
Towards a Call Behavior-Based Compositional
Verification Framework for SysML

Activity Diagrams

Samir Ouchani(B)

LINEACT, Laboratoire d’Innovation Numérique École d’Ingénieur CESI,
Aix-en-Provence, France
souchani@cesi.fr

Abstract. SysML activity diagram is a standard modeling language for complex
systems. It supports systems’ composition by providing the operator ‘call behav-
ior’. In general, the verification of systems modeled with those diagram inherit the
limitations of the developed built-in tools, especially the case of model checking.
To address this shortcoming, we propose a compositional verification framework
based on the call behavior operator to alleviate the state space explosion prob-
lem of model-checking. The framework decomposes a property into local sub-
properties and verify them separately on the composed behavioral diagrams. Fur-
ther, we propose to ignore the diagrams’ artifacts that are useless with respect to
the property under verification. We prove the soundness of the proposed approach
by showing that the result deduced from the verification of the local properties is
always preserved. The verification results are obtained by encoding SysML activ-
ity diagrams in the probabilistic model checker ‘PRISM’. Finally, we demonstrate
the effectiveness of our framework by verifying a set of properties on two use cases
that require a large amount of memory and a considerable time processing.

Keywords: SysML · Activity diagrams · Model-checking · Compositional
verification · Abstraction · PCTL · PRISM

1 Introduction

A major challenge in systems and software development process is to reduce as possible
bugs by advancing the error detection at early stages of their life-cycles development.
Experimentally, it has been shown that the cost of repairing a software flaw during
maintenance is approximately 500 times higher than fixing it at early design phases [4].
Further, only 15% of flaws are detected in the initial design phase, whereas the cost
of fixing them at this phase is extremely beneficial as compared to fixing them at the
development and testing phases. Yet, a more ambitious challenge is to accelerate the
verification process of a product based on its design artifacts. Here, we are interested on
systems modeled by using modern and standard language like SysML [20]. The latter
is a prominent object-oriented graphical language which today become defacto stan-
dard for software and systems modeling. Especially, SysML reuses a subset of UML
packages [14] and extends others with specific systems’ engineering features such as
probability, time, and the rate. SysML covers mainly four perspectives of systems mod-
eling: structure, behavior, requirement, and parametric diagrams. Particularly, SysML
c© Springer Nature Switzerland AG 2019

R. M. Hierons and M. Mosbah (Eds.): ICTAC 2019, LNCS 11884, pp. 216–234, 2019.
https://doi.org/10.1007/978-3-030-32505-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32505-3_13&domain=pdf
https://doi.org/10.1007/978-3-030-32505-3_13

Towards a Call Behavior-Based Compositional Verification Framework 217

activity diagrams are behavioral diagrams used to model system behaviors at various
levels of abstraction [15].

For the verification of SysML activity diagrams, model checking is the most pop-
ular used technique [23]. Model checking [5] is a formal and automatic verification
technique that checks systems specifications expressed as temporal logic formula or
automata-based formalism on finite state concurrent systems. Compared to qualita-
tive model checking, quantitative verification techniques based on probabilistic model
checkers [4,12] have recently gained popularity. Probabilistic verification offers the
capability of measuring the satisfiability probability of a given property on systems that
inherently exhibit probabilistic behavior. Despite its wide use, model checking in gen-
eral is a resource-intensive process that requires a large amount of memory and time
processing. This is due to the fact that the systems’ state space may grow exponentially
with the number of variables combined with the presence of concurrent behaviors. Con-
sequently, it is of a major importance to reduce the verification process complexity.

To overcome this issue, various techniques have been explored [4,5] for qualitative
model checking and then leveraged to the probabilistic case. Among these techniques,
several solutions aim at optimizing the employed model checking algorithms by intro-
ducing symbolic data structures based on binary decision diagrams, while others target
the analysis of the model itself. Besides, two classes of solutions are found in the lit-
erature: abstraction and compositional verification. The former provides a minimized
representation of the global system under verification. Whereas, the latter avoids the
construction of the considered global system. Abstraction techniques can be classified
into four categories [5]: abstraction by state merging, on variables, by restriction, or by
observer automata. Besides, the well-known compositional verification techniques [6]
are: partitioned transition relation, lazy parallel composition, interface processes, and
assume-guarantee.

In this paper, we are interested by the interface processes and the abstraction by
restriction techniques that are consistent within the composition by call behaviors in
SysML activity diagrams. The provided framework considers as input a system mod-
eled with SysML activity diagrams and its requirements expressed in PCTL [21]. Then
it decomposes a property into local sub-properties in order to verify them separately for
each system’s sub-component in parallel. Further, in order to accelerate more the ver-
ification process, it ignores the diagrams’ artifacts that are useless with respect to the
property and the local properties under verification. For verification, each system’s com-
ponent is transformed automatically into PRISM. Finally, the framework infers safely
the verification result of the target property from the obtained results of the local prop-
erties. In a nutshell, the main contributions of this paper can be summarized as follows.

1. Proposing a complete formalization of the existing calculus dedicated to SysML
activity diagrams.

2. Developing an efficient verification approach that reduces the verification costs over-
head of probabilistic model checking.

3. Proving the soundness of the proposed approach.
4. Showing the effectiveness of the developed framework on two real use cases.

The next section compares our approach with the existing initiatives related to
the verification of SysML activity diagrams. Then, the preliminaries needed for our

218 S. Ouchani

work are presented in Sect. 3. Section 4 describes and formalizes SysML activity dia-
grams. Then, our compositional verification framework is detailed in Sect. 5 and Sect. 6
presents the experimental results. Finally, Sect. 7 concludes the paper and provides
future directions.

2 Related Work

In this section, we survey the research initiatives dedicated mainly to the formaliza-
tion and the verification of SysML diagrams and to the compositional verification of
probabilistic systems.

Yuan et al. [16] construct a set of rules to transform UML state machines to Timed
Automata (TA). They apply the query view transformation approach in order to produce
TA encoded in UPPAAL input language. The properties to be verified against TA are
expressed in LTL. Apvrille and Saqui-Sannes [3] apply structural analysis to SysML by
using the TTool open-source toolkit. They translate a subset of SysML diagrams into
a Petri net and solves an equation system built upon the incidence matrix of the net.
Then, a push-button approach is applied to display verification results.

Ando et al. [1] express SysML state machine diagrams in CSP# processes that could
be verified by the PAT model checker. This work includes only a sub-set of rules and
experimenting the transformation on a toy case study. In addition, they did not detail
the temporal logic that expresses the system requirements. Carrillo et al. [8] define
SysML blocks in a refinement process. The structural architecture of a SysML block
is given by the internal block diagram and the behavior of each sub-block is described
by an interface automaton. Their main intention in a refinement process is to ensure the
consistency and the compatibility between different blocks.

Ermeson et al. [7] verify the embedded realtime systems with energy constraints
that are modeled using SysML State Machine diagram, and the MARTE UML Pro-
file (Modeling and Analysis of Real-Time and Embedded systems) is used to specify
ERTS’s (Embedded Real-time Systems) constraints such as execution time and energy.
They map only states and transitions into ETPN (Time Petri Net with Energy con-
straints). In their transformation, they don’t give the transformation of actions in a given
state even the semantics of the mutual exclusive and orthogonal states by taking just the
internal states into consideration. Furthermore, they propose a similar methodology [2]
that maps one SysML activity diagram to time Petri Net for requirement validation of
embedded real-time systems with energy constraints. The computation model formal-
ized as an ETPN is not well presented and it misses the representation of the energy
consumption values. The authors do not provide a formal transformation for SysML
elements even the values represented from MARTE profile. Also, they do not clarify
why they represent each constraint in an action by a separate transition.

Ouchani et al. [24] introduce the abstraction by merging states to reduce the verifi-
cation cost of a SysML activity diagram. In [22], the authors transform a diagram into
an equivalent hierarchical form in order to help the abstraction developed in [24].

David et al. [18] introduced an extension of UML statecharts with randomly varying
duration that allows probabilistic decision in state. The Input/Output (I/O) automata is
used to provide a compositional semantics for statecharts. Also, probability distribution

Towards a Call Behavior-Based Compositional Verification Framework 219

after a continuous or discrete time is introduced as an arbitrary operator. And in [17],
they introduce means to specify system randomness within statecharts, and to verify
probabilistic temporal properties. The model is represented as MDP, and the properties
are expressed in PCTL.

Concerning the compositional verification for probabilistic systems, Feng et al. [11]
discusses assume-guarantee technique for probabilistic system by focusing more on the
learning algorithm to generate the minimal deterministic automata that represents a
probabilistic safety property. And in [10], they propose the assume-guarantee approach
where both the assumption and the guarantee properties are probabilistic safety proper-
ties such that assumptions are generated manually. Also in [9], they apply the assume-
guarantee technique on synchronous systems modeled as DTMC, where assumptions
are safety properties defined as probabilistic finite automata. To our knowledge, few
probabilistic model checkers support abstraction and compositional verification tech-
niques. As example, PRISM builds the symmetry reduction and LiQuor1 implements
the bi-simulation equivalence.

3 Preliminaries

In this section, we present the probabilistic automata as a modeling formalism and
PCTL temporal logic as a specification language.

Probabilistic automata (PAs) [12] are a modeling formalism for systems that exhibit
probabilistic and nondeterministic features. Definition 1 illustrates a PA where Dist(S)
denotes the set of convex distributions over S and μ = [. . . ,si �→ pi, . . .] is a distribution
in Dist(S) that assigns a probability μ(si) = pi to the state si.

Definition 1 (Probabilistic Automaton). A probabilistic automaton is a tuple M =
(s, S, L, Σ , δ), where:

– s is an initial state, such that s ∈ S,
– S is a finite set of states,
– L : S → 2AP is a labeling function that assigns to each state a set of atomic proposi-

tions taken from the set of atomic propositions (AP),
– Σ is a finite set of actions,
– δ : S × Σ → Dist(S) is a probabilistic transition function assigning for each s ∈ S

and α ∈ Σ a probabilistic distribution μ ∈ Dist(S).

For PA’s composition, this concept is modeled by the parallel composition as stipulated
in Definition 2. During synchronization, each PA resolves its probabilistic choice inde-
pendently. For transitions s1

α−→ μ1 and s2
α−→ μ2 that synchronize in α then the com-

posed state (s′
1,s

′
2) is reached from the state (s1,s2) with probability μ1(s′

1)× μ2(s′
2).

In the no synchronization case, a PA takes a transition where the other remains in its
current state with probability one.

Definition 2 (Parallel Composition of PAs). The parallel composition of two PAs:
M1 = (s1, S1, L1, Σ1, δ1) and M2 = (s2, S2, L2, Σ2, δ2) is a PA M = ((s1,s2), S1 ×
S2, L(s1)∪ L(s2), Σ1 ∪ Σ2, δ), where: δ (S1 × S2,Σ1 ∪ Σ2) is the set of transitions

(s1,s2)
α−→ μ1 × μ2 such that one of the following requirements is met.

1 http://www.i1.informatik.uni-bonn.de/baier/projectpages/LIQUOR/LiQuor.

http://www.i1.informatik.uni-bonn.de/baier/projectpages/LIQUOR/LiQuor

220 S. Ouchani

1. s1
α−→ μ1,s2

α−→ μ2, and α ∈ Σ1 ∩Σ2,
2. s1

α−→ μ1,μ2 = [s2 �→ 1], and α ∈ Σ1\Σ2,

3. μ1 = [s1 �→ 1], s2
α−→ μ2, and α ∈ Σ2\Σ1.

To verify a PA, we use PCTL to express its related specifications. The following gram-
mar represents the PCTL syntax.

φ ::= � | ap | φ ∧φ | ¬φ | P�� p[ψ]
ψ ::= Xφ | φU≤kφ | φUφ

Where the term “�” means true, “ap” is an atomic proposition, k ∈ N, p ∈ [0,1], and
��∈ {<,≤,>,≥}. The operator “∧” represents the conjunction and “¬” is the negation
operator, and P is the probabilistic operator. Also, “X”, “U≤k”, and “U” are the next,
the bounded until, and the until temporal logic operators, respectively.

To specify a satisfaction relation of a PCTL formula in a state “s”, a class of adver-
saries has been defined to solve the nondeterminism in PAs. Hence, a PCTL formula
should be satisfied under all adversaries. The satisfaction relation (|=) of a PCTL for-
mula is defined as follows, where “s” is a state and “π” is a path obtained by a memo-
ryless adversary [12].

– s |= � is always satisfied.
– s |= ap ⇔ ap ∈ L(s) and L is a labeling function.
– s |= φ1 ∧φ2 ⇔ s |= φ1 ∧ s |= φ2.
– s |= ¬φ ⇔ s |= φ .
– s |= P�� p[ψ] ⇔ P({π is a path starts f rom the state s|π |= ψ}) �� p.
– π |=Xφ ⇔ π(1) |= φ where π(1) is the second state of π .
– π |= φ1U≤kφ2 ⇔ ∃i ≤ k : ∀ j < i, π(j) |= φ1 ∧π(i) |= φ2.
– π |= φ1Uφ2 ⇔ ∃ k ≥ 0 : π |= φ1U≤kφ2.

4 SysML Activity Diagrams Formalization

In this section, we describe and formalize SysML activity diagrams by providing an
adequate syntax and semantics.

As illustrated in Fig. 6, SysML activity diagrams are a graph-based representation
where their main constructs (Fig. 1) can be decomposed into two categories: activity
nodes and activity edges. The former contains three types: activity invocation, object
and control nodes. Activity invocation includes receive and send signals, action, and call
behavior. Activity control nodes are initial, flow final, activity final, decision, merge,
fork, and join nodes. Activity edges are of two types: control flow and object flow.
Control flow edges are used to show the execution path through the activity diagram
and to connect activity nodes. Object flow edges are used to show the flow of data
between activity nodes. Concurrency and synchronization are modeled using forks and
joins, whereas, branching is modeled using decision and merge nodes. While a decision
node specifies a choice between different possible paths based on the evaluation of a
guard condition (and/or a probability distribution), a fork node indicates the beginning
of multiple parallel control threads. Moreover, a merge node specifies a point from

Towards a Call Behavior-Based Compositional Verification Framework 221

where different incoming control paths follow the same path, whereas a join node allows
multiple parallel control threads to synchronize and rejoin. In addition, the call behavior
action consumes its input tokens and invoke its specified behavior. The execution of the
calling artifact is blocked until it receives a reply from the invoked behavior.

Fig. 1. SysML activity diagram constructs.

4.1 Syntax of SysML Activity Diagrams

The UML superstructure [14] specifies basic rules for the execution of the various nodes
by explaining textually how tokens are passed from one node to another. For formaliza-
tion, we present in Table 1 SysML activity diagrams constructs and their representation
as NuAC terms. At the beginning, a first token starts flowing from the initial node and
moves downstream from one node to another with respect to the foregoing set of con-
trol routing rules defined by the control nodes until reaching either an activity final or a
flow final node.

However, activity diagram semantics as specified in the standard stay informal since
it is explained textually. We present in Fig. 2 the Backus-Naur-Form of the new version
of Activity Calculus (NuAC) that helps to formalize SysML activity diagrams. This
version of NuAC calculus optimizes the syntax presented in [24] and allows for multi-
plicity in join, merge, fork, and decision constructs by exploiting their commutativity
and associativity properties. We denote by A [N] to specify N as a sub term of A
and by |A | to denote a term A without tokens. For the call behavior case of a ↑ A ′,
we denote A [a ↑ A ′] by A ↑a A ′.

During the execution, the structure of the activity diagram is kept unmodified and
the only changes is the tokens locus. The NuAC syntax was inspired by this idea so that
a NuAC term presents a static structure while tokens are the only dynamic elements.
We can distinguish two main syntactic terms: marked and unmarked. A marked NuAC
term corresponds to an activity diagram with tokens. An unmarked NuAC term corre-
sponds to the static structure of the diagram. A marked term is typically used to denote
a reachable state that is characterized by the set of tokens locations in a given term.

222 S. Ouchani

Table 1. Rewriting activity diagram constructs in NuAC.

Activity Constructs NuAC Terms Description

l : N Initial node is activated when a diagram is invoked.

l : Activity final node stops the execution of the diagram.

l : Flow final node terminates the execution in its path.
l : a ↑ A N Action node defines an atomic action and it can

invoke its related behavioral diagram.

l : D((p,g,N), Decision node selects an execution path
(1− p,¬g,N)) with a convex distribution {p,1− p}

and/or a set of guards {g,¬g}.

l : M(x,y) N , Merge node specifies the continuation,
lx or ly and x is the set of input flows x = {x1,x2}.

Fork node models the concurrency between N1 and N2.
l : F(N1,N2) It begins multiple parallel control threads.

UML 2.0 activity forks model unrestricted parallelism.

l : J(x,y) N , Join node presents the synchronization
and x is the set of input pins x = {x1,x2}.

A ::= ε | l : ιn N

N ::= N
n | l : M(x,y) N | l : J(x,y) N | l : F(N ,N) | l : a ↑ A

n
N

| l : D((p,g,N),(1− p,¬g,N)) | l : | l : | l

Fig. 2. Syntax of New Activity Calculus (NuAC).

To support multiple tokens, we augment the “overbar” operator with an integer n

such that N
n

denotes a term marked with n tokens with the convention that N
1
=N

and N
0
=N . Multiple tokens are needed when there are loops that encompass in their

body a fork node. Furthermore, we use a prefix label for each node to reference it and
uniquely use it in the case of a backward flow connection (case of merge or join). Par-
ticularly, labels are useful for connecting multiple incoming flows towards merge and
join nodes. Let L be a collection of labels ranged over by l0, l1, · · · and N be any node
(except initial) in the activity diagram. We write l : N to denote an l-labeled activity
node N . It is important to note that nodes with multi-inputs (e.g. join and merge) are
visited as many times as they have incoming edges. Thus, as a syntactic convention, we
use either the NuAC term (i.e. l : M(x,y)�N for merge and l : J(x,y)�N for join)

Towards a Call Behavior-Based Compositional Verification Framework 223

if the current node is visited for the first time or its corresponding label (i.e. lx or ly)
if the same node is encountered later during the traversal process. Also, we denote by
D((g,N1),(¬g,N2)) or D((p,N1),(1 − p,N2)) to express a decision without proba-
bilities or guards, respectively.

4.2 Semantics of SysML Activity Diagrams

The execution of SysML activity diagrams is based on token’s flow. To give a mean-
ing to this execution, we use structural operational semantics to formally describe how
the computation steps of NuAC atomic terms take place. The operational semantics of
NuAC is based on the informally specified tokens-passing rules defined in [14].

INIT-1 l : ι N
l−→ l : ι N

ACT-1 l : a
m

N
l−→ l : a

m−1
N ∀m> 0

ACT-2 l : a
m

N
n l−→ l : a

m+1
N

n−1
∀m ≥ 0,n > 0

BH-1
A = l : ι N ∀n> 0

l : a ↑ A
n

N
l−→ l : a ↑ l : ι N

n−1
N

BH-2
A [l :] l−→ |A | ∀n> 0

l : a ↑ A
n

N
l−→ l : a ↑ A

n
N

FORK-1 l : F(N1,N2)
m l−→ l : F(N1,N2)

m−1 ∀m> 0
PDEC-1 l : D((p,g,N1),(1− p,¬g,N2))

m l−→p l : D((p,g,N1),(1− p,¬g,N2))
m−1 ∀m> 0

MERG-1 A [l : M(x,y) N
n
, lx

m
, ly

k] lx−→ A [l : M(x,y) N
n
, lx

m−1
, ly

k] ∀m> 0,k,n ≥ 0
MERG-2 A [l : M(x,y) N

n
, lx

m
, ly]

lx−→ A [l : M(x,y) N
n
, lx

m−1
, ly] ∀m> 0,n ≥ 0

JOIN-1 A [l : J(x,y) N
n
, lx

m
, ly

k] lx−→ A [l : J(x,y) N
n
, lx

m−1
, ly

k−1] ∀m,k > 0,n ≥ 0
FLOWFINAL A [l :] l−→ A [l :]
FINAL A [l :] l−→ |A |
ACTIVITY

N
α−→p N

A [N] α−→p A [N]

Fig. 3. NuAC operational semantic rules.

We define Σ as the set of non-empty actions labeling the transitions (i.e. the alphabet
of NuAC, to be distinguished from action nodes in activity diagrams). An element α ∈ Σ
is the label of the executing active node. Let Σ o be Σ ∪{o} where o denotes the empty
action. Let p be a probability value such that p ∈]0,1[. The general form of a transition
is A

α−→p A ′ and A
α−→ A ′ in the case of a Dirac (non probabilistic) transition. The

probability value specifies the likelihood of a given transition to occur and it is denoted
by P(A ,α,A ′). Figure 3 shows the operational semantic rules of NuAC. The semantics
of SysML activity diagrams expressed using A as a result of the defined semantic rules
can be described in terms of the PA stipulated in Definition 3. In addition, we propose
in Table 2 the NuAC axioms that are proved by using NuAC semantic rules.

224 S. Ouchani

Definition 3 (NuAC-PA). A probabilistic automata of a NuAC term A is the tuple
MA = (s, L, S, Σ o, δ), where:

– s is an initial state, such that L(s) = {l : ι �N },
– L : S → 2[[L]] is a labeling function where: [[L]] : L → {�,⊥},
– S is a finite set of states reachable from s, such that, S = {si:0≤i≤n : L(si) ∈ {N }},
– Σ o is a finite set of actions corresponding to labels in A ,
– δ : S × Σ o → Dist(S) is a partial probabilistic transition function such that, for

each s ∈ S and α ∈ Σ o assigns a probabilistic distribution μ , where:
• For S′ ⊆ S such that S′ = {si:0≤i≤n : s

α−→pi si}, each transition s
α−→pi si satis-

fies one NuAC semantic rule and μ(S′) = ∑n
i=0 pi = ∑n

i=0 μ(si) = 1.

• For each transition s
α−→1 s′′ satisfying a NuAC semantic rule, μ is defined such

that μ(s′′) = 1.

Table 2. Axioms for NuAC.

DA-1 l : D((p,g,N1),(1− p,¬g,N2)) = l : D((1− p,¬g,N2),(p,g,N1))
DA-2 l : D((p,N1),(1− p, l : D((p ,N2),(1− p ,N3)))) = l : D((p+ p − p× p ,

l : D((p
p+p −p×p ,N1),(

p −p×p
p+p −p×p ,N2))),(1− p− p + p× p ,N3))

DA-3 l : D((p,g,N1),(1− p,¬g, l : D((p ,g ,N2),(1− p ,¬g ,N3))))
= l : D((p,g,N1),(p − p.p ,¬g∧g ,N2),((1− p)(1− p),¬g∧¬g ,N3))

FA-1 l : F(N1,N)1 =N1
FA-2 l : F(N1,N2) = l : F(N2,N1)
FA-3 l : F(N1, l : F(N2,N3)) = l : F(l : F(N1,N2),N3) = l : F(N1,N2,N3)

JA-1 A [l : J(x,y) N ,N lx,N ly] =A [N N]
JA-2 l : J(x,y) N = l : J(y,x) N
JA-3 A [l : J(x,x) N , l : J(y,z) lx] =A [l : J(x,y,z) N]

MA-1 A [l : M(x,y) N ,N lx,N ly] =A [N N]
MA-2 l : M(x,y) N = l : M(y,x) N
MA-3 A [l : M(x,x) N , l : M(y,z) lx] =A [l : M(x,y,z) N]

CA-1 l : a ↑ = a
CA-2 A1 ↑a1 (A2 ↑a2 A3) = (A1 ↑a1 A2) ↑a2 A3 =A1 ↑a1 A2 ↑a2 A3

5 The Approach

Figure 4 depicts an overview of our compositional verification framework. It takes a set
of SysML activity diagrams composed by the call behavior interface and a Probabilistic
Computation Tree Logic (PCTL) [12] property as input. First, we develop an abstrac-
tion approach that restricts the verification of a PCTL property only on the influenced

Towards a Call Behavior-Based Compositional Verification Framework 225

diagrams instead of the whole composition. Then, we propose a compositional verifi-
cation approach by interface processes that distributes a PCTL property into local ones
which helps to verify them separately for each diagram. For verification, we encode the
diagrams into the PRISM input language [19]. Finally, we deduce the result of the main
property from the results of the local properties that are verified separately for each
called diagram.

SysML Activity
Diagrams

PRISM

PRISM
Code

PCTL
Properties

Minimized
Diagrams

Local
Properties

Local
Results

Global
Results

Abstracting

Using

Decomposing

Encoding

Input

Input

Output

Infer

Fig. 4. A compositional verification framework.

5.1 The Compositional Verification

Let A be a SysML activity diagram with n call behaviors denoted by A = A0 ↑a0

A1 · · ·Ai−1 ↑ai−1 Ai · · ·An−1 ↑an−1 An. In order to reduce the diagram A , we apply
NuAC axioms and introduce the reduction rule defined in Definition 4 to remove dia-
grams Ai that are not influenced by the property φ to be verified. The obtained diagram
after applying the reduction rule is denoted by ̂A .

Definition 4. Let A be a diagram that contains n call behaviors, APφ is the atomic
propositions of the PCTL property φ , and APA i is the atomic propositions of the behav-

ioral diagram Ai. Reducing A to the diagram ̂A with respect to φ is obtained by
applying the following rule.

∀0 ≤ i ≤ n,APφ ∩APA i = /0

Ai = ε

Below, Proposition 1 shows the satisfiability probability after reduction.

Proposition 1. For a reduced diagram ̂A of A with respect to φ , we have:

[̂A |= φ] ⇒ [A |= φ].

Proof. The proof of this proposition follows an induction reasoning on the PCTL struc-
ture. First, we take the case of ψ = φ1 Uφ2.

226 S. Ouchani

By definition, for 0 ≤ i ≤ n where APψ ∩ APA i = /0, then: Ai = ε . The result is
̂A =A0 ↑a0 A1 · · ·Ak−1 ↑ak−1 Ak and k ≤ n.

From the PCTL semantics, we have [(A0 ↑a0 A1 · · ·Ak−1 ↑ak−1 Ak) |= ψ] ⇔
∃m, ∀ j < m : π(j) |= φ1 ∧π(m) |= φ2 where π(j) and π(m) are the states i and j respec-
tively in a path π of A . And, by calling Ai in ai using BH-1, the only changes in the
path π are the propositions of Ai till executing BH-2, then: ∃m′ ≥ m, j′ ≥ j, ∀ j′ < m′ :
π(j′) |= φ1 ∧π(m′) |= φ2⇔ A0 ↑a1 . . . ↑ak Ak . . . ↑ai Ai |= ψ .

By calling a new Ai+1 in ai+1 up to n, we will have: ∃m′′ ≥ m′, j′′ ≥ j′, ∀ j′′ < m′′ :
π(j′′) |= φ1 ∧π(m′′) |= φ2 ⇔ A0 ↑a1 . . . ↑an An |= ψ ⇔ A |= φ1Uφ2.

For φ1U≤kφ2 and Xφ cases, we deduce the following.

– ∀0 ≤ i ≤ n,APφ ∩APA i = /0 : [Ai = ε ∧(A0 ↑a0 A1 · · ·An−1 ↑an−1 An) |= φ1U≤kφ2]⇒
[∃k′ ≥ k : A |= φ1U≤k′φ2].

– ∀0 ≤ i ≤ n,APφ ∩ APA i = /0 : [Ai = ε ∧ (A0 ↑a0 A1 · · ·An−1 ↑an−1 An) |= Xφ] ⇒
[A |= Xφ]. ��

For a parallel verification, we decompose the PCTL property φ into local ones φi:0≤i≤n

over Ai with respect to the call behavior actions ai:0≤i≤n (interfaces), we introduce the
decomposition operator “�” proposed in Definition 5. The operator “�” is based on sub-
stituting the propositions of Ai to the propositions related to its interface ai−1 which
allows the compositional verification. We denote by φ [y/z] substituting the atomic
proposition “z” in the PCTL property φ by the atomic proposition “y”.

Definition 5 (PCTL Property Decomposition). Let φ be a PCTL property to be ver-
ified on A1 ↑a A2. The decomposition of φ into φ1 and φ2 is denoted by φ ≡ φ1�aφ2

where APA i are the atomic propositions of Ai, then:

1. φ1 = φ([la/APA2]), where la is the atomic proposition related to the action a in A1.
2. φ2 = φ([�/APA1]).

The first rule is based on the fact that the only transition to reach a state in A2 from
A1 is the transition of the action la (BH-1). The second rule ignores the existence of
A1 while it kept unchanged till the execution of BH-2. To handle multiplicity for the
operator “�”, we have Property 1.

Property 1. The decomposition operator � is associative for A1 ↑a1 A2 ↑a2 A3, i.e. :

φ1�a1(φ2�a2φ3) ≡ (φ1�a1φ2)�a2φ3 ≡ φ1�a1φ2�a2φ3.

For the verification of φ on A1 ↑a1 A2, Theorem 1 deduces the satisfiability of φ from
the satisfiability of local properties φ1 and φ2 obtained by the operator �.

Theorem 1 (Compositional Verification). The decomposition of the PCTL property
φ by the decomposition operator � for A1 ↑a1 A2 is sound, i.e. :

A1 |= φ1 A2 |= φ2 φ = φ1�a1φ2

A1 ↑a1 A2 |= φ

Towards a Call Behavior-Based Compositional Verification Framework 227

Proof. The proof of Theorem 1 follows a structural induction on the PCTL structure by
using Definition 5. As an example, we take the until operator “U”. Let φ = ap1 U ap2

where ap1 ∈ APA1 and ap2 ∈ APA2 . By applying Definition 5, we have: φ1 = ap1 U a1

and φ2 =� U ap2. Let A1 |= φ1 ⇔ ∃m1, ∀ j1 < m1 : π1(j1) |= ap1 ∧π1(m1) |= ap1 ∧a1

where π is a path in the NuAC PA of A . For A2 |= φ2 ⇔ ∃m2, ∀ j2 < m2 : π2(j2) |=
�∧ π2(m2) |= ap2. To construct A1 ↑a1 A2, BH-1 is the only transition to connect π1

and π2 which form: π = π1.π ′
2 such that π ′

2(i) = π2(i)∪ π1(m1). Then: ∃ j ≤ m, m =
m1 +m2 : π(j) |= ap1 ∧π(m) |= ap2 ⇔ A1 ↑a1 A2 |= φ . ��
Finally, Proposition 2 generalizes Theorem 1 to support the satisfiability of φ on an
activity diagram A with n call behaviors.

Proposition 2 (CV-Generalization). Let φ be a PCTL property to be verified on A ,
such that: A =A0 ↑a0 · · · ↑an−1 An and φ = φ0�a0 · · ·�an−1φn, then:

A0 |= φ0 · · ·An |= φn

φ = φ0�a0 · · ·�an−1φn

A0 ↑a0 · · · ↑an−1 An |= φ

Proof. We prove Proposition 2 by induction on n.

– The base step where “n = 1” is proved by Theorem 1.
– For the inductive step, first, we assume:

A0 |= φ0 · · ·An |= φn

φ = φ0�a0 · · ·�an−1φn

A0 ↑a0 · · · ↑an−1 An |= φ

Let A ′ =A0 ↑a0 · · · ↑an−1 An and φ ′ = φ0�a0 · · ·�an−1φn. While � and ↑ are associative
operators, then: A = A ′ ↑an An+1 and φ = φ ′�anφn+1. By assuming An |= φn and
applying Theorem 1, then:

A ′ |= φ ′ An+1 |= φn+1

A =A ′ ↑an An+1 φ = φ ′�anφn+1

A |= φ

5.2 The Encoding to PRISM

To encode a SysML activity diagram A into its equivalent PRISM code P , we
rely to the PRISM MDP formalism that refers to the PA2 which coincides with the

NuAC semantics. In PRISM, we define the NuAC transition s
l−→ μ as a proba-

bilistic command. Mainly, the probabilistic command takes the following form: [l]
g → p1 : u1 + ...+ pm : um, which means, for the action “l” if the guard “g” is true,
then, an update “ui” is enabled with a probability “pi”. The guard “g” is a predicate of
a conjunction form consisting to the evaluation of the atomic propositions related to the

2 http://www.prismmodelchecker.org/doc/manual.pdf (The introduction section, line 10).

http://www.prismmodelchecker.org/doc/manual.pdf

228 S. Ouchani

state s. The update ui describes the evaluation of the atomic propositions related to the

next state si of s such that s
l−→pi si (1 ≤ i ≤ m). For the Dirac case, the command is

written simply by: [l] g → u.
The function Γ presented in Listing 1.1 produces the appropriate PRISM command

for each NuAC term. The action label of a command is the label of its related term “l”.
The guard of this command depends on how the term is activated, therefore, a boolean
proposition as a flag is assigned to define this activation. For simplicity, the flag related
to a term labeled by l is denoted by a boolean proposition l that is initialized to false
except for the initial node it is true which conforms to the premise of the NuAC rule
“INIT-1”. Concerning the command updates, they deactivate the propositions of a term
n ∈ A and activate its successors. We define three useful functions: L(n), S(Ai), and
E(Ai) that return the label of a term n, the initial and the final terms of the diagram Ai,
respectively. For example, the call behavior action “l : a ↑ Ai” (line 32) produces two
commands (line 34), and it calls the function Γ ′ (line 34). The first command in line
34 synchronizes with the first command in line 52 produced by the function Γ ′ in the
action l from the diagram A . Similarly, the second command in line 34 synchronizes
with the command of line 56 in the action L(E(Ai)) from the diagram Ai. The first
synchronization represents the NuAC rule BH-1 where the second represents the rule
BH-2. The function Γ ′ is similar to the function Γ except for the initial and the final
nodes as shown in lines 52 and 56, respectively. The generated PRISM fragment of each
diagram Ai is bounded by two PRISM primitives: the module head “Module Ai”, and
the module termination “endmodule”.

1 Γ : A → P
2 Γ (A) = ∀n ∈ A , L(n = ι) = � , L(n = ι) = ⊥ , Case (n) of
3 l : ι �N ⇒ in {[l]l −→ (l′ = ⊥)&(L(N)′ = �);}∪Γ (N) end
4 l : M(x,y)�N ⇒ in {[lx]lx −→ (l′x = ⊥)&(L(N)′ = �);}
5 ∪{[ly]ly −→ (l′y = ⊥)&(L(N)′ = �);}∪Γ (N) end
6 l : J(x,y)�N ⇒ in {[l]lx ∧ ly −→ (l′x = ⊥)&(l′y = ⊥)&(L(N)′ = �);}∪Γ (N) end
7 l : F(N 1,N 2) ⇒ in {[l]l −→ (l′ = ⊥)&(L(N 1)′ = �)&(L(N 2)′ = �);}∪Γ (N 1)∪Γ (N 2) end
8 l : D(A , p,g,N 1,N 2) ⇒
9 Case (p) of]0,1[⇒

10 in {[l]l −→ p : (l′ = ⊥)&(l′g = �)+(1− p) : (l′ = ⊥)&(l′¬g = �);}
11 ∪{[l¬g]lg ∧¬g −→ (l′¬g = ⊥)&(L(N 2)′ = �);}
12 ∪{[lg]lg ∧g −→ (l′g = ⊥)&(L(N 1)′ = �);}∪Γ (N 1)∪Γ (N 2)end
13 O t h e r w i s e in {[l]l −→ (l′ = ⊥)&(l′g = �);}∪{[l]l −→ (l′ = ⊥)&(l′¬g = �);}
14 ∪{[lg]lg ∧g −→ (l′g = ⊥)&(L(N 1)′ = �);}
15 ∪{[l¬g]lg ∧¬g −→ (l′¬g = ⊥)&(L(N 2)′ = �);}
16 ∪Γ (N 1)∪Γ (N 2)end
17 l : aB �N , Case (B) of
18 ↑ A i ⇒
19 in {[l]l → (l′ = ⊥);}
20 ∪{[L(E(A i))]L(E(A i)) → (l′ = ⊥)&(L(N)′ = �);}∪Γ ′(A i); end
21 ε ⇒ in {[l]l −→ (l′ = ⊥)&(N ′ = �);}∪Γ (N ′) end
22 l : � ⇒ in [l]l −→ (l′ = ⊥); end
23 l : �⇒ in [l]l −→ &l∈L (l′ = ⊥);end
24 / / D e f i n i n g t h e f u n c t i o n Γ ′(a ↑ A i)
25 Γ ′ : A → P
26 Γ ′(A i) = ∀m ∈ A i : L(m) = ⊥ , Case (m) of
27 l : ι �N ⇒ / / The a c t i o n l and t h e gua rd l a r e from t h e l i n e 4 0 .
28 in {[l]l → (L(S(A i))′ = �);
29 [L(S(A i))]L(S(A i)) → (L(S(A i))′ = ⊥)&(L(N)′ = �);}∪Γ (N) end
30 l : � ⇒ in [L(E(A i))]L(E(A i)) → (L(E(A i))′ = ⊥); end
31 O t h e r w i s e Γ (A);

Listing 1.1. Generating PRISM commands function.

Towards a Call Behavior-Based Compositional Verification Framework 229

6 Implementation and Experimental Results

For the purpose of providing experimental results demonstrating the efficiency and the
validity of our framework, we verify a set of PCTL properties on the online shopping
system [13] and the automated teller machine [13]. To this end, we compare the verifica-
tion results “β”, the verification cost in terms of the model size3 “γ”, and the verification
time “δ” (sec) with and without applying our approach.

6.1 Online Shopping System

The online shopping system aims at providing services for purchasing online items.
Figure 5a illustrates the corresponding SysML activity diagram. It contains four call-
behavior actions4, which are: “Browse Catalogue”, “Make Order”, “Process Order”,
and “Shipment” denoted by a, b, c and d, respectively. For simplicity, we take this
order to denote their called diagrams by A1 to A4, respectively, where A0 denotes the
main diagram. As an example, Fig. 5b expands the diagram related to the call behavior
action “Process Order” and it is denoted by A3. The whole diagram is written by: A =
A0 ↑a A1 ↑b A2 ↑c A3 ↑d A4. Here, we propose to verify the properties Φ1 and Φ2 that
are expressed in PCTL.

(a) Online Shopping System. (b) Process Order.

Fig. 5. SysML activity diagrams.

Property Φ1. “For each order, what is the minimum probability value to make a delivery
after browsing the catalogue?”

3 The model size is the number of transitions (edges).
4 Each call-behavior action is represented by its proper diagram.

230 S. Ouchani

PCTL: Pmin =?[(Browse Catalogue) ⇒ (F(Delivery))].
In this expression, the “Browse Catalogue” proposition is part of A0 and “Delivery”

is a proposition of A3. For comparison, we verify first Φ1 on A . Then, by using Propo-
sition 1, we reduce the verification of Φ1 from A to A0 ↑c A3. And, by using the
decomposition rules of Definition 5, Φ1 is decomposed into two properties: Φ11 and
Φ12 such that: Φ11 � Pmin =?[(Browse Catalogue) ⇒ (F(Process Order))], and
Φ12 � Pmin =?[(True) ⇒ (F(Delivery))]. After the verification of Φ1 on A , Φ11 on
A0 and Φ12 on A3, Table 3 summarizes the verification results and costs for different
values of the number of orders “n”. From the obtained results, we observe that the prob-
ability values are preserved where β1 = β11 ×β12. In addition, the size of the diagrams
is minimized γ11+γ12 < γ1. Consequently, the verification time is reduced significantly
δ11 +δ12 � δ1.

Table 3. The verification cost for properties Φ1 Φ11, and Φ12.

n 3 4 5 6 7 8 9 10

β1 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76

γ1 2,213,880 4,823,290 8,434,700 13,048,110 51,145,160 202,489,260 454,033,360 805,777,460

δ1 10.764 24.364 44.098 72.173 358.558 1818.247 6297.234 17761.636

β11 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

γ11 5,486 7,266 9,046 10,826 12,606 14,386 16,166 17,946

δ11 1.09 3.12 7.511 12.86 27.03 54.38 111.74 163.89

β12 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95

γ12 12 12 12 12 12 12 12 12

δ12 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005

Property Φ2. “For each order, what is the maximum probability value to confirm a ship-
ment?”
PCTL: Pmax =?[G((CreateDelivery) ⇒ F(Con f irmShipment)].
The propositions of this property “CreateDelivery” and “ConfirmShipment” belong to
A2, and A4, respectively. Similarly to the verification of Φ1, we verify Φ2 on A . Then,
we decompose Φ2 to Φ21 and Φ22 with respect to A0 ↑b A2 ↑d A4. The PCTL expres-
sions of the decomposition are: Φ21 � Pmax=?[G((CreateDelivery)⇒ F(Shipment)],
and Φ22 � Pmax =?[G((True) ⇒ F(Con f irmShipment)]. Table 4 shows the verifi-
cation results and costs of Φ2 on A , Φ21 on A0 ↑b A2, and Φ22 on A4 for differ-
ent values of the number of orders “n”. We found: β2 = β21 × β22, γ21 + γ22 < γ2 and
δ21 +δ22 � δ2.

6.2 Automated Teller Machine

The Automated Teller Machine (ATM) is a system that interacts with a potential cus-
tomer via a specific interface and communicates with the bank over an appropriate
communication protocol. Figure 6 represents the ATM SysML activity diagram (A ′)
composed of the main diagram (A ′

0) “Fig. 6-(a)” and three called diagrams: (a′) Check
Card (A ′

1)5, (b′) Authorize (A ′
2), and (c′) Transaction (A ′

3) that is showed in Fig. 6-(b).

5 The call behavior action “Check Card” is denoted by a′ and calls the diagram A ′
1 .

Towards a Call Behavior-Based Compositional Verification Framework 231

Table 4. The verification cost for properties Φ2 Φ21, and Φ22.

n 3 4 5 6 7 8 9 10

β2 0.9377 0.9377 0.9377 0.9377 0.9377 0.9377 0.9377 0.9377

γ2 2,213,880 4,823,290 8,434,700 13,048,110 51,145,160 202,489,260 454033360 805,777,460

δ2 33.394 78.746 168.649 354.211 2280.252 17588.755 34290.635 63097.014

β21 0.9377 0.9377 0.9377 0.9377 0.9377 0.9377 0.9377 0.9377

γ21 9614 12017 14420 16823 19226 21629 24032 26435

δ21 4.775 12.301 32.852 83.337 274.9 450.81 586.43 652.76

β22 1 1 1 1 1 1 1 1

γ22 9 9 9 9 9 9 9 9

δ22 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

Our goal is to measure the satisfiability probability of the PCTL properties Φ3 and Φ4

on A
′
=A

′
0 ↑a′ A

′
1 ↑b′ A

′
2 ↑c′ A

′
3 .

Property Φ3. “What is the minimum probability of authorizing a transaction after insert-
ing a card”. PCTL: Pmin =?[G(InstertCard ⇒ F(DebitAccount))].
After verifying Φ3 on A

′
, we verify Φ31 on A

′
0 and Φ32 on A

′
3 such that :

Φ31 � Pmin =?[G(InstertCard) ⇒ (F(Transaction))] and : Φ32 � Pmin =
?[G((True) ⇒ F(DebitAccount))]. As a result we found the following: β3 = 0.8421,
γ3 = 606470, δ3 = 3.12, β31 = 0.8421, γ31 = 3706, and δ31 = 0.64, β32 = 1, γ32 = 15,
and δ32 = 0.007. From the obtained results, we found that the satisfiability probability
is maintained β3 = β31 × β32, with a considerable verification costs γ31 + γ32 < γ3 and
δ31 +δ32 � δ3.

Property Φ4. “What is the maximum probability of inserting a card when it is not valid.”
PCTL: Pmax =?[(CardNotValid) ⇒ (F(InsertCard))].

(a) ATM. (b) Transaction.

Fig. 6. ATM SysML activity diagram.

232 S. Ouchani

Similarly to the verification of Φ3, instead of verifying Φ4 on A
′

we verify Φ41 on A
′

1

and Φ42 on A
′

0 such that :
Φ41 � Pmax =?[(CardNotValid) ⇒ (F(EndCheckCard))], and
Φ42 � Pmax =?[(CheckCard) ⇒ (F(InsertCard))].

After verification, we found the following: β4 = 0.05, γ4 = 606470, δ4 = 11.458,
β41 = 1, γ41 = 11, and δ41 = 0.004, β42 = 0.05, γ42 = 7211, and δ42 = 1.584. From
these results, we have: β4 = β41 ×β42, γ41 + γ42 < γ4 and δ41 +δ42 � δ4.

7 Conclusion

In this paper, we presented a compositional verification framework to improve the effi-
ciency of probabilistic model-checking. More specifically, our target was verifying sys-
tems modeled using SysML activity diagrams composed by the call behavior inter-
faces. We improved their verification cost by introducing a probabilistic compositional
verification approach based on decomposing a global PCTL property into local ones
with respect to interfaces between diagrams. Moreover, the presented framework can
ignore the called diagrams that are irrelevant to a given PCTL property. For verifi-
cation, we proposed an algorithm to encode the composed diagrams into PRISM input
language. Furthermore, we proposed a semantic for SysML activity diagrams that helps
on proofs and to encode easily the diagrams in PRISM. We proved the soundness of the
proposed framework by showing the satisfiability preservation of PCTL properties. In
addition, we demonstrated the effectiveness of our framework by verifying real systems
that are not symmetric, which mean, we can not benefit from the symmetry reduction
built within the PRISM model checker. In future, we would like to extend our work by
investigating several directions. First, we plan to extend our framework to handle more
compositional verification techniques like assume-guaranty and integrate them within
the PRISM implementation. Then, we explore more system features such as time and
object. Finally, we intend to apply our framework on a large systems’ applications.

References

1. Ando, T., Yatsu, H., Kong, W., Hisazumi, K., Fukuda, A.: Formalization and model checking
of SysML state machine diagrams by CSP#. In: Murgante, B., et al. (eds.) ICCSA 2013.
LNCS, vol. 7973, pp. 114–127. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-39646-5 9

2. Andrade, E., Maciel, P., Callou, G., Nogueira, B.: A methodology for mapping SysML activ-
ity diagram to time petri net for requirement validation of embedded real-time systems with
energy constraints. In: ICDS 2009: Proceedings of the 2009 Third International Conference
on Diagrams Society, pp. 266–271. IEEE Computer Society, Washington, DC (2009)

3. Apvrille, L., de Saqui-Sannes, P.: Static analysis techniques to verify mutual exclusion situ-
ations within SysML models. In: Khendek, F., Toeroe, M., Gherbi, A., Reed, R. (eds.) SDL
2013. LNCS, vol. 7916, pp. 91–106. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-38911-5 6

4. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge (2008)
5. Bérard, B.: Systems and Software Verification. Springer, Heidelberg (2001). https://doi.org/

10.1007/978-3-662-04558-9

https://doi.org/10.1007/978-3-642-39646-5_9
https://doi.org/10.1007/978-3-642-39646-5_9
https://doi.org/10.1007/978-3-642-38911-5_6
https://doi.org/10.1007/978-3-642-38911-5_6
https://doi.org/10.1007/978-3-662-04558-9
https://doi.org/10.1007/978-3-662-04558-9

Towards a Call Behavior-Based Compositional Verification Framework 233

6. Berezin, S., Campos, S., Clarke, E.M.: Compositional reasoning in model checking. In: de
Roever, W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol. 1536, pp. 81–
102. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49213-5 4

7. Carneiro, E., Maciel, P., Callou, G., Tavares, E., Nogueira, B.: Mapping SysML state
machine diagram to time petri net for analysis and verification of embedded real-time sys-
tems with energy constraints. In: ENICS 2008: Proceedings of the 2008 International Con-
ference on Advances in Electronics and Micro-electronics, pp. 1–6. IEEE Computer Society,
Washington, DC (2008)

8. Carrillo, O., Chouali, S., Mountassir, H.: Formalizing and verifying compatibility and con-
sistency of SYSML blocks. SIGSOFT Softw. Eng. Notes 37(4), 1–8 (2012)

9. Feng, L., Han, T., Kwiatkowska, M., Parker, D.: Learning-based compositional verifica-
tion for synchronous probabilistic systems. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011.
LNCS, vol. 6996, pp. 511–521. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-24372-1 40

10. Feng, L., Kwiatkowska, M., Parker, D.: Compositional verification of probabilistic systems
using learning. In: Proceedings of the 2010 Seventh International Conference on the Quanti-
tative Evaluation of Systems, QEST 2010, pp. 133–142. IEEE Computer Society (2010)

11. Feng, L., Kwiatkowska, M., Parker, D.: Automated learning of probabilistic assumptions for
compositional reasoning. In: Giannakopoulou, D., Orejas, F. (eds.) FASE 2011. LNCS, vol.
6603, pp. 2–17. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19811-3 2

12. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification techniques for
probabilistic systems. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp.
53–113. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21455-4 3

13. Gomaa, H.: Software Modeling and Design: UML, Use Cases, Patterns, and Software Archi-
tectures. Cambridge University Press, Cambridge (2011)

14. Object Management Group. OMG Unified Modeling Language: Superstructure 2.1.2,
November 2007

15. Holt, J., Perry, J.: SysML for Systems Engineering. Institution of Engineering and Technol-
ogy Press, January 2007

16. Huang, X., Sun, Q., Li, J., Zhang, T.: MDE-based verification of SysML state machine dia-
gram by UPPAAL. In: Yuyu Yuan, X.W., Yueming, L. (eds.) Trustworthy Computing and
Services. CCIS, vol. 320, pp. 490–497. Springer, Berlin Heidelberg (2013)

17. Jansen, D.N., Hermanns, H., Katoen, J.-P.: A probabilistic extension of UML statecharts. In:
Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 355–374. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45739-9 21

18. Jansen, D.N., Hermanns, H., Katoen, J.-P.: A QoS-oriented extension of UML statecharts. In:
Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp. 76–91. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45221-8 7

19. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-
time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 47

20. Object Management Group. OMG Systems Modeling Language Specification, September
2007

21. Ouchani, S., Mohamed, O.A., Debbabi, M.: A security risk assessment framework for
SYSML activity diagrams. In: 2013 IEEE 7th International Conference on Software Security
and Reliability, pp. 227–236, June 2013

22. Ouchani, S.: Towards a fractionation-based verification: application on SYSML activity dia-
grams. In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, SAC
2019, pp. 2032–2039. ACM (2019)

https://doi.org/10.1007/3-540-49213-5_4
https://doi.org/10.1007/978-3-642-24372-1_40
https://doi.org/10.1007/978-3-642-24372-1_40
https://doi.org/10.1007/978-3-642-19811-3_2
https://doi.org/10.1007/978-3-642-21455-4_3
https://doi.org/10.1007/3-540-45739-9_21
https://doi.org/10.1007/978-3-540-45221-8_7
https://doi.org/10.1007/978-3-642-22110-1_47

234 S. Ouchani

23. Ouchani, S., Debbabi, M.: Specification, verification, and quantification of security in model-
based systems. Computing 97(7), 691–711 (2015)

24. Ouchani, S., Ait Mohamed, O., Debbabi, M.: Efficient probabilistic abstraction for SysML
activity diagrams. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012.
LNCS, vol. 7504, pp. 263–277. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-33826-7 18

https://doi.org/10.1007/978-3-642-33826-7_18
https://doi.org/10.1007/978-3-642-33826-7_18

	Towards a Call Behavior-Based Compositional Verification Framework for SysML Activity Diagrams
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 SysML Activity Diagrams Formalization
	4.1 Syntax of SysML Activity Diagrams
	4.2 Semantics of SysML Activity Diagrams

	5 The Approach
	5.1 The Compositional Verification
	5.2 The Encoding to PRISM

	6 Implementation and Experimental Results
	6.1 Online Shopping System
	6.2 Automated Teller Machine

	7 Conclusion
	References

