
111© Springer Nature Switzerland AG 2019 
S. M. Dehm, D. J. Tindall (eds.), Prostate Cancer, Advances in Experimental Medicine  
and Biology 1210, https://doi.org/10.1007/978-3-030-32656-2_6

Prostate Cancer Transcriptomic 
Subtypes

Daniel E. Spratt

�Overview of Transcriptomics

Transcriptomics is the study of RNA molecules 
and is used to interrogate the activity of the 
genome in a cell or tumor by measuring its RNA 
makeup. Despite there being at least 11 types of 
known RNAs (e.g. mRNA, rRNA, tRNA, snRNA, 
snoRNA, siRNA, hnRNA, gRNA, tmRNA, 
telomerase RNA, catalytic RNA), the RNA of 
greatest interest in Oncology is currently messen-
ger RNA (mRNA), which is actively transcribed 
from DNA and ultimately translated into protein. 
More recently, lncRNAs are also becoming of 
increasing interest [1, 2]. As discussed in the 
prior chapter, DNA is largely similar across cells 
of an organism, often with specific alterations 
that define specific genomic subtypes of cancer. 
mRNA in contrast is highly dynamic and is less 
binary and static compared to a DNA mutation. 
Gene expression typically reflects the functional 
activity of a cell more than DNA, as even if an 
upstream gene is mutated or has lost function, if 
alternative pathways become activated mRNA 
expression may remain constant or even 
increased.

Given that many genes have similar expres-
sion and are highly correlated with one another, 

transcriptomics often is synthesized into gene 
expression signatures to capture subtypes of a 
particular cancer. These signatures reflect a snap-
shot of the tumor in time, and despite their 
dynamic nature, can reproducibly capture more 
static genomic and biologic subtypes, and even 
serve as reliable prognostic and predictive bio-
markers. In prostate cancer specifically, tran-
scriptomics initially was often used to compliment 
genomics. However, especially in localized pros-
tate cancer, the genomes of prostate cancers con-
tain a relatively small number of somatic driver 
mutations and/or copy number alterations, and 
thus there is currently limited utility in routinely 
searching for DNA alterations. Thus, gene 
expression profiling alone is increasingly being 
studied in  localized and recurrent prostate 
cancer.

�Technology

The most common technologies used clinically 
for the assessment of gene expression include 
real-time PCR and microarray. Research studies 
have increasingly transitioned to RNA sequenc-
ing (RNA-seq), but commercial tests almost 
exclusively use PCR or microarray technology 
[3]. Each technology has its strengths and weak-
nesses that must be weighed, including costs, 
breadth of transcriptome covered, customizabil-
ity, data-analysis, throughput, resolution, and 
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dynamic range [3, 4]. Most whole transcriptome 
studies have used a discovery process with data 
generated using either microarray or RNA-seq 
technology, and the subsequent signature created 
of typically <50 genes is then recreated with 
either a targeted sequencing process or simply 
uses RT-PCR given the reduced costs. Table  1 
summarizes the differences between microarray 
and RNA-seq technologies.

�Methods of Subtyping

The goal of subtyping is to define a subgroup of 
prostate cancer that is unique using transcrip-
tomics (Table 2). This could be to capture previ-
ously identified distinct genomic subtypes based 
on unique DNA profiles that can be captured 
using gene expression data. Alternatively, guided 
or semi-supervised subtyping methods can be 
performed, using gene expression to capture 
known biologic characteristics, such as basal- or 
luminal-ness, cell cycle activity, or neuroendo-
crine differentiation. More commonly, subgroup-
ing by prognosis is performed with commercially 
available subtyping signatures, rather than look-
ing at a biologic feature. In contrast, one can use 
gene expression data, which may or may not be 
rooted in known biologically driven mechanistic 
data, to identify patients who intrinsically are 
most- or least-likely to benefit from treatment. 
Finally, the least common is to perform unsuper-
vised hierarchical clustering to determine what 
genes statistically form unbiased subgroups. To 
illustrate the relationship of many of the devel-

oped prognostic, predictive, and biological sub-
types in prostate cancer, Fig. 1 shows a heatmap 
of many of the subtypes and transcriptomic sig-
natures that will be discussed in this chapter.

�Subtypes

�Capture Genomic Subtypes

As described in the previous chapter, the most 
recognized subtypes of prostate cancer are classi-
cally defined based on DNA alterations. This is 
reflected in genomic data available from The 
Cancer Genome Atlas (TGCA) from localized 
prostate cancer specimens showing frequent 
ERG and ETS-family rearrangements and SPOP 
mutations. This is also reflected in genomic data 
from multiple large metastatic CRPC cohorts, 
which have shown common alterations in p53, 
RB loss, DNA repair alterations, PTEN loss, 
among a list of frequently occurring mutations. 
In many instances it is not practical to perform 
genomic sequencing to identify all of these alter-
ations, especially given that it usually requires 
fresh-frozen tissue. Thus, investigators have 
developed methods to accurately and reliably 
capture these subtypes with gene expression data.

	1.	 ERG, ETS, SPINK1 [5]: A gene expression 
signature that accurately captures ERG+ 
tumors was developed with a random forest 
supervised model to predict FISH-assessed 
ERG rearrangement status. The model was 
developed and trained (n = 252 samples) and 

Table 1  Comparison of microarray and RNA-seq technology

Microarray RNA-seq
Principle Hybridization High-throughput sequencing
Thoughput High High
Background noise Higher Lower
Dynamic range ~100-fold >8000-fold
Distinguish different isoforms Limited Easier
Cost (perform, store, and analyze data) Lower Higher
RNA content required Higher Lower
Heterogeneity of read coverage across expressed region Yes No
Analysis simplicity Simple Complex
Data portability (size of data) Megabites Gigabites
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Table 2  Common transcriptomic subtyping methods

Subtyping categories
Restriction of genes 
used?

Currently used clinically  
or in clinical research? Examples

Unsupervised hierarchical clustering No No TCGA RNA clusters
Capture genomic (DNA)  
subtypes/alterations

Yes No ERG, ETS, SPINK1
SPOP mutant
PTEN loss

Capture biologic characteristics Yes No AR-Activity
NEPC

Prognostic biomarkers Either Yes Decipher
Prolaris
Oncotype Dx

Predictive biomarkers Either Yes ADT-RS
PAM50
PORTOS

Fig. 1  Select transcriptomic subtypes of localized prostate cancer
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validated with 155 tumors with known FISH-
ERG status. Additionally, a classification 
method based on gene expression for ETV1, 
ETV4, ETV5, FLI1, and SPINK1 was devel-
oped with an unsupervised outlier analysis 
using the extremevalues on the expression of 
core probe sets for each gene. Tumors were 
ultimately grouped into four subtypes (ERG+ 
subtype, ETS+, SPINK+, or triple negative). 
Over 1500 patients were used to train and val-
idate this signature. ERG+ tumors typically 
had lower baseline serum PSA levels and 
lower Gleason scores compared to the triple 
negative subtype. SPINK1 tumors typically 
had higher PSAs and were more common in 
African-Americans. Subsequently, these 
microarray expression-based signatures were 
analytically validated against established 
immunohistochemical and FISH assays. 
Despite these findings, there were no signifi-
cant differences in time to biochemical recur-
rence or distant metastases, suggesting these 
subgroups are biologically based and not 
prognostic.

	2.	 SPOP mutant signature [6]: A novel gene 
expression signature and decision tree was 
developed to accurately predict SPOP mutant 
cancers from gene expression data. Starting 
with TCGA data, including RNA-seq data and 
known SPOP mutant status, differential gene 
expression was performed and clustered based 
on SPOP status. 212 genes were ultimately 
used to define the SPOP mutant subclass. This 
signature, which was validated in a cohort 
from Weill Cornell Medicine (n = 68), found 
an 89% sensitivity and 95% specificity of 
SPOP mutant prediction compared with DNA 
mutation calling. Using the prior classifier for 
ERG+ and ETS+ status [5], which are mutu-
ally exclusive from the SPOP mutant subtype, 
This decision tree was able to identify tumors 
most likely to harbor SPOP mutations in sam-
ples without DNA data (n  >  8000). It was 
found that SPOP predicted tumors were less 
likely to have higher grade tumors, positive 
surgical margins, or T3 disease. However, 
they were predicted to have higher PSAs. 
Therefore, despite the other clinicopathologic 

factors being favorable, SPOP mutant tumors 
identified by this gene expression classifier 
had worse outcomes.

	3.	 PTEN loss signature [7]: PI3K is frequently 
activated in prostate cancer, especially meta-
static CRPC through PTEN loss. PTEN 
mRNA expression levels are the primary 
determinant of PTEN protein levels. A PTEN 
status signature was developed for breast can-
cer samples with microarray data to identify 
genes most significantly associated with 
PTEN IHC status. From this, a consensus 
ranked gene list was generated by sorting the 
average p-value from each cross-validation 
analysis. A total of 246 genes were ultimately 
included in the PTEN signature with a 
receiver-operator characteristic (ROC) of 
0.758. This signature was also applied to other 
tumor types, including prostate cancer. In 
prostate cancer, this signature was shown to 
correlate with worse survival.

�Unsupervised Hierarchical Clustering

One method of obtaining subtypes is to simply let 
the data determine what genes are differentially 
expressed across samples in a manner that clearly 
divides patients into a limited number of groups 
based on a list of genes. This usually requires a 
large panel (e.g. >1000) of genes to be assessed. 
Given that this method does not force or restrict 
the clustering to predict either an outcome (e.g. 
recurrence) or a feature (e.g. genomic subtype), 
the genes discovered may be of unclear impor-
tance in prostate cancer at first glance.

	1.	 TCGA- 3 clusters [8]: The TCGA performed a 
multi-center study to interrogate primary pros-
tate cancer comprehensively, at the molecular 
level Using 333 tumors, analyses were con-
ducted on the genome, transcriptome, pro-
teome, and epigenome, ultimately identifying 
seven molecularly defined subtypes (ERG, 
ETV1, ETV4, FLI1, SPOP, FOXA1, IDH1, 
and others). Integrative clustering based solely 
on mRNA data was also performed. This was 
done via unsupervised expression clustering of 
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prostate tumors using mRNA-seq data. The 
top 3000 most variable genes were used to 
develop mRNA subtypes. Three mRNA clus-
ters were identified that largely grouped ERG 
and ETV positive tumors into one cluster, and 
SPOP, FOXA1, and IDH1 subtypes together 
into another cluster. The FLI1 genomic sub-
group contained most of the third mRNA clus-
ter. However, these mRNA subtypes did not 
optimally recapitulate the seven genomic sub-
groups. Thus, work from the Tomlins [5] and 
Barbieri [6] laboratories who derived the 
ERG+ and SPOP mutant signature appear to 
be more accurate than the TCGA subtypes, 
suggesting the original findings were likely 
over-fit, modeling error due to inference on a 
limited set of patient samples.

	2.	 In another study tissue microarray profiles of 
62 primary prostate cancer tumors, 41 normal 
prostate cancer specimens and 9 lymph node 
metastases captured >26,000 coding and non-
coding genes [9]. Unsupervised hierarchical 
clustering was performed on all of the sam-
ples. Using 5153 cDNAs whose expression 
varied most across samples, tumor samples 
were distinguishable from normal samples. 
Additionally, three subtypes of prostate can-
cer were identified based on distinct gene 
expression patterns. However, the biological 
relevance or prognostic or predictive rele-
vance of these molecular subtypes is unclear, 
which is one disadvantage to clustering per-
formed in a completely unsupervised manner.

�Supervised Clustering to Capture 
Specific Biologic Characteristics

	1.	 Prostate Cancer Subtypes 1-3 [10]: An inte-
grated classification of prostate cancer was 
performed on a large training cohort of 1321 
tumor samples and a validation set using 10 
patient cohorts and 19 laboratory models of 
prostate cancer (cell lines and genetically 
engineered mouse models). Twenty two 
pathway-activation gene expression signa-
tures relevant to prostate cancer were 
employed to perform the clustering. These 

were subsequently collapsed to 14 pathway 
signatures that were grouped into three cate-
gories: (1) AR, AR-V, EZH2, FOXA1, RAS, 
and PRC, (2) SPOP, TMPRSS2-ERG, PTEN, 
and (3) stemness, proliferation, epithelial-
mesenchymal transition, pro-neural, and neu-
roendocrine differentiation. At this point 
unsupervised clustering was performed using 
the 14 pathways activation profiles, and three 
distinct clusters were identified and termed 
PC1, PC2, and PC3. These subtypes were val-
idated in both localized and mCRPC. 
Interestingly, the TCGA subtypes, including 
ERG, ETV1/4, SPOP, and FOXA1 were found 
across all of the new subtypes identified, with 
differential enrichment by subtype. This study 
also looked at the association of basal and 
luminal expression and its correlation to the 
PC1-3 subtypes. They found a strong associa-
tion between luminal genes with PC1 and 
PC2, and basal genes with PC3. The PC1-3 
subtypes were also prognostic, in that the PC1 
subtype had shorter metastasis-free survival 
than either PC2 or PC3. Ultimately, the sub-
types were simplified into a 37-gene signature 
that could reasonably recapitulate the three 
subtypes. The clinical utility and clinical rel-
evance of this signature is unclear, highlight-
ing the immense biological heterogeneity of 
prostate cancer.

	2.	 AR-activity [11, 12]: The androgen receptor 
(AR) gene, which is near ubiquitously 
expressed in prostate cancer, regulates thou-
sands of genes. In localized prostate cancer 
AR expression has limited heterogeneity in 
expression, whereas in metastatic castration-
resistant prostate cancer (mCRPC), there is 
more diversity in AR expression. However, 
the activity of the AR, or AR-signaling or AR-
activity, which is measured by the expression 
of canonical AR-target genes, is significantly 
more heterogeneous in both localized and 
mCRPC.  Recent work demonstrated that 
~10% of localized prostate cancer has lower 
AR-activity measured by nine canonical AR-
targets. This subset appears to closely resem-
ble advanced mCRPC in that both have similar 
AR-activity. Furthermore, expression of 
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neuroendocrine markers and immunesignal-
ing signatures are increased in this low 
AR-active subset. Not surprisingly, low 
AR-active localized prostate cancer has a poor 
prognosis with a more rapid progression to 
metastatic disease compared to high 
AR-activity tumors. Not only does low 
AR-active prostate cancer have a worse prog-
nosis, it also appears to have unique treatment 
sensitivities. High AR-active prostate cancer 
is more sensitive to ADT and taxane chemo-
therapy, while low AR-active prostate cancer 
appears more sensitive to PARP inhibition and 
cisplatin chemotherapy. Further work is in 
development to assess if AR-activity can serve 
as a prognostic biomarker and a predictive 
biomarker to guide treatment selection.

	3.	 Neuroendocrine Prostate Cancer (NEPC) sig-
nature [13]: A gene expression signature of 
neuroendocrine and primary small cell pros-
tate cancer was developed using samples from 
eight cohorts to compare gene expression that 
is either up or down in NEPC compared to 
adenocarcinoma samples. A 69 gene signature 
was identified that captured at least 80% of 
NEPC patients. These genes generated three 
subgroups that were termed atypical small cell 
prostate cancer, prototypical adenocarcinoma, 
and prototypical small cell prostate cancer.

�Subtypes Developed for Prognosis

�Commercial Classifiers
	1.	 Decipher [12, 14–19]: The Decipher assay  

is a clinical-grade transcriptome-wide gene 
expression profiling assay, based on the 
Human Exon 1.0 ST oligonucleotide microar-
ray (GenomeDx, Inc). While the assay mea-
sures over 46,000 protein-coding and 
non-coding RNAs, the current Decipher clini-
cal test result is a prognostic biomarker based 
on the expression of 22 genes. A cohort of 
radical prostatectomy samples was used to 
train the signature for the primary endpoint of 
clinical failure (e.g. metastases) between 
patients who did and did not develop failure 
post-treatment. Forty three RNA transcripts 

were identified that were differentially 
expressed between groups. Through random 
forest machine learning 22-genes were ulti-
mately identified that yielded the best perfor-
mance for the prediction of metastatic disease. 
These 22 genes include both coding and non-
coding genes that have roles in cell cycle pro-
gression, proliferation, immune response, cell 
adhesion and motility. The Decipher test has 
since been validated in over 3000 patients in 
>40 studies. Most notably the performance of 
the classifier was validated in a meta-analysis 
using 975 patients across five cohorts. 
Decipher was shown to independently predict 
for the development of metastatic disease, and 
had superior performance than currently used 
clinicopathologic variables (e.g. Gleason 
score, T-stage, margin status, PSA, etc). The 
C-index of the clinical model was 0.76, which 
increased to 0.81 from the addition of 
Decipher to the model. Furthermore, Decipher 
performed similarly across all subgroups by 
age, race, and treatment performed. Decipher 
has also been recently combined into an inte-
grated clinical-genomic risk grouping system 
that mirrors NCCN risk groups. This study 
validated the superior performance of 
Decipher over clinical factors in both surgical 
samples as well as pre-treatment biopsy sam-
ples. The C-index for the combined clinical-
genomic system was 0.84, and approximately 
67% of patients were reclassified from NCCN 
risk groups to new clinical-genomic risk 
groups. The Decipher test has been used in 
prospective trials as well. The PRO-IMPACT 
trial assessed the clinical utility of changing 
management decisions based on the Decipher 
test. Furthermore, the G-MINOR trial has 
completed enrollment, and has randomized 
patients and providers to the receipt of the 
Decipher test as compared to the best avail-
able clinical nomogram (CAPRA-S model). 
This trial will be the first randomized trial to 
assess the clinical utility of any commercial 
genomic classifier in prostate cancer. Decipher 
is also being used in multiple ongoing national 
randomized trials, including NRG GU-002, 
which is stratifying patients by the use of 
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Decipher. Other trials, such as NRG GU-006 
is leveraging the Decipher assay, rather than 
just the Decipher score, since the microarray 
used to assess genes in the Decipher test pro-
vides hundreds of additional signatures 
through the Decipher GRID, given that 
>46,000 genes are analyzed on every sample. 
Recently, the performance of Decipher in the 
first randomized trial of any commercial gene 
expression classifier has been reported. The 
SPARTAN trial, a randomized trial assessing 
the benefit of apalutamide in M0CRPC ran the 
Decipher test on a subset of the trial with 
banked tissue. They showed that Decipher 
was highly prognostic and predictive of first 
line ADT failure.

	2.	 Oncotype Dx [20]: The Oncotype Dx Genomic 
Prostate Score (GPS) is a 17 gene signature 
designed for pre-treatment biopsy use. It is 
run on a RT-PCR platform. Its intended use is 
to help guide active surveillance decision 
making. To derive the signature, 198 genes 
were identified that correlated with recur-
rence, death from prostate cancer, and adverse 
pathology. This gene list was truncated to 81, 
which were associated with aggressive dis-
ease within the validation cohort. Ultimately, 
the signature was refined to 17 genes based on 
consistency of expression across cohorts. 
These genes are involved in four primary 
pathways, including stromal proliferation, 
androgen signaling, cellular organization, and 
proliferation. Although the GPS signature has 
been validated in multiple prostatectomy 
cohorts of patients eligible for active surveil-
lance, until recently it had not been validated 
in actual active surveillance patients. Recently, 
the Canary PASS trial performed Oncotype 
Dx testing on 634 men entering active surveil-
lance. Unfortunately, the Oncotype Dx test 
was not associated with subsequent biopsy 
upgrade on either uni- or multi-variable analy-
sis. These results bring into question the clini-
cal accuracy of the Oncotype Dx test. Future 
studies are needed to assess the role of GPS 
testing in prostate cancer.

	3.	 Prolaris [21]: Prolaris, also known as the Cell 
Cycle Progression (CCP) score, measures 31 

cell cycle progression genes and 15 house-
keeping genes. It is run on a RT-PCR plat-
form. CCP was initially developed in breast 
cancer patients and has since been tested and 
validated in prostate cancer patients. It 
remains unclear if the test was optimized fully 
for prostate cancer, but it has been validated in 
prostate cancer needle biopsies and also pros-
tatectomy samples. It has been tested in 
patients undergoing active surveillance, pros-
tatectomy, and radiotherapy. The CCP test has 
been tested for multiple outcomes, including 
biochemical recurrence, metastasis, and pros-
tate cancer-specific mortality. The test has not 
been used in any randomized trials to date, 
and future prospective studies are needed to 
demonstrate its clinical utility and benefit in 
intact and post-treatment patients.

�Non-commercial Classifiers
	1.	 There have been dozens, if not hundreds, of 

prognostic gene expression signatures 
reported in the literature. A brief list is shown 
in Table 3. They have been developed for vari-
ous indications with various degrees of valida-
tion. None have robust clinical data to support 
their use, and none are commercially available 
or covered by Medicare (in contrast to 
Decipher, Oncotype Dx, and Prolaris). When 
these signatures were optimized to predict for 
the development of metastatic disease, it was 
found that the Decipher 22-gene signature 
outperformed all of the other signatures when 
run on the same microarray platform [22].

�Subtypes Developed for Predicting 
Treatment Response

	1.	 RSI [23]: The Radiation Sensitivity Index 
(RSI) was developed to predict intrinsic sensi-
tivity to ionizing radiotherapy. It claims to be 
a pan-cancer signature and was developed 
from the National Cancer Institute panel of 60 
cell lines. Thirty five of these cell lines were 
ultimately used to determine which genes cor-
related with clonogenic survival after 2 Gy of 
radiation therapy. In cell line data the signature 
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only has a 62% accuracy of predicting cellular 
radiosensitivity. Ultimately, the RSI was 
developed, which is comprised of a linear 
algorithm of 11 genes (AR, cJun, STAT1, 
PKC, cABL, SUMO1, CDK1, HDAC1, and 

IRF1), each with its own weight, that are 
summed to yield a final score. There are 
limited data using this signature in prostate 
cancer, and it does not appear to be able to 
predict outcomes in patients treated with 
radiotherapy. Future work will be necessary to 
determine if RSI can be applied to patients 
with prostate cancer.

	2.	 PORTOS [24]: Leveraging the Decipher 
GRID, a 24-gene Post-Operative Radiation 
Therapy Outcomes Score (PORTOS) was 
developed and validated to predict for benefit 
of post-operative radiotherapy. Using a train-
ing cohort of 198 patients, 1800 DNA damage 
repair and previously annotated radiation 
response genes were ranked based on out-
comes after post-operative radiotherapy. 
Twenty-four genes were identified that pre-
dicted benefit from post-operative radiother-
apy. Patients with high PORTOS scores 
derived a significant benefit, as measured as a 
reduction in distant metastasis, from receipt of 
post-operative radiotherapy. In contrast, 
patients with low PORTOS scores failed to 
derive benefit from the addition of post-
operative radiotherapy. In the validation 
cohort (n  =  330) it was confirmed that 
PORTOS was a predictive biomarker of post-
operative radiotherapy benefit (p-interac-
tion = 0.016). Importantly, it is probable that 
PORTOS may not be purely a measure of 
intrinsic radiation sensitivity, but rather a pre-
dictor of patients who harbor micrometastatic 
disease outside the radiation field.

	3.	 ADT-RS [25]: The Decipher GRID was used 
to access 1212 patients that underwent a radi-
cal prostatectomy with adverse pathology. 
Patients who received early adjuvant ADT 
were matched to patients who did not receive 
early ADT. Rather than a purely unsupervised 
analysis, they limited genes to a curated gene 
list of 1632 genes identified from studies 
investigating neuroendocrine differentiation, 
castration resistance, and resistance to 
ADT. This gene list was then filtered based on 
feature ranking and model training. Ultimately 
49 genes were identified and validated that 

Table 3  Select list of prognostic gene expression signa-
tures in prostate cancer

Signature
Original 
technologya

Number of 
features

Erho 2013 Microarray 22
Penney 2011 Microarray 157
Wu 2013 RT-qPCR 30
Bibikova 2007 Microarray 16
Xie 2011 Microarray 71
Ramaswamy 
2003

Microarray 17

Agell 2012 Microarray 12
LaPointe 2004 Microarray 22
Nakagawa 2008 Microarray 17
Bismar 2006 Microarray 13
Cheville 2008 Microarray 2
Cuzick 2011 RT-qPCR 31
Yu 2007 Microarray 87
Larkin 2012 RT-qPCR 3
Singh 2002 Microarray 12
Klein 2014 RT-qPCR 17
Larkin 2012 RT-qPCR 10
Saal 2007 Microarray 185
D. Antonio 
2008

RT-qPCR 59

Glinsky 2005 Microarray 11
Varambally 
2005

Microarray 50

Long 2011 Microarray 12
Stephenson 
2005

Microarray 15

Talantov 2010 RT-qPCR 24
Yu 2007 Microarray 14
Roca 2012 Microarray 10
Glinsky 2004 Microarray 5
Stephenson 
2005

Microarray 10

Ross 2012 RT-qPCR 6
Glinsky 2004 Microarray 5
Glinsky 2004 Microarray 4
Irshad 2013 Microarray 3
Olmos 2012 Microarray 9
Singh 2002 Microarray 5

aThis refers to the technology used to discover/develop 
expression signature

D. E. Spratt



119

were predictive of early ADT benefit. This 
was demonstrated with a significant interac-
tion test in those with a high ADT-RS score 
(p = 0.035), while low ADT-RS patients did 
not derive any benefit from early use of adju-
vant ADT.  Notably, ADT-RS was not prog-
nostic, but was in fact highly predictive, and 
on multivariable analysis the interaction for 
ADT-RS was even stronger after adjusting for 
other clinicopathologic factors.

	4.	 PAM50 [26]: The PAM50 classifier was origi-
nal developed in breast cancer. It is the basis 
for the commercially available Prosigna prod-
uct run using NanoString. PAM50 success-
fully classifies breast cancers as luminal A, 
luminal B, HER2, and basal subtypes. These 
subtypes are not only prognostic, they are pre-
dictive of benefit of endocrine therapy and 
HER2 targeted therapy. Given that multiple 
cancers, including prostate cancer, also have 
luminal and basal subtypes, the PAM50 signa-
ture was applied to localized prostate cancer 
leveraging the Decipher GRID gene expres-
sion database. Notably, the HER2 subtype 
was removed, since ERBB2/HER2 amplifica-
tion does not occur in prostate cancer as it 
does in breast cancer. The authors used the 
transcriptome-wide microarray Human Exon 
1.0 ST microarray platform on 1567 retro-
spective samples with long-term follow up 
that was further divided into a training and 
validation cohort. Additionally, they used 
2215 prospective samples to characterize the 
PAM50 subtypes in localized prostate cancer. 
All three subtypes, luminal A, luminal B, and 
basal, were identified in  localized prostate 
cancer at similar distributions (~33% each). 
Known luminal markers, such as NKX3.1 and 
KRT18 were enriched in the luminal subtypes. 
Similarly, the basal marker CD49f was 
enriched in the basal subtype. Luminal B 
patients were the most likely to develop bio-
chemical recurrence and distant metastasis, 
and display worse prostate cancer specific 
survival, and overall survival, as determi
ned independently by multivariable analysis. 

Luminal A patients had the most favorable 
outcomes. Given the ability of PAM50 to pre-
dict responses of breast cancer to endocrine 
therapy, the benefit of ADT was tested. It was 
demonstrated that luminal B patients derived 
a significant improvement in metastasis-free 
survival from the addition of post-operative 
ADT, while luminal A and basal patients did 
not. The interaction test was significant 
(p = 0.006), indicating that PAM50 appears to 
be a predictive biomarker of post-operative 
ADT benefit. These results have led to an 
open randomized phase 2 trial testing if the 
addition of apalutamide, a next generation 
anti-androgen, will improve outcomes over 
salvage radiotherapy alone (NRG GU006, 
NCT03371719).

�Conclusions

The transcriptome of prostate cancer continues to 
be unraveled. This chapter primarily focused on 
gene expression signatures that are based on the 
expression of protein coding genes. It is clear that 
gene expression data can recapitulate many of the 
important genomic alterations. Perhaps more 
importantly, the transcriptome has been lever-
aged to provide unparalleled accuracy in assign-
ing a personalized prognosis for a patient above 
and beyond routine clinicopathologic parameters. 
Many of these signatures are now in clinical prac-
tice, and randomized data will be reported over 
the next 1–2 years to validate some of these sig-
natures. The most exciting area that is just begin-
ning to unravel is the ability for gene expression 
classifiers to serve as true predictive biomarkers, 
which can identify patients most likely to benefit 
from standard of care treatments, such as radio-
therapy or ADT. Some of these are currently in 
ongoing randomized trials and have the promise 
to change the clinical landscape of managing 
prostate cancer.

Disclosure  Advisory board for Janssen and Blue Earth.
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