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Abstract This chapter covers the method of experimental data analysis and pro-
cessing in cyber-physical systems for medical monitoring, control of manufacturing
processes andmanagement of industrial facilities. The suggestedmethods are used to
developmathematicalmodels of dynamic systemswith stochastic properties forman-
aging complex structural subsystems of cyber-physical systems. The most important
computational stage of the simulation is thereat the identification of multimodal (in
general) densities of the random variable distribution. A matrix conditioning anal-
ysis is herein suggested with minimizing relevant functionals of the identification
problem. For the method of identifying multimodal densities of random variable
distribution a matrix condition analysis is suggested with minimizing the relevant
functionals of the problem. It is shown that under ill-conditioning of the equiva-
lent system of equations an algorithm for regularization of solutions is needed. The
regularization of the basic method for identifying distribution densities based on
the ridge regression-algorithm (RRA) is proposed and substantiated. The classical
RRA is improved and modified for local regularization showing the advantage of the
high-order unstable SLAEs over the classical Tikhonov method. The suggested reg-
ularization algorithms and programs are universal, applicable to the study of random
structures in natural science, biomedicine, and computational mathematics.
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1 Statement of the Problem

This chapter is concerned with the study of a universal method for identifying distri-
bution densities of stochastic characteristics and its modification under regulariza-
tion conditions. Regularization algorithms and methods are universal and applicable
to the study of complex structures with random properties (technology, medicine,
biology).

Cyber-physical systems (CPS) are in this regard of particular interest including
subsystems described by stochastic characteristics. Nonlinear dynamic properties of
similar structures, their evolution in terms of random processes and stochastic vari-
ables manifest themselves as complex (non-Gaussian, multimodal) distributions to
be subject to correct identification [1, 2]. Experimental information for this procedure
is usually provided by various sensors including those of the so-called “intellectual
nature”.

Such information on the law of characteristics distribution may further be used
to simulate a mathematical stochastic model for a local control object of a CPS
subsystem. The CPS global characteristics may also be identified during the control
process by the proposed method just in near real-time for solving any system-wide
problems. The considered approach at the level of algorithms and programs has
a modular, universal character. It is easily integrated into existing cyber-physical
systems. For example, it may be used to create an experimental-mathematical model
of the human gastrointestinal tract functioning when analyzing EGEG signals [1], to
develop systems for monitoring of critically important parameters of glass melting
furnaces or vibration stability of aircraft engines during their testing and operation.

The considered methods for identification of distributions are being continuously
evolved, improved. In particular, it is suggested to complete the method for iden-
tifying multimodal densities of random variable distribution [1–3] with a matrix
conditioning analysis while minimizing basic functionals with algorithmic integra-
tion of a solution regularization module there into (in case of ill-conditioning of a
problem).

As shown by computational experiments, some peculiarities in the singular spec-
trum of matrices of equations equivalent to minimized functionals may cause inad-
missible distortions of solutions.

Any probable ill-conditioning of matrices may result in unstable and erroneous
decisions making the procedure of restituting the random values distribution law to
be incorrect. Such peculiarities include the cases when a rapid decrease in singular
values to the level of 10−12 and below is noted in the singular matrix spectrum.
Furthermore, such instability may be caused by the assignment of an unreasonably
large number of steps in minimizing the functional.

When regularizing problems of identifying the random values distribution laws,
it is suggested to apply the classical RR-algorithm (epsilon-structuring).

The RR-algorithm is a version of the Tikhonov regularization method. In general,
this is an algorithm for solving one-dimensional inverse problems based on the
regularization method for Fredholm integral equations of the 1st kind.
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The Tikhonov regularization method [4] consists in the reduction of an integral
equation to a system of linear algebraic equations the solution thereof is sought under
restriction to the solution norm value. The selection of the restriction value depending
on the perturbation value is a major problem in the regularization method [5–12].
The desired solution for an integral equation is represented as a piecewise constant
function, i.e. vector ϕ, which coordinates are values of function ϕ(t) at n points on
the segment [a, b].

Using the numerical integration formula the integral equation is replaced by the
systemof equationsRϕ ≈ y, whereR is a relevantmatrix of size lxn, y is a vector com-
posed of l independent measurements of the observed function. Many publications
are devoted to solving unstable systems of algebraic equations with approximately
specified right-hand sides; in particular, there should be noted [13–15].

Since the RR-algorithm (ridge regression-algorithm) is methodologically most
developed as a stochastic regularization method (within the framework of a multidi-
mensional linear regression problem), the choice of this regularization method as a
more common one (as compared to the classical Tikhonov regularization algorithm)
is regarded to be reasonable and correct [16].

In future chapters, there will also be studied some original and modified methods
for the regularization of singular decompositions in solving ill-conditioned systems
of linear equations taking into account the above features. These approaches are
implemented in the form of algorithms and software (MATLAB) for the method of
identifying multimodal densities of random variables distribution.

2 Method of Solving the Problem

So, when minimizing the functional, it is necessary to solve the system of equa-
tions under constraint conditions [17] ‖ϕ‖2 = ∑n

i=1
ϕ2
i ≤ r2, that is equivalent to

minimizing the smoothing functional

Mα(ϕ) = ‖y − Rϕ‖2 +α ‖ϕ‖2,

where α is the constraint-compliant regularization parameter (Lagrange multiplier).
In terms of matrix operators, a regularized normal system is solved

(
RT R + αE

)
ϕ = RT y (1)

The RR-algorithm consists of the following steps:

1. ε—net is introduced in the system solution space, which consists of the following
vectors

V =
n∑

j=1

ε μ j

λ j
ψ j
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whereλ j andψ j arematrix eigenvalues and eigenvectorsRTR,μ j are random integral
values, ε is a scalar parameter assigning a step to ε-net.

2. With a fixed value of the parameter α, the normal system (1) is solved, ε-net node
is sought closest to the solution found for ϕα .

3. Further, the quality of the ϕα solution is assessedwith fixed α, which is composed
of the following two constituents: the estimate of the mean risk functional value
achieved on the vector Vα (the closest node of ε-net) plus the estimate of a change
in the value of the same function in the transition fromϕα toVα. The final estimate
[17] takes the form

J (α) =
⎡

⎣
1
l ‖y − R Vα‖2

1 −
√[

k
(
ln l

k + 1
) − ln η

]/
l

⎤

⎦

∞

+1

l
‖R(Vα −ϕα)‖2 ,

where 1 − η is the likelihood of this estimate validity, k is the number of linearly
independent nodes of ε-net satisfying the condition ‖V ‖ ≤ ‖ϕα‖.

The regularization parameter value α and the constraint valuer is determined by
theminimization of the estimate of J (α) forα and ε, thereunder the resulting solution
ϕα is optimal for a specified experimental data volume.

It is important to note that the RR-algorithm plots for regression problems ridge
estimateswhich are shifted but bestwith respect to the standardmean square deviation
(with some constraints by the value of an input data error) than the least-squares
method in the classical formulation [17]. These estimates are more stable than least-
squares estimates since the reduction in error variance caused thereby is more than
it is required for the compensation of offset entered.

The author’s modification of this algorithm is suggested in this chapter using the
MATLAB package, namely:

– the replacement of the algorithm for finding eigenvalues and eigenfunctions
(implemented through the standard EIGEN procedure in the FORTRAN system)
by the MATLAB package algorithm for computations by means of orthogonal
similar transformations with a matrix in the upper Hessenberg form and using the
QR-algorithm of Francis and Kublanovskaya;

– the replacement of the algorithm for solving the regularized SLAE (1) to find ϕα

with the transformation to a triangular form by the algorithm for system matrix
pseudo-inversion using the SVD decomposition;

– the generalization of the classical RR-algorithmwith the scalar parameter of global
regularization to a local version (this is amajor distinctive feature), thenα becomes
a random vector of a relevant dimension (n) with various components.

In the first two options, we get more economical and fast-acting algorithms to
simplify the software design procedure and also have the possibility to control the
stability of solutions.

In the latter case, a new original regularization option is suggested, when the
found optimal value α∗ serves as a scale factor to specify n samples of a uniformly
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distributed randomvariable on the segment [0, 1]. In this case at each step of the cycle,
the arrangement of the random vector projections in descending order is performed
and local regularization parameters are formed, the maximum component thereof is
approximately equal to (but does not exceed) α∗.

Further, this vector shall be substituted into (1) (where matrix “castling move” of
α and E has been made) to find a locally regularized solution for ϕ∗

α and to calculate
the empirical risk value on the resulting solution:

.1 2

ϕα
∗= −RyI lэ (2)

The stochastically optimal solution of system (1) shall be finally determined by
minimization (2). An approach associated with the simulation of disturbances and
the analysis of the subsequent reaction of a structure or a system is widely used
in computational practice. These methods are based on the classical Monte Carlo
algorithms and their current modifications [18].

To verify the work of the RR-algorithm and regularization programs, the solutions
of test SLAEs were performed with rectangular matrices of higher dimensionality.
The maximum matrix size was (315 × 190). As a test, there was studied the integral
equation solution using random-noise distorted measurements of the right-hand side
[17].

The integral equation algebraization reduces to a system with the number of
equations M= 210, number of unknowns K= 126. Matrix elements were calculated
by the following formula

A(I, J ) = [0.164 ∗ (I − 1) − 0 ∗ 328 ∗ (J − 1)]+;
I = 1, . . . , 210; J = 1, . . . , 126;
[. . .]+ = {x, x ≥ 0; 0, x < 0}. (3)

All non-zero matrix elements lie below the main “quasi-diagonal”, matrix A is
extremely ill-conditioned, rank (A) = 105, cond (A) = Inf (an infinitude in MAT-
LAB). Some results of solutions of SLAEs with matrix A (210 × 126) are shown in
Fig. 1.

Note that for version (b) the optimal regularization parameter α = 0.005, the dis-
crepancy with the optimal regularization parameter is d = 4.2549e−005. In version
(c) the perturbation level for each of six projections is ~7%, α = 0.50, d = 0.0025;
for (d) α = 0.05, d = 1.863e−004. The calculation time of a regularized solution
for each version is no more than 1.3 s.

As we can see in the Fig. 1 in the test example the “exact” solution has a locally
smooth but “impulse” form. The number of sign variations reaches six. Such prob-
lems are quite difficult for the correct solution recovery under conditions of right-
side projection distortion [19–22]. The suggested algorithms demonstrate sufficiently
high efficiency and speed.
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Fig. 1 Verification of the RR-algorithm for regularizing solutions of SLAEs with matrix A (210 ×
126): a the graphic chart for projections of the right-side unperturbed vector Y on the segment [0,
2π]; b the graphic chart for projections of the SLAEs solution in case of no Y perturbation; c the
solution for deterministic distortion of six projections of Y; d the solution for a random perturbation
of all projections of Y (the normal interference distribution law with zero mean and m.s.d. equal to
0.001); on the x-axis for (b–d)—solution projections readings

3 Algorithms and Singularities of Problem Solution
for RR-Algorithm Modification

The original regularization version, when the found optimal α∗ value serves as a
large-scale factor in the formation of local regularization parameters, has passed
testing on very complex examples.

Computational experiments in solving SLAEs with an approximately specified
right sideshow that this algorithm is not always effective. Thehigh algorithmaccuracy
is limited by the structure of the singular spectrum of SLAE matrices as well as by
the conditioning number (not more than 1012). Based on the accumulated experience
the author suggests for complex problems a more perfect algorithm (in the general
case of vectorial one) of RR-regularization.

The essence thereof is as follows. The stage is preservedwhen local regularization
parameters are formed and their maximum component is approximately equal to
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α∗. A situation may herewith occur when the “tail” of the regularization vector
contains, just by chance, too small parameters. The procedure of “cutting off” these
parameters founds the basis for a new algorithm. The randomness of the α∗ value
is simultaneously taken into account, which is determined by the random nature of
vector y of system R ϕ ≈ y (measurement errors or a parametric uncertainty factor
in the experiment).

To this end, the found optimal α∗ value enters the “stochastic cycle” (of 50–100
iterations) for multiple calculations of:

1. local regularization parameters (uniform distribution);
2. a solution of the relevant regularized SLAE;
3. finding the empirical risk value I�—formula (2);
4. determining a super-optimal vector of regularization parameters.

At each step of the cycle, firstly, a vector of local regularization parameters is
calculated; secondly, to the α∗ value, a proportionally small random variable is added
distributed according to the normal law with small variance and zero means. For
example, α∗ = 0.500, CL (i) = α∗ + 0.015 ∗ randn. Where CL(i) is the i-th
threshold value of regularization parameters, σ = 0.015—m.s.d. of perturbation.
Further, all local regularization parameters smaller than CL(i) shall be replaced by
this computed constant. The algorithm performs this operation at each step of the
stochastic cycle. The selection of the optimal regularization vector occurs as before
in minimizing the functional (2).

Thus, a stochastically stable and super-optimal solution is chosen: there are no
too small incidental values of local parameters. The level of smallness in replaced
parameters depends on the initial singular spectrum of a matrix. In fact, in the final
local parameters there is a combination of the following two distributions and two
versions:

– the uniform distribution for the “upper” parameters, when CL (i) is smaller than
α∗ and the “Gaussian threshold” for the “lower” parameters, i.e.CL(i) has the nor-
mal distribution and determines the constant, which replaces small regularization
parameters;

– when the random (Gaussian) valueCL(i) is higher thanα∗, we have one global con-
stant of the regularization parameter (the vector shifts to a super-optimal scalar).

The new algorithm of the vector RR-regularization has passed multiple tests on a
set of test problems of higher complexity, proved the high efficiency and computa-
tional accuracy for extremely ill-conditioned systems of equations. This algorithm is
recommended formatrices with conditioning number cond (A) > 1012 at significantly
higher levels of interference for the right side of the SLAE.

Many numerical results described below illustrate the new algorithm and its supe-
riority as compared to theSLAEsolution algorithmby the classicalTikhonovmethod.

We describe now the “technology” and stages of the proposed super-optimal
algorithm on the example of the above problem of solving an integral equation using
random-interference distorted measurements on the right-hand side. The algorithm
is implemented in MATLAB.
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The complicated system A x = Y is solved with the number of equations M
= 315 and number of unknowns K = 190. Matrix A elements are calculated by
formula (3) with I = 1, …, 315; J = 1, …, 190. The right side, as before, is assigned
by the expression Y = Y0 = sin4(x/2), 0 ≤ x ≤ 2π . Matrix A is extremely
ill-conditioned, rank (A) = 157, cond (A) = Inf.

Some results of solutions for SLAE with matrix A (315 × 190) are shown in
Figs. 2, 3, 4, 5 and 6. The initial perturbation for Y is thereat an interference with
a normal distribution law—zero mean and s.m.d. equal to 0.003 (i.e. Y = Y0 +
0.003*randn). The interference level is here three times higher than for the problem
with A (210 × 126).

Fig. 2 Verification of algorithms when solving SLAEs with matrix A (315 × 190): a the graphic
chart of the SLAE solution by the SVD algorithm in case of no Y perturbation; b “scalar” regularized
RR-solution with the initial perturbation of all Y projections; on the abscissa axis—readings of
solution projections

Fig. 3 RR-algorithm for vector regularization of solutions of SLAEs with matrix A (315 × 190):
a the graphic chart of regularized local parameters with the initial Y perturbation—the optimiza-
tion in the cycle by the classical Tikhonov functional; b the graphic chart of the super-optimal
regularization vector found by the minimum of the functional I�; CLOPT = 0.687
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Fig. 4 Regularized solutions of the modified RR-algorithm for SLAEs with matrix A (315 ×
190)—(test perturbation Y = Y0+ 0.005 * randn): a for local regularization parameters (Fig. 3a)—
optimization in the stochastic cycle by theTikhonov smoothing functional;bwhen the supra-optimal
vector of regularization parameters (Fig. 3b) found on the minimum of the functional (f.2)

Fig. 5 Verification of solutions of SLAEs with matrix A (315 × 190): a the graphic chart of the
SLAEs solution by the standard SVD algorithm without regularization—the initial perturbation
level of Y; b the identified distribution density of CL values in a cycle of 100 iterations for the
supra-optimal RR-regularization algorithm

Vectors of regularized parameters found as a result of optimizations (according
to A. N. Tikhonov and the super-optimal RR-algorithm) are used for solutions of
SLAEs with other perturbation levels, for example, Y = Y0 + 0.005 * randn. In this
case, the quality of the synthesized regularization algorithm is verified on random
independent variations. It is assumed that the test interference levels may exceed the
initial level.

We comment now on the results of a computational experiment, compare them to
the method of obtaining normal pseudo-solutions of SLAE (the method of singular
decompositions). Figure 2a represents such a solution for an exactly defined right part
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Fig. 6 Verification of the EC algorithm in solving SLAEs with matrix A (315× 190): a the graphic
chart for values of the Tikhonov functional when solving the SLAE—the initial perturbation level of
Y ); b the graphic chart for the system solution at the minimum of the classical Tikhonov functional

of the test system. Due to the primary regularization of the singular decomposition,
we have a smooth nearly ideal solution.

Figure 2b depicts a graph of a “scalar” regularized RR-solution for optimal α∗ =
0.500. Note that the initial α value was assigned to be equal to 5.0; the final one to
be equal to 1.10–4; the scale multiplier was equal to 0.10.

Figures 3b and 4b illustrate the choice of the best regularization parameters and
the super-optimal solution byminimizing the empirical risk functional using formula
(2).

For example,—(Figs. 3a and 4a) show versions of choice for the classical
Tikhonov smoothing functional.

With a specific interference level (0.003 * randn) the optimal regularization vector
shall be a particular case, which is a global parameter. For small interferences, the
algorithm provides the limiting properties of the regularization principle.

Numerous tests show that the proposed super-optimal RR-algorithm surpasses
the classical method.

Figure 5a shows the SLAEsolution using the standard SVDalgorithm (MATLAB)
with the initial perturbation level of Y. The saw-tooth “spread” of solutions even
with weak perturbations makes it impossible to use the SVD algorithm without
regularization.

The method for identifying the laws of random variables distribution elaborated
by the author of this chapter enables to restore the distribution density for CL values
in an iterative cycle of 100 steps (Fig. 5b), thus, confirming the correctness of the
suggested algorithm and its modifications.

Figure 6 provides the perception of what solution may be obtained if in the RR-
algorithm the ϕα solution quality and the Lagrange multiplier are assessed not by
the functional J (α) but by the classical Tikhonov smoothing functional [4]. The
minimum of this function is either weakly expressed in the case of small values
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of the regularization constant or there is an asymptotically slow decrease of the
functional Mα(ϕ) = ‖y − Rϕ‖2 +α ‖ϕ‖2.

It is seen that the suggested versions of theRR-algorithmmodifications surpass the
classical methods. If necessary, the modified solutions of the RR-algorithm may be
supplemented with a smoothing procedure of the arithmetic average of two adjacent
values. The total calculation time of the results given is no more than 10 s.

Regularization software modules are built into the basic module for identifying
random distribution densities in order to improve the operational reliability under
conditions when it is a priori known that a complex structure is identified with many
extremes of the multimodal distribution.

The elaborated algorithms are used in higher intricate applied problems. In par-
ticular, in restoring the distribution density of pore sizes in polymer membranes
when studying the morphology of their surfaces by atomic force microscopy method
(AFM) using the SPM-9700 scanning probe microscope (Shimadzu, Japan). Based
on the proposed method, algorithms and programs, the results obtained confirm the
multimodal density of the distribution of pore sizes and depth profiles.

The maximum scanning field of a microscope is an area of 30 × 30 μm in size.
The characteristic geometric dimensions of polymer membranes measured by the
AFM method are 3–10 μm, the pore sizes are several orders smaller. The obtained
results are stated in detail in the author’s dissertation thesis.

In biomedicine, the considered method has shown high-resolution properties by
the example of monitoring and stochastic analysis of EGEG signals from the actual
clinical practice [1]. The identification of local signal sections has revealed the uni-
versal characteristics of fractional Brownian processes—the multimodal distribution
of their parameters.

And multimodal stochastic characteristics contain information about the non-
equilibrium, non-linear dynamics of the state of the body organs and systems. In
this case, based on the density of local sections of the process there are calculated
moment functions, entropy characteristics, the studied therapy process is monitored
and expert health management systems are formed.

4 Results and Conclusions

The classical RR-regularization method is modified and implemented in the MAT-
LAB package, evaluated in test problems of relatively high dimensionality (matrices
of several hundred lines and columns).

It is shown that to obtain stable solutions with minimizing the basic functionals
(at the stage of solving the SLAEs), the algorithm regularization is required.

The regularization of the basic method for identifying distribution densities based
on the RR-algorithm was proposed and validated.

The classical RR-algorithm is developed within the framework of the original
author’s methods for vector regularization versions.
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Computational experiments in solving SLAEswithmatrices having a conditional-
ity number of 1012 or more confirmed the effectiveness of regularization algorithms.

The proposed approaches are important for the RR-algorithm development in
local regularization under conditions of giving a priori information about the type of
the identified distribution law and its structural features [23].

The scope of application for the developed regularization methods and programs
covers flying object control systems (spacecraft, aeronautics), the regulation and
control of complex technological processes, the monitoring of medical parameters,
the analysis of operators of singular decompositions andmultidimensional data arrays
of computational mathematics [1–3].
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