; the corresponding partition (solution of λmin-
MSP) can be reconstructed by “backtracking” in a standard way (see [9]).
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4.1 Dynamic Programming Algorithm

Given an integer M and a set of recombinants R, the λmin-Maximum Segmenta-
tion Length problem seeks to maximize the smallest cardinality of the intervals of
a partition P subject to λmax ≤ M . In other words, this problem is to compute

max
P∈PM,R

min{j − i + 1 : [i, j] ∈ P} (2)

where PM,R is the set of all partitions P of [1, n] such that for all [i, j] ∈ P ,
|R[i, j]| ≤ M .

To solve λmin-MSL, we define the following recursion which solves (2):

N(k) =

⎧
⎨

⎩

∞ If k = 0,

max
ck≤j<k

min{N(j), k − j} Otherwise. (3)

Given k between 1 and n, we denote by Previous(k) the set of previous values
of k by (3), i.e.Previous(k) = Argmaxck≤j<k min{N(j), k − j}

= {j ∈ [ck, k − 1] : N(k) = min{N(j), k − j}}.
We can exhibit two recursive properties, one on ck and one on Previous(k)

(with Algorithm 1).

Algorithm 1. The algorithm Next(x, k).
1: z ← k − N(x);
2: w ← Argmax{N(u) : x ≤ u < z};
3: if x < z and N(w) > N(x) then
4: return Next(x + 1, k);
5: else
6: return x;

Lemma 6. Given k ∈ [1, n − 1], we have

1. ck ≤ ck+1,
2. For all j ∈ Previous(k), Next(max{j, ck+1}, k + 1) ∈ Previous(k + 1).

Proof. For 1, we straightforwardly obtain ck ≤ ck+1 due to Lemma 1.
For 2, we begin by proving that for all jk ∈ Previous(k), there exists jk+1 ∈

Previous(k + 1) with jk ≤ jk+1. Assume that it is not the case. Let be jk ∈
Previous(k) such that ∀jk+1 ∈ Previous(k+1), jk+1 < jk. In this case, we have
ck+1 < jk and for all j′ ∈ [ck+1, jk − 1], N(j′) ≤ N(k) = min{N(jk), k − jk}. If
N(jk) ≤ k−jk, we have that N(jk) < k−jk+1 and thus N(k+1) ≤ N(k). As jk ∈
[ck+1, k+1], jk is an element of Previous(k+1) which is impossible. Otherwise,
we have N(jk) > k − jk, N(jk) ≥ k − jk + 1 and thus jk ∈ Previous(k + 1)
which is also impossible.
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Now, we know that we can search jk+1 in [max{jk, ck+1}, k+1]. In Algorithm1,
we decrease the size of the interval by the left until finding an element of
Previous(k + 1). Indeed for Next(x, k), if N(w) > N(x), there exists u ∈
[x, k − N(x) − 1] such that N(u) > N(x) and thus min{N(x), k − x} <
min{N(u), k − u} and x /∈ Previous(k). Otherwise, we know that for all u ∈
[x, k − N(x) − 1], min{N(x), k − x} ≥ N(u) ≥ min{N(u), k − u} and for all
u ∈ [k − N(x), k], min{N(x), k − x} ≥ k − u ≥ min{N(u), k − u}. Hence,
we have for x = Next(max{jk, ck+1}, k + 1), for all u ∈ [max{jk, ck+1}, k + 1],
min{N(x), k + 1 − x} ≥ min{N(u), k + 1 − u} and thus x ∈ Previous(k + 1). 	

Theorem 3. Given a bound M and a set of recombinants R, there is an algorithm
that computes an optimal solution of the λmin-Maximum Segmentation Length
problem in a streaming fashion in O(nm) time and O(m + C) space where C =
max{k − ck + 1 : k ∈ [1, n]}. Using an additional array of length n, one can also
find in O(n) time the corresponding partition, thus solving the λmin-Maximum
Segmentation Partition problem.

Proof. By using a Range Maximum Queue (see Lemma 8) on the table of N(.)
initialized in size C, we can build one recursive step of Next (Algorithm 1) in
O(1). By using the pBWT, we can precompute to find C and build all the ck in
O(nm) time (see Lemma 4 and Eq. 1).

By Lemma 6, we can call O(k) times the algorithm Next to build N(k).
Hence, we can solve the λmin-Maximum Segmentation Length in the optimal
O(nm) time. 	


4.2 Range Maximum Queue

Our algorithm for solving λmin-MSL (Theorem 3) requires a Range Maximum
Queue data structure. We begin by presenting a semi-dynamic RMQ data struc-
ture that can answer RMQ queries on the array Q in constant time and can
“extend” Q to the right (see Lemma 7).

Lemma 7. There exists a data structure that maintains an integer array Q[1, n]
and supports the append query, which adds a new element to the end of Q and
increments n, in O(1) amortized time and the Range Maximum Query, which,
for given i ∈ [1, n] and j ∈ [i, n], computes a position h ∈ [i, j] such that Q[h] =
max{Q[�] : i ≤ � ≤ j}, in O(1) time.

Proof. Our solution is a straightforward modification of the classical static Range
Minimum Queury approach used in, for instance, [4] and [1].

Let n be the current length of Q. Denote b = � log n
4 �. We split Q[1, n] into

blocks of length b. As is standard, a Range Maximum Query on Q[i, j] is reduced
to two queries inside blocks and one “block-aligned” query: provided i and j
belong to different blocks (i.e., �(i − 1)/b� < �(j − 1)/b�), the new three query
ranges are Q[i, i′], Q[i′+1, i′′], Q[i′′+1, j] (each might be empty) such that i′ and
i′′ are multiples of b, i′ − i < b, and j − i′′ < b.



Linear Time Maximum Segmentation Problems 331

To process the query on Q[i′+1, i′′], we maintain, for each k ∈ [0, log n],
an array Pk[1, �n

b �] storing positions of maximums in ranges of 2k blocks;
more precisely, for h ∈ [1, �n

b �], we have (h − 2k)b < Pk[h] ≤ hb and
Q[Pk[h]] = max{Q[�] : (h − 2k)b < � ≤ hb}, assuming Q[�] = +∞ for � ≤ 0.
Then, putting k = �log((i′′ − i′)/b)�, the maximum in Q[i′+1, i′′] obviously is
max{Q[Pk[i′′/b]], Q[Pk[i′/b + 2k]]} and we return either Pk[i′′/b] or Pk[i′/b + 2k]
accordingly. To calculate k in O(1) time, we use either a special processor
instruction or a precomputed table L[1, 2� log n

2 �] such that L[x] = �log x� for
x ∈ [1, 2� log n

2 �] (hence, �log x� = L[x/2� log n
2 �] + � log n

2 � for x ∈ [2� log n
2 �+1, n]).

Note that the length of L is O(
√

n).
For “in-block” queries, we maintain an array C[1, �n

b �] succinctly encoding
Cartesian trees for all blocks (see below). The Cartesian tree1 for an array
A[h, h′] is a binary tree with vertices [h, h′] whose root is the smallest r ∈ [h, h′]
such that A[r] = max{A[�] : h ≤ � ≤ h′}, and the left (resp., right) child of r
(if any) is the root of the Cartesian tree for A[h, r−1] (resp., A[r+1, h′]). For
each h ∈ [1, �n

b �−1], we encode the Cartesian tree for the block Q[(h−1)b+1, hb]
as a sequence of 2b balanced parentheses and store it as a 2b-bit integer in
C[h] (zero/one bits correspond to opening/closing parentheses); C[�n

b �] stores
the Cartesian tree for Q[(�n

b �−1)b+1, n]. It is well known that if a is the low-
est common ancestor of two vertices p and q (p ≤ q) in the Cartesian tree
for A[h, h′], then A[a] = max{A[�] : p ≤ � ≤ q}. We precalculate a table
T [0, 22b−1][1, b][1, b] such that, given numbers p, q ∈ [1, b] and a 2b-bit inte-
ger x encoding the Cartesian tree for an integer array A[1, b], T [x][p][q] stores
the lowest common ancestor of p and q in the tree (if x does not encode any
such tree, the value of T [x][p][q] is undefined). Now, using the table T and the
array C, one can straightforwardly answer in-block queries in O(1) time. Note
that the size of T is O(22bb2) = O(

√
n logO(1) n).

It remains to describe how the defined structures are modified. Suppose that
a new value is appended to the end of Q and n is incremented. If the new n
is a multiple of b, a new element Pk[�n

b �] is added to each array Pk: P0[�n
b �]

is computed naively in O(b) time and, for k > 0, Pk[�n
b �] is set to either � =

Pk−1[�n
b �] or �′ = Pk−1[�n

b �−2k−1], depending on whether Q[�] < Q[�′]. Thus,
we spend Θ(b + log n) = Θ(b) time to update all Pk, which is amortized among
the previous b − 1 appends to Q in which n was not a multiple of b.

To maintain C, we utilize a well-known fact that the Cartesian tree for
any array A[h, h′] can be constructed in O(h′ − h) time online, i.e., we read
A[h, h′] from left to right and, after processing each prefix A[h, h′′], have the
Cartesian tree for A[h, h′′] (e.g., see [4]). The Cartesian tree for the last block
Q[(�n

b �−1)b+1, n] of Q is maintained using this online algorithm and, thus, when
n is incremented, we have a new tree and have to update C[�n

b �]. To this end,
we construct b − 1 tables Tj [0, 22j−1][1, 2j], for j ∈ [1, b−1], such that, given
h ∈ [1, 2j] and a 2j-bit number x that encodes a tree F with j vertices [1, j] in
a balanced parentheses form, Tj [x][h] contains a 2(j+1)-bit integer encoding a
tree obtained from F by attaching the new vertex j + 1 as a leaf to h if h ≤ j,
1 The original of cartesian tree is for Range Minimum Query.
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or by making j + 1 the new parent of h − j (so that the old parent of h − j, if
any, is the parent of j + 1) if h > j; Tj [x][h] is undefined if x does not encode
any tree. Using the tables Tj and the online algorithm, one can maintain C in
O(n) total time. Note that the size of all Tj is O(22bb2) = O(

√
n logO(1) n).

Finally, if the new value of �log n� differs from the old one, we rebuild all
structures in a straightforward way: the tables T , Tj , and L are precomputed in
O(

√
n logO(1) n) = o(n) time, P0 is constructed from Q in one pass, each array

Pk with k ∈ [1, log n] is computed using Pk−1 in Θ(n
b ) = Θ( n

log n ) time, and the
Cartesian trees for all blocks are built in O(n) total time and encoded in the
array C. Overall, the rebuilding takes O(n) time. Since this process is initiated
only when n is a power of two, the total time is O(n) in the end. 	


46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

1 3 2 4 3 2 4 2 3 2 3 4 3 4 3 4 3 3 5 4 4 4 5 2 4 3 1 3 2 5

i i′ i′′ j

46 48

47 50

49

C 0000110011100111

72

71

74

73

75

000100011001111011, ,

P0 52 , 57 , 64 , 68

P1 49 , 57 , 64 , 68

P2 32 , 49 , 49 , 64

Fig. 1. Example of the construction of the semi-dynamic Range Maximum Query of
Lemma 7. For the interval [48, 73] with b = 5, we split this interval in three intervals:
[48, 50], [51, 70] and [71, 73]. We build the positions of the maximum for these three
intervals which are T [0001001111][2][5] = 49, P2[15] = 64 and T [0010010111][1][3] = 71
and we take this one with the maximum value in the array which is 64.

In our algorithm, all the RMQ queries of the semi-dynamic RMQ data struc-
ture are made on a window from left to right. We can see this data structure as a
queue, i.e. a data structure where we can make insertion at the end and deletion
at the beginning in constant time. A Range Maximum Queue (or RMQe) is the
data structure Q that supports queue operations and range maximum query,
which, for given i ∈ [1, n] and j ∈ [i, n], computes a position h ∈ [i, j] such that
Q[h] = max{Q[�] : i ≤ � ≤ j}, in O(1) time. If we know the maximum number
of elements of the RMQe data structure, we can improve the space complexity
of our algorithm by removing the first elements of the array that will no longer
query (Fig. 1).

Lemma 8. Let N be an integer. There exists a queue data structure that main-
tains an integer array Q[1, n] with n ≤ N and supports the Range Maximum
query, which adds a new element to the end of Q and increments n, in O(1)
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amortized time, remove elements to the beginning of Q in O(1) amortized time
and the Range Maximum Query, which, for given i ∈ [1, n] and j ∈ [i, n], com-
putes a position h ∈ [i, j] such that Q[h] = max{Q[�] : i ≤ � ≤ j}, in O(1)
time.

Proof. We use the data structure that we explain in Lemma 7 but we initialize
all the arrays in function of N instead of n. Hence we initialize b = � log N

4 �,
log N +1 arrays Pk[1, �N

b �] (with k ∈ [0, log N ]), L[1, 2� log N
2 �] and C[1, �N

b �]. We
add also an integers begin initialized to 1 to store the beginning of the arrays
Pk and the array C and another integer start initiated to 0 to store the shift in
the first block (during all our algorithm start ∈ [0, b − 1]). We define by +A the
modular addition (plus one) in [1, A], i.e. for all x and y in [1, A], x+A y is equal
to x + y if x + y ≤ A and x + y − A otherwise (x +A y ∈ [1, A]).

To remember, in Lemma 7, a Range Maximum Query on Q[i, j] is reduced to
two queries inside blocks Q[i, i′] and Q[i′′+1, j] and one “block-aligned” query
Q[i′+1, i′′] with i′ and i′′ are multiples of b, i′ − i < b, and j − i′′ < b. As
we shift of start elements on the right, we take i′ and i′′ two multiples of b
such that i + start ≤ i′ ≤ i′′ ≤ j + start, i′ − (i + start) < b, and (j +
start) − i′′ < b. To build Q[i′+1, i′′] we put k = �log((i′′ − i′)/b)� and return
Pk[i′′/b+�N

b � begin] or Pk[i′/b+2k +�N
b � begin]. To build the queries inside blocks

Q[i, i′] and Q[i′′+1, j] we need to compute T [C[i′/b+�N
b � begin]][i+start][i′] and

T [C[i′′/b +�N
b � begin]][i′′][j + start].

To remove an element at the beginning of our RMQe we only need to increase
start by 1: start becomes start+1 if start < b− 1 and otherwise start becomes
0 and we update begin to begin +�N

b � 1.
To add an element at the end, we use the same online algorithm of Lemma 7

(see [4]) to maintain the Pk arrays and C by updating the elements of index end
except the fact that if n is a multiple of b, we do not create a new element, we
just update end to end +�N

b � 1. 	


The lemma can be further strenghtened by removing the requirement of
knowing the bound N : In that case, one needs to consider the case when log n
changes. Unlike in Lemma 7, series of alternating insertions and deletions can
now cause �log n� to change at each operation, so the amortization argument
cannot be used directly. However, this case can be handled by maintaining all
structures for two consective �log n� values: Consider x = �log n� to change into
x+1 due to insertion. We build all structures for x+1 as in the proof of Lemma 7,
but also keep the structures for x. All insertions and deletions are applied on
both structures until �log n� becomes x−1 or x+2. We then build structures for
x − 1 and keep structures for x − 1 and x, or build structures for x + 2 and keep
structures for x + 1 and x + 2. Now the O(n) rebuilding cost can be amortized
to the O(n) work done before it takes place.
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5 Conclusion

In this article, we described linear algorithms for Maximum Segmentation prob-
lems (see Table 1). In our Column Stream Model, we assume that we see our
data column by column and thus the time complexity is Ω(mn) and the space
complexity is Ω(m + X ) where X is the size of the output (X is equal to 1 for
λave-MSL and λmin-MSL and the cardinality of the optimal partition for λave-MSP
and λmin-MSP). All of these algorithms can be applied in the random access data
model (without data streams): they give exactly the same time complexities.

Table 1. Summary of Maximum Segmentation problems in the column stream model.

Problems Time complexity Space complexity Source

λave-MSP O(mn) O(m + |P |) where P is an optimal partition Theorem 1

λave-MSL O(mn) O(m) Theorem 2

λmin-MSP O(mn) O(m + n) Theorem 3

λmin-MSL O(mn) O(m + max{k − ck : k ∈ [1, n]}) Theorem 3

As future work, we plan to implement the algorithms and offer them as new
features of our founder reconstruction toolbox.2

Appendix

About the Column Stream Model

Given an algorithm for a problem with an input I and an output O, the space
complexity of this algorithm corresponds to the space used by I and by O and the
auxiliary space which is the temporary space used by this algorithm. Therefore
the space complexity is in Ω(|I| + |O|). In the case of problems of Maximum
Segmentation, all algorithms have a space complexity of Ω(nm) where the input
is a set of m strings of size n. As we want to avoid an auxiliary space of Θ(nm)
(this could be too big for a computer), we cannot use the random access model.
Indeed the random access model corresponds to open all the file in input in the
temporary memory. We suggest a specific streaming data model where the set of
strings of the same length is seen column by column: the Column Stream Model.
In this model, the size of the input is in Θ(m) which is acceptable.

To prove the realism of this model, we implemented a streaming way to read
a file and we tested this implementation with files of different sizes (see Fig. 2).
The experiments were run on a machine with an Intel Xeon E5-2680 v4 2.4GHz
CPU, which has a 35 MB Intel SmartCache. The machine has 256 gigabytes of
memory at a speed of 2400MT/s. The code was compiled with g++ using the
-Ofast optimization flag.

2 https://github.com/tsnorri/founder-sequences.

https://github.com/tsnorri/founder-sequences
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Fig. 2. Time and space complexity to read a set of recombinants depending of the
buffer size (256, 1024 and 4096).
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Abstract. We propose a new algorithm for merging succinct represen-
tations of de Bruijn graphs introduced in [Bowe et al. WABI 2012]. Our
algorithm is based on the lightweight BWT merging approach by Holt
and McMillan [Bionformatics 2014, ACM-BCB 2014]. Our algorithm has
the same asymptotic cost of the state of the art tool for the same prob-
lem presented by Muggli et al. [bioRxiv 2017, Bioinformatics 2019], but
it uses less than half of its working space. A novel important feature
of our algorithm, not found in any of the existing tools, is that it can
compute the Variable Order succinct representation of the union graph
within the same asymptotic time/space bounds.
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1 Introduction

The de Bruijn graph for a collection of strings is a key data structure in genome
assembly [19]. After the seminal work of Bowe et al. [5], many succinct repre-
sentations of this data structure have been proposed in the literature [2–4,18]
offering more and more functionalities still using a fraction of the space required
to store the input collection uncompressed. In this paper we consider the prob-
lem of merging two existing succinct representations of de Bruijn graphs built for
different collections. Since the de Bruijn graph is a lossy representation and from
it we cannot recover the original input collection, the alternative to merging is
storing a copy of each collection to be used for building new de Bruijn graphs
from scratch.

Recently, Muggli et al. [16,17] have proposed a merging algorithm for colored
de Bruijn graphs and have shown the effectiveness of the merging approach for
the construction of de Bruijn graphs for very large datasets. The algorithm in [16]
is based on an MSD Radix Sort procedure of the graph edges and its running
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time is O(mk), where m is the total number of edges and k is the order of the
de Bruijn graph.

A fundamental parameter of any construction algorithm for succinct data
structures is its space usage since this parameter determines the size of the largest
dataset that can be handled by a machine with a given amount of memory. For
a graph with m edges and n nodes the merging algorithm by Muggli et al. uses,
in addition to the input and the output, 2(m log σ+m+n) bits plus O(σ) words
of working space, where σ is the alphabet size. This value represents a three
fold improvement over previous results, but it is still larger than the size of the
resulting de Bruijn graph which is upper bounded by 2(m log σ+m)+o(m) bits.

In this paper, we present a new merging algorithm that still runs in O(mk)
time, but only uses 4n bits plus O(σ) words of working space. For genome
collections (σ = 5) our algorithm uses less than half the space of Muggli et
al.’s: our advantage grows with the size of the alphabet and with the average
outdegree m/n. Notice that the working space of our algorithm is always less
than the space of the resulting de Bruijn graph. In Sect. 4 we will discuss the
practical significance of this space reduction.

Our new merging algorithm is based on a mixed LSD/MSD Radix Sort algo-
rithm which is inspired by the lightweight BWT merging algorithm introduced
by Holt and McMillan [11,12] and later improved in [8,9]. In addition to its small
working space, our algorithm has the remarkable feature that it can compute as a
by-product, with no additional cost, the LCS (Longest Common Suffix) between
the node labels, thus making it possible to construct succinct Variable Order
de Bruijn graph representations [4], a feature not shared by any other merging
algorithm.

The rest of the paper is organized as follows. After reviewing succinct de
Bruijn graphs in Sect. 2, we describe our algorithm in Sect. 3. In Sect. 4 we
describe the implementation details and compare our result to the state of the
art. In Sect. 5 we discuss the case of colored or variable order de Bruijn graphs. In
Sect. 6 we show that combining an external memory version of our merging algo-
rithm with recent results on external memory de Bruijn graph construction [6,7]
we get a space efficient external memory procedure for building succinct repre-
sentations of de Bruijn graphs for very large collections.

2 Notation and Background

Given the alphabet Σ = {1, 2, . . . , σ} and a collection of strings C = s1, . . . , sd

over Σ, we prepend to each string si k copies of a symbol $ /∈ Σ which is
lexicographically smaller than any other symbol. The order-k de Bruijn graph
G(V,E) for the collection C is a directed edge-labeled graph containing a node v
for every unique k-mer appearing in one of the strings of C. For each node v we
denote by −→v = v[1, k] its associated k-mer, where v[1] . . . v[k] are symbols. The
graph G contains an edge (u, v), with label v[k], iff one of the strings in C contains
a (k + 1)-mer with prefix −→u and suffix −→v . The edge (u, v) therefore represents
the (k + 1)-mer u[1, k]v[k]. Note that each node has at most |Σ| outgoing edges
and all edges incoming to node v have label v[k].
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Fig. 1. de Bruijn graph for C = {TACACT, TACTCG, GACTCA}.

BOSS Succinct Representation. In 2012, Bowe et al. [5] introduced a suc-
cinct representation for the de Bruijn graph, usually referred to as BOSS rep-
resentation, for the authors’ initials. The authors showed how to represent the
graph in small space supporting fast navigation operations. The BOSS represen-
tation of the graph G(V,E) is defined by considering the set of nodes v1, v2, . . . vn

sorted according to the colexicographic order of their associated k-mer. Hence,
if ←−v = v[k] . . . v[1] denotes the string −→v reversed, the nodes are ordered so that

←−v1 ≺ ←−v2 ≺ · · · ≺ ←−vn (1)

By construction the first node is ←−v1 = $k and all ←−vi are distinct. For each node
vi, i = 1, . . . , n, we define Wi as the sorted sequence of symbols on the edges
leaving from node vi; if vi has out-degree zero we set Wi = $. Let Node[i] denote
the node label for Wi. Finally, we define

1. W [1,m] as the concatenation W1W2 · · · Wn;
2. W−[1,m] as the bitvector such that W−[i] = 1 iff W [i] corresponds to the

label of the edge (u, v) such that ←−u has the smallest rank among the nodes
that have an edge going to node v;

3. last[1,m] as the bitvector such that last[i] = 1 iff i = m or the outgoing edges
corresponding to W [i] and W [i + 1] have different source nodes.

4. C[1, σ] as the integer array, such that C[c] stores the number of symbols smaller
than c ∈ Σ ∪ {$} in the last symbol of Node.

The length m of the arrays W , W−, and last is equal to the number of edges
plus the number of nodes with out-degree 0. In addition, the number of 1’s in
last is equal to the number of nodes n, and the number of 1’s in W− is equal to
the number of nodes with positive in-degree, which is n − 1 since v1 = $k is the
only node with in-degree 0. Array C can be obtained by scanning W , W− and
last, therefore, array Node[1,m] is not stored explicitly.

Note that there is a natural one-to-one correspondence, called LF for his-
torical reasons, between the indices i such that W−[i] = 1 and the the set
{2, . . . , n}: in this correspondence LF (i) = j iff vj is the destination node of the
edge associated to W [i]. See example in Figs. 1 and 2.
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Fig. 2. BOSS representation of the graph in Fig. 1. The colored lines connect each label
in W to its destination node; edges of the same color have the same label. Note that
edges of the same color do not cross because of Property 1. (Color figure online)

Property 1. The LF map is order preserving in the following sense: if W−[i] =
W−[j] = 1 then

W [i] < W [j] =⇒ LF (i) < LF (j),
(W [i] = W [j]) ∧ (i < j) =⇒ LF (i) < LF (j). (2)

	

In [5] it is shown that given array C, enriching the arrays W , W−, and last

with the data structures from [10,20] supporting constant time rank and select
operations, we can efficiently navigate the graph G. The cost to store array C is
O(σ log n) bits. The overall cost of encoding the three arrays and the auxiliary
data structures is bounded by m log σ+2m+o(m) bits, with the usual time/space
tradeoffs available for rank/select data structures.

Colored BOSS. The colored de Bruijn graph [13] is an extension of the de
Bruijn graphs for a multiset of individual graphs, where each edge is associated
with a set of “colors” that indicates which graphs contain that edge.

The BOSS representation for a set of graphs G = {G1, . . . , Gt} contains
the union of all individual graphs. In its simplest representation, the colors of all
edges W [i] are stored in a two-dimensional binary array M, such that M[i, j] = 1
iff the i-th edge is present in graph Gj . There are different compression alter-
natives for the color matrix M that support fast operations [2,15,18]. Recently,
Alipanah et al. [1] presented a different approach to reduce the size of M by
recoloring.
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Variable-Order BOSS. The order k (dimension) of a de Bruijn graph is an
important parameter for genome assembling algorithms. The graph can be very
small and uninformative when k is small, whereas it can become too large or
disconnected when k is large. To add flexibility to the BOSS representation,
Boucher et al. [4] suggest to enrich the BOSS representation of an order-k de
Bruijn graph with the length of the longest common suffix (LCS) between the
k-mers of consecutive nodes v1, v2, . . . , vn sorted according to (1). These lengths
are stored in a wavelet tree using O(n log k) additional bits. The authors show
that this enriched representation supports navigation on all de Bruijn graphs of
order k′ ≤ k and that it is even possible to vary the order k′ of the graph on the
fly during the navigation up to the maximum value k.

The LCS between −→vi and −−→vi+1 is equivalent to the length of the longest
common prefix (LCP) between their reverses ←−vi and ←−−vi+1. The LCP (or LCS)
between the nodes v1, v2, · · · , vn can be computed during the k-mer sorting
phase. In the following we denote by VO-BOSS the variable order succinct de
Bruijn graph consisting of the BOSS representations enriched with the LCS/LCP
information.

3 Merging Plain BOSS Representations

Suppose we are given the BOSS representations of two de Bruijn graphs
〈W0,W

−
0 , last0〉 and 〈W1,W

−
1 , last1〉 obtained respectively from the collections

of strings C0 and C1. In this section we show how to compute the BOSS repre-
sentation for the union collection C01 = C0 ∪ C1. The procedure does not change
in the general case when we are merging an arbitrary number of graphs. Let G0

and G1 denote respectively the (uncompressed) de Bruijn graphs for C0 and C1,
and let

v1, . . . , vn0 and w1, . . . , wn1

denote their respective set of nodes sorted in colexicographic order. Hence, with
the notation of the previous section we have

←−v1 ≺ · · · ≺ ←−vn0 and ←−w1 ≺ · · · ≺ ←−−wn1 (3)

We observe that the k-mers in the collection C01 are simply the union of the
k-mers in C0 and C1. To build the de Bruijn graph for C01 we need therefore to:
(1) merge the nodes in G0 and G1 according to the colexicographic order of their
associated k-mers, (2) recognize when two nodes in G0 and G1 refer to the same
k-mer, and (3) properly merge and update the bitvectors W−

0 , last0 and W−
1 ,

last1.

3.1 Phase 1: Merging k-mers

The main technical difficulty is that in the BOSS representation the k-mers
associated to each node −→v = v[1, k] are not directly available. Our algorithm



342 L. Egidi et al.

will reconstruct them using the symbols associated to the graph edges; to this end
the algorithm will consider only the edges such that the corresponding entries in
W−

0 or W−
1 are equal to 1. Following these edges, first we recover the last symbol

of each k-mer, following them a second time we recover the last two symbols of
each k-mer and so on. However, to save space we do not explicitly maintain the
k-mers; instead, using the ideas from [11,12] our algorithm computes a bitvector
Z(k) representing how the k-mers in G0 and G1 should be merged according to
the colexicographic order.

To this end, our algorithm executes k−1 iterations of the code shown in Fig. 3
(note that lines 8–10 and 17–22 of the algorithm are related to the computation
of the B array that is used in the following section). For h = 2, 3, . . . , k, during
iteration h, we compute the bitvector Z(h)[1, n0 + n1] containing n0 0’s and n1

1’s such that Z(h) satisfies the following property

Property 2. For i = 1, . . . , n0 and j = 1, . . . n1 the i-th 0 precedes the j-th 1 in
Z(h) if and only if ←−vi [1, h] � ←−wj [1, h]. 	


Property 2 states that if we merge the nodes from G0 and G1 according
to the bitvector Z(h) the corresponding k-mers will be sorted according to the
lexicographic order restricted to the first h symbols of each reversed k-mer. As
a consequence, Z(k) will provide us the colexicographic order of all the nodes in
G0 and G1. To prove that Property 2 holds, we first define Z(1) and show that
it satisfies the property, then we prove that for h = 2, . . . , k the code in Fig. 3
computes Z(h) that still satisfies Property 2.

For c ∈ Σ let �0(c) and �1(c) denote respectively the number of nodes in
G0 and G1 whose associated k-mers end with symbol c. These values can be
computed with a single scan of W0 (resp. W1) considering only the symbols W0[i]
(resp. W1[i]) such that W−

0 [i] = 1 (resp. W−
1 [i] = 1). By construction, it is

n0 = 1 +
∑

c∈Σ

�0(c), n1 = 1 +
∑

c∈Σ

�1(c)

where the two 1’s account for the nodes v1 and w1 whose associated k-mer is $k.
We define

Z(1) = 01 0�0(1)1�1(1) 0�0(2)1�1(2) · · ·0�0(σ)1�1(σ) . (4)

The first pair 01 in Z(1) accounts for v1 and w1; for each c ∈ Σ group 0�0(c)1�1(c)

accounts for the nodes ending with symbol c. Note that, apart from the first two
symbols, Z(1) can be logically partitioned into σ subarrays one for each alphabet
symbol. For c ∈ Σ let

start(c) = 3 +
∑

i<c

(�0(i) + �1(i))

then the subarray corresponding to c starts at position start(c) and has size
�0(c) + �1(c). As a consequence of (3), the i-th 0 (resp. j-th 1) belongs to the
subarray associated to symbol c iff ←−vi [1] = c (resp. ←−wj [1] = c).
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To see that Z(1) satisfies Property 2, observe that the i-th 0 precedes j-th 1
iff the i-th 0 belongs to a subarray corresponding to a symbol not larger than
the symbol corresponding to the subarray containing the j-th 1; this implies←−vi [1, 1] � ←−wj [1, 1].

The bitvectors Z(h) computed by the algorithm in Fig. 3 can be logically
divided into the same subarrays we defined for Z(1). In the algorithm we use
an array F [1, σ] to keep track of the next available position of each subarray.
Because of how the array F is initialized and updated, we see that every time we
read a symbol c at line 14 the corresponding bit b = Z(h−1)[k], which gives us the
graph containing c, is written in the portion of Z(h) corresponding to c (line 16).
The only exception are the first two entries of Z(h) which are written at line 6
which corresponds to the nodes v1 and w1. We treat these nodes differently since
they are the only ones with in-degree zero. For all other nodes, we implicitly use
the one-to-one correspondence (2) between entries W [i] with W−[i] = 1 and
nodes vj with positive in-degree.

The following Lemma proves the correctness of the algorithm in Fig. 3.

Lemma 1. For h = 2, . . . , k, the array Z(h) computed by the algorithm in Fig. 3
satisfies Property 2.

Proof. To prove the “if” part of Property 2 let 1 ≤ f < g ≤ n0 + n1 denote two
indexes such that Z(h)[f ] is the i-th 0 and Z(h)[g] is the j-th 1 in Z(h) for some
1 ≤ i ≤ n0 and 1 ≤ j ≤ n1. We need to show that ←−vi [1, h] � ←−wj [1, h].

Assume first ←−vi [1] �= ←−wj [1]. The hypothesis f < g implies ←−vi [1] < ←−wj [1], since
otherwise during iteration h the j-th 1 would have been written in a subarray
of Z(h) preceding the one where the i-th 0 is written. Hence ←−vi [1, h] � ←−wj [1, h]
as claimed.

Assume now ←−vi [1] = ←−wj [1] = c. In this case during iteration h the i-th 0 and
the j-th 1 are both written to the subarray of Z(h) associated to symbol c. Let
f ′, g′ denote respectively the value of the main loop variable p in the procedure
of Fig. 3 when the entries Z(h)[f ] and Z(h)[g] are written. Since each subarray in
Z(h) is filled sequentially, the hypothesis f < g implies f ′ < g′. By construction
Z(h−1)[f ′] = 0 and Z(h−1)[g′] = 1. Say f ′ is the i′-th 0 in Z(h−1) and g′ is the
j′-th 1 in Z(h−1). By the inductive hypothesis on Z(h−1) it is

←−vi′ [1, h − 1] � ←−wj′ [1, h − 1]. (5)

By construction there is an edge labeled c from vi′ to vi and from wj′ to wj

hence

−→vi [1, h] = −→vi′ [1, h − 1]c, −→wj [1, h] = −→wj′ [1, h − 1]c;

therefore

←−vi [1, h] = c←−vi′ [1, h − 1], ←−wj [1, h] = c←−wj′ [1, h − 1];

using (5) we conclude that ←−vi [1, h] � ←−wj [1, h] as claimed.
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For the “only if” part of Property 2, assume ←−vi [1, h] � ←−wj [1, h] for some
i ≥ 1 and j ≥ 1. We need to prove that in Z(h) the i-th 0 precedes the j-th 1.
If ←−vi [1] �= ←−wj [1] the proof is immediate. If c = ←−vi [1] = ←−wj [1] then

←−vi [2, h] � ←−wj [2, h].

Let i′ and j′ be such that ←−vi′ [1, h − 1] = ←−vi [2, h] and ←−wj′ [1, h − 1] = ←−wj [2, h]. By
induction hypothesis, in Z(h−1) the i′-th 0 precedes the j′-th 1.

During phase h, the i-th 0 in Z(h) is written to position f when processing
the i′-th 0 of Z(h−1), and the j-th 1 in Z(h) is written to position g when pro-
cessing the j′-th 1 of Z(h−1). Since in Z(h−1) the i′-th 0 precedes the j′-th 1 and
since f and g both belong to the subarray of Z(h) corresponding to the symbol
c, their relative order does not change and the i-th 0 precedes the j-th 1 as
claimed. 	


1: for c ← 1 to σ do
2: F [c] ← start(c) � Init F array
3: Block id[c] ← −1 � Init Block id array
4: end for
5: i0 ← i1 ← 1 � Init counters for W0 and W1

6: Z(h) ← 01 � First two entries correspond to v1 and w1

7: for p ← 1 to n0 + n1 do
8: if B[p] �= 0 and B[p] �= h then
9: id ← �p A new block of Z(h−1) is starting
10: end if
11: b ← Z(h−1)[p] � Get bit b from Z(h−1)

12: repeat � Current node is from graph Gb

13: if W−
b [ib] = 1 then

14: c ← Wb[ib] � Get symbol from outgoing edges
15: q ← F [c]++ � Get destination for b according to symbol c
16: Z(h)[q] ← �b Copy bit b to Z(h)

17: if Block id[c] �= id then
18: Block id[c] ← id � Update block id for symbol c
19: if B[q] = 0 then � Check if already marked
20: B[q] ← h � A new block of Z(h) will start here
21: end if
22: end if
23: end if
24: until lastb[ib++] �= 1 � Exit if c was last edge
25: end for

Fig. 3. Main procedure for merging succinct de Bruijn graphs. Lines 8–10 and 17–22
are related to the computation of the B array introduced in Sect. 3.2.
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3.2 Phase 2: Recognizing Identical k-mers

Once we have determined, via the bitvector Z(h)[1, n0 +n1], the colexicographic
order of the k-mers, we need to determine when two k-mers are identical since
in this case we have to merge their outgoing and incoming edges. Note that two
identical k-mers will be consecutive in the colexicographic order and they will
necessarily belong one to G0 and the other to G1.

Following Property 2, and a technique introduced in [8], we identify the i-th
0 in Z(h) with ←−vi and the j-th 1 in Z(h) with ←−wj . Property 2 is equivalent to
state that we can logically partition Z(h) into b(h) + 1 h-blocks

Z(h)[1, �1], Z(h)[�1 + 1, �2], . . . , Z(h)[�b(h) + 1, n0 + n1] (6)

such that each block corresponds to a set of k-mers which are prefixed by the
same length-h substring. Note that during iterations h = 2, 3, . . . , k the k-mers
within an h-block will be rearranged, and sorted according to longer and longer
prefixes, but they will stay within the same block.

In the algorithm of Fig. 3, in addition to Z(h), we maintain an integer array
B[1, n0 + n1], such that at the end of iteration h it is B[i] �= 0 if and only if a
block of Z(h) starts at position i. Initially, for h = 1, since we have one block
per symbol, we set

B = 10 10�0(1)+�1(1)−1 10�0(2)+�1(2)−1 · · · 10�0(σ)+�1(σ)−1.

During iteration h, new block boundaries are established as follows. At line 9 we
identify each existing block with its starting position. Then, at lines 17–22, if the
entry Z(h)[q] has the form cα, while Z(h)[q − 1] has the form cβ, with α and β
belonging to different blocks, then we know that q is the starting position of an
h-block. Note that we write h to B[q] only if no other value has been previously
written there. This ensures that B[q] is the smallest position in which the strings
corresponding to Z(h)[q − 1] and Z(h)[q] differ, or equivalently, B[q] − 1 is the
LCP between the strings corresponding to Z(h)[q − 1] and Z(h)[q]. The above
observations are summarized in the following Lemma, which is a generalization
to de Bruijn graphs of an analogous result for BWT merging established in
Corollary 4 in [8].

Lemma 2. After iteration k of the merging algorithm for q = 2, . . . , n0 + n1 if
B[q] �= 0 then B[q] − 1 is the LCP between the reverse k-mers corresponding to
Z(k)[q − 1] and Z(k)[q], while if B[q] = 0 their LCP is equal to k, hence such
k-mers are equal. 	


The above lemma shows that using array B we can establish when two k-mers
are equal and consequently the associated graph nodes should be merged.

3.3 Phase 3: Building BOSS Representation for the Union Graph

We now show how to compute the succinct representation of the union graph
G0 ∪ G1, consisting of the arrays 〈W01, W−

01, last01〉, given the succinct repre-
sentations of G0 and G1 and the arrays Z(k) and B.
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The arrays W01, W−
01, last01 are initially empty and we fill them in a single

sequential pass. For q = 1, . . . , n0 + n1 we consider the values Z(k)[q] and B[q].
If B[q] = 0 then the k-mer associated to Z(k)[q − 1], say ←−vi is identical to the
k-mer associated to Z(k)[q], say ←−wj . In this case we recover from W0 and W1 the
labels of the edges outgoing from vi and wj , we compute their union and write
them to W01 (we assume the edges are in the lexicographic order), writing at
the same time the representation of the out-degree of the new node to last01. If
instead B[q] �= 0, then the k-mer associated to Z(k)[q − 1] is unique and we copy
the information of its outgoing edges and out-degree directly to W01 and last01.

When we write the symbol W01[i] we simultaneously write the bit W−
01[i]

according to the following strategy. If the symbol c = W01[i] is the first occur-
rence of c after a value B[q], with 0 < B[q] < k, then we set W−

01[i] = 1, otherwise
we set W−

01[i] = 0. The rationale is that if no values B[q] with 0 < B[q] < k
occur between two nodes, then the associated (reversed) k-mers have a common
LCP of length k − 1 and therefore if they both have an outgoing edge labelled
with c they reach the same node and only the first one should have W−

01[i] = 1.

4 Implementation Details and Analysis

Let n = n1 + n0 denote the sum of number of nodes in G0 and G1, and let
m = |W0| + |W1| denote the sum of the number of edges. The k-mer merging
algorithm as described executes in O(m) time a first pass over the arrays W0,
W−

0 , and W1, W−
1 to compute the values �0(c) + �1(c) for c ∈ Σ and initialize

the arrays F [1, σ], start[1, σ], Block id[1, σ] and Z(1)[1, n] (Phase 1). Then, the
algorithm executes k − 1 iterations of the code in Fig. 3 each iteration taking
O(m) time. Finally, still in O(m) time the algorithm computes the succinct
representation of the union graph (Phases 2 and 3). The overall running time is
therefore O(mk).

We now analyze the space usage of the algorithm. In addition to the input
and the output, our algorithm uses 2n bits for two instances of the Z(·) array
(for the current Z(h) and for the previous Z(h−1)), plus n�log k� bits for the B
array. Note, however, that during iteration h we only need to check whether B[i]
is equal to 0, h, or some value within 0 and h. Similarly, for the computation of
W−

01 we only need to distinguish between the cases where B[i] is equal to 0, k
or some value 0 < B[i] < k. Therefore, we can save space replacing B[1, n] with
an array B2[1, n] containing two bits per entry representing the four possible
states {0 , 1 , 2 , 3}. During iteration h, the values in B2 are used instead of the
ones in B as follows: An entry B2[i] = 0 corresponds to B[i] = 0, an entry
B2[i] = 3 corresponds to an entry 0 < B[i] < h − 1. In addition, if h is even,
an entry B2[i] = 2 corresponds to B[i] = h and an entry B2[i] = 1 corresponds
to B[i] = h − 1; while if h is odd the correspondence is 2 → h − 1, 1 → h. The
reason for this apparently involved scheme, first introduced in [6], is that during
phase h, an entry in B2 can be modified either before or after we have read it at
Line 9. Using this technique, the working space of the algorithm, i.e., the space
in addition to the input and the output, is 4n bits plus 3σ+O(1) words of RAM
for the arrays start, F , and Block id.
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Theorem 1. The merging of two succinct representations of two order-k de
Bruijn graphs can be done in O(mk) time using 4n bits plus O(σ) words of
working space. 	


We stated the above theorem in terms of working space, since the total space
depends on how we store the input and output, and for such storage there are
several possible alternatives. The usual assumption is that the input de Bruijn
graphs, i.e. the arrays 〈W0,W

−
0 , last0〉 and 〈W1,W

−
1 , last1〉, are stored in RAM

using overall m log σ + 2m bits. Since the three arrays representing the output
de Bruijn graph are generated sequentially in one pass, they are usually written
directly to disk without being stored in RAM, so they do not contribute to
the total space usage. Also note that during each iteration of the algorithm in
Fig. 3, the input arrays are all accessed sequentially. Thus we could keep them
on disk reducing the overall RAM usage to just 4n bits plus O(σ) words; the
resulting algorithm would perform additional O(k(m log σ+2m)/D) I/Os where
D denotes the disk page size in bits.

Comparison with the State of the Art. The de Bruijn graph merging algo-
rithm by Muggli et al. [16,17] is similar to ours in that it has a planning phase
consisting of the colexicographic sorting of the (k + 1)-mers associated to the
edges of G0 and G1. To this end, the algorithm uses a standard MSD radix sort.
However only the most significant symbol of each (k+1)-mer is readily available
in W0 and W1. Thus, during each iteration the algorithm computes also the next
symbol of each (k+1)-mer that will be used as a sorting key in the next iteration.
The overall space for such symbols is 2m�log σ� bits, since for each edge we need
the symbol for the current and next iteration. In addition, the algorithm uses
up to 2(n + m) bits to maintain the set of intervals consisting in edges whose
associated reversed (k+1)-mer have a common prefix; these intervals correspond
to the blocks we implicitly maintain in the array B2 using only 2n bits.

Summing up, the algorithm by Muggli et al. runs in O(mk) time, and uses
2(m�log σ� + m + n) bits plus O(σ) words of working space. Our algorithm has
the same time complexity but uses less space: even for σ = 5 as in bioinformatics
applications, our algorithm uses less than half the space (4n bits vs. 6.64m + 2n
bits). This space reduction significantly influences the size of the largest de Bruijn
graph that can be built with a given amount of RAM. For example, in the setting
in which the input graphs are stored on disk and all the RAM is used for the
working space, our algorithm can build a de Bruijn graph whose size is twice
the size of the largest de Bruijn graph that can be built with the algorithm of
Muggli et al..

We stress that the space reduction was obtained by substantially changing
the sorting procedure. Although both algorithms are based on radix sorting they
differ substantially in their execution. The algorithm by Muggli et al. follows
the traditional MSD radix sort strategy; hence it establishes, for example, that
ACG ≺ ACT when it compares the third ‘digits‘ and finds that G < T . In
our algorithm we use a mixed LSD/MSD strategy: in the above example we also
find that ACG ≺ ACT during the third iteration, but this is established without
comparing directly G and T , which are not explicitly available. Instead, during
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the second iteration the algorithm finds that CG ≺ CT and during the third
iteration it uses this fact to infer that ACG ≺ ACT : this is indeed a remarkable
sorting trick first introduced in [12] and adapted here to de Bruijn graphs.

5 Merging Colored and VO-BOSS Representations

Our algorithm can be easily generalized to merge colored and VO (variable-
order) BOSS representations. Note that the algorithm by Muggli et al. can also
merge colored BOSS representations, but in its original formulation, it cannot
merge VO representations.

Given the colored BOSS representation of two de Bruijn graphs G0 and G1,
the corresponding color matrices M0 and M1 have size m0 × c0 and m1 × c1.
We initially create a new color matrix M01 of size (m0 +m1)× (c0 + c1) with all
entries empty. During the merging of the union graph (Phase 3), for q = 1, . . . , n,
we write the colors of the edges associated to Z(h)[q] to the corresponding line
in M01 possibly merging the colors when we find nodes with identical k-mers
in O(c01) time, with c01 = c0 + c1. To make sure that color ids from M0 are
different from those in M1 in the new graph we add the constant c0 (the number
of distinct colors in G0) to any color id coming from the matrix M1.

Theorem 2. The merging of two succinct representations of colored de Bruijn
graphs takes O(m max(k, c01)) time and 4n bits plus O(σ) words of working
space, where c01 = c0 + c1. 	


We now show that we can compute the variable order VO-BOSS representa-
tion of the union of two de Bruijn graphs G0 and G1 given their plain, eg. non
variable order, BOSS representations. For the VO-BOSS representation we need
the LCS array for the nodes in the union graph 〈W01, W−

01, last01〉. Notice that
after merging the k-mers of G0 and G1 with the algorithm in Fig. 3 (Phase 1) the
values in B[1, n] already provide the LCP information between the reverse labels
of all consecutive nodes (Lemma 2). When building the union graph (Phase 3),
for q = 1, . . . , n, the LCS between two consecutive nodes, say vi and wj , is equal
to the LCP of their reverses ←−vi and ←−wj , which is given by B[q] − 1 whenever
B[q] > 0 (if B[q] = 0 then ←−vi = ←−wj and nodes vi and vj should be merged).
Hence, our algorithm for computing the VO representation of the union graph
consists exactly of the algorithm in Fig. 3 in which we store the array B in
n log k bits instead of using the 2-bit representation described in Sect. 4. Hence
the running time is still O(mk) and the working space becomes the space for
the bitvectors Z(h−1) and Z(h) (recall we define the working space as the space
used in addition to the space for the input and the output).

Theorem 3. Merging two succinct representations of variable order de Bruijn
graphs takes O(mk) time and 2n bits plus O(σ) words of working space. 	
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6 External Memory Construction

In this section we show that using our merging algorithm we can design a com-
plete external memory algorithm to construct succinct de Bruijn graphs.

We preliminary observe that at each iteration of the algorithm in Fig. 3 not
only the arrays 〈W0,W

−
0 , last0〉 and 〈W1,W

−
1 , last1〉 but also Z(h−1) and B2

are read sequentially from beginning to end. At the same time, the arrays Z(h)

and B2 are written sequentially but into σ different partitions whose starting
positions are the values in start[1, σ] which are the same for each iteration. Thus,
if we split Z(·) and B2 into σ different files, all accesses are sequential and our
algorithm runs in external memory in O(mk) time, doing O(mk) sequential I/Os
and using only O(σ) words of RAM.

Assume now we are given a string collection C = s1, . . . , sd of total length N ,
the desired order k, and the amount of available RAM M . First, we split C into
smaller subcollections ri = sj , . . . , sj′ , such that we can compute the BWT and
LCP array of each subcollection in linear time in RAM using M bytes, using
e.g. the suffix sorting algorithm gSACA-K [14]. For each subcollection we then
compute, and write to disk, the BOSS representation of its de Bruijn graph using
the algorithm described in [6, Section 5.3]. Since these are linear algorithms the
overall cost of this phase is O(N) time and O(N) sequential I/Os.

Finally, we merge all de Bruijn graphs into a single BOSS representation
of the union graph with the external memory variant just described. Since the
number of subcollections is O(N/M), a total of log(N/M) merging rounds will
suffice to get the BOSS representation of the union graph.

Theorem 4. Given a strings collection C = s1, . . . , sd of total length N , we can
build the corresponding order-k succinct de Bruijn graph in O(N k log(N/M))
time and O(N k log(N/M)) sequential I/Os using O(M) words of RAM. 	


Note that our construction algorithm can be easily extended to generate the
colored/variable order variants of the de Bruijn graph. For the colored variant it
suffices to use gSACA-K to generate also the document array [14] and then use the
colored merging variant. For the variable order representation, it suffices to store
the LCP/LCS values during the very last merging phase, using the techniques
described in [6, Section 3] to handle them in external memory.
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Abstract. Text compression schemes and compact data structures usu-
ally combine sophisticated probability models with basic coding meth-
ods whose average codeword length closely match the entropy of known
distributions. In the frequent case where basic coding represents run-
lengths of outcomes that have probability p, i.e. the geometric distribu-
tion Pr(i) = pi(1 − p), a Golomb code is an optimal instantaneous code,
which has the additional advantage that codewords can be computed
using only an integer parameter calculated from p, without need for a
large or sophisticated data structure. Golomb coding does not, however,
gracefully handle the case where run-lengths are bounded by a known
integer n. In this case, codewords allocated for the case i > n are wasted.
While negligible for large n, this makes Golomb coding unattractive in
situations where n is recurrently small, e.g., when representing many
short lists of integers drawn from limited ranges, or when the range of n
is narrowed down by a recursive algorithm.

We address the problem of choosing a code for this case, considering
efficiency from both information-theoretic and computational perspec-
tives, and arrive at a simple code that allows computing a codeword
using only O(1) simple computer operations and O(1) machine words.
We demonstrate experimentally that the resulting representation length
is very close (equal in a majority of tested cases) to the optimal Huffman
code, to the extent that the expected difference is practically negligi-
ble. We describe efficient branch-free implementation of encoding and
decoding.

1 Introduction

We are concerned with efficiently computing short codewords for values that fol-
low a geometric distribution up to a bounding integer. Before discussing appli-
cation areas and outlining the nature of our result, we begin with a scenario that
illustrates the precise nature of our problem.

A Context for the Problem. In the original publication of a coding method for a
geometric distribution, Golomb [6] presents an introductory example involving
Agent 00111 at the Casino, “playing a game of chance, while the fate of mankind
hangs in the balance”. During 00111’s game, the Secret Service wishes to con-
tinually receive status updates, and has enrolled the bartender to communicate
c© Springer Nature Switzerland AG 2019
N. R. Brisaboa and S. J. Puglisi (Eds.): SPIRE 2019, LNCS 11811, pp. 355–371, 2019.
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the length of every run of consecutive wins, where a win is the more probable of
two possible outcomes. Golomb presents his code as the solution to the problem
of using the minimum number of bits in the transmission of run lengths.

To continue Golomb’s scenario, we place ourselves in the situation of a com-
peting agency that wishes to transmit the same information more efficiently,
using the observation that there is always a finite upper bound n on the run
length of consecutive wins, due to the need for 00111 to leave the game at
predictable intervals to renew his cocktail. Since this means that only a finite
number of possible run lengths exists, a Huffman code for the different possible
values would seem to be an option. But since n varies, a new code would have to
be computed for every codeword transmitted, and unlike Golomb coding, Huff-
man coding requires construction of a size n data structure. To circumvent the
Casino’s scanning visitors for cheating devices, codewords must be computed by
a computing unit woven into our agent’s dress, with only a few registers of stor-
age and minimal power consumption. Thus, in algorithmic terms, our mission,
should we decide to accept it, is to find a method to compute short codewords
for this scenario in O(1) simple operations using O(1) storage.

Application Areas. Because of the prevalence of the geometric distribution in
data, Golomb coding, and the computationally simplified version Rice coding [16]
are – along with Huffman coding [9] – among the most common methods for
low-level entropy coding in data compression. Although arithmetic coding [18]
can often produce better compression, it is inconvenient in many applications,
e.g. due to the necessity to decode previous parts of the bit sequence in order
to access an arbitrary encoded value, which makes it less attractive for use in
compact data structures [15].

A common context for Golomb coding is representing lengths of gaps between
events that are estimated to occur with some known small probability 1 − p.
One common application is compressed representations of inverted index data
structures [23,24], but many others exist. The significance of Golomb coding
is demonstrated by a steady flow of new works citing Golomb [6] as well as
the variant devised and proven optimal by Gallager and van Voorhis [4], which
has become the standard formulation.1 To take a small selection of examples,
recent publications have included work on Golomb parameter estimation using
machine learning [10], use for biomedical data [1], lossless video compression [2],
encoding phasor measurement to monitor the power grid [21], and replacements
for Golomb and Rice coding for random access [12].

In the situation addressed in this work – values to be encoded bounded by a
relatively small integer n – Golomb coding is unattractive (and may therefore fail
to be considered a possibility), because the part that the Golomb code dedicates
to values above n would be wasted, rendering redundancy unnecessarily large.

In the compressed-inverted-index context, this could arise when document
references in many (presumably small) lists are drawn from a limited collection.
More typically, the upper bound on run length appears because integers are

1 Golomb’s formulation partitions values into groups of equal codeword length, which
is a slightly less convenient take on the same family of codes.
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encoded recursively, contained in intervals that shrink with recursion depth,
similarly to schemes such as interpolative coding [14], tournament coding [22],
wavelet trees [7], or recursive subset coding [13].

An available efficient entropy coding method for the bounded geometric dis-
tribution can contribute to development of effective compression schemes that
do not yet exist.

Outline. We propose a method that computes a codeword for the run length of
outcomes that have a known probability p ≥ 1

2 , given an upper bound n, and two
integer parameters m and m′′ chosen on the basis of p. The method uses only
a constant number of machine words, and a constant number of simple compu-
tational operations per computed codeword. The expected codeword length is
close to minimum.

We generally assume (although our coding does not strictly depend on it)
that only a small number of different p – and hence a small collection of m and
m′′ – appear in processing a single file or data structure. Therefore, if m and m′′

need to be included in the compressed representation (because p is not available
to the decoder), we assume that the encoding length as well as encoding time is
negligible. Furthermore, we assume that n is available from the context to both
encoder and decoder, and does not need to be explicitly represented. See Sect. 5
for a more detailed account of time complexity, along with a description of an
efficient branch-free implementation.

Section 2 sets the scene by relating theory and relevant previous methods,
and Sect. 3 presents our suggested code. Section 4 evaluates compression perfor-
mance, Sect. 5 addresses time complexity and efficient implementation, and we
conclude with some short comments in Sect. 6.

2 Entropy Codes and Code Trees

Let X be a random variable that takes on non-negative integer values i ∈ 0, . . . , n
with probabilities Pr(X = i) = pi. We are concerned with finding codes that
map the possible values of X to binary codewords of minimum expected length.
A lower bound is the entropy H(X) = −∑n

i=0 pi lg pi bits, where lg denotes log-
arithm in base 2. The bound can be matched only if all probabilities are dyadic,
i.e., lg pi ∈ Z. The redundancy of a code is the difference between its expected
codeword length and the entropy. Any instantaneous code, where no codeword is
a prefix of another, allows us to equate each code with a code tree: a binary tree
with all possible values as leaves, and codewords identified by their paths from the
root (0 for left branching, 1 for right branching). We refer to the number of values
in a code tree (i.e. the number of leaves) as the size of the tree. It is well known
that a Huffman tree, constructed bottom up by repeatedly joining the two sub-
trees of lowest probability, is optimal, i.e., no code that maps an individual value
to each codeword can have shorter expected codeword length [3,23].

When probabilities are roughly equal, or more specifically, the highest prob-
ability is no greater than the sum of the two lowest probabilities, codeword
lengths in an optimal code differ by at most one bit. Therefore, an optimal code
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is achieved by using codeword length h − 1 for the s lowest-probability values
and h for the other n + 1 − s, where h = �lg(n + 1)� and s = 2h − (n + 1) (see
Fig. 1). We refer to this as a balanced code.2

0 1 2 3 4
5 6 7 8 9 10

0
1

2
3

4

Fig. 1. Balanced code tree for n = 10 (left), and unlimited unary code tree (right).

On the other extreme, if the pi decrease at least as quickly as proportionally
to a reverse Fibonacci sequence, an optimal code is achieved by a code tree that
is as skewed as possible, e.g. by encoding i as i one-bits followed by a single
zero bit. This is referred to as a unary code (Fig. 1). With an upper bound n for
i, the final zero in the codeword for n can be excluded.

When pi = pi(1 − p) (the geometric distribution) for some 1
2 ≤ p < 1, i ≥ 0,

and pm = 1
2 for some integer m, an optimal code is achieved by partitioning

values into groups of size m, which we shall refer to as bunches in the code
tree, and composing the code from two parts: a unary code that numbers the
bunch of each value counting from the root, and a balanced code that determines
the offset of each value inside its bunch. This is referred to as a Golomb code
(Fig. 2). More generally, let m be the integer such that pm is as close as possible
to 1

2 . If pm ≥ 1
2 , then pm+1 < 1

2 , and m is the smallest integer such that
pm − 1

2 ≤ 1
2 −pm+1 ⇔ pm +pm+1 ≤ 1. If pm ≤ 1

2 , m is again the smallest integer
for which pm + pm+1 ≤ 1. Consequently,

m = min
{

� ∈ Z
∣
∣ p� + p�+1 ≤ 1

}
=

⌈
lg(1 + p)

− lg p

⌉

(1)

Note that if p = 1
2 , then m = 1, and the Golomb code is equal to a unary code.

Gallager and van Voorhis [4] showed, using a bottom-up Huffman tree argu-
ment, that choosing m according to Eq. 1 always produces an optimal code tree.
An alternative extended treatment was given by Golin [5].

3 Finite Code Trees for the Geometric Distribution

We now turn to the problem of forming code trees for a geometric distributions
up to a maximum value n:

Pr(X = i) = pi(1 − p) for i ∈ Z and 0 ≤ i < n,

2 Many authors use the term binary code. However, this clashes with the fact that all
codes we address are binary in a wider sense.
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Pr(X = n) = 1 −
n−1∑

i=0

pi(1 − p) = pn, and

Pr(X = x) = 0 for all other x.

We write H(p, n) = −∑n
i=0 pi(1 − p) lg(pi(1 − p)) for the entropy under this

distribution, and denote the expected code length for a corresponding optimal
code tree (e.g. Huffman) LH(p, n) ≥ H(p, n)

For convenience in encoding and decoding, we require values 0, . . . , n to be
in left to right order in the code tree, which does not impose any penalty on
codeword lengths. To see this, consider starting from the canonical code tree
[19,23], where codeword lengths are optimal, and leaves have monotonically non-
decreasing depth from left to right. This differs from our desired code tree only
in the placement of leaf n, which does not generally have the smallest codeword
length, and is therefore not generally the rightmost leaf in the canonical tree.
For every internal node in the path from the root to n, exchange the left and
right subtrees wherever n is in the left subtree. This places n as the rightmost
leaf, while maintaining the depths of all leaves. Hence, exchanging subtrees can
displace the order only among leaves with the same depth, and since all leaves
other than n have strictly decreasing probability order, they can be set in the
right order without compromising the optimality of the tree.

3.1 Approach

When n → ∞, a Golomb code tree is optimal [4], and a fair guess is that the code
for finite n has some similarity to a Golomb code. Indeed, since the wasted prob-
ability pn is negligible for large n, a hybrid scheme that uses Huffman coding if n
is smaller than some acceptable constant, and Golomb coding otherwise, would
theoretically solve our problem. However, in the interest of practical efficiency
and simplicity, we seek a coding method that operates uniformly for all n.

A first attempt might be to use a Golomb code with minimal modification:
Let m be defined by Eq. 1, and define d1 = 
n−1

m � and m1 = n − d1m ≤ m.
Assign the first d1m values the same codewords as in the corresponding Golomb
code. Let the rightmost internal node at depth d1 have leaf n as its right child,
and a balanced code tree for values n−m1, . . . , n− 1, as its left subtree (Fig. 2).
Consider the nodes along the rightmost path of the resulting tree. In general,
the internal node at depth k along this path (0 ≤ k < d1) separates values into
two subtrees with probability weights

∑(k+1)m−1
i=km pi(1−p) = pkm −p(k+1)m and

p(k+1)m. Dividing by pkm, we see that the relative weights of left and right subtree
are 1−pm and pm, which given our definition of m implies (unsurprisingly) that
the subtrees are as weight-balanced as possible. The final internal node on the
rightmost path has a left subtree of size m1 (with probability weight pn−m1 −pn),
and leaf n for right child (with weight pn). This implies that at least locally, this
node also balances the weights among its descendents as equally as possible.

Consequently, this tree is similar to what would be obtained by the top-down
method known as Shannon–Fano coding, or more precisely (since our leaf prob-
abilities are not necessarily monotonically non-increasing), a weight-balanced
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Fig. 2. Golomb code tree (left), and top-down weight balanced tree (right). Triangles
are balanced code subtrees with sizes (number of leaves) shown inside and value ranges
below.

code tree as studied by Rissanen [17] and Horibe [8]. The expected codeword
length is therefore guaranteed to be asymptotically close to H(p, n), but not
necessarily optimal. In particular, note the striking anomaly when m1 is much
smaller than m, that a shorter codeword may be assigned to n − m1 (and pos-
sibly others) than to n − m1 − 1. This causes substantial redundancy for some
p and n. For instance, when p = 0.88 and n = 6, the expected codeword length
is 2.63, ten percent more than the optimal LH(0.88, 6) = 2.38.

The reason is that greedy top-down partitioning can leave us with a severe
unbalance between leaf n and the size-m1 subtree, while a Huffman tree con-
struction, which is bottom-up, can distribute weight among bunches of lower
depth for better overall balance. For example, with p = 0.9 and n = 43, the
optimal tree has four bunches of size m = 7 and one of size 8. With the same p
and n = 44, only two size m bunches emerge, three of size 6, and one of size 5.

It is unclear whether a rule can be found that assigns bunch sizes optimally
while allowing any codeword to be computed without explicitly processing ω(1)
nodes in the code tree. Therefore, rather than computing the optimal code,
we propose the following coding, which renders codewords almost as easy to
compute as the top-down weight balanced code trees.

3.2 Suggested Code

Our suggested code trees are shaped similarly to the corresponding Golomb
trees, with the exception of a subtree at the bottom that we refer to as the tail.
Unless n < m, the tail has at least m+1 and at most 2m leaves, whose rightmost
leaf is n, and whose other leaves have as equal depths as possible (similarly to a
balanced code). If n < 2m, the whole tree is comprised of the tail.

Encoding and decoding takes two parameters m and m′′, where m should
be chosen according to Eq. 1, and the choice of integer m′′, m < m′′ ≤ 2m, is
discussed at the end of this section and defined in Eq. 2. Define
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m′ = min{m + (n mod m), n}, and

dt =
n − m′

m
.

Note that min{n,m} ≤ m′ < 2m, and that dt, the tail depth, is an integer.
The codeword for i where 0 ≤ i < dtm consists of 
i/m� one-bits followed by

the binary representation for i mod m left-padded with zeros up to h = �lg m�
bits if i mod m < 2h − m, and up to h + 1 bits otherwise. This is equivalent to
a unary code for the bunch number followed by a balanced code for the offset
inside the bunch, i.e., the same as in the corresponding Golomb code.

The encoding of the remaining m′ + 1 values (the tail) depends on three
parameters: the height of the tail subtree, which we denote h′; the depth of n
within the tail subtree, which is either 1 or 2 and denoted en; and the number
of shorter codewords among the values n − m′, . . . , n − 1, denoted s′ (cf. s for
the m-sized bunches). The values are assigned as follows:

– If m′ < m′′, we let en = 1, h′ = �lg m′� + 1, and s′ = 2h′−1 − m′ (depicted
top right in Fig. 3).

– Otherwise, en = 2, h′ =
⌈
lg 4m′

3

⌉
, and s′ = 3 · 2h′−2 − m′ (depicted bottom

right in Fig. 3). Our choice of m′′ will ensure that this case arises only when
m′ ≥ 3.

The codeword for i when n − m′ ≤ i < n is dt one-bits followed by the binary
representation of j = i − m · dt, left-padded with zeros up to h′ − 1 bits when
j < s′, and up to h′ bits when j ≥ s′. Finally, the codeword of n is dt + en

one-bits. A demonstration implementation of encoding and decoding in Python
can be found in Appendix 1.

Fig. 3. General code tree for suggested coding. Left, the overall code tree. Top right,
the tail for case en = 1, and bottom right for case en = 2.
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Correctness and Decoding. Our encoding corresponds to the general code
tree shown in Fig. 3. Therefore, given m, m′′ and n, it yields a well-defined
instantaneous code for integers i from 0 to n.

Decoding reads one-bits from the input, stopping after a zero-bit has
appeared or dt bits have been read. The number of one-bits found, which we
denote di, is the number of an m-sized bunch if di < dt, in which case decoding
procedes with reading the offset in the bunch as an ordinary balanced code.
Otherwise, we interpret the following h′ bits as a number j that identifies a leaf
in the tail. (If less than h′ bits remain in the input, we right-pad with any bits.)
If the en most significant bits of j are one, the decoded value is n. Otherwise, if
j < 2s we are in the range of the shorter codewords, which implies that h′ − 1
bits should be consumed and the decoded value of i is m ·dt +
 j

2�; and if j ≥ 2s,
h′ bits should be consumed and i = m · dt + j − s′

Justification and Choice of m′′. If m divides n and n ≥ m, then m′ = m.
Since we stipulated that m′′ > m, the shape of our code tree in this case is the
same as the optimal tree for unbounded values [4] except that the subtree for
values above n − 1, with total probability pn, is contracted into a single leaf.
Since the code tree of Gallager and van Voorhis is optimal, our tree must also be
optimal for m′ = m, since otherwise the subtree that our code contracts would
have had to be placed differently in the optimal unbounded tree.

Consequently, it is clear that the ideal value of en (the local depth of n in
the tail subtree) is 1 when m′ = m. On the other hand, we can see that as m′

approaches 2m, the ideal value of en should ultimately be 2. To decide where in
the range between m and 2m to place the limit m′′ between cases en = 1 and
en = 2, we compare the expected codeword lengths for the two tail variants in
Fig. 3. The codeword lengths for values below n are between 
lg m′� and �lg m′�
in the en = 1 case, and between 2 + 
lg 4m′

3 � and 2 + �lg 4m′
3 � in the en = 2

case. Using the respective approximation lg m′ for the codeword lengths in the
en = 1 case and 2 + lg 4m′

3 in the en = 2 case, we estimate that en = 1 results in
a smaller expected codeword length than en = 2 when

(pn−m′ − pn)(1 + lg m′) + 1 · pm′
< pn(2 + lg

m′

3
) + 2 · pm′

.

Simplifying and solving for m′ yields

m′ <
lg( 1

lg 3−1 + 1)

− lg p
≈ 1.4380

− lg p
.

Hence, it is reasonable to choose m′′, the value that determines the value of en

in our code specification, as

m′′ =
⌈

1.4380
− lg p

⌉

. (2)

We note that this implies that m′′ = 2 only when m = 1 ⇒ m′ = 1, which
avoids the degenerate case where en = 2 coincides with m′ < 3, necessary for
our code tree to be well-defined.
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The choice of m′′ is a heuristic that is not guaranteed to result in an optimal
code tree. The same is true for our choice to assign codewords to n−m′, . . . , n−1
whose lengths differ by at most one: a difference of two (but never more than
two, by the choice of m′) may result in a slightly superior code. Also, as noted
in Sect. 3.1, our choice of placing all but the last m′ values in size-m bunches is
not always optimal. Rather, these choices were made in order to obtain easily
computable codewords without deviating much from the optimum. The next
section evaluates to what extent this is successful.

4 Evaluation of Code Efficiency

Let L(p, n) be the expected codeword length of our code for specified p and n.
Using a bound derived by Horibe [8], we can conclude that L(p, n) ≤ H(p, n) +
2 − (n + 1)pn−1(1 − p). However, as worst-case bounds on codeword length tend
to be, this is pessimistic, and not a useful realistic estimate of code performance.

For a more practically valid assessment, we first note that our codes are
proven optimal when m = m′, i.e., for every mth value of n (as we saw in
Sect. 3.2). For other values of n, our codes may deviate slightly from the optimal,
but we have made heuristic choices so as to stay as close as possible, without
sacrificing the possibility of efficiently computing codewords. In particular, we
note that our choice to assign values n − m′, . . . , n − 1 codewords whose lengths
are monotonically nondecreasing and differing by at most one bit, eliminates the
anomaly of the top-down weight-balanced tree that a less probable value may
be assigned a shorter codeword (see Sect. 3.1). Furthermore, we note that both
our code and an optimal Huffman code approach a Golomb code for relatively
large n. For instance, when p = 0.9, the redundancy of our code, a Huffman
code, and a Golomb code are all below one percent when n ≥ 54.

Therefore, our main concern is to evaluate the redundancy of our code for
smaller n. We experimentally compare our code to the calculated entropy (which
can be matched in practice only by high-precision arithmetic coding) as well as
to the optimal Huffman code, when p varies across its probability range and
n < 3m. This range of n is the most interesting, since it results in at most one
m-sized bunch plus the tail. For reference, we also include a comparison with
Golomb coding for the same test cases.

Tables 1, 2 and 3 summarize the results of tests for 107 values of p evenly
spread over the interval 1

2 ≤ p < 1. For each value of p, 10 random values of n
were selected uniformly at random in the range [2, 3m) (the case n = 1 is uninter-
esting) for the comparison with Huffman (Table 2) and Golomb codes (Table 3).
For the comparison with the entropy (Table 1), the range

[
max{2, �m

2 �}, 3m
)

was
used, because the entropy for smaller n tend to be impossible to achieve with
any code tree, and therefore less interesting for our evaluation. Python source
code used for measurements can be found at http://fgcode.avadeaux.net/.

Overall, summing up average lengths over the ranges of the experiments, the
number of bits generated by our was about

http://fgcode.avadeaux.net/
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Table 1. Evaluation in relation to entropy. The first column is the high endpoint of
the redundancy range, e.g., we have 1–2% redundancy in 33.0% of the test cases. The
p and n columns are examples that produce results in the respective range.

High (L−H)/H % Sample p, n

0 0.0 0.5, 2

10−5 0.4 0.501, 2

10−4 0.8 0.502, 2

0.001 2.5 0.506, 2

0.005 7.1 0.974, 52

0.01 26.7 0.984, 81

0.02 33.0 0.987, 87

0.03 13.0 0.919, 12

0.05 14.1 0.988, 34

0.1 1.9 0.983, 20

0.5 0.6 0.994, 45

>0.5 0

Table 2. Evaluation in relation to Huffman coding. The first column is the high end-
point of the length increase range, e.g., our code yields output 1–2% larger than optimal
in 0.3% of our test cases, and optimal in 86.2% of the cases. The p and n columns are
examples that produce results in the respective range.

High (L− LH)/LH % Sample p, n

0 86.2 0.985, 93

10−5 0.1 0.979, 68

10−4 0.6 0.992, 175

0.001 4.1 0.972, 62

0.005 7.1 0.971, 67

0.01 1.6 0.938, 21

0.02 0.3 0.904, 12

>0.02 0

Table 3. Comparison to Golomb coding. The first column is the high endpoint of the
length decrease range, e.g., our code yields output at least 5% shorter than Golomb
codes for all test cases, and 10–50% reduction in 84.2% of the cases. The p and n
columns are examples that produce results in the respective range.

High (LGolomb − L)/LGolomb % Sample p, n

0.05 0

0.1 7.5 0.862, 14

0.5 84.2 0.972, 62

1.0 8.3 0.994, 88

>1.0 0
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– 1.015 times the entropy (1.5% redundancy), and
– 1.0005 times the corresponding optimal Huffman code (an increase of five

hundredths of a percent)

This indicates that all but a negligible part of the redundancy is due to the
rounding effect of a code tree for a non-dyadic probability distribution, and not
to inferior behavior in relation to Huffman coding.

Finally, the total number of bits was 0.737 times the corresponding Golomb
codes, i.e., a 26% reduction. This may appear to be a surprisingly large improve-
ment, but consider that the experiment was done for relatively small n in order
to evaluate the redundancy of our code. For n � m, the difference between our
code and a Golomb code is negligible.

5 Time Complexity and Efficient Implementation

Computation in encoding and decoding can be separated into three phases. The
first computes m and m′′ when only p is known. This involves floating point
operations (logarithm and division), integer ceiling-log, and some integer bit-
wise and arithmetic operations. The second phase can take place when n is
known, and computes m′. For the third phase, encoding or decoding of a value
i can then take place. Disregarding input/output operations, phases two and
three involve division, conditional branching (if-else) ceiling-log, bitwise, and
arithmetic operations, but no floating point calculations.

We assume that arithmetic and bitwise operations (including shift, used for
calculating powers of two) are constant-time machine operations. Ceiling-log,
�lg x�, cannot be directly expressed in most programming languages, but if not
available as a special operation, it can either be computed by converting to
floating point and extracting the exponent bits, or by locating the highest one-
bit in the binary representation of x − 1 using Θ(lg lg N) operations, where N
is an upper bound for x. Assuming a fixed word size of at most 64 bits, lg lg N
cannot exceed 6, and for practical purposes can be regarded as taking constant
time. The floating-point logarithm involved in the first phase, however, is less
easily dismissed, as it would typically involve a Taylor series computation.

We have generally made the assumption (see Sect. 1) that computing (and
representing) m and m′′ is rare enough to be considered negligible, while effi-
ciency is critical for phase 2 computation and encoding/decoding.

Consequently, depending on machine model assumptions, time complexity of
the critical parts of computation are bounded by either O(1) (arguably true in
most practical situations) or O(lg lg N) where N is an upper bound for n. The
time for the first phase, executed a small number of times, takes additional time
for two floating point logarithm calculations, typically bounded by O(w), where
w is the number of bits of accuracy for the floating-point calculations.

Branch-Free Implementation. Classical time complexity analysis assumes
that CPU instructions are executed more or less in sequence, where each instruc-
tion takes constant time. The truth for modern processors, where pipelining and
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out-of-order execution are crucial to efficiency, is more complex [20]. Conditional
branches, which the processor may or may not be able to predict, potentially
forces execution out of streaming mode, and performance suffers. Consequently,
when writing program code without detailed knowledge of code generation and
target machine architecture, it is generally a good idea to write programs with as
few conditional branching constructs (e.g., if and while statements) as possible.

With a straightforward implementation of our algorithms, a single encode or
decode runs through at least three if-else statements. Although constant-time
in the sense of classical algorithm analysis, they can be detrimental to practi-
cal performance. Our algorithms do however lend themselves to be implemented
without any conditional statements, by using some bitwise tricks that take advan-
tage of the two’s complement integer representation of modern computers. The
following tricks can partly be regarded as folklore in programming communities.
Knuth [11] has examined some related techniques more closely. Our examples
use the C programming language.

In two’s complement representation, the leftmost bit is one for any nega-
tive number, and zero for any non-negative number. At the core of the tricks is
smearing the sign bit across the whole word, producing −1 (all one-bits, which
we take as our representation of true) if the number is negative, and zero (rep-
resenting false) otherwise. Using arithmetic shift right, this is done simply by
shifting the sign bit w − 1 positions to the right, where w is the number of bits
in a word. For simplicity, we henceforth assume that w = 32. (Transformation
to other word sizes is straightforward.) Hence with, >> denoting right shift, the
operation is “x>>31”. On the other hand, if shifting is logical, bits shifted in from
the left are zero rather than copies of the sign bit, producing 1 instead of −1,
we must negate the result, i.e., “-(x>>31)”. As it is not always possible to know
whether shifting is arithmetic or logical (the C standard leaves it undefined) we
use a conditional expression (see is_neg in Fig. 4), trusting that the compiler
will not translate it to a conditional branch, since the value of the condition is
known in compile time.

Fig. 4. Components for branch-free implementation.
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Fig. 5. Branch-free implementation of encoding. Values m, m′, d t, s, s′, h, h′, and e n

are assumed computed in the previous phases (not shown).

For positive numbers x and y, x > y ⇔ y − x < 0. Hence, we immediately
have a method to compare the numbers that produces −1 if x > y and zero
otherwise (is_gt in Fig. 4). Since −1 is represented as all one-bits, a bitwise
and “x&c” preserves x if c= −1 (“true”) and is zero if c is zero (“false”). This
is useful in itself (see is_gt_then in Fig. 4), and can be expanded to a full
conditional expression by the additional use of bitwise or and negation (if_then
and if_then_else in Fig. 4). As noted in in the first part of this section, �lg x�
can be computed in O(lg w) tests for whether the most significant bit of x − 1
is in the left or right half of a range of bits (reminiscent of binary search). Since
lg 32 = 5, we can implement integer ceiling-log simply using five tests. (ceil_lg
in Fig. 4 implements this with the help of the macro MSB_TEST.)

Figure 5 shows an example implementation of encoding (without the two
phases of parameter computation). The full branch-free implementation can be
found in Appendix 2, as well as via http://fgcode.avadeaux.net/.

It should be noted that the branch-free version is not guaranteed to be the
most efficient for all combinations of compilers and target machines. An obvious
potential inefficiency is due to branch-free techniques often computing values
that are then discarded, since it effectively follows all execution paths of the
algorithm.

6 Conclusion

Adding an efficient coding for the geometric distribution bounded by a poten-
tially small constant to the repertoire of entropy codings, can plausibly con-
tribute to the design of efficient text compression algorithms and compact data
structures.

Given that our code is quite simple and addresses a natural situation that
arises in practice (from experience by the author of this work), it could be argued
that the problem might as well have been solved at least as early as in the 1970s.
However, as no code with these properties is previously established in the data
compression community, this research fills in a quite literal gap.

http://fgcode.avadeaux.net/
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Appendix 1: Straightforward Python Implementation
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Appendix 2: Branch-Free C Implementation
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Abstract. The f -factorization of a string is similar to the well-known
Lempel-Ziv (LZ) factorization, but differs from it in that the factors must
be non-overlapping. There are two linear time algorithms that compute
the f -factorization. Both of them compute the array of longest previous
non-overlapping factors (LPnF-array), from which the f -factorization can
easily be derived. In this paper, we present a simple algorithm that com-
putes the LPnF-array from the LPF-array and an array prevOcc that
stores positions of previous occurrences of LZ-factors. The algorithm has
a linear worst-case time complexity if prevOcc contains leftmost positions.
Moreover, we provide an algorithm that computes the f -factorization
directly. Experiments show that our first method (combined with effi-
cient LPF-algorithms) is the fastest and our second method is the most
space efficient way to compute the f -factorization.

1 Introduction

The Lempel-Ziv (LZ) factorization [20] of a string has played an important role
in data compression for more than 40 years and it is also the basis of important
algorithms on strings, such as the detection of all maximal repetitions (runs)
in a string [16] in linear time. Because of its importance in data compression,
there is extensive literature on algorithms that compute the LZ-factorization
and [1–4,10,12,13,18,19] is an incomplete list.

A variant of the LZ-factorization is the f -factorization, which played an
important role in solving a long standing open problem: it enabled the devel-
opment of the first linear time algorithm for seeds computation by Kociumaka
et al. [15].

Definition 1. Let S = S[0..n−1] be a string of length n on an alphabet Σ. The
f -factorization s1s2 · · · sm of S can be defined as follows. Given s1s2 · · · sj−1, the
next factor sj is obtained by a case distinction on the character c = S[i], where
i = |s1s2 · · · sj−1|:
(a) if c does not occur in s1s2 · · · sj−1 then sj = c
(b) else sj is the longest prefix of S[i..n − 1] that is a substring of s1s2 · · · sj−1.
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The difference to the LZ-factorization is that the factors must be non-
overlapping. There are two linear time algorithms that compute the f -
factorization [5,6]. Both of them compute the LPnF-array (defined below), from
which the f -factorization can be derived (in case (b), the factor sj is the length
LPnF[i] prefix of S[i..n − 1]).

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S[i] a a a a a a a a a a a a a a a a

LPnF[i] 0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1
LPF[i] 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

(rm)prevOcc[i] ⊥ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
(lm)prevOcc[i] ⊥ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 1. The LPnF, LPF, and prevOcc arrays of the string S = aaaaaaaaaaaaaaaa.

Definition 2. For a string S of length n, the longest previous non-overlapping
factor (LPnF) array of size n is defined for 0 ≤ i < n by

LPnF[i] = max{� | 0 ≤ � ≤ n − i;S[i..i + � − 1] is a substring of S[0..i − 1]}
In the following, we will give a simple algorithm that directly bases the com-

putation of the LPnF-array on the LPF-array, which is used in several algorithms
that compute the LZ-factorization. The LPF-array is defined by (0 ≤ i < n)

LPF[i] = max{� | 0 ≤ � ≤ n − i;S[i..i + � − 1] is a substring of S[0..i + � − 2]}
In data compression, we are not only interested in the length of the longest
previous factor but also in a previous position at which it occurred (because
otherwise decompression would be impossible). For an LPF-array, the positions
of previous occurrences are stored in an array prevOcc. If LPF[i] = 0, we set
prevOcc[i] = ⊥ (for decompression, one can use the definition prevOcc[i] = S[i]).
Figure 1 depicts the LPF-array of S = a16 and two of many possible instances of
the prevOcc-array: one that stores the rightmost (rm) positions of occurrences
of longest previous factors and one that stores the leftmost (lm) positions.

2 Computing LPnF from LPF

Algorithm 1 computes the LPnF-array by a right-to-left scan of the LPF-array
and its prevOcc-array. The computation of an entry � = LPnF[i] is solely based
on entries LPF[j] and prevOcc[j] with j ≤ i. Consequently, after the calculation
of �, it can be stored in LPF[i]. Since Algorithm 1 overwrites the LPF-array with
the LPnF-array (and the prevOcc-array of LPF with the prevOcc-array of LPnF),
no extra space is needed. Algorithm 1 is based on the following simple idea:

1. If the factor starting at position i and its previous occurrence starting at
position j = prevOcc[i] do not overlap, then clearly LPnF[i] = LPF[i].
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Algorithm 1. Given LPF and its prevOcc-array, the algorithm computes LPnF
and stores it in LPF.
1: function computeLPnF(LPF,prevOcc)
2: for i ← n − 1 downto 0 do
3: if LPF[i] > 0 then � hence prevOcc[i] �= ⊥
4: j ← prevOcc[i]
5: if j + LPF[i] > i then � overlapping case
6: � ← i − j
7: while LPF[j] > � do � hence prevOcc[j] �= ⊥
8: � ← min{LPF[i], LPF[j]}
9: j ← prevOcc[j]

10: if j + � ≤ i then � non-overlapping case
11: break
12: else � overlapping case
13: � ← i − j

14: prevOcc[i] ← j
15: LPF[i] ← �

2. Otherwise, the length of the (currently best) previous non-overlapping factor
is � = i−j. A longer previous non-overlapping factor exists if LPF[j] > � (note
that LPF[i] > � holds): the prefix of S[i..n − 1] of length min{LPF[i], LPF[j]}
also occurs at position prevOcc[j] and even if the two occurrences (starting
at i and prevOcc[j]) overlap, their non-overlapping part must be greater than
� because prevOcc[j] < j.

3. Step 2 is repeated until there is no further candidate (condition of the while-
loop in line 7) or the two occurrences under consideration do not overlap (line
11 of Algorithm 1).

On the one hand, the example in Fig. 1 shows that Algorithm 1 may have a
quadratic run-time if it uses the prevOcc-array that stores the rightmost posi-
tions of previous occurrences. On the other hand, the next lemma proves that
Algorithm 1 has a linear worst-case time complexity if it uses the prevOcc-array
that stores the leftmost positions of previous occurrences. Its proof is based on
the following notion: An integer p with 0 < p ≤ |ω| is called a period of ω ∈ Σ+

if ω[i] = ω[i + p] for all i ∈ {0, 1, . . . , |ω| − p − 1}.

Lemma 1. If prevOcc stores the leftmost positions of previous occurrences, then
the else-case on line 12 in Algorithm1 cannot occur.

Proof. For a proof by contradiction, suppose that the else-case on line 12 in Algo-
rithm1 occurs for some i. We have LPF[i] > 0, j = prevOcc[i] is the leftmost
occurrence of the longest previous factor ωi starting at i, and j+LPF[i] > i. Sup-
pose LPF[j] > i−j, i.e., the while-loop is executed. Let m = min{LPF[i], LPF[j]}
and k = prevOcc[j]. If m = LPF[i], then it would follow that an occurrence of
ωi starts at k. This contradicts the fact that j is the leftmost occurrence of
ωi. Consequently, m = LPF[j] < LPF[i]. The else-case on line 12 occurs when
k + m > i. This implies k + m > j because i > j. Let ωj be the longest previous
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Fig. 2. Proof of Lemma 1: i, j, and k are positions, while a and b are characters.

factor starting at j. Let a = S[k + m] (the character following the occurrence of
ωj starting at k) and b = S[j + m] (the character following the occurrence of ωj

starting at j); see Fig. 2. By definition, a �= b. We will derive a contradiction by
showing that a = b must hold in the else-case on line 12.

Since k + m > j, the occurrence of ωj starting at k overlaps with the occur-
rence of ωj starting at j. Let u be the non-overlapping part of the occurrence of
ωj starting at k, i.e., u = S[k..j − 1]. Because the occurrence of ωj starting at j
has u as a prefix and overlaps with the occurrence of ωj starting at k, it follows
that |u| is a period of ωj ; see Fig. 2. By a similar reasoning, one can see that |v|
is a period of ωi, where v = S[j..i−1]. Since ωj is a length m prefix of S[j..n−1]
and ωi is a length LPF[i] prefix of S[j..n − 1], where m = LPF[j] < LPF[i], it
follows that ωj is a prefix of ωi. Hence |v| is also a period of ωj . In summary,
both |u| and |v| are periods of ωj . Fine and Wilf’s theorem [8] states that if
|ωj | ≥ |u| + |v| − gcd(|u|, |v|), then the greatest common divisor gcd(|u|, |v|) of
|u| and |v| is also a period of ωj . Since m = |ωj | ≥ |u| + |v|, the theorem is
applicable. Let γ be the length gcd(|u|, |v|) prefix of ωj . It follows that v = γq

for some integer q > 0, hence |γ| is a period of ωi. Recall that a = S[k + m] is
the character ωj [m − |u|] = ωi[m − |u|] and b = S[j + m] = ωi[m]. We derive
a = ωi[m − |u|] = ωi[m] = b because |γ| is a period of ωi and |u| is a multiple of
|γ|. This contradiction proves the lemma.

To the best of our knowledge, Abouelhoda et al. [1] first computed the LZ-
factorization based on the suffix array (and the LCP-array) of S. Their algorithm
computes the LPF-array and the prevOcc-array that stores leftmost positions of
previous occurrences of longest factors. So the combination of their algorithm
and Algorithm 1 gives a linear-time algorithm that computes the LPnF-array.
Subsequent work (e.g. [2–4,12,13,18]) concentrated on LZ-factorization algo-
rithms that are faster in practice or more space-efficient (or both). Some of
them also first compute the arrays LPF and prevOcc, but their prevOcc-arrays
neither store leftmost nor rightmost occurrences (in fact, these algorithms are
faster because they use lexicographically nearby suffixes–a local property–while
being the leftmost occurrence is a global property). However, leftmost occur-
rences can easily be obtained by Algorithm 2. The algorithm is based on the
following simple observation: If LPF[i] > 0, j = prevOcc[i], and LPF[j] ≥ LPF[i],
then prevOcc[j] is also the starting position of an occurrence of the factor
starting at i. Since prevOcc[j] < j, an occurrence left of j has been found.
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Algorithm 2. Given LPF and its prevOcc-array, the algorithm computes the
leftmost occurrence of each factor and stores it in prevOcc.
1: function compute-leftmost-Occurrence(LPF,prevOcc)
2: for i ← 0 to n − 1 do
3: if LPF[i] > 0 then � hence prevOcc[i] �= ⊥
4: j ← prevOcc[i]
5: while LPF[j] ≥ LPF[i] do
6: j ← prevOcc[j]

7: prevOcc[i] ← j

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13
S[i] a #1 a a #2 a a a #3 a a a a #4

LPF[i] 0 0 1 1 0 2 2 1 0 3 3 2 1 0
prevOcc[i] ⊥ ⊥ 0 2 ⊥ 2 5 5 ⊥ 5 9 9 9 ⊥

(lm)prevOcc[i] ⊥ ⊥ 0 0 ⊥ 2 2 0 ⊥ 5 5 2 0 ⊥
iterations 0 0 1 0 1 2 0 1 2 3

Fig. 3. LPF and prevOcc arrays of the string S = a1#1a
2#2a

3#3a
4#4.

The while-loop in Algorithm2 repeats this procedure until the leftmost occur-
rence is found. Note that the algorithm overwrites the prevOcc-array. Conse-
quently, if its for-loop is executed for i, then for every 0 ≤ j < i, prevOcc[j]
stores a leftmost position. The next example shows that Algorithm 2 is not lin-
ear in the worst-case. Consider the string S = a1#1a

2#2a
3#3a

4#4 . . . am#m,
where m > 0 and #k are pairwise distinct separator symbols. Clearly, the length
of S is n = m +

∑m
k=1 k = m + m(m + 1)/2 = m(m + 3)/2. If Algorithm 2 is

applied to the arrays LPF and prevOcc in Fig. 3, it computes the leftmost (lm)
prevOcc array and the number of iterations of its while-loop (last row in Fig. 3)
is

∑m−1
j=1

∑j
k=1 k = (

∑m−1
j=1 j2 +

∑m−1
j=1 j)/2 = (m − 1)m(m + 1)/6.

3 Direct Computation of the f-Factorization

Algorithm 3 computes the f -factorization of S based on backward search on
T = Srev and range maximum queries (RMQs) on the suffix array of T .1 It
uses ideas of [2, Algorithm CPS2] and [18, Algorithm LZ bwd]. In fact, Algo-
rithm3 computes the right-to-left f -factorization of the reverse string Srev of
S. It is not difficult to see that s1s2 · · · sm is the (left-to-right) f -factorization
of S if and only if srevm · · · srev2 srev1 is the right-to-left f -factorization of Srev.
In this subsection, we assume a basic knowledge of suffix arrays (SA), the
Burrows-Wheeler transform (BWT), and wavelet trees; see e.g. [7,18]. Given a
substring ω of T , there is a suffix array interval [sp..ep]— called the ω-interval—
so that ω is a prefix of every suffix T [SA[k]..n] if and only if sp ≤ k ≤ ep.
For a character c, the cω-interval can be computed by one backward search
1 In the implementation, T is terminated by a special (EOF) symbol.
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Algorithm 3. f -factorization of S based on backward search on T = Srev

1: function compute-f-factorization(SA, wavelet tree of BWT)
2: i ← n − 1 � T = Srev[0..n − 1]
3: while i ≥ 0 do
4: sp ← 0; ep ← n; pos ← i; m ← ⊥
5: repeat
6: [sp..ep] ← backwardSearch(T [i], [sp..ep])
7: max ← SA[RMQ(sp, ep)]
8: if max ≤ pos then
9: break

10: m ← max
11: i ← i − 1
12: until i < 0
13: output pos − i

step backwardSearch(c, [sp..ep]); this takes O(log |Σ|) time if backward search
is based on the wavelet tree of the BWT of T . A linear time preprocessing is
sufficient to obtain a space-efficient data structure that supports RMQs in con-
stant time; see [9] and the references therein. RMQ(sp, ep) returns the index of
the maximum value among SA[sp],SA[sp+1], . . . ,SA[ep]; hence SA[RMQ(sp, ep)]
is the maximum of these SA-values. Suppose Algorithm 3 has already computed
srevj−1 · · · srev2 srev1 and let i = n−(|srevj−1 · · · srev2 srev1 |+1). It computes the next fac-
tor srevj as follows. First, it stores the starting position i in a variable pos. In line
6, backwardSearch(T [i], [0..n]) returns the c-interval [sp..ep], where c = T [i].
In line 7, the maximum max of SA[sp],SA[sp + 1], . . . ,SA[ep] is determined. If
max = pos (max < pos is impossible because c = T [pos]), then there is no
occurrence of c in T [pos + 1..n], so that srevj = c (the algorithm outputs 0,
meaning that the next factor is the next character). Otherwise, there is a pre-
vious occurrence of c at position max > pos and the process is iterated, i.e., i
is decremented by one and the new T [i..pos]-interval is computed etc. Consider
an iteration of the repeat-loop, where [sp..ep] is the T [i..pos]-interval for some
i < pos. The repeat-loop must be terminated early (line 9) if max ≤ pos because
then the rightmost occurrence of T [i..pos] starts left of pos + 1. In other words,
T [i..pos] is not a substring of T [pos + 1..n]. Since the repeat-loop did not termi-
nate in the previous iteration, T [i+1..pos] is a substring of T [pos+1..n] that has
a previous occurrence at position m > pos, where m is the maximum SA-value
of the previous iteration. So srevj = T [i + 1..pos] and the algorithm outputs its
length |srevj | = pos−(i+1)+1 = pos−i, which coincides with |sj |. Note that the
algorithm can easily be extended so that it also computes positions of previous
occurrences. Algorithm 3 has run-time O(n log |Σ|) because one backward search
step takes O(log |Σ|) time.

Kolpakov and Kucherov [17] used the reversed f -factorization (they call it
reversed LZ-factorization) for searching for gapped palindromes. The reversed
f -factorization is defined by replacing case (b) in Definition 1 with: (b) else sj is
the longest prefix of S[i..n − 1] that is a substring of (s1s2 · · · sj−1)rev. It is not
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difficult so see that Algorithm 3 can be modified in such a way that it computes
the reversed f -factorization of S in O(n log |Σ|) time (to find the next factor sj ,
match prefixes of S[i..n − 1] against T = Srev).

4 Experimental Results

Our implementation is based on the sdsl-lite library [11] and we experimen-
tally compared it with the LPnF construction algorithm of Crochemore and Tis-
chler [6], called CT-algorithm henceforth. Another LPnF construction algorithm
is described in [5], but we could not find an implementation (this algorithm is
most likely slower than the CT-algorithm because it uses two kinds of range min-
imum queries—one on the suffix array and one on the LCP-array—and range
minimum queries are slow; see below). The experiments were conducted on a
64 bit Ubuntu 16.04.4 LTS system equipped with two 16-core Intel Xeon E5-
2698v3 processors and 256 GB of RAM. All programs were compiled with the O3
option using g++ (version 5.4.1). Our programs are publically available.2 The
test data—the files dblp.xml, dna, english, and proteins—originate from the Pizza
& Chili corpus.3 In our first experiment, we computed the LPnF-array from the
LPF-array. Three algorithms that compute the LPF-array were considered:

– AKO: algorithm by Abouelhoda et al. [1]
– LZ OG: algorithm by Ohlebusch and Gog [18]
– KKP3: algorithm by Kärkkäinen et al. [14]

It is known that AKO is slower than the others, but in contrast to the other
algorithms it calculates leftmost prevOcc-arrays. Thus, there was a slight chance
that AKO in combination with Algorithm1 is faster than LZ OG or KKP3 in combi-
nation with Algorithm1. However, our experiments showed that this is not the
case. AKO is missing in Fig. 4 because the differences between the run-times of
the other algorithms become more apparent without it. For the same reason, we
did not take the suffix array construction time into account (note that each of
the algorithms needs the suffix array). To find out whether or not it is advanta-
geous to compute a leftmost prevOcc-array by Algorithm 2 before Algorithm1 is
applied, we also considered the combinations of LZ OG and KKP3 with both algo-
rithms. Figures 4 and 5 show the results of the first experiment. As one can see in
Fig. 4, for real world data it seems disadvantageous to apply Algorithm2 before
Algorithm 1 because the overall run-time becomes slightly worse. However, for
‘problematic’ strings such as an and anb it is advisable to use Algorithm 2: With
it both LZ OG and KKP3 outperformed the CT-algorithm (data not shown), but
without it both did not terminate after 20 min. All in all, KKP3 in combination
with Algorithms 1 and 2 is the best choice for the construction of the LPnF-array.
In particular, it clearly outperforms the CT-algorithm in terms of run-time and
memory usage.

2 https://www.uni-ulm.de/in/theo/research/seqana/.
3 http://pizzachili.dcc.uchile.cl.

https://www.uni-ulm.de/in/theo/research/seqana/
http://pizzachili.dcc.uchile.cl
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Fig. 4. Run-time comparison of LPnF-array construction (without suffix array con-
struction, which on average takes 50% of the overall run-time)

Fig. 5. Peak memory comparison of LPnF-array construction (with suffix array con-
struction)
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In the second experiment, we compared Algorithm 3—the only algorithm that
computes the f -factorization directly—with the other algorithms (which first
compute the LPnF-array and then derive the f -factorization from it). Algorithm3
uses only 44% of the memory required by KKP3, but its run-time is by an order
of magnitude worse (data not shown). We blame the range maximum queries for
the rather bad run-time because these are slow in practice.
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Abstract. We present the first worst-case linear time algorithm that
directly computes the parameterized suffix and LCP arrays for constant
sized alphabets. Previous algorithms either required quadratic time or
the parameterized suffix tree to be built first. More formally, for a string
over static alphabet Σ and parameterized alphabet Π, our algorithm
runs in O(nπ) time and O(n) words of space, where π is the number of
distinct symbols of Π in the string.

Keywords: Parameterized pattern matching · Paramterized suffix
array paramterized LCP array

1 Introduction

Parameterized pattern matching is one of the well studied “non-standard” pat-
tern matching problems which was initiated by Baker [1], in an application to
find duplicated code where variable names may be renamed. In the parameter-
ized matching problem, we consider strings over an alphabet partitioned into
two sets: the parameterized alphabet Π and the static alphabet Σ. Two strings
x, y ∈ (Π ∪ Σ)∗ of length n are said to parameterized match (p-match), if
one can be obtained from the other with a bijective mapping over symbols
of Π, i.e., there exists a bijection φ : Π → Π such that for all 1 ≤ i ≤ n,
x[i] = y[i] if x[i] ∈ Σ, and φ(x[i]) = y[i] if x[i] ∈ Π. For example, if Π = {x, y, z}
and Σ = {A, B, C}, strings xxAzxByzBCzy and yyAxyBzxBCxz p-match, since we
can choose φ(x) = y, φ(y) = z, and φ(z) = x, while strings xyAzzByxBCz and
yyAzxByxBCy do not p-match, since there is no such bijection on Π. As parame-
terized matching captures the “structure” of the string, it has also been extended
to RNA structural matching [20].

Baker introduced the so-called prev encoding of a p-string which maps each
symbol of the p-string that is in Π to the distance to its previous occurrence (or
0 if it is the first occurrence), and showed that two p-strings p-match if and only
if their prev encodings are equivalent. For example, the prev encodings for p-
strings xxAzxByzBCzy and yyAxyBzxBCxz are both (0, 1, A, 0, 3, B, 0, 4, B, C, 3, 5).
c© Springer Nature Switzerland AG 2019
N. R. Brisaboa and S. J. Puglisi (Eds.): SPIRE 2019, LNCS 11811, pp. 382–391, 2019.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32686-9_27&domain=pdf
http://orcid.org/0000-0002-6856-5185
https://doi.org/10.1007/978-3-030-32686-9_27


Linear Time Parameterized Suffix and LCP Arrays for Constant Alphabets 383

Thus, the parameterized matching problem amounts to efficiently comparing the
prev encodings of the p-strings.

Using the prev encoding allows for the development of data structures that
mimic those of standard strings. The central difficulty, in contrast with standard
strings, is in coping with the following property of prev encodings; a substring
of a prev encoding is not necessarily equivalent to the prev encoding of the
corresponding substring.

Nevertheless, several data structures and algorithms have so far successfully
been developed. Baker proposed the parameterized suffix tree (PST), an ana-
logue of the suffix tree for standard strings [21], and showed that for a string of
length n, it could be built in O(n|Π|) time and O(n) words of space [2]. Using
the PST for T , all occurrences of a substring in T which parameterized match
a given pattern P can be computed in O(|P |(log(|Π| + |Σ|)) + occ) time, where
occ is the number of occurrences of the pattern in the text. Kosaruju [19] further
improved the running time of construction to O(n log(|Π| + |Σ|)). Furthermore,
Shibuya [20] proposed an on-line algorithm for constructing the PST that runs
in the same time bounds.

Deguchi et al. [7] proposed the parameterized suffix array (PSA). Given the
PST of a string, the PSA can be constructed in linear time, but as in the case
for standard strings, the direct construction of PSAs has been a topic of interest.
Deguchi et al. [7] showed a linear time algorithm for the special case of |Π| = 2
and Σ = ∅. I et al. [14] proposed a lightweight and practically efficient algorithm
for larger Π, but the worst-case time was still quadratic in n. Beal and Adjeroh [5]
proposed an algorithm based on arithmetic coding that runs in O(n) time on
average. Furthermore, they claimed a worst-case running time of o(n2). However,
the proved upperbound is O(n2( log(n−log1+ε n)

log1+ε n
)) for a very small ε > 0 (Corollary

27 of [5]), so it is only slightly better than quadratic.
In this paper, we break the worst-case quadratic time barrier considerably,

and present the first worst-case linear time algorithm for constructing the param-
eterized suffix and LCP arrays of a given p-string, when the number of distinct
parameterized symbols in the string is constant. Namely, when assuming that Π
and Σ are linearly sortable integer alphabets, our algorithm runs in O(nπ) time
and O(n) words of space, where π is the number of distinct symbols of Π in
the string. Furthermore, when |Π| is constant and Σ is an integer alphabet, our
algorithm runs in O(n) time, which is faster than first building the PST which
takes O(n log |Σ|) time. Since the PST can be constructed from the parameter-
ized suffix and LCP arrays in linear time using essentially the same algorithm
for standard strings by Kasai et al. [16], our algorithm is the fastest algorithm
for constructing PST in such cases.

Several other indices for parameterized pattern matching have been proposed.
Diptarama et al. [8] and Fujisato et al. [11] proposed the parameterized position
heaps (PPH), an analogue of the position heap for standard strings [9], and
showed that it could be built in O(n log(|Σ|+|Π|)) time and O(n) words of space.
Using the PPH for T , all occurrences of a substring in T which parameterized
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match a given pattern P can be computed in O(|P |(|Π| + log(|Π| + |Σ|)) +
occ) time, where occ is the number of occurrences of the pattern in the text.
Parameterized BWT’s have been proposed in [13]. Also, parameterized text index
with one wildcard was proposed in [12].

2 Preliminaries

For any set A of symbols, A∗ denotes the set of strings over the alphabet A.
Let |x| denote the length of a string x. The empty string is denoted by ε. For
any string w ∈ A∗, if w = xyz for some (possibly empty) x, y, z ∈ A∗, x, y, z
are respectively called a prefix, substring, suffix of w. When x, y, z �= w, they are
respectively called a proper prefix, substring, and suffix of w. For any integer
1 ≤ i ≤ |x|, x[i] denotes the ith symbol in x, and for any 1 ≤ i ≤ j ≤ |x|,
x[i..j] = x[i] · · · x[j]. For convenience, let x[i..j] = ε when j < i. Let ≺ denote a
total order on A, as well as the lexicographic order it induces. For two strings
x, y ∈ A∗, x ≺ y if and only if x is a proper prefix of y, or there is some position
1 ≤ k ≤ min{|x|, |y|} such that x[1..k − 1] = y[1..k − 1] and x[k] ≺ y[k].

Let Π and Σ denote disjoint sets of symbols. Π is called the parameterized
alphabet, and Σ is called the static alphabet. A string in (Π ∪Σ)∗ is sometimes
called a p-string. Two p-strings x, y ∈ (Π ∪ Σ)∗ of equal length are said to
parameterized match, denoted x ≈ y, if there exists a bijection φ : Π → Π, such
that for all 1 ≤ i ≤ |x|, x[i] = y[i] if x[i] ∈ Σ, and φ(x[i]) = y[i] if x[i] ∈ Π.

The prev encoding of a p-string x of length n is the string prev(x) over the
alphabet Σ ∪ {0, . . . , n − 1} defined as follows:

prev(x)[i] =

⎧
⎪⎨

⎪⎩

x[i] if x[i] ∈ Σ,

0 if x[i] ∈ Π and x[i] �= x[j] for any 1 ≤ j < i,

i − j if x[i] ∈ Π,x[i] = x[j] and x[i] �= x[k] for any j < k < i.

For example, if Π = {s, t, u}, Σ = {A} and p-string x = ssuAAstuAst, then
prev(x) = (0, 1, 0, A, A, 4, 0, 5, A, 4, 4). Baker showed that x ≈ y if and only if
prev(x) = prev(y) [3]. We assume that Π and Σ are disjoint integer alphabets,
where Π = {0, . . . , nc1} for some constant c1 ≥ 1 and Σ = {nc1 +1, . . . , nc2} for
some constant c2 ≥ 1. This way, we can distinguish whether a symbol of a given
prev encoding belongs to Σ or not. Also, given p-string x of length n, we can
compute prev(x) in O(n) time and space (in words), by sorting the pairs (x[i], i)
using radix sort, followed by a simple scan of the result.

The following are the data structures that we consider in this paper.

Definition 1 (Parameterized Suffix Array [7]). The parameterized suffix
array of a p-string x of length n, is an array PSA[1..n] of integers such that
PSA[i] = j if and only if prev(x[j..n]) is the ith lexicographically smallest string
in {prev(x[i..n]) | i = 1, . . . , n}.
Definition 2 (Parameterized LCP Array [7]). The parameterized LCP
array of a p-string x of length n, is an array pLCP [1..n] of integers such that
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pLCP [1] = 0, and pLCP [i], for any i ∈ {2, . . . , n}, is the longest common prefix
between prev(x[PSA[i − 1]..n]) and prev(x[PSA[i]..n]).

The difficulty when dealing with the prev encoding of suffixes of a string, is
that they are not necessarily the suffixes of the prev encoding of the string. It is
important to notice however, that, given the prev encoding prev(x) of the whole
string x, any specific value of the prev encoding of an arbitrary suffix of x can
be retrieved in constant time, i.e., for any 1 ≤ i ≤ n and 1 ≤ k ≤ n − i + 1,

prev(x[i..n])[k] =

{
0 if x[k′] ∈ Π and prev(x)[k′] ≥ k,

prev(x)[k′] otherwise,

where k′ = i + k − 1. The critical problem for suffix sorting is that even if
two prev encodings prev(x[i..n]) and prev(x[j..n]) share a common prefix and
satisfies prev(x[i..n]) ≺ prev(x[j..n]), it may still be that prev(x[j + 1..n]) ≺
prev(x[i + 1..n]).

Figure 1 shows an example of PSA and pLCP for the string stssAtssAs. For
example, we have that prev(x[6..10]) ≺ prev(x[1..10]), which share a common
prefix of length 2, yet prev(x[2..10]) ≺ prev(x[7..10]).

i PSA[i] prev(x[PSA[i]..|r|]) pLCP [i]
1 10 0 0
2 6 0 0 1 A 2 1
3 2 0 0 1 A 4 3 1 A 2 4
4 1 0 0 2 1 A 4 3 1 A 2 2
5 3 0 1 A 0 3 1 A 2 1
6 7 0 1 A 2 3
7 4 0 A 0 3 1 A 2 1
8 8 0 A 2 2
9 9 A 0 0
10 5 A 0 0 1 A 2 2

Fig. 1. An example of the parameterized suffix and LCP arrays for a p-string x =
stssAtssAs, where Σ = {A}, Π = {s, t}.

3 Algorithms

In this section we describe our algorithms for constructing the parameterized
suffix and LCP arrays. First, we mention a simple observation below.

From the definition of prev(x), we have that prev(x)[i] = 0 for some position i
if and only if i is the first occurrence of symbol x[i] ∈ Π. Therefore, the following
observation can be made.

Observation 1. For any p-string x, the prev encoding prev(x′) of any substring
x′ of x contains at most π positions that are 0’s, where π is the number of distinct
symbols of Π in x.
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3.1 PSA Construction

Based on this observation, we can see that the prev encoding of each suffix x[i..n]
can be partitioned into zi + 1 ≤ π + 1 blocks, where zi is the number of 0’s in
prev(x[i..n]), and the jth block is the substring of prev(x[i..n]) that ends at the
jth 0 in prev(x[i..n]) for j = 1, . . . , zi, and the (possibly empty) remaining suffix
for j = zi + 1. For technical reasons, we will append 0 to the last block as well.
That is, we can write

prev(x[i..n])0 = Bi,1 · · · Bi,zi+1 (1)

where, Bi,j denotes the jth block of prev(x[i..n]). Also, for any zi+1 < j ≤ π+1,
we let Bi,j = 0. Furthermore, for each j, let Bj denote the set of all jth blocks
for all i = 1, . . . , n, and let Ci,j denote the lexicographic rank of Bi,j in Bj . Note
that if Bi,j = Bk,j for some i, k, then Ci,j = Ck,j . Finally, let Ci denote the
string over the alphabet {1, . . . , n} obtained by renaming each block Bi,j of the
string prev(x[i..n])0 with its lexicographic rank Ci,j . More formally,

Bj = {Bi,j | i = 1, . . . , n}
Ci,j = |{Bi′,j ∈ Bj | Bi′,j ≺ Bi,j}| + 1
Ci = Ci,1 · · · Ci,zi+1.

Figure 2 shows an example.

i prev(x[i..|r|]) Bi,1 Bi,2 Bi,3 Ci

1 0 0 2 1 A 4 3 1 A 2 0 0 2 1 A 4 3 1 A 2 0 1 1 4
2 0 0 1 A 4 3 1 A 2 0 0 1 A 4 3 1 A 2 0 1 1 3
3 0 1 A 0 3 1 A 2 0 1 A 0 3 1 A 2 0 1 2 5
4 0 A 0 3 1 A 2 0 A 0 3 1 A 2 0 1 4 5
5 A 0 0 1 A 2 A 0 0 1 A 2 0 2 1 2
6 0 0 1 A 2 0 0 1 A 2 0 1 1 2
7 0 1 A 2 0 1 A 2 0 0 1 3
8 0 A 2 0 A 2 0 0 1 5
9 A 0 A 0 0 0 2 1
10 0 0 0 0 1 1

Fig. 2. An example of Ci for a p-string x = stssAtssAs, where Σ = {A}, Π = {s, t}.
C4,2 = 4, because B4,2 = A0 is the lexicographically fourth smallest string in B2, i.e.,
B2 consists of 5 strings: 0 ≺ 1A0 ≺ 1A20 ≺ A0 ≺ A20.

Lemma 1. For any 1 ≤ i1, i2 ≤ n,

prev(x[i1..n]) ≺ prev(x[i2..n]) ⇐⇒ Ci1 ≺ Ci2 .

Proof. Notice that 0 is the smallest symbol in the two strings, so

prev(x[i1..n]) ≺ prev(x[i2..n]) ⇔ prev(x[i1..n])0 ≺ prev(x[i2..n])0
⇔ Bi1,1 · · · Bi1,zi1+1 ≺ Bi2,1 · · · Bi2,zi2+1.
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Also notice that since any block must end with a 0, if two blocks are not identi-
cal, it holds that one cannot be a prefix of the other. Thus, if Bi1,1 · · · Bi1,zi1+1 ≺
Bi2,1 · · · Bi2,zi2+1, this implies that there is some block k such that Bi1,j = Bi2,j ,
for all 1 ≤ j < k, and Bi1,k ≺ Bi2,k, where Bi1,k is not a prefix of Bi2,k. By def-
inition, Bi1,k � Bi2,k ⇔ Ci1,k ≤ Ci2,k. Therefore, we have, Bi1,1 · · · Bi1,zi1+1 ≺
Bi2,1 · · · Bi2,zi2+1 ⇔ Ci1 ≺ Ci2 . ��

From Lemma 1, the problem of lexicographically sorting the set of strings
{prev(x[1..n]), . . . , prev(x[n..n])} reduces to the problem of lexicographically
sorting the set of strings {C1, . . . , Cn}. The latter can be done in O(nπ) time
using radix sort, since the strings are over the alphabet {1, . . . , n} and the total
length of the strings is at most nπ.

What remains is to compute Ci,j for all i, j in the same time bound. A
problem is that the total length of all Bi,j is Θ(n2), so we cannot afford to
naively process all of them.

Denote by bi,j and ei,j the beginning and end positions of Bi,j with respect
to their (global) position in x. Note that for any 1 ≤ i ≤ n, we have bi,1 = i, and
bi,j = ei,j−1 + 1 for all 2 ≤ j ≤ zi + 1. Our algorithm depends on the following
simple yet crucial lemma.

Lemma 2. For any 1 < i ≤ n and 1 ≤ j ≤ zi + 1, we have that either

1. bi,j = ei−1,j + 1, or,
2. bi,j ≥ bi−1,j, ei,j = ei−1,j, and Bi,j is a suffix of Bi−1,j

holds.

Proof. If x[i − 1] ∈ Σ, then, prev(x[i..n]) is a suffix of prev(x[i − 1..n]), i.e.,
prev(x[i..n]) = prev(x[i − 1..n])[2..|n − i + 2|] and prev(x[i − 1..n])[1] �= 0. Thus,
Bi,1 is a suffix of Bi−1,1, and Bi,j = Bi−1,j for all 2 ≤ j ≤ zi and the second
case of the claim holds.

If x[i−1] ∈ Π, the values in prev(x[i..n]) are equivalent to the corresponding
values of prev(x[i−1..n])[2..|n− i+2|], except possibly at some (global) position
k ≥ i when there is a second occurrence of the symbol x[i − 1] at x[k] which
becomes the first occurrence in x[i..n]. (In other words, the value corresponding
to x[k] in prev(x[i − 1..n]) is k − i + 1.) Since there is no previous occurrence of
x[i − 1] in x[i − 1..n], prev(x[i − 1..n])[1] = 0. The situation is depicted in Fig. 2.

Let Bi−1,j′ be the block of prev(x[i−1..n]) that contains (global) position k.
Because, as mentioned previously, prev(x[i]..n) and prev(x[i−1..n])[2..|n−i+2|]
are equivalent except for the value corresponding to (global) position k, the
block structure of prev(x[i − 1..n]) is preserved in prev(x[i..n]), except that (1)
the first block Bi−1,1 disappears, and (2) the block Bi−1,j′ is split into two
blocks, corresponding to Bi,j′−1 and Bi,j′ . Therefore, the first case of the claim
is satisfied for 1 ≤ j ≤ j′, since bi,j = bi−1,j+1 = ei−1,j + 1 for any 1 ≤ j < j′.
Also, we can see that the second case of the claim is satisfied for j′ ≤ j ≤ zi,
since Bi,j′ is a suffix of Bi−1,j′ , and Bi,j = Bi−1,j for j′ < j ≤ zi (Fig. 3).

Finally, the case when such k does not exist can be considered to be included
above by simply assuming we are looking at a prefix of a longer string and
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i–1 

i

k
...prev(x[i–1 ..n])

prev(x[i..n])

0 0 0 0 0

...0 0 0 0 0
Bi,1 Bi,2 Bi,3 Bi,4 Bi,5

Bi–1,2 Bi–1,3 Bi–1,4 Bi–1,5Bi–1,1

Fig. 3. A case in the proof of Lemma 2, where x[i] ∈ Π, and x[k] is the first occurrence
of x[i] in x[i + 1..n]. The value corresponding to (global) position k in prev(x[i..n]),
shown as a shaded box, is k − i, while it is 0 in prev(x[i + 1..n]). All other values in
prev(x[i..n]) and prev(x[i + 1..n]) at the same (global) position are equivalent.

k > |x|, j′ > zi, since the prev encoding is preserved for prefixes, i.e., the prev
encoding of a prefix of any p-string y is equivalent to the corresponding prefix
of the prev encoding of y. Thus, the lemma holds. ��

Lemma 2 implies that if we fix some j, we can represent Bi,j for all i as
suffixes (in the standard sense) of strings of total length O(n).

Corollary 1. For any j, there exists a set of strings Sj with total length n + 1
over the alphabet Σ ∪ {0, . . . , n − 1} such that Bi,j is a suffix of some string in
Sj for all i ∈ {1, . . . , n}.
Proof. We include Bi,j in Sj , if i = 1, or, if i > 1 and Bi,j satisfies the first case of
Lemma 2. Since the first case implies that the (global) positions [bi−1,j ..ei−1,j ]
and [bi,j ...ei,j ] are disjoint, the total length of strings in Sj is at most n + 1
(including the 0 appended to Bi,zi+1). On the other hand, if Bi,j satisfies the
second case is, it is a suffix of an already included string. ��

Thus, computing Ci,j for all i can be done by computing the generalized
suffix array for the set Sj . This can be done in O(n) time given Sj [15,17,18]
and thus, for all j, the total is O(nπ) time.

Theorem 1. The parameterized suffix array of a p-string of length n can be
computed in O(nπ) time and O(n) words of space.

Proof. We compute a forward encoding of x, analogous to the prev encoding,
defined as follows

fwd(x)[i] =

⎧
⎪⎨

⎪⎩

x[i] if x[i] ∈ Σ,

∞ if x[i] ∈ Π and x[i] �= x[j] for any i < j ≤ n,

j − i if x[i] ∈ Π,x[i] = x[j] and x[i] �= x[k] for any i < k < j.

This is done once, and can be computed in O(n) time. Next, for any fixed j, we
show how to compute the set Sj in linear time. This is done by using fwd and
Lemma 2. We can first scan prev(x) to obtain B1,j . Suppose for some i ≥ 2, we
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know the beginning and end positions bi−1,j , ei−1,j of Bi−1,j . Notice that when
x[i−1] ∈ Π, k in the proof of Lemma 2 is i+fwd(x)[i−1]−2. Based on this value,
we know that if k < bi−1,j , then Bi,j = Bi−1,j and if bi−1,j ≤ k ≤ ei−1,j Bi,j

is a suffix of Bi−1,j , which corresponds to the second case of Lemma 2. When
k > ei−1,j , this corresponds to the first case of Lemma 2, so we scan prev(x[i..n])
starting from position corresponding to the global position bi,j = ei−1,j +1 (i.e.,
ei−1,j − i in prev(x[i..n])) until we find the first 0, which gives us Bi,j which we
include in Sj . Since we only scan each position once, the total time for computing
Sj is O(n).

The time complexity follows from arguments for sorting Cj based on radix
sort. Since, for a single step of the radix sort, we only require the values Ci,j for
a fixed j and all 1 ≤ i ≤ n and from Corollary 1, the space complexity is O(n)
words. ��

3.2 pLCP Construction

Given PSA, we describe below how to construct pLCP in O(nπ) time and O(n)
words of space.

As a tool, we use longest common extension (LCE) queries. For a string x
of length n, a longest extension query, given positions 1 ≤ i, j ≤ n asks for the
longest common prefix between x[i..n] and x[j..n]. It is known that the string
can be pre-processed in O(n) time so that the longest extension query can be
answered in O(1) time for any i, j (e.g. [10]).

We recompute Sj for j = 1, . . . , π, and each time process it for LCE queries,
so that the longest common prefix between Bi1,j and Bi2,j for some 1 ≤ i1, i2 ≤ n
can be computed in constant time. This can be done in time linear in the total
length of Sj , so in O(nπ) total time for all j. We compute the longest common
prefix between each adjacent suffix in PSA block by block. Since each block takes
constant time, and there are O(π) blocks for each suffix, the total is O(nπ) time
for all entries of the pLCP array. The space complexity is O(n) words, since, as
for the case of PSA construction, we only process the jth block at each step.

A Note on a Previous Algorithm. A linear time algorithm for computing
pLCP given PSA, is claimed in [4, Theorem 20]. However, we note that their
proof of correctness seems to be incomplete, and we could not verify the correct-
ness of their algorithm.

Their algorithm follows the idea for computing the Longest Previous Factor
(LPF) array by Crochemore and Ilie [6], where, for all 1 ≤ i ≤ n,

LPF [i] = max{l ≥ 0 | x[i..i + l − 1] = x[j..j + l − 1], 1 ≤ j < i}.

Their algorithm computes two arrays:

X = max{l ≥ 0 | x[i..i + l − 1] ≈ x[j..j + l − 1], 1 ≤ j < i,PSA−1[j] < PSA−1[i]},

Y = max{l ≥ 0 | x[i..i + l − 1] ≈ x[j..j + l − 1], i < j ≤ n,PSA−1[j] < PSA−1[i]},
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where PSA−1[PSA[i]] = i for any 1 ≤ i ≤ n. Then, pLCP [i] = max{X[PSA−1[i]],
Y [PSA−1[i]]}. Here, X can also be denoted as pLPF<, i.e., the longest prefix of
the suffix x[i..n] that occurs (in the parameterized sense) before i, and is a prefix
of a lexicographically smaller suffix. Although the rationale for their algorithm
is claimed to be ([4, Lemma 15])

pLPF [i] ≥ pLPF [i − 1] − 1,

which holds, it seems that the required property actually is

pLPF<[i] ≥ pLPF<[i − 1] − 1

which does not hold. For example, in the example stssAtssAs of Fig. 1,
pLPF<[9] = 0, while pLPF<[8] = 2.
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Prague Stringology Conference 2008, Prague, Czech Republic, 1–3 September 2008.
pp. 84–94. Prague Stringology Club, Department of Computer Science and Engi-
neering, Faculty of Electrical Engineering, Czech Technical University in Prague
(2008), http://www.stringology.org/event/2008/p08.html

8. Diptarama, Katsura, T., Otomo, Y., Narisawa, K., Shinohara, A.: Position heaps
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15. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction.
J. ACM 53(6), 918–936 (2006). https://doi.org/10.1145/1217856.1217858

16. Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-
common-prefix computation in suffix arrays and its applications. In: Amir, A. (ed.)
CPM 2001. LNCS, vol. 2089, pp. 181–192. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-48194-X 17

17. Kim, D.K., Sim, J.S., Park, H., Park, K.: Constructing suffix arrays in linear time.
J. Discrete Algorithms 3(2–4), 126–142 (2005). https://doi.org/10.1016/j.jda.2004.
08.019

18. Ko, P., Aluru, S.: Space efficient linear time construction of suffix arrays. J. Discrete
Algorithms 3(2–4), 143–156 (2005). https://doi.org/10.1016/j.jda.2004.08.002

19. Kosaraju, S.R.: Faster algorithms for the construction of parameterized suffix trees
(preliminary version). In: 36th Annual Symposium on Foundations of Computer
Science, Milwaukee, Wisconsin, USA, 23–25 October 1995, pp. 631–637. IEEE
Computer Society (1995). https://doi.org/10.1109/SFCS.1995.492664

20. Shibuya, T.: Generalization of a suffix tree for RNA structural pattern matching.
Algorithmica 39(1), 1–19 (2004). https://doi.org/10.1007/s00453-003-1067-9

21. Weiner, P.: Linear pattern matching algorithms. In: 14th Annual Symposium on
Switching and Automata Theory, Iowa City, Iowa, USA, October 15–17, 1973, pp.
1–11. IEEE Computer Society (1973). https://doi.org/10.1109/SWAT.1973.13

https://doi.org/10.1016/j.jda.2010.12.001
https://doi.org/10.1016/j.jda.2010.12.001
http://www.sciencedirect.com/science/article/pii/S1570866710000535
https://doi.org/10.1007/11780441_5
https://doi.org/10.1007/11780441_5
http://arxiv.org/abs/1808.01071
https://doi.org/10.1109/DCC.2019.00023
https://doi.org/10.1137/1.9781611974782.25
https://doi.org/10.1137/1.9781611974782.25
https://doi.org/10.1137/1.9781611974782.25
https://doi.org/10.1007/978-3-642-10217-2_31
https://doi.org/10.1007/978-3-642-10217-2_31
https://doi.org/10.1145/1217856.1217858
https://doi.org/10.1007/3-540-48194-X_17
https://doi.org/10.1007/3-540-48194-X_17
https://doi.org/10.1016/j.jda.2004.08.019
https://doi.org/10.1016/j.jda.2004.08.019
https://doi.org/10.1016/j.jda.2004.08.002
https://doi.org/10.1109/SFCS.1995.492664
https://doi.org/10.1007/s00453-003-1067-9
https://doi.org/10.1109/SWAT.1973.13


Parallel External Memory Wavelet Tree
and Wavelet Matrix Construction

Jonas Ellert and Florian Kurpicz(B)

Department of Computer Science,
Technische Universität Dortmund, Dortmund, Germany

{jonas.ellert,florian.kurpicz}@tu-dortmund.de

Abstract. We present the first parallel external memory wavelet tree
and matrix construction algorithm. The algorithm’s throughput is nearly
the same as the hard disk drives’ throughput, using six cores. We also
present the fastest (parallel) semi-external construction algorithms for
both wavelet trees and matrices.

Keywords: External memory · Parallel algorithm · Wavelet tree

1 Introduction

The wavelet tree [9] is a compact data structure that can answer access, rank,
and select queries for a text over an alphabet [0, σ) in O(lg σ) time, while requir-
ing only n�lg σ� (1 + o(1)) bits of space. The wavelet matrix [3] is an alterna-
tive representation with the same space and time bounds for construction and
answering queries. Both are used in many applications, e. g., text indexing [9],
compression [10,15], and as an alternative to fractional cascading [13].

Our Contributions. First, we develop semi-external memory wavelet tree con-
struction algorithms, where semi-external means we keep data that requires
random access in main memory and all other data in external memory. Our
implementations outperform the only previously available implementations by a
factor of up to 1.43 regarding their running time, while using up to 16.6 times less
memory. We then describe parallel fully external wavelet tree construction algo-
rithms, which almost achieve a throughput that is only 1.19 times slower than
the maximum throughput achievable on the hard disk drive using six threads.
In general, we can achieve a speedup of up to 3.51 using six threads, and are
mostly limited by I/Os. Finally, all algorithms are able to compute the wavelet
matrix with the same space and time requirements, making them the fastest and
first (semi-)external wavelet matrix construction algorithms.
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Related Work. To our best knowledge, there exist no other external memory
wavelet tree construction algorithms. The succinct data structure library [8]
contains algorithms that can construct wavelet trees in semi-external memory.

Still, engineering of efficient wavelet tree and matrix construction algo-
rithms in other models of computations is an ongoing problem with very recent
advances. First, Fischer et al. [5] introduced bottom-up wavelet construction
algorithms that are very fast and memory efficient in practice, and result in the
fastest sequential and shared memory parallel wavelet tree and matrix construc-
tion algorithms. Also, Kaneta [11] recently presented a practical implementation
of the O(

n�lg σ/
√

lg n�)-construction time algorithm, which uses word packing
techniques in word-RAM, and has been (independently) introduced by Babenko
et al. [2] and Munro et al. [16].

2 Preliminaries

(In this paper, we use the notation introduced by Fischer et al. [5].) Let
T = T [0] . . . T [n − 1] be a text of length n over an alphabet Σ = [0, σ). Each
character T [i] can be represented using �lg σ� bits. The leftmost bit is the most
significant bit (MSB), hence the least significant bit (LSB) is the rightmost bit.
We denote the binary representation of a character α ∈ Σ that uses �lg σ� bits as
bits(α). Whenever we write a binary representation of a value, we indicate it by
a subscript two. The k-th bit (from MSB to LSB) of a character α is denoted by
bit(k, α) for all 0 ≤ k < �lg σ�. The bit prefix of size k of α ∈ Σ are the k MSBs,
i. e., bit prefix(k, α) = (bit(0, α) . . . bit(k − 1, α))2. We interpret sequences of bits
as integer values. Let BV be a bit vector of size n. The operation rank0(BV, i)
returns the number of 0’s in BV[0, i), whereas select0(BV, i) returns the position
of the i-th 0 in BV. We define rank1(BV, i) and select1(BV, i) analogously. Both,
rank and select queries on a bit vector of size n can be answered in O(1) time
using succinct dictionary data structures that require only o(n) bits space [17].

2.1 The Wavelet Tree

Let T be a text of length n over an alphabet [0, σ). The wavelet tree (WT) [9]
of T is a complete and balanced binary tree. Each node of the WT represents
characters in [�, r) ⊆ [0, σ). The root of the WT represents characters in [0, σ),
i. e., all characters. The left (or right) child of a node representing characters in
[�, r) represents the characters in [�, (� + r)/2) (or [(� + r)/2, r), respectively).
A node is a leaf if l + 2 ≥ r. The characters in [�, r) at the corresponding
node v are represented using a bit vector BVv such that the i-th bit in BVv is
bit

(
d(v), T[�,r)[i]

)
, where d(v) is the depth of v in the WT, i. e., the number of

edges on the path from the root to v, and T[�,r) denotes the array containing the
characters of T (in the same order) that are in [�, r).

Wavelet trees can be used to generalize access, rank, and select queries from
bit vectors to alphabets of size σ. Answering these queries then requires O(lg σ)
time. To do so, the bit vectors of the WT are augmented by binary rank and
select data structures. For further information on queries, we point to [17].
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(b) Wavelet matrix.
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(a) Level-wise wavelet tree.

Fig. 1. The level-wise (a) WT and the WM (b) of T = [ 0, 1, 3, 7, 1, 5, 4, 2, 6, 3 ]. The
light gray ( ) arrays contain the characters represented at the corresponding position
in the bit vector and are not a part of the WT and WM. In (a), thick lines represent
the borders of the intervals, which are not stored explicitly. In (b), thick lines represent
the number of zeros, which are stored in the Z-array (Color figure online).

Level-Wise Wavelet Tree. In this paper, we consider level-wise wavelet trees.
Here, we concatenate the bit vectors of all nodes at the same depth. Since we
lose the tree topology, the resulting bit vectors correspond to a level that is
equal to the depth of the concatenated nodes and the concatenated bit vectors
correspond to intervals in the level. We store only a single bit vector BV� for
each level � ∈ [0, �lg σ�), see Fig. 1a. This retains the functionality, but reduces
the redundancy for the succinct dictionaries needed to answer rank and select
queries on the bit vectors in constant time [13,14]. We can also easily identify
the interval in which a character is represented at any level:

Observation 1. (Fuentes-Sepúlveda et al. [6]). Given a character T [i] for
i ∈ [0, n) and a level � ∈ [1, �lg σ�) of the WT, the interval pertinent to T [i] in
BV� can be computed by bit prefix(�, T [i]).

Wavelet Matrix. A variant of the wavelet tree, the wavelet matrix (WM), was
introduced in 2011 by Claude [3]. It requires the same space as a WT and has
the same asymptotic running times for access, rank, and select; but in practice
it is often faster than a WT for rank and select queries [3], as it needs less calls
to binary rank/select data structures. For the definition of the WM, we need
additional notations: Reversing the significance of the bits is denoted by reverse,
e. g., reverse((001)2) = (100)2. The bit-reversal permutation of order k (denoted
by ρk) is a permutation of [0, 2k) with ρk(i) = (reverse(bits(i)))2. For example,
ρ2 = (0, 2, 1, 3) = ((00)2, (10)2, (01)2, (11)2). ρk and ρk+1 can be computed from
another, as ρk+1 = (2ρk(0), . . . , 2ρk(2k − 1), 2ρk(0) + 1, . . . , 2ρk(2k − 1) + 1).

In a WM the tree structure is discarded completely and we use the array
Z[0, �lg σ�) to store the number of zeros at each level � in Z[�]. BV0 contains the
MSBs of each character in T in text order (this is the same as the first level
of a WT). For � ≥ 1, BV� is defined as follows. Assume that a character α is
represented at position i in BV�−1. Then the position of its �-th MSB in BV�

depends on BV�−1[i] in the following way: if BV�−1[i] = 0, bit(�, α) is stored
at position rank0(BV�−1, i); otherwise (BV�−1[i] = 1), it is stored at position
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Z[� − 1] + rank1(BV�−1, i). For an example, see Fig. 1b. Similar to the intervals
in the bit vectors of the WT, characters of T form intervals in BV� of the WM.
Again, the intervals at level � correspond to bit prefixes of size �, but due to the
construction of the WM, we have to consider the reversed bit prefixes:

Observation 2. Given a character T [i] for i ∈ [0, n) and a level � ∈ [1, �lg σ�)
of the WM, reverse(bit prefix(�, T [i])) indicates the interval pertinent to T [i] in
BV�. Namely, BV�[i] = bit[�, S[i]], where S is T stably sorted using the reversed
bit prefixes of length � of the characters as key.

2.2 The External Memory Model

The external memory model [1] measures the transfer of data between the main
memory of size M (also called internal memory) and a secondary memory (also
called external memory) that is assumed to be of unlimited size and slower in
terms of memory access than the main memory. Also, data can only be trans-
ferred in blocks of size B between main and secondary memory. Transfers of
blocks are called I/O operations (I/Os for short) and are the main cost measure
of the external memory model.

For semi-external algorithms, we assume that we have random access on
either the input or output—but not both. This relaxation allows for algorithms
that cannot be efficiently be expressed in the external memory model. The model
is used in practice, e. g., the succinct data structure library (SDSL) [8] provides
semi-external WT construction algorithms (among others).

Computing the Effective Alphabet. We construct WTs and WMs using an effec-
tive alphabets, i. e., every character of the effective alphabet occurs in the text.
Therefore, we can store 	w/ lg σ
 characters in one w-bit computer word. To
obtain the effective alphabet, we have to scan the text twice. First, we compute
the histogram of all characters of the text, second we compute a transformation
from the alphabet to the effective alphabet, and finally we scan the original text
but store the text in the effective alphabet. We denote the number of blocks that
must be transferred to scan the text by scan(n�lg σ�) = ��n�lg σ�/w�/B�.

In main memory, most implementations assume that the text is available in
main memory over the effective alphabet. Our (semi-)external WT and WM con-
struction algorithms mimic the behavior by assuming that the text is available
in secondary memory over the effective alphabet. If that is not the case, all our
algorithms require additional 2�n/B� + scan(n�lg σ�) I/Os and O(n) time to
compute the histogram and store the text over an effective alphabet.

3 Construction in Semi-External Memory

In this section, we briefly discuss how to adapt the fast WT and WM construction
algorithms presented by Fischer et al. [5] to the semi-external memory model.
To this end, we first discuss the bottom-up construction, the new approach to
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compute the WT and WM [5]. Here, we construct the histogram of the text, and
then use that histogram to compute histograms for all other bit prefixes without
another text access. Generally speaking, if we have the histogram of length-� bit
prefixes, we can simply compute the histogram of the bit prefixes of length �− 1
by ignoring the last bit of the current prefix, e. g., the number of characters with
bit prefix (01)2 is the total number of characters with bit prefixes (010)2 and
(011)2, since both share the bit prefix (01)2. Using these histograms, we can
compute the interval starting positions for all levels of the WT and WM.

Now, we have a look at the space requirements of this technique. The his-
togram of all characters requires σ�lg n� bits of space. We can always reuse that
space for any histograms at a previous levels �, which require �σ lg n�/2�lg σ�−�

bits of space. Storing the borders requires the same space as storing the his-
togram. Note that we do not require a histogram for the first level, and we also
do not require the starting positions resulting from the histogram of all charac-
ters. Since we require at most σ�lg n�/2 bits of space for the histogram (of the
last level) and the starting positions, and we can reuse the space when computing
both for the following level, we require σ�lg n� bits of space for both the his-
togram and the starting positions in total. If we require access to all histograms
and cannot reuse the space, we need 2�σ lg n� bits of space.

Random Access on the Output. Our first semi-external WT construction algo-
rithm is the semi-external variant of the (single scan) prefix counting WT con-
struction algorithm [5]. Here, we first compute the histogram for all characters in
T and compute all histograms and interval borders without another scan of the
text in O(n) time, scan(n�lg σ�) I/Os, and σ�lg n� bits space, as described above.
Next, we scan the text once again and fill all the bit vectors accordingly using the
precomputed borders, i. e., for each symbol, we look at the border for each of the
symbol’s bit prefixes and set the corresponding bit in each bit vector accordingly
(one bit per level) and then we update the borders. This requires O(n lg σ) time
in total for all levels. Setting the bits in the bit vectors still requires random
access. Hence, we only read the text from the secondary memory. The number
of I/Os is 2 scan(n�lg σ�). In terms of main memory, we need n�lg σ� bits for the
bit vectors of the WT and σ�log n� bits for histograms that are later used for the
starting positions of the intervals. We call this semi-external algorithm se.pc.

This algorithm can also be parallelized by parallelizing the computation of
the initial histogram and writing the bit vectors for each level in parallel, which
scales up to �lg σ� threads. We denote this algorithm by se.par.pc.

Random Access on the Input. Next, we consider a modified and semi-external
version of the prefix sorting WT construction algorithm [5]. Here, each level of
the WT is written in sequential order, which lets us efficiently stream the bit
vectors of the WT. Again, we precompute all borders of the intervals. Then,
for each level �, we use counting sort with the length-� bit prefixes as keys to
sort the text, such that we can fill the bit vector from left to right. Counting
sort requires O(n) time, given the borders array, hence the running time does
not differ from se.pc. Since we require a stable sort, we cannot sort the text in
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place [18] and thus need additional n�lg σ� bits of space. We write the output
to disk exactly once and each level is written sequentially, therefore the number
of I/Os is scan(n�lg σ�). We call this algorithm se.ps. To overcome the space
requirements by sorting, we use a new in-place algorithm that rearranges the
text as required by the WT in O(n) time. We decompose the text into Θ(

√
n)

blocks of size Θ(
√

n) and use two buffers of the same size. Then, we separate the
text using one buffer for symbols corresponding to a one bit and the other for the
other bits. Whenever a buffer is full, we can write it to a part of the text, because
the part is already written to the buffers. In the end, we have to rearrange the
blocks (and shift some of them). We denote this variant by se.ps.ip. It requires
less space, but is one of the slowest algorithms (see §5).

Lemma 1. The semi-external algorithms se.pc, se.ps, and se.ps.ip compute the
WT of a text of length n over an alphabet of size σ in O(n lg σ) time using
O(scan(n�lg σ�)) I/Os, and n�lg σ� + σ�lg n� (se.pc) and 2n�lg σ� + σ�lg n�
(se.ps) bits of main memory including input and output, respectively.

Adaption to the Wavelet Matrix. Our semi-external memory WT construction
algorithms can easily be extended to compute the WM instead. To this end, we
only have to compute the borders in bit reversal permutation order and thus
change the order of the intervals within the bit vectors of each level [5]. Also,
this change does not affect the running time or the memory requirement; it only
affects the content of the border array and subsequently the resulting bit vectors.

4 Wavelet Tree Construction in External Memory

If we replace the sorting in se.ps with any external memory sorting algorithm we
obtain an external memory version of se.ps. However, sorting in external memory
is (in practice) expensive. Now, we present dedicated external memory WT and
WM construction algorithms. For the sequential algorithm we first explain how
to build the WM, and then show how to adapt the algorithm to produce the WT.

4.1 Sequential Construction in External Memory

Each level � of the WM can be interpreted as a reordered version T� of the
original input text T , where the first level represents T0 = T , and each text T�

with � > 0 can be obtained by stable sorting the text T�−1 of the previous level
by the (� − 1)-th bit. This property of the WM has been originally described as
all zeros of the level go left, and all the ones go right [3]. If we know T�, then
we can easily build BV� by taking the �-th bit of each symbol of T� in left-to-
right order. Thus, we can construct the entire WM by simply repeatedly sorting
the text and extracting the bit vector of one level after each sort. Conveniently,
the sorting key in each iteration is only a single bit. Therefore, we only have to
create a binary partition of the text, where L� contains all the zeros of T�, and
R� contains all the ones (retaining their order). Clearly, we have T�+1 = L� · R�.
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Fig. 2. Constructing the WM for our running example by partitioning the text and
extraction of bits. The resulting WM can also be seen in Fig. 1b.

In the external memory setting we can realize the partitioning by performing a
single scan over T� and appending all characters α with bit(�, α) = 0 to L� and
all other characters to R�. Also, we can simultaneously write the bit vector BV�

by appending bit(�, α) to BV�. Note that after the scan no additional copying is
needed to get T�+1 from L� and R�, as we can simply scan directly over L� and
R� in the next iteration, see Fig. 2. The number Z[�] of zeros in each level is |L�|.

Adaptation to the Wavelet Tree. Our external WM construction algorithm can
easily be adapted to construct the WT instead. As described in §2, the bit vector
belonging to any node of the WT always occurs in the WM, too. Only the order
of these intervals is different. Our L� and R� buffers therefore already contain all
the correct nodes, but in wrong order. It is easy to see that L� contains exactly
all of the left children, whereas R� contains the right children. Clearly, instead of
defining T�+1 = L� ·R� at the end of each scan, we can define T�+1 by interleaving
L� and R� such that left children and right children alternate. This way we will
continue with the correct WT order in the next scan. To this end, we only need to
know the size of each node, allowing us to always read the appropriate number of
characters from L� or R�. Hence, we simply determine the last level’s histogram
during the initial scan. After the scan we can compute all histograms (see §2).
We simply keep the histograms of all levels in main memory.

Analysis. We will first look at the I/O complexity of the WT/WM construction
algorithm. The Z[�] values have size �lg n��lg σ� bits and are insignificant in
terms of I/O complexity. Each reordered text T� has size n�lg σ� bits, which can
be stored using scan(n�lg σ�) blocks in external memory. We read each of these
texts exactly once, and write all texts except for the initial text exactly once
as well, resulting in (2�lg σ� − 1) · scan(n�lg σ�) I/Os. The resulting WM or WT
is written exactly once using another scan(n�lg σ�) I/Os. All used structures in
external memory are both written and read exclusively sequentially.

Now, we determine the time complexity and main memory bounds of our
algorithm. Clearly, each of the �lg σ� scans takes O(n) time. Thus the overall
time for the WM construction is O(n lg σ). The WT construction needs additional
O(σ) time to compute the histograms of all levels. In terms of space, the WM
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Thread 1: b0 b3 b6

Thread 2: b1 b4

Thread 3: b2 b5

Fig. 3. Domain decomposition for a text T = b0 b1 b2 b3 b4 b5 b6 split into seven

segments. Here, means loading bi from external memory, means computing
the local tree for bi, and means writing the local tree of bi to external memory.
Only one of the three threads is allowed to read/write at a time, as indicated by the
dashed synchronization barriers. (Best viewed in color.)

construction is fully external and only needs O(1) bits of main memory, since
all data structures are kept in external memory. For the WT we need 2�σ lg n�
additional bits to store the histograms.

Lemma 2. The fully external algorithm ext.ps computes the WT of a text of
length n over an alphabet of size σ in O(n lg σ + σ) time using a total of
2�lg σ� · scan(n�lg σ�) I/Os and 2�σ lg n� bits of main memory including input
and output. For the WM the time is O(n lg σ) and only O(1) bits of main memory
are needed.

4.2 Parallel Construction in External Memory

For a more generic approach, we present a meta-algorithm based on the inter-
nal memory domain decomposition, see, e. g., [5,7,12]. Let p be the number of
available threads, then in the internal memory setting we split the text into p
segments, and compute the WT of each segment on a different thread, using a
sequential construction algorithm of our choice. After that, the so called local
trees can be merged into one global tree. In the external memory setting the
length of the segments depends on the amount M of main memory. Assume
that the sequential construction algorithm needs s(n, σ) bits of memory for a
text of length n over the alphabet [0, σ). Then, the length k of each segment
must satisfy s(k, σ) ≤ M/p. This way all threads can work simultaneously.

Each thread runs a simple loop: load the next text segment from external
memory into internal memory, compute the WT of the segment, and write it
back to external memory. Only one thread is allowed to read/write at a time
(see Fig. 3). In terms of external memory layout, we store the local trees in text
order, and each local tree as the concatenation of its levels (see LT in Fig. 4).
When merging the local trees into the global tree, we simply perform a single
scan over the local trees and zip the corresponding intervals together. Since the
length of each interval must be known in order to copy the right amount of bits,
we need the histograms of all text parts during the merge phase. However, many
of the fastest sequential WT construction algorithms either build the histograms
or can easily be modified to do so [5]. We are not using parallelism during the
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GT

LT

WT of part b0
BV0 BV1 BV2

WT of part b1
BV0 BV1 BV2

WT of part b2
BV0 BV1 BV2

BV0 BV1 BV2

Fig. 4. External memory layout of local (LT) and global (GT) WTs for T = b0b1b2.
Best viewed in color, as colors indicate parts of local trees that are zipped together.

merge phase, since we are only copying bit vectors. In practice we are limited
by the speed of the external memory, even when using only a single thread.
Clearly, if we use a WM algorithm as a subroutine, our algorithm produces the
WM instead.

Analysis. We will first look at the I/O complexity of our meta-algorithm. The
input text, the concatenation of all local trees as well as the global tree are
of size n�lg σ� bits each, which can be stored using scan(n�lg σ�) blocks in
external memory. We read the input text and write the local trees once, taking
2 scan(n�lg σ�) sequential I/Os. Reading all local trees sequentially during the
merge phase causes another scan(n�lg σ�) I/Os. When writing the global tree
we jump to a different external memory address for each interval of a local tree.
Therefore, we need up to σ�n/k� random I/Os in addition to the scan(n�lg σ�)
I/Os that are generally needed to write the local tree. Thus, the total number of
I/Os is bound by 4 scan(n�lg σ�)+σ�n/k�. In practice we use the entire internal
memory as a write buffer while merging the local trees. This way we maximize
the length of sequential writes and keep random I/Os at a minimum.

Now we determine the time complexity of our algorithm as well as the internal
memory bounds. Let t(n, σ) and s(n, σ) be the time and the bits of memory
used by the sequential construction algorithm that we deploy as a subroutine.
We know that at any given point in time there is either exactly one processor
performing I/Os, or all threads are computing local trees. The total I/O time
(including the merge phase) is bound by O(n + σ�n/k�). The time during which
all threads are computing local trees is bound by �n/pk� · t(k, σ). In terms of
main memory we use p · s(k, σ) bits for up to p simultaneous executions of our
internal memory construction algorithm over text segments of size k. Additional
O(�n/k�σ lg n) bits are needed to store all histograms.

Lemma 3. Let t(n, σ) and s(n, σ) be the time and space used by an internal
memory WT construction algorithm, and let p, k ∈ N

+. The external memory
algorithm ext.dd computes the WT of a text of length n over an alphabet of
size σ using 4 scan(n�lg σ�) + σ�n/k� I/Os. If p threads are available, it takes
O(n + σ�n/k�) + �n/pk� · t(k, σ) time and O(�n/k�σ lg n) + p · s(k, σ) bits of
internal memory including input and output.
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Fig. 5. Throughput and main memory peak of semi-external WT construction.

5 Experiments

For our experiments, we used a machine equipped with 16 GiB RAM, eight
Hitachi HUA72302 HDDs each with a capacity of 1.8 TiB and two Samsung
SSD 850 EVO SSDs each with a capacity of 465.8 GiB, and an Intel Xeon CPU
i7-6800K (6 cores with frequency up to 3.4 GHz and cache sizes: 32 kB L1D
and L1I, 256kB L2, and 15360 kB L3). The operating system is Ubuntu 16.04
(64-bit, Linux kernel 4.4). Our external memory algorithms use the STXXL [4]
development snapshot (26-09-2017). We compiled all source code using g++ 7.4
with flags -O3 and -march=native, and express parallelism using OpenMP 4.5.
We test our algorithms using both (a) four HDDs and (b) two SSDs. Before
starting the timer, we compute the text over the effective alphabet and store it
on disk, which is the input. Running times are the median of three executions.
The implementations used for the evaluation are available from https://github.
com/kurpicz/pwm.

We compare the following algorithms: se.pc, se.par.pc, se.ps, and se.ps.ip
are the semi-external memory WT and WM algorithms described in §3, seq.sdsl
is the semi-external memory algorithm contained in the SDSL, and seq.pc the
fastest main memory WT algorithm [5], which we use as baseline. Our exter-
nal (and parallel) WT and WM algorithms are the only external construction
algorithms. Hence, we cannot compare ext.ps and ext.dd (see §4) with other
algorithms in the same model. The construction times for WTs and WMs are
nearly identical in both models.

https://github.com/kurpicz/pwm
https://github.com/kurpicz/pwm
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Fig. 6. Throughput and main memory peak of semi-external WM construction. Same
experiment for the WM as reported in Fig. 5 for the WT.

We use the following real world inputs of sizes up to 128 GiB. When needing
a smaller size, we consider a prefix of that size.

DNA (σ = 4) is a collection of DNA data from the 1000 Genomes Project
(http://internationalgenome.org/data),

CC (σ = 242) contains websites (without HTML tags) that have been crawled
by the Common Crawl corpus (http://commoncrawl.org), and

Wiki (σ = 213) are recent Wikipedia dumps containing XML files that are
available from (https://dumps.wikimedia.org).

Semi-external Memory Construction Algorithms. An overview of the throughput
and the required main memory of our semi-external WT construction algorithms
can be found in Fig. 5. The results of the semi-external WM construction algo-
rithms can be found in Fig. 6. Not plotted data means that the algorithm could
not process the input size with the given main memory. The main memory algo-
rithm seq.pc is used as base line and—as expected—always fastest sequential
algorithm. The fastest semi-external memory algorithm on all inputs is se.ps.
However, se.ps requires the most main memory—even more than seq.pc. The
second fastest algorithm is se.pc. In addition, it is also the most memory efficient
one, requiring less than all other tested algorithms. On DNA, se.ps.ip achieves
a similar throughput to se.pc and is faster than seq.sdsl. On all other inputs
se.ps.ip and seq.sdsl are always the slowest. Still, on all instances except for
DNA, seq.sdsl requires five times more memory than se.pc. On DNA it even

http://internationalgenome.org/data
http://commoncrawl.org
https://dumps.wikimedia.org
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Fig. 7. Throughput (first row) and I/Os (second row) of external WT algorithms. Here,
parallel algorithms uses all six threads. Throughput of ext.dd using 20 GiB input per
thread (last row).

requires 16.6 times as much. The memory requirements of our semi-external
algorithms per byte input is decreasing with larger inputs, as we use fixed-size
buffers for our algorithms. When given inputs of size 4 GiB or more, seq.sdsl
has to move the system swap, which explains the decrease in required memory.
Therefore, se.pc is the fastest and most memory efficient semi-external memory
algorithm. The throughput on SSDs is slightly better than on HDDs, except for
se.par.pc, which has higher throughput on HDDs, which we cannot explain. It is
also roughly twice as fast as se.pc, using slightly more memory, except on DNA
(as expected).

External Memory Construction Algorithms. In Fig. 7 we show the throughput
(first row) and I/Os (second row) of our external memory algorithms comput-
ing the WT. We show the same experiments for the WM computation in Fig. 8.
We also give the maximum throughput (hdd-max and ssd-max) we achieved for
reading the text and the WT once and writing the WT twice, which are exactly
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Fig. 8. Throughput (first row) and I/Os (second row) of external WT algorithms. Here,
parallel algorithms uses all six threads. Throughput of ext.dd using 20GiB input per
thread (last row). Same experiment for the WM as reported in Fig. 7 for the WT.

the external memory operations conducted by ext.dd. All algorithms have a
nearly constant throughput, which is independent of the input size. The same
is true for I/Os (both read and write). We also allow ext.dd to read and write
concurrently (conc. R/W), which increases the throughput for SSDs on CC for
inputs larger than 16 GiB, inputs of size up to 32 GiB on Wiki, and in general on
DNA. For HDDs, it reduces the throughput on all text sizes by 4.55 % (DNA)
to 11.12 % (Wiki). In the last row of Fig. 7 we show a weak scaling experiment
of ext.dd. Using one thread, ext.dd is faster than ext.ps by a factor between
1.64 (DNA) to 2.14 (CC). Hence it is the fastest external memory WT construc-
tion algorithm. It also scales reasonably well, achieving a speedup of up to 3.51
(Wiki with conc. R/W). Here, concurrent read and write only increases through-
put on Wiki. On DNA, ext.dd does only scale for up to two threads, which
is as expected as the number of threads that can efficiently be used is limited
by the size of the alphabet. Also, we see using six threads ext.dd’s through-
put on HDDs is between 17.3 MiB/s (CC) and 38.9 MiB/s (DNA) less than the
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Table 1. Characteristics of squential algorithms proposed in this paper.

Name Time I/Os Memory in bits

se.pc O(n lg σ) O(scan(n�lg σ�)) n�lg σ� + σ�lg n�
se.ps O(n lg σ) O(scan(n�lg σ�)) 2n�lg σ� + σ�lg n�
ext.ps (computing WT) O(n lg σ + σ) 2�lg σ� · scan(n�lg σ�) 2σ�lg n�
ext.ps (computing WM) O(n lg σ) 2�lg σ� · scan(n�lg σ�) O(1)

maximum throughput. Using SSDs, its throughput is between 157.3 MiB/s (Wiki)
and 268.0 MiB/s (DNA).

On Shared Memory Wavelet Tree Construction. We have not included the
throughput of the currently fastest parallel shared internal memory wavelet tree
construction algorithm dd.pc [5] in any of the plots, due to the huge difference in
speed (compared with our semi-external and external memory construction algo-
rithms). For completeness, we now list the throughput of this algorithm on the
same hardware and running on six threads. Note that we could only run dd.pc
for inputs up to size 4 GiB, as a result of the memory usage of the algorithm.

On DNA, the maximum throughput is 1209.32 MiB/s, on CC it is
431.70 MiB/s, and on Wiki it is 416.26 MiB/s. All these throughputs are more
than the theoretical best result an external memory algorithm can achieve on
this machine.

6 Conclusion

We presented the fastest semi-external memory WT and WM construction algo-
rithm and the first parallel semi-external memory WT and WM construction
algorithm based on the main memory algorithms by Fischer et al. [5]. Then, we
showed the first external memory WT and WM construction algorithm. A sum-
mary of the characteristics of these sequential algorithms is given in Table 1. In
addition, we also parallelized the external memory algorithm. On HDDs, the par-
allel version of our external memory WT and WM construction achieves nearly
perfect throughput, compared to the throughput that we obtain when we read
and write the same amount that is read and written during the algorithm. It
remains an open problem if there is a parallel algorithm that can obtain the
same relative throughput on SSDs.
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Abstract. We present a practical comparison of suffix array construc-
tion algorithms on modern hardware. The benchmark is conducted using
our new benchmark framework SACABench, which allows for an easy
deployment of publicly available implementations, simple plotting of the
results, and straight forward support to include new construction algo-
rithms. We use the framework to develop a construction algorithm run-
ning on the GPU that is competitive with the fastest parallel algorithm
in our test environment.

Keywords: Suffix array · Practical survey · Text indexing

1 Introduction

The suffix array (SA) [28] is one of the most versatile and well-researched full-
text indices. Given a text T of length n, the SA is the permutation of [1, n], such
that T [SA[i]..n] < T [SA[i + 1]..n] for all i ∈ [1, n − 1], i.e., the starting positions
of all suffixes of the text in lexicographical order.

There exist extensive surveys on SA construction algorithms (SACAs), start-
ing with the one by Puglisi et al. [42] and ending currently with the one by
Bingmann [4, p. 163–192]. However, none of these surveys address any practi-
cal results for SACAs in main memory. There are 24 main memory SACAs that
we are aware of. However, not all SACAs have been implemented. It is gener-
ally accepted that the Divsufsort [12,33] is the fastest SACA—despite it having
a superlinear running time. Different models of computation have also been
considered for this problem: external memory, e.g., [5,9,18–20,38], shared mem-
ory, e.g., [20,25], distributed memory, e.g., [1,6,13,14,20,32,36], and GPGPU,
e.g., [10,41,46,47].

In this paper, we first present a practical comparison of SACAs that have a
publicly available implementation. This comparison has been conducted using
c© Springer Nature Switzerland AG 2019
N. R. Brisaboa and S. J. Puglisi (Eds.): SPIRE 2019, LNCS 11811, pp. 407–416, 2019.
https://doi.org/10.1007/978-3-030-32686-9_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32686-9_29&domain=pdf
https://doi.org/10.1007/978-3-030-32686-9_29
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our new SACA benchmark framework called SACABench, which allows for (a)
an easy comparison of SACAs including the output of the results (running time
and memory peak) in form of raw data in JSON format, as PDF, or LATEX file,
(b) a simple way to include new SACAs, such that the features mentioned before
can be used, and (c) fast development of new SACAs due to a variety of building
blocks needed for SACAs (such as prefix sorting, renaming techniques, etc.).
The framework is available from https://github.com/sacabench/sacabench. It is
coded in C++17 and contains 13 SACA implementations, which are to our best
knowledge all SACAs having a publicly available implementation. See Fig. 1 for
a list (and also the historical development) of the SACAs that are included in
the framework. We then use the building blocks of SACABench to implement
a new GPU-based SACA, which is competitive with the fastest parallel (shared
memory) SACA par DivSufSort [25]. Here, our GPU SACA achieves a speedup
between 0.93 and 1.69 compared to par DivSufSort for inputs fitting into the
GPU’s memory.

2 SACABench: A Suffix Array Construction Benchmark

In Fig. 1 we give an overview of different SACAs in main memory. There are four
general types of SACAs: Prefix Doubling algorithms sort the length-2i prefixes
of all suffixes by using the length-2i−1 prefixes as keys, and stopping when all
considered prefixes are unique. If carefully implemented, this results in a running
time of O(n lg n). Induced Copying algorithms first sample certain suffixes and
only sort those suffixes. Based on the sorted sample, the lexicographical order
of all other suffixes can be computed in a second phase, which usually has lin-
ear running time. Depending on which algorithms are used to sort the sample,
induced copying algorithms have either linear or slightly superlinear running
time. Recursive algorithms reduce the problem size during each recursive step
until the problem is trivially solvable (e.g., when all suffixes start with unique
characters). They can achieve linear running time and are sometimes used in
induced copying algorithms in the first phase (to achieve linear running time).
Grouping is a new approach somehow similar to induced copying. Here, all suf-
fixes are first grouped together by presorting them according to some prefix
(in the only algorithm using grouping [3], Lyndon words determine this prefix).
Those groups are then refined using already sorted suffixes, similar to induced
copying algorithms.

2.1 Experimental Setup

We conducted our experiments on a computer with two Intel E5-2640v4
(10 physical cores, Hyper-Threading is disabled (per default on the cluster that
can not be changed by users), with frequencies up to 3.4 GHz, and cache sizes of
320 KiB (L1I and L1D), 2.5 MiB (L2) and 25 MiB (L3)), one NVidia Tesla K40
graphics card (2880 stream processors with frequencies up to 875 MHz and 12 GB
GDDR5 SDRAM) and 64 GB of RAM. We compiled the code using g++ 8.3.0
and compiler flags -O3 and -march=native. Note that Cilk support was removed
from g++ 8.0.0. Hence, we use OpenMP to express parallelism.

https://github.com/sacabench/sacabench
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1990

1999

2000

2002

2003

2004

2005

2006

2007

2008

2009

2011

2016

2017

Prefix
Doubling Induced Copying Recursion

Grouping

[28]
original

[26]
qsufsort

[43]
bpr

[8]
BWT

[44]
1/2 copy

[17]
A/B copy

[31]
deep-shallow

[30]
chains

[33]
divsufsort

[29]
cache aware

[7]
diffcover

[34,40]
SAIS/SADS

[37]
SACA-K

[27]
O(1) space

[15]
O(1) space

[11]
O(n) tree

[21]
DC3

[23]
mod2 split

[16]
mod2

[24]
L/S split

[35]
succinct

[22]
fixed Σ

[39]
O(n lg |Σ|) [2]

SFE-coding

[3]
GSACA

Fig. 1. Historical development of SACAs in main memory (enhanced and updated,
based on [4,42]). For each algorithm, we cite its most recent publication, and the years
on the left hand side show the year of its first publication. In some cases these years
may not match, e.g., due to a later journal publication. SACAs are marked with a grey
background ( ), if they have linear running time, and a partly brown background ( ),
if an implementation is publicly available. All of the latter are also part of SACABench.

2.2 Evaluation of Sequential Suffix Array Construction Algorithms

For the evaluation of the sequential SACAs we use 1600 MiB prefixes of three
texts. Note that we encode each symbol of the text using one byte, as this is
required by most implementations. 1000G (σ = 4, avg lcp = 24,max lcp = 353),
which is a concatenation of DNA sequences provided by the 1000 Genomes
Project (https://internationalgenome.org). We removed every character but A, C,
G, and T. CommonCrawl (σ = 242, avg lcp = 3, 995,max lcp = 605, 632), which
is a crawl of the web done by the CommonCrawl Corpus (http://commoncrawl.
org) without any HTML tags. Here, we also removed all annotations added.
Last, Wiki (σ = 209, avg lcp = 32,max lcp = 25, 063), which is a concatena-
tion of recent Wikipedia dumps in XML format (https://dumps.wikimedia.org).

https://internationalgenome.org
http://commoncrawl.org
http://commoncrawl.org
https://dumps.wikimedia.org
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Fig. 2. Running times and extra memory usage (memory required in addition to the
SA and input text) for all sequential SACAson real world inputs. The LATEX code of
the plot was generated using SACABench (legend and size slightly modified to fit in
this layout).

Here, max lcp denotes the maximum size of a common prefix of two suffixes that
are consecutive in the SA, and avg lcp is the average of if all these sizes (rounded
down).

We used this set of texts, as more popular corpora (e.g., Pizza & Chili
http://pizzachili.dcc.uchile.cl or the Lightweight corpus http://people.unipmn.
it/manzini/lightweight) do only contain one files larger than 1600 MiB and we
want to test on larger inputs.

In addition, we also tested the algorithms on highly repetitive texts that
are available from the Pizza & Chili corpus, as some suffix array construction
algorithms behave differently on this kind of input. To be precise, we use Cere
(σ = 5, n = 461, 286, 644, avg lcp = 7, 066,max lcp = 303, 204), Einstein.en.txt
(σ = 139, n = 467, 626, 544, avg lcp = 59, 074,max lcp = 935, 920), and Para
(σ = 5, n = 429, 265, 758, avg lcp = 3, 273,max lcp = 104, 177).

Running time and memory usage are automatically measured by the frame-
work for each included algorithm. To this end, we use the timing functionality
of C++ and have overwritten the malloc, realloc, and free functions to track the
memory usage of all components and also already coded algorithms.

The running times and the additional memory required are shown in Fig. 2.
It is easy to see that DivSufSort is the fastest sequential SACA running in main

http://pizzachili.dcc.uchile.cl
http://people.unipmn.it/manzini/lightweight
http://people.unipmn.it/manzini/lightweight
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Fig. 3. Running times and extra memory usage (memory required in addition to the
SA and input text) for all sequential SACAs on highly repetitive inputs. The LATEX
code of the plot was generated using SACABench (legend and size slightly modified to
fit in this layout).

memory on all input texts. Also, it is among the SACAs that require nearly
no memory in addition to the space for the SA and the input text. Overall,
DivSufSort is 1.3, 1.61, and 1.63 times faster than the second fastest SACA
on DNA, CommonCrawl, and Wiki. SAIS-LITE, which also does not require
additional memory, is the second fastest SACA on DNA and CommonCrawl. It
is noteworthy that both DivSufSort and SAIS-LITE have been coded by Yuta
Mori. On Wiki, Deep Shallow is the second fastest SACA, but it is just 0.01 s
faster than BPR and 0.04 s faster than SAIS-LITE. Those two SACAs (BPR and
Deep Shallow) are also the third and fourth fastest algorithm on CommonCrawl
and the fourth and third fastest on DNA. BPR is the only algorithm among the
fast ones that requires an extensive amount of additional memory. More than
13 GiB for an input of size 1600 MiB. BPR, DC3, GSACA, and MSufSort require
more additional memory than the size of the input.

For the highly repetitive texts, we have similar results regarding the running
time and memory peaks. We show the results of our experiments in Fig. 3. Sur-
prisingly, SAIS-LITE is faster than DivSufSort on this kind of inputs. On Cere
it is 24.11% faster, on Einstein.en.txt it is 9.1% faster, and on Para it is 8.78%
faster. All this while requiring the same memory as DivSufSort.
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Fig. 4. Running time of the parallel (shared memory on 20 cores and GPU) SACAs on
200 MiB texts. The LATEX code of the plot was generated using SACABench (legend
and size slightly modified to fit in this layout).

3 Suffix Array Construction on the GPU

Next to the well tuned SACAs compared above, SACABench also contains many
experimental SACA implementations. The best performing one is a parallel prefix
doubling algorithm that runs on GPUs and is based on Osipov’s GPU SACA
[41, p. 44–51]. The main idea is similar to the general prefix doubling approach
as used by Manber/Myers [28] and Larsson/Sadakane [26]. In iteration i, we
consider the length-2i prefixes of all suffixes and group equal (using the prefix as
key) suffixes together into buckets. To refine the new buckets in the next iteration,
we use the bucket numbers of the suffixes starting 2i−1 text positions to the right.
This allows us to compute the new buckets without additional access to the text.
A bucket is sorted if it contains only a single suffix. Larsson and Sadakane [26]
added a clever mechanism to ignore already sorted buckets, which is a practical
improvement. However, this can lead to load imbalance when parallelizing the
algorithm. Our implementation combines techniques from both approaches such
that sorted buckets can be ignored, but load imbalance is avoided by marking
sorted groups and making heavy use of parallel prefix sums to compute the
number of smaller groups for each group.

The prefix doubling technique has proven to be effective in other models of
computation, e.g., distributed memory [6,13,14] and external memory [9].

3.1 Evaluation of Parallel Suffix Array Construction Algorithms

We compare our GPU SACA with three shared memory parallel SACAs. We
could not compare our algorithm with the most recent GPU-algorithm by Wang
et al. [47], we could only run it successfully for inputs smaller than 100 KiB for
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our text collection. (To test their code, they use somehow meaningless random
input texts, which we could get to work in our test environment for sizes up to
170 MiB. However, even if we reduced the alphabet size of our real world texts to
match the alphabet size of the random texts, we could not get this algorithm to
work with inputs larger than 100 KiB.) Likewise, we could not compare against
Osipov’s CPU-SACA [41], as it does not have publicly available code and the
author seems to be have left research and did not reply to our code requests. We
are also aware of parallelKS, parallelRange that are available from the Problem
Based Benchmark Suite [45], however we were not able to make them compute
the correct suffix array on short notice for the final version of this paper.

As inputs we use the Pizza & Chili corpus, as it offers a variety of smaller
text that have size at least 200 MiB: DNA (σ = 16,max lcp = 14, 836), English
(σ = 225,max lcp = 109, 394), Sources (σ = 230,max lcp = 71, 651), Pro-
teins (σ = 25,max lcp = 45, 704), and (dblp.)XML (σ = 96,max lcp = 1, 084).
More characteristics of the texts are available from http://pizzachili.dcc.uchile.
cl. Again, max lcp denotes the maximum size of a common prefix of two suffixes
that are consecutive in the SA. We only use inputs of 200 MiB due to the mem-
ory requirements of our algorithm. On the given hardware it cannot compute
the suffix array for larger inputs.

The results of our experiments are shown in Fig. 4, where par DivSufSort
denotes the fully parallel version of DivSufSort by Labeit et al. [25]. The partially
parallel DivSufSort is Mori’s [33] implementation of DivSufSort, where only the
first phase is be parallelized. The GPU Prefix Doubler is the algorithm presented
in this paper. The CPU Prefix Doubler is the same as the GPU one but it only
uses the CPU, which we included as sanity check to see the speedup of the GPU.
The running time of prefix doubling SACAs is O(n lg max lcp).

Our new algorithm is the fastest on DNA, Proteins, and XML, where
max lcp is comparatively small. Here, we are 1.58 (DNA), 1.69 (Proteins),
and 1.15 (XML) times faster than par DivSufSort. On English and Sources,
par DivSufSort is 1.03 (English) and 1.07 (Sources) times faster than our GPU
Prefix Doubler on inputs with large max lcp. Hence, it is only slightly faster.

We also included the in-memory version of the external memory suffix array
construction algorithm pSAscan [18] in our framework. The available implemen-
tation could not handle all inputs by design, as it cannot handle text that contain
the character 255, which occurs in English and Sources. It is 2.25 times, 1.67
times, and 1.46 times slower than our GPU Prefix Doubler.

Although a fair comparison against [41] is difficult due to the problems men-
tioned above, we hypothesize the following: Osipov [41] used an NVidia Fermi
GTX 480 graphics cards with 480 and 1.5 GB RAM and an Intel i7 920 CPU
with 4 cores and frequencies up to 2.93 GHz, where they achieved a speedup of
at most 5.8 against partially sequential DivSufSort in the best case, but often
a speedup of only around 2.5. Our speedup against the partial parallelized Div-
SufSort. varies between 1.45 (English) and 3.14 (DNA). Given that the ratio
between the GPU and CPU cores is nearly the same in both setups (120:1 in
their experiment and 144:1 in ours), but that our CPU cores have a higher fre-
quency, we speculate that our implementation is of similar speed as Osipov’s
original one.

http://pizzachili.dcc.uchile.cl
http://pizzachili.dcc.uchile.cl
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4 Conclusion

We presented a framework for SACAs that allows for an easy comparison of
SACAs regarding time and memory consumption during construction. The result
of this comparison is an empirical proof that DivSufSort is still the fastest SACA.
It also has (in practice) optimal space requirements, as the additional memory
only depends on the size of the alphabet. In addition, new algorithms can effort-
less be included in the framework allowing all features of the framework to be
used. We also presented a GPU SACA that is the fastest parallel SACA, but is
limited by the memory size of the graphics card, and part of the framework.

Recently, linear time SACAs that require only a constant number of computer
words in addition to SA and the input text have been presented [15,27], which
is optimal. Now, the only open question regarding SACAs in main memory is:
is there a SACA faster than DivSufSort, which is the fastest since 2006? And if
there is a faster algorithm than SAIS-LITE for highly repetitive texts, as it is
even faster than DivSufSort on those.

Acknowledgment. We would like to thank the anonymous reviewer who pointed us
to additional parallel suffix array construction algorithms that we had not previously
included in the framework.
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Abstract. The k2-tree is a successful compact representation of binary
relations that exhibit sparseness and/or clustering properties. It can be
extended to d dimensions, where it is called a kd-tree. The representation
boils down to a long bitvector. We show that interpreting the kd-tree as a
dynamic trie on the Morton codes of the points, instead of as a dynamic
representation of the bitvector as done in previous work, yields operation
times that are below the lower bound of dynamic bitvectors and offers
improved time performance in practice.

1 Introduction

The k2-tree [14] is a compact data structure conceived to represent the adjacency
matrix of Web graphs, but its functionality was later extended to represent other
kinds of d-ary relations such as ternary relations [1], point grids [12], raster data
[9], RDF stores [2], temporal graphs [15], graph databases [3], etc.

The k2-tree compactly represents an extension of a variant of the Quadtree
data structure [20], more precisely of the MX-Quadtree [25, Section 1.4.2.1]. The
MX-Quadtree splits the n × n grid into four submatrices of n/2 × n/2 cells.
The root indicates which of the submatrices are nonempty of points, and a child
of the root recursively represents each nonempty submatrix. In the k2-tree, the
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matrix is instead split into k2 submatrices of n/k × n/k cells. In d dimensions,
the structure becomes a kd-tree, where the grid is divided into kd submatrices
of n/k × · · · × n/k cells. The height of the kd-tree is then logkd(nd) = logk n.

Instead of using pointers to represent the tree topology, the kd-tree uses a
long bitvector B[1..N ], where each node stores only kd bits indicating which
of its submatrices are nonempty, and all the node bitvectors are concatenated
level-wise into B. Bitvector B supports navigation towards children and parents
in O(1) time [14] by means of rank/select operations [16,21] on bitvector B.
Query operations like retrieving all the neighbors or the reverse neighbors of a
node (when representing graphs) or retrieving all the points in a range (when
representing grids) then translate into traversals on the kd-tree [14].

In various applications one would like the relations to be dynamic, that is,
elements (graph edges, grid points) can be inserted and deleted from the relation.
Each such update requires flipping bits or inserting/deleting chunks of kd bits at
each of the logk n levels in B. Such operations can be supported using a dynamic
bitvector representation [13]. There exists, however, an Ω(log N/ log log N) lower
bound to support updates and rank/select operations on a bitvector of length
N [17], and such slowdown factor multiplies every single operation carried out
on the bitvector, both for traversals and for updates.

In this paper we take a different view of the kd-tree representation. We regard
the kd-ary tree as a trie on the Morton codes [20] of the elements stored in the
grid. The Morton code (in two dimensions, but the extension is immediate) is
the concatenation of the logk n identifiers of the consecutive subgrids chosen by
a point until it is inserted at the last level. We then handle a trie of strings of
length logk n over an alphabet of size kd. While such a view yields no advantage
in the static case, it provides more efficient implementations in the dynamic
scenario. For example, a succinct dynamic trie [4] on the Morton codes requires
space similar to our bitvector representation, but it is much faster in supporting
the operations: o(d log k) time, and constant for practical values of d and k.

In this paper we implement this idea and show that it is not only theoretically
appealing but also competitive in practice with the preceding dynamic-bitvector-
based representation [13]. In our way, we define a new depth-first deployment for
tries that, unlike the level-wise one [14], cannot be traversed in constant time per
edge. Yet, we show it turns out to be convenient in a dynamic scenario because
we have to scan only small parts of the representation.

2 The k2-Tree and Its Representation as a Trie

Let us focus on the case k = 2 and d = 2 for simplicity; d = 2 encompasses all
the applications where we represent graphs, and the small value of k is the most
practical in many cases. Given p points in an n × n matrix M , the k2-tree is a
k2-ary (i.e., 4-ary) tree where each node represents a submatrix. Assume n is a
power of k (i.e., of 2) for simplicity. The root then represents the whole matrix
M [0..n− 1, 0..n− 1]. Given a node representing a submatrix M [r1..r2, c1..c2], its
4 children represent the submatrices M [r1..rm, c1..cm] (top-left), M [r1..rm, cm +
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1..c2] (top-right), M [rm+1..r2, c1..cm] (bottom-left), and M [rm+1..r2, cm+1..c2]
(bottom-right), in that order, where rm = (r1+r2−1)/2 and cm = (c1+c2−1)/2.
Each of the 4 submatrices of a node may be empty of points, in which case the
node does not have the corresponding child. The node stores 4 bits indicating
with a 1 that the corresponding matrix is nonempty, or with a 0 that it is empty.
The k2-tree is of height logk n = log2 n. The p matrix points correspond to the
leaves marked with 1 at depth logk n. See Fig. 1.
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Fig. 1. Binary relation for the set {(0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (1, 3), (1, 7), (2, 1),
(4, 0), (4, 1), (7, 3), (8, 12), (11, 12)} (on top). The corresponding k2-tree (in the mid-
dle) with level-order numbers shown in parentheses above each node, and its levelwise
representation (on the bottom), again with level-order numbers above each node.

Succinct Representation. A simplified description of the compact k2-tree repre-
sentation [14] consists of a bitvector B where the tree is traversed levelwise, left
to right, and the k2 = 4 bits of all the nodes are concatenated. This is similar to
a louds tree representation [8,18], which is also computed via a BFS traversal.
Then, if the tree has v nodes, the bitvector B is of length k2v = 4v, B[1..4v].
Note that the nodes of depth logk n = log2 n correspond to 4 cells, and therefore
it is sufficient to store their 4 bits; their children are not represented. Given
p points, the number of nodes of the k2-tree is v ≤ p log4(n2/p) + O(p) [22,
Sec. 9.2].
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Each k2-tree node is identified by the position of the first of the 4 bits that
describes its empty/nonempty children. To move from a node i to its t-th child
(0 ≤ t ≤ 3), the formula is simply 4 · rank1(B, i + t) + 1, where rank1(B, i)
counts the number of 1s in B[1..i] and can be computed in O(1) time using o(v)
space on top of B [16]. For example, we determine in O(logk n) time whether
a certain point exists in the grid. Other operations require traversal of selected
subtrees [14].

Dynamic k2-Trees. A dynamic k2-tree [13] is obtained by representing B as
a dynamic bitvector. Now operation rank takes time O(log v/ log log v) [23],
which is optimal [17]. This slows down the structure with respect to the static
variant. For example, determining whether a point exists takes time O(logk n ·
log v/ log log v) ⊆ O(log2 n/ log log n). To insert a point (r, c), we must create its
path up to the leaves, converting the first 0 in the path to a 1 and thereafter
inserting groups of k2 = 4 bits, one per level up to level logk n. This takes time
O(logk n · log v/ log log v) as well. Deleting a point is analogous.

Morton Codes. Consider a point (r, c), which induces a root-to-leaf path in the
k2-tree. If we number the 4 submatrices described in the beginning of this section
as 0,1,2,3, then we can identify (r, c) with a sequence of log4(n2) = log2 n symbols
over the alphabet [0..3] that indicate the submatrix chosen by (r, c) at each level.
In particular, note that if we write the symbols in binary, 0 = 00, 1 = 01, 2 = 10,
and 3 = 11, then the row r is obtained by concatenating the first bits of the log2 n
levels, from highest to lowest bit, and the column c is obtained by concatenating
the second bits of the log2 n levels. The Morton code of (r, c) is then obtained
by interlacing the bits of the binary representations of r and c.

As a consequence, we can regard the k2-tree as the trie of the Morton codes
of all the p points, that is, a trie storing p strings of length logk n = log2 n over
an alphabet of size k2 = 4. The extension to general values of kd is immediate.

Succinct Tries. A recent dynamic representation [4] of tries of v nodes over
alphabet [0..σ − 1] requires v(2+ log2 σ)+ o(v log σ) bits. If σ is polylogarithmic
in v, it simulates each step of a trie traversal in O(1) time, and the insertion and
deletion of each trie node in O(1) amortized time. Used on our Morton codes,
with alphabet size σ = k2 = 4, the tries use v(2+2 log2 k)+o(v) = 4v+o(v) bits,
exactly as the representation using the bitvector B. Instead, they support queries
like whether a given point exists in time O(logk n), and inserting or deleting a
point in amortized time O(logk n), way faster than on the dynamic bitvector B.

The General Case. With larger values of k and d, B requires kdv bits, and it
may become sparse. By using sparse bitvector representations [24], the space
becomes O(p log(nd/p) + pd log k) bits [22, Sec. 9.2], but the time of operation
rank becomes O(d log k), and this time penalty factor multiplies all the other
operations. A dynamic representation of the compressed bitvector [23] uses the
same space and requires O(log v/ log log v) time for each operation. The space
usage of the trie [4] on a general alphabet of size σ = kd is of the same order,
O(p log(nd/p) + pd log k) bits, but the operations are supported in less time,
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O(log σ/ log log σ) = O(log(kd)/ log log(kd)) = O(d log k/ log(d log k)) (amor-
tized for updates). The insertion or deletion of a point, which affects logk n
tree edges, then requires O(d log n/ log(d log k)) amortized time. We state this
simple result as a theorem.

Theorem 1. A dynamic kd-tree can represent p points on an nd-size grid within
O(p log(nd/p) + pd log k) bits, while supporting the traversal, insertion, or dele-
tion of each tree edge in time O(d log k/ log(d log k)) (amortized for updates). If
kd = O(polylog p), then the times are O(1) (also amortized for updates).

3 Implementation of the Dynamic Trie

We now define a practical implementation of succinct dynamic tries, for the
particular case of k2-trees with k = 2. The whole trie is divided into blocks, each
being a connected component of the trie. A block can have child blocks, so we
can say that the trie is represented as a tree of blocks. Blocks will be of variable
size. Let us define block sizes N1 < N2 < · · · < Nmax, such that Ni = Ni−1/α,
for i = 2, . . . , max, for a given parameter 0 < α < 1, and Nmax = 4 · N1. At any
given time, a block B of size Ni is able to store at most Ni nodes. If new nodes
are added to B such that the number of nodes exceeds Ni, then B is enlarged
to have size Nj , for j > i, such that the new nodes can be stored. By defining
the block sizes Ni as we do, we ensure that the fill ratio of each block is at least
1 − α [5]; for example, if α = 0.05, then every block is at least 95% full, which
means that the space wasted is at most 5%.

Each block B stores the following components:

– TB: the tree topology of the connected component represented by the block.
Every node in the trie is either an internal node, a leaf node, or a frontier
node in some TB . The latter are seen as leaves in TB , but they correspond
to trie nodes whose subtree is stored in a descendant block. We mark such
nodes in B and store a pointer to the corresponding child block, see next.

– FB: a sorted array storing the preorder numbers of the frontier nodes.
– PB: an array with the pointers to children blocks, in the same order of FB.
– dB : the depth (in the trie) of the root of TB .

Unlike the classical k2-tree representation [13,14], which deploys the nodes
levelwise, we represent the tree topology TB in depth-first order. This order is
compatible with our block layout and speeds up the insertion of points, since
the bits of all the edges to insert or remove are contiguous.

Representation. In TB , each node is encoded using 4 bits, indicating which of its
children are present. For instance, ‘0110’ encodes a node that has two children,
labeled by symbols 1 and 2. Therefore, the total number of bits used to encode
the trees TB is exactly the same as in the classical representations [13,14].

We store TB using a simple array able to hold Ni nodes. A node is identified
by its index within this array. Figure 2 shows an example top block for the k2-tree
of Fig. 1 and our array-based depth-first representation. Depth-first numbers are
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shown along each node; these are also their indexes in the array storing TB . In
the example, nodes with depth-first number 2 and 3 are frontier nodes; they are
underlined in the array representation.

TB : 1001 1110 0110 1100 1001 1100 1001 0100 1010 1000 0010

6 109

8

7

0

1

432

5

0 1 2 3 4 5 6 7 8 9 10

Fig. 2. Example block of a k2-tree and its depth-first representation. Depth-first num-
bers are shown along with each node, and they correspond with the index in the array
representation. Nodes with numbers 2 and 3 (underlined in TB) are frontier nodes.

Apart from TB , each block B then requires 3 words to store dB and its
corresponding entries in the arrays FB′ and PB′ in its parent block B′. This
implies a maximum overhead of O(log(n)/N1) bits per node, assuming pointers
of Θ(log n) bits as in the transdichotomous RAM model of computation. Thus
we have to choose N1 = ω(log N) for this overhead to be o(n).

The depth-first order we use, however, corresponds more to the dfuds repre-
sentation [8], whereas the classical levelwise deployment is analogous to a louds
representation [18]. An important difference is that, whereas the fixed-arity vari-
ant of louds is easy to traverse in constant time per edge, the dfuds repre-
sentation requires more space [8,22]: apart from the 4 bits, each node with c
children uses c + 1 bits to mark its number of children.

As a consequence, our actual storage format cannot be traversed in constant
time per edge. Rather, we will traverse the blocks sequentially and carry out all
the edge traversals or updates on the block in a single left-to-right pass. This
is not only cache-friendly, but convenient because we do not need to store nor
recompute any sublinear-space data structure to speed up traversals [16].

A complication related to our format is that, when traversing the tree, we
must maintain the current trie depth in order to identify the leaves (these are
always at depth log2 n). Besides, as we traverse the block we must be aware of
which are the frontier nodes, so as to skip them in the current block or switch
to another block, depending on whether or not we want to enter into them.
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Operation child. This is the main operation needed for traversing the tree. Let
child(x, i) yield the child of node x by symbol 0 ≤ i ≤ 3 (if it exists). Assume node
x belongs to block B. Recall that x is actually the position of the node within
the array that represents TB . For computing child(x, i), we first check whether
node x is in the frontier of B or not. To support this checking efficiently, we
keep a finger if on array FB, such that if is the smallest value for which FB[if ] is
greater or equal than the preorder of the current node in the traversal. Since we
traverse in preorder, and FB is sorted, increasing if as we traverse TB is enough
to keep if up to date. When the preorder of the current node exceeds FB[if ],
we increase if . If FB [if ] = x, then node x is in the frontier, hence we go down
to block PB[if ], start from the root node (which is x itself stored in the child
block), and set if ← 0. Otherwise, x is not a frontier node, and we stay in B.
In summary, operation child(x, i) is supported by an Euler tour on the part of
the subtree of node x that belongs to block B. During the tour, we skip pointers
associated to the frontier nodes we find before getting to the ith child of x.

Determining whether the i-th child of a node x exists requires a simple bit
inspection. If it does, we must determine how many children of x (and their
subtrees) must be skipped to get to child(x, i). We store a precomputed table
that, for every 4-bit pattern and each i = 0, . . . , 3, indicates how many subtrees
must be skipped to get the desired child. For instance, if x is ‘1011’ and i = 2,
this table tells that one child of x must be skipped to get to the node labeled 2.

In our sequential traversal of B, corresponding to a depth-first traversal of
TB, we keep a stack S (initially empty) such that for every node in the path from
node x to the current node, stores the number of children not yet traversed. We
start looking for the desired child by moving to position x + 1, corresponding to
the first child of x in preorder. At this point, we push the number of children
of this node into S. The traversal is carried out by increasing an index on the
array that stores TB . The key for the traversal is to know the current depth at
each step. As said before, we keep track of the current depth d, to know when
we arrive at a leaf node. When traversing, we update d as follows. Every time
we move to the next node (in preorder), we increase d only if (1) d is not the
maximum depth (minus 1, recall that the last level is not represented), (2) the
current node is not a frontier node, or (3) the current node is the last child
of its parent. We use S to check the latter condition. Every time we reach a
new node, we push in S its number of children if the node is not of maximum
depth (minus 1), and it is not a frontier node. Otherwise, we instead decrease
the value at the top of the stack, since the subtree of the corresponding node
has been completely traversed. When the top value becomes 0, it means that a
whole subtree has been traversed. In such a case we pop S, decrease the current
depth d, and decrease the new value at the top (if this also becomes 0, we keep
repeating the process, decreasing d and the top value).

Once the stack S becomes empty again, we have traversed the subtree of the
first child. We repeat the same process from the current node, skipping as many
children of x as needed.
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Operation insert. To insert a point (c, r), we use the corresponding Morton code
M = yz, for strings y ∈ {0, . . . , 3}∗ and z ∈ {0, . . . , 3}+ to navigate the trie,
until we cannot descend anymore. Assume that we have been able to get down
to a node x (stored in block B) that represents string y, and at this node we
have failed to descend using the first symbol of z. Then, we must insert string z
in the subtree of node x. If the block has enough space for the |z| new nodes, we
simply find the insertion point from x (skipping subtrees as explained above),
make room for the new nodes, and write them sequentially using a precomputed
table that translates a given symbol of z to the 4-bit pattern corresponding to
the unary node for that symbol. We also store a precomputed table that, given
the encoding of x and the first symbol of string z, yields the new encoding for x.

If, on the other hand, the array used to store TB has no room for the new
nodes, we proceed as follows. If the array is currently able to store up to Ni <
Nmax nodes, we reallocate it to make it of size Nj , for the smallest Nj such that
Ni + |z| ≤ Nj holds. If, otherwise, Ni = Nmax, or Ni + |z| > Nmax, we must
first split B to make room.

To minimize space usage, the splitting process should traverse TB to choose
the node w such that splitting TB at w generates two trees whose size difference is
minimum. We combine this criterion, however, with another one that optimizes
traversal time. As explained, an advantage of our method is that we can traverse
several edges in a single left-to-right scan of the block. Such scan, however,
ends when we have to follow a pointer to another block. We try, therefore,
to have those pointers as early as possible in the block so as to increase the
probability that the left siblings of the ith child of node x are frontier nodes,
so we avoid traversing their subtrees when computing child(x, i). Our splitting
criterion, then, tries first to separate the leftmost node in the block whose subtree
size is 25%–75% of the total block size.

After choosing node w, we carry out the split by generating two blocks,
adding the corresponding pointer to the new child block, and adding w as a
frontier node (storing its preorder in FB and its pointer in PB).

Increasing the Size of Deeper Blocks. A way to reduce the cost of traversing the
blocks sequentially is to define a small maximum block size Nmax. The cost is
that this increases the space usage, because more blocks will be needed (thus
increasing the number of pointers, and hence the space, of the data structure).
We have the fortunate situation, however, that the most frequently traversed
blocks are closer to the root, and these are relatively few. To exploit this fact,
we define different maximum block sizes according to the depth of the corre-
sponding block, with smaller maximum block sizes for smaller depths. We define
parameters 0 ≤ d1 < d2 such that a block whose root has depth at most d1
have maximum block size N ′′

max, a block whose root has depth at most d2 have
maximum block size N ′

max, and the remaining blocks have maximum size Nmax,
for N ′′

max < N ′
max < Nmax. In this way, we aim to reduce the traversal cost,

while using little space at deeper blocks (recall that, regardless the block size
Ni, a block has at least (1 − α) · Ni nodes, ensuring a good space utilization).
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Pushing this idea to the extreme, we may set N ′′
max = 1, equivalent to allowing

the top part of the tree to be represented with explicit pointers.

Analysis Again. Theorem 1 builds on a highly theoretical result [4]. The engi-
neered structure defined in this section, on the other hand, obtains higher time
complexities. In our implementation, each operation costs O(Nmax) time, which
we set close to log2 N to obtain the same space redundancies of dynamic bitvec-
tors. In turn, the implementation of dynamic bitvectors [13] takes Θ(log2 N)
time per basic operation (edge traversal or update). An advantage of our imple-
mentation is that, during the Θ(log2 N)-time traversal of a single block, we may
be able to descend several levels in the root-to-leaves path of the k2-tree, but this
is not guaranteed. As a result, we can expect that our implementation will be
about as fast as the dynamic bitvectors or significantly faster, depending on the
tree topology. Our experiments in the next section confirm these expectations.

4 Experiments

4.1 Experimental Setup

We experimentally evaluate our proposal comparing it with the dynamic k2-tree
implementation based on dynamic bit vectors [13], to demonstrate the com-
parative performance of our technique. Other dynamic trie implementations
exist [6,7,19] that are designed for storing general string dictionaries, and could
store the points using their Morton codes. However, these techniques usually
require space comparable to that of the original collection of strings (in our
case, the Morton codes), which would be excessive in datasets like Web graphs
that can be easily compressed using a few bits per edge. Moreover, since generic
dictionaries are mainly optimized for word queries, or at most prefix queries, it
would be harder to provide an efficient implementation of row/column queries
in these structures, whereas those algorithms are very efficient in k2-trees.

We use four different datasets in our experiments. Their basic information
is described in Table 1. The graphs indochina and uk are Web graphs from the
Laboratory for Web Algorithmics1 [10,11], known to be very sparse and com-
pressible. The datasets triples-med and triples-dense are selected predicates of
the DBPedia 3.5.12, transformed through vertical partitioning as in previous
work [2]; they are also sparse matrices but much less regular, and more difficult
to compress.

For our structure we use k = 2 and the following configuration parameters:
N ′′

max = 1 (i.e., we use explicit pointers in the first few levels of the trie), N ′
max =

96, and show results for different configurations varying Nmax, from 256 to 1024.
We also show the tradeoff using values of d1 8 and 12, and values of d2 from 10
to 16 depending on d1.

For the approach based on dynamic bitvectors (dyn-bitmap), we show results
of the practical implementation with the default setup (base block size 512 for
1 http://law.di.unimi.it/datasets.php.
2 https://wiki.dbpedia.org/services-resources/datasets/data-set-35/data-set-351.

http://law.di.unimi.it/datasets.php
https://wiki.dbpedia.org/services-resources/datasets/data-set-35/ data-set-351
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Table 1. Datasets used in our experiments.

Type Dataset Rows/cols Points

(millions) (millions)

Web graph indochina-2004 7.4 194.1

uk-2002 18.5 298.1

RDF triples-med 67.0 7.9

triples-dense 67.0 98.7

the nodes that compose the dynamic bitmap; k = 4 in the first 3 levels of the
tree and k = 2 in the remaining levels). Using a higher value of k in a few upper
levels of the conceptual tree has negligible effect on compression, since only a
few nodes at the beginning of the bitmap use it, but it has a positive effect
in query times since it reduces the height of the tree. When relevant, we also
display results for another configuration with smaller block size 128 and k = 4
in the first 5 levels, keeping k = 2 in the remaining levels of the tree.

We also performed tests with dynamic path-decomposed tries [19] (dyn-PDT)
and HAT tries [6] (HAT-Trie), applied to the Morton codes. For dyn-PDT we used
the default configuration provided by the authors, but set λ to 4 as suggested by
the authors for DNA, since Morton codes also use a very small alphabet (results
were not significantly different with λ = 16). We tested the variants with bitmap
management, varying � from 8 to 64. For HAT-Trie we also used the default
configuration. As explained previously, these are generic implementations not
designed for this specific problem, and therefore their results are not competitive
with ours. Nevertheless, we will outline the results obtained with these structures
for completeness.

We run our experiments in a machine with 4 Intel i7-6500@2.5 GHz cores
and 8 GB RAM, running Ubuntu 16.04.6. Our code is implemented in C++ and
compiled with g++ 5.5.0 using the -O9 optimization flag. Our implementation
is publicly available at https://github.com/darroyue/k2-dyn-tries.

4.2 Results

In order to test the compression and performance of our techniques, we start by
building the representations from the original datasets. To do this, we shuffle the
points in the dataset into a random order, and insert them in the structures one
by one. Then, we measure the average insertion time during construction of the
complete dataset, as well as the space used by the structure after construction.

Figure 3 displays insertion times during construction and final space for all
the datasets and tested configurations. The results show that in Web graphs
(indochina and uk) our representations can be created significantly faster than
the dynamic bitvectors while requiring negligible additional space, for example
20–25% faster using 3% more space. Moreover, our representations provide a
wide space-time tradeoff that the technique based on dynamic bitvectors does

https://github.com/darroyue/k2-dyn-tries
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Fig. 3. Compression and insertion times (in bits per inserted point and µs/insertion)

not match (in Web graphs we only show results for the default configuration
of dyn-bitmap, because the configuration with smaller blocks is both larger
and slower). The configuration to achieve this tradeoff is also quite intuitive:
larger(smaller) blocks in the lower levels lead to slower(faster), but more(less)
compact structures.

In the RDF datasets (triples-med and triples-dense), our structures are even
more competitive, using far less space and time than the dynamic bitvectors. In
triples-med, our structures are 2.5 times faster when using similar space, or use
25% less space for the same speed. In triples-dense we are about 5 times faster
when using the same space, and still 3 times faster than dynamic bitvectors when
using 20% less space. Notice that the main difference between RDF and Web
graph datasets is the regularity and clusterization of the points in the matrix,
which is much higher in Web graphs than in RDF datasets. This also explains
the worse space results achieved in these datasets compared to Web graphs. A
similar difference in regularity exists between triples-med and triples-dense, where
the latter is much more difficult to compress.

Dyn-PDT and HAT-Trie are not displayed in the figure, since they require
much more space than any of the displayed variants and us, whereas their inser-
tion times are similar to ours. Particularly, Dyn-PDT uses 2–4 times our space
in triples-dense, 5–10 times our space in triples-med, and 12–20 times our space
in Web graphs. It obtains insertion times similar to ours, ranging from 2.5 to
4.5µs/insertion depending on the dataset and configuration, and query times
very similar to insertion times and also similar to ours. HAT-Trie also obtains
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similar insertion times, ranging from 3.5 to 4.5µs/insertion, but requires up to
twice the space of dyn-PDT.

Next, we measure the average query times to retrieve a point. To do this, we
again select the points of each collection in random order, limiting our selection to
100 million points in the larger datasets, and measure the average query time to
search for each of them. Figure 4 displays the query times for these cell retrieval
queries. Results are analogous to those of insertion times. In Web graphs, our
tries obtain even better performance compared to dynamic bitvectors. In RDF
datasets the times are slightly closer but our tries still outperform dynamic
bitvectors in space and time: In triples-med tries are 70% faster when using the
same space, or 20% smaller when taking the same time. In triples-dense tries are
4 times faster when using the same space, and 3 times faster when using 20%
less space. Again, Dyn-PDT and HAT-Trie are not displayed, because they are
much larger than the displayed variants. Query times obtained by dyn-PDT are
similar to ours, ranging from 2.5 to 5µs/query. HAT-Trie has similar but slightly
faster query times, ranging from 2.2 to 3.4µs/query.
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Fig. 4. Query times to retrieve cells (in µs/query)

We also perform tests querying for 100 million randomly selected cells. In
practice, most of these cells will not belong to the collection, and they will prob-
ably be relatively far from existing points, hence allowing the structures to stop
the traversal in the upper levels of the tree. These kind of queries are much faster
and almost identical for all the trie configurations tested in each dataset. Figure 5
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Fig. 5. Query times to retrieve random cells (in µs/query)

displays the query times for these queries. In Web graphs, the dynamic bitvectors
obtain better query times for these queries (0.4–0.6 µs/query in indochina and
uk, while our tries take around 0.6–0.7 and 0.75–0.95µs/query, respectively). In
RDF datasets, our tries are still significantly faster (around 0.55–0.6 µs/query
in both datasets, whereas dynamic bitvectors take 1.1–1.2µs/query in triples-
med and 1.5–1.9µs/query in triples-dense). This points to the depth of the tree
search as a relevant factor in query complexity: our tries seem to have more
stable query times, and are faster in queries that involve traversal of the full tree
depth. In Web graphs, where points are usually clustered, non-existing points
are detected in upper levels of the tree, and query times are usually better. In
the RDF datasets, where points are more randomly distributed, the depth of the
search is expected to be higher on average even if the dataset is still very sparse.

5 Conclusions

Regarding the k2-tree as a trie on the Morton codes of the points it represents
yields a new view that differs from the classical one based on bitvectors [14].
We have shown that this makes an important difference in the dynamic sce-
nario, because dynamic tries can break lower bounds on maintaining dynamic
bitvectors. Apart from the theoretical result, we have implemented a dynamic
trie specialized in representing k2-trees, where the trie is cut into a tree of blocks,
each block representing a connected component of the trie. The dynamic trie uses
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a depth-first search deployment of the trie, unlike the classical level-wise deploy-
ment. While this format cannot be traversed in constant time per trie edge, it
is convenient for a dynamic trie representation because it is consistent with the
tree of blocks, update operations require local changes, a single left-to-right block
scan processes several downward edge traversals, and such scan is cache-friendly
and does not require rebuilding any speed-up data structure.

Our experimental results show that our representation significantly outper-
forms the one based on dynamic bitvectors [13] on some datasets, in space, time,
or both, depending on the nature of the dataset.

In the final version we will include experiments on other operations like
extracting all the neighbors of a node. A future goal is to explore applications
of our dynamic k2-tree representation, in particular for graph databases [3].
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9. de Bernardo, G., Álvarez-Garćıa, S., Brisaboa, N.R., Navarro, G., Pedreira, O.:
Compact querieable representations of raster data. In: Kurland, O., Lewenstein,
M., Porat, E. (eds.) SPIRE 2013. LNCS, vol. 8214, pp. 96–108. Springer, Cham
(2013). https://doi.org/10.1007/978-3-319-02432-5 14

10. Boldi, P., Rosa, M., Santini, M., Vigna, S.: Layered label propagation: a multireso-
lution coordinate-free ordering for compressing social networks. In: Srinivasan, S.,
Ramamritham, K., Kumar, A., Ravindra, M.P., Bertino, E., Kumar, R. (eds.) Pro-
ceedings of the 20th International Conference on World Wide Web, pp. 587–596.
ACM Press (2011)

11. Boldi, P., Vigna, S.: The WebGraph framework I: Compression techniques. In:
Proceedings of the Thirteenth International World Wide Web Conference (WWW
2004), pp. 595–601. ACM Press, Manhattan (2004)

https://doi.org/10.1007/978-3-642-16321-0_15
https://doi.org/10.1007/978-3-319-02432-5_14


Faster Dynamic Compressed d-Ary Relations 433

12. Brisaboa, N., de Bernardo, G., Konow, R., Navarro, G., Seco, D.: Aggregated 2D
range queries on clustered points. Inf. Syst. 60, 34–49 (2016)

13. Brisaboa, N., Cerdeira-Pena, A., de Bernardo, G., Navarro, G.: Compressed rep-
resentation of dynamic binary relations with applications. Inf. Syst. 69, 106–123
(2017)

14. Brisaboa, N.R., Ladra, S., Navarro, G.: Compact representation of Web graphs
with extended functionality. Inf. Syst. 39(1), 152–174 (2014)

15. Cerdeira-Pena, A., de Bernardo, G., Fariña, A., Paramá, J.R., Silva-Coira, F.:
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Abstract. Suffix trees are a fundamental data structure in stringol-
ogy, but their space usage, though linear, is an important problem in
applications. We design and implement a new compressed suffix tree tar-
geted to highly repetitive texts, such as large genomic collections of the
same species. Our suffix tree builds on Block Trees, a recent Lempel-Ziv-
bounded data structure that captures the repetitiveness of its input. We
use Block Trees to compress the topology of the suffix tree, and augment
the Block Tree nodes with data that speeds up suffix tree navigation.

Our compressed suffix tree is slightly larger than previous repetition-
aware suffix trees based on grammars, but outperforms them in time,
often by orders of magnitude. The component that represents the tree
topology achieves a speed comparable to that of general-purpose com-
pressed trees, while using 2–10 times less space, and might be of inde-
pendent interest.

1 Introduction

Suffix trees [22,36,37] are one of the most appreciated data structures in Stringol-
ogy [3] and in application areas like Bioinformatics [13], enabling efficient solu-
tions to complex problems such as (approximate) pattern matching, pattern dis-
covery, finding repeated substrings, computing matching statistics, computing
maximal matches, and many others. In other collections, like natural language
and software repositories, suffix trees are useful for plagiarism detection [23],
authorship attribution [38], document retrieval [14], and others.

While their linear space complexity is regarded as acceptable in classical
terms, their actual space usage brings serious problems in application areas. From
an Information Theory standpoint, on a text of length n over alphabet [1, σ],
classical suffix tree representations use Θ(n lg n) bits, whereas the information
contained in the text is, in the worst case, just n lg σ bits. From a practical point
of view, even carefully engineered implementations [17] require at least 10 bytes
per symbol, which forces many applications to run the suffix tree on (orders of
magnitude slower) secondary memory.
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Consider for example Bioinformatics, where various complex analyses require
the use of sophisticated data structures, suffix trees being among the most impor-
tant ones. DNA sequences range over σ = 4 different nucleotides represented with
lg 4 = 2 bits each, whereas the suffix tree uses at least 10 bytes = 80 bits per
base, that is, 4000% of the text size. A human genome fits in approximately 715
MB, whereas its suffix tree requires about 30 GB. The space problem becomes
daunting when we consider the DNA analysis of large groups of individuals; con-
sider for example the 100,000-human-genomes project (www.genomicsengland.
co.uk).

One solution to the problem is to build suffix trees on secondary memory
[7,9]. Most suffix tree algorithms, however, require traversing them across arbi-
trary access paths, which makes secondary memory solutions many orders of
magnitude slower than in main memory. Another approach replaces the suffix
trees with suffix arrays [21], which decreases space usage to 4 bytes (32 bits) per
character but loses some functionality like the suffix links, which are essential
to solve various complex problems. This functionality can be recovered [2] by
raising the space to about 6 bytes (48 bits) per character.

A promising line of research is the construction of compact representations
of suffix trees, named Compressed Suffix Trees (CSTs), which simulate all the
suffix tree functionality within space bounded not only by O(n lg σ) bits, but by
the information content (or text entropy) of the sequence. An important theo-
retical achievement was a CST using O(n) bits on top of the text entropy that
supports all the operations within an O(polylog n) time penalty factor [34]. A
recent implementation [28] uses, on DNA, about 10 bits per base and supports
the operations in a few microseconds. While even smaller CSTs have been pro-
posed, reaching as little as 5 bits per base [32], their operation times raise to
milliseconds, thus becoming nearly as slow as a secondary-memory deployment.

Still, further space reductions are desirable when facing large genome repos-
itories. Fortunately many of the largest text collections are highly repetitive;
for example DNA sequences of two humans differ by less than 0.5% [35]. This
repetitiveness is not well captured by statistical based compression methods [16],
on which most of the CSTs are based. Lempel-Ziv [19] and grammar [15] based
compression techniques, among others, do better in this scenario [24], but only
recently we have seen CSTs building on them, both in theory [5,11] and in prac-
tice [1,26]. The most successful CSTs in practice on repetitive collections are the
grammar-compressed suffix trees (GCSTs), which on DNA use about 2 bits per
base and support the operations in tens to hundreds of microseconds.

GCSTs use grammar compression on the parentheses sequence that repre-
sents the suffix tree topology [31], which inherits the repetitiveness of the text
collection. While Lempel-Ziv compression is stronger, it does not support easy
access to the sequence. In this paper we explore an alternative to grammar com-
pression called Block Trees [6,29], which offer similar approximation ratios to
Lempel-Ziv compression, but promise faster access.

Our main contribution is the BT-CT, a Block-Tree-based representation of
tree topologies, which enriches Block Trees to support the required navigation

www.genomicsengland.co.uk
www.genomicsengland.co.uk
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Table 1. List of typical operations implemented by suffix trees; str(v) represents the
concatenation of the strings in the root-to-v path.

Operation Description

root() The root of the suffix tree

is-leaf(v) True if v is a leaf node

first-child(v) The first child of v in lexicographical order

tree-depth(v) The number of edges from root() to v

next-sibling(v) The next sibling of v in lexicographical order

previous-sibling(v) The previous sibling of v in lexicographical order

parent(v) The parent of v

is-ancestor(v, u) True if v is ancestor of u

level-ancestor(v, d) The ancestor of v at tree depth d

lca(v, u) The lowest common ancestor between v and u

letter(v, i) str(v)[i]

string-depth(v) |str(v)|
suffix-link(v) The node u s.t. str(u) = str(v)[2,string-depth(v)]

string-ancestor(v, d) The highest ancestor u of v s.t. string-depth(u) ≥ d

child(v, c) The child u of v s.t. str(u)[string-depth(v)+1] = c

operations. Although we are unable to prove useful upper bounds on the oper-
ation times, the BT-CT performs very well in practice: while using 0.3–1.5 bits
per node in our repetitive suffix trees, it implements the navigation operations in
a few microseconds, becoming very close to the performance of plain 2.8-bit-per-
node representations that are blind to repetitiveness [27]. We use the BT-CT to
represent suffix tree topologies in this paper, but it might also be useful in other
scenarios, such as representing the topology of repetitive XML collections [4].

As said, our new suffix tree, BT-CST, uses the BT-CT to represent the suffix
tree topology. Although larger than the GCST, it still requires about 3 bits
per base in highly repetitive DNA collections. In exchange, it is faster than the
GCST, often by an order of magnitude. This owes to the BT-CT directly, but
also indirectly: Its faster navigation enables the binary search for the “child by
letter” operation in suffix trees, which is by far the slowest one. While with the
GCST a linear traversal of the children is advisable [26], a binary search pays
off in the BT-CST, making it faster especially on large alphabets.

2 Preliminaries and Related Work

A text T [1, n] = T [1] . . . T [n] is a sequence of symbols over an alphabet Σ =
[1, σ], terminated by a special symbol $ that is lexicographically smaller than
any symbol of Σ. A substring of T is denoted T [i, j] = T [i] . . . T [j]. A substring
T [i, j] is a prefix if i = 1 and a suffix if j = n.
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The suffix tree [22,36,37] of a text T is a trie of its suffixes in which unary
paths are collapsed into a single edge. The tree then has less than 2n nodes. The
suffix tree supports a set of operations (see Table 1) that suffices to solve a large
number of problems in Stringology [3] and Bioinformatics [13].

The suffix array [21] A[1, n] of a text T [1, n] is a permutation of [1, n] such that
A[i] is the starting position of the ith suffix in increasing lexicographical order. The
leaves descending from a suffix tree node span a range of suffixes in A.

The function lcp(X,Y ) is the length of the longest common prefix (lcp) of
strings X and Y . The LCP array [21], LCP [1, n], is defined as LCP [1] = 0 and
LCP [i] = lcp(T [A[i − 1], n], T [A[i], n]) for all i > 1, that is, it stores the lengths
of the lcps between lexicographically consecutive suffixes of T [1, n].

2.1 Succinct Tree Representations

A balanced parentheses (BP) representation (there are others [31]) of the topol-
ogy of an ordinal tree T of t nodes is a binary sequence (or bitvector) P [1, 2t]
built as follows: we traverse T in preorder, writing an opening parenthesis (a
bit 1) when we first arrive at a node, and a closing one (a bit 0) when we leave
its subtree. For example, a leaf looks like “10”. The following primitives can be
defined on P :
– access(i) = P [i]
– rank0|1(i) = | {1 ≤ j ≤ i;P [j] = 0|1} |
– excess(i) = rank1(i) − rank0(i)
– select0|1(i) = min({j; rank0|1(j) = i} ∪ {∞})
– leaf-rank(i) = rank10(i) = | {1 ≤ j ≤ i − 1;P [j] = 1 ∧ P [j + 1] = 0} |
– leaf-select(i) = select10(i) = min({j; leaf-rank(j + 1) = i} ∪ {∞})
– fwd-search(i, d) = min({j > i; excess(j) = excess(i) + d)} ∪ {∞})
– bwd-search(i, d) = max({j < i; excess(j) = excess(i) + d)} ∪ {−∞})
– min-excess(i, j) = min({excess(k) − excess(i − 1); i ≤ k ≤ j} ∪ {∞})

These primitives suffice to implement a large number of tree navigation oper-
ations, and can all be supported in constant time using o(t) bits on top of
P [27]. These include the operations needed by suffix trees. For example, inter-
preting nodes as the position of their opening parenthesis in P , it holds that
parent(v) = bwd-search(i,−2)+1, next-sibling(v) = fwd-search(v,−1)+1 and the
lowest common ancestor of two nodes v ≤ u is lca(v, u) = parent(fwd-search(v−
1,min-excess(v, u)) + 1).

2.2 Compressed Suffix Arrays

A milestone in the area was the emergence of Compressed Suffix Arrays
(CSAs) [25], which using space proportional to that of the compressed sequence
managed to answer access queries to the original suffix array and its inverse (i.e.,
return any A[i] and A−1[j]), to the indexed sequence (i.e., return any T [i..j]),
and access to a novel array, Ψ [i] = A−1[(A[i] mod n) + 1], which lets us move
from a text suffix T [j, n] to the next one, T [j + 1, n], yet indexing the suffixes
by their lexicographic rank, A−1[j]. This function plays a key role in the design
of CSTs, as seen next.
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2.3 Compressed Suffix Trees

Sadakane [34] designed the first CST, on top of a CSA, using |CSA| + O(n) bits
and solving all the suffix tree operations in time O(polylog n). He makes up a
CST from three components: a CSA, for which he uses his own proposal [33];
a BP representation of the suffix tree topology, using at most 4n + o(n) bits;
and a compressed representation of LCP , which is a bitvector H[1, 2n] encoding
the array PLCP [i] = LCP [A−1[i]] (i.e., the LCP array in text order). A recent
implementation [28] of this index requires about 10 bits per character and takes
a few microseconds per operation.

Russo et al. [32] managed to use just o(n) bits on top of the CSA, by storing
only a sample of the suffix tree nodes. An implementation of this index [32] uses
as little as 5 bits per character, but the operations take milliseconds, as slow as
running in secondary storage.

Yet another approach [10] also obtains o(n) on top of a CSA by getting rid of
the tree topology and expressing the tree operations on the corresponding suffix
array intervals. The operations now use primitives on the LCP array: find the
previous/next smaller value (psv/nsv) and find minima in ranges (rmq). They
also noted that bitvector H contains 2r runs, where r is the number of runs of
consecutive increasing values in Ψ , and used this fact to run-length compress H.
Abeliuk et al. [1] designed a practical version of this idea, obtaining about 8 bits
per character and getting a time performance of hundreds of microseconds per
operation, an interesting tradeoff between the other two options.

Engineered adaptations of these three ideas were implemented in the SDSL
library [12], and are named cst sada, cst fully, and cst sct3, respectively.
We will use and adapt them in our experimental comparison.

2.4 Repetition-Aware Compressed Suffix Trees

Abeliuk et. al [1] also presented the first CST for repetitive collections. They built
on the third approach above [10], so they do not represent the tree topology.
They use the RLCSA [20], a repetition-aware CSA with size proportional to
r, which is very low on repetitive texts. They use grammar compression on the
differential LCP array, DLCP [i] = LCP [i]−LCP [i−1]. The nodes of the parsing
tree (obtained with Re-Pair [18]) are enriched with further data to support the
operations psv/nsv and rmq. To speed up simple LCP accesses, the bitvector H
is also stored, whose size is also proportional to r. Their index uses 1–2 bits per
character on repetitive collections. It is rather slow, however, operating within
(many) milliseconds.

Navarro and Ordóñez [26] include again the tree topology. Since text repeti-
tiveness induces isomorphic subtrees in the suffix tree, they grammar-compressed
the BP representation. The nonterminals are enriched to support the tree navi-
gation operations enumerated in Sect. 2.1. Since they do not need psv/nsv/rmq
operations on LCP, they just use the bitvector H, which has a few runs and thus
is very small. Their index uses slightly more space, closer to 2 bits per character,
but it is up to 3 orders of magnitude faster than that of Abeliuk et al. [1]: their
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structure operates in tens to hundreds of microseconds per operation, getting
closer to the times of general-purpose CSTs.

Less related or theoretical work [5,8,11] is not discussed for lack of space.

3 Block Trees

A Block Tree [6] is a full r-ary tree that represents a (repetitive) sequence P [1, p]
in compressed space while offering access and other operations in logarithmic
time. The nodes at depth d (the root being depth 0) represent blocks of P of
length b = |P |/rd, where we pad P to ensure these numbers are integers. Such
a node v, representing some block v.blk = P [i, i + b − 1], can be of three types:

LeafBlock: If b ≤ mll, where mll is a parameter, then v is a leaf of the Block
Tree, and it stores the string v.blk explicitly.

BackBlock: Otherwise, if P [i − b, i + b − 1] and P [i, i + 2b − 1] are not their
leftmost occurrences in P , then the block is replaced by its leftmost occurrence
in P : node v stores a pointer v.ptr = u to the node u such that the first
occurrence of v.blk starts inside u.blk = P [j, j + b − 1], more precisely it
occurs in P [j + o, j + o + b − 1]. This offset inside u.blk is stored at v.off = o.
Node v is not considered at deeper levels.

InternalBlock: Otherwise, the block is split into r equal parts, handled in the
next level by the children of v. The node v then stores a pointer to its children.

The Block Tree can return any P [i] in logarithmic time, by starting at posi-
tion i in the root block. Recursively, the position i is translated in constant time
into an offset inside a child node (for InternalBlocks), or inside a leftward node
in the same level (for BackBlocks, at most once per level). At leaves, the symbol
is stored explicitly.

If we augment the nodes of the Block Tree with rank information for the σ
symbols of the alphabet, the Block Tree answers rank and select queries on P in
logarithmic time as well. Specifically, for every c ∈ [1, σ], we store in every node
v the number v.c of cs in v.blk. Further, every BackBlock node v pointing to u
stores the number of cs in u.blk[1, v.off − 1].

Our new repetition-aware CST will represent the BP topology with a Block
Tree. The basic structure supports operations access(i), rank0|1(i), excess(i) and
select0|1(i). In the next section we show how to solve the remaining operations.

4 Our Repetition-Aware Compressed Suffix Tree

Following the scheme of Sadakane [34] we propose a three-component struc-
ture to implement a new CST tailored to highly repetitive inputs. We use the
RLCSA [20] as our CSA. For the LCP, we use the compressed version of the
bitvector H [10]. For the topology, we use BP and represent the sequence with
a Block Tree, adding new fields to the Block Tree nodes to efficiently answer all
the queries we need (Sect. 2.1). We call this representation Block Tree CST (BT-
CST). Section 4.1 describes BT-CT, our extension to Block Trees, and Sect. 4.2
our improved operation child(v, a) for the BT-CST.
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4.1 Block Tree Compressed Topology (BT-CT)

We describe our main data structure, Block Tree Compressed Topology (BT-CT),
which compresses a parentheses sequence and supports navigation on it.

Stored Fields. We augment the nodes of the Block Tree with the following
fields:

– For every node v that represents the block v.blk = P [i, i + b − 1]:
• rank1, the number of 1s in v.blk, i.e., rank1(i + b − 1) − rank1(i − 1) in P .
• lrank (leaf rank), the number of 10s (i.e., leaves in BP) that finish inside

v.blk, i.e., leaf-rank(i + b − 1) − leaf-rank(i − 1) in P .
• lbreaker (leaf breaker), a bit telling whether the first symbol of v.blk is a

0 and the preceding symbol in P is a 1, i.e., whether P [i − 1, i] = 10.
• mexcess, the minimum excess in v.blk, i.e., min-excess(i, i + b − 1) in P .

– For every BackBlock node v that represents v.blk = P [i, i + b − 1] and points
to its first occurrence O = P [j + o, j + o + b − 1] inside u.blk = P [j, j + b − 1]
with offset v.off = o:

• fb-rank1, the number of 1s in the prefix of O contained in u.blk (O∩u.blk,
the 1st block spanned by O), i.e., rank1(j + b− 1)− rank1(j + o− 1) in P .

• fb-lrank, the number of 10s that finish in O ∩ u.blk, i.e., leaf-rank(j + b −
1) − leaf-rank(j + o − 1) in P .

• fb-lbreaker, a bit telling whether the first symbol of O is a 0 and the
preceding symbol is a 1, i.e., whether P [j + o − 1, j + o] = 10.

• fb-mexcess, the minimum excess reached in O ∩ u.blk, i.e., min-excess(j +
o, j + b − 1).

• m-fb, a bit telling whether the minimum excess of u.blk is reached in
O∩u.blk, i.e., whether min-excess(i, i+b−1) = min-excess(j+o, j+b−1).

Fields Computed on the Fly. In the description of the operations we will
use other fields that are computed in constant time from those we already store:

– For every node v that represents v.blk = P [i, i + b − 1]
• rank0, the number of 0s in v.blk, i.e., b − v.rank1.
• excess, the excess of 1s over 0s in v.blk, i.e., v.rank1−v.rank0 = 2·v.rank1−b.

– For every BackBlock node v that represents v.blk = P [i, i + b − 1] and points
to its first occurrence O = P [j + o, j + o + b − 1] inside u.blk = P [j, j + b − 1]
with offset v.off = o:

• fb-rank0, the number of 0s in O ∩ v.blk, i.e., (b − o) − v.fb-rank1.
• pfb-rank0|1, the number of 0s|1s in the prefix of u.blk that precedes O

(u.blk − O), i.e., u.rank0|1 − v.fb-rank0|1.
• fb-excess, the excess in O ∩ u.blk, i.e., v.fb-rank1 − v.fb-rank0.
• sb-excess, the excess in O−u.blk (2nd block spanned by O), i.e., v.excess−

v.fb-excess.
• pfb-lrank, the number of 10s that finish in u.blk − O, i.e., u.lrank −

v.fb-lrank.
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• sb-mexcess, the minimum excess in O − u.blk, i.e., min-excess(j + b, j +
b+o−1) in P . We store either v.fb-mexcess or v.sb-mexcess, the one that
differs from v.mexcess. To deduce the non-stored field we use mexcess,
fb-excess and m-fb.

Complex Operations. Apart from the basic operations solved in the original
Block Tree we need, as described in Sect. 2.1, more sophisticated ones to support
navigation in the parentheses sequence.

leaf-rank(i) and leaf-select(i). The implementations of these operations are
analogous to those for rankc(i) and selectc(i) respectively, in the base Block Tree.
The only two differences are that in LeafBlocks we consider the lbreaker field to
check whether the block starts with a leaf, and in BackBlocks we consider fields
lbreaker and fb-lbreaker to check whether we have to add or remove one leaf when
moving to a leftward node. Like rankc(i) and selectc(i), our operations work O(1)
per level, and then have their same time complexity, given in Sect. 3.

fwd-search(i, d) and bwd-search(i, d). We only show how to solve fwd-search
(i, d) with d < 0; the other cases are similar (some combinations not needed for
our CST require further fields). Thus we aim to find the smallest position j > i
where the excess of P [i + 1..j] is d.

We describe our solution as a recursive procedure fwd-search(i, j) with two
global variables: d from the input, and e. Variables i and j are the limits of the
search for the currently processed node, and e is the accumulated excess of the
part of the range that has already been processed. The procedure is initially
called at the Block Tree root with fwd-search(i, n) and with e = 0. If at some
point e reaches d, we have found the answer to the search. The general idea is to
traverse the range of the current node v left to right, using the fields v.mexcess,
v.fb-mexcess and v.sb-mexcess to speed up the procedure:

– If the search range spans the entire block v.blk (i.e., j − i = b) and the answer
is not reached inside v (i.e., e+v.mexcess > d), then we increase e by v.excess
and return ∞.

– If v is a LeafBlock we scan v.blk bitwise, increasing/decreasing e for each 1/0.
If e reaches d at some index k, we return k; otherwise we return ∞.

– If v is an InternalBlock, we identify the k-th child of v, which contains position
i + 1, and the m-th, which contains position j (it could be that k = m). We
then call fwd-search recursively on the k-th to the m-th children, intersecting
the query range with the extent of each child (the search range will completely
cover the children after the k-th and before the m-th). As soon as any of these
calls returns a non-∞ value, we adjust (i.e., shift) and return it. If all of them
return ∞, we also return ∞.

– If v is a BackBlock we must translate the query to the original block O,
which starts at offset v.off in u.blk, where u = v.ptr. We first check whether
the query covers the prefix of v.blk contained in u.blk, O ∩ u.blk (i.e., if i = 0
and j ≥ b − v.off). If so, we check whether we can skip O ∩ u.blk, namely if
e + v.fb-mexcess > d. If we can skip it, we just update e to e + v.fb-excess,
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otherwise we call fwd-search recursively on the intersection of u.blk and the
translated query range. If the answer is not ∞, we adjust and return it.
Otherwise, we turn our attention to the node u′ next to u. Again, we check
whether the query covers the suffix of v.blk contained in u′.blk, O −u.blk (i.e.,
j = b and i ≤ b−v.off). If so, we check whether we can skip O−u.blk, namely
if e + v.sb-mexcess > d. If we can skip it, we just update e to e + v.sb-excess,
otherwise we call fwd-search recursively on the intersection of u′.blk and the
translated query range. If the answer is not ∞, we adjust and return it.
Otherwise, we return ∞.

min-excess(i, j). We will also start at the root with the global variable e set
to zero. A local variable m will keep track of the minimum excess seen in the
current node, and will be initialized at m = 1 in each recursive call. The idea
is the same as for fwd-search: traverse the node left to right and use the fields
v.mexcess, v.fb-mexcess and v.sb-mexcess to speed up the traversal.

– If the query covers the entire block v.blk (i.e., j − i + 1 = b), we increase e by
v.excess and return v.mexcess.

– If v is a LeafBlock we record the initial excess in e′ = e and scan v.blk bitwise,
updating e for each bit read as in operation fwd-search. Every time we have
e − e′ < m, we update m = e − e′. At the end of the scan we return m.

– If v is an InternalBlock, we identify the k-th child of v, which contains position
i, and the m-th, which contains position j (it could be that k = m). We then
call min-excess recursively on the k-th to the m-th children, intersecting the
query range with the extent of each child (the search range will completely
cover the children after the k-th and before the m-th, so these will take
constant time). We return the minimum between all their answers (composed
with their correspondent prefix excesses).

– If v is a BackBlock we translate the query to the original block O, which
starts at offset v.off in u.blk, where u = v.ptr. We first check whether the
query covers the prefix of v.blk contained in u.blk, O ∩ u.blk (i.e., if i = 1 and
j ≥ b − v.off − 1). If so, we simply set m = v.fb-mexcess and update e to
e + v.fb-excess. Otherwise we call min-excess recursively on the intersection
of u.blk and the translated query range, and record its answer in m. We now
consider the block u′ next to u and again check whether the query covers
the suffix of v.blk contained in u′.blk, O − u.blk (i.e., if j = b and i ≤ b −
v.off + 1). If so, we just set m = min(m, v.fb-excess + v.sb-mexcess) and
update e to e + v.sb-excess. Otherwise, we call min-excess on the intersection
of u′.blk and the translated query range, record its answer in m′, and set
m = min(m, v.fb-excess + m′). Finally, we return m.

Note that, although we look for various opportunities to use the precomputed
data to skip parts of the query range, the operations fwd-search, bwd-search,
and min-excess are not guaranteed to work proportionally to the height of the
Block Tree. The instances we built that break this time complexity, however, are
unlikely to occur. Our experiments will show that the algorithms perform well
in practice.
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4.2 Operation Child

The fast operations enabled by our BT-CT structure give space for an improved
algorithm to solve operation child(v, a). Most previous CSTs first compute d =
string-depth(v) and then linearly traverse the children of v from u = first-child(v)
with operation next-sibling, checking for each child u whether letter(u, d+1) = a,
and stopping as soon as we find or exceed a. Since computing letter is significantly
more expensive than our next-sibling, we consider the variant of first identifying
all the children u of v, and then binary searching them for a, using letter. We
then perform O(σ) next-sibling operations, but only O(lg σ) letter operations.

5 Experiments and Results

We measured the time/space performance of our new BT-CST and compared it
with the state of the art. Our code and testbed is available at https://github.
com/elarielcl/BT-CST.

5.1 Experimental Setup

Compared CSTs. We compare the following CST implementations.

BT-CST. Our new Compressed Suffix Tree with the described components.
For the BT-CT component we vary r ∈ {2, 4, 8} and mll ∈ {4, 8, 16, 32, 64,
128, 256}.

GCST. The Grammar-based Compressed Suffix Tree [26]. We vary parameters
rule-sampling and C-sampling as they suggest.

CST SADA, CST SCT3, CST FULLY. Adaptation and improvements
from the SDSL library1 on the indexes of Sadakane [34], Fischer et al. [10] and
Russo et al. [32], respectively. CST SADA maximizes speed using Sadakane’s
CSA [33] and a non-compressed version of bitvector H. CST SCT3 uses
instead a Huffman-shaped wavelet tree of the BWT as the suffix array, and a
compressed representation [30] for bitvector H and those of the wavelet tree.
This bitvector representation exploits the runs and makes the space sensitive
to repetitiveness, but it is slower. CST FULLY uses the same BWT representa-
tion. For all these suffix arrays we set sa-sampling = 32 and isa-sampling = 64.

CST SADA RLCSA, CST SCT3 RLCSA. Same as the preceding imple-
mentations but (further) adapted to repetitive collections: We replace the
suffix array by the RLCSA [20] and use a run-length-compressed representa-
tion of bitvector H [10].

For the CSTs using the RLCSA, we fix their parameters to 32 for the sampling
of Ψ and 128 for the text sampling. We only show the Pareto-optimal results of
each structure. Note that we do not include the CST of Abeliuk et al. [1] in the
comparison because it was already outperformed by several orders of magnitude
by GCST [26].

1 Succinct data structures library (SDSL), https://github.com/simongog/sdsl-lite.

https://github.com/elarielcl/BT-CST
https://github.com/elarielcl/BT-CST
https://github.com/simongog/sdsl-lite
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Text Collection and Queries. Our input sequences come from the Repetitive
Corpus of Pizza & Chili (http://pizzachili.dcc.uchile.cl/repcorpus). We selected
einstein, containing all the versions (up to January 12, 2010) of the German
Wikipedia Article of Albert Einstein (89 MB, compressible by p7zip to 0.11%);
influenza, a collection of 78,041 H. influenzae genomes (148 MB, compressible
by p7zip to 1.69%); and kernel, a set of 36 versions of the Linux Kernel (247
MB, compressible by p7zip to 2.56%).

Data points are the average of 100,000 random queries, similar to the scheme
used in previous work on Compressed Suffix Trees [1,26] to choose the nodes on
which the operations are called: For next-sibling and parent we collect the nodes
in leaf-to-root paths starting from random leaves. For lca we choose random leaf
pairs. For suffix-link we collect the nodes on traversals starting from random
leaves, and taking suffix-links until reaching the root. For child we choose random
leaves and collect the nodes in the traversals to the root, discarding the nodes
with less than 3 children, and we choose the initial letter of a random child of
the node.

Computer. The experiments ran on an isolated Intel(R) Xeon(R) CPU E5-2407
@ 2.40 GHz with 256 GB of RAM and 10 MB of L3 cache. The operating system
is GNU/Linux, Debian 2, with kernel 4.9.0-8-amd64. The implementations use a
single thread and all of them are coded in C++. The compiler is gcc version 4.6.3,
with -O9 optimization flag set (except CST SADA, CST SCT3 and CST FULLY,
which use their own set of optimization flags).

Operations. We implemented all the suffix tree operations of Table 1. From
those, for lack of space, we present the performance comparison with other
CSTs on five important operations: next-sibling, parent, child, suffix-link, and
lca. To test our suffix tree in more complex scenarios we implemented the suffix-
tree-based algorithm to solve the “maximal substrings” problem [26] on all of
the above implementations except for CST FULLY (because of its poor time
performance). We use their same setup [26], that is, influenza from Pizza
& Chili as our larger sequence and a substring of size m (m = 3000 and
m = 2 MB) of another influenza sequence taken from https://ftp.ncbi.nih.
gov/genomes/INFLUENZA. BT-CST uses r = 2 and mll = 128 and GCST
uses rule-sampling= 1 and C-sampling = 210. The tradeoffs refer to sa-sampling
∈ {64, 128, 256} for the RLCSAs.

5.2 Results and Discussion

Figures 1, 2 and 3 show the space and time for all the indexes and all the opera-
tions. The smallest structure is GCST, which takes as little as 0.5–2 bits per sym-
bol (bps). The next smallest indexes are BT-CST, using 1–3 bps, and CST FULLY,
using 2.0–2.5 bps. The compressed indexes not designed for repetitive collections
use 4–7 bps if combined with a RLCSA, and 6–10.5 bps in their original versions
(though we also adapted the bitvectors of CST SCT3).

From the BT-CST space, component H takes just 2%–9%, the RLCSA
takes 23%–47%, and the rest is the BT-CT (using a sweetpoint configuration).

http://pizzachili.dcc.uchile.cl/repcorpus
https://ftp.ncbi.nih.gov/genomes/INFLUENZA
https://ftp.ncbi.nih.gov/genomes/INFLUENZA
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This component takes 0.30 bits per node (bpn) on einstein, 1.06 bpn on
influenza, and 1.50 bpn on kernel. The grammar-compressed topology of
GCST takes, respectively, 0.05, 0.81, and 0.39 bpn.

In operations next-sibling and parent, which rely most heavily on the
suffix tree topology, our BT-CT component building on Block Trees makes
BT-CST excel in time: The operations take nearly one microsecond (μsec),
at least 10 times less than the grammar-based topology representation of
GCST. CST FULLY is three orders of magnitude slower on this operation, tak-
ing over a millisecond (msec). Interestingly, the larger representations, includ-
ing those where the tree topology is represented using 2.79 bits per node
(CST SADA[ RLCSA]), are only marginally faster than BT-CST, whereas the
indexes CST SCT3[ RLCSA] are a bit slower than CST SADA[ RLCSA] because
they do not store an explicit tree topology. Note that these operations, in BT-
CT, make use of the operations fwd-search and bwd-search, thereby showing that
they are fast although we cannot prove worst-case upper bounds on their time.

Operation lca, which on BT-CST involves essentially the primitive min-excess,
is costlier, taking around 10µs in almost all the indexes, including ours. This
includes again those where the tree topology is represented using 2.79 bits per
node (CST SADA[ RLCSA]). Thus, although we cannot prove upper bounds on
the time of min-excess, it is in practice as fast as on perfectly balanced structures,
where it can be proved to be logarithmic-time. The variants CST SCT3[ RLCSA]
also require an operation very similar to min-excess, so they perform almost
like CST SADA[ RLCSA]. For this operation, CST FULLY is equally fast, owing
to the fact that operation lca is a basic primitive in this representation. Only
GCST is several times slower than BT-CST, taking several tens of μsec.

Operation suffix-link involves min-excess and several other operations on
the topology, but also the operation Ψ on the corresponding CSA. Since the
latter is relatively fast, BT-CST also takes nearly 10µs, whereas the additional
operations on the topology drive GCST over 100µs, and CST FULLY over the
msec. This time the topology representations that are blind to repetitivess are
several times faster than BT-CST, taking a few μsec, possibly because they take
more advantage of the smaller ranges for min-excess involved when choosing
random nodes (most nodes have small ranges). The CST SCT3[ RLCSA] variants
also solve this operation with a fast and simple formula.

Finally, operation child is the most expensive one, requiring one application
of string-depth and several of next-sibling and letter, thereby heavily relying on
the CSA. BT-CST-bin and CST SCT3[ RLCSA] binary search the children; the
others scan them linearly. The indexes using a CSA that adapts to repetitiveness
require nearly 1 ms on large alphabets, whereas those using a larger and faster
CSA are up to 10 (CST SCT3) and 100 (CST SADA) times faster. Our BT-CST-
bin variant is faster than the base BT-CST by 15% on einstein and 18% on
kernel, and outperforms the RLCSA-based indexes. On DNA, instead, most
of the indexes take nearly 100µs, except for CST SADA, which is several times
faster; GCSA, which is a few times slower; and CST FULLY, which stays in the
msec.
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Fig. 1. Performance of CSTs for operations next-sibling and parent. The y-axis is in
log-scale.
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Fig. 2. Performance of CSTs for operations lca and suffix-link. The y-axis is in
log-scale.
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Fig. 3. Performance of CSTs for operation child. The y-axis is in log-scale. BT-CST-bin
is BT-CST with binary search for child.

Fig. 4. Performance of CSTs when solving the maximal substrings problem. The y-axis
is time in microseconds per base in the smaller sequence (of length m).
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Figure 4 shows the results for the maximal substrings problem. BT-CST
sharply dominates an important part of the Pareto-curve, including the sweet
point at 3.5 bps and 200–300µs per symbol. The other structures for repetitive
collections take either much more time and slightly less space (GCSA, 1.5–2.5
times slower), or significantly more space and slightly less time (CST SCT3, 45%
more space and around 200µs). CST SADA is around 10 times faster, the same
as its CSA when solving the dominant operation, child.

6 Conclusions and Future Work

We have introduced the Block-Tree Compressed Suffix Tree (BT-CST), a new
compressed suffix tree aimed at indexing highly repetitive text collections. Its
main feature is the BT-CT component, which uses Block Trees to represent the
parentheses-based topology of the suffix tree and exploit the repetitiveness it
inherits from the text collection. Block Trees [6] represent a sequence in space
close to its Lempel-Ziv complexity (with a logarithmic-factor penalty), in a way
that logarithmic-time access to any element is supported. The BT-CT enhances
Block Trees with the more complex operations needed to simulate tree navigation
on the parentheses sequence, as needed by the suffix tree operations.

Our experimental results show that the BT-CST requires 1–3 bits per symbol
in highly repetitive text collections, which is slightly larger than the best previous
alternatives [26], but also significantly faster (often by an order of magnitude). In
particular, the BT-CT component uses 0.3–1.5 bits per node on these suffix trees
and it takes a few microseconds to simulate the tree navigation operations, which
is close to the time obtained by the classical 2.8-bit-per-node representation that
is blind to repetitiveness [27]. This structure may be interesting to represent
other repetitive trees beyond compressed suffix tree topologies, for example those
arising in XML datasets, JSON repositories, and many others.

Although we have shown that in practice they perform as well as their clas-
sical counterpart [27], an interesting open problem is whether the operations
fwd-search, bwd-search, and min-excess can be supported in polylogarithmic time
on Block Trees. This was possible on perfectly balanced trees [27] and even on
balanced-grammar parse trees [26], but the ability of Block Trees to refer to a
prefix or a suffix of a block makes this more challenging. We note that the algo-
rithm described by Belazzougui et al. [6] claiming logarithmic time for min-excess
does not work (as checked with coauthor T. Gagie).
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Abstract. This paper proposes a practical implementation of an al-
phabet-partitioning compressed data structure, which represents a string
within compressed space and supports the fundamental operations rank
and select efficiently. We show experimental results that indicate that
our implementation outperforms the current realizations of the alphabet-
partitioning approach (which is one of the most efficient approaches in
practice). In particular, the time for operation select can be reduced
by about 80%, using only 11% more space than current alphabet-
partitioning schemes. We also show the impact of our data structure on
several applications, like the intersection of inverted lists (where improve-
ments of up to 60% are achieved, using only 2% of extra space), and the
distributed-computation processing of rank and select operations. As far
as we know, this is the first study about the support of rank/select oper-
ations on a distributed-computing environment.

1 Introduction

Given a string s[1..n], over an alphabet Σ = {0, . . . , σ − 1}, operation s.rankc(i)
computes the number of occurrences of symbol c ∈ Σ in s[1..i]. Operation
s.selectc(j), on the other hand, yields the position of the j-th occurrence of
symbol c in s. Finally, operation s.access(i) yields symbol s[i].

These operations are fundamental for many applications [17], such as snippet
extraction in text databases [2], query processing in information retrieval [1,3],
cardinal trees, text search, and graph representation [5], among others.

Since the amount of data managed by these applications is usually large,
space-efficient data structures to support these operations are vital [17]. Suc-
cinct data structures use space close to the information theory minimum, while
supporting operations efficiently. Compressed data structures, on the other hand,
take advantage of certain regularities in the data to further reduce the space
usage. These are the focus of this paper. In particular, we propose a surpris-
ingly simple and practical implementation of the alphabet-partition approach [5]
for compressing a string while supporting operations rank, select, and access.
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We show that our data structure introduces interesting trade-offs for supporting
these operations. Also, we show how our data structure impacts several impor-
tant applications, and show proof-of-concept experiments on the distributed sup-
port of rank and select. This is the first such study we are aware of.

2 Related Work

2.1 Succinct Data Structures for Bit Vectors

In this paper we will need to use a succinct data structure to represent bit vectors
B[1..n] with m 1 bits, and support operations rank and select. In particular, we
are interested in the SDarray data structure from Okanohara and Sadakane [18],
which uses m lg n

m + 2m + o(m) bits of space, and supports select in O(1) time
(provided we replace the rank/select bit vector data structure on which SDarray
is based by a constant-time select data structure [15]). Operations rank and access
are supported in O

(
lg n

m

)
time.

2.2 Compressed Data Structures

A compressed data structure uses space proportional to some compression mea-
sure of the data, e.g., the 0-th order empirical entropy of a string s[1..n] over an
alphabet of size σ, which is denoted by H0(s) and defined as:

H0(s) =
∑

c∈Σ

nc

n
lg

n

nc
, (1)

where nc is the number of occurrences of symbol c in s. The sum includes only
those symbols c that do occur in s, so that nc > 0. The value H0(s) ≤ lg σ is
the average number of bits needed to encode each string symbol, provided we
encode them using lg n

nc
bits.

2.3 Rank/Select Data Structures on Strings

Wavelet Trees. A wavelet tree [12] (WT for short) is a succinct data structure
that supports rank and select operations, among many virtues [16]. The space
requirement is n lg σ+o(n lg σ) bits [12], while operations rank, select, and access
take O(lg σ) time. To achieve compressed space, the WT can be given the shape
of the Huffman tree, obtaining nH0(s) + o(nH0(s)) + O(n) bits of space. Oper-
ations take O(lg n) worst-case, or O(1 + H0(s)) on average [17]. Alternatively,
one can use compressed bit vectors [20] to represent each WT node. The space
usage is nH0(s) + o(n lg σ) bits, and operations take O(lg σ) time.

The approach by Ferragina et al. [7], which is based on multiary WTs, sup-
ports the operations in O(1 + lg σ

lg lg n ) worst-case time, and the space usage is
nH0(S) + o(n lg σ) bits. Later, Golynski et al. [11] improved the (lower-order
term of the) space usage to nH0(s)+o(n) bits. Notice that if σ = O(polylog(n)),
these solutions allow one to compute the operations in O(1) time.
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Reducing to Permutations. Golynski et al. [10] introduce an approach that
is more effective than the previous ones for larger alphabets. Their solution
requires n(lg σ + o(lg σ)) bits of space, supporting operation rank in O(lg lg σ)
time, whereas operations select and access are supported in O(1) time (among
other trade-offs, see the original paper for details). Later, Grossi et al. [13] achieve
higher-order compression, that is nHk(s) + o(n lg σ) bits. Operations rank and
select are supported in O(lg lg σ), whereas access is supported in O(1) time.

Alphabet Partitioning. We are particularly interested in this paper in the
alphabet-partitioning approach [5]. Given an alphabet Σ = {0, . . . , σ − 1}, the
aim of alphabet partitioning is to divide Σ into p subalphabets Σ0, Σ1, . . . , Σp−1,
such that

⋃p−1
i=0 Σi = Σ, and Σi ∩ Σj = ∅ for all i �= j.

The Mapping from Alphabet to Subalphabet. The data structure [5] consists of
an alphabet mapping m[1..σ] such that m[i] = j iff i has been mapped to subal-
phabet Σj . Within Σj , symbols are re-enumerated from 0 to |Σj | − 1 as follows:
if there are k symbols smaller than i that have been mapped to Σj , then i is
encoded as k in Σj . Formally, k = m.rankj(i). Let nj = |{i, m[s[i]] = j}| be
the number of symbols of string s that have been mapped to subalphabet Σj .
A way of defining the partitioning (which is called sparse [5]) is:

m[α] =
⌈
lg

(
n

nα

)
lg n

⌉
, (2)

where symbol α ∈ Σ occurs nα times in s. Notice that m[α] ≤ �lg2 n�.

The Subalphabet Strings. For each subalphabet Σ�, we store the subsequence
s�[1..n�], with the symbols of the original string s that have been mapped to
subalphabet Σ�.

The Mapping from String Symbols to Subalphabets. In order to retain the original
string, we store a sequence t[1..n], which maps every symbol s[i] into the corre-
sponding subalphabet. That is, t[i] = m[s[i]]. If � = t[i], then the corresponding
symbol s[i] has been mapped to subalphabet Σ�, and has been stored at position
t.rank�(i) in s�. Also, symbol s[i] in Σ corresponds to symbol m.rank�(s[i]) in
Σ�. Thus, we have s�[t.rank�(i)] = m.rank�(s[i]).

Notice that t has alphabet of size p. Also, there are n0 occurrences of symbol
0 in t, n1 occurrences of symbol 1, and so on. Hence, we define:

H0(t) =
p−1∑

i=0

ni

n
lg

n

ni
. (3)

Computing the Operations. One can compute the desired operations as fol-
lows, assuming that m, t, and the sequences s� have been represented using
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appropriate rank/select data structures (details about this later). For α ∈ Σ, let
� = m.access(α) and c = m.rank�(α). Hence,

s.rankα(i) ≡ s�.rankc(t.rank�(i)),

and
s.selectα(j) ≡ t.select�(s�.selectc(j)).

If we now define � = t[i], then we have

s.access(i) ≡ m.select�(s�.access(t.rank�(i))).

Space Usage and Operation Times. Barbay et al. [5] have shown that nH0(t) +∑p−1
i=0 n� lg σ� ≤ nH0(s)+o(n). This means that if we use a zero-order compressed

rank/select data structure for t, and then represent every s� even in uncompressed
form, we obtain zero-order compression for the input string s. Recall that p ≤
�lg2 n�, hence the alphabets of t and m are poly-logarithmic. Thus, a multi-ary
wavelet tree [11] is used for t and m, obtaining O(1) time for rank, select, and
access. The space usage is nH0(t) + o(n) bits for t, and O

(
n lg lg n

lg n

)
H0(s) =

o(n)H0(s) bits for m. For s�, if we use Golynski et al. data structure [10] we
obtain a space usage of n� lg σ� + O

(
n� lg σ�

lg lg lg n

)
bits per partition, and support

operation select in O(1) time for s�, whereas rank and access are supported in
O(lg lg σ) time for s�.

Overall, the space is nH0(s) + o(n)(H0(s) + 1) bits, operation select is sup-
ported in O(1) time, whereas operations rank and access on the input string s
are supported in O(lg lg σ) time (see [5] for details and further trade-offs).

Practical Considerations. In practice, the sparse partitioning defined in Eq. (2)
is replaced by an scheme such that for any α ∈ Σ, m[α] = 
lg r(α)�. Here
r(α) denotes the ranking of symbol α according to its frequency (that is, the
most-frequent symbol has ranking 1, and the least-frequent one has ranking σ).
Thus, the first partition contains only one symbol (the most-frequent one), the
second partition contains two symbols, the third contains four symbols, and
so on. Hence, there are p = 
lg σ� partitions. This approach is called dense [5].
Another practical consideration is to have a parameter �min for dense, such that
the top-2�min symbols in the ranking are represented directly in t. That is, they
are not represented in any partition. Notice that the original dense partitioning
can be achieved by setting �min = 1.

3 A Practical Alphabet-Partitioning Rank/Select Data
Structure

The alphabet-partitioning approach was originally devised to speed-up decom-
pression [21]. Barbay et al. [5] showed that alphabet partitioning is also effective
for supporting operations rank and select on strings, being also one of the most
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competitive approaches in practice. Next we introduce an alternative implemen-
tation of alphabet partitioning, which is able to trade operation-access efficiency
for rank/select efficiency.

The main idea is as follows: in the original proposal, mapping t (introduced in
Sect. 2.3) is represented with a multiary wavelet tree [11], supporting rank, select,
and access in O(1) time, since t has alphabet of size O(polylog(n)). However,
as far as we know, there is no efficient implementation of multiary wavelet trees
in practice. Indeed, Barbay et al. [5] use a WT in their experiments, whereas
the sdsl library [9] uses a Huffman-shaped WT by default for t. We propose an
implementation of the alphabet-partitioning approach that is faster in practice:
rather than having a global mapping t, we distribute the workload among par-
titions. This shall allow us to use a simpler and faster approach (for instance, a
single bit vector per partition) that replaces t.

3.1 Data Structure Definition

Our scheme consists of the mapping m and the subalphabets subsequences s�

for each partition �, just as originally defined in Sect. 2.3. In our case, however,
we disregard mapping t, and replace it by a bit vector B�[1..n] per partition �
of the original alphabet. We set B�[i] = 1 iff s[i] ∈ Σ� (or, equivalently, it holds
that m.access(s[i]) = �). Notice that Bj has nj 1s.

Given a symbol α ∈ Σ mapped to subalphabet � = m.access(α), let c =
m.rank�(α) be its representation in Σ�. Hence, we define:

s.rankα(i) ≡ s�.rankc(B�.rank1(i)).

Also,
s.selectα(j) ≡ B�.select1(s�.selectc(j)).

Unfortunately, operation s.access(i) cannot be supported efficiently by our
approach: since we do not know symbol s[i], we do not know the partition j such
that Bj [i] = 1. The alternative is to check every partition, until for a given � it
holds that B�[i] = 1. Once this partition � has been determined, we compute

s.access(i) ≡ m.select�(s�.access(B�.rank1(i))).

Although in general our implementation does not support access efficiently, there
are still relevant applications where this operation is not needed, such as com-
puting the intersection of inverted lists [3,5,17], or computing the term positions
for phrase searching and positional ranking functions [2].

Besides, many applications need operation access to obtain not just a single
symbol, but a snippet s[i..i + L − 1]—e.g., snippet-generation tasks [2,22]. In
this case, one needs operation access to obtain not just a single symbol, but a
snippet s[i..i+L−1] of L consecutive symbols in s. Let us call s.snippet(i, L) the
corresponding operation. Rather than using operation access L times to obtain
the desired symbols, we define Algorithm 1. The idea is that for each partition
j = 0, . . . , p−1, we obtain the symbols contained in s[i..i+L−1] that correspond
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to this partition. Line 4 of the algorithm computes the number of symbols to be
extracted from this partition. Operation select on Bj is used to determine the
position of each symbol within the snippet, as it can be seen in Line 7.

Algorithm 1. snippet(i, L)
1: Let S[1..l] be an array of symbols in Σ.
2: for j = 0 to p − 1 do
3: cur ← Bj .rank1(i − 1)
4: count ← Bj .rank1(i + L − 1) − cur
5: for k = 1 to count do
6: cur ← cur + 1
7: S[Bj .select(cur) − i + 1] ← m.selectj(sj .access(cur))
8: end for
9: end for

10: return S

3.2 Analysis of Space Usage and Query Time

If we use the SDarray representation of Okanohara and Sadakane [18] to repre-
sent the bit vectors B�, their total space usage is

∑p−1
i=0 (ni lg n

ni
+ 2ni + o(ni)).

Notice that
∑p−1

i=0 ni lg n
ni

= nH0(t), according to Eqs. (1) and (3). Also, we have
that 2

∑p−1
i=0 ni = 2n. Finally, for

∑p−1
i=0 o(ni) we have that each term in the sum

is actually O(ni/ lg ni) [18]. In the worst case, we have that every partition has
ni = n/p symbols. Hence, ni/ lg ni = n/(p lg n

p ), which for p partitions yields
a total space of O(n/ lg n

p ) bits. This is o(n) since lg n
p ∈ w(1). In our case,

p ≤ lg2 n, hence
∑p−1

i=0 o(ni) ∈ o(n).
Summarizing, bit vectors B� require n(H0(t)+2+o(1)) bits of space. This is 2

extra bits per symbol when compared to mapping t from Barbay et al.’s original
approach [5]. The whole data structure uses nH0(s)+2n+ o(n)(H0(s)+1) bits.

Regarding operation times, s.select can be supported in O(1) time (by using
the SDarray from Sect. 2.1). Operation s.rank can be supported in O(lg n) worst-
case time: if ni = O(

√
n), operation Bi.rank takes O(lg n

ni
) = O(lg n) time.

Algorithm snippet takes O(
∑p−1

i=0 lg n
ni

+ L lg lg σ) time. The sum
∑p−1

i=0 lg n
ni

is
maximized when ni = n/p = n/ lg2 n. Hence,

∑p−1
i=0 lg n

ni
= O(lg2 n · lg lg n), thus

the total time for snippet is O(lg2 n · lg lg n + L lg lg σ) = O((L + lg2 n) lg lg n).
As a comparison, using operation access to extract the snippet would yield time
O(pL) = O(L lg2 n). When L = Θ(lg lg n), both approaches are asymptotically
similar. However, as soon as L = ω(lg lg n), the time for algorithm snippet is
O((ω(lg lg n)+lg2 n) lg lg n), versus O(ω(lg lg n)·lg2 n) of operation access. Thus,
for sufficiently long snippets, operation snippet is faster than using access.

Regarding construction time, bit vectors Bi can be constructed in linear
time: we traverse string s from left to right; for each symbol s[j], determine
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its partition i and push-back the corresponding symbol in si, and position j
into an extendible array [6]. Afterwards, the SDarray for Bi is constructed from
this array. Extendible arrays can be implemented to obtain good performance
in practice [14], so this imposes no restrictions to our approach.

4 Experimental Results and Applications

4.1 Experimental Setup

We implemented our data structure following the sdsl library [9]. Our source
codes were compiled using g++ with flags -std=c++11 and -O3. Our source code
can be downloaded from https://github.com/ericksepulveda/asap. We run our
experiments on an HP Proliant server running an Intel(R) Xeon(R) CPU E5-
2630 at 2.30 GHz, with 6 cores, 15 MB of cache, and 48 GB of RAM.

We used a 3.0 GB prefix of the Wikipedia (dump from August 2016). We
removed the XML tags, leaving just the text. The text has 8,468,328 distinct
words. We represent every word using a 32-bit unsigned integer, resulting in
1.9 GB of space. The zero-order empirical entropy of this string is 12.45 bits.

We tested sparse and dense partitioning, the latter with parameter �min = 1
(i.e., the original dense partitioning), and �min = lg lg σ = lg 23 (which corre-
sponds to the partitioning scheme currently implemented in sdsl). The number
of partitions generated is 476 for sparse, 24 for dense �min = 1, and 46 for
dense �min = lg 23.

4.2 Experimental Results for Basic Operations

For operations rank and select, we tested two alternatives for choosing the sym-
bols on which to base the queries:

Random Symbols: 30,000 alphabet symbols generated uniformly at random.
Query-log Symbols: we use the query log from the TREC 2007 Million Query

Track1. We removed stopwords, and used only the words that exist in the
alphabet. Overall we obtained 29,711 words (not necessarily unique).

For rank operation, we generate uniformly at random the positions where the
query is issued. For select, we search for the j-th occurrence of a given symbol,
with j generated at random (we are sure that there are at least j occurrences of
the queried symbol). For operation access, we generate text positions at random.

Figures 1 and 2 show the experimental results for operations rank and select,
comparing with the most efficient approaches from the sdsl. We name ASAP
our approach, after agile and succinct alphabet partitioning. We show several
combinations for mapping m and sequences s�, as well as several ways to carry
out the alphabet partitioning. For instance, the label ASAP gmr-wm (D 23) cor-
responds to the scheme using Golynski et al. data structure [10] (gmr wt<> in

1 https://trec.nist.gov/data/million.query07.html.

https://github.com/ericksepulveda/asap
https://trec.nist.gov/data/million.query07.html
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sdsl) for s�, a wavelet matrix for mapping m, and dense �min = lg 23 partition-
ing. Label ASAP gmr-wm (D) is the same approach as before, this time using
the original dense partitioning. The sparse partitioning is indicated with “(S)”
in the labels. Bit vectors B� are implemented using sd vector<> from sdsl,
which corresponds to the SDArray data structure [18]. We show only the most
competitive combinations. The original alphabet partitioning scheme is labeled
AP in the plots. We used the default scheme from sdsl, which implements map-
pings t and m using Huffman-shaped WTs, and the sequences s� using wavelet
matrices. The alphabet partitioning used is dense �min = lg 23. This was the
most competitive combination for AP in our tests.
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Fig. 1. Experimental results for rank. The x axis starts at H0(s) = 12.45 bits.

As it can be seen, ASAP yields interesting trade-offs. In particular, for select
on random symbols, alternative ASAP gmr-wm (D 23) uses 1.11 times the space
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Fig. 2. Experimental results for select. The x axis starts at H0(s) = 12.45 bits.

of AP, and reduces the average time per select by 79.50% (from 9.37 to 1.92µs
per select). For query-log symbols, we obtain similar results. However, in this
case there is another interesting alternative: ASAP wm-ap (S) uses only 1.01
times the space of AP, and reduces the average select time by 38.80%. For rank
queries we improve query time between 4.78% (ASAP wm-wm (S)) to 17.34%
(ASAP gmr-wm (D 23)). In this case the improvements are smaller compared
to select. This is because operation rank on bit vectors sd vector<> is not as
efficient as select [18]. Overall, ASAP gmr-wm (D 23) improves ASAP by 79.50%
for operation select, and 17.34% for operation rank, using 1.11 times the space
of ASAP.

Figure 3 shows experimental results for operation access. As expected, we
cannot compete with the original AP scheme. However, we are still faster than
RRR WT, and competitive with GMR [10] (yet using much less space).
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Fig. 3. Experimental results for access. The x axis starts at H0(s) = 12.45 bits.

4.3 Application 1: Snippet Extraction

We study next the snippet extraction task, common in text search engines [2,22].
In our experiments we tested with L = 100 (see Fig. 4). As it can be seen, we
are able to reduce the time per symbol considerably (approximately by 75%)
when compared with operation access, making our approach more competitive
for snippet extraction. It is important to note that operation Bj .select in line 7 of
Algorithm 1 is implemented using the select operation provided by the
sd vector<> implementation. A more efficient approach in practice would be
to have an iterator that allows one to obtain the desired 1 bits in segment
[i..i + L − 1] of the bit vectors, without repeatedly using operation select. This
iterator is still not provided by the sdsl library and would not be effective for
sd vector<>, it could be a good idea for another kind of bit vectors.

4.4 Application 2: Intersection of Inverted Lists

Another relevant application of rank/select data structures is that of intersect-
ing inverted lists. A previous work [3] has shown that one can carry out the
intersection of inverted lists by representing the document collection (seen as
a single string) with a rank/select data structure. Figure 5 shows experimental
results for intersecting inverted lists. We implemented the variant of intersection
algorithm tested by Barbay et al. [5]. As it can be seen, ASAP yields important
improvements in this application: using only 2% extra space, ASAP wm-wm (S)
is able to reduce the intersection time of AP by 60.67%. This is a promising
result: our query time (of around 16 ms per query) is competitive with that of
inverted indexes for BM25 query processing in IR (around 12 ms per query is the
usual time reported in the literature [2,4]). There are, also, faster and smaller
compression approaches for inverted indexes for the case of re-enumerated doc-
ument collections [4], like the highly efficient Partitioned Elias-Fano (PEF) [19].
In this particular case, 16 ms per query is not competitive with PEF. Neither is
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Fig. 4. Experimental results for extracting snippets of length L = 100. The x axis
starts at H0(s) = 12.45 bits.

the space usage. However, it is worth to remind that within the space of the
H0-compressed text, we are also implicitly storing the inverted index. This can
be used not only to extract snippets, but also to look for positional information,
substituting positional inverted indexes (or full inversions) [2], all within the
same space. This would make our data structure more competitive.

4.5 Application 3: Distributed Computation of rank and select

The partitions generated by the alphabet partitioning approach are amenable
for the distributed computation of batches of rank and select operations. In a dis-
tributed query processing system, a specialized node is in charge of receiving the
query requests (this is called the broker), and then distributes the computation
among the computation nodes (or simply processors). We study how to support
the fast computation of batches of rank and select queries using the original AP
approach and our proposal (ASAP).

A simple approach for operation rank would be to partition the input string
into equal-size chunks, and let each processor deal with one chunk. To support
the distributed computation of rank, the processor storing the ith chunk, from
the left, also stores the rank of each symbol up to chunk i− 1. The space needed
to store these ranks is O(σ lg n) bits per processor, which is impractical for big
alphabets (as the ones we are testing in this paper). Also, this works only for
operation rank, yet not for select. Next, we consider more efficient approaches in
general.

A Distributed Query-Processing System Based on AP. The subalphabet
sequences s� are distributed among the computation nodes, hence we have p
processors in the system. We also have a specialized broker, storing mappings



A Practical Alphabet-Partitioning Rank/Select Data Structure 463

 0

 20

 40

 60

 80

 100

 120

 140

 160

 15  20  25  30  35  40  45  50

Av
g 

tim
e 

ta
ke

n 
in

 m
s

Bits per symbol

Intersection

AP
BLCD-WT

GMR
HUFF-RRR-WT

HUFF-WT
WM

ASAP gmr-wm (D 23)
ASAP gmr-wm (D)

ASAP wm-ap (S)
ASAP wm-huff_int (D 23)

ASAP wm-wm (S)
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m and t. This is a drawback of this approach, as these mappings become a
bottleneck for the distributed computation.

A Distributed Query-Processing System Based on ASAP. In this case, the sub-
alphabet sequences s� and the bit vectors B� are distributed among the compu-
tation nodes. Unlike AP, now each computation node acts as a broker: we only
need to replicate mapping m on them. The overall space usage is O(pσ lg lg p)
if we use an uncompressed WT for m. This is only O(σ lg lg p) = o(n)H0(s) bits
per processor [5]. In this simple way, we avoid having a specialized broker, but
distribute the broker task among the computation nodes. This avoids bottlenecks
at the broker, and can make the system more fault tolerant.

Queries arrive at a computation node, which uses mapping m to distribute it
to the corresponding computation node. For operation s.access(i), we carry out
a broadcast operation, in order to determine for which processor �, B�[i] = 1;
this is the one that must answer the query. For extracting snippets, on the other
hand, we also broadcast the operation to all processors, which collaborate to
construct the desired snippet using the symbols stored at each partition.

Comparison. The main drawback of the scheme based on AP is that it needs a
specialized broker for m and t. Thus, the computation on these mappings is not
distributed, lowering the performance of the system. The scheme based on ASAP,
on the other hand, allows a better distribution: we only need to replicate mapping
m in each processor, with a small space penalty in practice. To achieve a similar
distribution with AP, we would need to replicate m and t in each processor,
increasing the space usage considerably (mainly because of t). Thus, given a
fixed amount of main memory for the system, the scheme based on ASAP would
be likely able to represent a bigger string than AP. Table 1 shows experimental
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results on a simulation of these schemes. We only consider computation time,
disregarding communication time. As it can be seen, ASAP uses the distributed
system in a better way. The average time per operation for rank and select are
reduced by about 71% and 76%, respectively, when compared with AP. For
extracting snippets, the time per symbol is reduced by about 50%. Although
the speedup for 46 nodes might seem not too impressive (around 7–8), it is
important to note that our experiments are just a proof of concept. For instance,
the symbols could be distributed in such a way that the load balance is improved.

Table 1. Experimental results for the distributed computation of operations on a
string. Times are in microseconds per operation, on average (for extracting snippets,
it is microseconds per symbol). For rank and select, the symbols used are from our
query log. Scheme ASAP implements the sequences s� using wavelet matrices, whereas
mapping m is implemented using a Huffman-shaped WT. The partitioning is dense

�min = lg 23. The number of partitions (i.e., computation nodes in the distributed
system) is 46.

Operation ASAP AP AP/ASAP

Time Speedup Time Speedup

rank 0.373 8.03 1.310 1.91 3.51

select 0.706 8.41 2.970 2.55 4.21

access 1.390 8.11 2.130 1.45 1.53

snippet 0.466 6.96 0.939 1.25 2.02

5 Conclusions

Our alphabet-partitioning rank/select data structure offers interesting trade-offs
in practice. Using slightly more space than the original alphabet-partitioning
data structure from [5], we are able to reduce the time for operation select by
about 80%. The performance for rank can be improved between 4% and 17%. For
the inverted-list intersection problem, we showed improvements of about 60% for
query processing time, using only 2% extra space when compared to the original
alphabet-partitioning data structure. This makes this kind of data structures
more attractive for this relevant application in information retrieval tasks. We
also studied how the alphabet-partitioning data structures can be used for the
distributed computation of batches of rank, select, access, and snippet operations.
As far as we know, this is the first study about the support of these operation on
a distributed-computing environment. In our experiments, we obtained speedups
from 6.96 to 8.41, for 46 processors. This compared to 1.25–2.55 for the origi-
nal alphabet-partitioning data structure. Our results were obtained simulating
the distributed computation, hence considering only computation time (and dis-
regarding communication time). The good performance observed in the exper-
iments allows us to think about a real distributed-computing implementation.
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This is left for future work, as well as a more in-depth study that includes aspects
like load balance and total communication time, among others. As another inter-
esting future work, it would be interesting to study how our data structure
behaves with different alphabet sizes, as well as how it compares with approaches
like the one used by Gog et al. [8].
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Abstract. Representing a static set of integers S, |S| = n from a finite
universe U = [1..u] is a fundamental task in computer science. Our con-
cern is to represent S in small space while supporting the operations
of rank and select on S; if S is viewed as its characteristi c vector, the
problem becomes that of representing a bit-vector, which is arguably the
most fundamental building block of succinct data structures.

Although there is an information-theoretic lower bound of B(n, u) =
lg

(
u
n

)
bits on the space needed to represent S, this applies to worst-case

(random) sets S, and sets found in practical applications are compress-
ible. We focus on the case where elements of S contain non-trivial runs
of consecutive elements, one that occurs in many practical situations.

Let Cn denote the class of
(
u
n

)
distinct sets of n elements over the

universe [1..u]. Let also Cn
g ⊂ Cn contain the sets whose n elements

are arranged in g ≤ n runs of �i ≥ 1 consecutive elements from U for
i = 1, . . . , g, and let Cn

g,r ⊂ Cn
g contain all sets that consist of g runs,

such that r ≤ g of them have at least 2 elements.
– We introduce new compressibility measures for sets, including:

• L1 = lg |Cn
g | = lg

(
u−n+1

g

)
+ lg

(
n−1
g−1

)
and

• L2 = lg |Cn
g,r| = lg

(
u−n+1

g

)
+ lg

(
n−g−1
r−1

)
+ lg

(
g
r

)

We show that L2 ≤ L1 ≤ B(n, u).
– We give data structures that use space close to bounds L1 and L2

and support rank and select in O(1) time.
– We provide additional measures involving entropy-coding run

lengths and gaps between items, data structures to support these
measures, and show experimentally that these approaches are
promising for real-world datasets.

1 Introduction

Given a static sorted set S = {x1, . . . , xn} of n elements from a finite universe
U = [1..u] ⊂ N, such that 1 ≤ x1 < · · · < xn ≤ u, we want to support the
following fundamental operations:
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– rank(S, x), which for x ∈ U , yields |{xi ∈ S, xi ≤ x}|, and
– select(S, k), which for k ∈ N, yields x ∈ S such that rank(S, x) = k.

If S is viewed as its characteristic bit vector (cbv for short) CS [1..u], such that
CS [i] = 1 iff i ∈ S, the problem becomes that of representing a bit vector
with operations rank1(CS , x), which yields the number of bits 1 in CS [1..x],
and select1(CS , k), that finds the position of the kth 1 bit in CS . These are
arguably the most fundamental building block of succinct data structures [28].
Also, they allow one to compute the fundamental operation predecessor(S, x) ≡
select(S, rank(S, x − 1)) (among others). We assume the transdichotomous word
RAM model with word size w = O(lg u) = Ω(lg n). Arithmetic, logic, and bitwise
operations, as well as accesses to w-bit memory cells, take constant time.

Succinct data structures use space close to the corresponding information-
theoretic lower bound while supporting operations efficiently. For instance, there
are

(
u
n

)
different subsets of U of size n. Hence, the information-theoretic lower

bound on the number of bits needed to represent any such sets is B(n, u) =⌈
lg

(
u
n

)⌉
bits. If n � u, B(n, u) ≈ n lg e + n lg u

n − O(lg u) bits. Compressed data
structures, on the other hand, exploit regularities in specific instances of data to
go below the information-theoretic lower bound. The space usage of compressed
data structures on a specific instance is evaluated relative to some measure of
compressibility of that instance.

Starting with the seminal work of Jacobson [25], much effort has gone into
representing sets succinctly while supporting rank and select in O(1) time. Clark
and Munro [9,10] were the first to achieve O(1) time rank and select, using
u+O(u/ lg lg u) bits of space. Raman et al. [36] achieved succinct space, B(n, u)+
O(u lg lg u/ lg u) bits, with O(1)-time operations. In order to capture the com-
pressibility of sets better, researchers have considered the empirical higher-order
entropy of CS , denoted by Hk(CS), which achieves good compression (beyond
B(n, u)). Several researchers, including Sadakane and Grossi [37] showed how to
achieve constant-time operations while using uHk(S)+O(u((k+1)+lg lg u)/ lg u)
bits. An important drawback is that for big universes (i.e., n � u), Hk(CS)
decreases slowly as k grows. In addition, using small k it is not possible to cap-
ture longer-range dependencies (e.g. for any (long) string x, Hk(x) ≈ Hk(xx)).

Another well-studied measure is GAP(S). If S = {x1, . . . , xn}, with x1 < . . . <
xn, then define g1 = x1 − 1 and, for i > 1, gi = xi − xi−1 − 1, and

GAP(S) =
n∑

i=1

{�lg gi	 + 1}.

Although GAP(S) is not an achievable measure1, GAP(S) exploits variation in
the gaps between elements. It can be seen that GAP(S) < B(n, u), and GAP(S)
approaches B(n, u) only when gi = u

n (for i = 1, . . . , n). Gupta et al. [23] showed

1 For example, if we choose every element in U to be in S with probability 0.5, then
GAP(S) ∼ 0.81u, less than the Shannon lower bound for S.
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how to represent S in GAP(S) + O(n lg u
n/poly lg (n)) ≤ B(n, u)(1 + o(1)) bits

while supporting rank and select quickly (albeit not in constant time).
In this paper we focus on applications where set elements are clustered,

forming runs of successive elements. Some applications are interval intersec-
tion in computational biology [34], web-graph compression [3,4], IR and query
processing in reordered databases [2,26], valid-time joins in temporal databases
[5,13,16,39], ancestor checking in trees [6,7], data structures for set intersection
[8], and bit vectors of wavelet trees [14,22] of the Burrows-Wheeler transform of
highly-repetitive texts [15,24,27]. Although GAP(S) addresses this kind of non-
uniform distribution, in the presence of runs, run-length encoding (RLE) [18]
is more appropriate. Here, a set S with cbv CS [1..u] = 0z11l10z21l2 · · ·0zg1lg is
represented through the sequences 〈z1, . . . , zg〉 and 〈l1, . . . , lg〉 of 2g lengths of
the alternating 0/1-runs in CS (assume wlog that CS begins with 0 and ends
with 1). Then:

RLE(S) =
g∑

i=1

{�lg (zi − 1)	 + 1} +
g∑

i=1

{�lg (li − 1)	 + 1}.

It holds that if n < u/2, RLE(S) < B(n, u) + n + O(1) [14]. Note that RLE(S)
is also not an achievable measure, but handles sets S that contain runs better
than GAP(S)—a set S with cbv 0u−n1n has GAP(S) = Θ(n + lg u) but RLE(S) =
Θ(lg n + lg u).

In practice, GAP(S), RLE(S) and Hk each perform well on specific data sets
S. In the important case when S is a posting list in an inverted index, a recent
breakthrough [30] showed that so-called partitioned Elias-Fano (PEF) indices are
very effective in compressing sets and can support select in O(1) time. However,
we are not aware of any compressibility measure associated with these indices,
and it appears rank cannot be supported in constant time.

Since we wish not only to compress sets, but also to support operations on
them, the overall space usage (including any space needed to support operations)
is important. Firstly, since predecessor queries can be answered using rank and
select, any lower bound for the former applies also to the joint use of the latter
operations. Pǎtraşcu and Thorup [33] showed that if we use Θ(s lg u) bits of
space, the time to answer predecessor queries is given by:

PT(u, n, a) = Θ(min { lgn
lg lg u , lg lg (u/n)

a , lg lg u
a / lg a lg lg u

a

lgn , lg lg u
a / lg lg lg u

a

lg lg n
a

}),

where a = lg s lg u
n . It follows from this that even if we are allowed to use

O(poly n) words of space, constant-time operations are possible only for rel-
atively small universes, i.e. u = O(n · poly lg(n)), or for very small sets, i.e.
n = (lg u)O(1). Fortunately, the first case, which is our main focus, is also very
commonly seen in applications.

A more refined analysis looks at the redundancy of a data structure, which
is the space used by a data structure over and above the corresponding space
bound for representing the set itself. Pǎtraşcu [32] improved on earlier work
[19,21] and showed the following:
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Theorem 1 ([32]). For any c > 0, a set S can be represented using B(n, u) +
O(u/ lgc (u/c))+O(u3/4poly lg(u)) bits and support rank and select in O(c) time.

We will use Theorem 1 only when c = O(1). For the parameter values of
interest, namely u = O(n·poly lg(n)) and c = O(1), the redundancy of Theorem 1
was shown to be optimal by Pǎtraşcu and Viola [31]. In the so-called systematic
model, [20] gave matching upper and lower bounds on redundancy.

Contributions. Our contributions are as follows. Firstly, in Sects. 2 and 3, we give
a surprisingly simple adaptive approach that stores S in potentially better than
B(n, u) space, while still supporting constant-time rank/select. This is based on
the intuition that within the class Cn of

(
u
n

)
distinct sets of n elements from U ,

there are sets that can be represented more succinctly than others. For instance,
in a extreme case where the elements form a single interval [i..i + n − 1] of size
n, why would one use lg

(
u
n

)
bits to describe this set? The smallest set element

i and the set size n are enough to represent such a set.
Let class Cn

g ⊂ Cn contain the sets whose elements are arranged in g ≤ n
runs of li ≥ 1 successive elements from U , for i = 1, . . . , g. Also, let Cn

g,r ⊂ Cn
g be

a further refinement of class Cn
g , which contains all sets that consist of g runs,

such that r ≤ g of them have at least 2 elements.

– We introduce new compressibility measures for sets:
• L1 = lg |Cn

g | = lg
(
u−n+1

g

)
+ lg

(
n−1
g−1

)
and

• L2 = lg |Cn
g,r| = lg

(
u−n+1

g

)
+ lg

(
n−g−1
r−1

)
+ lg

(
g
r

)

We show that L2 ≤ L1 ≤ B(n, u).
– We give data structures that use space close to bounds L1 and L2, namely

lg
(
u
g

)
+lg

(
n
g

)
+o(u) ≈ L1+o(u) bits of space and lg

(
u
g

)
+lg

(
n
r

)
+lg

(
g
r

)
+o(u) ≈

L2 + o(u) bits of space, and support rank and select in O(1) time.

Next, in Sect. 4, we revisit GAP(S) and RLE(S) measures in the following
sense. The GAP(S) and RLE(S) measures encode a gap/run of length x using
1+ �lg x	 bits respectively. By Shannon’s theorem, coding x using 1+ �lg x	 bits
is tailoring the code length to a particular, and fixed, distribution of gap/run
lengths2. We therefore propose two new measures of compressibility: we encode
gap sizes and run lengths using their empirical zeroth-order entropy. That is,
we treat the sequence of runs as a string of length 2g from the alphabet [1..n],
and encode each run using the Shannon optimal number of bits based upon the
number of times this run length is seen (and analogously for gaps). On any set
S, such approaches should outperform RLE(S) and GAP(S). For example, given
a set S with CS = 0412004120 · · ·04120, RLE(S) is far inferior to H0-coding the
runs, which would use only one bit for encoding each run. We introduce two new
measures of compressibility, Hrun

0 (S) and Hgap
0 (S), to address this. We give data

structures that support rank/select in O(1) time using space close to Hgap
0 (S),

and select on both S and its complement in O(1) time using space close to
Hrun

0 (S). In this section, we also give additional compressibility measures.
2 Since GAP(S) and RLE(S) are not achievable, this statement is imprecise.
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Finally, in Sect. 5, we show experimentally that these approaches are promis-
ing for real-world datasets.

2 Adaptive Succinctness

We prove adaptive lower bounds for space needed to represent a set S.
Given a set S = {x1, . . . , xn} ⊆ U of n elements 1 ≤ x1 < · · · < xn ≤

u, a maximal run of successive elements G ⊆ S contains |G| ≥ 1 elements
xi, xi +1, . . . , xi + |G|−1, such that xi −1 �∈ S and xi + |G| �∈ S. Let G1, . . . , Gg

be the partition of S = {x1, . . . , xn} into maximal runs of successive elements,
such that ∀x ∈ Gi,∀y ∈ Gj , x < y ⇔ i < j. Let us assume that r ≤ g of these
Gi are of size |Gi| ≥ 2.

Let Cn denote the class of sets of n elements from U . Notice that |Cn| =
(
u
n

)
.

We define class Cn
g ⊂ Cn, a refinement of Cn containing sets whose n elements are

arranged in g ≤ n maximal runs of successive elements. Notice that
⋃n

g=1 Cn
g =

Cn. Let class Cn
g,r ⊂ Cn

g be a further refinement consisting of all sets such that
r ≤ g out of the g maximal runs have size ≥ 2. It holds that

⋃g
r=1 Cn

g,r = Cn
g .

The cbv CS of set S ∈ Cn
g,r consists of g 0-runs of lengths z1, . . . , zg such that

z1 = min {G1} − 1, and zi = min {Gi} − max {Gi−1} − 1, and g 1-runs of length
li = |Gi|, for i = 1, . . . , g. We call solitary the elements in a run of size 1. Let
o1 = lj1 − 1, . . . , or = ljr − 1, for j1 < · · · < jr, denote the sorted sequence of
lengths (−1) of the r runs of length lji ≥ 2.

We show that within Cn, there are sets that can be represented more suc-
cinctly than others, depending on which subclass they belong to. Less bit are
needed to represent S if S ∈ Cn

g or, moreover, S ∈ Cn
g,r. This is because the num-

ber of different such sets is smaller than
(
u
n

)
, so distinguishing them is easier.

For instance, for u = 6 and n = 3 there are
(
6
3

)
= 20 different sets, yet if g = 3,

the number of sets is only 4 ({1, 3, 5}, {1, 3, 6}, {1, 4, 6}, {2, 4, 6}). We formalize
this fact next:

Theorem 2. There are |Cn
g | =

(
n−1
g−1

)(
u−n+1

g

)
different sets whose n elements

from U can be partitioned into g maximal runs of successive elements.

Hence, we have:

Corollary 1. L1 = lg |Cn
g | = lg

(
u−n+1

g

)
+lg

(
n−1
g−1

)
bits are necessary to represent

any set S ∈ Cn
g .

Next, we determine |Cn
g,r|.

Theorem 3. There are |Cn
g,r| =

(
n−g−1
r−1

)(
g
r

)(
u−n+1

g

)
different sets whose n ele-

ments from U can be partitioned into g maximal runs of successive elements,
such that r ≤ g of these groups have at least 2 elements.

Corollary 2. L2 = lg |Cn
g,r| = lg

(
u−n+1

g

)
+lg

(
n−g−1
r−1

)
+lg

(
g
r

)
bits are necessary

to represent any set S ∈ Cn
g,r.
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3 Adaptive Succinct rank/select Data Structures

Given set S ∈ Cn
g,r, let us define its essential sets:

1. P̂ = {p1, . . . , pg} ⊆ S such that pi = min {Gi}, for i = 1, . . . , g. This set has
universe u. We call each element pi a pioneer ;

2. L̂ = {l1, . . . , lg}, such that lj =
∑j

i=1 |Gi|. The corresponding characteristic
bit vector is CL̂ = 0|G1|−110|G2|−11 · · ·0|Gg|−11 of length (universe of L̂) n
and g 1s. These are the unary encodings of |Gi|s.

3. Ĝ = {y1, . . . , yg} such that yj =
∑j

i=1 zi, for j = 1, . . . , g. The corresponding
characteristic bit vector is CĜ = 0z1−110z2−11 · · ·0zg−11, of length (universe
of Ĝ)

∑g
i=1 zi = u − n (i.e., the number of 0s in CS), and it has g 1s. These

are the unary encodings of values zi.
4. R̂ = {q1, . . . , qr} such that qj =

∑j
i=1 oi, for j = 1, . . . , r. The corresponding

characteristic bit vector is CR̂ = 0o1−110o2−11 · · ·0or−11, of length (universe
of R̂) n − g, and r 1s. These are the unary encodings of values oi.

5. V̂ = {v1, . . . , vr} such that |Gvi
| > 1, for i = 1, . . . , r. The corresponding

characteristic bit vector CV̂ [1..g] has length g and r 1s. It holds that CV̂ [i] =
1 iff the run Gi of the ith pioneer has |Gi| > 1.

A set S can be unambiguously described with the following combinations of
essential sets: (Scheme 1) Sets P̂ and L̂; (Scheme 2) Sets P̂ , R̂, and V̂ ; (Scheme
3) Sets Ĝ, R̂, and V̂ ; and (Scheme 4) Sets Ĝ and L̂. Notice that, for instance, the
Elias-Fano encoding of sets Ĝ and L̂ (Scheme 4) yields space close to L1. The
Elias-Fano encoding of Scheme 3, alternatively, yields space close to L2. In what
follows, we build on above schemes to obtain adaptive succinct data structures.

3.1 Using Space Close to L1

Given a set S ∈ Cn
g , consider the interval [pi..pi+1), for 1 ≤ i < g, between two

consecutive pioneers. This is the locus of pioneer pi [12]: all rank(S, x) queries
within this interval (i.e., pi ≤ x < pi+1) have similar answer, obtainable from pi
and |Gi| (similarly for select). We use Scheme 1 above, which builds on sets P̂
and L̂. Building on Scheme 4 would use space closer to L1, however it does not
allow (seemingly) for constant-time rank/select.

Operation rank(S, x). Notice that ∀x such that pi ≤ x < pi + |Gi|, rank(S, x) ≡
rank(S, pi) + x − pi; otherwise, if pi + |Gi| ≤ x < pi+1, rank(S, x) ≡ rank(S, pi) +
|Gi| − 1. So, we show how to compute pi, rank(S, pi), and |Gi| from sets P̂ and
L̂. Let i = rank(P̂ , x) be the number of pioneers that are smaller (or equal)
than x, then pi = select(P̂ , i). Hence, rank(S, pi) ≡ select(L̂, i − 1) + 1, since
select(L̂, i − 1) =

∑i−1
j=1 |Gj |. Finally, |Gi| = select(L̂, i) − select(L̂, i − 1).

Operation select(S, k). Assume that for the element xk we are looking for, it
holds that pi ≤ xk < pi+1. Then, select(S, k) ≡ pi + k − rank(S, pi). This time,
i = rank(L̂, k) + [k �∈ L̂]3, and pi = select(p̂, i). Finally, as explained above for
operation rank, rank(S, pi) ≡ select(L̂, i − 1) + 1.

3 [k �∈ L̂] is Iverson brackets notation, which equals 1 iff k �∈ L̂ is true, 0 otherwise.
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We represent P̂ and L̂ using Theorem 1. This uses lg
(
u
g

)
+lg

(
n
g

)
+O(u/ lgc u)

bits, for any constant c ≥ 1, and supports rank and select in O(1) time.

Theorem 4. There exists a data structure that represents any set S ∈ Cn
g of n

elements from universe U , using lg
(
u
g

)
+lg

(
n
g

)
+O(u/ lgc u) bits, for any constant

c ≥ 1, while supporting operations rank and select in O(1) time.

3.2 Using Space Close to L2

We use sets P̂ , V̂ , and the following variant of set R̂: R̂′ = {q′
1, . . . , q

′
r} such that

q′
j =

∑j
i=1 (oi + select(V̂ , i) − select(V̂ , i − 1)). This set has universe [1..n], and

has r elements. To understand how this set works, let us see at its characteristic
bit vector CR̂′ [1..n]. It has r 1s, each corresponding to a run Gi. Each such 1 is
preceded by |Gi| − 1 0s. Consider runs Gi and Gi+l, for i, l ≥ 1, such that runs
Gi+1, . . . , Gi+l−1 are each of size 1 (i.e., they correspond to solitary elements in
S). Then, in CR̂′ there are l − 1 + |Gi| − 1 0s between the 1s corresponding to
Gi and Gi+l.

Operation rank(S, x). Let us assume that pi ≤ x < pi+1, for pi ∈ P̂ . First,
consider the case where |Gi| = 1. That is, pi is a solitary pioneer. Notice
that rank(S, x) ≡ rank(S, pi−l) + |Gi−l| − 1 + l, for l ≥ 1, such that pi−l is
the greatest pioneer smaller than pi such that |Gi−l| > 1 (assume pi−l = 0
if there is none). Let i = rank(P̂ , x), and pi = select(P̂ , i). Then, l = i −
select(V̂ , rank(V̂ , i)). Hence, rank(S, pi−l) + |Gi−l| − 1 ≡ select(R̂′, rank(V̂ , i)),
and we are done. Otherwise, |Gi| > 1, so we must distinguish two cases:
(1) pi ≤ x < pi + |Gi|, in whose case rank(S, x) ≡ rank(S, pi) + x − pi;
or (2) pi + |Gi| ≤ x, hence rank(S, x) ≡ rank(S, pi) + |Gi| − 1. Notice that
rank(S, pi) ≡ rank(S, pi−l) + |Gi−l| − 1 + l, which has been already computed.
Finally, |Gi| ≡ select(R̂′, rank(V̂ , i)) − select(R̂′, rank(V̂ , i) − 1) − l.

Operation select(S, k). We must determine whether xk is a solitary element or
lies within a run of successive elements of length > 1. Let us regard runs Gv

and Gi, both of size > 1, such that there is no other run of size > 1 between
them, and pv + |Gv| − 1 < xk ≤ pi + |Gi| − 1. Here, j = rank(R̂′, k) − [k ∈ R̂′]
and v = select(V̂ , j). The number of solitary pioneers between runs Gv and Gi

is l = select(V̂ , j + 1) − select(V̂ , j) − 1. Let s = select(R̂′, j) be the rank up to
position pv + |Gv|−1 (i.e., up to the last element in Gv). Notice that if k−s ≤ l,
xk is the (k − s)th pioneer after Gv Otherwise, if k − s > l, xk lies within Gi.

We represent sets P̂ , V̂ , and R̂′ using Theorem 1 and obtain:

Theorem 5. There exists a data structure that represents any set S ∈ Cn
g,r of

n elements from universe U , using lg
(
u
g

)
+ lg

(
n
r

)
+ lg

(
g
r

)
+ O(u/ lgc u) bits, for

any constant c ≥ 1, while supporting operations rank and select in O(1) time.

4 Further Squeezing rank/select Data Structures

In this section, we study the extent to which a static rank/select data structure
can be squeezed, while still supporting operations efficiently. Let tr denote the
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time complexity of operation rank, and ts that of select. Since predecessor(S, x)
can be reduced to select(S, rank(S, x−1)), Pǎtraşcu and Thorup’s [33] predecessor
lower bound is also a lower bound for tr + ts. It is natural, then, to compare
with this lower bound to see how the time deteriorates as we squeeze.

4.1 GAP(S)

Gupta et al. [23] introduce a data structure using GAP(S) + O(n lg u
n/ lg n) +

O(n lg lg u
n ) bits of space. Originally, Andersson and Thorup’s predecessor data

structure [1] is used as building block (using O(n lg u
n/ lg n) bits of space), yet it

can be easily modified to use Pǎtraşcu and Thorup’s data structure [33]; to get
the same space usage, we set a = lg (lg u/ lg2 n). Operation select is supported
in O(lg lg n) time, and rank in PT(u, n, lg (lg u/ lg2 n)) + O(lg lg n) time.

4.2 RLE(S)

We now consider RLE(S), and begin by noting that RLE(S) = GAP(Ĝ) + GAP(L̂).

Property 1. For any set S ∈ Cn
g it holds that RLE(S) ≤ lg

(
u−n+1

g

)
+ lg

(
n
g

)
.

Since RLE(S) = GAP(Ĝ) + GAP(L̂), the proof is immediate. Set Ĝ has g elements
over universe of size u − n, it holds that GAP(Ĝ) ≤ lg

(
u−n
g

) ≤ lg
(
u−n+1

g

)
. Simi-

larly, GAP(L̂) ≤ lg
(
n
g

)
.

Theorem 6. There exists a data structure that represents any set S ∈ Cn
g over

the universe U , using RLE(S) + O(g lg u
g / lg g) + O(g lg lg u

g ) bits of space, and
supporting operation select in PT(u−n, g, lg lg u−n

lg2 g
) time, whereas operation rank

is supported in PT(u − n, g, lg lg u−n
lg2 g

) + O((lg lg g)2) time.

This is achieved by using the data structure from Sect. 4.1 on sets Ĝ and L̂.

4.3 H0 Coding of Gaps and Runs

In this section, we first describe our new measures of compressing sets based on
H0 coding the gaps or runs (called Hgap

0 (S) and Hrun
0 (S)). We then describe the

main result of this section: a data structure that supports rank and select on a
set S in constant time while using close to Hgap

0 (S) space. We then obtain as
a corollary a representation of S using close to Hrun

0 (S) space, but supporting
only select on S and U \ S. Finally, we relate these measures to Theorem 3.

Definition 1. Let S = {x1, . . . , xn}, with 1 < x1 < . . . < xn = u. Define g1 =
x1 − 1 and, for i > 1, gi = xi − xi−1. Let G(S) = {h

m(h1)
1 , h

m(h2)
2 , . . . , h

m(ht)
t } be

the multiset of values in the sequence 〈g1, . . . , gn〉, where m(hi) is the multiplicity
of hi in the sequence of gaps. Then:

nHgap
0 (S) = lg

(
n

m(h1),m(h2), . . . , m(ht)

)
.



Adaptive Succinctness 475

Letting L̂ and Ĝ be as defined at the start of Sect. 3, we define:

Hrun
0 (S) = Hgap

0 (L̂) + Hgap
0 (Ĝ).

Remark. Note that Hgap
0 (S) is (almost) an achievable measure: we can apply

arithmetic coding to the sequence of gaps, which would take Hgap
0 (S) bits. How-

ever, we would also need to output the model of the arithmetic coder, which can
be G(S) itself, stored in t(lg u+ lg n) bits, specifying which runs are present and
their multiplicities. Since t = O(

√
u), this is not excessive for many applications.

Similar remarks apply to Hrun
0 (S). Observe that |L̂| = |Ĝ| = g, so we would aim

to compress S to gHrun
0 (S) bits.

Hgap
0 (S). In this section we show the following:

Theorem 7. Given a set S ⊆ [1..u], |S| = n, we can represent it to support
rank and select in O(1) time using nHgap

0 (S) + O(n) + o(u) bits.

Proof. Let the elements of S be {xi}ni=1, sequence of gaps be {gi}ni=1, and the
multiset of gaps be G(S) = {h

m(hi)
i }ti=1. We first note that the result is achieved

trivially if n = O(u/ lg u): we represent S as the bit-string 0g1−11 . . .0gn−11,
which is of length u and has n 1s. If stored using Theorem 1, this bit-string
will use u

B lg u
nB + O( u

B ) + u
(lg u)O(1) = O(u lg lg u/ lg u) = o(u) bits and rank and

select operations can be supported in O(1) time, which proves the theorem. We
therefore henceforth assume that n ≥ cu/ lg u for some sufficiently large c ≥ 1.

We begin by converting S to a new set S′ with n′ ≤ n + u/B = O(n)
numbers from U , for some integer parameter B = Θ((lg n/ lg lg n)2), by setting
S′ = S ∪ {iB|1 ≤ i ≤ u/B}. Let the elements, the sequence of gaps, and the
multiset of gaps of S′ be {x′

i}n
′

i=1, {g′
i}n

′
i=1, and G(S′) = {h′m′(h′

i)
i }t′

i=1. We now
show that Hgap

0 (S′) is close to Hgap
0 (S), using the following [11, Theorem 17.3.3]:

Theorem 8. Let p and q be two probability mass functions on a set T such that
||p − q||1 =

∑
x∈T |p(x) − q(x)| ≤ 1

2 . Then |H(p) − H(q)| ≤ ||p − q||1 lg |T |
||p−q||1 .

Let T be the underlying set of the multiset G(S) ∪ G(S′). For any integer x ∈ T
let p(x) = m(x)/n and q(x) = m′(x)/n′; m(x) = 0 if x �∈ G(S), and and
similarly m′(x). It is easy to see that ||p − q||1 = O(u/(nB)), since at most u/B
gaps in S are changed during the conversion, and n = Θ(n′). Since we assume
n ≥ cu/ lg u for any constant c, we can ensure that ||p − q||1 ≤ 1/2. Noting
that ||p − q||1 = Ω(1/n) (unless p = q, in which case the RHS of Theorem 8
equals 0 as well), we see that lg |T |

||p−q||1 = O(lg n|T |) = O(lg u). It follows that

|Hgap
0 (S) − Hgap

0 (S′)| = O(u lg u
nB ) and hence that |nHgap

0 (S) − n′Hgap
0 (S′)| =

O(u lg u
B ) = O(u (lg lg u)2

lg u ) = o(u).
The data structure comprises two parts: first, we divide the bit-string rep-

resenting S into blocks of B consecutive bits (the i-th block corresponds to the
interval [(i − 1)B + 1..iB]). Next, we create a bit-string O which encodes, for
each block, the count of the number of elements of S that lie in each block,
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written in unary. O will have u/B 0s and n 1s. If stored using Theorem 1, O
will use u

B lg u
nB + O( u

B ) + u
(lg u)O(1) = O(u lg lg u/ lg u) = o(u) bits and support

rank and select operations on both 0 and 1 in O(1) time. It is easy to see (details
omitted) how to reduce rank/select operations on S to rank/select operations on
individual blocks using O.

We now describe the representation of an individual block. Each block is
encoded independently; by Jensen’s inequality, if the gaps in each block are
encoded using H0 bits, the total space usage of all block encodings is Hgap

0 (S′).
We also need to store the arithmetic coding model for each block, which requires
O(σ lg B) bits, where σ = O(

√
B) is the number of distinct integers in a block.

The overhead of the models in each block is therefore O(u
√
B lgB
B ) = O(u (lg lg u)2

lg u )
bits. We now fix B = (c lg u/ lg lg u)2 for sufficiently small constant c, and make
the following observations that allow all operations in a block to be performed
in O(1) time using table lookup (details omitted): (i) all integers in a block are
O(lg lg u) bits long (ii) if we group the integers in a block with into sub-blocks
of c lg u/ lg lg u bits, we can ensure that the H0 code of a sub-block is no more
than c′ lg u bits long for some c′ < 1 (iii) the encoding of the arithmetic coding
model for each block also fits into c′ lg n bits (this is important since to decode
the encoding of a sub-block, we must also use the arithmetic coding model as
an argument to the table lookup). ��
Hrun

0 (S). Given a set S ⊆ U , let L̂ and Ĝ be defined as in Sect. 3. Applying
Theorem 7 to L̂ and Ĝ and using [35, Theorem 1(c)], we obtain:

Corollary 3. Given a set S ⊆ U = [1..u] such that |S| = n and |L̂| = g, S can
be represented in gHrun

0 (S) + O(g) + o(u) bits and support select on S and on
U \ S in O(1) time.

Discussion. Theorem 7 and Corollary 3 refine the results from Sect. 4.1 and
Theorem 6 in terms of the space bound. In Sect. 3.2, we described Scheme 4,
which comprises the sets P̂ , V̂ , and R̂′. An alternative view of Scheme 1 from
Sect. 3.1, and how it leads to Scheme 4 and then towards Hrun

0 (S) is as follows.
Scheme 1 identifies the start positions of the runs of 1s using P̂ , then encodes
their lengths using L̂; each run is encoded using lg(n/g) + O(1) bits, i.e., each
run of 1s is encoded using a number of bits equal to the log of the average run
length. This is clearly non-optimal if the distribution of the lengths of the runs
is non-uniform, which can happen in many situations (for example, in a random
bit-string, run-lengths are geometrically distributed). Scheme 4 improves upon
Scheme 1 by encoding runs of length 1 using the Shannon optimal number of
bits, based upon the number of times run length 1 length is seen. Choosing to
focus on runs of length 1 can be non-optimal: e.g. in a set where the runs were of
length 1, 2, 2, . . . , 2, Scheme 4 would offer no improvement over Scheme 1. The
next step, that we consider experimentally, is to modify Scheme 4 to encode
L̂ adaptively using Theorem 7. Such a modification should give superior com-
pression to Scheme 4, while supporting O(1)-time rank/select. Finally, Hrun

0 (S)
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is the logical conclusion, replacing the “non-adaptive” encoding of P̂ with an
adaptive encoding of Ĝ.

4.4 HYB(S)

Next, we study the following compression measure.

Definition 2. Given set S ∈ Cn
g,r, we define the entropy measure:

HYB(S) =
g∑

i=1

{�lg (zi − 1)	 + 1} +
r∑

i=1

{�lg (oi − 1)	 + 1}

= GAP(Ĝ) + GAP(R̂).

Similar to Property 1, we have:

Property 2. For any set S ∈ Cn
g,r it holds that HYB(S) ≤ lg

(
u−n+1

g

)
+ lg

(
n−g
r

)
.

Property 3. Given set S ∈ Cn
g,r, HYB(S) ≤ min {GAP(S), RLE(S)}.

Proof omited for lack of space.

Theorem 9. There exists a data structure that represents any set S ∈ Cn
g,r over

the universe U , using HYB(S)(1 + o(1)) + O(g lg u−n
g / lg g) + O(r lg n−g

r / lg r) +
lg

(
g
r

)
bits. Operations rank and select are supported in PT(u−n, g

lg2 g
, lg lg u−n

lg2 g
)+

O((lg lg g)2) worst-case time.

4.5 HỸB(S)

Next, we use gap compression on sets P̂ and L̂ to obtain space smaller than
GAP(S) in some cases, with query time that equals that of Sect. 4.1 (and hence
improving Theorems 6 and 9).

Definition 3. Given a set S ∈ Cn
g,r with pioneers P̂ = {p1, . . . , pg} ⊆ S and

1-run lengths L̂ = {l1, . . . , lg}, we define the following compression measure:

HỸB(S) =
g∑

i=1

{�lg (pi − pi−1 − 1)	 + 1} +
r∑

i=1

{�lg (li − 1)	 + 1}

= GAP(P̂ ) + GAP(L̂).

We can prove:

Lemma 1. Given a set S ∈ Cn
g,r, it holds that HỸB(S) ≤ lg

(
u
g

)
+ lg

(
n
g

)
.

Theorem 10. There exists a data structure that represents any set S ∈ Cn
g,r

over the universe U , using HỸB(S)(1+o(1))+o(g lg u
g ) bits of space, and supports

operation select in O(lg lg g) time, and rank in PT(u, g, lg lg u
lg2 g

) + O(lg lg g) time.

Proof. Use the data structure from Sect. 4.1 to represent sets P̂ and L̂, and use
the O(1)-time support for rank and select described in Sect. 3.1. ��
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5 Experimental Results

We show preliminary experiments on the space usage of the compressed
approaches proposed in this paper. We use the URL-sorted GOV2 inverted
index [38] as input, as this document order tends to generate runs in the posting
lists. The universe size is 25,138,630 (this is the number of documents in the
collection). We consider posting lists of size at least 100,000. We average the
total space of each approach over 5,055,078,461 total postings. Table 1 shows
the average number of bits per element for different state-of-the-art rank/select
data structures (upper table) and different compression measures (bottom).

Table 1. Average number of bits per element for different rank/select data structures
(on top) and compression measures (bottom), for URL-sorted GOV2 posting lists.

sd vector rrr<127> rrr<63> rrr<31> rrr<15> PEF L1 d.s. L2 d.s.
7.29 4.53 6.28 9.4 14.78 2.8 4.62 4.14

L1 L2 GAP(S) RLE(S) HYB(S) HYB(S) nHgap
0 (S) gHrun

0 (S)
3.65 3.43 3.14 2.77 2.81 3.29 2.77 2.46

We considered the most efficient data structures from the sdsl library [17]:
Elias-Fano sd vector [29], Raman et al. [36] rrr data structure (using blocks
of size 15, 31, 63, and 127). We also compared with the (very space-efficient)
partitioned Elias-Fano approach [30] (PEF in the table). We used sd vector to
represent the sets that comprise the L1 and L2 data structures. The space for
these data structures is reported at the top of Table 1.

In the bottom of Table 1, we report on compression measures applied to the
above dataset (without making any allowance for space needed to support rank or
select). Note that, as defined, the compression measures GAP(S), RLE(S), HYB(S),
and HỸB(S) are not realizable. To make a fair comparison with a realizable com-
pression measure, we assume that gaps/runs are encoded using Elias-δ coding,
i.e. our reported GAP(S) equals GAP(S) =

∑n
i=1 �lg gi	 + 2�lg(�lg gi	 + 1)	 + 1,

and similarly for RLE(S). Also, HYB(S) includes space for the Elias-Fano repre-
sentation of V̂ (which uses space slightly more than lg

(
g
r

)
bits). As it can be

seen, the results are promising in practice.

6 Conclusion and Open Problems

We have presented new measures of the compressibility of sets that are suitable
when the elements of the sets are clustered in runs. In addition, when the sets are
relatively dense (i.e. n = u/(lg u)O(1)) we present data structures whose space
usage is close to these measures, but which support rank and select operations
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in O(1) time. Our preliminary experimental results show that our approaches
yield space-efficient set representations.

There are a number of open directions that could be pursued. For exam-
ple, we believe that an analogue of Theorem 7 for RLE(S) is well within reach.
Other interesting directions would be to close the gap between the space bounds
L1 and L2 and their corresponding data structures. Finally, the data structure
of Theorem 7 is unlikely to be practical; finding a practical variant with small
redundancy is another interesting question.
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5. Cafagna, F., Böhlen, M.H.: Disjoint interval partitioning. VLDB J. 26(3), 447–466
(2017)

6. Chen, Y., Chen, Y.: An efficient algorithm for answering graph reachability queries.
In: Proceedings of the 24th International Conference on Data Engineering (ICDE),
pp. 893–902 (2008)

7. Chen, Y., Chen, Y.: Decomposing DAGs into spanning trees: a new way to com-
press transitive closures. In: Proceedings of the 27th International Conference on
Data Engineering (ICDE), pp. 1007–1018 (2011)

8. Chen, Y., Shen, W.: An efficient method to evaluate intersections on big data sets.
Theor. Comput. Sci. 647, 1–21 (2016)

9. Clark, D.: Compact PAT trees. Ph.D. thesis, University of Waterloo (1997)
10. Clark, D.R., Munro, J.I.: Efficient suffix trees on secondary storage (extended

abstract). In: Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 383–391 (1996)

11. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley Interscience,
Hoboken (2006)

12. de Berg, M., Cheong, O., van Kreveld, M.J., Overmars, M.H.: Computational
Geometry: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-77974-2
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Abstract. Document listing on string collections is the task of finding
all documents where a pattern appears. It is regarded as the most funda-
mental document retrieval problem, and is useful in various applications.
Many of the fastest-growing string collections are composed of very simi-
lar documents, such as versioned code and document collections, genome
repositories, etc. Plain pattern-matching indexes designed for repetitive
text collections achieve orders-of-magnitude reductions in space. Instead,
there are not many analogous indexes for document retrieval. In this
paper we present a simple document listing index for repetitive string
collections of total length n that lists the ndoc distinct documents where
a pattern of length m appears in time O(m + ndoc · lg n). We exploit
the repetitiveness of the document array (i.e., the suffix array coarsened
to document identifiers) to grammar-compress it while precomputing the
answers to nonterminals, and store them in grammar-compressed form as
well. Our experimental results show that our index sharply outperforms
existing alternatives in the space/time tradeoff map.

1 Introduction

Document retrieval is a family of problems aimed at retrieving documents from
a set that are relevant to a query pattern. In a general setting, both documents
and patterns are arbitrary strings. This encompasses the well-known application
of natural language and Web searching, but also many others of interest in
bioinformatics, software development, multimedia retrieval, etc. [22].

The most fundamental document retrieval problem, on top of which more
sophisticated ones are built, is document listing. This problem aims at simply
returning the list of documents where the pattern appears. An obvious solution
to document listing resorts to pattern matching: find all the occ positions where
the pattern appears, and then return the ndoc different documents where those
positions lie. This solution requires time Ω(occ) and the output is of size O(ndoc),
so the approach is very inefficient if ndoc � occ (i.e., if the pattern appears
many times in the same documents). A better solution, which however applies
only in natural language settings, resorts to inverted indexes [1]. These restrict
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the possible patterns to sequences of words and store the list of the documents
where each word appears, thereby solving document listing via intersections of
the lists of the pattern words.

Muthukrishnan [20] designed the first linear-space and optimal-time index for
general string collections. Given a collection of total length n, he builds an index
of O(n) words that lists the ndoc documents where a pattern of length m appears
in time O(m+ndoc). While linear space is deemed as sufficiently small in classic
scenarios, the solution is impractical for very large text collections unless one
resorts to disk, which is orders of magnitude slower. Sadakane [26] showed how to
reduce the space of Muthukrishnan’s index to that of the statistically-compressed
text plus O(n) bits, while raising the time complexity to only O(m + ndoc · lg n)
if the appropriate underlying pattern-matching index is used [2].

The sharp growth of text collections is a concern in many recent applications,
outperforming Moore’s Law in some cases [27]. Fortunately, many of the fastest-
growing text collections are highly repetitive: each document can be obtained
from a few large blocks of other documents. These collections arise in different
areas, such as repositories of genomes of the same species (which differ from
each other by a small percentage only) like the 100K-genome project1, software
repositories that store all the versions of the code arranged in a tree or acyclic
graph like GitHub2, versioned document repositories where each document has
a timeline of versions like Wikipedia3, etc. On such text collections, statisti-
cal compression is ineffective [14] and even O(n) bits of extra space can be
unaffordable.

Repetitiveness is the key to tackle the fast growth of these collections: their
amount of new material grows much slower than their size. For example, ver-
sion control systems compress those collections by storing the list of edits with
respect to some reference document that is stored in plain form, and recon-
struct it by applying the edits to the reference version. Much more challeng-
ing, however, is to index those collections in small space so as to support fast
pattern matching or document retrieval tasks. To date, there exist several pat-
tern matching indexes for repetitive text collections (see a couple of studies
[10,21] and references therein). However, there are not many document retrieval
indexes for repetitive text collections [5,8,23]. Most of these indexes [8,26] rely
on a pattern-matching index needs Ω(n) bits in order to offer O(lg n) time per
retrieved document.

In this paper we introduce new simple and efficient document listing indexes
aimed at highly repetitive text collections. Like various preceding indexes, we
achieve O(m + ndoc · lg n) search time, yet our indexes are way faster and/or
smaller than previous ones on various repetitive datasets, because they escape
from the space/time tradeoff of the pattern-matching index. Our main idea is
as follows: we use the document array DA[1..n] [20], which projects the entries

1 www.genomicsengland.co.uk/about-genomics-england/the-100000-genomes-
project.

2 github.com/search?q=is:public.
3 en.wikipedia.org/wiki/Wikipedia:Size of Wikipedia.

www.genomicsengland.co.uk/about-genomics-england/the-100000-genomes-project
www.genomicsengland.co.uk/about-genomics-england/the-100000-genomes-project
http://github.com/search?q=is:public
http://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia
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of the suffix array [19] to the document where each position belongs. Document
listing boils down to listing the distinct integers in a range DA[sp..ep], where
sp and ep are found in time O(m). Array DA must be grammar-compressible
since the differential suffix array is known to be so on repetitive texts [10,11].
We then build a balanced binary context-free grammar that generates (only) DA.
This allows us retrieve any individual cell of DA in time O(lg n) and any range
DA[sp..ep] in time O(ep − sp + lg n). We can then implement existing indexes
[8,26] within much less space and without affecting their time complexities.
Further, we propose a new simple index based on the grammar-compressed array
DA. Our compression guarantees that any range DA[sp..ep] is covered by O(lg n)
nonterminals. For each nonterminal of the grammar, we store the list of the dis-
tinct documents appearing in it. The set of all the lists is grammar-compressed
as well, as done in previous work [5,8]. We then merge the lists of the O(lg n)
nonterminals that cover DA[sp..ep], in time O(ndoc · lg n).

2 Preliminaries

A document T is a sequence of symbols over an alphabet Σ = [1..σ], terminated
by a special symbol $ that is lexicographically smaller than any symbol of Σ.

A collection D is a set of d documents D = {T1, . . . ,Td}. D is commonly
represented as the concatenation T = T1T2 . . .Td , of length |T | = n.

A pattern P is a string over the same alphabet Σ with length |P | = m. It
occurs occ times in T , and appears in ndoc documents.

Text Indexes. The suffix tree [28] of a string T is a compressed digital tree
storing all the suffixes T [i..n], for all 1 ≤ i ≤ n. The suffix tree node reached by
following the symbols of a pattern P is called the locus of P and is the ancestor
of all the occ leaves corresponding to the positions of P in T . The suffix tree
uses O(n lg n) bits and lists all the occurrences of P in time O(m + occ).

The suffix array [19] SA[1..n] of a string T [1..n] is a permutation of the
starting positions of all the suffixes of T in lexicographic order, T [SA[i],n] <
T [SA[i + 1],n] for all 1 ≤ i < n. SA can be binary searched to obtain the range
SA[sp..ep] of all the suffixes prefixed by P (note occ = ep − sp + 1). Thus the
occurrences of P can be listed in time O(m lg n + occ). The suffix array takes
n lg n bits.

Compressed suffix arrays (CSAs) [24] are space-efficient representations of
the suffix array. They find the interval [sp..ep] corresponding to P [1..m] in time
tsearch(m), and access any cell SA[i] in time tlookup(n). Their size in bits, |CSA |,
is usually bounded by O(n lg σ).

Grammar Compression. Grammar compression of a string S[1..n] replaces it
by a context-free grammar (CFG) G that uniquely generates S. This CFG G may
require less space than the original sequence S, especially when S is repetitive.

Finding the smallest CFG G∗ generating the input S is NP-hard [16], but
various O(lg(n/|G∗|))-approximations exist. In particular, we are interested in
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approximations that are binary (i.e., the maximum arity of the parse tree is 2)
and balanced (i.e., any substring is covered by O(lg n) maximal nodes of the
parse tree) [3,13,25].

3 Related Work

Muthukrishnan [20] proposed the first optimal-time linear-space solution to the
document listing problem. He defines the document array DA[1..n] of T , where
DA[i] stores the identifier of the document to which T [SA[i]] belongs. The docu-
ment listing problem is then translated into computing the ndoc distinct identi-
fiers in the interval DA[sp..ep] corresponding to the pattern P . He uses a suffix
tree to find sp and ep in time O(m), and then an algorithm that finds the ndoc
distinct numbers in the range in time O(ndoc).

Sadakane [26] adapts the method to use much less space. He replaces the
suffix tree by a CSA, and mimics the algorithm to find the distinct numbers in
DA[sp..ep] using only O(n) bits of space. Within |CSA |+O(n) bits, he performs
document listing in time O(tsearch(m) +ndoc ·tlookup(n)). Using a particular CSA
[2] the space is n lg σ + o(n lg σ) + O(n) bits and the time is O(m + ndoc · lg n).

There are many other classical and compact indexes for document listing. We
refer the reader to a survey [22] and focus on those aimed at repetitive texts.

Gagie et al. [8] proposed a technique adapting Sadakane’s solution to highly
repetitive collections. They show that the technique to find the distinct elements
of DA[sp..ep] can be applied almost verbatim on an array they call interleaved
longest-common-prefix array (ILCP). On repetitive collections, this array can be
decomposed into a small number ρ of equal values, which allows them represent
it in little space. The ILCP index requires |CSA | + O((ρ + d) lg n) bits of space
and solves document listing in time O(tsearch(m) +ndoc · tlookup(n)).

Gagie et al. [8] proposed another radically different approach, called Precom-
puted Document Lists (PDL). The idea is to store the list of the documents where
(the corresponding substring of) each suffix tree node appears. Then the search
consists of finding the locus of P and returning its list. To reduce space, how-
ever, only some sampled nodes store their lists, and so document listing requires
merging the lists of the maximal sampled nodes descending from the locus node.
To further save space, the lists are grammar-compressed.

To bound the query time, the deepest sampled nodes cover at most b leaves,
and a factor β restricts the work done per merged document in the unions of the
lists. The index then uses |CSA | + O((n/b) lg n) bits, and the document listing
time is O(tsearch(m) +ndoc · β · h + b · tlookup(n)), h being the suffix tree height.

A problem in all revisited CSA-based solutions are the Θ((n lg n)/ tlookup(n))
extra bits that must be included in |CSA | in order to get Θ(tlookup(n)) time
per document. This space does not decrease with repetitiveness, forcing all these
indexes to use Ω(n) bits to obtain time O(tsearch(m) +ndoc · lg n), for example.

Claude and Munro [5] propose the first index for document listing based on
grammar compression, which escapes from the problem above. They extend a
grammar-based pattern-matching index [6] by storing the list of the documents
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where each nonterminal appears. Those lists are grammar-compressed as well.
The index searches for the minimal nonterminals that contain P and merges
their lists. While it does not offer relevant space or query time guarantees, the
index performs well in practice. Navarro [23] extends this index in order to
obtain space guarantees and O(m2 + m lg2 n) time, but the scheme is difficult
to implement.

4 Our Document Listing Index

Like most of the previous work, we solve the document listing problem by com-
puting the ndoc distinct documents in the interval DA[sp..ep] corresponding to
the pattern P , found with a CSA in time O(tsearch(m)). Instead of also using
the CSA to compute the values of DA (and thus facing the problem of using
Θ((n lg n)/ tlookup(n)) bits to compute a cell in time Θ(tlookup(n)), as it hap-
pens in previous work [8,26]), we store the array DA directly, yet in grammar-
compressed form. This is promising because the suffix array of repetitive collec-
tions is known to have large areas SA[i..i+ �] that appear shifted by 1 elsewhere,
SA[j..j +�], that is, SA[i+k] = SA[j +k]+1 for all 0 ≤ k ≤ � [10,18]. Except for
the d entries of SA that point to the ends of the documents, it also holds that
DA[i + k] = DA[j + k]. Grammar compression is then expected to exploit those
large repeated areas in DA.

To answer the queries efficiently, we use an idea similar to the one introduced
in PDL [8] and the Grammar-index [5]: precomputing and storing the answers
of document listing queries, and grammar-compressing those lists as well. An
important difference with them is that PDL stores lists for suffix tree nodes and
the Grammar-index stores lists for nonterminals of the grammar of T . Our index,
instead, stores lists for the nonterminals of the grammar of DA. This is much
simpler because we do not store a suffix tree topology (like PDL) nor a complex
grammar-based pattern-matching index (like the Grammar-index): we simply
find the interval DA[sp..ep] using the CSA, fetch the nonterminals covering it,
and merge their lists. By using a binary balanced grammar on DA, we ensure
that any document is obtained in the merging only O(lg n) times, which leads
to our worst-case bound of O(ndoc · lg n). PDL and the Grammar-index cannot
offer such a logarithmic-time guarantee.

4.1 Structure

The first component of our index is a CSA suitable for repetitive collections,
of which we are only interested in the functionality of finding the interval
SA[sp..ep] corresponding to a pattern P [1..m]. For example, we can use the
Run-Length CSA (RLCSA) variant of Gagie et al. [10], which offers times
tsearch(m) = O(m lg lgw σ) within O(r lg n) bits, or tsearch(m) = O(m) within
O(r lg(n/r) lg n) bits, where r is the number of equal-letter runs in the Burrows-
Wheeler Transform of T . This also upper-bounds the number of areas SA[i..i+�]
into which SA can be divided such that each area appears elsewhere shifted by
1 [17].
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The second component is the grammar G that generates DA[1..n], which must
be binary and balanced. Such grammars can be built so as to ensure that their
total size is O(r lg(n/r) lg n) bits [9], of the same order of the first component.

The third component are the lists Dv of the distinct documents that appear
in the expansion of each nonterminal v of G. These lists are stored in ascending
order to merge them easily. To reduce their size, the set of sequences D1, . . . , Dg

are grammar-compressed as a whole in a new grammar G′, ensuring that no
nonterminal of G′ expands beyond a list Dv. Each list Dv can then be obtained
in optimal time, O(|Dv|), from a nonterminal of G′.

4.2 Document Listing

Given a pattern P [1..m], we use the CSA to find the range [sp..ep] where the
occurrences of P lie in the suffix array, in time O(tsearch(m)). We then find
the maximal nodes of the parse tree of DA that cover DA[sp..ep]. Finally, we
decompress the lists of the nonterminals corresponding to those maximal nodes,
and compute their union.

Since G is binary and balanced, there are O(lg n) maximal nonterminals
that cover DA[sp..ep] in the parse tree. By storing the length to which each
nonterminal of G expands, we can easily find those O(lg n) maximal nonterminals
in time O(lg n), by (virtually) descending in the parse tree from the initial symbol
of G towards the area DA[sp..ep].

To merge the O(lg n) lists of documents in ascending order, we use an atomic
heap [7] (see practical considerations in the next section). This data structure
performs insert and extractmin operations in constant amortized time, when
storing O(lg2 n) elements. We then insert the heads of the O(lg n) lists in the
atomic heap, extract the minimum, and insert the next element of its list. If
we extract the same document many times, we report only one copy. We then
expand and merge the lists Dv1 , . . . , Dvk

in time O(|Dv1 | + · · · + |Dvk
|).

Since each distinct document we report may appear in the O(lg n) lists, our
document listing solution takes time O(tsearch(m) +ndoc · lg n). By using the
RLCSA that occupies O(r lg(n/r) lg n) bits, the total time is O(m + ndoc · lg n).

4.3 Example

Figure 1 shows an example with 3 documents, T1 = MINIMUM$, T2 =
MINIMAL$, and T3 = MINIMIZES$. The rightmost column shows T . The pre-
ceding columns show the sorted suffixes, the suffix array SA, and the document
array DA, a sequence over {1, 2, 3}. To the left of DA we show the syntax tree of
the grammar we built, with nonterminal symbols 4 to 18. Associated with each
nonterminal we write the list of distinct documents to which the nonterminal
expands.

A search for the pattern P = I identifies the suffix array interval SA[6..12],
thus we have to report all the distinct documents in DA[6..12]. These correspond
to two nodes in the grammar, the nonterminals 5 and 6. Thus we merge their
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lists, {1, 2, 3} and {1, 2, 3}, to obtain the answer {1, 2, 3}. Note that each of the
3 documents we report was found twice in the lists that cover DA[6..12].

4.4 Plugging-in Other Indexes

Our grammar-compressed DA, without the lists Dv, can be used to replace the
CSA component that requires Θ((n lg n)/ tlookup(n)) bits to compute a cell in
time Θ(tlookup(n)). These indexes actually access cells SA[i] in order to obtain
DA[i]. Our compressed DA offers O(lg n) access time in O(r lg(n/r) lg n) bits.

Fig. 1. An example of our document listing structure.

Thus, we can implement Sadakane’s solution [26], as well as ILCP
and PDL [8] all answering in time O(m + ndoc · lg n), and replacing the
O((n lg n)/ tlookup(n)) part of their |CSA | space by O(r lg(n/r) lg n) bits (which
also accounts for the RLCSA variant that finds [sp..ep] in time O(m). We can also
implement the brute-force solution in time O(m+occ+lg n) and O(r lg(n/r) lg n)
bits by extracting the whole DA[sp..ep].
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5 Practical Considerations

5.1 Compressed Suffix Array

We use a practical RLCSA [18, called RLFM+ in there] that uses (r lg σ +
2r lg(n/r))(1+o(1)) bits of space and offers search time tsearch(m) in O(m lg r) ⊆
O(m lg n). Since we do not need to compute cells of SA with this structure, we
do not need to spend the O((n lg n)/ tlookup(n)) bits, and as a result the contri-
bution of the RLCSA to the total space is negligible.

5.2 Grammar Compressor

We choose Re-Pair [15] to obtain both G and G′, since it performs very well in
practice. Re-Pair repeatedly replaces the most frequent pair of adjacent symbols
with a new nonterminal, until every pair is unique. Upon ties in frequency, we
give priority to the pairs whose symbols have been generated earlier, which in
practice yielded rather balanced grammars in all the cases we have tried.

Re-Pair yields a binary grammar, but the top-level is a long sequence. We
then complete the grammar by artificially adding a parse tree on top of the final
sequence left by Re-Pair. To minimize the height of the resulting grammar, we
merge first the pairs of nonterminals with shorter parse trees.

We store the g grammar rules as an array G taking 2g lg(g + d) bits, so that
if Ai is the ith nonterminal of the grammar, it holds that Ai → AG[2i]AG[2i+1].

When building G′, we concatenate all the lists Dv and separate them with
unique numbers larger than d, to ensure that Re-Pair will not produce nontermi-
nals that cross from one list to another. After running Re-Pair, we remove the
separators but do not complete the grammars, as all we need is to decompress
any Dv in optimal time. We represent all the reduced sets D′

v as a sequence D′,
marking the beginning of each set in a bitvector B. The beginning of D′

v is found
with operation select(B, v), which finds the vth 1 in B. This operation can be
implemented in constant time using o(|B|) further bits [4].

5.3 Sampling

The largest component of our index is the set of compressed lists D′
v. To reduce

this space, we store those lists only for sampled nonterminals v of G. The list of
a nonsampled nonterminal v is then obtained by merging those of the highest
sampled descendants of v in the parse tree, which yields a space/time tradeoff.

We use a strategy similar to PDL [8], based on parameters b and β. We define
a sampled tree by sampling some nodes from the parse tree. First, no leaf v of
the sampled tree can have an expansion larger than b, so that we spend time
O(b lg b) to obtain its sorted list directly from G. To this aim, we sample all the
nonterminals v of G with parent w such that |Dv| ≤ b < |Dw|. Those are the
leaves of the sampled tree, which form a partition of DA.

Second, for any nonsampled node v with |Dv| > b, we must be able to build
Dv by merging other precomputed lists of total length ≤ β|Dv|. This implies
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Table 1. Statistics for document collections (small, medium, and large variants): Col-
lection name; Size in megabytes; RLCSA bits per symbol (bps); Docs, number of docu-
ments; Doc size, average document length; number of Patterns; Occs, average number
of occurrences; Doc occs, average number of document occurrences; Occs/doc, average
ratio of occurrences to document occurrences. For the synthetic collections (second
group), most of the statistics vary greatly among the variants that use 10 or 100 base
documents with the different mutation probabilities.

Collection Size

(n)

RLCSA

(bps)

Docs (d) Doc size

(n/d)

Patterns Occs

(occ)

Doc occs

(ndoc)

Occs/doc

( occ
ndoc )

Page 110 0.18 60 1 919 382 7658 781 3 242.75

641 0.11 190 3 534 921 14 286 2601 6 444.79

1037 0.13 280 3 883 145 20 536 2889 7 429.04

Revision 110 0.18 8834 13 005 7658 776 371 2.09

640 0.11 31 208 21 490 14 284 2592 1065 2.43

1035 0.13 65 565 16 552 20 536 2876 1188 2.42

Influenza 137 0.32 100 000 1436 269 532 739 88 525 6.02

321 0.26 227 356 1480 269 1 248 428 202 437 6.17

Concat 95 10 107 7538–10 832

95 100 106 10614–13 165

Version 95 10 000 10 000 7537–13 165

that generating Dv costs O(β lg n) times more than having D′
v stored and just

decompressing it.
We first assume the sampled tree contains all the ancestors of the sam-

pled leaves and then proceed bottom-up in the sampled tree, removing some
nodes from it. Any node v with parent w and children u1, ..., uk is removed if∑k

i=1 |Dui
| ≤ β · |Dv|; the nodes ui then become children of w in the sampled

tree.
At query time, if a node v of interest is not sampled, we collect all the lists of

its highest sampled descendants. Therefore, on a parse tree of height h we may
end up merging many more than the original O(h) lists D1, . . . , Dk, but have
the guarantee that the merged lists add up to size at most β · (|D1|+ · · ·+ |Dk|).
To merge the lists we use a classical binary heap instead of an atomic heap, so
the cost per merged element is O(lg n).

We may then spend k · b lg b = O(hb lg b) time in extracting and sorting the
lists Dv of size below b. The other lists Dv may lead to merging β|Dv| elements.
The total cost over the k = O(h) lists is then O(hb lg b+β(|D1|+· · ·+|Dk|) lg n) ⊆
O(hb lg b + ndoc · βh lg n). In terms of complexity, if we choose for example
b = O(lg n/ lg lg n), β = O(1), and the grammar is balanced, h = O(lg n), then
the total cost of merging is O(ndoc · lg2 n).

6 Experiments and Results

We evaluate different variants of our indexes and compare them with the state
of the art. We use the experimental framework proposed by Gagie et al. [8].
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6.1 Document Collections

To test various kinds of repetitiveness scenarios, we performed several experi-
ments with real and synthetic datasets. We used the same document collections
tested by Gagie et al. [8], available at jltsiren.kapsi.fi/rlcsa. Table 1 summarizes
some statistics on the collections and the patterns used in the queries.

Real Collections. Page and Revision are collections formed by all the revi-
sions of some selected pages from the Wikipedia in Finnish language. In Page,
there is a document for each selected article, that also includes all of its revi-
sions. In the case of Revision, each page revision becomes a separate document.
Influenza is a repetitive collection composed of sequences of the H. influenzae
virus genomes.

Synthetic Collections. We also used two types of synthetic collections to
explore the effect of collection repetitiveness on document listing performance in
more detail. Concat and Version are similar to Page and Revision, respectively.
We use 10 and 100 base documents of length 1000 each, extracted at random
from the English file of Pizza&Chili (pizzachili.dcc.uchile.cl). Besides, we include
variants of each base document, generated using different mutation probabilities
(0.001, 0.003, 0.01, and 0.03). A mutation is a replacement by a different random
symbol. In collection Version, each variant becomes a separate document. In
Concat, all variants of the same base document form a single document.

Queries. The query patterns for Page and Revision datasets are Finnish words
of length ≥5 that occur in the collections. For Influenza, the queries are sub-
strings of length 4 extracted from the dataset. In the case of Concat and Version,
the patterns are terms selected from an MSN query log. See Gagie et al. [8] for
a more detailed description.

6.2 Compared Indexes

Grammar-Compressed Document Array (GCDA). This is our main pro-
posal. We use the balanced Re-Pair compressor implemented by Navarro (www.
dcc.uchile.cl/gnavarro/software/repair.tgz). To sample the parse tree, we test
several parameter configurations for the block size b and factor β.

Brute Force (Brute). This family of algorithms is the most basic solution
to the document listing problem. They use a CSA to retrieve all the document
identifiers in DA[sp..ep], sort them, and report each of them once. Brute-L uses
the CSA to extract the values DA[i]. Brute-D, instead, uses an explicit document
array DA. Finally, Brute-C is our variant using the grammar-compressed DA.
From the grammar tree of height h and storing the length of the expansion of
each nonterminal, we extract the range DA[sp..ep] in time O(h + ep − sp).

http://jltsiren.kapsi.fi/rlcsa
http://pizzachili.dcc.uchile.cl
www.dcc.uchile.cl/gnavarro/software/repair.tgz
www.dcc.uchile.cl/gnavarro/software/repair.tgz
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Sadakane (Sada). Sada-L is the original index of Sadakane [26]. Sada-D speeds
up the query time by explicitly storing DA. Sada-C stores DA in grammar-
compressed form, where each individual cell DA[i] is extracted in time O(h).

Interleaved Longest Common Prefix (ILCP). ILCP-L implements the
ILCP index of Gagie et al. [8] using a run-length encoded ILCP array. ILCP-
D is a variant that uses the document array instead of the CSA functionality.
ILCP-C uses, instead, our grammar-compressed DA, which accesses any cell in
time O(h).

Precomputed Document Lists (PDL). PDL-BC and PDL-RP implement
the PDL algorithm proposed by Gagie et al. [8]. PDL-BC uses a Web graph
compressor [12] on the set of lists, whereas PDL-RP uses Re-Pair compression.
Both use block size b = 256 and factor β = 16, as recommended by their authors.

Grammar-Based (Grammar). This is an implementation of the index by
Claude and Munro [5]. It uses Re-Pair on the collection T and on the set of lists.
This index is the only tested solution that does not use a CSA.

We implemented GCDA on C++, using several succinct data structures from
the SDSL library (github.com/simongog/sdsl-lite). We used existing C++ imple-
mentations of the indexes Brute, Sada, ILCP and PDL, which were tested by
Gagie et al. [8] (jltsiren.kapsi.fi/software/doclist.tgz), and modified the versions
-C by using DA in grammar-compressed instead of in plain form.

All tested indexes except Grammar use a suffix array to compute the interval
[sp..ep] corresponding to pattern P . We used a RLCSA implementation
(jltsiren.kapsi.fi/rlcsa) that is optimized for repetitive text collections. To com-
pute entries SA[i], the RLCSA uses a suffix array sampling, which requires sig-
nificant space as explained. Our index does not use this operation, but it is
required for the indexes Brute-L, Sada-L, ILCP-L, and both variants of PDL. We
use 32 as the value for this sample rate, as it gave good results in previous tests
[8]. The exception is Brute-L, which uses a RLCSA optimized to extract whole
ranges SA[sp..ep] [10] (github.com/nicolaprezza/r-index). The column RLCSA
of Table 1 gives the space used by the RLCSA without suffix array samples.

Our machine has two Intel(R) Xeon(R) CPU E5-2407 processors @
2.40 GHz and 250 GiB RAM. The operating system was Debian Linux kernel
4.9.0-8-amd64. All indexes were compiled using g++ version 6.3.0 with flags
-O3 -DNDEBUG.

6.3 Tuning Our Main Index

Figure 2 shows the tradeoff between time and space of GCDA on small real col-
lections. We tested GCDA with 4 different sizes of block b: 128, 256, 512, and
1024. For each block size, we used 3 different factors β (4, 8, and 16), which
are represented with increasing color darkness in the plots. The configuration

http://github.com/simongog/sdsl-lite
http://jltsiren.kapsi.fi/software/doclist.tgz
http://jltsiren.kapsi.fi/rlcsa
http://github.com/nicolaprezza/r-index
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b = 512 and β = 4 shows to be a good general-purpose choice of parameter
values, and we stick to it from now on.

The lower-right plot of Fig. 2 shows the space required by the main compo-
nents of our index. As the number of documents in the collection grows and
their size decreases, the weight of the grammar-compressed DA, and even more,
of the grammar-compressed lists of documents, becomes dominant. Note also
that Influenza is the least repetitive collection.

6.4 Comparison on Real Collections

Figures 3 and 4 show the tradeoff between time and space for all tested indexes
on the real collections. Our main index, GCDA, and the -C variants of the other
indexes we adapted, are clearly dominant in a large portion of the space/time
map. Most of the previous indexes are way slower, way larger, or both, than ours.
The best previous tradeoffs, PDL-BC and PDL-RP [8], are much closer, but still
they are almost always slower and larger than GCDA.

For all versions of Page, where there are few large documents and our gram-
mars compress very well, GCDA requires only 0.48–0.56 bits per symbol (bps)

Fig. 2. GCDA on small real collections with different configurations. The x axis shows
the total size of the index in bps. The y axis shows the average time per query in
µsec. Beware that the plots do not start at zero. The lower-right plot shows the size
of the main components of GCDA on the small collections; the y axis shows the size in
megabytes.
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Fig. 3. Document listing indexes on real repetitive collections Page and Revision. The
x axis shows the total size of the index in bps. The y axis shows the average time per
query. Combinations with excessively high time are omitted in some plots.

and answers queries in less than 16 microseconds (μsec). The index using the
least space is Grammar, which requires 0.21–0.35 bps. Grammar is way out of the
plot, however, because it requires 1.2–3.4 milliseconds (msec) to solve the queries,
that is, 205–235 times slower than GCDA (as in previous work [8], Grammar did
not build on the largest dataset of Page). The next smallest index is our vari-
ant Brute-C, which uses 0.35–0.55 bps and is generally smaller than GCDA, but
slower by a factor of 2.6–6.7. Brute-L, occupying 0.38–0.60 bps, is also smaller
in some cases, but much slower (180–1080 μsec, out of the plot). GCDA sharply
outperforms all the other indexes in space, and also in time (only Sada-D is 6%
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Fig. 4. Document listing indexes on real repetitive collection Influenza. The x axis
shows the total size of the index in bps. The y axis shows the average time per query.
Combinations with excessively high time are omitted in some plots.

faster in the small collection, yet using 18 times more space). The closest com-
petitors, PDL-BC and PDL-RP, are 4.4–5.0 times larger and 2.8–5.0 times slower
than GCDA.

In the case of Revision, where there are more and smaller documents, GCDA
uses 0.73–0.88 bps and answers queries in less than 150 µsec. Again Grammar
uses the least space, 0.26–0.42 bps, but once again at the price of being 8–
30 times slower than GCDA. The case of Brute-L is analogous: 0.38–0.60 bps
but over 8 times slower than GCDA. Instead, our variant Brute-C is a relevant
competitor, using 0.45–0.76 bps and being less than 60% slower than GCDA.
The other relevant index is our variant ILCP-C, using almost the same space and
time of GCDA. The group GCDA/Brute-C/ILCP-C forms a clear sweetpoint in
this collection. The closest competitors, again PDL-BC and PDL-RP, are 3.1–3.8
times larger and 1.2–1.9 times slower than GCDA.

Influenza, with many small documents, is the worst case for the indexes.
GCDA uses 4.46–4.67 bps and answers queries within 115 msec. Many indexes are
smaller than GCDA, but only our variants form a relevant space/time tradeoff:
ILCP-C uses 2.88–3.37 bps, Brute-C uses 2.42–2.86 bps, and Sada-C uses 4.96–5.40
bps. All the -C variants obtain competitive times, and ILCP-C even dominates
GCDA (it answers queries within 65 msec, taking less than 60% of the time of
GCDA). The other indexes outperforming GCDA in time are -D variants, which
are at least 3.7 times larger than GCDA and 5.2 times larger than ILCP-C.

6.5 Comparison on Synthetic Collections

Figure 5 compares the indexes on synthetic collections. These allow us study
how the indexes evolve as the repetitiveness decreases, in a scenario of few large
documents (Concat) and many smaller documents (Version). We combine in
a single plot the results for different mutation rates of a given collection and
number of base documents. The plots show the increasing mutation rates using
variations of the same color, from lighter to darker. All the -L variants and
Grammar are omitted because they were significantly slower.
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Fig. 5. Document listing on synthetic collections. The x axis shows the total size of
the index in bps. The y axis shows the average time per query in µsec. Combinations
with excessively high time are omitted in some plots.

On collection Concat, GCDA essentially outperforms all the other indexes.
In the case of the version composed by 10 base documents, our index obtains
the best space/time tradeoff by a wide margin. Only Brute-C is smaller than
GCDA, but 8–9 times slower. On the other hand, various indexes are slightly
faster than GCDA, but much larger (from Sada-D, which is up to 30% faster
but 7 times larger, to Sada-C, which is 15% faster but at least 4 times larger).
With the other variant of Concat (100 base documents), our index offers the
best space and time for all mutation rates. Only PDL-RP is 6% faster in its best
case, but 2.2 times larger. Further, GCDA retains its space/time performance as
repetitiveness decreases, whereas the competing indexes worsen fast in one or
both aspects.

On Version, composed by 10 000 documents of length 1000, GCDA is also
a dominant solution, retaining its time performance as repetitiveness decreases
and outperforming all the -D variants in space up to a mutation rate of 1%.
Other competing indexes are our variants Brute-C and ILCP-C (the only one
dominating GCDA in some cases), as well as PDL-BC and PDL-RP in the case of
100 base documents. The strange behavior of the PDL indexes in both collections
with 10 base documents is briefly discussed in the original article [8].
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7 Conclusions

We have presented simple and efficient indexes for document listing on repeti-
tive string collections. They find the ndoc documents where a pattern of length
m appears in a collection of size n in time O(m + ndoc · lg n). The indexes
uses grammar-compression of the document array, and perform better as the
collection is more repetitive.

Our experimental results show that our main index, GCDA, outperforms the
best previous solutions by a fair margin in time and/or space on various repetitive
collections. From the previous indexes, only PDL [8] gets close, but it is almost
always dominated by GCDA in both space and time. GCDA performs well in
space for mutation rates up to 1%, whereas its query time is mostly insensitive
to the repetitiveness. Other previous solutions (especially ILCP [8] and brute
force) that we adapted to run on our grammar-compressed document array also
display unprecedented performance on repetitive texts, competing with GCDA.

For the final version of this paper, we plan to combine the PDL indexes with
a grammar-compressed document array as well, which we omitted for lack of
time. A line of future work is to further reduce the space of GCDA and our
index variants that use the grammar-compressed document array, by using a
more clever encoding of the grammars that may nearly halve their space at a
modest increase in time [11]. Another line is to extend the index to support top-k
document retrieval, that is, find the k documents where P appears most often.
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repetitive sequence collections. J. Comput. Biol. 17(3), 281–308 (2010)

19. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993)

20. Muthukrishnan, S.: Efficient algorithms for document retrieval problems. In: Pro-
ceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 657–666 (2002)

21. Navarro, G.: Indexing highly repetitive collections. In: Arumugam, S., Smyth, W.F.
(eds.) IWOCA 2012. LNCS, vol. 7643, pp. 274–279. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-35926-2 29

22. Navarro, G.: Spaces, trees and colors: the algorithmic landscape of document
retrieval on sequences. ACM Comput. Surv. 46(4), article 52 (2014)

23. Navarro, G.: Document listing on repetitive collections with guaranteed perfor-
mance. In: Proceedings of the 28th Annual Symposium on Combinatorial Pattern
Matching (CPM). LIPIcs , vol. 78, article 4 (2017)
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Abstract. We show that the topological model, a semantically rich
standard to represent GIS data, can be encoded succinctly while effi-
ciently answering a number of topology-related queries. We build on
recent succinct planar graph representations so as to encode a model
with m edges within 4m + o(m) bits and answer various queries relating
nodes, edges, and faces in o(log log m) time, or any time in ω(log m) for
a few complex ones.

1 Introduction

Low-cost sensors are generating huge volumes of geographically referenced data,
which are valuable in applications such as urban planning, smart-cities, self-
driving cars, disaster response, and many others. Geographic Information Sys-
tems (GIS) that enable capture, modeling, manipulation, retrieval, analysis and
presentation [13] of such data are thus gaining research attention. GIS models
can be classified at different levels. For example, on the conceptual level, entity-
and field-based approaches exist, whereas on the logical level, vector and raster
are the most popular models. In this work we focus on the representation of the
geometry of a collection of vector objects, such as points, lines, and polygons.

There are three common representations of collections of vector objects,
called spaghetti, network, and topological model, which mainly differ in the
expression of topological relationships among the objects [11]. In the spaghetti
model, the geometry of each object is represented independently of the others
and no explicit topological relations are stored. Despite its drawbacks, this is
the most used model in practice because of its simplicity and the lack of efficient
implementations of the other models. Those other two models are similar, and
explicitly store topological relationships among objects. The network model is
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tailored to graph-based applications, such as transportation networks, whereas
the topological model focuses on planar networks (e.g., all sorts of maps). This
model is more efficient to answer topological queries, which are usually expensive,
and thus it is gaining popularity in spatial databases such as Oracle Spatial.

In this work we focus on those topological queries where this model stands
out, and show that they can be efficiently answered within very little space.
We build on recent results on connected planar graphs [6] in order to pro-
vide a succinct-space representation of the topological model (4m + o(m) bits,
where m is the number of edges) that efficiently support a rich set of topolog-
ical queries (most of them in o(log log m) time), which include those defined in
current standards and flagship implementations. Our main technical result is a
new O( log log m

log log log m ) time algorithm to determine if two nodes are neighbors; then
many other results are derived via analogous structures and exploiting duality.
These results improve upon those of the planar graph representation on which
we build [6] (see also that article for a wider coverage of previous work).

2 The Topological Model and Our Contribution

The topological model represents a planar subdivision into adjacent polygons.
Hereinafter, we will refer to these polygons as faces. A face is represented as a
sequence of edges, each of them being shared with an adjacent face, which may be
the outer face. An edge connects two nodes, which are associated with a point in
space, usually the Euclidean space. Edges also have a geometry, which represents
the boundary shared between its two faces. This eliminates redundancy in the
stored geometries and also reduces inconsistencies. In Fig. 1, faces are named
with capital letters, A to H, A being the outer face. Face F is defined by the
sequence of nodes 〈1, 8, 7, 6〉, and edge (6, 7) is shared by faces D and F . Note,
however, that a pair of nodes is insufficient in general to name an edge, because
multiple edges may exist between two nodes.

Those topological concepts are related with geographic entities. The basic
geographic entity is the point, defined by two coordinates. Each node in the
topological model is associated with a point, and each edge is associated with
a sequence of points describing a sequence of segments that form the boundary
between the two faces that share such edge. Each face is related to the area
limited by its edges (the external face is infinite).

The international standard ISO/IEC 13249-3:2016 [1] defines a basic set
of primitive operations for the model, which are also implemented in flagship
database systems1. Some of the queries relate the geometry with the topology,
for example, find the face covering a point given its coordinates. Those queries
require data structures that store coordinates, and are therefore bound to use
considerable space. Instead, we focus on pure topological queries, which can be
solved within much less space and can encompass many problems once mapped
to topological space. We also restrict our work to a static version of the model,
in which case our representation supports a much richer set of access operations.
1 http://postgis.net/docs/Topology.html.

http://postgis.net/docs/Topology.html
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Table 1. The queries we consider on the topological model and the best results within
succinct space. Our (sometimes partial) contributions are in boldface.

1. Relations between entities of the same type

(1.a) Do edges e and e′ share a node? O(1) [6] + Lemma 2

(1.b) Do edges e and e′ border the same face? O(1) [6] + Lemma 2

(1.c) Do nodes u and v share an edge? O( log logm
log log logm

) Lemma 3

(1.d) Do faces x and y share an edge? O( log logm
log log logm

) Lemma 4

(1.e) Do nodes u and v border the same face? any in ω(
√

m log m) Lemma 7

(1.f) Do faces x and y share a node? any in ω(
√

m log m) Lemma 7

2. Relations between entities of different type

(2.a) Is edge e incident on node u? O(1) [6] + Lemma 2

(2.b) Is edge e on the border of face x? O(1) [6] + Lemma 2

(2.c) Is face x incident on node u? any in ω(log m) Lemma 6

3. Listing related entities (time per element output)

(3.a) Endpoints of edge e O(1) [6] + Lemma 2

(3.b) Faces divided by edge e O(1) [6] + Lemma 2

(3.c) Nodes/edges neighbors of node u O(1) [6]

(3.d) Faces bordering face x O(1) [6] and duality

(3.e) Faces incident on node u O(1) Lemma 5

(3.f) Nodes/edges bordering face x O(1) Lemma 5

4. Counting related entities (nodes/faces counted with duplicities)

(4.a) Nodes/edges/faces neighbors of node u any in ω(1) [6] extended

(4.b) Faces/edges/nodes bordering face x any in ω(1) [6] and duality

Topological queries can be also solved using the geometries, but such app-
roach is computationally very expensive. We propose instead an approach in
which most of the work is done on an in-memory compact index on the topology,
resorting to the geometric data only when necessary. Such an approach enables
handling geometries that do not fit in main memory, but whose topologies do,
and still solving queries on them with reasonable efficiency because secondary-
memory accesses are limited. To illustrate this, consider the example of given
the coordinates of two query points, tell if they lie on adjacent faces, and if so,
which edge separates them. In our approach, this type of query can be solved
with just two mappings from the geographical space to the topological space,
and then using pure topological queries.

Table 1 lists a set of topological queries we consider on the topological model.
They comprehensively consider querying about relations between two given enti-
ties of the same or different type, and listing or counting entities related to a given
one. The set considerably extends the queries available in standards or flagship
implementations, which comprise just intersects (1.d and 1.f), GetNodeEdges
(3.c), and ST GetFaceEdges (3.e).
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A preliminary result essentially hinted in previous work [6], Lemma 2, sorts
out a number of simple queries (all [123].[ab]) in constant time. Our main result
is Lemma 3, which shows how to determine if two given nodes are connected by
an edge (1.c) in time O( log log m

log log log m ), adding only o(m) bits to the main structure.
The same procedure on the dual graph, Lemma 4, determines in the same time if
two given faces share an edge (1.d, a variant of the standard query intersects).
Another consequence of Lemma 2 is Lemma 5, which extends previous work [6]
listing the neighbors of a node (3.c, GetNodeEdges) in optimal time to list the
faces incident on a node (3.e) and, by duality, list the faces or edges bordering a
face (3.d, ST GetFaceEdges) and the nodes bordering a face (3.f), all in optimal
time. We also extend previous results [6] that count the edges incident on a node
(4.a) in any time in ω(1) to count nodes, edges, or faces incident on a node or
bordering a face (4.b).

Finally, our solution to determine if a given node is in the frontier of a given
face (2.c) is costlier, in ω(log m), and that to determine if two given nodes border
the same face (1.e) or if two given faces share some node (1.f, a variant of query
intersects) cost even more, in ω(

√
m log m). The last two solutions build on

Lemmas 3 and 4, and we conjecture that their times cannot be easily improved.

3 Succinct Data Structures

3.1 Sequences and Parentheses

Given a sequence S[1..n] defined over an alphabet of size σ, the operation
ranka(S, i) returns the number of occurrences of the symbol a in the prefix
S[1..i], and the operation selecta(S, i) returns the position in S of the ith occur-
rence of the symbol a. For binary alphabets, σ = 2, S can be stored in n + o(n)
bits supporting rank and select in O(1) time [3]. If S has m 1-bits, then it can
be represented in m lg n

m + O(m) + o(n) bits, maintaining O(1)-time rank and
select [10]. For σ = O(polylog n), S can be represented in n log σ+o(n) bits, still
supporting O(1)-time rank and select [5]. Binary sequences can be used to rep-
resent balanced parentheses sequences. Given a balanced parenthesis sequence
S, open(S, i)/close(S, i) returns the position in S of the closing/opening paren-
thesis matching the parenthesis S[i], and enclose(S, i) returns the rightmost
position j such that j ≤ i ≤ close(S, j). If S is used to represent an ordered
tree, we find the parent of the node represented by the opening parenthesis S[i]
as parent(S, i) = enclose(S, i). The sequence S can be represented in n + o(n)
bits, supporting open, close and enclose in O(1) time [7]. Such representation
can be extended to represent k superimposed balanced parenthesis sequences in
the same space and time complexities, for any constant k [8, Sect. 7.3].

3.2 Planar Graphs

A planar graph is a graph that can be drawn in the plane without crossing
edges. The topology of a specific drawing of a planar graph in the plane is
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(a) A planar graph (b) Its primal and dual spanning trees

(c) The sequence of parentheses and brackets encoding the planar graph

Fig. 1. Example of the succinct planar graph representation of Ferres et al. [6].

called a planar embedding. We use planar embeddings to represent topological
models. In particular, we use Turán’s representation [12], which can represent
any planar embedding of m edges in 4m bits. Ferres et al. [6] extended Turán’s
representation with o(m) extra bits in order to support fast navigation, providing
the simple and efficient representation of planar embeddings we build on.

Given a planar embedding of a connected planar graph G, the computation
of a spanning tree T of G induces a spanning tree T ∗ in the dual graph of
G [2]. The edges of T ∗ correspond to the edges in the dual graph crossing edges
in G \ T . Figure 1b shows a primal (thick continuous edges) and a dual (thick
dashed edges) spanning trees for the planar graph of Fig. 1a. Lemma 1 states a
key observation: a depth-first traversal of T induces a depth-first traversal in T ∗.

Lemma 1. ([6]). Consider any planar embedding of a planar graph G, any
spanning tree T of G and the complementary spanning tree T ∗ of the dual of
G. Suppose we perform a depth-first traversal of T starting from any node on
the outer face of G and always process the edges incident to the node v we are
visiting in counter-clockwise order. At the root, we arbitrarily choose an incidence
of the outer face in the root and start from the last edge of the incidence in
counterclockwise order; at any other node, we start from the edge immediately
after the one to that node’s parent. Then each edge not in T corresponds to the
next edge we cross in a depth-first traversal of T ∗.

Here, an incidence of the outer face in the root means a place where the root
and the outer face are in contact. For instance, in Fig. 1b, the traversal can start
at edge (1, 1), (1, 2), or (1, 8), taking node 1 as the root of the spanning tree.

The compact representation [6,12] is based on the traversal of Lemma 1.
Starting at the root of any suitable spanning tree T , each time we visit for
the first time an edge e, we write a “(” if e belongs to T , or a “[” otherwise.
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Each time we visit an edge e for the second time, we write a “)” if e belongs
to T or a “]” otherwise. We call S the resulting sequence of 2m parentheses
and brackets, which are enclosed by an additional pair of parentheses and of
brackets that represent the root and the outer face, respectively. Ranks of open-
ing parentheses act as node identifiers, whereas ranks of opening brackets act
as face identifiers. Further, positions in S act as edge identifiers: each edge is
identified by an opening parenthesis or bracket, and also by its corresponding
closing parenthesis or bracket. Fig. 1c shows the sequence S for the planar graph
of Fig. 1b, starting the traversal at the edge (1, 2). Observe that the parentheses
of S encode the balanced-parentheses representation of T and the brackets the
balanced-parentheses representation of the dual spanning tree T ∗. In the succinct
representation of Ferres et al. [6], the sequence S is stored in three bitvectors,
A[1..2(m+2)], B[1..2n], and B∗[1..2(m−n+2)]. It holds that A[i] = 1 if the ith
entry of S is a parenthesis, and A[i] = 0 if it is a bracket. Bitvector B stores the
balanced sequence of parentheses of S, storing a 0 for each opening parenthesis
and a 1 for each closing parenthesis. Bitvector B∗ stores the balanced sequence
of brackets of S in a similar way.

Adding support for rank and select operations on A, B and B∗, and for
open, close and enclose (i.e., parent) operations on B and B∗, the succinct
representation of Ferres et al. [6] supports constant-time operations to navigate
the embedding. Precisely, the succinct representation supports first(v)/last(v)
(the position in S of the first/last visited edge of the node v), mate(i) (the
position in S of the other occurrence of the ith visited edge), next(i)/prev(i)
(the position of the next/previous edge after visiting the ith edge of a node v in
counter-clockwise order), and node(i) (the index of the source node when vis-
iting the ith edge). Notice that the index v of the nodes corresponds to their
order in the depth-first traversal of the spanning tree T , whereas the index
i of a visited edge is just a position in S (i.e., each edge is visited twice).
According to Lemma 1, the first visited edge of a node v is the edge imme-
diately after the edge to the parent of v in T (except for the root of T ),
thus first(v) = select1(A, select0(B, v)) + 1. The implementation of last(v)
is similar. The operation mate(i) is transformed to an open operation if S[i]
is a closing parenthesis or bracket (i.e., B̂[rankA[i](A, i)] = 1): mate(i) =
selectA[i](A, open(B̂, rankA[i](A, i))), or to a close operation otherwise (i.e.,
B̂[rankA[i](A, i)] = 0): mate(i) = selectA[i](A, close(B̂, rankA[i](A, i))), where
B̂ = B if A[i] = 1 and B̂ = B∗ if A[i] = 0. The implementation of
next(i) depends on whether the ith visited edge belongs to T or not. Specif-
ically, next(i) = i + 1 unless i is an opening parenthesis (i.e., A[i] = 1 and
B[rank1(A, i)] = 0), in which case it is instead next(i) = mate(i) + 1; prev(i) is
analogous. Operation node(i) also depends on whether S[i] is a parenthesis or a
bracket. In the first case (A[i] = 1), node(i) = rank0(B, enclose(B, rank1(A, i)))
if B[rank1(A, i)] = 0 and node(i) = rank0(B, open(B, rank1(A, i))) otherwise.
On brackets (A[i] = 0), node(i) = rank0(B, rank1(A, i)) if B[rank1(A, i)] = 0,
otherwise node(i) = rank0(B, enclose(B, open(B, rank1(A, i)))).
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With the operations described above, we can implement more complex opera-
tions in optimal time, such as listing all the incident edges (and the corresponding
neighbor nodes) of a node v in constant time per returned element, and listing
all the edges or nodes bordering a face given an edge of the face, spending con-
stant time per returned element. Other operations, such as the degree of a node
and checking if two nodes are neighbors, are not supported in constant time.
For the degree of a node v, degree(v), the representation supports any time in
ω(1), whereas for the adjacency test of two nodes u and v, neighbor(u, v), they
achieve any time in ω(log m). In Sect. 4 we give an O( log log m

log log log m )-time solution
for neighbor(u, v), and introduce several other operations in Sect. 5. Theorem 1
summarizes the results of Ferres et al.

Theorem 1 ([6]). An embedding of a connected planar graph with m edges can
be represented in 4m + o(m) bits, supporting the listing in clockwise or counter-
clockwise order of the neighbors of a node and the nodes bordering a face in O(1)
time per returned node. Additionally, one can find the degree of a node in any
time in ω(1), and check the adjacency of two nodes in any time in ω(log m).

3.3 Obtaining the Nodes and Faces of an Edge

Before presenting our main results, we show how to obtain the nodes connected
by a given edge, and its dual, the faces separated by the edge. These results
are somewhat implicit in the preceding work [6], but we prefer to present them
clearly here. They trivially answer queries (1.a) and its dual (1.b), (2.a) and its
dual (2.b), (3.a) and its dual (3.b), all in constant time.

Note that our edge representation, as positions in S, is valid for both G
and G∗ (the spanning tree edges of G, marked with parentheses in S, are
exactly the non-spanning tree edges of G∗, and vice versa, the brackets in
S are the spanning-tree edges of G∗). The two nodes corresponding to an
edge i in G are obtaining analogously to operation node(i): if i is a paren-
thesis (A[i] = 1), then p ← rank1(A, i) is its position in B. If it is closing
(B[p] = 1), we set p ← open(B, p). The two nodes are then rank0(B, p) and
rank0(B, enclose(B, p)). On brackets (A[i] = 0), we find two positions in B,
p1 ← rank1(A, i) and p2 ← rank1(A,mate(i)). If any is a closing parenthesis
(B[p1] = 1 or B[p2] = 1), we take its parent, p1 ← enclose(B, open(B, p1))
and/or p2 ← enclose(B, open(B, p2)). Finally, the answers are the resulting
nodes, rank0(B, p1) and rank0(B, p2). The identifiers of the two faces divided
by the edge are obtained almost with the same formulas, replacing the meaning
of 0 and 1 in A, and using B∗ instead of B.

Lemma 2. The representation of Theorem 1 can determine in time O(1) the
two nodes connected by an edge, and the two faces separated by an edge.

4 Determining if Two Nodes Are Connected

Ferres et al. [6] show how we can determine if two given nodes u and v are
connected in any time f(m) ∈ ω(log m). First, they check in constant time if they
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are connected by an edge of the spanning tree T : one must be the parent of the
other. Otherwise, the nodes can be connected by an edge not in T , represented by
a pair of brackets. Their idea is to mark in a bitvector D[1..n] the nodes having
f(m) neighbors or more. The subgraph G′ induced by the marked nodes, where
they also eliminate self-loops and multi-edges, has n′ ≤ 2m/f(m) nodes, because
at least f(m) edges are incident on each marked node and each of the m edges can
be incident on at most 2 nodes. Since G′ is planar and simple, it can have only
m′ < 3n′ ≤ 6m/f(m) edges.2 They represent G′ using adjacency lists, which
use o(m) bits as long as f(m) ∈ ω(log m). Given two nodes u and v, if either of
them is not marked in D, they simply enumerate its neighbors in time O(f(m))
to check for the other node. Otherwise, they map both to G′ using rank1(D),
and binary search the adjacency list of one of the nodes for the presence of the
other, in time O(log m) = o(f(m)). Bitvector D has n′ ≤ 2m/f(m) bits set out of
n ≤ m+1 (this second inequality holds because G is connected), and therefore it
can be represented using (2m/f(m)) log(f(m)/2))+O(m/f(m))+o(m) = o(m)
bits while answering rank queries in constant time [10].

In order to improve this time, we apply the idea for more than one level. This
requires a more complex mapping, however, because only in the last level we can
afford to represent the node identifiers in explicit form. The intermediate graphs,
where we cannot afford to store a renumbering of nodes, will be represented using
an extension of the idea of a sequence of parentheses and brackets, in order to
maintain the order of the node identifiers.

Concretely, let us call G0 = G the original graph of n0 = n nodes and m0 = m
edges, and S0[1..2(m0 +2)] = S[1..2(m+2)] its representation using parentheses
and brackets. A bitvector D0[1..n0] marks which nodes of G0 belong to G1 = G′.
When a certain node u is removed from G0 to form G1, we also remove all its
edges, which are of two kinds:

– Not belonging to the spanning tree T . These are represented by a pair of
brackets [· · · ], opening and closing, which are simply removed from S0 in
order to form S1.

– Belonging to the spanning tree T . These are implicit in the parent-child rela-
tion induced by the parentheses. By removing the parentheses of u we remove
the node, but this implicitly makes the children of u to be interpreted as new
children of v, the parent of u in T . To avoid this misinterpretation, we replace
the two parentheses of u by angles: (· · · ) becomes 〈· · · 〉.
In order to obtain the desired space/time performance, the angles must be

reduced to the minimum necessary. In particular, we enforce the following rules:

1. Elements under consecutive angles are grouped inside a single one: 〈X〉 〈Y 〉
becomes 〈X Y 〉.

2. An angle containing only one angle is simplified: 〈 〈X〉 〉 becomes 〈X〉.
3. Angles containing nothing disappear: 〈 〉 is removed.

2 In fact, they do not specify how to handle queries of the form (u, u) given that they
remove self-loops. They could leave one self-loop around each node that has one or
more, and the bound would be m′ ≤ 4n′ ≤ 8m/f(m). We do this in our extension.
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As seen, G1 contains n1 ≤ 2m0/f(m) nodes and, since it contains no
multiple edges, m1 < 8m0/f(m) edges. Its representation, S1, then contains
2n1 parentheses and 2(m1 − n1 + 2) brackets. It also contains angles, but by
rules 2 and 3, each angle pair contains at least one distinct maximal pair of
parentheses3, and thus there are at most 2n1 angles. The length of S1 is then
2(n1 + m1 + 2) < 20m0/f(m) + 4.

We represent S1 using an array A1[1..2(n1 + m1 + 2)] over an alphabet of
size 3 (to distinguish brackets = 0, parentheses = 1, and angles = 2), and the
projected balanced sequences B[1..2n1] of parentheses, B∗[1..2(m1 − n1 + 2)] of
brackets, and B−[1..2n1] of angles. We can then support constant-time rank and
select on A1 using o(m1) extra bits [5], and open, close, and enclose on B, B∗,
and B− also using o(m1) extra bits. Thus we can support operations mate(·)
and node(·) on S1 in constant time, just as described in Sect. 3.2.

In order to determine if u1 and v1 are neighbors in G1 we may visit the
neighbors of u1: We sequentially traverse the area between the parentheses of
u1, S1[p..p′] = (· · · ), starting from p ← p + 1, analogously as the neighbor
traversal described in Sect. 3.2. If we see an opening parenthesis, S[p] = “(′′, we
skip it with p ← mate(p) + 1 because we are only checking for neighbors via
brackets (we already know that the nodes are not neighbors via edges in T ). If we
see an opening angle, S[p] = “〈′′, we also skip it with p ← mate(p) + 1 because
this encloses eliminated nodes and no top-level brackets of u1 can be enclosed
in those angles, as explained. If we see a bracket, S[p] = “[′′ or S[p] = “]′′, we
find its mate, j = mate(i), then the node containing it, v = node(j), and check
if v = v1. Note that a bracket cannot lead us to an eliminated node, because
brackets of eliminated nodes were effectively removed from S1. This procedure
takes time proportional to the number of neighbors of u1 in G1: although we
may spend time in traversing angles, by rule 1 above, every angle we skip is
followed by a non-angle or by the final closing parenthesis S[p′] = “)′′.

Our construction does not end in G1, however. We repeat the construction
process in G1, so that G2 is the subgraph of G1 induced by its nodes with f(m)
incident edges or more. We continue for k(m) iterations, obtaining the sequences
S0, . . . , Sk(m)−1 and the graph Gk(m). In Gk(m), we store the neighbors of each
node in a perfect hash table. Figure 2 shows the resulting graphs G1 and G2

after applying two recursive calls over the planar graph of Fig. 1.
The algorithm to determine if u0 = u and v0 = v are neighbors, once we

check that none is a child of the other in T , is then as follows. If D0[u0] = 0,
we traverse the neighbors of u0 as described (the top-level sequence, S0, does
not contain angles, though), to see if v0 is mentioned. This takes time O(f(m))
because u0 has less than f(m) neighbors. Otherwise, if D0[v0] = 0, we proceed
analogously with v0, in time O(f(m)). Otherwise, both nodes are mapped to G1,
to u1 = rank1(D0, u0) and v1 = rank1(D0, v0), and we continue similarly with
u1 and v1 in G1. If, after k(m) steps, we arrive at Gk(m) without determining if

3 Not brackets: a top-level bracket inside angles would correspond to an edge inciding
on the removed node, and thus must have been removed when forming S1.
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(a) Graph G1 and its sequence S1 after one recursive iteration with f(m) = 3

(b) Graph G2 and its sequence S2 after two recursive iterations with f(m) = 3

Fig. 2. Intermediate planar graphs and their sequences to support the operation
neighbor(·, ·). Symbols in light-gray represent deleted elements.

they are neighbors, we look for vk(m) in the perfect hash table of the neighbors
of uk(m), in constant time. Overall, the query time is O(k(m) + f(m)).

As for the space, Gi has ni ≤ 2mi−1/f(m) nodes and mi < 4ni ≤
8mi−1/f(m) edges (because Gi has no multiple edges for all i > 0), and thus
mi < m · (8/f(m))i and ni ≤ (1/4)m · (8/f(m))i. The length of Si is then
less than 2(ni + mi + 2) < (5/2)m · (8/f(m))i + 4. The previous expression,
summed over all 1 ≤ i < k(m), yields a total length for all S1, . . . , Sk(m)−1

below 20m/(f(m) − 8) + 4k(m) = O(m/f(m) + k(m)), for any f(m) ≥ 9.
Since the Si have constant-size alphabets, they can be represented within
O(m/f(m) + k(m)) bits, with the constant-time support for rank, select, open,
and close. On the other hand, the explicit representation of Gk(m) requires
O(mk(m) log m) = O(m log m · (8/f(m))k(m)) bits. For all this space to be o(m)
we need that k(m) = o(m), f(m) = ω(1), and (f(m)/8)k(m) = ω(log m).

The choice f(m) = k(m) = max(9, (1+ε) log log m
log log log m ), for any constant ε > 0,

yields a time complexity in O( log log m
log log log m ) and an extra space in o(m) bits.

If we wish to retrieve the positions S[b..b′] of a pair of brackets that connect u
and v, when the edge does not trivially belong to T , we enrich our structure with
bitvectors C0, . . . , Ck(m)−1, where Ci[1..mi − ni + 2] tells which face identifiers
(i.e., ranks of opening brackets) survive in Gi+1. Once we find, in some Gi, that
ui and vi are neighbors connected by the edge Si[p..p′] = [· · · ], we have that the
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opening bracket number bi = rank“[′′(Si, p) = rank0(B∗, rank0(Ai, p)) connects
them in Gi. We then identify the edge in Gi−1 with bi−1 = select1(Ci−1, bi),
and continue upwards until finding the answers, b = b0 and b′ = mate(b), all in
O(k(m)) additional time.

The lengths of all bitvectors, for i > 0, is |Di| + |Ci| = mi + 2, so they add
up to o(m). For D0 and C0, note that they have n1 and m1, both in O(m/f(m)),
1s out of n ≤ m + 1 or m − n + 2 ≤ m, respectively. Therefore, they can be
represented in O(m log(f(m))/f(m))+o(m) bits [10]. We thus solve query (1.c).

Lemma 3. The representation of Theorem 1 can be enriched with o(m) bits so
that we can determine whether two nodes are connected in time O( log log m

log log log m ).

5 Other Results Exploiting Analogies and Duality

Determining Adjacency of Faces. By exchanging the interpretation of paren-
theses and brackets, the same sequence S represents the dual G∗ of G, where
the roles of nodes and faces are exchanged. We can then use the same solution of
Lemma 3 to determine whether two faces are adjacent (1.d). We do not explicitly
store the sequence S∗ representing G∗, since we can operate it using S. Instead,
we build a structure on S∗ analogous to the one we built on S, creating sequences
S∗
1 , . . . , S∗

k(m)−1, D∗
0 , . . . , D

∗
k(m)−1, C∗

0 , . . . , C∗
k(m)−1, and the final explicit dual

graph G∗
k(m), so as to determine, within the same space and time complexities,

whether two faces of G share an edge, and retrieve one of these edges. This time,
the input to the query are the ranks of the opening brackets representing both
faces (i.e., node identifiers in G∗).

Lemma 4. The representation of Theorem 1 can be enriched with o(m) bits so
that we can determine whether two faces are adjacent in time O( log log m

log log log m ).

Listing Related Nodes or Faces. Listing the faces bordering a given face (3.d)
can be done as the dual of listing the neighbors of a node (3.c), by exchanging
the roles of brackets and parentheses in Theorem 1. Listing the faces incident
on a node (3.e) can also be done as a subproduct of Theorem 1. For each edge e
incident on u, obtained in counter-clockwise order, we obtain the faces e divides
using Lemma 2. This lists all the faces incident on u, in counter-clockwise order,
with the only particularity that each face is listed twice, consecutively. Analo-
gously, given a face identifier x, we can list the nodes found in the frontier of the
face (3.f). This query is not exactly the same as in Theorem 1, because there we
must start from an edge bordering the desired face.

Lemma 5. The representation of Theorem 1 suffices to list, given a node u, the
faces incident on u in counter-clockwise order from its parent in T , each in O(1)
time, or given a face x, the nodes in the frontier of x in clockwise order from its
parent in T ∗, each in O(1) time.
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Determining Incidence of a Face in a Node. Given a node u and a face x,
the problem is to determine whether x is incident on u (2.c). Since with Lemma 5
we can list each face incident on u in constant time, or each node bordering x in
constant time, we can use a scheme combining those of Lemmas 3 and 4: If u has
less than f(m) neighbors, we traverse them looking for x. Otherwise, if x has
less than f(m) bordering nodes, we traverse them looking for u. Otherwise, we
search for (u, x) in a perfect hash table where we store all the faces y (bounded
by f(m) or more nodes) incident on nodes v (having f(m) or more neighbors).

To see that this hash table contains O(m/f(m)) elements, consider the bipar-
tite planar graph G+(V +, E+) where V + = V ∪ F (F being the faces of our
original graph G(V,E)) and E+ = {(u, x), x ∈ F is incident on u ∈ V in G}.
G+ is planar because it can easily be drawn from an embedding of G, by placing
the nodes x ∈ F ⊆ V + inside the face x of G and drawing its edges with-
out having them cut. Note that the nodes u ∈ V preserve their degree in G+,
whereas the degree of nodes x ∈ F is the number of edges bordering their cor-
responding face in G. Therefore G+ has n+ = |V | + |F | = m + 2 nodes (as
per Euler’s formula |F | = m − n + 2) and m+ = 2m edges (one per edge lim-
iting each face, so each edge of G contributes twice). If we remove from G+

all the nodes (of either type) connected with less than f(m) neighbors, and
remove multiple edges, each surviving edge corresponds precisely with an entry
(v, y) of our perfect hash table. By the same argument used in Sect. 4, at most
4m/f(m) nodes survive and, since the reduced graph has no multiple edges, at
most 4 · (4m/f(m)) = O(m/f(m)) edges survive. Hence, we obtain extra space
o(m) by choosing any f(m) ∈ ω(log m).

Lemma 6. The representation of Theorem 1 can be enriched with o(m) bits so
that, given a node u and a face x, it answers in O(f(m)) time whether u is in
the frontier of x, for any f(m) ∈ ω(log m).

Counting Neighbors. Ferres et al. [6] count the number of edges incident on
a node u (4.a) in O(f(m)) time using O(m log f(m)/f(m)) bits. For nodes with
degree below f(m), they traverse the neighbors; for the others, they store the
degree explicitly. Neighboring nodes or faces can be counted similarly, except
that we can reach several times the same node or face. Thus, we need time
O(f(m) log f(m)) on nodes with degree below f(m) in order to remove rep-
etitions; for higher-degree nodes we store the correct number explicitly. We
then obtain O(f(m) log f(m)) time using O(m log f(m)/f(m)) bits, which still
achieves any time in ω(1) in o(m) bits. By building the structure on the dual of
G, we count the number of edges, nodes, or faces in the frontier of a face x (4.b).

6 More Expensive Solutions

We left for the end other solutions that are likely impractical compared to using
brute force, but that nevertheless have theoretical value. These more expen-
sive solutions also encompass some more sophisticated queries not included in
Table 1.
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Determining if Two Nodes Border the Same Face. Given two nodes u and
v, if either has less than f(m) neighbors we can traverse its incident faces one by
one and, for each face x, use Lemma 6 to determine if x is incident on the other
node in time ω(log m). For all the pairs of nodes (u, v) where both have f(m)
neighbors or more, we store a binary matrix telling whether or not they share a
face. This requires (2m/f(m))2 bits, which is o(m) for any f(m) = ω(

√
m). Thus

we can solve query (1.e) and, by duality, query (1.f), in any time in ω(
√

m log m).

Lemma 7. The representation of Theorem 1 can be enriched with o(m) bits so
that, given two nodes or two faces, it answers in O(f(m)) time whether they
share a face or a node, respectively, for any f(m) ∈ ω(

√
m log m).

If we want to know the identity of the shared face (or, respectively, node),
this can be stored in the matrix, which now requires O((m/f(m))2 log m) bits.
We can then reach any time in ω(

√
m log3/2 m).

Determining if Two Nodes/Faces are Connected with the Same
node/face. Given two nodes u and v, if either has less than f(m) neighbors we
can traverse its neighbors w and, using Lemma 3, determine if w is a neighbor
of v. This takes O(f(m) · log log m

log log log m ) time. For all the pairs of nodes (u, v) where
both have f(m) neighbors or more, we store a binary matrix telling whether or
not they share a neighbor. By duality, we can tell if two faces share edges with
the same face.

Lemma 8. The representation of Theorem 1 can be enriched with o(m) bits so
that, given two nodes or two faces, it answers in O(f(m)) time whether they are
connected with a node or a face, respectively, for any f(m) ∈ ω(

√
m · log log m

log log log m ).

As before, to know the identity of the shared node or face, the time raises to
f(m) ∈ ω(

√
m ·

√
log m log log m
log log log m ).

7 Conclusions

We built on a recent extension [6] of Turán’s representation [12] for planar graphs
to support queries on the topological model in succinct space. Starting with an
improved solution to determine if two nodes are neighbors, we exploit analogies
and duality to support a broad set of operations, most in time O( log log m

log log log m ).
One remaining challenge is the the support for the standard query

intersects (whether two given faces touch each other). If this is interpreted
as the faces sharing an edge, then this is query (1.d), which we solve in time
O( log log m

log log log m ). If, instead, it suffices with the faces sharing a node, this is query
(1.f), which we solve in any time in ω(

√
m log m). We conjecture that this second

interpretation is intersection-hard [4,9], and thus no significant improvement can
be expected even if using non-compact space.
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Abstract. LiDAR devices obtain a 3D representation of a space. Due
to the large size of the resulting datasets, there already exist storage
methods that use compression and present some properties that resem-
ble those of compact data structures. Specifically, LAZ format allows
accesses to a given datum or portion of the data without having to
decompress the whole dataset and provides indexation of the stored
data. However, LAZ format still has some drawbacks that need to be
addressed. In this work, we propose a new compact data structure for
the representation of a cloud of LiDAR points that supports efficient
queries, providing indexing capabilities that are superior to those of the
LAZ format.

Keywords: LiDAR point clouds · Compression · Indexing

1 Introduction

Light Detection and Ranging Technology (LiDAR) has been used during the last
four decades in Geosciences as a geomatic method to obtain the 3D geometry
of the surface of objects [6]. LiDAR uses a laser beam to compute the distance
between a device and an object that reflects the beam. When the laser is used to
scan the entire field of view at a high speed, the result is a dense cloud of points
centered at the device, with each point having additional information such as the
intensity of the laser beam reflection. If the device has additional sensors, each
point in the cloud will have additional attributes (e.g., if the device includes a
camera, each point will have a color value associated).

The decrease in cost of laser scanning devices has helped to drastically
increase the application fields for point clouds. For instance, laser scanning has
been used to classify and recognize objects in urban environments [23], in natural
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environments (e.g., landslides [10], or forests [8]), or even underwater environ-
ments [17]. Hence, huge datasets are being produced that require immense com-
puting resources to be processed. To give two examples, the ISPRS benchmark
on indoor modelling consists of five point clouds containing 98.1×106 points [11]
and the mobile laser scanning test data “MLS 1 - TUM City Campus” contains
more than 1.7 × 109 points collected in 15 min.

Due to the size of the obtained data, the use of compression is almost manda-
tory. However, the traditional approach of keeping the data compressed in disk
and decompressing the whole dataset before any processing is not effective.
Therefore, the classical method for storing LiDAR data (LAZ format [21]) is able
to compress the data but, in addition, permits accessing a datum or portions of
the data without the need of decompressing the whole dataset. In addition, it
is equipped with an index to accelerate the queries. Observe that this setup is
very similar to that of many modern compact data structures [15].

The use of compression for spatial data is not exclusive of LAZ format. In
the case of raster data, Geo-Tiff and NetCDF are able to store the data in
compressed form, and in the case of NetCDF, it also permits querying the data
directly in that format. Therefore, the application of the knowledge acquired in
compact data structures soon led to a new research line.

The wavelet tree [7] was the first compact data structure used in the scope
of spatial data. The work in [3] proposes a new point access method based on
it. In [16], it is used to represent a set of points in the two-dimensional space,
each one with an associated value given by an integer function. Another family
of compact data structures based on the quadtree also arose. In [2], a compact
version of the region quadtree was adapted for storing and indexing compressed
rasters. In the same line, Ladra et al. [13] presented an improvement on the
previous works.

In this work we continue in this line, now tackling even more complex spatial
data. We present a compact data structure to represent LiDAR point clouds,
denoted k3-lidar, which compresses and indexes the data. The improvements
with respect to the LAZ format are in two aspects. The LAZ format relies on
differential encoding plus an entropy encoder, which compresses/decompresses
data by blocks, and thus, in order to retrieve a small region, one or more complete
blocks must be decompressed. Another drawback of the LAZ format is that it
uses a quadtree to index the points, and this only accelerates the queries by the
x and y coordinates. Our new k3-lidar is able to retrieve/decompress a given
datum and indexes the three dimensions of the space.

2 Related Work: LAS and LAZ Format

The American Society for Photogrammetry and Remote Sensing1 defined in
2003 the LASer (LAS) file format, an open data exchange format for LiDAR
point data records. The format contains binary data consisting of a header block

1 https://www.asprs.org/.

https://www.asprs.org/
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that describes general information of the point cloud (e.g., number of points,
bounding box), variable-length records to describe additional information such
as georeferencing information or other metatada, and point records. Each point
record consists of a collection of fields describing the point (e.g., the point x, y
and z Cartesian coordinates represented as 4-byte integers, the return intensity
represented as a 2-byte integer, or the laser pulse return number). The standard
defines a Point Data Record Format 0, and allows for additional formats to be
defined with additional data (e.g., the Point Data Record Format 1 adds the
GPS time at which the point was acquired as an 8-byte double).

The version 1.4 R14 of the LAS file format specification has been released in
2019 [22]. It defines 11 point data record formats (some of them to provide legacy
support), a mechanism to customize the LAS file format to meet application-
specific needs by adding point classes and attributes, extended variable-length
records to carry larger payloads, and additional types of variable-length records
(e.g., georeferencing using Well Known Text descriptions, textual description of
the LAS file content, or extra bytes for each point record).

Even though the LAS file format avoids using unnecessary space by stor-
ing the coordinates as scaled and offset integers, a LAS file requires much
storage space (e.g., a 13.2M point cloud requires 254 MB of disk space, see
Table 2). The LAZ file format [9], defined by the LASzip lossless compressor
for LiDAR, achieves high compression rates supporting streaming, and random
access decompression. LASzip encodes the points in the cloud using chunks of
50,000 points. For each chunk, the first point is stored as raw bytes and it is used
as the initial value for subsequent prediction schemes. Each additional point is
compressed using an entropy coder (an adaptive, context-based arithmetic cod-
ing [19]). These techniques make the LAZ file format very efficient in terms of
space. Isenburg [9] showed that the compression ratio is similar or better than
general-purpose compression formats such as ZIP or RAR, while maintaining
the possibility of processing the file as a stream of points or directly accessing a
particular point without having to decompress the complete file.

The LAZ file format is also very efficient answering range queries on the x and
y dimensions because LAZ files can be indexed using an adaptative quadtree over
these coordinates. Each quadtree leaf contains a list of point indexes that can be
used to determine the chunk that contains the point. To resolve a range query,
the quadtree is first traversed to determine the candidate point indexes, then,
the relevant chunks are retrieved, and finally the chunks have to be decompressed
and sequentially scanned to determine the points in the result.

Considering additional types of queries, the LAZ file format is highly inef-
ficient on three-dimensional queries or queries over attribute data because a
sequential scan has to be performed over the points in a chunk. These queries
are becoming more common because classification algorithms over point clouds
quite often require to locate close points in the three-dimensional space, or close
points in a two-dimensional space with a similar attribute value (e.g., having
the same intensity). Both types of queries can be efficiently answered if a three-
dimensional index is built over the data.
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3 Background: k2-Trees and k3-Trees

The k2-tree [5] is a time- and space-efficient version of a region quadtree
[12,20]. Considering a binary matrix of size n×n, it is divided into 22 quadboxes
(submatrices) of size n/2×n/2. Each quadbox produces a child of the root node.
The label of the node is 1-bit if the corresponding quadbox contains at least one
1-bit, and 0-bit otherwise. The quadboxes having at least one 1-bit are divided
using the same procedure until reaching a quadbox full of 0-bits, or reaching the
cells of the original matrix.

The k2-tree, instead of using a classical pointer-based representation of the
tree, represents the quadtree using only sequences of bits. More concretely, it
uses two bitmaps, denoted as T and L, where T is formed by a breadth-first
traversal of the internal nodes, whereas the L is formed by the leaves of the
tree. From this basic version, several other improvements yield better space and
time performance [5]. Among them, one is that instead of diving each quadbox
into 22 quadboxes of size n/2×n/2, each division produces k2 quadboxes of size
n/k × n/k, where k is a parameter that can be adapted for each level of the
tree. This is usually used to obtain shorter and wider trees that, at the price of
a slightly worse space consumption, are faster when querying.

As in the case of the quadtree, where the simple addition of a third dimension
produces the octree [14], the k3-tree [2] is simply a 3-dimensional k2-tree. Figure 1
shows a 3-dimensional binary matrix, its corresponding octree, and the k3-tree
represented using bitmaps T and L.

The k3-tree can be efficiently navigated using rank and select operations2

over T and L (see [1, Section 6.2.1]).

Fig. 1. k3-tree.

2 Given a bitmap B, rankb(B, i) is the number of occurrences of bit b in B[1, i] and
selectb(B, j) is the j-th occurrence of bit b in B.
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4 Our Proposal: k3-Lidar

In this section, we present the k3-lidar, a data structure to represent LiDAR
point clouds in compact space, which allows us to perform efficient queries.

4.1 Conceptual Description

Consider a 3D matrix of size n × n × n that stores a set of LiDAR points. In
addition to its coordinates, a point contains several values that correspond to
each of its attributes (e.g., intensity, scan angle, color, etc.).

Observe that the k3-tree was designed to store and index a matrix with a bit
value for all positions, that is, a 3D binary raster. However, when dealing with
LiDAR datasets, we have to change that raster approach to a point-based data
structure. In this scenario, many positions of a LiDAR matrix can be empty,
that is, there are no points in those positions.

The k3-lidar recursively divides the matrix into several equal-sized subma-
trices, by following the same strategy used by the k3-tree. Again, this recursive
subdivision is represented as a tree, where each node corresponds to a submatrix.
As in the original k3-tree, the division of the submatrices stops when the sub-
matrix is empty (full of 0-bits, in the case of the k3-tree) and when the process
reaches the cells of the original matrix (submatrices of sixe 1 × 1 × 1), placed
at level �logkn�. In addition to these cases, the subdivision of the k3-lidar also
stops when the number of points in the processed submatrix is less than or equal
to a given threshold l.

Regarding the attributes of each point, their values are compactly stored
in our structure and can be efficiently retrieved when obtaining a point. Our
structure stores the attributes defined in Point Data Record Format 0 (LAS
Specification 1.4 [22]) but it can be easily adapted to allow attributes defined in
other formats.

4.2 Data Structures

We use several data structures to represent the conceptual tree previously
described:

– Tree structures (T and H): We use two data structures to represent the
topology of the tree. T is a bitmap, similar to that of the k3-tree, but a 0
means that the submatrix is empty or the number of points does not exceed
the threshold l. The L bitmap of k3-tree is not used. This is due to: (i) in many
cases, the k3-lidar does not reach the last level of subdivision (level �logkn�),
as the division frequently stops before that level due to empty submatrices
or submatrices containing l points or less; and (ii) in case of reaching the last
level of the subdivision, leaf points require a more complex data structure
than just a bitmap.
In addition to T, we use another bitmap, H, which has one bit for each
0-bit in T , plus, if the last level is reached, as many bits as cells in that
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last level. Each bit differentiates empty submatrices with those that contain
some points. That is, for each i such that T [i] ← 0, we set H[rank0(T, i)] ← 0
iff the submatrix is empty or H[rank0(T, i)] ← 1 in other case. In the case
of positions corresponding to the last level �logkn�, a 1-bit means that the
corresponding cell has points.

– Number of points (N): We use a bitmap N to store the number of points
that each leaf contains. When H[rank0(T, i)] = 1, we store in N the number
of points, in unary.

– Arrays of coordinates (X, Y , and Z): Coordinates of a point 〈x, y, z〉
are stored in arrays X, Y, Z respectively. Points in level �logkn� are not
stored, since their position can be calculated during the descent through the
tree. These values are encoded as local coordinates with respect to the node
to which they belong. This results in smaller values than the original ones,
and thus they are represented with DACs [4]. DACs provide efficient random
access to any position and a good compression ratio with small values.

– Attributes: Attributes, as intensity, return number, etc., are stored in sep-
arated arrays. They follow the same order as the coordinate arrays. The
sequence of values are encoded with DACs or with a bitmap when the
attribute can be represented with just one bit per point.

– Scale factor and Offset: We convert real coordinates into positive integer
values. Therefore, we use one scale factor and one different offset for each
dimension. The scale factor is a float value that allows us to transform float
values into integer values. The offset is an integer value that allows us to
translate points to a coordinate system that starts at 〈0, 0, 0〉. In addition
to converting negative numbers into positives, the offset also allows us to
obtain smaller numbers in the values of the coordinates. For example, if the
minimum value in X is 1000, we can move all points 1000 positions to the
left, that is, the coordinate 1000 would be the 0, the 1001 would be the 1,
and so on. These parameters use the same strategy than LAS/LAZ format.

4.3 Construction

Figure 2 shows the recursive division of a cloud of LiDAR points (left), and the
k3-lidar representation (right-top). This examples uses k = 2 and the maximum
number of points in a leaf (l) is 3. Circles represent LiDAR points and they
are identified with a unique identifier. In this case, each point only contains an
intensity value labeled Iid, where id is the identifier of that point. The algorithm
starts by dividing the cube in k3 = 23 = 8 submatrices of equal size. We add a
child node of the root for each submatrix. The first child (top-left) has 4 points
(5, 8, 7 and 6 ) and, since 4 > l, we set T [0] ← 1. This node is then enqueued
to be processed later. The second node is empty, thus T [1] ← 0 and H[0] ← 0.
Note that the third submatrix (bottom-left) has 3 points (2, 3 and 1 ), thus,
since 3 <= l, we set T [6] ← 0, H[1] ← 1, and add 3 in unary (001) to N .
Moreover, local coordinates are stored into arrays X, Y , and Z following the
space filling curve z−order. Point 2 having global coordinates 〈5, 0, 0〉 becomes
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Fig. 2. Example of a cloud of LiDAR points (left) where each point (circle) has an
intensity Ii. Conceptual tree representation (top-right) and compact structures involved
(bottom-right) in the construction of the k3-lidar. This example uses k = 2 and l = 3
(maximum number of points at a leaf). For this example, only the intensity attribute
is stored. The scale factor and the offset are not represent for clarity.

〈1, 0, 0〉. Hence, X[0] ← 1, Y [0] ← 0, and Z[0] ← 0. This point has an intensity
value of I2, so we set I[0] ← I2. We repeat the same process with nodes 3 and 1,
in that order. The algorithm continues with the rest of submatrices until reaching
leaf nodes. In case of having more attributes, we would create a sequence A for
each attribute in an analogous way to the sequence of intensities I.

At the bottom-right of Fig. 2 we include the final structures that represent
the k3-lidar of the example.

4.4 Query

In this section, we describe two queries designed for the k3-lidar, which are of
interest for LiDAR point clouds.

Obtaining All Points of a Region (getRegion): The k3-lidar is able to
obtain all points of a given region 〈xi, yi, zi〉 × 〈xe, ye, ze〉 by performing a top-
down traversal of the tree from the root node. We follow the branches corre-
sponding to submatrices that overlap with the region of interest. When a leaf
is found, the coordinates of its points are checked and the attributes are only
retrieved if the point is within the region. Due to the fact that points follow a
z-order, some mechanisms are included to decrease the number of points checked.
For instance, when we reach a point 〈x′, y′, z′〉 and x′ > xe, the process stops as
we can assure that there are no more valid points in that node.

Algorithm 1 shows a pseudocode of the algorithm to solve this query. Let T ,
H, N , X, Y , Z, and 1s in T be global parameters and n× n× n the size of the
dataset. Parameter 1s in T stores the total number of 1s in bitmap T and was
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calculated previously. The parameter result is the list of points returned by the
query. Given a region 〈xi, yi, zi〉 × 〈xe, ye, ze〉, the first call of the algorithm is
getRegion(n, xi, yi, zi, xe, ye, ze, 0).

Lines 1–3 run through each child node that overlaps the defined region. c pos
(Line 4) is the position in T of the current child node. The condition in Line 5
determines if the node is at level �logkn� (which corresponds to submatrices of
size 1 × 1 × 1) or not.

Line 6 checks if the node is an internal node or a leaf node. In the first case, a
recursive call is invoke (Lines 7–10). Function getLocalCoordinates converts
the given region into local coordinates with respect to the current node. The
position of its children is calculated as rank(T, c pos) · k3.

Lines 11–22 are executed when the algorithm reaches a leaf node. Line 12
counts the number of 0-bits in T until position c pos, i.e the number of leaves
until that position (#leaves). The condition in Line 13 checks if the node is not
empty. Line 14 counts the number of leaf nodes containing points (#ones) until
position #leaves.

Lines 15–17 obtain the positions of the first point and the last point of the
current child node in arrays X, Y , and Z. Since the number of points has been
inserted in unary code, each node corresponds to a 1-bit in the bitmap. With
the select operation, we obtain the position of the 1-bit corresponding to the
previous node and the 1-bit of the current node. Intermediate positions are points
of the current node. Finally, in Lines 18–22, the algorithm gets the coordinates
of each point and checks if it belongs to the region of interest. If affirmative, the
corresponding attributes are added and the point is inserted into the final result.

When the algorithm reaches a node in the level �logkn�, Lines 24–32 are
executed. Line 24 calculates the position in H, recall that level �logkn� is not
represented in T . Lines 26–29 are equal to lines 14–17. Finally, for each point in
the node, the algorithm retrieves its information and adds the point to the list.
Observe that it is not necessary to obtain the local coordinates of the vectors
X, Y and Z.

Obtaining All Points of a Region Filtered by Attribute Value
(filterAttRegion): Given region 〈xi, yi, zi〉 × 〈xe, ye, ze〉 and a range of val-
ues for an attribute [Ai, Ae], this query obtains all points within the defined
region with values for the attribute between Ai and Ae. Again, this query per-
forms a top-down traversal of the tree. Unlike the query getRegion, when the
algorithm reaches a leaf node, in addition to the coordinates, it also retrieves
the attribute value of the point.
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Algorithm 1. getRegion(n, xi, yi, zi, xe, ye, ze, children pos) returns all
LIDAR points from region 〈xi, yi, zi〉 × 〈xe, ye, ze〉
1 for x′ ← �xi/(n/k)� . . . �xe/(n/k)� do
2 for y′ ← �yi/(n/k)� . . . �ye/(n/k)� do
3 for z′ ← �zi/(n/k)� . . . �ze/(n/k)� do
4 c pos ← children pos + k · k · x′ + k · y′ + z′

5 if (n/k) �= 1 then /* not at level �logkn	 */
6 if T [c pos] = 1 then /* internal node */

7 〈x′
i, x

′
e〉 ← getLocalCoordinates(x′, xi, xe, (n/k))

8 〈y′
i, y

′
e〉 ← getLocalCoordinates(y′, yi, ye, (n/k))

9 〈z′
i, z

′
e〉 ← getLocalCoordinates(z′, zi, ze, (n/k))

10 getRegion(n/k, x′
i, y

′
i, z

′
i, x

′
e, y

′
e, z

′
e, rank(T, c pos) · k3)

11 else /* leaf node */
12 #leaves ← rank0(T, c pos)
13 if H[#leaves] = 1 then /* Node with points */
14 #ones ← rank(H,#leaves)
15 if #ones = 0 then p init ← 0 ;
16 else p init ← select(N,#ones) + 1;
17 p end ← select(N,#ones + 1) + 1

18 for p′ ← p init . . . p end do
19 〈px, py, pz〉 ← 〈X[p], Y [p], Z[p]〉
20 if 〈px, py, pz〉 within 〈xi, yi, zi〉 × 〈xe, ye, ze〉 then
21 point ← retrieve attributes(p, 〈px, py, pz〉)
22 ADD point to result

23 else /* last level */
24 #leaves ← c pos − 1s in T
25 if H[#leaves] = 1 then /* Node with points */
26 #ones ← rank(H,#leaves)
27 if #ones = 0 then p init ← 0 ;
28 else p init ← select(N,#ones) + 1;
29 p end ← select(N,#ones + 1) + 1

30 for p′ ← p init . . . p end do
31 point ← retrieve attributes(p, 〈x′, y′, z′〉)
32 ADD point to result

5 Experimental Evaluation

We ran some experiments as a proof of concept of the good properties of our
proposed data format. More concretely, we compare the space and time results
obtained by k3-lidar, to those obtained when using LAS/LAZ formats.

Table 1 shows the description of the LiDAR point clouds used in the experi-
mental evaluation. The last three rows show the values of the coordinates after
converting to integers with the procedure explained in Sect. 4.2. We use five
different datasets coming from two different sources, an airborne LiDAR and a
mobile laser scanning:

– Three datasets were created from the union of different files of the Plan
Nacional de Observación del Territorio3 (PNOA). Each tile (file) represents
an area of Spanish territory of size 2 × 2 km with a minimum density of

3 http://pnoa.ign.es/productos lidar.

http://pnoa.ign.es/productos_lidar
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0.5 points/m2. PNOA-small is composed of 4 tiles and represents an area of
16 km2, PNOA-medium is composed of 9 tiles and represents an area of 36 km2,
and PNOA-large is composed of 23 tiles and represents an area of 92 km2. The
number of points can vary from one tile to another. These datasets contain the
following attributes: intensity (with values between 0 and 255), return number
(with values between 1 and 4), number of returns (with values between 1 and
4), edge of flight line (with values between 0 and 1), scan direction flag (with
values between 0 and 1), classification (with values between 1 and 7), scan
angle rank (with values between −24 and 28), and point source ID (with
values between 175 and 227).

– We use datasets TUB1 and FireBrigade from the ISPRS benchmark on indoor
modelling4 [11]. TUB1 point cloud was captured in one of the buildings of
the Technische Universität Braunschweig, Germany, and FireBrigade was
captured in the office of fire brigade in Delft, The Netherlands. These datasets
do not contain values for any additional attribute, just the point coordinates.
The level of clutter, defined as the amount of points belonging to elements
that do not constitute the building structures, is low for TUB1 and high for
FireBrigade.

In all cases, LiDAR points were converted to Point Data Record Format 0
(LAS Specification 1.4). Then we created indexes for the LAZ files using the
lasindex tool of LAStools5. These indexes are able to index the x and y dimen-
sions to improve the query time. LASLib library6 was used to execute queries
on LAZ files. The k3-lidar was configured with k = 2 and l = 100.

All the experiments were run on an isolated Intel R© CoreTM i7-3820 CPU @
3.60 GHz (4 cores) with 10 MB of cache, and 64 GB of RAM. It ran Debian 9.8
Stretch, using gcc version 6.3.0 with −03 option.

The comparison of space is shown in the first columns of Table 2. LAZ files
obtain the best results in the three cases, around 65% less than k3-lidar, which
in turn, needs around 53% less space than the uncompressed LAS.

Table 2 also shows the query times. We generated 500 random regions of
different sizes. However, the LAS software failed in many queries (the reported
result contains 0 points). Therefore we only considered the times of those tech-
niques that worked properly, that is, LAZ and k3-lidar. Our proposal is around
5 times faster than LAZ in GetRegion queries for PNOA datasets and from 16–
23 times faster for ISPRS datasets. FilterAttRegion queries were only executed
over PNOA datasets filtering by the intensity attribute, as TUB1 and FireBrigade
only contain the coordinates of the points, but do not include any other attribute
values. For PNOA datasets, our proposal outperforms LAZ format, as queries are
solved 5–10 times faster.

4 http://www2.isprs.org/commissions/comm4/wg5/benchmark-on-indoor-modelling.
html.

5 https://github.com/LAStools/LAStools.
6 https://github.com/LAStools/LAStools/tree/master/LASlib.

http://www2.isprs.org/commissions/comm4/wg5/benchmark-on-indoor-modelling.html
http://www2.isprs.org/commissions/comm4/wg5/benchmark-on-indoor-modelling.html
https://github.com/LAStools/LAStools
https://github.com/LAStools/LAStools/tree/master/LASlib
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Table 1. Datasets description. We show the number of points, the minimum and
maximum values for the real coordinates x, y, z, and the maximum X,Y, Z values,
after the coordinates are converted (scaled and translated using an offset).

PNOA-small PNOA-medium PNOA-large TUB1 FireBridge

#points 13,265,144 25,108,130 52,627,503 32,597,694 10,406,389

min x (real) 546,000.00 544,000.00 542,000.00 −9.90 44.32

max x (real) 549,999.99 549,999.99 551,999.99 5.76 58.40

min y (real) 4,798,000.00 4,798,000.00 4,794,000.00 −24.52 23.10

max y (real) 4,801,999.99 4,803,999.99 4,805,020.45 18.30 77.67

min z (real) −39.14 −162.43 −162.43 −1.46 1.27

max z (real) 179.58 1005.05 1005.05 1.10 12.04

max X (converted) 3,999,990 5,999,990 9,999,990 1,000,000,000 1,000,000,000

max Y (converted) 3,999,990 5,999,990 11,020,450 1,000,000,000 1,000,000,000

max Z (converted) 218,720 1,167,480 1,167,480 1,000,000,000 1,000,000,000

Table 2. Comparison of the space (MB) and average time (in milliseconds) for queries
getRegion and FilterAttRegion.

Dataset # points Space (MB) GetRegion (ms) FilterAttRegion (ms)

LAS LAZ k3-lidar LAZ k3-lidar LAZ k3-lidar

PNOA-small 13,265,144 254 43 119 1,524 249 1,517 145

PNOA-medium 25,108,130 479 80 225 2,521 424 2,655 374

PNOA-large 52,627,503 1004 173 471 6,859 1,189 6,283 1,264

TUB1 32,597,694 622 196 304 6,145 383 – –

FireBrigade 10,406,389 199 77 100 1,717 74 – –

6 Conclusions

In this work, we address the main drawback of the LAZ format for LiDAR data,
which is its high executing times when answering to queries that retrieve a subset
of points using constraints over the third dimension. LAZ is penalized by the
fact that decompression is performed by blocks and the index only covers the X
and Y coordinates.

We propose a new representation for LiDAR point clouds, denoted k3-lidar,
which is able to decompress random points of the cloud and, as it is based on a
compact version of an octree, the k3-tree, it can index the three dimensions. This
implies significant improvements in the querying times, ranging from 5 times to
more than one order of magnitude faster.
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The future work will cover two main lines. First, regarding the space require-
ments, k3-lidar compresses 65% less than LAZ. Therefore, the use of previous
ideas from the original k2-tree and k3-tree, such as using different k values in
different levels, or further compressing frequent submatrices, will be studied.
The other line is the indexation of more dimensions, to include the attribute
values stored at the points. The k2-raster is a compact data structure designed
for raster data that not only indexes the data spatially, but it also indexes the
values stored at the cells of the raster. Our aim is to apply similar ideas to
address the indexation of LiDAR data.

Appendix

To better understand the nature of the datasets, we show a visualization
of PNOA-large in Fig. 3, and visualizations of the point clouds TUB1 and
FireBrigade in Fig. 4.

Fig. 3. Visualization of the dataset labeled as Large.
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(a) TUB1 point cloud visualization

(b) TUB1 eye-dome lighting visualization

(c) FireBrigade point cloud visualization

(d) FireBrigade eye-dome lighting visualization

Fig. 4. Visualization of datasets TUB1 and FireBrigade. We include the point cloud
visualization and also an eye-dome lighting (EDL) visualization. EDL is a non-
photorealistic, image-based shading technique designed to improve depth perception
in scientific visualization images [18].
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