
Testing Real-Time Systems Using
Determinization Techniques for Automata

over Timed Domains

Moez Krichen1,2(B)

1 Faculty of Computer Science and Information Technology,
Al-Baha University, Al Bahah, Kingdom of Saudi Arabia

2 ReDCAD Research Laboratory, University of Sfax, Sfax, Tunisia
moez.krichen@redcad.org

Abstract. In this work, we are interested in Model-Based Testing for
Real-Time Systems. The proposed approach is based on the use of the
model of Automata over Timed Domains (ATD) which corresponds to
an extension of the classical Timed Automaton Model. First, we explain
the main advantages of adopting this new formalism. Then, we propose
a testing framework based on ATD and which is an extension of our
initial framework presented in previous contributions. We extend the
notion of correctness requirements (soundness and completeness) along
with the notion of timed input-output conformance relation (tioco) used
to compare between implementations and specifications. Moreover we
propose a determinization technique used to generate test cases. Finally,
several possible extensions of the present work are proposed.

Keywords: Model-Based Testing · Real-time systems · Automaton
over timed domains · Correctness · Conformance relation ·
Determinization

1 Introduction

In general MBT (model based testing) [12] consists in describing the behavior
of the SUT (system under test) using a particular adequate formalism and then
generating automatically test scenarios from the considered description with
respect to some coverage criteria adopting some selection methods. The following
step consists in executing the obtained case studies on the SUT and collecting the
corresponding verdicts in order to check whether the implementation conforms
to its specification or not.

This paper extends some of our previous contributions [5–9] about MBT for
real-time systems. Theses works were mainly built on the classical timed automa-
ton model [1]. Our new proposed approach is mainly inspired by [3,4]. We adopt
a new variant of timed automata called automata over timed domains (ATD).
This new variant allows to model a much wider class of timed systems and it is
equipped with a determinization technique which can be used for test generation.
c© Springer Nature Switzerland AG 2019
R. M. Hierons and M. Mosbah (Eds.): ICTAC 2019, LNCS 11884, pp. 124–133, 2019.
https://doi.org/10.1007/978-3-030-32505-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32505-3_8&domain=pdf
https://doi.org/10.1007/978-3-030-32505-3_8

Testing Real-Time Systems Using Determinization Techniques for ATD 125

Next in Sect. 2 we propose some definitions related to the proposed formalism.
In Sect. 3 we give details about the determinization procedure for ATD. Section 4
introduces the adopted testing framework. Finally Sect. 5 proposes some directions
for future work.

2 Definitions

2.1 Timed Domains and Updates

Let N (respectively R≥ 0) be the set of natural numbers (respectively the set
of non-negative real-numbers). Timed domains are introduced to represent the
progression of continuous entities. A timed domain Dom is made of a set of
values denoted by Val and a time transition function denoted by � encoding
the progression of those values when time evolves.

Definition 1. A timed domain is a tuple Dom = 〈Val,�〉 such that:

– Val is the set of values;
– �: Val×R≥0 → Val is the time transition function such that for all val ∈ Val

and all t, t′ ∈ R≥0 we have � (� (val, t), t′) =� (val, t + t′).

For simplicity we will write val
t� val′ instead of � (val, t) = val′. Moreover

we consider the particular symbol ⊥ which is assigned to the considered resource
as soon as it becomes inactive and no longer evolves over time (that is for each
t ∈ R≥0 we have ⊥ t� ⊥).

For the timed domains Dom = 〈Val,�Val〉 and Dom′ = 〈Val′,�Val′〉 we
associate the product

Dom × Dom′ = 〈ValProd,�Prod〉

such that
ValProd = (Val ∪ {⊥}) × (Val′ ∪ {⊥})

and for (val, val′) ∈ ValProd and t ∈ R≥0 we have

�Prod

(
(val, val′), t

)
=

(
�Val (val, t),�Val′ (val′, t)

)
.

For n ∈ N>1, we define the timed domain Domn inductively as

Dom1 = Dom

and
Domn+1 = Dom × Domn.

Moreover, for Dom = 〈Val,�Val〉 we define the timed domain

P(Dom) = 〈ValP ,�P〉

such that
ValP = P(Val)

and
∀V ∈ ValP · ∀t ∈ R≥0 : �P (V, t) = {�Val (val, t) | val ∈ V }.

126 M. Krichen

Definition 2. Consider a timed domain Dom = 〈Val,�〉 and an alphabet Δ.
An update set for Dom and Δ is a set U ⊆ Δ × ValVal.

For an update set U and a symbol δ ∈ Δ, we define the set

Uδ = {y ∈ ValVal | (δ, y) ∈ U}.

An element from Uδ is called a δ-update.1

Let Dom and Dom′ be two timed domains. Moreover consider two update
sets U (for Dom and Δ) and U ′ (for Dom′ and Δ). We then define the update
set U × U ′ with respect to Dom × Dom′ and Δ such that

U × U ′ =
{(

δ, (y, y′)
)

| δ ∈ Δ ∧ (y, y′) ∈ Uδ × U ′
δ

}
.

For n ∈ N>1, we define the update set Un for Domn and Δ inductively as

U1 = U

and
Un+1 = U × Un.

We also define the update set P(U) with respect to P(Dom) and Δ such that

P(U) =
{(

δ,Y
)

∈ Δ × P(Val)P(Val) | ∀V ⊆ Val · Y(V) =
⋃

(y,val)∈Uδ×V

{y(val)}
}
.

2.2 Automata over Timed Domains (ATD)

Definition 3. Consider a timed domain Dom = 〈Val,�〉 and an update set U
for Dom over Δ. An automaton on Dom and U is a tuple A = 〈S, sini, vini, E, T 〉
where:

– S is a finite set of states;
– sini ∈ S is the initial state;
– valini ∈ Val is the initial value;
– E ⊆ S × Val × U × S is the set of edges;
– T ⊆ S is the set of terminal states.

For the automaton over timed domains (ATD) A over Dom and U , we con-
sider the set CA = S × Val called the set of configurations of A. The ATD A
yiels a timed labeled transition system (TLTS)

LA = 〈CA, cini
A ,→A〉

where cini
A is the initial configuration of A such that

cini
A = (sini, valini)

and
→A= (t→A)t∈R≥0 � (

δ,y−→A)(δ,y)∈U

1 Or simply an update.

Testing Real-Time Systems Using Determinization Techniques for ATD 127

such that

– (s, val) t→A (s′, val′) if and only if s = s′ and val
t� val′ ;

– (s, val)
δ,y−→A (s′, val′) if and only if (s, val, (δ, y), s′) ∈ E and val′ = y(val).

Similarly, the ATD A yiels an observable timed labeled transition system
(OTLTS)

OLA = 〈CA, cini
A ,−→→A〉

where
−→→A= (t−→→A)t∈R≥0 � (δ−→→A)δ∈Δ

such that

– (s, val) t−→→A (s′, val′) if and only if (s, val) t→A (s′, val′) ;

– (s, val) δ−→→A (s′, val′) if and only if ∃y ∈ ValVal : (s, val)
δ,y−→A (s′, val′).

The first type of transitions is called timed transitions and the second type
discrete transitions. For (s, val) ∈ CA and μ ∈ R≥0 � Δ, we write (s, val)

μ−→→A
if there exists (s′, val′) ∈ CA such that (s, val)

μ−→→A (s′, val′).

2.3 Finitely Representable ATD

A set of guards is a set G ⊆ P(Val). For δ ∈ Δ, a G-guarded update for δ is a
couple (G,Γ) ∈ G × P(Uδ). For I ⊆ N, consider ΨI = {(Gi,Γi) | i ∈ I} a set of
G-guarded updates for δ. Also consider A = 〈S, sini, valini, E, T 〉 an automaton
on Dom and U . A pair of states (s, s′) of A is said to be compatible with ΨI if
the two following conditions hold:

– ∀ i ∈ I.∀ val ∈ Gi.∀ y ∈ Γi : (s, val, (δ, y), s′) ∈ E ;
– ∀ (s, val, (δ, y), s′) ∈ E.∃ i ∈ I : v ∈ Gi ∧ y ∈ Γi .

Definition 4. The ATD A is said to be finitely representable using G if for
every pair of states (s, s′) of A and for every δ ∈ Δ, there is a finite set Ψ of
G-guarded updates for δ, such that (s, s′) is compatible with Ψ .

2.4 Deterministic ATD (DATD)

Consider the ATD A = 〈S, sini, valini, E, T 〉 on Dom and U . Let (s, v) be a
possible configuration of A. A timed trace from (s, val) is a sequence ttr =
(si, vali)0≤i≤n such that:

– (s0, val0) = (s, val) ;
– ∀1 ≤ i ≤ n.∃wi ∈ R≥0 � Δ : (si, vali)

wi−→→A (si+1, vali+1).

The timed trace ttr is said to be produced by the timed word tw = (wi)1≤i≤n.
In this case we write (s, val) tw−→→A (sn, valn) and (s, val) tw−→→A . The duration
of tw is defined as follows

Duration(tw) =
∑

1≤i≤n

|wi|

128 M. Krichen

where

|wi| =

{
wi ifwi ∈ R≥0

0 otherwise

that is Duration(tw) denotes the complete amount of time consumed during the
execution of the timed word tw.

In general given a timed word tw ∈ (R≥0 � Δ)∗, the set TTrA((s, val), tw)
stands for the set of timed traces produced by tw starting from (s, val).

Definition 5. The ATD A is said to be deterministic if for any timed word
tw ∈ (R≥0�Δ)∗ the cardinality of TTrA((sini, valini), tw) is less or equal to one.

For a positive integer n, we say that the timed word tw ∈ (R≥0 � Δ)n is
accepted by the ATD A if there is a timed trace ttr = (si, vali)0≤i≤n such that
ttr ∈ TTrA((sini, valini), tw) and sn+1 ∈ T (i.e. sn+1 is a terminal state of
A). In this case all the configurations (si, vali) are said to be reachable. The
set of accepted timed words by A is denoted Lang(A) and the set of reachable
configurations is denoted Reach(A).

3 Determinization of Non-Deterministic ATD (NDATD)

Consider the (possibly) non-deterministic ATD A = 〈S, sini, valini, E, T 〉 on
D and U and let Δ be the alphabet corresponding to the update set U . For
simplicity we assume that

S = {s1, · · · , sp}
such that p ∈ N>0 and sini = s1. For every state s ∈ S, we let index(s) denote
the index of s. That is if s = si then index(s) = i. For each 1 ≤ i ≤ p, we consider
the set V ali ⊆ Val which corresponds to the set of values corresponding to the
state si.

For V = (Vi)1≤i≤p ∈ P(Val)p we consider the set

SV = {s ∈ S | Vindex(s) �= ∅}

which is the group of states the system may occupy when the values for the
different states are given by V.

For δ ∈ Δ and 1 ≤ i ≤ j ≤ p, we associate the set

λi→j
δ = {(val, y) ∈ Val × Uδ | (si, val, (δ, y), sj) ∈ E}

which corresponds the different ways allowing to move from state si to state sj .
We also define

λ→j
δ = (λi→j

δ)1≤i≤p

which in turn records all the ways which allow to reach state sj starting from
any other state of the ATD A.

Testing Real-Time Systems Using Determinization Techniques for ATD 129

For the considered letter δ and each λi→j
δ , we associate the successor function

succδ,λi→j
δ

: Val → P(Val)

such that for v ∈ Val we have

succδ,λi→j
δ

(val) = {y(val) | (val, y) ∈ λi→j
δ }

which collects all possible obtained values of val after executing instructions in
λi→j

δ .
In a natural way we extend succδ,λi→j

δ
to elements from P(V)al and we define

the function
Succδ,λi→j

δ
: P(Val) → P(Val)

such that for V ⊆ Val we have

Succδ,λi→j
δ

(V) =
⋃

val∈V

succδ,λi→j
δ

(val)

which this time collects the possible obtained values of all elements in V after
executing instructions in λi→j

δ .
Moreover we define the function

Succδ,λ→j
δ

: P(Val)p → P(Val)

such that for V = (Vi)1≤i≤p ∈ P(Val)p we have

Succδ,λ→j
δ

(V) =
⋃

1≤i≤p

Succδ,λi→j
δ

(Vi)

which aggregates the possible updated values of V1, · · · , Vp following respectively
the instructions in δ1→j , · · · , δp→j .

Furthermore, we define the function

Succδ,A : P(Val)p → P(Val)p

such that for Val ∈ P(Val)p we have

Succδ,A(V) =
(
Succδ,λ→1

δ
(V), · · · ,Succδ,λ→p

δ
(V)

)

which can be seen as the successor of V after the execution of δ.

Lemma 1. Let V = (Vi)1≤i≤p ∈ P(Val)p and V′ = (V ′
i)1≤i≤p = Succδ,A(V).

Then for every s′ ∈ S and v′ ∈ V:

val′ ∈ V ′
index(s′) ⇔ ∃(s, val, (δ, y), s′) ∈ E s.t. v ∈ Vindex(s) and v′ = y(val).

130 M. Krichen

Finally we define the update set Pp(U) with respect to P(D)p and Δ such
that2

Pp(U) = {(δ,Succδ,A) | δ ∈ Δ}.

We now have all the ingredients to define a deterministic ATD (DATD)

Adet = 〈Sdet, s
det
ini , valdet

ini , Edet, Tdet〉

on P(D)p and Pp(U) which is equivalent to the considered NDATD A. The
proposed DATD Adet is defined as follows:

– Sdet = P(S);
– sdet

ini = {sini};
– valdet

ini =
(
{valini}, ∅, · · · , ∅

)
∈ P(V)p;

– Edet is to the set of transitions (SV,V, (δ,Succδ,A), S′) such that V ∈ P(Val)p

and S′ = SV′ with V′ = Succδ,A(V);
– Tdet = {S′ ⊆ S | S′ ∩ T �= ∅}.

4 Testing Framework

4.1 ATD with Inputs and Outputs (ATDIO)

Consider the ATD A = 〈S, sini, vini, E, T 〉 on D and U and let Δ be the alphabet
corresponding to the update set U . We assume that the alphabet Δ is split
into two disjoint sets namely ΔI a set of inputs and ΔO a set of outputs (i.e.,
Δ = ΔI � ΔO)3. In this case the ATD A is called an ATD with inputs and
outputs (ATDIO). Moreover for we suppose that all the states of A are terminal
(i.e., T = E).

The ATDIO A is said to be input-enabled if for any reachable configuration
conf ∈ Reach(A) and any input symbol inp ∈ ΔI we have conf

inp−−→→A .
Moreover the considered ATDIO is called non-blocking if for any reachable

configuration conf ∈ Reach(A) and any duration t ∈ R≥0 there exists tw ∈
(R≥0 � ΔO)∗ such that conf

tw−→→A and Duration(tw) = t.
Next we suppose that the specification of the system under test and the

implementation are given as two non-blocking ATDIO Sp and Im respectively.4

4.2 Parallel Composition of OTLTS with Inputs and Outputs

Given two OTLTS with inputs and outputs LTS1 and LTS2, we define the par-
allel product LTS1||LTS2. For i = 1, 2, LTSi = (Qi, q

i
0,Δ

i
I ∪ Δ(3−i)→i,Δ

i
O ∪

Δi→(3−i), T
i
d, T

i
t). The sets Δ1

I , Δ1
O, Δ2

I , Δ2
O, Δ1→2 and Δ2→1 are pairwise

disjoint. The two OTLTS synchronize on shared common actions Δ1↔2 =
Δ1→2 ∪ Δ2→1 and time delays. The parallel product of the two OTLTS is

LTS1||LTS2 = (Q, (q1
0 , q2

0),ΔI,ΔO, Td, Tt)
2 Note that Pp(U) is not the same as P(U)p.
3 � stands for the disjoint union symbol.
4 We do not assume Im is known.

Testing Real-Time Systems Using Determinization Techniques for ATD 131

such that
ΔI =

⋃

i=1,2

Δi
I , ΔO =

⋃

i=1,2

Δi
O

and Q, Td and Tt are the smallest groups of elements such that:

– (q1
0 , q2

0) ∈ Q;
– For (q1, q2) ∈ Q and δ ∈ R:

q1 < aq′
1 ∈ T 1

d ⇒ (q′
1, q2) ∈ S ∧ (q1, q2) < a(q′

1, q2) ∈ Td;

– For (q1, q2) ∈ Q and a ∈ Δ1
I ∪ Δ1

O ∪ {τ1}:

q1 < aq′
1 ∈ T 1

d ⇒ (q′
1, q2) ∈ S ∧ (q1, q2) < a(q′

1, q2) ∈ Td;

– For (q1, q2) ∈ Q and a ∈ Δ2
I ∪ Δ2

O ∪ {τ2}:

q2 < aq′
2 ∈ T 2

d ⇒ (q1, q
′
2) ∈ S ∧ (q1, q2) < a(q1, q

′
2) ∈ Td;

– For (q1, q2) ∈ Q and a ∈ Δ1↔2:

q1 < aq′
1 ∈ T 1

d ∧ q2 < aq′
2 ∈ T 2

d ⇒ (q′
1, q

′
2) ∈ Q ∧ (q1, q2) < τa(q′

1, q
′
2) ∈ Td.

4.3 Conformance Relation

Given a ATDIO A and a timed word tw ∈ (R≥0 � Δ)∗, A after tw is the set of
configurations of A that can be reached after the execution of tw. Formally:

A after tw = {conf ∈ CA | cA
ini

tw−→→A conf}.

Given configuration conf ∈ CA, out(conf) is the set of all observations (either
outputs or the elapsing of time) that may happen when the system is at configu-
ration conf . The definition is extended in a natural way to a set of configurations
Conf . Formally:

out(conf) = {μ ∈ R≥0 � ΔO | conf
μ−→→A } , out(Conf) =

⋃

conf∈Conf

out(conf).

The definition of the relation tioco [10,11] is as follows:

Im tioco Sp iff ∀tw ∈ Lang(Sp) : out(Im after tw) ⊆ out(Sp after tw).

The relation indicates that the implementation Im conforms to the specification
Sp if and only if for any timed word tw of Sp, the set of outputs (including time
elapse) of Im after the execution of tw is a subset of the set of outputs that can
be generated by Sp.

132 M. Krichen

4.4 Timed Test Cases

A timed test case for the specification Sp over Δτ is a total function

TTest : (R≥0 � Δ)∗ → ΔI ∪ {WT,PS,FL}.

TTest(tw) indicates the action that must executed by the tester once it
observes tw. If TTest(tw) = inp ∈ ΔI then the tester produces input inp.
If TTest(tw) = WT then the tester lets time elapse (waits). If TTest(tw) ∈
{PS,FL} then the tester emits a verdict and stops.

The execution of TTest on Im may be seen as the parallel composition of
the OTLTS with inputs and outputs defined by TTest and Im. The product
TIOLTS is denoted by Im‖TTest. In a formal fashion, we announce that the
implementation Im passes TTest, denoted Im passes TTest, if state FL can not
be reached in Im‖TTest. We declare that the implementation passes (respec-
tively fails) the test suite T T if it passes all tests (respectively fails at least one
test) in T T . T T is said to be sound with respect to Sp if

∀Im : Im tioco Sp ⇒ Im passes T T .

Similarly T T is said to be complete with respect to Sp if

∀Im : Im passes T T ⇒ Im tioco Sp.

Our goal it then to produce test suites which are both sound and complete.
More precisely, we aim to generate timed tests in the form of deterministic
ATDIO and which are finitely representable. For that purpose we need to use
the determinization technique proposed in Sect. 3.

5 Future Work

The work proposed in this paper is at its beginning. In the future we need to
work on many aspects:

– First, we need to extend the presented framework to the case where the specifi-
cation of the SUT is given as a product of ATDIO and not simply one ATDIO.
In this way we can deal with distributed and multi-components systems.

– Second, we should find a way which guarantees that the generated timed tests
are finitely representable so that we can store them and execute them later
on. For that, we need to use some approximation techniques based on game
theory techniques like the ones proposed in [2].

– Third, we need to use some coverage and selection techniques which allow to
reduce the size of generated test cases and to efficiently deal the state explosion
problem usually encountered when following model-based approaches.

Testing Real-Time Systems Using Determinization Techniques for ATD 133

References

1. Alur, R., Dill, D.: The theory of timed automata. In: de Bakker, J.W., Huizing, C.,
de Roever, W.P., Rozenberg, G. (eds.) REX 1991. LNCS, vol. 600, pp. 45–73.
Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0031987

2. Bertrand, N., Stainer, A., Jéron, T., Krichen, M.: A game approach to determinize
timed automata. Formal Methods Syst. Des. 46(1), 42–80 (2015)

3. Bojańczyk, M., Lasota, S.: A machine-independent characterization of timed lan-
guages. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP
2012. LNCS, vol. 7392, pp. 92–103. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-31585-5 12

4. Bouyer, P., Jaziri, S., Markey, N.: On the determinization of timed systems. In:
Abate, A., Geeraerts, G. (eds.) FORMATS 2017. LNCS, vol. 10419, pp. 25–41.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65765-3 2

5. Krichen, M.: A formal framework for conformance testing of distributed real-time
systems. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol.
6490, pp. 139–142. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17653-1 12

6. Krichen, M.: A formal framework for black-box conformance testing of distributed
real-time systems. Int. J. Crit. Comput. Based Syst. 3(1/2), 26–43 (2012). https://
doi.org/10.1504/IJCCBS.2012.045075. http://dx.doi.org/10.1504/IJCCBS.2012.
045075

7. Krichen, M., Tripakis, S.: Black-box conformance testing for real-time systems. In:
Graf, S., Mounier, L. (eds.) SPIN 2004. LNCS, vol. 2989, pp. 109–126. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24732-6 8

8. Krichen, M., Tripakis, S.: Real-time testing with timed automata testers and cov-
erage criteria. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004.
LNCS, vol. 3253, pp. 134–151. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-30206-3 11

9. Krichen, M., Tripakis, S.: An expressive and implementable formal framework
for testing real-time systems. In: Khendek, F., Dssouli, R. (eds.) TestCom 2005.
LNCS, vol. 3502, pp. 209–225. Springer, Heidelberg (2005). https://doi.org/10.
1007/11430230 15

10. Krichen, M., Tripakis, S.: Interesting properties of the real-time conformance
relation tioco. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds.) ICTAC 2006.
LNCS, vol. 4281, pp. 317–331. Springer, Heidelberg (2006). https://doi.org/10.
1007/11921240 22

11. Krichen, M., Tripakis, S.: Conformance testing for real-time systems. Formal Meth-
ods Syst. Des. 34(3), 238–304 (2009). https://doi.org/10.1007/s10703-009-0065-1

12. Tretmans, J.: Testing concurrent systems: a formal approach. In: Baeten, J.C.M.,
Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 46–65. Springer, Heidelberg
(1999). https://doi.org/10.1007/3-540-48320-9 6. http://dl.acm.org/citation.cfm?
id=646734.701460

https://doi.org/10.1007/BFb0031987
https://doi.org/10.1007/978-3-642-31585-5_12
https://doi.org/10.1007/978-3-642-31585-5_12
https://doi.org/10.1007/978-3-319-65765-3_2
https://doi.org/10.1007/978-3-642-17653-1_12
https://doi.org/10.1007/978-3-642-17653-1_12
https://doi.org/10.1504/IJCCBS.2012.045075
https://doi.org/10.1504/IJCCBS.2012.045075
http://dx.doi.org/10.1504/IJCCBS.2012.045075
http://dx.doi.org/10.1504/IJCCBS.2012.045075
https://doi.org/10.1007/978-3-540-24732-6_8
https://doi.org/10.1007/978-3-540-30206-3_11
https://doi.org/10.1007/978-3-540-30206-3_11
https://doi.org/10.1007/11430230_15
https://doi.org/10.1007/11430230_15
https://doi.org/10.1007/11921240_22
https://doi.org/10.1007/11921240_22
https://doi.org/10.1007/s10703-009-0065-1
https://doi.org/10.1007/3-540-48320-9_6
http://dl.acm.org/citation.cfm?id=646734.701460
http://dl.acm.org/citation.cfm?id=646734.701460

	Testing Real-Time Systems Using Determinization Techniques for Automata over Timed Domains
	1 Introduction
	2 Definitions
	2.1 Timed Domains and Updates
	2.2 Automata over Timed Domains (ATD)
	2.3 Finitely Representable ATD
	2.4 Deterministic ATD (DATD)

	3 Determinization of Non-Deterministic ATD (NDATD)
	4 Testing Framework
	4.1 ATD with Inputs and Outputs (ATDIO)
	4.2 Parallel Composition of OTLTS with Inputs and Outputs
	4.3 Conformance Relation
	4.4 Timed Test Cases

	5 Future Work
	References

