
BCARET Model Checking for Malware
Detection

Huu-Vu Nguyen(B) and Tayssir Touili(B)

LIPN, CNRS and University Paris 13, Villetaneuse, France
nguyen@lipn.univ-paris13.fr, touili@lipn.univ-paris13.fr

Abstract. The number of malware is growing fast recently. Traditional
malware detectors based on signature matching and code emulation are
easy to bypass. To overcome this problem, model-checking appears as an
efficient approach that has been extensively applied for malware detec-
tion in recent years. Pushdown systems were proposed as a natural model
for programs, as they allow to take into account the program’s stack into
the model. CARET and BCARET were proposed as formalisms for mali-
cious behavior specification since they can specify properties that require
matchings of calls and returns which is crucial for malware detection. In
this paper, we propose to use BCARET for malicious behavior specifi-
cation. Since BCARET formulas for malicious behaviors are huge, we
propose to extend BCARET with variables, quantifiers and predicates
over the stack. Our new logic is called SBPCARET. We reduce the mal-
ware detection problem to the model checking problem of PDSs against
SBPCARET formulas, and we propose an efficient algorithm to model
check SBPCARET formulas for PDSs.

1 Introduction

The number of malware is growing fast in recent years. Traditional approaches
including signature matching and code emulation are not efficient enough to
detect malwares. While attackers can use obfuscation techniques to hide their
malware from the signature based malware detectors easily, the code emulation
approaches can only track programs in certain execution paths due to the limited
execution time. To overcome these limitations, model-checking appears as an
efficient approach for malware detection, since model-checking allows to check
the behaviors of a program in all its execution traces without executing it.

A lof of works have been investigated to apply model-checking for malware
detection [2–4,7,10–12]. [4] proposed to use finite state graphs to model the pro-
gram and use the temporal logic CTPL to specify malicious behaviours. However,
finite graphs are not exact enough to model programs, as they don’t allow to
take into account the program’s stack into the model. Indeed, the program’s
stack is usually used by malware writers for code obfuscation as explained in [5].
In addition, in binary codes and assembly programs, parameters are passed to
c© Springer Nature Switzerland AG 2019
R. M. Hierons and M. Mosbah (Eds.): ICTAC 2019, LNCS 11884, pp. 273–291, 2019.
https://doi.org/10.1007/978-3-030-32505-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32505-3_16&domain=pdf
https://doi.org/10.1007/978-3-030-32505-3_16

274 H.-V. Nguyen and T. Touili

functions by pushing them on the stack before the call is made. The values of
these parameters are used to determine whether the program is malicious or not
[6]. Therefore, being able to record the program’s stack is critical for malware
detection. To this aim, [10–13] proposed to use pushdown systems to model pro-
grams, and defined extensions of LTL and CTL (called SLTPL and SCTPL) to
precisely and compactly describe malicious behaviors. However, these logics can-
not specify properties that require matchings of calls and returns, which is crucial
to describe malicious behaviours [8]. Let us consider the typical behaviour of a
spyware to illustrate this. The typical behaviour of a spyware is seeking personal
information (emails, bank account information,...) on local drives by searching
files that match specific conditions. To do that, it has to search directories of the
host to look for interesting files whose names match a certain condition. If a file is
found, the spyware will invoke a payload to steal the information, then continue
looking for the remaining matching files. If a folder is found, it will pass into
the folder path and continue investigating the folder recursively. To obtain this
behavior, the spyware first calls the API FindFirstF ileA to search for the first
matching file in a given folder path. After that, it has to check whether the call
to the API function FindFirstF ileA is successful or not. When the function call
fails, the spyware will call the API GetLastError. Otherwise, when the function
call succeeds, a search handle h will be returned by FindFirstF ileA. There are
two possibilities in this case. If the returned result is a folder, it will call the
API function FindFirstF ileA again to search for matching results in the found
folder. If the returned result is a file, it will call the function FindNextF ileA
using h as first parameter to look for the remaining matching files. This behav-
ior cannot be described by LTL or CTL since it requires to express that the
return value of the API function FindFirstF ileA should be used as input to
the function FindNextF ileA.

CARET was introduced to express linear-temporal properties that involve
matchings of calls and returns [1] and CARET model-checking for PDSs was
considered [6,7]. However, the above behaviour cannot be described by CARET
since it is a branching-time property. To specify that behaviour naturally and
intuitively, BCARET was introduced to express these branching-time proper-
ties that involve matchings of calls and returns [8]. Using BCARET, the above
behavior can be expressed by the following formula:

ϕsb =
∨

d∈D

EF g

(
call(FindFirstF ileA) ∧ EXa(eax = d) ∧ AF a

(
call(GetLastError) ∨ call(FindFirstF ileA)

∨
(
call(FindNextF ileA) ∧ dΓ ∗

)))

where the
∨

is taken over all possible memory addresses d that contain the
values of search handles h in the program, EXa is a BCARET operator saying
that “next in some run, in the same procedural context”; EF g is the standard
CTL EF operator (eventually in some run), while AF a is a BCARET operator
stating that “eventually in all runs, in the same procedural context”.

BCARET Model Checking for Malware Detection 275

In binary codes and assembly programs, the return value of an API function
is placed in the register eax. Therefore, the return value of FindFirstF ileA
is the value of the register eax at the corresponding return-point of the call.
Then, the subformula (call(FindFirstFileA) ∧ EXa(eax = d)) expresses that
there is a call to the API function FindFirstF ileA whose return value is d
(the abstract successor of a call is its corresponding return-point). A call to
FindNextFileA requires a search handle h as parameter and h must be put
on top of the program’s stack (as parameters are passed through the stack in
assembly programs). To express that d is on top of the program stack, we use
the regular expression dΓ ∗. Thus, the subformula [call(FindNextFileA) ∧ dΓ ∗]
states that the API FindNextFileA is invoked with d as parameter (d stores the
information of the search handle h). Therefore, ϕsb states that there is a call
to the function FindFirstF ileA whose return value is d (the search handle),
then, in all runs starting from that call, there will be either a call to the API
GetLastError or a call to the API function FindFirstF ileA or a call to the
function FindNextF ileA in which d is used as a parameter.

However, it can be seen that this formula is huge, since it considers the
disjunction (of different BCARET formulas) over all possible memory addresses d
which contain the information of search handles h in the program. To represent it
in a more compact fashion, we follow the idea of [4,6,10,12] and extend BCARET
with variables, quantifiers, and predicates over the stack. We call our new logic
SBPCARET. The above formula can be concisely described by a SBPCARET
formula as follows:

ϕ′
sb = ∃xEF g

(
call(FindFirstF ileA) ∧ EXa(eax = x) ∧ AF a

(
call(GetLastError) ∨ call(FindFirstF ileA)

∨
(
call(FindNextF ileA) ∧ xΓ ∗

)))

Thus, we propose in this work to use pushdown systems (PDSs) to model
programs, and SBPCARET formulas to specify malicious behaviors.We reduce
the malware detection problem to the model checking problem of PDSs against
SBPCARET formulas, and we propose an efficient algorithm to check whether a
PDS satisfies a SBPCARET formula. Our algorithm is based on a reduction to
the emptiness problem of Symbolic Alternating Büchi Pushdown Systems. This
latter problem is already solved in [10].

The rest of paper is organized as follows. In Sect. 2, we recall the definitions of
Pushdown Systems. Section 3 introduces our logic SBPCARET. Model checking
SBPCARET for PDSs is presented in Sect. 4. Finally, we conclude in Sect. 5.

2 Pushdown Systems: A Model for Sequential Programs

Pushdown systems is a natural model that was extensively used to model sequen-
tial programs. Translations from sequential programs to PDSs can be found e.g.

276 H.-V. Nguyen and T. Touili

in [9]. As will be discussed in the next section, to precisely describe malicious
behaviors as well as context-related properties, we need to keep track of the call
and return actions in each path. Thus, as done in [8], we adapt the PDS model
in order to record whether a rule of a PDS corresponds to a call, a return, or
another instruction. We call this model a Labelled Pushdown System. We also
extend the notion of run in order to take into account matching returns of calls.

Definition 1. A Labelled Pushdown System (PDS) P is a tuple (P, Γ,Δ, �),
where P is a finite set of control locations, Γ is a finite set of stack alphabet,
� /∈ Γ is a bottom stack symbol and Δ is a finite subset of ((P × Γ) × (P ×
Γ ∗)×{call, ret, int}). If ((p, γ), (q, ω), t) ∈ Δ (t ∈ {call, ret, int}), we also write
〈p, γ〉 t−→ 〈q, ω〉 ∈ Δ. Rules of Δ are of the following form, where p ∈ P, q ∈
P, γ, γ1, γ2 ∈ Γ , and ω ∈ Γ ∗:

– (r1): 〈p, γ〉 call−−→ 〈q, γ1γ2〉
– (r2): 〈p, γ〉 ret−−→ 〈q, ε〉
– (r3): 〈p, γ〉 int−−→ 〈q, ω〉

Intuitively, a rule of the form 〈p, γ〉 call−−→ 〈q, γ1γ2〉 corresponds to a call state-

ment. Such a rule usually models a statement of the form γ
call proc−−−−−−→ γ2. In this

rule, γ is the control point of the program where the function call is made, γ1
is the entry point of the called procedure,and γ2 is the return point of the call.
A rule r2 models a return, whereas a rule r3 corresponds to a simple statement
(neither a call nor a return). A configuration of P is a pair 〈p, ω〉, where p is a
control location and ω ∈ Γ ∗ is the stack content. For technical reasons, we sup-
pose w.l.o.g. that the bottom stack symbol � is never popped from the stack, i.e.,
there is no rule in the form 〈p, �〉 t−→ 〈q, ω〉 ∈ Δ (t ∈ {call, ret, int}). P defines
a transition relation =⇒P (t ∈ {call, ret, int}) as follows: If 〈p, γ〉 t−→ 〈q, ω〉, then
for every ω′ ∈ Γ ∗, 〈p, γω′〉 =⇒P 〈q, ωω′〉. In other words, 〈q, ωω′〉 is an immediate
successor of 〈p, γω′〉. Let ∗=⇒P be the reflexive and transitive closure of =⇒P .

A run of P from 〈p0, ω0〉 is a sequence 〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉... where
〈pi, ωi〉 ∈ P × Γ ∗ s.t. for every i ≥ 0, 〈pi, ωi〉 =⇒P 〈pi+1, ωi+1〉. Given a con-
figuration 〈p, ω〉, let Traces(〈p, ω〉) be the set of all possible runs starting from
〈p, ω〉.

2.1 Global and Abstract Successors

Let π = 〈p0, ω0〉〈p1, ω1〉... be a run starting from 〈p0, ω0〉. Over π, two kinds of
successors are defined for every position 〈pi, ωi〉:
– global-successor : The global-successor of 〈pi, ωi〉 is 〈pi+1, ωi+1〉 where

〈pi+1, ωi+1〉 is an immediate successor of 〈pi, ωi〉.
– abstract-successor : The abstract-successor of 〈pi, ωi〉 is determined as follows:

• If 〈pi, ωi〉 =⇒P 〈pi+1, ωi+1〉 corresponds to a call statement, there are two
cases: (1) if 〈pi, ωi〉 has 〈pk, ωk〉 as a corresponding return-point in π,
then, the abstract successor of 〈pi, ωi〉 is 〈pk, ωk〉; (2) if 〈pi, ωi〉 does not
have any corresponding return-point in π, then, the abstract successor of
〈pi, ωi〉 is ⊥.

BCARET Model Checking for Malware Detection 277

• If 〈pi, ωi〉 =⇒P 〈pi+1, ωi+1〉 corresponds to a simple statement, the abstract
successor of 〈pi, ωi〉 is 〈pi+1, ωi+1〉.

• If 〈pi, ωi〉 =⇒P 〈pi+1, ωi+1〉 corresponds to a return statement, the abstract
successor of 〈pi, ωi〉 is defined as ⊥.

p0, ω0 p1, ω1

p2, ω2

p3, ω3 p4, ω4

p5, ω5

p6, ω6

p7, ω7

p8, ω8

p9, ω9

p10, ω10

pk, ωkint

call

call retglobal-successor

abstract-successor

Fig. 1. Two kinds of successors on a run

For example, in Fig. 1:

– The global-successors of 〈p1, ω1〉 and 〈p2, ω2〉 are 〈p2, ω2〉 and 〈p3, ω3〉 respec-
tively.

– The abstract-successors of 〈p2, ω2〉 and 〈p5, ω5〉 are 〈pk, ωk〉 and 〈p9, ω9〉
respectively.

Let 〈p, ω〉 be a configuration of a PDS P. A configuration 〈p′, ω′〉 is defined as
a global-successor of 〈p, ω〉 iff 〈p′, ω′〉 is a global-successor of 〈p, ω〉 over a run
π ∈ Traces(〈p, ω〉). Similarly, a configuration 〈p′, ω′〉 is defined as an abstract-
successor of 〈p, ω〉 iff 〈p′, ω′〉 is an abstract-successor of 〈p, ω〉 over a run π ∈
Traces(〈p, ω〉).

A global-path of P from 〈p0, ω0〉 is a sequence 〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉...
where 〈pi, ωi〉 ∈ P × Γ ∗ s.t. for every i ≥ 0, 〈pi+1, ωi+1〉 is a global-
successor of 〈pi, ωi〉. Similarly, an abstract-path of P from 〈p0, ω0〉 is a
sequence 〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉... where 〈pi, ωi〉 ∈ P × Γ ∗ s.t. for every
i ≥ 0, 〈pi+1, ωi+1〉 is an abstract-successor of 〈pi, ωi〉. For instance, in
Fig. 1, 〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉〈p3, ω3〉〈p4, ω4〉〈p5, ω5〉... is a global-path, while
〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉〈pk, ωk〉... is an abstract-path.

3 Malicious Behaviour Specification

In this section, we define the Stack Branching temporal Predicate logic of CAlls
and RETurns (SBPCARET) as an extension of BCARET [8] with variables and
regular predicates over the stack contents. The predicates contain variables that
can be quantified existentially or universally. Regular predicates are expressed by
regular variable expressions and are used to describe the stack content of PDSs.

3.1 Environments, Predicates and Regular Variable Expressions

Let X = {x1, ..., xn} be a finite set of variables over a finite domain D. Let
B : X ∪ D → D be an environment that associates each variable x ∈ X with

278 H.-V. Nguyen and T. Touili

a value d ∈ D s.t B(d) = d for every d ∈ D. Let B[x ← d] be an environment
obtained from B such that B[x ← d](x) = d and B[x ← d](y) = B(y) for every
y �= x. Let Absx(B) = {B′ ∈ B | ∀y ∈ X , y �= x,B(y) = B′(y)} be the function
that abstracts away the value of x. Let B be the set of all environments.

Let AP = {a, b, c, ...} be a finite set of atomic propositions. Let APD be a
finite set of atomic predicates of the form b(α1, ..., αm) such that b ∈ AP and
αi ∈ D for every 1 ≤ i ≤ m. Let APX be a finite set of atomic predicates
b(α1, ..., αn) such that b ∈ AP and αi ∈ X ∪ D for every 1 ≤ i ≤ n.

Let P = (P, Γ,Δ) be a Labelled PDS. A Regular Variable Expression (RVE)
e over X ∪ Γ is defined by e ::= ε | a ∈ X ∪ Γ | e + e | e.e | e∗. The language
L(e) of a RVE e is a subset of P × Γ ∗ × B and is defined as follows:

– L(ε) = {(〈p, ε〉, B) | p ∈ P,B ∈ B}
– for x ∈ X , L(x) = {(〈p, γ〉, B) | p ∈ P, γ ∈ Γ,B ∈ B s.t B(x) = γ}
– for γ ∈ Γ , L(γ) = {(〈p, γ〉, B) | p ∈ P,B ∈ B}
– L(e1.e2) = {(〈p, ω′ω′′〉, B) | (〈p, ω′〉, B) ∈ L(e1); (〈p, ω′′〉, B) ∈ L(e2)}
– L(e∗) = {(〈p, ω〉, B) | ω ∈ {v ∈ Γ ∗ | (〈p, v〉, B) ∈ L(e)}∗}.

3.2 The Stack Branching Temporal Predicate Logic of CAlls and
RETurns - SBPCARET

A SBPCARET formula is a BCARET formula where predicates and RVEs are
used as atomic propositions and where quantifiers are applied to variables. For
technical reasons, we assume w.l.o.g. that formulas are written in positive normal
form, where negations are applied only to atomic predicates, and we use the
release operator R as the dual of the until operator U . From now on, we fix a
finite set of variables X , a finite set of atomic propositions AP , a finite domain
D, and a finite set of RVEs V. A SBPCARET formula is defined as follows,
where v ∈ {g, a}, x ∈ X , e ∈ V, b(α1, ..., αn) ∈ APX :

ϕ := true | false | b(α1, ..., αn) | ¬b(α1, ..., αn) | e | ¬e | ϕ ∨ ϕ | ϕ ∧ ϕ | ∀xϕ |
∃xϕ | EXvϕ | AXvϕ | E[ϕUvϕ] | A[ϕUvϕ] | E[ϕRvϕ] | A[ϕRvϕ]

Let λ : P −→ 2APD be a labelling function which associates each control
location to a set of atomic predicates. Let ϕ be a SBPCARET formula over
AP . Let 〈p, ω〉 be a configuration of P. Then we say that P satisfies ϕ at 〈p, ω〉
(denoted by 〈p, ω〉 |=λ ϕ) iff there exists an environment B ∈ B such that 〈p, ω〉
satisfies ϕ under B (denoted by 〈p, ω〉 |=B

λ ϕ). The satisfiability relation of a
SBPCARET formula ϕ at a configuration 〈p0, ω0〉 under the environment B
w.r.t. the labelling function λ, denoted by 〈p0, ω0〉 �B

λ ϕ, is defined inductively
as follows:

– 〈p0, ω0〉 �B
λ true for every 〈p0, ω0〉

– 〈p0, ω0〉 �
B
λ false for every 〈p0, ω0〉

– 〈p0, ω0〉 �B
λ b(α1, ..., αn), iff b(B(α1), ..., B(αn)) ∈ λ(p0)

BCARET Model Checking for Malware Detection 279

– 〈p0, ω0〉 �B
λ ¬b(α1, ..., αn), iff b(B(α1), ..., B(αn)) /∈ λ(p0)

– 〈p0, ω0〉 �B
λ e iff (〈p0, ω0〉, B) ∈ L(e)

– 〈p0, ω0〉 �B
λ ¬e iff (〈p0, ω0〉, B) /∈ L(e)

– 〈p0, ω0〉 �B
λ ϕ1 ∨ ϕ2 iff (〈p0, ω0〉 �B

λ ϕ1 or 〈p0, ω0〉 �B
λ ϕ2)

– 〈p0, ω0〉 �B
λ ϕ1 ∧ ϕ2 iff (〈p0, ω0〉 �B

λ ϕ1 and 〈p0, ω0〉 �B
λ ϕ2)

– 〈p0, ω0〉 �B
λ ∀xϕ iff for every d ∈ D, 〈p0, ω0〉 �B[x←d]

λ ϕ

– 〈p0, ω0〉 �B
λ ∃xϕ iff there exists d ∈ D, 〈p0, ω0〉 �B[x←d]

λ ϕ
– 〈p0, ω0〉 �B

λ EXgϕ iff there exists a global-successor 〈p′, ω′〉 of 〈p0, ω0〉 such
that 〈p′, ω′〉 �B

λ ϕ
– 〈p0, ω0〉 �B

λ AXgϕ iff 〈p′, ω′〉 �B
λ ϕ for every global-successor 〈p′, ω′〉 of 〈p0, ω0〉

– 〈p0, ω0〉 �B
λ E[ϕ1U

gϕ2] iff there exists a global-path π = 〈p0, ω0〉〈p1, ω1〉
〈p2, ω2〉... of P starting from 〈p0, ω0〉 s.t. ∃i ≥ 0, 〈pi, ωi〉 �B

λ ϕ2 and for
every 0 ≤ j < i, 〈pj , ωj〉 �B

λ ϕ1

– 〈p0, ω0〉 �B
λ A[ϕ1U

gϕ2] iff for every global-path π =
〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉...of P starting from 〈p0, ω0〉, ∃i ≥ 0, 〈pi, ωi〉 �B

λ ϕ2

and for every 0 ≤ j < i, 〈pj , ωj〉 �B
λ ϕ1

– 〈p0, ω0〉 �B
λ E[ϕ1R

gϕ2] iff there exists a global-path π

= 〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉... of P starting from 〈p0, ω0〉 s.t. for every i ≥ 0,
if 〈pi, ωi〉 �

B
λ ϕ2 then there exists 0 ≤ j < i s.t. 〈pj , ωj〉 �B

λ ϕ1

– 〈p0, ω0〉 �B
λ A[ϕ1R

gϕ2] iff for every global-path π = 〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉...
of P starting from 〈p0, ω0〉, for every i ≥ 0, if 〈pi, ωi〉 �

B
λ ϕ2 then there exists

0 ≤ j < i s.t. 〈pj , ωj〉 �B
λ ϕ1

– 〈p0, ω0〉 �B
λ EXaϕ iff there exists an abstract-successor 〈p′, ω′〉 of 〈p0, ω0〉

such that 〈p′, ω′〉 �B
λ ϕ

– 〈p0, ω0〉 �B
λ AXaϕ iff 〈p′, ω′〉 �B

λ ϕ for every abstract-successor 〈p′, ω′〉 of
〈p0, ω0〉

– 〈p0, ω0〉 �B
λ E[ϕ1U

aϕ2] iff there exists an abstract-path π =
〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉... of P starting from 〈p0, ω0〉 s.t. ∃i ≥ 0, 〈pi, ωi〉 �B

λ ϕ2

and for every 0 ≤ j < i, 〈pj , ωj〉 �B
λ ϕ1

– 〈p0, ω0〉 �B
λ A[ϕ1U

aϕ2] iff for every abstract-path π = 〈p0, ω0〉〈p1, ω1〉
〈p2, ω2〉... of P, ∃i ≥ 0, 〈pi, ωi〉 �B

λ ϕ2 and for every 0 ≤ j < i, 〈pj , ωj〉 �B
λ ϕ1

– 〈p0, ω0〉 �B
λ E[ϕ1R

aϕ2] iff there exists an abstract-path π =
〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉... of P starting from 〈p0, ω0〉 s.t. for every i ≥ 0, if
〈pi, ωi〉 �

B
λ ϕ2 then there exists 0 ≤ j < i s.t. 〈pj , ωj〉 �B

λ ϕ1

– 〈p0, ω0〉 �B
λ A[ϕ1R

aϕ2] iff for every abstract-path π = 〈p0, ω0〉〈p1, ω1〉
〈p2, ω2〉... of P starting from 〈p0, ω0〉, for every i ≥ 0, if 〈pi, ωi〉 �

B
λ ϕ2 then

there exists 0 ≤ j < i s.t. 〈pj , ωj〉 �B
λ ϕ1

Other SBPCARET operators can be expressed by the above operators:
EF gϕ = E[true Ugϕ], EF aϕ = E[true Uaϕ], AF gϕ = A[true Ugϕ], AF aϕ =
A[trueUaϕ],...

Closure. Given a SBPCARET formula ϕ, the closure Cl(ϕ) is the set of all sub-
formulae of ϕ, including ϕ. Let AP+(ϕ) = {b(α1, ..., αn) ∈ APX | b(α1, ..., αn) ∈
Cl(ϕ)}; AP−(ϕ) = {b(α1, ..., αn) ∈ APX | ¬b(α1, ..., αn) ∈ Cl(ϕ)}, Reg+(ϕ) =
{e ∈ V | e ∈ Cl(ϕ)}, Reg−(ϕ) = {e ∈ V | ¬e ∈ Cl(ϕ)}.

280 H.-V. Nguyen and T. Touili

4 SBPCARET Model-Checking for Pushdown Systems

In this section, we show how to do SBPCARET model-checking for PDSs. Let
then P be a PDS, ϕ be a SBPCARET formula, and V be the set of RVEs
occurring in ϕ. We follow the idea of [10] and use Variable Automata to represent
RVEs.

4.1 Variable Automata

Given a PDS P = (P, Γ,Δ) s.t. Γ ⊆ D, a Variable Automaton (VA) [10] is a
tuple (Q,Γ, δ, s, F), where Q is a finite set of states, Γ is the input alphabet,
s ∈ Q is an initial state; F ⊆ Q is a finite set of accepting states; and δ is a finite
set of transition rules of the form p

α−→ {q1, ..., qn} where α can be x, ¬x, or γ,
for any x ∈ X and γ ∈ Γ .

Let B ∈ B. A run of VA on a word γ1, ..., γm under B is a tree of height m
whose root is labelled by the initial state s, and each node at depth k labelled
by a state q has h children labelled by p1, ..., ph respectively, such that:

– either q
γk−→ {p1, ..., ph} ∈ δ and γk ∈ Γ ;

– or q
x−→ {p1, ..., ph} ∈ δ, x ∈ X and B(x) = γk;

– or q
¬x−−→ {p1, ..., ph} ∈ δ, x ∈ X and B(x) �= γk.

A branch of the tree is accepting iff the leaf of the branch is an accepting
state. A run is accepting iff all its branches are accepting. A word ω ∈ Γ ∗ is
accepted by a VA under an environment B ∈ B iff the VA has an accepting run
on the word ω under the environment B.

The language of a VA M , denoted by L(M), is a subset of (P × Γ ∗) × B.
(〈p, ω〉, B) ∈ L(M) iff M accepts the word ω under the environment B.

Theorem 1. [10] For every regular expression e ∈ V, we can compute in poly-
nomial time a Variable Automaton M s.t. L(M) = L(e).

Theorem 2. [10] VAs are closed under boolean operations.

4.2 Symbolic Alternating Büchi Pushdown Systems (SABPDSs)

Definition 2. A Symbolic Alternating Büchi Pushdown System (SABPDS) is
a tuple BP = (P, Γ,Δ, F), where P is a set of control locations, Γ ⊆ D is stack
alphabet, F ⊆ P × 2B is a set of accepting control locations and Δ is a finite set

of transitions of the form 〈p, γ〉 R

↪−→ {〈p1, ω1〉, ..., 〈pn, ωn〉} where p ∈ P , γ ∈ Γ ,
for every 1 ≤ i ≤ n: pi ∈ P , ωi ∈ Γ ∗; and R : (B)n → 2B is a function that
maps a tuple of environments (B1, ..., Bn) to a set of environments.

A configuration of a SABPDS BP is a tuple 〈�p,B�, ω〉, where p ∈ P is the
current control location, B ∈ B is an environment and ω ∈ Γ ∗ is the current stack

content. Let 〈p, γ〉 R

↪−→ {〈p1, ω1〉, ..., 〈pn, ωn〉} be a rule of Δ, then, for every ω ∈

BCARET Model Checking for Malware Detection 281

Γ ∗, B,B1, ..., Bn ∈ B, if B ∈ R(B1, ..., Bn), then the configuration 〈�p,B�, γω〉
(resp. {〈�p1, B1�, ω1ω〉, ..., 〈�pn, Bn�, ωnω〉}) is an immediate predecessor (resp.
successor) of {〈�p1, B1�, ω1ω〉, ..., 〈�pn, Bn�, ωnω〉} (resp. 〈�p,B�, γω〉).

A run ρ of a SABPDS BP starting form an initial configuration
〈�p0, B0�, ω0〉 is a tree whose root is labelled by 〈�p0, B0�, ω0〉, and whose
other nodes are labelled by elements in P × B × Γ ∗. If a node of ρ
is labelled by a configuration 〈�p,B�, ω〉 and has n children labelled by
〈�p1, B1�, ω1〉, ..., 〈�pn, Bn�, ωn〉 respectively, then, 〈�p,B�, ω〉 must be a prede-
cessor of {〈�p1, B1�, ω1〉, ..., 〈�pn, Bn�, ωn〉} in BP. A path of a run ρ is an infinite
sequence of configurations c0c1c2... s.t. c0 is the root of ρ and ci+1 is one of the
children of ci for every i ≥ 0. A path is accepting iff it visits infinitely often
configurations with control locations in F . A run ρ is accepting iff every path
of ρ is accepting. The language of BP, L(BP), is the set of configurations c s.t.
BP has an accepting run starting from c.

BP defines the reachability relation =⇒BP : 2(P×B)×Γ ∗ → 2(P×B)×Γ ∗
as fol-

lows: (1) c =⇒BP {c} for every c ∈ P × B × Γ ∗, (2) c =⇒BPC if C is an immediate
successor of c; (3) if c =⇒BP {c1, c2, ..., cn} and ci =⇒BP Ci for every 1 ≤ i ≤ n,
then c =⇒BP

⋃n
i=1 Ci. Given c0 =⇒BP C ′, then, BP has an accepting run from c0

iff BP has an accepting run from c′ for every c′ ∈ C ′.

Theorem 3. [10] The membership problem of SABPDS can be solved effectively.

Functions of R. In what follows, we define several functions of R which will be
used in the next sections. These functions were first defined in [10].

1. id(B) = {B}. This is the identity function.
2.

equal(B1, ..., Bn) =
{

B1 if Bi = Bj for every 1 ≤ i, j ≤ n;
∅ otherwise

This function checks whether all the environments are equal and returns {B1}
(which is also equal to Bi for every i). Otherwise, it returns the emptyset.

3.

meetx{c1,...,cn}(B1, ..., Bn) =
⎧
⎪⎨

⎪⎩

Absx(B1) if Bi(x) = ci for 1 ≤ i ≤ n,

and Bi(y) = Bj(y) for y �= x, 1 ≤ i, j ≤ n;
∅ otherwise

This function checks whether (1) Bi(x) = ci for every 1 ≤ i ≤ n (2) for every
y �= x; every 1 ≤ i, j ≤ n Bi(y) = Bj(y). If the conditions are satisfied, it
returns Absx(B1)1, otherwise it returns the emptyset.

1 Absx(B1) is as defined in Sect. 3.1.

282 H.-V. Nguyen and T. Touili

4.

joinx
c (B1, ..., Bn) =

⎧
⎪⎨

⎪⎩

B1 if Bi(x) = c for 1 ≤ i ≤ n

and Bi = Bj for 1 ≤ i, j ≤ n;
∅ otherwise

This function checks whether Bi(x) = c for every i. If this condition is satis-
fied, equal(B1, ..., Bn) is returned, otherwise, the emptyset is returned.

5.

join¬x
c (B1, ..., Bn) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B1 if Bi(x) �= c for 1 ≤ i ≤ n

and Bi = Bj for 1 ≤ i, j ≤ n;
∅ otherwise

This function checks whether Bi(x) �= c for every i. If this condition is satis-
fied, equal(B1, ..., Bn) is returned, otherwise, the emptyset is returned.

4.3 From SBPCARET Model Checking of PDSs to the Membership
Problem in SABPDSs

Let P = (P, Γ,Δ) be a PDS. We suppose w.l.o.g. that P has a bottom stack
symbol � that is never popped from the stack. Let AP be a set of atomic
propositions. Let ϕ be a SBPCARET formula over AP , λ : P −→ 2APD be
a labelling function. Given a configuration 〈p0, ω0〉, we propose in this section
an algorithm to check whether 〈p0, ω0〉 �λ ϕ, i.e., whether there exists an envi-
ronment B s.t. 〈p0, ω0〉 �B

λ ϕ. Intuitively, we compute an SABPDS BPϕ s.t.
〈p, ω〉 �B

λ ϕ iff 〈��p, ϕ�, B�, ω〉 ∈ L(BPϕ) for every p ∈ P , ω ∈ Γ ∗, B ∈ B.
Then, to check if 〈p0, ω0〉 �λ ϕ, we will check whether there exists a B ∈ B s.t.
〈��p0, ϕ�, B�, ω0〉 ∈ L(BPϕ).

Let Reg+(ϕ) = {e1, ..., ek} and Reg−(ϕ) = {ek+1, ..., em}. Using Theorems
1 and 2; for every 1 ≤ i ≤ k, we can compute a VA Mei

= (Qei
, Γ, δei

, sei
, Fei

)
s.t. L(Mei

) = L(ei). In addition, for every k + 1 ≤ j ≤ m, we can compute a
VA M¬ej

= (Q¬ej
, Γ, δ¬ej

, s¬ej
, F¬ej

) s.t. L(M¬ej
) = (P × Γ ∗) × B \ L(ej). Let

M be the union of all these automata, S and F be respectively the union of all
states and final states of these automata.

Let BPϕ = (P ′, Γ ′,Δ′, F) be the SABPDS defined as follows:

– P ′ = P ∪ (P × Cl(ϕ)) ∪ S ∪ {p⊥}
– Γ ′ = Γ ∪ (Γ × Cl(ϕ)) ∪ {γ⊥}
– F = F1 ∪ F2 ∪ F3 ∪ F4 where

BCARET Model Checking for Malware Detection 283

• F3 = P × ClR(ϕ) × B where ClR(ϕ) is the set of formulas of Cl(ϕ) in the
form E[ϕ1R

vϕ2] or A[ϕ1R
vϕ2] (v ∈ {g, a})

• F4 = F × B

The transition relation Δ′ is the smallest set of transition rules defined as
follows: For every p ∈ P , φ ∈ Cl(ϕ), γ ∈ Γ and t ∈ {call, ret, int}:

(���1) If φ = b(α1, ..., αn), then, 〈�p, φ�, γ〉 id
↪−→ 〈�p, φ�, γ〉 ∈ Δ′

(���2) If φ = ¬b(α1, ..., αn), then, 〈�p, φ�, γ〉 id
↪−→ 〈�p, φ�, γ〉 ∈ Δ′

(���3) If φ = φ1 ∧ φ2, then, 〈�p, φ�, γ〉 equal
↪−−−→ [〈�p, φ1�, γ〉, 〈�p, φ2�, γ〉] ∈ Δ′

(���4) If φ = φ1 ∨ φ2, then, 〈�p, φ�, γ〉 id
↪−→ 〈�p, φ1�, γ〉 ∈ Δ′ and 〈�p, φ�, γ〉 id

↪−→
〈�p, φ2�, γ〉 ∈ Δ′

(���5) If φ = ∃xφ1, then, 〈�p, φ�, γ〉
meetx

{c}
↪−−−−−→ 〈�p, φ1�, γ〉 ∈ Δ′ for every c ∈ D

(���6) If φ = ∀xφ1, then, 〈�p, φ�, γ〉 meetx
D

↪−−−−→ [〈�p, φ1�, γ〉, ..., 〈�p, φ1�, γ〉] ∈ Δ′ where
〈�p, φ1�, γ〉 is repeated m times in the right-hand side, where m is the number
of elements in D

(���7) If φ = EXgφ1, then

〈�p, φ�, γ〉 id
↪−→ 〈�q, φ1�, ω〉 ∈ Δ′ for every 〈p, γ〉 t−→ 〈q, ω〉 ∈ Δ

(���8) If φ = AXgφ1, then,

〈�p, φ�, γ〉 equal
↪−−−→ [〈�q1, φ1�, ω1〉, ..., 〈�qn, φ1�, ωn〉] ∈ Δ′, where for every 1 ≤

i ≤ n, 〈p, γ〉 t−→ 〈qi, ωi〉 ∈ Δ and these transitions are all the transitions of Δ

that are in the form 〈p, γ〉 t−→ 〈q, ω〉 that have 〈p, γ〉 on the left hand side.
(���9) If φ = EXaφ1, then,

(a) 〈�p, φ�, γ〉 id
↪−→ 〈q, γ′�γ′′, φ1�〉 ∈ Δ′ for every 〈p, γ〉 call−−→ 〈q, γ′γ′′〉 ∈ Δ

(b) 〈�p, φ�, γ〉 id
↪−→ 〈�q, φ1�, ω〉 ∈ Δ′ for every 〈p, γ〉 int−−→ 〈q, ω〉 ∈ Δ

(c) 〈�p, φ�, γ〉 id
↪−→ 〈p⊥, γ⊥〉 ∈ Δ′ for every 〈p, γ〉 ret−−→ 〈q′, ε〉 ∈ Δ

(���10) If φ = AXaφ1, then,

〈�p, φ�, γ〉 equal
↪−−−→ [〈p1, γ′

1�γ
′′
1 , φ1�〉, ..., 〈pm, γ′

m�γ′′
m, φ1�〉, 〈�q1, φ1�, ω1〉, ..., 〈�qn,

φ1�, ωn〉, 〈p⊥, γ⊥〉, ..., 〈p⊥, γ⊥〉] ∈ Δ′, where 〈p⊥, γ⊥〉 is repeated k times in
the right-hand side s.t.:
(a) for every 1 ≤ i ≤ m, 〈p, γ〉 call−−→ 〈pi, γ

′
iγ

′′
i 〉 ∈ Δ and these transitions are

all the transitions of Δ that are in the form 〈p, γ〉 call−−→ 〈q, γ′γ′′〉 that have
〈p, γ〉 on the left hand side.

(b) for every 1 ≤ i ≤ n, 〈p, γ〉 int−−→ 〈qi, ωi〉 ∈ Δ and these transitions are all
the transitions of Δ that are in the form 〈p, γ〉 int−−→ 〈q, ω〉 that have 〈p, γ〉
on the left hand side.

(c) for every 1 ≤ i ≤ k, 〈p, γ〉 ret−−→ 〈q′
i, ε〉 ∈ Δ and these transitions are all the

transitions of Δ that are in the form 〈p, γ〉 ret−−→ 〈q′, ε〉 that have 〈p, γ〉 on
the left hand side.

(���11) If φ = E[φ1U
gφ2], then,

284 H.-V. Nguyen and T. Touili

(a) 〈�p, φ�, γ〉 id
↪−→ 〈�p, φ2�, γ〉 ∈ Δ′

(b) 〈�p, φ�, γ〉 equal
↪−−−→ [〈�p, φ1�, γ〉, 〈�q, φ�, ω〉] ∈ Δ′ for every 〈p, γ〉 t−→ 〈q, ω〉 ∈ Δ

(���12) If φ = E[φ1U
aφ2], then,

(a) 〈�p, φ�, γ〉 id
↪−→ 〈�p, φ2�, γ〉 ∈ Δ′

(b) 〈�p, φ�, γ〉 equal
↪−−−→ [〈�p, φ1�, γ〉, 〈q, γ′�γ′′, φ�〉] ∈ Δ′ for every 〈p, γ〉 call−−→

〈q, γ′γ′′〉 ∈ Δ

(c) 〈�p, φ�, γ〉 equal
↪−−−→ [〈�p, φ1�, γ〉, 〈�q, φ�, ω〉] ∈ Δ′ for every 〈p, γ〉 int−−→

〈q, ω〉 ∈ Δ

(d) 〈�p, φ�, γ〉 id
↪−→ 〈p⊥, γ⊥〉 ∈ Δ′ for every 〈p, γ〉 ret−−→ 〈q′, ε〉 ∈ Δ

(���13) If φ = A[φ1U
gφ2], then,

(a) 〈�p, φ�, γ〉 id
↪−→ 〈�p, φ2�, γ〉 ∈ Δ′

(b) 〈�p, φ�, γ〉 equal
↪−−−→ [〈�p, φ1�, γ〉; 〈�q1, φ�, ω1〉, ..., 〈�qn, φ�, ωn〉] ∈ Δ′ where for

every 1 ≤ i ≤ n,〈p, γ〉 t−→ 〈qi, ωi〉 ∈ Δ and these transitions are all the
transitions of Δ that are in the form 〈p, γ〉 t−→ 〈q, ω〉 that have 〈p, γ〉 on
the left hand side.

(���14) If φ = A[φ1U
aφ2], then,

(a) 〈�p, φ�, γ〉 id
↪−→ 〈�p, φ2�, γ〉 ∈ Δ′

(b) 〈�p, φ�, γ〉 equal
↪−−−→ [〈�p, φ1�, γ〉; 〈p1, γ′

1�γ
′′
1 , φ�〉, ..., 〈pm, γ′

m�γ′′
m, φ�〉;

〈�q1, φ�, ω1〉, ..., 〈�qn, φ�, ωn〉, 〈p⊥, γ⊥〉, ..., 〈p⊥, γ⊥〉] ∈ Δ′, where 〈p⊥, γ⊥〉
is repeated k times in the right-hand side s.t.:

– for every 1 ≤ i ≤ m, 〈p, γ〉 call−−→ 〈pi, γ
′
iγ

′′
i 〉 ∈ Δ and these transitions

are all the transitions of Δ that are in the form 〈p, γ〉 call−−→ 〈q, γ′γ′′〉
that have 〈p, γ〉 on the left hand side.

– for every 1 ≤ i ≤ n, 〈p, γ〉 int−−→ 〈qi, ωi〉 ∈ Δ and these transitions are
all the transitions of Δ that are in the form 〈p, γ〉 int−−→ 〈q, ω〉 that
have 〈p, γ〉 on the left hand side.

– for every 1 ≤ i ≤ k, 〈p, γ〉 ret−−→ 〈q′
i, ε〉 ∈ Δ and these transitions are all

the transitions of Δ that are in the form 〈p, γ〉 ret−−→ 〈q′, ε〉 that have
〈p, γ〉 on the left hand side.

(���15) If φ = E[φ1R
gφ2], then, we add to Δ′ the rule:

(a) 〈�p, φ�, γ〉 equal
↪−−−→ [〈�p, φ2�, γ〉, 〈�p, φ1�, γ〉] ∈ Δ′

(b) 〈�p, φ�, γ〉 equal
↪−−−→ [〈�p, φ2�, γ〉, 〈�q, φ�, ω〉] ∈ Δ′ for every 〈p, γ〉 t−→

〈q, ω〉 ∈ Δ
(���16) If φ = A[φ1R

gφ2], then, we add to Δ′ the rule:

(a) 〈�p, φ�, γ〉 equal
↪−−−→ [〈�p, φ2�, γ〉, 〈�p, φ1�, γ〉] ∈ Δ′

(b) 〈�p, φ�, γ〉 equal
↪−−−→ [〈�p, φ2�, γ〉; 〈�q1, φ�, ω1〉, ..., 〈�qn, φ�, ωn〉] ∈ Δ′ where for

every 1 ≤ i ≤ n, 〈p, γ〉 t−→ 〈qi, ωi〉 ∈ Δ and these transitions are all the
transitions of Δ that are in the form 〈p, γ〉 t−→ 〈q, ω〉 that have 〈p, γ〉 on
the left hand side.

BCARET Model Checking for Malware Detection 285

(���17) If φ = E[φ1R
aφ2], then,

(a) 〈�p, φ�, γ〉 equal
↪−−−→ [〈�p, φ2�, γ〉, 〈�p, φ1�, γ〉] ∈ Δ′

(b) 〈�p, φ�, γ〉 equal
↪−−−→ [〈�p, φ2�, γ〉, 〈q, γ′�γ′′, φ�〉] ∈ Δ′ for every 〈p, γ〉 call−−→

〈q, γ′γ′′〉 ∈ Δ

(c) 〈�p, φ�, γ〉 equal
↪−−−→ [〈�p, φ2�, γ〉, 〈�q, φ�, ω〉] ∈ Δ′ for every 〈p, γ〉 int−−→

〈q, ω〉 ∈ Δ

(d) 〈�p, φ�, γ〉 id
↪−→ 〈p⊥, γ⊥〉 ∈ Δ′ for every 〈p, γ〉 ret−−→ 〈q′, ε〉 ∈ Δ

(���18) If φ = A[φ1R
aφ2], then,

(a) 〈�p, φ�, γ〉 equal
↪−−−→ [〈�p, φ2�, γ〉, 〈�p, φ1�, γ〉] ∈ Δ′

(b) 〈�p, φ�, γ〉 equal
↪−−−→ [〈�p, φ2�, γ〉; 〈p1, γ′

1�γ
′′
1 , φ�〉, ..., 〈pm, γ′

m�γ′′
m, φ�〉;

〈�q1, φ�, ω1〉, ..., 〈�qn, φ�, ωn〉, 〈p⊥, γ⊥〉, ..., 〈p⊥, γ⊥〉] ∈ Δ′, where 〈p⊥, γ⊥〉
is repeated k times in the right-hand side s.t.:

– for every 1 ≤ i ≤ m, 〈p, γ〉 call−−→ 〈pi, γ
′
iγ

′′
i 〉 ∈ Δ and these transitions

are all the transitions of Δ that are in the form 〈p, γ〉 call−−→ 〈q, γ′γ′′〉
that have 〈p, γ〉 on the left hand side.

– for every 1 ≤ i ≤ n, 〈p, γ〉 int−−→ 〈qi, ωi〉 ∈ Δ and these transitions are
all the transitions of Δ that are in the form 〈p, γ〉 int−−→ 〈q, ω〉 that
have 〈p, γ〉 on the left hand side.

– for every 1 ≤ i ≤ k, 〈p, γ〉 ret−−→ 〈q′
i, ε〉 ∈ Δ and these transitions are all

the transitions of Δ that are in the form 〈p, γ〉 ret−−→ 〈q′, ε〉 that have
〈p, γ〉 on the left hand side.

(���19) for every 〈p, γ〉 ret−−→ 〈q, ε〉 ∈ Δ:

– 〈q, �γ′′, φ1�〉 id
↪−→ 〈�q, φ1�, γ

′′〉 ∈ Δ′ for every γ′′ ∈ Γ , φ1 ∈ Cl(ϕ)

(���20) 〈p⊥, γ⊥〉 id
↪−→ 〈p⊥, γ⊥〉 ∈ Δ′

(���21) for every 〈p, γ〉 t−→ 〈q, ω〉 ∈ Δ: 〈p, γ〉 id
↪−→ 〈q, ω〉 ∈ Δ′

(���22) If φ = e, e is a regular expression, then, 〈�p, φ�, γ〉 id
↪−→ 〈se, γ〉 ∈ Δ′

(���23) If φ = ¬e, e is a regular expression, then, 〈�p, φ�, γ〉 id
↪−→ 〈s¬e, γ〉 ∈ Δ′

(���24) for every transition q
α−→ {q1, .., qn} in M: 〈q, γ〉 R

↪−→ [〈q1, ε〉, ..., 〈qn, ε〉] ∈ Δ′,
where:
(a) R = equal iff α = γ
(b) R = joinx

γ iff α = x ∈ X
(c) R = join¬x

γ iff α = ¬x and x ∈ X
(���25) for every q ∈ F , 〈q, �〉 id

↪−→ 〈q, �〉 ∈ Δ′

Roughly speaking, the SABPDS BPϕ is a kind of product between P and the
SBPCARET formula ϕ which ensures that BPϕ has an accepting run from
〈��p, ϕ�, B�, ω〉 iff the configuration 〈p, ω〉 satisfies ϕ under the environment B.
The form of the control locations of BPϕ is ��p, φ�, B� where φ ∈ Cl(ϕ), B ∈ B.
Let us explain the intuition behind our construction:

286 H.-V. Nguyen and T. Touili

– If φ = b(α1, ..., αn), then, for every ω ∈ Γ ∗, 〈p, ω〉 �B
λ φ iff

b(B(α1), ..., B(αn)) ∈ λ(p). Thus, for such a B, BPϕ should have an
accepting run from 〈��p, b(α1, ..., αn)�, B�, ω〉 iff b(B(α1), ..., B(αn)) ∈ λ(p).
This is ensured by the transition rules in (���1) which add a loop at
〈��p, b(α1, ..., αn)�, B�, ω〉 and the fact that ��p, b(α1, ..., αn)�, B� ∈ F
(because it is in F1). The function id in (���1) ensures that the environments
before and after are the same.

– If φ = ¬b(α1, ..., αn), then, for every ω ∈ Γ ∗, 〈p, ω〉 �B
λ φ iff

b(B(α1), ..., B(αn)) /∈ λ(p). Thus, for such a B, BPϕ should have an
accepting run from 〈��p,¬b(α1, ..., αn)�, B�, ω〉 iff b(B(α1), ..., B(αn)) /∈ λ(p).
This is ensured by the transition rules in (���2) which add a loop at
〈��p,¬b(α1, ..., αn)�, B�, ω〉 and the fact that ��p,¬b(α1, ..., αn)�, B� ∈ F
(because it is in F2). The function id in (���2) ensures that the environments
before and after are the same.

– If φ = φ1 ∧ φ2, then, for every ω ∈ Γ ∗, 〈p, ω〉 �B
λ φ iff (〈p, ω〉 �B

λ φ1 and
〈p, ω〉 �B

λ φ2). This is ensured by the transition rules in (���3) stating that
BPϕ has an accepting run from 〈��p, φ1∧φ2�, B�, ω〉 iff BPϕ has an accepting
run from both 〈��p, φ1�, B�, ω〉 and 〈��p, φ2�, B�, ω〉. (���4) is similar to (���3).

– If φ = ∃xφ1, then, for every ω ∈ Γ ∗, 〈p, ω〉 �B
λ φ iff there exists c ∈ D

s.t. 〈p, ω〉 �B[x←c]
λ φ1. This is ensured by the transition rules in (���5) stating

that BPϕ has an accepting run from 〈��p,∃xφ1�, B�, ω〉 iff there exists c ∈
D s.t. BPϕ has an accepting run from 〈��p, φ1�, B[x ← c]�, ω〉 since B ∈
meetx{c}(B[x ← c])

– If φ = ∀xφ1, then, for every ω ∈ Γ ∗, 〈p, ω〉 �B
λ φ iff for every c ∈ D,

〈p, ω〉 �B[x←c]
λ φ1. This is ensured by the transition rules in (���6) stating that

BPϕ has an accepting run from 〈��p,∀xφ1�, B�, ω〉 iff for every c ∈ D, BPϕ

has an accepting run from 〈��p, φ1�, B[x ← c]�, ω〉 since if D = {c1, ..., cm},
then, B ∈ meetxD(B[x ← c1], ..., B[x ← cm])

– If φ = EXgφ1, then, for every ω ∈ Γ ∗, 〈p, ω〉 �B
λ φ iff there exists an

immediate successor 〈p′, ω′〉 of 〈p, ω〉 s.t. 〈p′, ω′〉 �B
λ φ1. This is ensured by

the transition rules in (���7) stating that BPϕ has an accepting run from
〈��p,EXgφ1�, B�, ω〉 iff there exists an immediate successor 〈p′, ω′〉 of 〈p, ω〉
s.t. BPϕ has an accepting run from 〈��p′, φ1�, B�, ω′〉. (���8) is similar to (���7).

– If φ = E[φ1U
gφ2], then, for every ω ∈ Γ ∗, 〈p, ω〉 �B

λ φ iff 〈p, ω〉 �B
λ φ2

or (〈p, ω〉 �B
λ φ1 and there exists an immediate successor 〈p′, ω′〉 of 〈p, ω〉

s.t. 〈p′, ω′〉 �B
λ φ). This is ensured by the transition rules in (���11) stating

that BPϕ has an accepting run from 〈��p,E[φ1U
gφ2]�, B�, ω〉 iff BPϕ has an

accepting run from 〈��p, φ2�, B�, ω〉 (by the rules in (���11)(a) or (BPϕ has an
accepting run from both 〈��p, φ1�, B�, ω〉 and 〈��p′, φ�, B�, ω′〉 where 〈p′, ω′〉 is
an immediate successor of 〈p, ω〉) (by the rules in (���11)(b)). (���13) is similar
to (���11).

– If φ = E[φ1R
gφ2], then, for every ω ∈ Γ ∗, 〈p, ω〉 �B

λ φ iff (〈p, ω〉 �B
λ φ2 and

〈p, ω〉 �B
λ φ1) or (〈p, ω〉 �B

λ φ2 and there exists an immediate successor 〈p′, ω′〉
of 〈p, ω〉 s.t. 〈p′, ω′〉 �B

λ φ). This is ensured by the transition rules in (���15)
stating that BPϕ has an accepting run from 〈��p,E[φ1R

gφ2]�, B�, ω〉 iff BPϕ

BCARET Model Checking for Malware Detection 287

has an accepting run from both 〈��p, φ2�, B�, ω〉 and 〈��p, φ1�, B�, ω〉 (by the
rules in (���15)(a)); or BPϕ has an accepting run from both 〈��p, φ2�, B�, ω〉
and ��p′, φ�, B�, ω′〉 where 〈p′, ω′〉 is an immediate successor of 〈p, ω〉 (by the
rules in (���15)(b)). In addition, for Rg formulas, the stop condition is not
required, i.e, for a formula φ1R

gφ2 that is applied to a specific run, we don’t
require that φ1 must eventually hold. To ensure that the runs on which φ2

always holds are accepted, we add ��p, φ�, B� to the Büchi accepting condition
F (via the subset F3 of F). (���16) is similar to (���15).

– If φ = EXaφ1, then, for every ω ∈ Γ ∗, 〈p, ω〉 �B
λ φ iff there exists an abstract-

successor 〈pk, ωk〉 of 〈p, ω〉 s.t. 〈pk, ωk〉 �B
λ φ1 (A1) . Let π ∈ Traces(〈p, ω〉)

be a run starting from 〈p, ω〉 on which 〈pk, ωk〉 is the abstract-successor of
〈p, ω〉. Over π, let 〈p′, ω′〉 be the immediate successor of 〈p, ω〉. In what follows,
we explain how we can ensure this.

call

EXaφ1

ret

return-point

γ , φ1encoded & passed down

p, ω

p , ω pk−1, ωk−1

pk, ωk

Fig. 2. 〈p, ω〉 =⇒P 〈p′, ω′〉 corresponds to a call statement

1. Firstly, we show that for every abstract-successor 〈pk, ωk〉 �= ⊥ of 〈p, ω〉,
〈��p,EXaφ1�, B�, ω〉 =⇒BPϕ

〈��pk, φ1�, B�, ωk〉 where B ∈ B. There are two pos-
sibilities:

• If 〈p, ω〉 =⇒P 〈p′, ω′〉 corresponds to a call statement. Let us consider Fig. 2
to explain this case. 〈��p, φ�, B�, ω〉 =⇒BPϕ 〈��pk, φ1�, B�, ωk〉 is ensured by the
rules in (���9)(a), the rules in (���21) and the rules in (���19) as follows: rules in
(���9)(a) allow to record φ1 in the return point of the call, rules in (���21) allow
to mimic the run of the PDS P and rules in (���19) allow to extract and put
back φ1 when the return-point is reached. In what follows, we show in more
details how this works: Let 〈p, γ〉 call−−→ 〈p′, γ′γ′′〉 be the rule associated with
the transition 〈p, ω〉 =⇒P 〈p′, ω′〉, then we have ω = γω′′ and ω′ = γ′γ′′ω′′.
Let 〈pk−1, ωk−1〉 =⇒P 〈pk, ωk〉 be the transition that corresponds to the
ret statement of this call on π.Let then 〈pk−1, β〉 ret−−→ 〈pk, ε〉 ∈ Δ be the
corresponding return rule. Then, we have necessarily ωk−1 = βγ′′ω′′, since
as explained in Sect. 2, γ′′ is the return address of the call. After applying
this rule, ωk = γ′′ω′′. In other words, γ′′ will be the topmost stack symbol
at the corresponding return point of the call. So, in order to ensure that
〈��p, φ�, B�, ω〉 =⇒BPϕ

〈��pk, φ1�, B�, ωk〉, we proceed as follows: At the call

288 H.-V. Nguyen and T. Touili

〈p, γ〉 call−−→ 〈p′, γ′γ′′〉, we encode the formula φ1 into γ′′ by the rule in (���9)(a)

stating that 〈�p,EXaφ1�, γ〉 id
↪−→ 〈p′, γ′�γ′′, φ1�〉 ∈ Δ′. This allows to record

φ1 in the corresponding return point of the stack. After that, the rules in
(���21) allow BPϕ to mimic the run π of P from 〈p′, ω′〉 till the corresponding
return-point of this call, where �γ′′, φ1� is the topmost stack symbol. More
specifically, the following sequence of P: 〈p′, γ′γ′′ω′′〉 ∗=⇒P 〈pk−1, βγ′′ω′′〉 ∗=⇒P
〈pk, γ′′ω′′〉 will be mimicked by the following sequence of BPϕ: 〈�p′, B�,
γ′�γ′′, φ1�ω

′′〉 =⇒BPϕ
〈�pk−1, B�, β�γ′′, φ1�ω

′′〉 =⇒BPϕ
〈�pk, B�, �γ′′, φ1�ω

′′〉
using the rules of (���21). At the return-point, we extract φ1 from
the stack and encode it into pk by adding the transition rules

in (���19) 〈pk, �γ′′, φ1�〉 id
↪−→ 〈�pk, φ1�, γ

′′〉. Therefore, we obtain that
〈��p, φ�, B�, ω〉 =⇒BPϕ

〈��pk, φ1�, B�, ωk〉. The property holds for this case.
• If 〈p, ω〉 =⇒P 〈p′, ω′〉 corresponds to a simple statement. Then, the

abstract successor of 〈p, ω〉 is its immediate successor 〈p′, ω′〉. Thus,
we get that 〈pk, ωk〉 = 〈p′, ω′〉. From the transition rules (���9)(b),
we get that 〈��p,EXaφ1�, B�, ω〉 =⇒BPϕ

〈��p′, φ1�, B�, ω′〉. Therefore,
〈��p,EXaφ1�, B�, ω〉 =⇒BPϕ

〈��pk, φ1�, B�, ωk〉. The property holds for this
case.

2. Now, let us consider the case where 〈pk, ωk〉, the abstract successor of 〈p, ω〉,
is ⊥. This case occurs when 〈p, ω〉 =⇒P 〈p′, ω′〉 corresponds to a return state-
ment. Then, one abstract successor of 〈p, ω〉 is ⊥. Note that ⊥ does not satisfy
any formula, i.e., ⊥ does not satisfy φ1. Therefore, from 〈��p,EXaφ1�, B�, ω〉,
we need to ensure that the path of BPϕ reflecting the possibility in (A1) that
〈pk, ωk〉 �B

λ φ1 is not accepted. To do this, we exploit additional trap con-
figurations. We use p⊥ and γ⊥ as trap control location and trap stack sym-
bol to obtain these trap configurations. To be more specific, let 〈p, γ〉 ret−−→
〈p′, ε〉 be the rule associated with the transition 〈p, ω〉 =⇒P 〈p′, ω′〉, then
we have ω = γω′′ and ω′ = ω′′. We add the transition rule in (���9)(c) to
allow 〈��p,EXaφ1�, B�, ω〉 =⇒BPϕ 〈�p⊥, B�, γ⊥ω′′〉. Since a run of BPϕ includes
only infinite paths, we equip these trap configurations with self-loops by the
transition rules in (���20), i.e., 〈�p⊥, B�, γ⊥ω′′〉 =⇒BPϕ

〈�p⊥, B�, γ⊥ω′′〉. As a
result, we obtain a corresponding path in BPϕ: 〈��p,EXaφ1�, B�, ω〉 =⇒BPϕ

〈�p⊥, B�, γ⊥ω′′〉 =⇒BPϕ
〈�p⊥, B�, γ⊥ω′′〉. Note that this path is not accepted by

BPϕ because �p⊥, B� /∈ F .
In summary, for every abstract-successor 〈pk, ωk〉 of 〈p, ω〉, if 〈pk, ωk〉 �= ⊥,

then, 〈��p,EXaφ1�, B�, ω〉 =⇒BPϕ
〈��pk, φ1�, B�, ωk〉; otherwise 〈��p,

EXaφ1�, B�, ω〉 =⇒BPϕ 〈�p⊥, B�, γ⊥ω′′〉 =⇒BPϕ 〈�p⊥, B�, γ⊥ω′′〉 which is not
accepted by BPϕ. Therefore, (A1) is ensured by the transition rules in (���9)
stating that BPϕ has an accepting run from 〈��p,EXaφ1�, B�, ω〉 iff there exists
an abstract successor 〈pk, ωk〉 of 〈p, ω〉 s.t. BPϕ has an accepting run from
〈��pk, φ1�, B�, ωk〉.

– If φ = AXaφ1: this case is ensured by the transition rules in (���10) together
with (���19) and (���21). The intuition of (���10) is similar to that of (���9).

BCARET Model Checking for Malware Detection 289

– If φ = E[φ1U
aφ2], then, for every ω ∈ Γ ∗, 〈p, ω〉 �B

λ φ iff 〈p, ω〉 �B
λ φ2 or

(〈p, ω〉 �B
λ φ1 and there exists an abstract successor 〈pk, ωk〉 of 〈p, ω〉 s.t.

〈pk, ωk〉 �B
λ φ) (A2) . Let π ∈ Traces(〈p, ω〉) be a run starting from 〈p, ω〉 on

which 〈pk, ωk〉 is the abstract-successor of 〈p, ω〉. Over π, let 〈p′, ω′〉 be the
immediate successor of 〈p, ω〉.

1. Firstly, we show that for every abstract-successor 〈pk, ωk〉 �= ⊥ of 〈p, ω〉,
〈��p, φ�, B�, ω〉 =⇒BPϕ {〈��p, φ1�, B�, ω〉, 〈��pk, φ�, B�, ωk〉} where B ∈ B. There
are two possibilities:

• If 〈p, ω〉 =⇒P 〈p′, ω′〉 corresponds to a call statement. From the rules
in (���12)(b), we get that 〈��p, φ�, B�, ω〉 =⇒BPϕ {〈��p, φ1�, B�, ω〉, 〈p′, ω′〉}
where 〈p′, ω′〉 is the immediate successor of 〈p, ω〉. Thus, to ensure that
〈��p, φ�, B�, ω〉 =⇒BPϕ

{〈��p, φ1�, B�, ω〉, 〈��pk, φ�, B�, ωk〉}, we only need to
ensure that 〈p′, ω′〉 =⇒BPϕ 〈��pk, φ�, B�, ωk〉. As for the case φ = EXaφ1,
〈p′, ω′〉 =⇒BPϕ

〈��pk, φ�, B�, ωk〉 is ensured by the rules in (���21) and the rules
in (���19): rules in (���21) allow to mimic the run of the PDS P before the return
and rules in (���19) allow to extract and put back φ1 when the return-point is
reached.

• If 〈p, ω〉 =⇒P 〈p′, ω′〉 corresponds to a simple statement. Then, the
abstract successor of 〈p, ω〉 is its immediate successor 〈p′, ω′〉. Thus, we get
that 〈pk, ωk〉 = 〈p′, ω′〉. From the transition rules (���12)(c), we get that
〈��p,E[φ1U

aφ2]�, B�, ω〉 =⇒BPϕ {〈��p, φ1�, B�, ω〉, 〈��p′, φ�, B�, ω′〉}. There-
fore, 〈��p,E[φ1U

aφ2]�, B�, ω〉 =⇒BPϕ
{〈��p, φ1�, B�, ω〉, 〈��pk, φ�, B�, ωk〉}. In

other words, BPϕ has an accepting run from both 〈��p, φ1�, B�, ω〉 and
〈��pk, φ�, B�, ωk〉 where 〈pk, ωk〉 is an abstract successor of 〈p, ω〉. The prop-
erty holds for this case.

2. Now, let us consider the case where 〈pk, ωk〉 = ⊥. As explained previously,
this case occurs when 〈p, ω〉 =⇒P 〈p′, ω′〉 corresponds to a return statement.
Then, the abstract successor of 〈p, ω〉 is ⊥. Note that ⊥ does not satisfy any
formula, i.e., ⊥ does not satisfy φ. Therefore, from 〈��p,E[φ1U

aφ2]�, B�, ω〉, we
need to ensure that the path reflecting the possibility in (A2) that (〈p, ω〉 �B

λ φ1

and 〈pk, ωk〉 �B
λ φ) is not accepted by BPϕ. This is ensured as for the case

φ = EXaφ1 by the transition rules in (���12)(d).
In summary, for every abstract-successor 〈pk, ωk〉 of 〈p, ω〉, if 〈pk, ωk〉 �= ⊥,

then, 〈��p,E[φ1U
aφ2]�, B�, ω〉 =⇒BPϕ

{〈��p, φ1�, B�, ω〉, 〈��pk, E[φ1U
aφ2]�, B�,

ωk〉}; otherwise 〈��p,E[φ1U
aφ2]�, B�, ω〉 =⇒BPϕ

〈�p⊥, B�, γ⊥ω′′〉 =⇒BPϕ
〈�p⊥, B�,

γ⊥ω′′〉 which is not accepted by BPϕ. Therefore, (A2) is ensured
by the transition rules in (���12) stating that BPϕ has an accepting
run from 〈��p,E[φ1U

aφ2]�, B�, ω〉 iff BPϕ has an accepting run from
〈��p, φ2�, B�, ω〉; or BPϕ has an accepting run from both 〈��p, φ1�, B�, ω〉 and
〈��pk, E[φ1U

aφ2]�, B�, ωk〉 where 〈pk, ωk〉 is an abstract successor of 〈p, ω〉.

– The intuition behind the rules corresponding to the cases φ = A[φ1U
aφ2],

φ = A[φ1R
aφ2] are similar to the previous case.

290 H.-V. Nguyen and T. Touili

– If φ = e(e ∈ V). Given p ∈ P , e ∈ V, ω ∈ Γ ∗, we get that the SABPDS
BPϕ should accept 〈��p, e�, B�, ω〉 iff (〈p, ω〉, B) ∈ L(Me). To check whether
(〈p, ω〉, B) ∈ L(Me), we let BPϕ go to state se, the initial state corresponding
to p in Me by adding rules in (���22); and then, from this state, we will check
whether ω is accepted by Me under B. This is ensured by the transition rules
in (���24) and (���25). (���24) lets BPϕ mimic a run of Me on ω under B, which
includes three possibilities:

• if BPϕ is in a state �q,B� with γ on the top of the stack where γ ∈ Γ , and
if q

γ−→ {q1, ..., qn} is a transition rule in Me, then, BPϕ will move to states
�q1, B�, ..., �qn, B� and pop γ from its stack. Note that popping γ allows us
to check the rest of the word. This is ensured by the rules corresponding to
(���24)(a). Then function equal ensures that all these environments are the
same.

• if BPϕ is in a state �q,B� with γ on the top of the stack, and if q
x−→ {q1, ..., qn}

is a transition rule in Me where x ∈ X , then, BPϕ can mimic a run of Me

under B iff B(x) = γ. If this condition is guaranteed, BPϕ will move to states
�q1, B�, ..., �qn, B� and pop γ from its stack. Again, popping γ allows us to
check the rest of the word. This is ensured by the rules corresponding to
(���24)(b). Then function joinx

γ ensures that all these environments are the
same B and B(x) = γ.

• Similar to (���24)(b), (���24)(c) deals with the cases where q
¬x−−→ {q1, ..., qn}

is a transition rule in Me where x ∈ X .

In each VA Me, a configuration is accepted if the run with the word ω reaches
a final state in Fe; i.e., if BPϕ reaches a state q ∈ Fe with an empty stack, i.e.,
with a stack containing the bottom stack symbol �. Thus, we should add Fe × B
as a set of accepting control locations in BPϕ. This is why F4 is a set of accepting
control locations. In addition, since BPϕ only recognizes infinite paths, (���25)
adds a loop on every configuration 〈�q,B�, �〉 where q ∈ Fe.

– If φ = ¬e(e ∈ V). This case is ensured by the transition rules in (���23), (���24)
and (���25). The intuition behind this case is similar to the case φ = e.

We can show that:

Theorem 4. Given a PDS P = (P, Γ,Δ), a set of atomic propositions AP , a
labelling function λ : APD → 2P and a SBPCARET formula ϕ, we can compute
an SABPDS BPϕ such that for every configuration 〈p, ω〉, for every B ∈ B,
〈p, ω〉 �B

λ ϕ iff BPϕ has an accepting run from the configuration 〈��p, ϕ�, B�, ω〉.

5 Conclusion

In this paper, we present a new logic SBPCARET and show how it can pre-
cisely and succinctly specify malicious behaviors. We then propose an efficient
algorithm for SBPCARET model-checking for PDSs. Our algorithm is based
on reducing the model checking problem to the emptiness problem of Symbolic
Alternating Büchi Pushdown Systems.

BCARET Model Checking for Malware Detection 291

References

1. Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls and
returns. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
467–481. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-
2 35

2. Bergeron, J., Debbabi, M., Desharnais, J., Erhioui, M.M., Lavoie, Y., Tawbi, N.:
Static detection of malicious code in executable programs. Int. J. Req. Eng. 184–
189, 79 (2001)

3. Christodorescu, M., Jha, S.: Static analysis of executables to detect malicious pat-
terns. In: Proceedings of the 12th Conference on USENIX Security Symposium -
Volume 12, SSYM 2003, Berkeley, CA, USA, p. 12. USENIX Association (2003)

4. Kinder, J., Katzenbeisser, S., Schallhart, C., Veith, H.: Detecting malicious code by
model checking. In: Julisch, K., Kruegel, C. (eds.) DIMVA 2005. LNCS, vol. 3548,
pp. 174–187. Springer, Heidelberg (2005). https://doi.org/10.1007/11506881 11

5. Lakhotia, A., Kumar, E.U., Venable, M.: A method for detecting obfuscated calls
in malicious binaries. IEEE Trans. Softw. Eng. 31(11), 955–968 (2005)

6. Nguyen, H.-V., Touili, T.: CARET model checking for malware detection. In: SPIN
2017 (2017)

7. Nguyen, H.-V., Touili, T.: CARET model checking for pushdown systems. In: SAC
2017 (2017)

8. Nguyen, H.-V., Touili, T.: Branching temporal logic of calls and returns for push-
down systems. In: Furia, C.A., Winter, K. (eds.) IFM 2018. LNCS, vol. 11023, pp.
326–345. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98938-9 19

9. Schwoon, S.: Model-checking pushdown systems. Dissertation, Technische Univer-
sität München, München (2002)

10. Song, F., Touili, T.: Pushdown model checking for malware detection. In:
Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 110–125.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28756-5 9

11. Song, F., Touili, T.: Efficient malware detection using model-checking. In:
Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 418–433.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-9 34

12. Song, F., Touili, T.: LTL model-checking for malware detection. In: Piterman,
N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 416–431. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7 29

13. Song, F., Touili, T.: PoMMaDe: pushdown model-checking for malware detection.
In: SIGSOFT 2013 (2013)

https://doi.org/10.1007/978-3-540-24730-2_35
https://doi.org/10.1007/978-3-540-24730-2_35
https://doi.org/10.1007/11506881_11
https://doi.org/10.1007/978-3-319-98938-9_19
https://doi.org/10.1007/978-3-642-28756-5_9
https://doi.org/10.1007/978-3-642-32759-9_34
https://doi.org/10.1007/978-3-642-36742-7_29

	BCARET Model Checking for Malware Detection
	1 Introduction
	2 Pushdown Systems: A Model for Sequential Programs
	2.1 Global and Abstract Successors

	3 Malicious Behaviour Specification
	3.1 Environments, Predicates and Regular Variable Expressions
	3.2 The Stack Branching Temporal Predicate Logic of CAlls and RETurns - SBPCARET

	4 SBPCARET Model-Checking for Pushdown Systems
	4.1 Variable Automata
	4.2 Symbolic Alternating Büchi Pushdown Systems (SABPDSs)
	4.3 From SBPCARET Model Checking of PDSs to the Membership Problem in SABPDSs

	5 Conclusion
	References

