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Abstract. Register automata (RA) are a computational model that
can handle data values by adding registers to finite automata. Recently,
weighted register automata (WRA) were proposed by extending RA so
that weights can be specified for transitions. In this paper, we first inves-
tigate decidability and complexity of decision problems on the weights
of runs in WRA. We then propose an algorithm for the optimum run
problem related to the above decision problems. For this purpose, we
use a register type as an abstraction of the contents of registers, which
is determined by binary relations (such as =, <, etc.) handled by WRA.
Also, we introduce a subclass where both the applicability of transition
rules and the weights of transitions are determined only by a register
type. We present a method of transforming a given WRA satisfying the
assumption to a weighted directed graph such that the optimal run of
WRA and the minimum weight path of the graph correspond to each
other. Lastly, we discuss the optimal run problem for weighted timed
automata as an example.

1 Introduction

There have been many extensions of finite automata that can manipulate data
values. Among them, register automata (abbreviated as RA) introduced in [12]
have the advantages that important decision problems including membership
and emptiness are decidable and the class of languages accepted by RA is closed
under standard language operations except complementation. In a k-RA, k reg-
isters are associated with each state. An input is a finite sequence of pairs of
a symbol from a finite alphabet and a data value from an infinite set. Each
transition can compare the contents of the registers and the current input data
value and if this test succeeds, the input data value is loaded to the registers
specified by the transition and the state is changed. The complexity of decision
problems has been analyzed [11,18]. Also, [13] points out that RA is a good
formal model for querying structured data such as XML documents. Recently,
weighted RA was proposed in [5] by incorporating weights into RA so that var-
ious quantities such as time, information flow and costs needed for transitions
and/or data manipulations can be formally represented as weights. A k-WRA is
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a k-RA equipped with weight functions for transitions and data manipulations.
The weight function for data manipulations can represent weights depending on
data values such as the cost depending on the elapsed time in timed automata. A
semiring is assumed to represent weights and to assign a weight to a switch (one
step move), a run (accepting sequence of switches), a data word in a system-
atic way. Closure properties of the data series recognized by WRA are discussed
and an MSO logical counterpart of WRA is proposed and studied in depth in
[5]. However, decidability and complexity of basic problems on WRA were not
discussed. Timed automata (abbreviated as TA) are well-known extensions of
finite automata that can deal with time by clock variables [3]. TA was extended
to weighted TA (WTA) and the optimal-reachability problems have been inves-
tigated [4,15]. In [5], TA and WTA are shown to be regarded as subclasses of
RA and WRA, respectively.

In this paper, we discuss optimal run problems and related decision problems
for WRA, motivated by [3]. First, we clarify the decidability and complexity
of the decision problems on weight computation and weight realizability. More
concretely, we show that the problem to decide whether there is a run of a given
data word whose weight takes a given value in a given WRA is NP-complete, and
the problem to compute the weight of a given data word, which is the sum of all
runs of the data word, in a given WRA is in PSPACE and #P-hard. We also show
that the following two weight realizability problems are both undecidable: the
problem to decide whether there is a run in a given WRA whose weight takes a
given value and the problem to decide whether there is a data word whose weight
in a given WRA equals to a given value. Note that the former two problems and
the latter two problems can be regarded as extensions of the membership and
emptiness problems for RA, which are known to be NP-complete and PSPACE-
complete, respectively.

Next, we utilize register type, which was introduced in [20] as an abstraction
of the contents of registers, by identifying the data values indistinguishable by
comparisons allowed in the guards of transitions. We show an equivalence trans-
formation from a given k-WRA to a k-WRA such that the exact register type
is annotated to each state by associating register types with states before and
after a transition. A WRA obtained by this transition decomposition by register
type is called a normal form WRA.

Then, we move to the main topic, the optimal run problem for WRA, which
is a problem to compute a run whose weight takes the infimum among all the
runs in a given WRA. The idea is simple and similar to the one in [4]: A given
WRA is translated into a directed graph where a node stands for a state and an
edge between two nodes stands for switches between them where the weight of
the edge is the infimum of the weights of those switches. In order to determine
the weight of each edge, the infimum of the weights must be independent of the
contents of registers. However, this does not hold in general, unlike for WTA. To
overcome this issue, we introduce two reasonable assumptions: for each transi-
tion, the infimum of the weights of switches realized by the transition is uniquely
determined independent of the contents of registers (weighted simulation); and
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the above infimum can be computed when weighted simulation holds (weight
computability). These two assumptions are a weighted version of simulation and
progress proposed in [20]. For a given WRA satisfying the above two properties,
we can construct a directed graph as intended, and we can obtain an optimal
run by an existing graph algorithm that computes the minimum-weight path in
the constructed graph.

Finally, we discuss the optimal run problem for weighted timed automata
(WTA) as an example of the application of the proposed method. We focus on
the subclass of WRA obtained from WTA by the translation of [5]. Intuitively,
a register type corresponds to a clock region of TA [3]. Moreover, [4] shows that
there always exists an optimal (minimum weight) path that visits only boundary
regions and limit regions because all clock constrains of TA are linear. If we
restrict the register types to those corresponding to boundary regions and limit
regions, weighted simulation and weight computability hold where the directed
graph constructed in our paper corresponds to the subregion graph in [4].

Related Work. Register automata (RA) were proposed by Kaminsky and
Francez [12] as finite-memory automata where they show that the membership
and emptiness problems are decidable, and the class of languages recognized by
RA are closed under union, concatenation and Kleene-star. Later, the compu-
tational complexity of the above two problems are analyzed in [11,18]. In [10],
register context-free grammars (RCFG) as well as pushdown automata over an
infinite alphabet were introduced as extensions of RA and the equivalence of the
two models were shown. Properties of RCFG such as closure and complexity of
decision problems are investigated in depth in [10,19,20].

As extensions of finite automata other than RA, data automata [9], peb-
ble automata (PA) [16] and nominal automata (NA) [8] are known. Libkin and
Vrgoč [14] argue that RA is the only model that has efficient data complexity
for membership among the above mentioned formalisms. Neven et al. consider
variations of RA and PA, which are either one way or two ways, deterministic,
nondeterministic or alternating. They show inclusion and separation relation-
ships among these automata, FO(∼, <) and EMSO(∼, <), and give the answer
to some open problems including the undecidability of the universality problem
for RA [17].

Time-optimal reachability and the related and generalized problems for
weighed timed automata (WTA) have been investigated. The single-source opti-
mal reachability problem for WTA is solved by a branch-and-bound algorithm
in [7]. Alur et al. [4] solved the optimal reachability problem for TA, which
is more general than the single-source one, by introducing limited regions and
transforming a WTA to a weighted graph. The decision version of the optimal
reachability problem is shown to be PSPACE-complete in [15].

The existing study most related to this paper is Babari et al.’s [5,6], where
RA is extended to weighted RA (WRA), and properties including closure and
MSO logical characterizations are studied in depth as mentioned in the beginning
of this section. Note that WRA is different from cost register automata [2] where
data values and weights are not separated and the basic problems are undecidable
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even for very restricted subclass such as copyless cost register automata (CRA)
[1]. This paper partially answers to open problems and conjectures raised in [5]
about the decidability of the optimal run problem for WRA under reasonable
assumptions as well as the complexity of decision problems for WRA which are
counterparts of the membership and emptiness problems for models without
weights.

2 Definitions

Let B = {0, 1} be the set of truth values, N = {0, 1, . . .} be the set of natural
numbers and R≥0 be the set of nonnegative reals. For a natural number k ∈ N,
let [k] = {1, . . . , k}. By |β|, we mean the cardinality of β if β is a set and the
length of β if β is a finite sequence. Let Σ be a finite alphabet and D be an
infinite set of data values. We call w ∈ (Σ × D)+ a data word (over Σ and D).
For a finite collection R of binary relations over D, D = 〈D,R〉 is called a data
structure.

Intuitively, an automaton is equipped with a certain number of registers that
can store a data value. Formally, an assignment of data values to k registers
(abbreviated as k-register assignment or just assignment if k is irrelevant) is a
mapping θ : [k] → D. The collection of k-register assignments is denoted as Θk.
For a k-register assignment θ, θ(i)(i ∈ [k]) is the data value assigned to the i-th
register by θ. Let Fk denote the set of guard formulas (or simply, guards) defined
by ϕ := tt | xR

i | xR−1

i | inR | ϕ ∧ ϕ | ¬ϕ (i ∈ [k], R ∈ R). For an assignment θ,
a data value d ∈ D and a guard ϕ, the satisfaction relation (θ, d) |= ϕ is defined
inductively on the structure of ϕ as (θ, d) |= xR

i iff (θ(i), d) ∈ R, (θ, d) |= xR−1

i

iff (d, θ(i)) ∈ R, (θ, d) |= inR iff (d, d) ∈ R and the meaning of tt, ∧ and ¬ are
defined in the usual way. Define ff ≡ ¬tt, ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2).

Definition 1 ([12,13]). A k-register automaton (k-RA) over a finite alphabet
Σ and a data structure D is a tuple A = (Q,Q0, T,Qf ) where

– Q is a finite set of states,
– Q0, Qf ⊆ Q are sets of initial and final states, respectively,
– T ⊆ Q × Σ × Fk × 2[k] × Q is a set of state transitions. ��
Let A = (Q,Q0, T,Qf ) be a k-RA over Σ and 〈D,R〉. A state transition (or
transition) t = (q, a, ϕ, Λ, q′) ∈ T where q, q′ ∈ Q, a ∈ Σ,ϕ ∈ Fk, Λ ∈ 2[k]

is written as q →a
ϕ,Λ q′ and we denote by label(t) the second component a of

t. The description length of a k-RA A = (Q,Q0, T,Qf ) is defined as ‖A‖ =
|Q| + |T |max{(log |Q| + k) + ‖ϕ‖ | q →a

ϕ,Λ q′ ∈ T}, where ‖ϕ‖ is the description
length of ϕ, defined in a usual way.

For an assignment θ ∈ Θk, Λ ∈ 2[k] and a data value d ∈ D, the updated
assignment θ[Λ ← d] ∈ Θk is θ[Λ ← d](i) = d if i ∈ Λ and θ[Λ ← d](i) = θ(i)
otherwise. For a state q ∈ Q and an assignment θ ∈ Θk, (q, θ) is called an
instantaneous description (ID). For two IDs c = (q, θ) and c′ = (q′, θ′), if there
are d ∈ D, t = q →a

ϕ,Λ q′ ∈ T such that (θ, d) |= ϕ and θ′ = θ[Λ ← d], then
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c �t,d c′ is called a switch from c to c′ by t and d in A. The initial value of any
register is ⊥ (⊥ ∈ D). The initial ID and an accepting ID are c0 ∈ Q0 × ⊥k and
cf ∈ Qf × Θk, respectively. A run in A is a finite sequence of switches from the
initial ID to an accepting ID ρ = c0 �t1,d1 c1 �t2,d2 c2 · · · �tn,dn

cn. The label
of a run ρ is label(ρ) = (label(t1), d1) . . . (label(tn), dn) and ρ is called a run of
label(ρ) in A. For w ∈ (Σ × D)+, RunA(w) is the set of all runs of w in A.

We define L(A) = {w | RunA(w) �= ∅}, called the data language recognized
by A. A data language L ⊆ (Σ × D)+ is recognizable if there is an RA A such
that L = L(A).

Example 1. Let Σ = {a}, R = {<,=, >}. An example of 2-RA A1 is shown in
Fig. 1 where ⊥ = 0. For an input data word w, A1 loads any data value, say
di, in w to the first register nondeterministically by t2. After that, every time a
data value not equal to di comes, A1 stays at q1 by t3 or t4 until the same value
di comes, at which A1 moves to q2 by t5. In this way, A1 nondeterministically
chooses two positions having an identical data value di from the input data
word, and the data values between them are not equal to di. We have L(A1) =
{(a, d1) . . . (a,dn) ∈ (D × Σ)+ | i, j ∈ [n], i < j, di = dj and for k = i + 1, ..., j −
1, di �= dk}.

Fig. 1. RA A1

We will use notations Σ, D = 〈D,R〉 and S = (S,+, ·, 0, 1) to implicitly
denote a finite alphabet, a data structure and a semiring, respectively.

Definition 2 ([5]). A k-register weighted automaton (k-WRA) over Σ,D,S is
a tuple A = (Q,Q0, T,Qf ,wt) where

– (Q,Q0, T,Qf ) is a k-RA over Σ,D, called the base RA of A,
– wt = (wtt,wtd) where wtt : T → S and wtd : (T × [k]) → ((D × D) → S). ��
Let A = (Q,Q0, T,Qf ,wt) be a k-WRA as above. wtt(t) represents the weight of
a transition t ∈ T . wtd(t, j) is the weight of the j-th register at a transition t ∈ T .
More precisely, wtd(t, j)(θ(j), d) represents the weight needed for manipulating
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the j-th register for a switch (q, θ) �t,d c′. The weight of a switch c �t,d c′ is
defined as

wt((q, θ) �t,d c′) =
k∏

j=1

wtd(t, j)(θ(j), d) · wtt(t).

A run in A is just a run in the base RA of A. The weight of a run ρ = c0 �t1,d1

c1 �t2,d2 c2 · · · �tn,dn
cn in A is defined as

wt(ρ) =
n∏

i=1

wt(ci−1 �ti,di
ci).

We assume that there are constants W1,W2 ∈ R≥0 such that for any t ∈ T , wtt(t)
can be computed in W1 time and for t ∈ T, j ∈ [k], d1, d2 ∈ D, wtd(t, j)(d1, d2)
can be computed in W2 time. We define the description length of a k-WRA A
as ‖A‖ = ‖Ab‖ where Ab is the base RA of A.1

A data series over Σ, D and S is a mapping U : (Σ × D)+ → S. The
data series recognized by a WRA A is the data series [[A]] defined as [[A]](w) =∑

ρ∈RunA(w) wt(ρ) for each w ∈ (Σ × D)+. A data series U : (Σ × D)+ → S is
recognizable if there is a WRA that recognizes U .

Example 2. Let Σ = {a}, D = 〈N, {<,=, >}〉, and the semiring Rtrpc = (R≥0 ∪
{∞},min,+,∞, 0), known as a tropical semiring, where min acts as the addi-
tion and + acts as the multiplication of the semiring. Let A2 be 2-WRA that
has A1 of Example 1 as its base RA. The weight functions wt = (wtt,wtd) are
defined as: wtt(t3) = 1 and wtt(t) = 0 for every transition t other than t3, and
wtd(t, j)(d, d′) = 0 for every argument. A2 nondeterministically chooses two posi-
tions having an identical data value di and counts the data values greater than
di between them by t3. The data series recognized by A2 is such that for w ∈
(Σ × D)+, [[A2]](w) = min{the number of d in di+1, · · · , dj−1 such that d > di |
w = (a, d1) . . . (a,dn), i, j ∈ [n], i < j, di = dj and for k = i+1, ..., j −1, di �= dk}.

3 Decision Problems

In this section, we analyze the computational complexity of the following prob-
lems for WRA. The results are summarized in Table 1.

Definition 3 (The weight computation problems)
Input: a k-WRA A over Σ, D, S and a data word w ∈ (Σ × D)+. For the run
weight computation problem, a weight s ∈ S is also given.
(The run weight computation problem) ∃ρ ∈ RunA(w).wt(ρ) = s?
(The data word weight computation problem) Compute [[A]](w).
The input size of both problems is ‖A‖ + |w|.
1 We do not include the size of the weight part because of the assumption that the
computation of the weights of a single transition and a single register can be done
in constant time.
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Table 1. Complexity results

Problem Complexity

Run weight computation NP-complete

Data word weight computation PSPACE-solvable, #P-hard (#P-complete when
a weight is a natural number, a transition weight
function is bounded and every register
manipulation weight is 1)

Run weight realizability Undecidable

Data word weight realizability Undecidable

Definition 4 (The weight realizability problems)
Input: a k-WRA A over Σ, D, S and a weight s ∈ S
(The run weight realizability problem) ∃w.∃ρ ∈ RunA(w).wt(ρ) = s?
(The data word weight realizability problem) ∃w.[[A]](w) = s?
The input size of both problems is ‖A‖.
Theorem 1. The run weight computation problem is NP-complete.

Proof. Assume we are given a k-WRA A = (Q,Q0, T,Qf ,wt) over Σ, 〈D,R〉,
S = (S,+, ·, 0, 1), a data word w ∈ (Σ × D)+ and s ∈ S.

(NP solvability). By the assumption on complexity of computing weights of
WRA, wt(c �t,d c′) can be computed in O(W1 + W2k) time. Thus, for any run
ρ ∈ RunA(w), the weight wt(ρ) can be computed in O((W1 + W2k)|w|) time.
Hence, we can nondeterministically choose a run of w and test whether wt(ρ) = s
in polynomial time.

(NP-hardness). We restrict the problem as:

For every transition t ∈ T , j ∈ [k] and d1, d2 ∈ D, wtt(t) =
wtd(t, j)(d1, d2) = 1. Also s = 1.

Then, for any switch c �t,d c′, we have wt(c �t,d c′) = 1. This implies that
for every run ρ ∈ RunA(w), we have wt(ρ) = 1 = s. Therefore, the problem
restricted in this way asks for an input k-WRA A and a data word w, whether
∃ρ ∈ RunA(w). The k-WRA in this setting can be regarded as a RA (standard
register automata without weight) and the above problem is equivalent to the
membership problem that asks whether a given data word w is accepted by
A regarded as an RA. Hence the run weight computation problem is NP-hard
because the membership problem for RA is NP-complete [13]. ��
To discuss the complexity of the data word computation problem, we use the
complexity class #P, the class of function problems that can be solved by count-
ing the number of accepting runs of a polynomial-time non-deterministic Turing
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machine. An example of #P-complete problem is #SAT: How many different
variable assignments will satisfy a given general boolean formula?

Let N = (N,+, ·, 0, 1) be the semiring of natural numbers.

Lemma 1. The data word weight computation problem of k-WRA A =
(Q,Q0, T,Qf , (wtt,wtd)) over Σ, 〈D,R〉 and N is #P-hard even if wtt(t) =
wtd(t, j)(d, d′) = 1 for every t ∈ T, j ∈ [k], d, d′ ∈ D.

Proof. We reduce #2SAT problem, which is known to be #P-complete, to
the data word weight computation problem. Let φ = c1 ∧ c2 ∧ · · · ∧ cm be
a given 2-CNF, where each ci (i ∈ [m]) is a clause consisting of two liter-
als and z1, . . . , zn are Boolean variables appearing in φ. We construct n-WRA
Aφ = (Q,Q0, T,Qf , (wtt,wtd)) over Σ, 〈D,R〉,N and input data word w from
φ as follows. Let Σ = {a}, D be an infinite set containing � and ⊥, and let
R = {=, �=} where = and �= are (an extension of) the equality on Boolean val-
ues (logical equivalence) and its negation, respectively. Note that ⊥ is the initial
value. The values of all weight functions wtt and wtd are defined as 1 ∈ N. Let
Q = {qi | i ∈ [n]} ∪ {qk,l | k ∈ [m], l ∈ [2]} ∪ {q′

k | k ∈ [m]} ∪ {qr, qf}, Q0 = {q1}
and Qf = {qf}. The input word is w = (a,�) · · · (a,�) of length |w| = n + 2m.
We construct the following transitions and add them to T : The first group of
transitions nondeterministically simulates an assignment of a Boolean value to
each zi (i ∈ [n]). If xi is updated to be �, it means zi is assigned tt, and other-
wise, it means zi is assigned ff .

q1 →a
tt,{1} q2, q1 →a

tt,∅ q2, . . . , qn →a
tt,{n} q1,1, qn →a

tt,∅ q1,1.

The second group of transitions deterministically evaluates the truth value of
each clause ck = yk,1 ∨ yk,2 (k ∈ [m]).

qk,1 →a
x=

i ,∅ q′
k, qk,1 →a

x�=
i ,∅ qk,2 if yk,1 = zi,

qk,1 →a
x�=

i ,∅ q′
k, qk,1 →a

x=
i ,∅ qk,2, if yk,1 = zi,

qk,2 →a
x=

i ,∅ qk+1,1, qk,2 →a
x�=

i ,∅ qr, if yk,2 = zi,

qk,2 →a
x�=

i ,∅ qk+1,1, qk,2 →a
x=

i ,∅ qr, if yk,2 = zi,

q′
k →a

tt,∅ qk+1,1

where qm+1,1 is the final state qf . The state qr is a dead state with no outgo-
ing transition. The states q′

k are used to skip the evaluation of literals when a
preceding literal evaluates to � in the clause.

For a truth-value assignment α : {z1, . . . , zn} → {tt,ff }, let θα ∈ Θn be
θα(xi) = � if α(zi) = tt and θα(xi) = ⊥ otherwise. Assume Aφ is fed with the
input data word w = (a,�) . . . (a,�) of length n + 2m. After conducting the
first group of transitions, the assignment of Aφ becomes θα for some truth-value
assignment α. Because the second group of transitions deterministically verifies
whether φ evaluates to tt without register update, that part of the run is uniquely
determined. In other words, there is a one-to-one correspondence between the
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set of maximal sequences of switches of w in Aφ and the set of assignments.
Therefore, a maximal sequence of switches of w in Aφ is a run ρ of w if and only
if φ is satisfied by the truth-value assignment α corresponding to the assignment
θα obtained by ρ. ��
Lemma 2. The data word weight computation problem for k-WRA is PSPACE-
solvable. When the semiring is N , wtt is bounded and wtd(t, j)(d1, d2) = 1
for every t ∈ T and j ∈ [k] and d1, d2 ∈ D for a given k-WRA A =
(Q,Q0, T,Qf , (wtt,wtd)), the problem becomes #P-solvable.

Proof. PSPACE-solvability is easy to show. The weight of a run of an input data
word can be calculated in polynomial time by the proof of Theorem 1, and we
need additional polynomial space to store the sum of the weights of all runs of
the input data word.

Next, we discuss #P-solvability. From a k-WRA A = (Q,Q0, T,Qf , (wtt,
wtd)) over Σ, 〈D,R〉, N , we construct k-WRA A′ = (Q′, Q′

0, T
′, Q′

f , (wtt′,wtd′))
such that [[A′]] = [[A]] by dividing each run in A into several runs whose weights
are 1. For M = max{wtt(t) | t ∈ T}, we introduce new states q1, . . . , qM not
included in Q. Note that M is a constant by the assumption. The set of the
states of A′ is Q′ = {(q, qi) | q ∈ Q, i ∈ [M ]}, and the set of transitions is
T ′ = {(q, qi) →a

ϕ,Λ (q′, qj) | t = q →a
ϕ,Λ q′ ∈ T,wtt(t) = m, i ∈ [M ], j ∈ [m]}.

Also, let Q′
0 = {(qI , q1) | qI ∈ Q0}, and Q′

f = {(qf , qi) | qf ∈ Qf , i ∈ [M ]}. This
construction of A′ can be done in polynomial time. Therefore, the data word
weight computation problem is in #P under the given condition.

Theorem 2. Let A = (Q,Q0, T,Qf , (wtt,wtd)) be a k-WRA over Σ, 〈D,R〉,
N . If max{wtt(t) | t ∈ T} is uniformly bounded and wtd(t, j)(d1, d2) = 1 for
every t ∈ T , j ∈ [k] and d1, d2 ∈ D, then the data word weight computation
problem is #P-complete.

Proof. By Lemmas 1 and 2.

Theorem 3. The run weight realizability problem for k-WRA is undecidable
even if k = 1, all the values of weight functions are one and every relation of
the data structure is decidable.

Proof. We prove the theorem by a reduction from the Post correspondence
problem (PCP). Let I = 〈(u1, . . . , um), (v1, . . . , vm)〉 be a given instance of
PCP over Σ where ui, vi ∈ Σ∗ for i ∈ [m]. From I, we construct a 1-WRA
AI = ({q0, q, qf}, {q0}, T, {qf},wt) over {a}, 〈D,R〉,N where the data structure
〈D,R〉, the set T of transitions and the weight functions wt = (wtt,wtd) are
defined as follows.

– D = Σ∗×Σ∗ with ⊥ = (ε, ε) ∈ D as the initial value and R = {Ri | i ∈ [m]}∪
{EQ} where for x, y, x′, y′ ∈ Σ∗, (x, y)Ri(x′, y′) ⇔ (x′ = xui and y′ = yvi)
for i ∈ [m] and (x, y)EQ(x′, y′) ⇔ (x = y).

– T = {q0 →a

x
Ri
1 ,{1} q, q →a

x
Ri
1 ,{1} q | i ∈ [m]} ∪ {q →a

xEQ
1 ,∅ qf}.

– wtt(t) = wtd(t, 1)(d1, d2) = 1 for every t ∈ T , d1, d2 ∈ D.
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It is easy to see that I has a solution of PCP if and only if there is a run ρ of
some w ∈ ({a} × D)+ in AI such that wt(ρ) = 1.

Corollary 1. The data word weight realizability problem of k-WRA is undecid-
able even if k = 1, all the values of weight functions are one and every relation
of the data structure is decidable. ��
The above results imply that the realizability problems are already undecidable
for ordinary RA (w/o weights). This motivates us to introduce a subclass of
WRA for which the realizability problems and related optimization problems
are solvable while the weights make sense, which are given in Sect. 5.2.

4 Transition Decomposition by Register Type

In this section, we will define a normal form WRA. First, we introduce a register
type as a finite abstraction of assignments with respect to the relations in R of
a given data structure 〈D,R〉.
Definition 5 ([20]). A register type (of k registers) for a data structure 〈D,R〉
is an arbitrary function γ : ([k] × [k]) → (R → B). Let Γk denote the collection
of all register types of k registers. For an assignment θ ∈ Θk and a register type
γ ∈ Γk, if ∀i, j ∈ [k]∀R ∈ R.(γ(i, j)(R) = 1 ⇔ (θ(i), θ(j)) ∈ R) holds, we write
θ : γ and we say that the type of θ is γ. ��

Let A = (Q,Q0, T,Qf ,wt) be an arbitrary k-WRA. From A, we define
k-WRA A′ = (Q′, Q′

0, T
′, Q′

f ,wt′) as follows: Q′ = Q × Γk. Q′
0 = Q0 × {γ0}

where γ0 is defined as ∀R ∈ R[
(∀i, j ∈ [k].γ0(i, j)(R) = 1) ⇔ ((⊥,⊥) ∈ R)

]
.

Q′
f = Qf ×Γk. T ′ is the smallest set of transitions t′ = (p, γ) →a

ϕ′,Λ (q, γ′) where

t = p →a
ϕ,Λ q ∈ T , γ, γ′ ∈ Γk, ϕ′ = ϕ ∧ ∏

R∈R(
∏k

i=1 αR
i ∧ βR

i ) ∧ δR,
αR

i ∈ {xR
i ,¬xR

i }, βR
i ∈ {xR−1

i ,¬xR−1

i }, δR ∈ {inR,¬inR}, ϕ′ �≡ ff and
if θ ∈ Θk, d ∈ D, θ : γ, (θ, d) |= ϕ′, (p, θ) �t,d (q, θ[Λ ← d]) then
θ[Λ ← d] : γ′.

In the above definition, ϕ′ says that in addition to ϕ, whether the contents of
the i-th register and an input data value d satisfies R (resp. d is reflexive on
R) is exactly determined by αR

i and βR
i (resp. by δR). Furthermore, an input

data value is loaded to the registers specified by Λ when t′ is applied. Therefore,
if t ∈ T , γ ∈ Γk and ϕ′ are given, the transition belonging to T ′ is uniquely
determined. We write that transition as st,γ,ϕ′ . Finally, define wt′ = (wtt′,wtd′)
where for each t′ = st,γ,ϕ′ ∈ T ′, wtt′(t′) = wtt(t) and for j ∈ [k], wtd′(t′, j) =
wtd(t, j). This completes the definition of k-WRA A′.
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Example 3. Let k = 2, R = {R} and consider transition t = p →a
xR
1 ,{2} q and

register type γ such that γ(i, j)(R) = 1 ((i, j) = (1, 1), (1, 2), (2, 2)), γ(2, 1)(R) =
0. If we merge transitions whose target states are the same, then we have the
following four transitions:

(p, γ) →a

xR
1 ∧xR−1

1 ∧inR,{2} (q, γ(1)), (p, γ) →a

xR
1 ∧xR−1

1 ∧¬inR,{2} (q, γ(2)),

(p, γ) →a

xR
1 ∧¬xR−1

1 ∧inR,{2} (q, γ(3)), (p, γ) →a

xR
1 ∧¬xR−1

1 ∧¬inR,{2} (q, γ(4))

where

γ(i)(1, 2)(R) = 1, γ(i)(2, 1)(R) = 1 (i = 1, 2),

γ(i)(1, 2)(R) = 1, γ(i)(2, 1)(R) = 0 (i = 3, 4),

γ(i)(2, 2)(R) = 0 (i = 2, 4), γ(i)(j, j)(R) = 1 (otherwise).

Theorem 4. Let A = (Q,Q0, T,Qf ,wt) be an arbitrary k-WRA and A′ =
(Q′, Q′

0, T
′, Q′

f ,wt′) be the k-WRA obtained from A by the transition decompo-
sition by register type. Also let w = (a1, d1) · · · (an, dn) ∈ (Σ × D)+ be an arbi-
trary data word. For a run ρ = c0 �t1,d1 c1 �t2,d2 · · · �tn,dn

cn ∈ RunA(w), there
exists a run ρ′ = c′

0 �st1,γ0,ϕ′
1
,d1 c′

1 �st2,γ1,ϕ′
2
,d2 · · · �stn,γn−1,ϕ′

n
,dn

c′
n ∈ RunA′(w)

such that wt(ρ′) = wt(ρ). Conversely, for a run ρ′ ∈ RunA′(w), there exists a
run ρ ∈ RunA(w) such that wt(ρ) = wt(ρ′).

Proof. Consider a data word w and a run ρ stated in the lemma and assume
ci = (qi, θi), θi : γi for i ∈ {0} ∪ [n]. By the construction of T ′, there exists
a unique transition sti,γi−1,ϕ′

i
= (qi−1, γi−1) →ai

ϕ′
i,Λ

(qi, γi) ∈ T ′ such that
((qi−1, γi−1), θi−1) �sti,γi−1,ϕ′

i
,di

((qi, γi), θi) in A′ where ϕ′
i is determined by

whether (θi−1, di) |= xR
j , (θi−1, di) |= xR−1

j and (θi−1, di) |= inR hold or not
for j ∈ [k] and R ∈ R. If we concatenate the above switches, we obtain a run ρ′

of w in A′ and wt(ρ′) = wt(ρ).
Conversely, for i ∈ [n], let c′

i−1 �sti,γi−1,ϕ′
i
,di

c′
i be a switch in A′ where

sti,γi−1,ϕ′
i

= (qi−1, γi−1) →ai

ϕ′
i,Λ

(qi, γi) ∈ T ′. The transition of A corresponding
to sti,γi−1,ϕ′

i
∈ T ′ is exactly ti ∈ T . By the construction of T ′, (θi−1, di) |= ϕ′

i

implies (θi−1, di) |= ϕi. Therefore, ci−1 �ti,di
ci is a switch in A. The rest of the

proof is similar to the former case; we lift the obtained switches to the run. ��
A WRA obtained by the above transformation is called a normal form WRA.

5 The Optimal Run Problem

5.1 Definition of the Problem

We introduce the problem of computing the optimal (infimum) weight of the
runs from the initial ID to an accepting ID of a given WRA. We assume the
tropical semiring Rtrpc (see Example 2) because by Rtrpc we can represent the
minimum weight by the addition of the semiring. Of course, we could use the
max-tropical semiring (R ∪ {−∞},max,+,−∞, 0) instead.
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Definition 6 (The optimal run problem)
Input: a k-WRA A over Σ, 〈D,R〉,Rtrpc

Output: The infimum of {wt(ρ) | ∃w ∈ (Σ × D)+.ρ ∈ RunA(w)} ��
By Theorem 4 and the definition of the problem, the following property holds.

Corollary 2. Let A = (Q,Q0, T,Qf ,wt) be an arbitrary k-WRA and A′ =
(Q′, Q′

0, T
′, Q′

f ,wt′) be the normal form k-WRA obtained from A. The solutions
to the optimal run problem for A and A′ are the same. ��

Let A and A′ be as assumed in the above corollary. We will transform A′

to an edge-weighted directed graph G = 〈V,E〉 such that the solution of the
optimal run problem is equal to the weight of the minimum-weight path of G.
The difficulty lies in the requirement that we must construct G without knowing
an input data word w to A′ or assignments appearing in a run of w in A′. To
overcome this problem, we introduce two properties in the next subsection.

5.2 Weighted Simulation and Weight Computability

Let A = (Q,Q0, T,Qf ,wt) be an arbitrary k-WRA and A′ =
(Q′, Q′

0, T
′, Q′

f ,wt′) be the normal form k-WRA obtained from A. We say
that k-WRA A′ has weighted simulation property if every t′ = (p, γ) →a

ϕ′,Λ
(q, γ′) ∈ T ′ satisfies the following condition: for every θ ∈ Θk such that θ : γ,
inf{wt(((p, γ), θ) �t′,d ((q, γ′), θ[Λ ← d])) | d ∈ D, θ[Λ ← d] : γ′} takes a same
value2. Also, we say that k-WRA A′ has weight computability if the above infi-
mum, denoted as wt(t′), can be computed in polynomial time of ‖A‖. Weighted
simulation is a natural extension of the property of TA and WTA that the
infinite set of IDs can be divided into finite sets called clock regions such that
any IDs belonging to a same clock region are indistinguishable. The above two
properties are undecidable in general because a binary relation appearing in the
guard of a transition may be undecidable. Weighted simulation says that if two
assignments θ1, θ2 have a same register type γ, the infimum of the weights of
switches from (p, θ1) to (q, θ′

1) by t′ is the same as that from (p, θ2) to (q, θ′
2) by

t′. This property, together with weight computability, enables us to compute the
infimum of the weights from (p, γ) to (q, γ′) without knowing an assignment or
an input data value.

These assumptions also make the following two problems related to the weight
realizability problems decidable.

Definition 7 (The weight bounding problems)
Input: a k-WRA A over Σ, 〈D,R〉, Rtrpc and a weight s ∈ R≥0

(The run weight bounding problem) ∃w.∃ρ ∈ RunA(w).wt(ρ) ≤ s?
(The data word weight bounding problem) ∃w.[[A]](w) ≤ s?
The input size for both problems is ‖A‖.
2 If there is no such a switch (p, θ) �t′,d (q, θ[Λ ← d]) for any d ∈ D, we define the
infimum as ∞.
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Theorem 5. The run weight bounding problem for k-WRA over Σ, 〈D,R〉,
Rtrpc is PSPACE-complete if weighted simulation and weight computability hold.

Proof (PSPACE-solvability). Let A = (Q,Q0, T,Qf ,wt) be a k-WRA over Σ,
〈D,R〉 and S and s ∈ R≥0. Let A′ = (Q′, Q′

0, T
′, Q′

f ,wt′) be the normal form
k-WRA obtained from A. By weighted simulation, the number of IDs of A′ that
must be examined is not more than |Q′|(k + 1)k by a similar reason discussed
in [13]. Therefore, it is enough to check whether wt(ρ) ≤ s for every run ρ of
w whose length is at most |Q′|(k + 1)k. By the proof of Theorem 1, computing
the weight of a run can be done in polynomial time. Also, the space needed to
simulate a run of an input data word of length |Q′|(k+1)k is log(|Q′|(k+1)k) =
k log(k + 1) + log |Q′|. Because Q′ = Q × Γk holds, |Q′| ∈ O(|Q|2k2|R|). Hence,
the space complexity is O(k log k + log |Q|+ k2|R|), which is a polynomial order
of k, |Q| and |R|. Consequently, this problem can be solved in PSPACE.

(PSPACE-Hardness). As in the proof of NP-hardness in Theorem 1, we assume
the value of every weight function is 0. Then, for every data word w and every run
ρ ∈ RunA(w), wt(ρ) = 0. When the given semiring value is s = 0, the run weight
realizability problem is expressed as: for a given k-WRA A, ∃w,∃ρ ∈ RunA(w)?,
which is equivalent to the emptiness problem for k-RA. Because the emptiness
problem for RA is PSPACE-complete [13], the run weight bounding problem is
PSPACE-hard.

Theorem 6. The data word weight bounding problem of k-WRA over Σ,
〈D,R〉, Rtrpc is PSPACE-complete if weighted simulation and weight com-
putability hold.

Proof. Let A be a given k-WRA and s be a semiring value.

(PSPACE-solvability). We only need to take the sum of the weights of all the
runs of w in A to compute [[A]](w), which needs only O(1) additional space.
Therefore, this problem can be solved in PSPACE.

(PSPACE-hardness). The run weight bounding problem is PSPACE-complete
by Theorem 5, and so this problem is PSPACE-hard.

5.3 Transformation to a Directed Graph

We will present a transformation from a given k-WRA to an edge-weighted
directed graph when weighted simulation and weight computability hold. Let A
be a k-WRA over Σ, 〈D,R〉 and Rtrpc that satisfies weighted simulation and
weight computability and A′ = (Q′, Q′

0, T
′, Q′

f ,wt′) be the normal form k-WRA
obtained from A.

Construct the edge-weighted directed graph G = 〈V,E〉 where V and E are
the sets of nodes and edges respectively, where V = Q′ and E ⊆ V ×V ×T ′×R≥0

is defined as follows: For each transition st,γ,ϕ′ = (p, γ) →a
ϕ′,Λ (q, γ′) ∈ T ′ of

A′, compute wt(st,γ,ϕ′), which is possible by weighted simulation and weight
computability. If wt(st,γ,ϕ′) < ∞, add ((p, γ), (q, γ′), st,γ,ϕ′ ,wt(st,γ,ϕ′)) to E.
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For a path π in an edge-weighted directed graph, the weight of π is the sum
of the weights of the edges in π, denoted by wt(π).

Theorem 7. Let A and A′ be the WRA above, and A′ have weighted simulation
property and weight computability. Let G = 〈V,E〉 be the directed graph obtained
from A′ by the above construction. For a path π in G starting with the initial
state and ending with a final state of A′, there is a run ρ in A′ such that wt(ρ) =
wt(π). Conversely, for a run ρ in A′, there is a path π in G such that wt(π) =
wt(ρ).

Proof. Let π = e1e2 · · · en be a path in G starting with the initial state and
ending with a final state of A′ where ei ∈ E (i ∈ [n]). By the construction
of G, for the i-th edge ei = (vi−1, vi, si,mi) of π (i ∈ [n]), the third compo-
nent si can be written as si = sti,γi−1,ϕ′

i
= (pi−1, γi−1) →ai

ϕ′
i,Λ

(pi, γi) ∈ T ′

(p0 is the initial state and pn is a final state) and mi = wt(sti,γi−1,ϕ′
i
) =

inf{wt((pi−1, θi−1) �sti,γi−1,ϕ′
i
,di

(pi, θi−1[Λ ← di])) | di ∈ D} for some
θi−1 ∈ Θk such that θi−1[Λ ← di] : γi. Note that (p0, θ0) is the initial ID. By
weighted simulation, there is a run ρ = (p0, θ′

0) �st1,γ0,ϕ′
1
,d′

1
(p1, θ′

1) �st2,γ1,ϕ′
2
,d′

2

· · · �stn,γn−1,ϕ′
n

,d′
n

(pn, θ′
n) of some data word (a1, d

′
1) · · · (an, d′

n) where θ′
0 = θ0

and ai is the second component of ti. Also, it is easy to see wt(π) = wt(ρ). The
converse direction holds by the construction of G. ��
By Theorems 4 and 7, the optimal run problem for a given k-WRA A can be
solved by solving the minimum weight path problem for the directed graph G
obtained from A via the normal form A′ if A′ satisfies weighted simulation and
weight computability. Furthermore, we can find the original transition t ∈ T of
A from a given transition st,γ,ϕ′ ∈ T ′ as described in the proof of Theorem 4.
In this way, we can easily reconstruct the run in A that provide the infimum
weight from a minimum path found in G.

The description length ‖A′‖ of k-WRA A′ = (Q′, Q′
0, T

′, Q′
f ,wt′) can be

represented by the following relationship between the sizes of the corresponding
components of A′ and A: |Γk| = 2k2|R|, |Q′| = |Q| × |Γk|, |Q′

0| = |Q0|, |Q′
f | =

|Qf | × |Γk|, |T ′| = (|Q| × |Γk|) × |Σ| × 22k|R|+|R| × 2k × (|Q| × 1).

Theorem 8. When the normal form k-WRA A′ constructed from k-WRA
A = (Q,Q0, T,Qf ,wt) has weighted simulation property and weight com-
putability, the time complexity of the optimal run problem for k-WRA A is
O(2k2|R||Q|(4k|R|2|R|+k|Σ||Q| + k2|R|)).
Proof. The above complexity is derived from the time complexity O(|E| +
|V | log |V |) of Dijkstra algorithm by |V | = |Q′|, |E| = |T ′|.
Example 4. Consider the WRA A2 of Example 2 again. Let A′

2 be the normal
form WRA obtained from A2. A′

2 satisfies weighted simulation and weight com-
putability. We show the directed graph G1 for A′

2. For a label (t′, w) of an edge,
t′ represents the applied transition and w represents the infimum of the weights
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of switches corresponding to the edge. The register types γ0, γ1, γ2 in the node
labels are as follows where γ0 is the initial register type:

γ0(1, 2)(<) = 0, γ0(2, 1)(<) = 0, γ0(1, 2)(=) = γ0(2, 1)(=) = 1,
γ1(1, 2)(<) = 0, γ1(2, 1)(<) = 1, γ1(1, 2)(=) = γ1(2, 1)(=) = 0,
γ2(1, 2)(<) = 1, γ2(2, 1)(<) = 0, γ2(1, 2)(=) = γ2(2, 1)(=) = 0,
γm(j, j)(<) = 0, γm(j, j)(=) = 1, for m ∈ {0} ∪ [2], j ∈ [2],

γm(i, j)(>) = γm(j, i)(<) for m ∈ {0} ∪ [2], i, j ∈ [2].

The edge with (st1,γ0,tt, 0) represents the three edges generated from t1 in A2.
The optimal paths of G1 are the simple paths from (q0, γ0) to (q2, γ0), and the
weight infimum is 0 (Fig. 2).

Fig. 2. The directed graph G1 for A2 of Example 2.

6 Weighted Timed Automata

Weighted timed automata (WTA) are an extension of timed automata (TA) by
introducing the weight to TA. In this subsection, we directly define WTA as a
subclass of WRA based on Lemma 5.1 of [5] that every k-WTA can be simulated
by a (k + 1)-WRA by using one extra register to keep the current time instant
(in particular, a clock reset can be simulated by loading the current time to the
corresponding register). An input data word w = (a1, d1)(a2, d2) . . . (an, dn) to a
WTA means ai occurs at time instant di (i ∈ [n]). In every switch, an input data
value is loaded to the last register xk+1 so that xk+1 remembers when the latest
symbol ai occurred. The guard formula of every transition requires that an input
data value is always not less than xk+1 to guarantee that d1 ≤ d2 ≤ . . . ≤ dn.

For a binary relation �� over R≥0 and c ∈ N, let �� c be the binary relation
defined as �� c = {(r, r′) | r, r′ ∈ R≥0, r′ −r �� c}. Note that (θ, d) |= x�	c

i means
d − θ(i) �� c, not θ(i) − d �� c. We let the data structure D

timed = 〈R≥0, {�� c |
�� ∈ {<,=, >}, c ∈ N}〉 with the initial value ⊥ = 0.
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Definition 8 ([5]). A k-register weighted timed automaton (abbreviated as k-
WTA) over Σ is a k-WRA Atimed = (Q,Q0, T,Qf , (wtt,wtd)) over Σ, Dtimed

and Rtrpc where

– Atimed
b = (Q,Q0, T,Qf ) is a k-RA (called the base k-TA of Atimed) such that

for each transition q →a
ϕ,Λ q′ ∈ T , ϕ = ϕ′ ∧ x≥0

k for some ϕ′ ∈ Fk,
– wtt is a function from T to N, and
– for each q ∈ Q, a constant natural number wq ∈ N is specified and for each

transition t = q →a
ϕ,Λ q′ ∈ T and d, d′ ∈ R≥0,

wtd(t, j)(d, d′) = 0 (j ∈ [k − 1]), (1)
wtd(t, k)(d, d′) = wq(d′ − d). (2)

L(Atimed
b ) is the timed language recognized by Atimed

b and [[Atimed]] is the timed
series recognized by Atimed. ��
By the above definition, the weight of a switch (q, θ) �t,d (q′, θ′) is wtt(t) +
wtd(t, k)(θ(k), d) = wtt(t) + wq(d − θ(k)). Intuitively, wtt represents the cost
of executing t and wq(d − θ(k)) is the cost of time consumption at state q.
(Remember that θ(k) is the time at which the latest event occurred.) As in the
case of k-WRA, we define the optimal run problem for k-WTA as follows.

Definition 9 (The optimal run problem)
Input: k-WTA Atimed

Output: The infimum of {wt(ρ) | ∃w ∈ (Σ × R≥0)+. ρ ∈ RunAtimed(w)}
Example 5. ([4]). Let Atimed

1 be a 3-WTA shown in Fig. 3 where wq0 = 3,
wq1 = 1, wq2 = 0, wtt(tj) = 1 (j ∈ [3]). Let Atimed

1,b be the base k-TA of Atimed
1 .

Then, L(Atimed
1,b ) = {(a, 2)} ∪ {(a, d)(a, 2) | 0 ≤ d < 2}. ρ1 ∈ RunAtimed

1
((a, 2))

is unique and wt(ρ1) = wtd(t1, 3)(0, 2) + wtt(t1) = 3 · 2 + 1 = 7. For each
wd = (a, d)(a, 2) where 0 ≤ d < 2, ρd ∈ RunAtimed

1
(wd) is unique and wt(ρd) =

wtd(t2, 3)(0, d)+wtt(t2)+wtd(t3, 3)(d, 2)+wtt(t3) = 3d+1+(2−d)+1 = 4+2d.
We have inf{wt(ρ) | ∃w ∈ (Σ × D)+. ρ ∈ RunAtimed

1
(w)} = 4.

Example 6. ([4]). Let Atimed
2 be a 2-WTA shown in Fig. 4 where wq0 = 1,

wq1 = 2, wq2 = 0, wtt(t1) = wtt(t2) = 1. Let Atimed
2,b be the base k-TA of Atimed

2 .
Then, L(Atimed

2,b ) = {(a, 2 − ξ)(a, 2) | 0 < ξ ≤ 2}. For each wξ = (a, 2 − ξ)(a, 2)
where 0 < ξ ≤ 2, ρξ ∈ RunAtimed

2
(wξ) is unique and

wt(ρξ) = wtd(t1, 2)(0, 2 − ξ) + wtt(t1) + wtd(t2, 2)(2 − ξ, 2) + wtt(t2)
= (1 · (2 − ξ)) + 1 + (2 · ξ) + 1 = 4 + ξ.

Hence, inf{wt(ρ) | ∃w ∈ (Σ × D)+. ρ ∈ RunAtimed
2

(w)} = 4. ��

In [4], an algorithm that solves the optimal run problem for WTA is proposed
by extending the region construction for TA. Region construction is a well-known
method to divide the infinite set of IDs of TA into a finite set of regions where
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Fig. 3. WTA Atimed
1

Fig. 4. WTA Atimed
2

two IDs in a same region are indistinguishable (or bisimilar) with respect to any
transition and time progress. In [4], a sub-region is defined as a refinement of a
region by distinguishing x < y and x � y where the distance of x and y is large
in the former case while the distance is very (arbitrarily) small in the latter case.
This distinction is needed because it may happen that there is no run that has
the minimum weight but there are infinite number of runs whose weights has the
infimum as shown in Example 5 (see [4] for details). An edge-weighted directed
graph, called the sub-region graph G is constructed from a given WTA and a
minimum weight path of G is computed by any existing graph algorithm, which
corresponds to a solution to the optimal run problem for the WTA.

The method proposed in this paper can also compute an optimal run of a
WTA by distinguishing < and � as follows. Let cmax be the largest natural
number appearing in the guard formula of some transition in a given WTA and
let RBL be the collection of relations {�� c | �� ∈ {�,=,�}, c ∈ N, c ≤ cmax}\{�
0}. We redefine the data structure for WTA as D

timed,BL = 〈R≥0,RBL〉. A
boundary region is a region specified by at least one constraints using = and
no constraints using � or �. A limit region is a region specified by at least one
constraints using � or �. Since the guard formula of any transition of WTA is
a linear constraint on the contents of registers, it suffices to consider only the
boundary regions and limit regions to compute the solution of the optimal run
problem for WTA (see [4] for example). This implies weighted simulation and
weight computability if we replace every < and > with � and �, respectively,
and use D

timed,BL instead of Dtimed.

Example 7. Let us revisit Example 6. First, we replace every < and > with �
and �, respectively, and consider its normal form. Since cmax = 2, RBL = {=
0,� 0,� 1,= 1,� 1,� 2,= 2,� 2}. After simplifications by using properties of
the total order on N, we have the following eight register types to be considered in
this example: γ1 : x2−x1 = 0, γ2 : x2−x1 � 0, γ3 : x2−x1 � 1, γ4 : x2−x1 = 1,
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γ5 : x2 − x1 � 1, γ6 : x2 − x1 � 2, γ7 : x2 − x1 = 2, γ8 : x2 − x1 � 2. Note
that by the above specification, γm(2, 1)(R) and γm(i, i)(R) (m ∈ [8], i = 1, 2,
R ∈ RBL) are uniquely determined and not described. Atimed

2 is transformed
to A′

2 = ({(qi, γj) | i = 0, 1, 2, j ∈ [8]}, {(q0, γ1)}, T ′, {(q2, γ7)}, (wtt′,wtd′))
where T ′ consists of the following transitions:

(q0, γ1) →a
x=0
1 ,{2} (q1, γ1), (q0, γ1) →a

x
�0
1 ,{2}

(q1, γ2),

(q0, γ1) →a

x
�1
1 ,{2} (q1, γ3), (q0, γ1) →a

x=1
1 ,{2} (q1, γ4),

(q0, γ1) →a

x
�1
1 ,{2}

(q1, γ5), (q0, γ1) →a

x
�2
1 ,{2} (q1, γ6),

(q1, γj) →a
x=2
1 ,{2} (q2, γ7) (j ∈ [6])

and wtt′, wtd′ are defined accordingly. Note that (θ, d) |= in=0 ∧¬inR ∧¬inR−1

for R ∈ RBL\{= 0} and an input data value is always loaded to x2 (the previous
data in x2 is overwritten), and hence constraints on x2 and an input data value
are not needed in the guard formulas. We have the following six kinds of runs,
each of which corresponds to one of the above six transitions from (q0, γ) followed
by the last transition, which have the following weights: wt(ρ1) = 6, wt(ρ1) =
6− ξ, wt(ρ1) = 5+ ξ, wt(ρ1) = 5, wt(ρ1) = 5− ξ, wt(ρ1) = 4+ ξ for small ξ > 0.
Hence, the solution of the optimal run problem for this example is 4, which is
realized by ρ6 by ξ → 0. ��

7 Conclusion

In this paper, we discussed the optimal run problem for weighted register
automata (WRA). We first introduced register type to WRA and provided a
transformation from a given WRA into a normal form such that the register
types before and after each transition are uniquely determined. Because the deci-
sion problem related to the optimal run problem is undecidable, we proposed
a sufficient condition called weighted simulation and weight computability for
the problem to become decidable. Lastly, we illustrated computing the optimal
run of weighted timed automata as an example. Investigating the problem for
semirings other than the tropical reals is an interesting future study.
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