
Verification of Multi-agent Systems
with Timeouts for Migration

and Communication

Bogdan Aman1,2 and Gabriel Ciobanu1,2(B)

1 Faculty of Computer Science,
Alexandru Ioan Cuza University, Iasi, Romania

2 Institute of Computer Science, Romanian Academy, Iasi, Romania
{bogdan.aman,gabriel}@info.uaic.ro

Abstract. A prototyping high-level language is used to describe multi-
agent systems using timeouts for migration between explicit locations
and local communication in a distributed system. We translate such a
high-level specification into the real-time Maude rewriting language. We
prove that this translation is correct, and provide an operational cor-
respondence between the evolutions of the mobile agents with timeouts
and their rewriting translations. These results allow to analyze the multi-
agent systems with timeouts for migration and communication by using
the real-time Maude tools. A running example is used to illustrate the
whole approach.

1 Introduction

Multi-agent systems are composed of a large number of agents that behave
according to their timed actions. The mobility of agents and the communication
between agents may lead to unexpected behaviours. Components can be highly
heterogeneous, having individual objectives and using different temporal scales
to achieve them. As multi-agent systems are getting more complex, automated
verification of such systems is needed. Actually, the specification and analysis of
multi-agent systems represent an active research direction in the last years. It is
important to have modelling techniques able to describe easily such systems, as
well as tools to simulate and verify some complex (qualitative and quantitative)
properties of their behaviours. We take a step in this direction by developing a
high-level specification language for specifying the mobile agents with timeouts,
and providing a way to perform automated verification of some complex systems
involving explicit locations and timeouts for migration and local communication
in distributed networks.

There exist already some approaches to formalize timed systems, for instance
timed automata [1]. Software platforms as Uppaal [3] represent model checking
tools used for the simulation and verification of real-time systems modelled as
timed automata [10]. Logic-based models complement the timed automata mod-
els as they are able to capture other aspects of real-time systems: e.g., mobility of
agents and the communication between agents. Rewriting logic is appropriate for
c© Springer Nature Switzerland AG 2019
R. M. Hierons and M. Mosbah (Eds.): ICTAC 2019, LNCS 11884, pp. 134–151, 2019.
https://doi.org/10.1007/978-3-030-32505-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32505-3_9&domain=pdf
http://orcid.org/0000-0001-7649-8181
http://orcid.org/0000-0002-8166-9456
https://doi.org/10.1007/978-3-030-32505-3_9

Verification of Multi-agent Systems with Timeouts 135

providing a general semantic framework for various languages and models of con-
currency [11]. Maude is a system that supports computations based on rewriting
and equational logic, while real-time Maude [14] provides a specification formal-
ism with several decidability results for many system properties. Also, in real-time
Maude different types of communication used in process calculi can be modelled.
The real-time Maude tool is developed using an extension of rewriting logic, and
seem to be an appropriate tool for specification, validation and verification of real-
time systems using features as migration of agents and communication between
agents. This tool is useful in applications that use features not yet implemented in
several existing model checkers for real-time systems [13].

For the specification of the multi-agent systems with timeouts for migration
and local communication we use a real-time version of an existing high-level
framework called TiMo , a framework able to describe easily interacting mobile
agents in distributed systems. Then we translate this high-level specification
into real-time Maude. There are some problems to overcome in order to obtain
a fully executable specification in real-time Maude. Firstly, the transitions of a
system need sometimes to use fresh names (to overcome binding problems); this
is due to the fact that the communication of values takes place eventually after
alpha-converting (to avoid clashes) in the high-level specification. Secondly, since
infinite computations are not supported by real-time Maude, implementing an
unbounded recursion operator is not possible; a solution to this problem is to
consider a bounded recursion in which a process can be unfolded only a finite
number of times during an execution. This restriction does not influence the
results because we model real systems in which the recursive processes need to
be unfolded only for a finite number of times.

2 Syntax and Semantics of the High-Level Specification

In the high-level specification language, the processes are allowed to migrate
between explicit distributed locations and to communicate locally with other
processes. The coordination of the processes in time and space is done by using
timed migration and timed communication. The timeouts added to a migration
action enforce the process to migrate to the target location after a period of time
equal to the timeout constraint. Two processes are allowed to communicate only
if they are both available into the same location at the same unit of time, and if
the timeout restrictions of the active communication actions are non-negative.
If a communication action cannot be executed before its timeout restriction
expires, then the action is removed and the actions of an alternative process are
executed as a continuation. The transitions involving either processes migration
between locations, processes communication or unfolding of recursive processes
are executed in a maximal parallel manner. This means that if a process can
migrate, communicate or unfold, it has to do it. The transitions with timeouts are
alternated with transitions involving the passage of time over all the processes;
a global clock is used to model the passage of time. The operational semantics
of the high-level specification is provided by using these two types of transitions:

136 B. Aman and G. Ciobanu

a transition relation for timed migration and communication actions executed
in the maximal parallel manner, and a transition relation used to model the
passage of time.

A timeout restriction assigned to a migration action is given as a natural
number t, while a timeout restriction assigned to a communication action is
given as Δt, where t ∈ N. The t notation means that migration action can be
consumed exactly after t units of time, while the Δt notation means that the
communication can be consumed at any moment in the next t units of time.

The syntax of the high-level language is given in Table 1, where the following
notations are used:

• we use the set Loc of locations, set Chan of communication channels, and set
Id of process identifiers;

• for each process identifier id ∈ Id there exists a unique process definition
id(u1, . . . , umid

)
def
= Pid in which the mid parameters are identified by the

distinct variables ui;
• a, l, t denote a communication channel, a location or a location variable, and

an action timeout, respectively; u and v denote a tuple of variables and a
tuple of expressions built from values (e.g., strings, integers, bools), variables
and allowed operations.

Table 1. The syntax of the high-level language

Processes P,Q ::= aΔt! v then P else Q (output)
aΔt?(u) then P else Q (input)
gotl then P (move)
0 (termination)
id(v) (recursion)
P | Q (parallel)

Located Processes L ::= l[[P]]
Multi-Agent Systems N ::= L N || N 0

An output communication process aΔt!〈z〉 then P else Q describes the fact that
for t time units the process is available for sending on channel a the value z.
Whenever the process succeeds in sending the value before the deadline, it con-
tinues its evolution according to process P ; otherwise, it continues its evolution
by the alternative process Q. The input communication process aΔt?(x) then P
else Q describes the fact that for t time units the process is available to receive
on channel a a value to instantiate the variable x. In a similar manner as for
the output communication process, the continuation of an input communication
process depends on the success of the communication.

A migration process gotl then P indicates a location change after t time units,
namely after t units of time the process continues its execution as P at loca-
tion l (and not at the current location). Since variables are instantiated through
communication, this means that the location variables can be instantiated; this
feature allows a flexible behaviour as processes can adapt their migration based

Verification of Multi-agent Systems with Timeouts 137

on received information. The process 0 models an inactive process, while the
process P | Q models the parallel composition of the process P and Q that
might also interact through communication. A process P currently located in
location l is denoted by l[[P]], while a system is composed of located processes
composed by using the parallel operator.

There is only one binding operator in our calculus: in the input process
aΔt?(u) then P else Q, the variable u is bound in process P . However, as pro-
cess Q is an alternative process executed when the input action is not consumed,
this means that variable u is not bound in process Q. Given a process P , we
denote by fv(P) its set of free variables. In case ui are the mid parameters of
the process Pid, then the assumption fv(Pid) ⊆ {u1, . . . , umid

} holds. As usu-
ally assumed in process calculi, we consider that processes are defined up to
an alpha-conversion. Also, P{v/u, . . .} denotes a process P in which v replaces
all the free occurrences of the variable u, possible after using alpha-conversion
inside P to remove possible clashes. A system N is said to be well-formed if
fv(N) = ∅.

Operational Semantics. The structural equivalence relation ≡ represents an
ingredient of the operational semantics; it is defined as the smallest congruence
relation satisfying the equations of Table 2. The purpose of this relation ≡ is to
provide a way of rearranging the processes in a system such that they can evolve
by using the operational semantics rules from Table 3.

Table 2. Structural congruence in high-level specification

(PNull) P | 0 ≡ P

(LNull) N || 0 ≡ N

(LComm) N || N ′ ≡ N ′ || N

(LAssoc) (N || N ′) || N ′′ ≡ N || (N ′ || N ′′)

(LSplit) l[[P | Q]] ≡ l[[P]] || l[[Q]]

The equalities of Table 2 are useful for transforming a system N into the
system l1[[P1]] || . . . || ln[[Pn]] composed of located process l[[Pi]] such that
there do not exist Qi and Ri such that Pi ≡ Qi | Ri. A located process that
cannot be split into parallel located processes by using the rule (LSplit) is
called a component of N , while the component decomposition of a system N is
the system l1[[P1]] || . . . || ln[[Pn]], where all li[[Pi]] are components.

Table 3 presents the operational semantics rules. The transitions of the form
N −→ N ′ indicate either processes migrating between locations, processes com-
municating locally or unfolding of processes, all these executed in parallel in one
step. The passing of t time units is given by transitions of the form N

t� N ′.
In rule (Com), two process aΔt!〈v〉 then P else Q and aΔt?(u) then P ′ else Q′,

both located at location l, are using channel a to communicate a tuple of values v
to be used for the instantiation of the variable u. Applying the rule (Com) does not
lead to a location change for any of the involved processes, but to a consumption
of the output and input action. Upon a successful communication, the processes

138 B. Aman and G. Ciobanu

Table 3. The operational semantics of the high-level language

(Stop) l[[0]] �−→ (DStop) l[[0]]
t� l[[0]]

(Com) l[[aΔt!〈v〉 then P else Q]] || l[[aΔt′
?(u) then P ′ else Q′]] −→ l[[P]] || l[[P ′{v/u}]]

(DPut)
t ≥ t′ > 0

l[[aΔt!〈v〉 then P else Q]]
t′
� l[[aΔt−t′

!〈v〉 then P else Q]]

(Put0) l[[aΔ0!〈v〉 then P else Q]] −→ l[[Q]]

(DGet)
t ≥ t′ > 0

l[[aΔt?(u) then P else Q]]
t′
� l[[aΔt−t′

?(u) then P else Q]]

(Get0) l[[aΔ0?(u) then P else Q]] −→ l[[Q]]

(DMove)
t ≥ t′

l[[gotl′ then P]]
t′
� l[[got−t′

l′ then P]]

(Move0) l[[go0l′ then P]] −→ l′[[P]]

(DCall)
l[[Pid{v/x}]] t� l[[P ′

id]] id(v)
def
= Pid

l[[id(v)]]
t� l[[P ′

id]]

(Call)
l[[Pid{v/x}]] −→ l[[P ′

id]] id(v)
def
= Pid

l[[id(v)]] −→ l[[P ′
id]]

(DPar)
N1

t� N ′
1 N2

t� N ′
2 N1 || N2 �−→

N1 || N2
t� N ′

1 || N ′
2

(Par)
N1 −→ N ′

1 N2 −→ N ′
2

N1 || N2 −→ N ′
1 || N ′

2

(DEquiv)
N1 ≡ N ′

1 N ′
1

t� N ′
2 N ′

2 ≡ N2

N1
t� N2

(Equiv)
N1 ≡ N ′

1 N ′
1 −→ N ′

2 N ′
2 ≡ N2

N1 −→ N2

aΔt!〈v〉 then P else Q and aΔt?(u) then P ′ else Q′ continue their executions as pro-
cesses P and P ′{v/u}, respectively. If the process aΔ0!〈v〉 then P else Q exists in
the system, then the communication action is discarded by using the rule (Put0),
and the execution continues as the alternative process Q. In a similar manner, by
using the rule (Get0), the process aΔ0?(u) then P ′ else Q′ continues its execution
as the alternative process Q. In rule (Move0), a process go0l′ then P is able to
change its location by migrating from the current location l to the given location
l′ where it continues its execution as process P . The unfolding of recursive pro-
cesses is performed by using the rule (Call). In order to use the structural equiv-
alence relation ≡ to rearrange a system such that its components can interact for
communication or migration, the rule (Equiv) its used. Composing larger systems
from smaller systems is done by using the rule (Par) for the parallel composition
operator.

The passage of time is described by the rules having their names starting
with the capital letter D. The hypothesis N1 || N2 	−→ from the rule (DPar)
indicates the fact that placing the two systems N1 and N2 in parallel does

Verification of Multi-agent Systems with Timeouts 139

not trigger the application of a rule (Com) that would modify these systems.
The negative premises are essential to separate the steps based on the execution
of actions by those based on time passing (i.e., time cannot pass when an action
is executed).

A transition of the form N −→ N1 followed by a time passing transition of
the form N1

t� N ′ describe a complete step that can be written as:

N −→ N1
t� N ′.

Thus, a complete step indicates that a parallel execution of processes migrating
between locations, processes communicating or unfolding is necessarily followed
by a time step. We say that the system N ′ is directly reachable from N if a
complete computational step N

Λ−→ N1
t� N ′ exists. If N 	−→, then only a time

step N
t� N ′ can be performed in the system N .

Theorem 1. For all the systems N , N1 and N2,

if N
t�N1 and N

t�N2, then N1≡N2.

Theorem 1 claims that nondeterminism cannot be introduced upon executing a
time transition in a system, namely the obtained system is unique up to struc-
tural congruence.

Theorem 2. For all the systems N , N1, N2 and 0 < t′ < t, we have N
t� N2

if and only if there is a N1 such that N
t′
� N1 and N1

t−t′
� N2.

Theorem 2 claims that whenever a time transition of length t can be performed
in a system N leading to a system N2, then always a time transition of length t′

with 0 < t′ < t can be performed in the same system N leading to a system N1

followed by another time transition of length t − t′ in the systems N1 leading
to N2, and vice versa. This result ensures that the passage of time in a system
is continuous (no jumps).

Example 1. Let us consider an example in which a client wants to buy, at a good
price, a flight ticket to a given location. The scenario is depicted in Fig. 1, where
the names and values have the meanings given below (we explain the names and
values in the order they appear, from left to right).

• The process client initially resides at location home. It has access to 130 cash
units to be used for purchasing a flight ticket. Once the client reaches the
travelshop location, an agent communicates to it the location of a standard
offer. The client process goes to this location to receive the standard offer
details. Here it also receives the location for a special offer. After receiving
the information about the special offer, it goes to the bank for paying the
cheaper offer between the standard and the special offers, and returns home
(its initial location).

• The process update is able to migrate to the special location by starting from
its initial location travelshop in order to communicate locally a reduction for
the price special from 90 to 60 cash units.

140 B. Aman and G. Ciobanu

• The process agent resides at the travelshop location, and has access to 100
cash units available in the cash register. Once a client reaches the travelshop
location and the agent is available for communication, the client receives the
location where the details of the standard offer are available. The agent has
also the possibility to go to the bank to withdraw the available money from
the till . Regardless of the amount of money taken from the bank , the agent
always returns to travelshop , its initial location.

• The process flightinfo process residing at the standard location is able to do
only local communications in order to provide to any interested client the
details about the standard offer: the price of 110 cash units, and the location
where the special offer resides.

• The process saleinfo process residing at the special location is able to do only
local communications in order to provide (to any interested client) the details
about the standard offer: the price of 90 cash units, and the location of the
bank for the payment. The saleinfo process can also interact locally with the
update process in order to modify the price of the special offer.

• The process till process owning 10 cash units and residing at the bank location
is able to do only local communications: it can interact with a client to receive
the payment for a flight ticket, and can interact with the agent in order to
transfer the accumulated cash to it.

Fig. 1. Initial scenario

After all the interactions described in Fig. 1, the system looks like in Fig. 2.

Fig. 2. A possible outcome

Verification of Multi-agent Systems with Timeouts 141

In the above example we have: (i) agents migrating in a distributed network
with explicit locations; (ii) local communication of these agents (to get specific
results); (iii) both migration and communication require certain time indicated
by timeouts.

We show how this example can be easily described in our high-level language.
First of all, in order to simplify the syntax, we consider that:

aΔ∞!〈v〉 then P else Q can be written as a!〈v〉 → P ,
aΔ∞?(u) then P else Q can be written as a?(u) → P , and
gotl then P can be written as gotl → P .

This is because branch Q is ignored as it can never be executed.
The system presented in Fig. 1 is described in the high-level language as:

TravelShop = home [[client (130)]] || travelshop [[update (60) | agent (100)]]
|| standard [[flightinfo (110, special)]] || special [[saleinfo (90, bank)]]

|| bank [[till (10)]],

where:
client (init) = go5travelshop → flight ?(standardoffer)

→ go4standardoffer → finfo2a ?(p1) → finfo2b ?(specialoffer)
→ go3specialoffer → sinfo2a ?(p2) → sinfo2b ?(paying)
→ go6paying → payc !〈min{p1, p2}
→ go4home → client (init − min{p1, p2}) ;

update (saleprice) = go1special → info1 !〈saleprice 〉 ;
agent (balance) = flight !〈standard 〉

→ go20bank → paya ?(profit)
→ go12travelshop → agent (balance + profit) ;

flightinfo (price ,next) = finfo2a !〈price 〉 → finfo2b !〈next 〉
→ flightinfo (price ,next) ;

saleinfo (price ,next) = info1 Δ2?(newprice)
then sinfo2a !〈newprice 〉 → sinfo2a !〈next 〉 → saleinfo (newprice ,next)
else sinfo2a !〈newprice 〉 → sinfo2a !〈next 〉 → saleinfo (price ,next) ;

till (cash) = payc Δ22?(newpayment)
then paya 10!〈cash + newpayment 〉 then till (0)

else till (cash + newpayment))
else paya 10!〈cash 〉 then till (0)

else till (cash)) .

3 Translating the High-Level Specification into Maude

In what follows we define a rewriting theory corresponding to the semantics of
our high-level language defined in Table 3. The syntax used to give the rewriting
theory is that of real-time Maude. A rewrite theory R is defined as a triple
(Σ,E,R), where Σ stands for signature of function symbols, E and R are sets of
Σ-equations and Σ-rewrite rules, respectively. The Σ-equations and Σ-rewrite
rules can contain side conditions; for example, the conditions appearing in a
rewrite rule can contain equations or other rewrite rules. Just like in [9], we use

142 B. Aman and G. Ciobanu

a typed setting given as an order-sorted equational logic (Σ,E) including sorts
and an inclusion relation subsort between sorts. Given a rewrite theory R, we
write R
 t ⇒ t′ if t ⇒ t′ is provable in R by using the rewrite rules of R.
Rewriting logic is basically a computational logic that combines term rewriting
with equational logic.

Let us discuss first the high-level recursion operator that is not directly encod-
able into real-time Maude (because infinite computations are not supported into
this tool). Our solution is to use the construction id(v, n) that is an extension of
the constructions id(v) of our language with a number n that limits the number
of recursive calls to be executed during the evolution of the system.

In order to translate the high-level language (whose syntax is given in
Table 1), we consider sorts corresponding to sets from our language: e.g., for
the set Chan of channels, the sort Channel is created. Certain new aspects are
provided by the sorts AGuard and MGuard. The sort AGuard contains the action
parts aΔt!〈v〉 and aΔt?(u) of the communication processes aΔt!〈v〉 then P else Q
and aΔt?(u) then P else Q, while the sort MGuard contains the action part gotl
of the migration processes of the form gotl then P . The elements of the sorts
AGuard and MGuard are essential in constructing the sequential processes of our
language. Among the subsorting relations between the given sorts, we explain
subsorts Var < Location Channel Value that illustrates the fact that loca-
tion names, channel names or values can be used to instantiate variables. To
work with multisets of values, we use the sort MValue.

sorts Location Channel Value MValue Var Process

AGuard MGuard System .

subsorts Var < Location Channel Value < MValue .

subsort Location < Value .

subsorts System < GlobalSystem .

To each operator used in the syntax of Table 1 we attach the attribute ctor
marking the fact that this operator is used to construct the system, and attribute
prec followed by a number marking its applicability precedence with respect to
other operators. Moreover, in order to encode properly into real-time Maude the
parallel operators | and || from Table 1, we add to them the attributes comm and
assoc to illustrate that they are commutative and associative constructors that
respect the rules of Table 2.

op _^_!‘<_> : Channel TimeInf Value -> AGuard [ctor prec 2] .

op _^_?‘(_‘) : Channel TimeInf Var -> AGuard [ctor prec 2] .

op go‘^__ : TimeInf Location -> MGuard [ctor prec 2] .

op _then‘(_‘)else‘(_‘) : AGuard Process Process -> Process

[ctor prec 1] .

op _then‘(_‘) : MGuard Process -> Process [ctor prec 1] .

op _|_ : Process Process -> Process [ctor prec 4 comm assoc] .

op stop : -> Process [ctor] .

op _‘[‘[_‘]‘] : Location Process -> System [ctor prec 3] .

op _||_ : System System -> System [ctor prec 5 comm assoc] .

op void : -> System [ctor] .

Verification of Multi-agent Systems with Timeouts 143

As already stated, most of the rules of the structural congruence (Table 2) are
encoded by using the attributes comm and assoc when defining the previous
operators. For the rest of the rules we provide the following equations:

eq P | stop = P .

eq M || void = M .

eq k[[P | Q]] = (k[[P]]) || (k[[Q]]) .

As communication between two processes by using rule (Com)) leads to a substi-
tution of variables by the communicated values, we need to define this operation
explicitly in real-time Maude. Such an operator acts only upon the free occur-
rences of a name, while leaving bound names as they are.

op _‘{_/_‘} : Process Value Var -> Process [prec 8] .

eq ((c ^ t ! < b + a >) then (P) else (Q)) { V / b } =

((c ^ t ! < V + a >) then (P { V / b }) else (Q { V / b })) .

eq ((c ^ t ! < min(b , a) >) then (P) else (Q)) { V / b } =

((c ^ t ! < min(V , a) >) then (P { V / b })

else (Q { V / b })) .

eq ((c ^ t ! < X >) then (P) else (Q)) { V / X } =

((c ^ t ! < V >) then (P { V / X }) else (Q { V / X })) .

ceq ((c ^ t ! < W >) then (P) else (Q)) { V / X } =

((c ^ t ! < W >) then (P { V / X })

else (Q { V / X })) if V =/= W .

eq ((c ^ t ? (X)) then (P) else (Q)) {V / X} =

((c ^ t ? (X)) then (P) else (Q)) .

ceq ((c ^ t ? (Y)) then (P) else (Q)) {V / X} =

((c ^ t ? (Y)) then (P { V / X })

else (Q { V / X })) if X =/= Y .

eq ((go ^ t X) then (P)) {V / X} = ((go ^ t V) then (P {V / X})) .

ceq ((go ^ t l) then (P)) {V / X} =

((go ^ t l) then (P {V / X})) if X =/= l .

eq (P | Q) {V / X} = ((P {V / X}) | (Q {V / X})) .

eq stop {V / X} = stop .

eq (P) { V / X } = (P) [owise] .

However, the above operator does not take into account the need for alpha-
conversion in order to avoid name clashes once substitution takes place. To
illustrate this issue, let us consider the process P = at(b) then (got′

l then X) else
stop) in which the name b is bound inside the input prefix. If the substitution
{b/X} needs to be performed over this process, the obtained process would be
P{b/X} = at(b) then (got′

l then b) else stop). This means that once variable X
is replaced by the name b, name b would become bound not only in the input
action. To avoid this, we define an operator able to perform alpha-conversion by
using terms of the form [X] that contain fresh names:

op ‘[_‘] : Var -> System [ctor] .

The terms of the form [X] containing fresh names are composed with the system
by using the parallel operator ||. Using the given fresh names, the renaming is
done (when necessary) before substitution. This is provided by the operator:

op _‘(_/_‘) : Process Value Var -> Process [prec 8] .

144 B. Aman and G. Ciobanu

This operator has a definition similar with the substitution operator, except the
case when we deal with bound names.

eq ((c ^ t ? (X)) then (P) else (Q)) (V / X) =

((c ^ t ? (V)) then (P { V / X }) else (Q { V / X })) .

It is worth noting that this is different from the substitution operator that does
not allow the change of the bound name:

eq ((c ^ t ? (X)) then (P) else (Q)) {V / X} =

((c ^ t ? (X)) then (P) else (Q)) .

As most of the rules in Table 3 contain hypotheses, translating these rules in real-
time Maude requires the use of conditional rewrite rules in which the conditions
are the hypotheses of rules of Table 3. Notice that in what follows we do not
directly implement the rules (PAR), (DEquiv) and (Equiv) as rewrite rules
into real-time Maude, due to the fact that the commutativity, associativity and
the congruence rewriting of the parallel operators | and || are already encoded
into the matching mechanism of Maude. In order to identify for each of the below
rewrite rule which rule from Table 3 it models, we consider simple intuitive names
for these rewrite rules. More complicated names could be considered by using
rewriting rules similar with the ones given for the executable specification of the
π-calculus in Maude [15].

crl [Comm] : (k[[(c ^ t ! < V >) then (P) else (Q)]])

|| (k[[(c ^ t’ ? (X)) then (P’) else (Q’)]])

=> (k [[P]]) || (k [[P’ {V / X}]]) if notin(V , bnP(P’)) .

crl [Comm’] : (([Z]) || (k[[(c ^ t ! < V >) then (P) else (Q)]]))

|| (k[[(c ^ t’ ? (X)) then (P’) else (Q’)]])

=> (([X]) || (k [[P]])) || (k [[(P’ (Z / V)) { V / X}]])

if in(V , bnP(P’)) /\ (notin(Z , bnP(P’))) .

crl [Input0] : (k[[(c ^ t ! < V >) then (P) else (Q)]]) => k[[Q]]

if t == 0 .

crl [Output0] : (k[[(c ^ t ? (X)) then (P) else (Q)]]) => k[[Q]]

if t == 0 .

crl [Move] : k[[(go ^ t l) then (P)]] => l[[P]] if t == 0 .

It is also worth noting that there are two instances for the rule [Comm]. This is
a consequence of the fact that after communication, before a substitution takes
place, one may need to perform alpha-conversion to avoid name clashes. Rule
[Comm] is applicable if the variable V is not bound inside process P (modelled by
the condition notin(V , bnP(L’)), and so only a simple substitution is enough
to complete the replacement of the variable X by name V . On the other hand,
rule [Comm’] is applicable if the variable V is bound inside process P (modelled
by the condition in(V , bnP(L’)); in this case an alpha-conversion is needed to
avoid the clash of name V . To be able to perform the alpha-conversion we also
check before applying the rule [Comm’] if a fresh name [Z] exists in the system,
name not present in process P ′ (modelled by the condition notin(Z , bnP(Q))).

Verification of Multi-agent Systems with Timeouts 145

The conditions of the rules [Comm] and [Comm’] make use of the functions in,
notin and bnP for checking the membership of a name to the set of bound names
for a given process.

A tick rewriting rule is used to model the passing of time in the encoded
system by a positive amount of time that is at most equal with the maximal
times that can elapse in the system. Such a tick rule has the form:

crl [tick] : {M} => {delta(M, t)} in time t if t <= mte(M) [nonexec] .

The [tick] rule uses the function delta to decrease all time constraints in a
system by the same positive value. In order to correctly model the steps needed
to obtain complete computational steps, namely the time cannot elapse if rewrite
rules are applicable, we use the frozen attribute for the function delta. The
attribute (1) marks the argument to be frozen (first one in this case).

op delta : System TimeInf -> System [frozen (1)] .

eq delta (k[[(c ^ t ! < V >) then (P) else (Q)]] , t’) =

k[[((c ^ (t monus t’) ! < V >) then (P) else (Q))]] .

eq delta (k[[(c ^ t ? (X)) then (P) else (Q)]] , t’) =

k[[((c ^ (t monus t’) ? (X)) then (P) else (Q))]] .

eq delta (k[[(go ^ t l) then (P)]] , t’) =

k[[(go ^ (t monus t’) l) then (P)]] .

eq delta (k[[P | Q]] , t’) = delta (k[[P]] , t’)

|| delta (k[[Q]] , t’) .

eq delta (M || N , t’) = delta(M , t’) || delta(N , t’) .

eq delta (void , t’) = void .

eq delta (l[[stop]] , t’) = l[[stop]] .

eq delta (M , t’) = M [owise] .

The function mte from the condition of rule [tick] is used to compute the
maximal time that can be elapsed in a system, a time that is equal with the
minimum time constraint of the applicable actions in the system.

op mte : System -> TimeInf [frozen (1)] .

eq mte (k[[(c ^ t ! < V >) then (P) else (Q)]]) = t .

eq mte (k[[(c ^ t ? (X)) then (P) else (Q)]]) = t .

eq mte (k[[(go ^ t l) then (P)]]) = t .

eq mte (k[[P | Q]]) = min(mte (k[[P]]) , mte (k[[Q]])) .

eq mte (M || N) = min(mte(M) , mte(N)) .

eq mte (void) = INF .

eq mte (l[[stop]]) = INF .

eq mte (M) = INF [owise] .

The full description of the translation into real-time Maude is available at
https://profs.info.uaic.ro/∼bogdan.aman/RTMaude/TiMoSpec.rtmaude .

https://profs.info.uaic.ro/~bogdan.aman/RTMaude/TiMoSpec.rtmaude

146 B. Aman and G. Ciobanu

In order to study the correspondence between the operational semantics of our
high-level specification language and that of the real-time Maude, we inductively
define a mapping ψ : TiMo→ System as

ψ(M) =

⎧
⎪⎨

⎪⎩

l[[ϕ(P]]] if M = l[[P]]
ψ(N1)||ψ(N2) if M = N1||N2

void if M = 0
;

ϕ(P) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aΔt!〈v〉 then ϕ(R) else ϕ(Q) if P = aΔt!〈v〉 then R else Q

aΔt?(X) then ϕ(R) else ϕ(Q) if P = aΔt?(X) then R else Q

(got l) . ϕ(R) if P = gotl then R

stop if P = 0
ϕ(Q) | ϕ(R) if P = Q | R

ϕ(R){v/u} if P = R{v/u} and v 	∈ bn(R)
ϕ(R)(Z/v){v/u} if P = R{v/u} and v ∈ bn(R)

and Z 	∈ bn(R).

.

By RD we denote the rewrite theory defined previously in this section by the
rewrite rules [Comm], [Comm’], [Input0], [Output0], [Move] and [tick], and
also by the additional operators and equations appearing in these rewrite rules.

The next result relates the structural congruence of the high-level specifica-
tion language with the equational equality of the rewrite theory.

Lemma 1. M ≡ N if and only if RD
 ψ(M) = ψ(N).

Proof. ⇒: By induction on the congruence rules of our high-level language.
⇐: By induction on the equations of the rewrite theory RD.

The next result emphasizes the operational correspondence between the high-
level systems M , N and their translations into a rewriting theory. We denote by
M −→ N any rule of Table 3.

Theorem 3. M −→ N if and only if RD
 ψ(M) ⇒ ψ(N).

Proof. ⇒: By induction on the derivation M −→ N .

• (Com): We have M = l[[aΔt!〈v〉 then P else Q]] || l[[aΔt′
?(u) then P ′ else Q′]]

and N = l[[P]] || l[[P ′{v/u}]]. By definition of ψ, we obtain ψ(M) = l[[aΔt!〈v〉
then ϕ(P) else ϕ(Q)]] || l[[aΔt′

?(u) then ϕ(P ′) else ϕ(Q′)]]. Depending on the
fact that v appears or not as a bound name in P ′, we have two cases:

• if v /∈ bn(P ′): By applying [Comm], we have RD
 ψ(M) ⇒ l[[ϕ(P)]] ||
l[[ϕ(P ′){v/u}]] = N ′, and by the definition of ψ, we have ψ(N) = N ′.

• if v ∈ bn(P ′): We should apply first an alpha-conversion before the value
is communicated. This is done by using a fresh name [Z] such that by
applying the rule [Comm’] we get RD
 [Z]||ψ(M) ⇒ [[v]]||l[[ϕ(P)]] ||
l[[ϕ(P ′)(Z/v){v/u}]] = N ′. By the definition of ψ, we have ψ(N) = N ′.

Verification of Multi-agent Systems with Timeouts 147

• (Move0), (Put0) and (Get0): These cases are similar to the previous one, by
using the rules [Move], [Input0] and [Output0], respectively.

• (DMove): We have that M = l[[gotl′ then P]] and N = l[[got−t′
l′ then P]]. By

definition of ψ, we obtain ψ(M) = l[[(got l′) . ϕ(P)]]. By applying the rule
[tick] we get RD
 ψ(M) ⇒ l[[(got−t′

l′) . ϕ(P)]] = N ′. By definition of ψ,
we have ψ(N) = N ′.

• (DStop), (DPut) and (DGet): These cases are similar to the previous one, by
using also the rule [tick].

• The rest of the rules are simulated using the implicit constructors of Maude.

⇐: By induction on the derivation RD
 ψ(M) ⇒ ψ(N).

• [Comm]: We have ψ(M)= l[[aΔt!〈v〉 thenP else Q]] || l[[aΔt′
?(u) thenP ′ else Q′]]

and ψ(N) = l[[P]] || l[[P ′{v/u}]]. According to the definition of ψ, we get
M = l[[aΔt!〈v〉 then P1 else Q1]] || l[[aΔt′

?(u) then P ′
1 else Q′

1]], where
P = ϕ(P1) and Q = ϕ(Q1). By applying (Com), we get M −→ l[[P1]] ||
l[[Q1{v/u}]] = N ′. By definition of ψ, we have N = N ′.

• The other rules are treated in a similar manner.

4 Analyzing Timed Mobile Agents by Using Maude Tools

We have the translation of the high-level specification of the multi-agent systems
into real-time Maude rewriting system, and have also the operational correspon-
dence between their semantics. The TravelShop system presented in Example 1
can now be described in real-time Maude. The entire system looks like this:

eq TravelShop = home[[client(130 , 1)]]

|| travelshop[[agent(100 , 1) | update(60 , 1)]]

|| standard[[flightinfo(110 , special , 1)]]

|| special[[saleinfo(90 , bank , 1)]]

|| bank[[till(10 , 1)]] .

where, e.g., the client syntax in real-time Maude is:

ceq client(init , applyC)=

((go ^ 5 travelshop)

then ((flight ^ INF ? (standardoffer))

then ((go ^ 4 standardoffer)

then ((finfo2a ^ INF ? (p1))

then ((finfo2b ^ INF ? (specialoffer))

then ((go ^ 3 specialoffer)

then ((sinfo2a ^ INF ? (p2))

then ((sinfo2b ^ INF ? (paying))

then ((go ^ 6 paying)

then ((payc ^ INF ! < min(p1 , p2) >)

then ((go ^ 4 home)

then (client(sd(init,min(p1,p2)),applyC monus 1)))

else (stop)))

148 B. Aman and G. Ciobanu

else (stop))

else (stop)))

else (stop))

else (stop)))

else (stop)))

if applyC >= 1 .

Since the recursion operator cannot be directly encoded into real-time Maude,
we include for each recursion process appearing in TravelShop system a second
parameter saying how many times the process can be unfolded. For our example
this is 1 (but it could be any finite value).

Before doing any verification, we have the possibility in real-time Maude
to define the length of the time units performed by the whole system. For our
example we choose a time unit of length 1 by using the following command:

(set tick def 1 .)

When using the rewrite command (frew {TravelShop} in time < 38 .), the
Maude platform executes TravelShop by using the equations and rewrite rules
of RD as given in the previous section, and outputs the following result:

Timed fair rewrite {TravelShop} in Example with mode default time

increase 1 in time < 38

Result ClockedSystem :

{bank[[till(0,0)]]|| home[[client(70,0)]]|| special[[stop]]

|| special[[saleinfo(60,bank,0)]]

|| standard[[flightinfo(110,special,0)]]

|| travelshop[[agent(170,0)]]} in time 37

rewrites: 786514 in 404ms cpu (406ms real) (1946816 rewrites/second)

We use the real-time Maude platform to perform timed reachability tests, namely
if starting from the initial configuration of a system one can reach a given con-
figurations of the system before a time threshold. The real-time Maude is able
to provide answers to such inquires by searching into the state space obtained
into the given time framework for the given configuration. As we are interested
in searching the appearance of the given configuration within a time-framework,
the fact that multiple computational steps can be performed is marked by the
use of the =>*. Also, the annotation [n] bounds the number of performed com-
putational steps to n, thus reducing the possible state space.

(tsearch [2] {TravelShop} =>* {bank[[till(0,0)]]|| home[[client(70,0)]]

|| special[[stop]]||special[[saleinfo(60,bank,0)]]

|| standard[[flightinfo(110,special,0)]]

|| travelshop[[agent(170,0)]]} in time < 40 .)

Verification of Multi-agent Systems with Timeouts 149

The result of performing the above inquiry is:

Timed search [2] in Example

{TravelShop} =>* {bank[[till(0,0)]]|| home[[client(70,0)]]

|| special[[stop]]|| special[[saleinfo(60,bank,0)]]

|| standard[[flightinfo(110,special,0)]]

|| travelshop[[agent(170,0)]]}

in time < 40 and with mode default time increase 1 :

Solution 1

TIME_ELAPSED:Time --> 37

Solution 2

TIME_ELAPSED:Time --> 38

rewrites: 3684 in 24ms cpu (25ms real) (153500 rewrites/second)

Instead of searching for the entire reachable system, we can also search only for
certain parts of it: for instance, to check when the client remains with 70 cash
units in a given interval of time. This can be done by using the command:

(tsearch {TravelShop} =>* {home[[client(70,0)]] || X:System}

in time-interval between >= 22 and < 40 .)

The answer returns that there exists such a situation at time 22.

Timed search [1] in Example

{TravelShop} =>* {home[[client(70,0)]]|| X:System}

in time between >= 22 and < 40 and with mode default time increase 1 :

Solution 1

TIME_ELAPSED:Time --> 22 ; X:System --> bank[[(paya ^ 6 ! < 70 >) then

(till(0,0))else(till(70,0))]]|| special[[stop]]|| special[[saleinfo(60,

bank,0)]]|| standard[[flightinfo(110,special,0)]]|| travelshop[[(go ^

3 bank) then ((paya ^ INF ?(profit)) then ((go ^ 12 travelshop) then

(agent(profit + 100,0)))else(stop))]]

The real-time Maude tool allows also the following command to find the shortest
time to reach a desired configuration:

(find earliest {TravelShop} =>* {home[[client(70,0)]] || X:System} .)

It returns the same solution as the previous one, and tells that it was reached
in time 22.
If time is not relevant for such a search, we can use the untimed search command:

(utsearch [1] {TravelShop} =>* {home[[client(70,0)]] || X:System} .)

150 B. Aman and G. Ciobanu

5 Conclusion and Related Work

In the current paper we translated our high-level specifications of the multi-
agent systems with timeouts for migration and communication into an existing
rewriting engine able to execute and analyze timed systems. This translation
satisfies an operational correspondence result. Thus, such a translation is suitable
for analyzing complex multi-agent systems with timeouts in order to be sure that
they have the expected behaviours and properties. We analyze the multi-agent
systems with timeouts by using the real-time Maude software platform. The
approach is illustrated by an example.

The used high-level specification is given in a language forthcoming realistic
programming systems for multi-agent systems, a language with explicit locations
and timeouts for migration and communication. It is essentially a simplified ver-
sion of the timed distributed π-calculus [7]. It can be viewed as a prototyping
language of the TiMo family for multi-agent systems in which the agents can
migrate between explicit locations in order to perform local communications with
other agents. The initial version of TiMo presented in [5] lead to some exten-
sions; e.g., with access permissions in perTiMo [6], with real-time in rTiMo [2].
In [4] it was presented a Java-based software in which the agents are able to
perform timed migration just like in TiMo . Using the model checker Process
Analysis Toolkit (PAT), the tool TiMo@PAT [8] was created to verify timed
systems. In [16], the authors consider an UTP semantics for rTiMo in order to
provide a different understanding of this formalism. Maude is used in [17] to
define a rewrite theory for the BigTiMo calculus, a calculus for structure-aware
mobile systems combining TiMo and the bigraphs [12]. However, the authors
of [17] do not tackle the fresh names and recursion problems presented in our
current approach.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126,
183–235 (1994)

2. Aman, B., Ciobanu, G.: Real-time migration properties of rTiMo verified in
Uppaal. In: Hierons, R.M., Merayo, M.G., Bravetti, M. (eds.) SEFM 2013. LNCS,
vol. 8137, pp. 31–45. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-40561-7 3

3. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9 7

4. Ciobanu, G., Juravle, C.: Flexible software architecture and language for mobile
agents. Concurrency Comput. Pract. Experience 24, 559–571 (2012)

5. Ciobanu, G., Koutny, M.: Timed mobility in process algebra and Petri nets. J.
Logic Algebraic Program. 80, 377–391 (2011)

6. Ciobanu, G., Koutny, M.: Timed migration and interaction with access permissions.
In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 293–307. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-0 23

https://doi.org/10.1007/978-3-642-40561-7_3
https://doi.org/10.1007/978-3-642-40561-7_3
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/978-3-642-21437-0_23

Verification of Multi-agent Systems with Timeouts 151

7. Ciobanu, G., Prisacariu, C.: Timers for distributed systems. Electron. Not. Theor.
Comput. Sci. 164, 81–99 (2006)

8. Ciobanu, G., Zheng, M.: Automatic analysis of TiMo systems in PAT. In: IEEE
Computer Society Proceedings 18th Engineering of Complex Computer Systems
(ICECCS), pp. 121–124 (2013)

9. Goguen, J.A., Meseguer, J.: Order-sorted algebra I: equational deduction for multi-
ple inheritance, overloading, exceptions and partial operations. Theoret. Comput.
Sci. 105, 217–273 (1992)

10. Hessel, A., Larsen, K.G., Mikucionis, M., Nielsen, B., Pettersson, P., Skou, A.:
testing real-time systems using UPPAAL. In: Hierons, R.M., Bowen, J.P., Harman,
M. (eds.) Formal Methods and Testing. LNCS, vol. 4949, pp. 77–117. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78917-8 3

11. Meseguer, J.: Twenty years of rewriting logic. In: Ölveczky, P.C. (ed.) WRLA 2010.
LNCS, vol. 6381, pp. 15–17. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-16310-4 2

12. Milner, R.: The Space and Motion of Communicating Agents. Cambridge Univer-
sity Press, Cambridge (2009)

13. Ölveczky, P.C.: Real-time Maude and its applications. In: Escobar, S. (ed.) WRLA
2014. LNCS, vol. 8663, pp. 42–79. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-12904-4 3

14. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of real-time Maude.
Higher-Order Symbolic Comput. 20, 161–196 (2007)

15. Thati, P., Sen, K., Mart́ı-Oliet, N.: An executable specification of asynchronous π-
calculus semantics and may testing in Maude 2.0. Electron. Not. Theor. Comput.
Sci. 71, 261–281 (2004)

16. Xie, W., Xiang, S.: UTP semantics for rTiMo. In: Bowen, J.P., Zhu, H. (eds.) UTP
2016. LNCS, vol. 10134, pp. 176–196. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-52228-9 9

17. Xie, W., Zhu, H., Zhang, M., Lu, G., Fang, Y.: Formalization and verification of
mobile systems calculus using the rewriting engine Maude. In: IEEE 42nd Annual
Computer Software and Applications Conference, pp. 213–218 (2018)

https://doi.org/10.1007/978-3-540-78917-8_3
https://doi.org/10.1007/978-3-642-16310-4_2
https://doi.org/10.1007/978-3-642-16310-4_2
https://doi.org/10.1007/978-3-319-12904-4_3
https://doi.org/10.1007/978-3-319-12904-4_3
https://doi.org/10.1007/978-3-319-52228-9_9
https://doi.org/10.1007/978-3-319-52228-9_9

	Verification of Multi-agent Systems with Timeouts for Migration and Communication
	1 Introduction
	2 Syntax and Semantics of the High-Level Specification
	3 Translating the High-Level Specification into Maude
	4 Analyzing Timed Mobile Agents by Using Maude Tools
	5 Conclusion and Related Work
	References

