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Abstract. The additional complexity caused by concurrently commu-
nicating processes in distributed systems render the verification of such
systems into a very hard problem. Multiparty session types were devel-
oped to govern communication and concurrency in distributed systems.
As such, they provide an efficient verification method w. r. t. proper-
ties about communication and concurrency, like communication safety
or progress. However, they do not support the analysis of properties that
require the consideration of concrete runs or concrete values of variables.
We sequentialise well-typed systems of processes guided by the struc-
ture of their global type to obtain interaction-free abstractions thereof.
Without interaction, concurrency in the system is reduced to sequential
and completely independent parallel compositions. In such abstractions,
the verification of properties such as e. g. data-based termination that
are not covered by multiparty session types, but rely on concrete runs or
values of variables, becomes significantly more efficient.
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1 Introduction

Modern society is increasingly dependent on large-scale software systems that
are distributed, collaborative, and communication-centred. One of the techniques
developed to handle the additional complexity caused by distributed actors
are multiparty session types (MPST) [19]. MPST allow to specify the desired
behaviour of communication protocols as by-design correct types that are used
to verify the communication structure of software products. The properties guar-
anteed by well-typed processes cover communication safety (all processes con-
form to globally agreed communication protocols) and liveness properties such
as deadlock-freedom. Their main advantage is that their verification method is
extremely efficient—in comparison to e. g. standard model checking.

MPST were developed to govern communication and concurrency in dis-
tributed systems. However, as it is typical for type systems, standard MPST
variants (without dependable types) do not support the analysis of properties
that require the consideration of concrete runs or concrete values of variables.
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The hardest part about the verification of distributed systems is the state
space explosion that results from concurrent communication attempts, i. e., the
exponential blow-up that results from computing all possible combinations of
potential communication partners. The problem of concurrency mainly lies in
the communication structure, which is already completely captured by MPST.
We show that the knowledge of a program/system to be well-typed, allows us to
sequentialise it following the structure of its global type and thereby to remove
all communication. Accordingly, we show how we can benefit from the effort we
spend on an MPST analysis of a system also for the verification of its properties
that go beyond its communication structure.

We use the global type of a well-typed system to guide its sequentialisation.
We refer to the result as sequential global process (SGP), although it might still
contain parallel compositions, albeit only on completely independent parts. Since
the structure of communication was already verified by the well-typedness proof,
we can reduce communication to value updates. More precisely, we map well-
typed systems that interact concurrently, to SGP-systems without any inter-
action mechanisms or name binders. Such SGP-systems consist of a vector of
variables with values and a SGP-process that simulates the data flow of the
original system. Therefore, we translate the reception of data in communication
into updates of the vector in the SGP-system. By removing the communication
we remove also the problem of state space explosion. Our translation is valid if
the considered process is well-typed w. r. t. a (set of) global type(s). Thereby,
we sequentialise communications that may happen concurrently in the original
system but are sequential in global types. Note that such communications are
always causally independent of each other, thus ordering them does not sig-
nificantly influence the behaviour of the system, e. g. it does not influence what
values are computed. Apart from such sequentialisations the original system and
its abstraction into a SGP-system behave similarly.

Contributions. We provide an algorithm to remove communication from well-
typed systems and thereby sequentialise them, while preserving the evolution of
data of the original system. Deriving this algorithm was technically challenging
but the result is a simple rewriting function and easy to automate.

Then we prove that, provided that the original system was well-typed, the
algorithm produces a SGP-system that is closely related to the original system:
the original system and its abstraction are related by a variant of operational
correspondence [14] and are coupled similar [23]. With that, the derived SGP-
system is a good abstraction of the original system that can be used instead of
the original to verify properties on concrete data. Since the mapping into SGP-
systems is usually linear and because SGP-systems do not contain any form of
interaction or binders, properties can be checked more efficiently.

Finally, we provide a mapping—that is again a simple rewriting algorithm—
from SGP-processes into Promela, the input language of the model checker Spin
[16,17]. With that, the properties that are not already guaranteed by the MPST
analysis but require the consideration of concrete runs or concrete data can be
checked. Since the main challenge here is the sequentialisation of concurrent
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systems into interaction-free abstractions, the translation of SGP-systems into
Promela is simple and can be used as a role model to obtain similar mappings
for other model checkers.

Related Work. Intuitively, the technique that we present in this paper is a
special case of partial order reduction (compare e. g. to [24]) as they can be
found in model checkers. This technique tries to reduce the state space that has
to be inspected in verification, by identifying different sequences of transitions
that lead to similar states. Here, instead of searching for such similar states, we
follow the structure of the global type, where well-typedness ensures that the
generated abstraction captures the complete state space of the original system
modulo coupled similarity.

The approach of [1] is very similar to this paper. Just as our algorithm, they
rewrite a program (written in Haskell) by replacing communication with value
updates, to obtain a sequential abstraction of the program on that verification—
e. g. of termination based on values that are computed at runtime—can be done
efficiently. The main difference is that [1] requires that the considered pro-
grams satisfy symmetric non-determinism whereas we require that programs
are well-typed using MPST. Assuming asynchronous communication, symmet-
ric non-determinism means that every receive in a given program location can
receive only messages from either a single process or a set of symmetric pro-
cesses, i. e., processes running the same code, at the same program location.
MPST are more flexible, i. e., are not limited to systems that satisfy symmetric
non-determinism. Hence, the method presented here can be applied to a larger
class of programs.

Interestingly, we find a similar idea also in papers about the verification of
distributed algorithms via invariants that use so-called standard forms (com-
pare e. g. to [9,29]), where the global view gets constructed by gathering and
combining all local processes. In case of [29] standard forms have their own
TLA-like semantics that is 1-to-1 correspondent to the calculus semantics for
proving properties on data. The main difference to these approaches is that we
completely remove communication and present an algorithm to automatically
derive this global view from a given well-typed system and its global type.

In [6] global types are translated into processes to mediate between multi-
party and binary session types. These mediator processes capture the behaviour
of global types—w. r. t. the communication structure and not values—to pro-
vide a disciplined communication exchange that allows to translate MPST into
binary sessions. In contrast to this approach, we map processes onto processes
and use global types to guide this mapping, where the communication structure
is removed and our focus is on the evolution of data.

Choreographies [22] are global descriptions of distributed systems from which
the distributed system is generated by endpoint projection. In contrast, we
start with the distributed system and its global type. Note that global types
describe solely the communication structure, i. e., interactions, of the system
and do not contain any other implementation details of single peers. With that,
MPST have an advantage in comparison to choreographies in industrial settings,
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where different parts are developed independently. Moreover, we also consider
the case of interleaved MPST sessions. Our challenge is to derive a global descrip-
tion on how the data evolves in the system. This is related to the extraction of
choreographies from distributed systems as discussed in [7,10]. However, without
the global type as guide, the described algorithms to extract choreographies are
exponential, whereas our algorithm is usually linear.

In [5] MPST are extended by assertions that allow to verify properties on
data values provided that these properties are satisfied in all runs. In contrast,
our approach allows to efficiently compute the exact values that are computed
in concrete runs. Moreover, the language of assertions is limited to the language
defined in [5] and an extension might require to redo some proofs, whereas here
only the translation into Promela, i. e., the use of a concrete model checker, forces
us to limit the languages of expressions and properties. The algorithm to sequen-
tialise systems into SGP-systems does not rely on such limitations. A prominent
example of a property that cannot be analysed statically is termination of a loop
after computing some value. To prove such properties, a type system can use
dependent types such as e. g. in [28]. In contrast to such extensions of MPST with
dependable types, we do not add any complexity to the type system (or provide
any new variant of MPST). Instead we provide a simple rewriting algorithm that
transforms a well-typed system (after the type check) into an abstraction on that
remaining properties on data can be verified with existing specialised tools.

Overview. In Sect. 2 we introduce multiparty session types very briefly.
Section 3 describes how well-typed systems are sequentialised. Section 3.1 intro-
duces a calculus for sequential global processes, Sect. 3.2 describes an algorithm
to map into SGP-systems for the case of synchronous MPST and single sessions,
and Sect. 3.3 discusses asynchronous variants of MPST and extends the algo-
rithm to cover interleaved sessions. Section 4 shows operational correspondence
and relates the original system and its abstraction by coupled similarity. Then,
Sect. 5 illustrates how the sequentialisation can be used to verify properties of
the original system. It discusses the limits of this method, i. e., what kind of prop-
erties cannot be analysed this way and presents a mapping from SGP-processes
into Promela. We conclude in Sect. 6. Missing proofs and additional material can
be found in [26].

2 Multiparty Session Types in a Nutshell

Our aim is to use the structure of a global type to remove communication—and
with that the related concurrency—from the problem of verifying properties on
the evolution of values. We conjecture that this procedure can be used for all kind
of MPST variants but explain the method on a simple variant of synchronous
MPST w. r. t. a single session. Later we extend our algorithm to asynchronous
MPST with interleaved sessions. To explain the basic idea, we use a variant of
multiparty synchronous session types as introduced in [2] with some alternations
similar to variants as e. g. in [4,11,30].
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MPST were developed to govern communication and concurrency in dis-
tributed systems. Therefore, systems are checked against a global type. Global
types specify the desired communication structure from a global point of view.
The specified communication structure of a global type describes a session and
the participants of such a session are called roles. Here, they are given by

G ::= r1 → r2 :
{
li
〈
Ũi

〉
.Gi

}
i∈I

| G1, G2 | (μt) G | t | end

The first construct specifies a communication from Role r1 to r2 that offers
different branches for the receiver with respect to a label li that is transmitted
by the sender, where Ũi are the sorts (i. e., base types) of the transmitted values.
If I is a singleton, we abbreviate communication with r1 → r2 : l

〈
Ũ

〉
.G. The other

constructs introduce parallel composition, recursion, and successful termination.
The systems, that we want to analyse, are modelled in a session calculus. As

usual, we use an extension of the π-calculus [21] given by

P ::= a[2..n](s).P | a(s[r]).P | s[r1, r2]!l〈ẽ〉.P | s[r2, r1]? {li(x̃i).Pi}i∈I

| if c then P1 else P2 | P1 | P2 | 0 | (νs)P | (μX) P | X

The first two constructs are used to initiate a session. The next two constructs
model the sender and the receiver of a communication within a session, where
the x̃i are (input bounded) variables that are instantiated as result of a communi-
cation by the received values. The remaining constructs introduce conditionals,
parallel composition, termination, restriction, and recursion. Since we want to
use the model checker Spin later, we restrict expressions e (the values that are
transmitted in communication) and conditions c (used to guide conditionals) to
functions that are known by Promela, the input language of Spin.

We use structural congruence (≡) to abstract from syntactically different
but semantically similar processes, where ≡ is the least congruence that satisfies
alpha-conversion (≡α) and the rules:

P | 0 ≡ P P1 | P2 ≡ P2 | P1 P1 | (P2 | P3) ≡ (P1 | P2) | P3

(μX) P ≡ P {(μX)P/X} (νs)(νs′)P ≡ (νs′)(νs)P (νs)0 ≡ 0
(νs)(P1 | P2) ≡ P1 | (νs)P2 if s /∈ fn(P1)

The reduction semantics of the session calculus is given by the rules:

(Link)
a[2..n](s).P1 | a(s[2]).P2 | . . . | a(s[n]).Pn �−→ (νs)(P1 | P2 | . . . | Pn)

(Com)
j ∈ I

s[r1, r2]!lj〈ẽ〉.P | s[r2, r1]? {li(x̃i).Pi}i∈I �−→ P | (Pj {ẽ/x̃j})

(If-T)
c

if c then P1 else P2 �−→ P1
(If-F)

¬c
if c then P1 else P2 �−→ P2

(Par)
P1 �−→ P ′

1

P1 | P2 �−→ P ′
1 | P2

(Res)
P �−→ P ′

(νs)P �−→ (νs)P ′

(Struc)
P1 ≡ P2 P2 �−→ P ′

2 P ′
2 ≡ P ′

1

P1 �−→ P ′
1
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The Rule Link initialises a session s on the roles 1, . . . ,n, where 1 requested the
session on channel a and each i participates in the session as Pi. Communication
within a session s is described by Rule Com, where in the case of matching
roles and labels the continuations of sender and receiver are unguarded and the
variables x̃ are replaced by the values ẽ in the receiver. The Rules If-T and If-F
reduce conditionals as expected. The remaining rules allow for steps in various
contexts and are standard.

Let r(·) return the roles used in a global type or a process. A process P has
an actor on c[r1] if P has an unguarded subterm of the form c[2..n](s).P with
r1 = 1 or c(s[r1]).P (for session invitations) or an unguarded subterm of the
form c[r1, r2]!l〈ẽ〉.P or c[r1, r2]? {li(x̃i).Pi}i∈I (for communication). Let act(P ) be
set of actors in P . If unambiguous, i. e., if there is only one session, we omit the
session channel and abbreviate actors by their role.

The processes P are checked against their specification in type judgements
Γ � P �Δ, where Γ,Δ are type environments that are built from the type infor-
mation in the global type. A system that passes such a type check is denoted as
well-typed. The design of MPST guarantees strong properties for the communi-
cation structure of well-typed systems.

Theorem 1. Assume Γ � P � Δ, i. e., P is well-typed.

Subject Reduction: If P �−→ P ′ then there is Δ′ such that Γ � P ′ � Δ′.
Linearity: P has no two unguarded senders/receivers for the same actor.
Progress: If P �−→∗ P ′ then either P ′ ≡ 0 or P ′ �−→ P ′′.

To prove these properties, we have to reason about the typing rules that
define under which circumstances a type judgement is valid. Due to space lim-
itations, the typing rules as well as some other important aspects of MPST
(e. g. projection and local types) and the proofs are postponed to [26]. Note that
we do not introduce a new variant of MPST. Instead we rely on a standard MPST
variant of that we introduced global types and the session calculus, because they
are necessary to understand the remainder of this paper.

3 Sequentialising Well-Typed Systems

MPST are designed to analyse the communication structure of a system. Well-
typed systems are guaranteed to satisfy properties like communication safety or
progress. What remains, are safety and liveness properties that involve data.

We use the global type of a well-typed term to guide the sequentialisation
of the implementation. The result is a kind of process that we call sequential
global process (SGP), although it might still contain parallel compositions but
only on completely independent parts. This abstraction of the implementation
allows us to analyse properties on the values of data in the implementation
without the problem of state space explosion that is caused by the concurrency
of communication in the original system.
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(Ass) 〈V; ṽ := ẽ.S →−�〉 eval(〈V(ṽ) := ẽ;S〉) (Par)
〈V;S1 V〈→−�〉 ′;S′

1〉
〈V;S1 ‖ S2 V〈→−�〉 ′;S′

1 ‖ S2〉
(If-T)

c

〈V; if c then S1 else S2 V〈→−�〉 ;S1〉 (If-F)
¬c

〈V; if c then S1 else S2 V〈→−�〉 ;S2〉

(Struc)
S1 ≡S S2 S2 S→−� ′

2 S ′
2 ≡S S ′

1

S1 S→−� ′
1

Fig. 1. Reduction Semantics of SGP-Systems.

3.1 A Calculus for Sequential Global Processes

SGP-processes are simple processes consisting of assignments of values to vari-
ables, conditionals, parallelism, termination, and recursion.

Definition 1 (SGP-Processes). SGP-processes are given by

S ::= ṽ := ẽ.S | if c then S1 else S2 | S1 ‖ S2 | 0 | (μX) S | X

where ẽ are expressions to calculate a value, c are boolean conditions, and X
process variables.

SGP-processes introduce a new operator to assign values to variables in a
vector. An assignment ṽ := ẽ.S describes a SGP-process that updates the vari-
ables ṽ by the values ẽ and then continues as S, where ṽ := ẽ.S is short hand for
(v1, . . . , vn) := (e1, . . ., en).S. If ṽ (and accordingly also ẽ) is the empty sequence,
then we abbreviate this empty assignment by τ.S. Note that SGP-processes
inherit the parallel operator not from processes but from global types. Thus,
the parallel composition S1 ‖ S2 describes that S1 and S2 are independent,
i. e., all variables that appear on both sides are used as read-only on both sides.
The remaining operators for conditionals, successful termination, and recursion
are inherited from processes. Note that SGP-processes do neither contain any
interaction mechanisms nor name binders. But we still have branching via con-
ditionals and recursion.

The SGP-processes are combined with a vector V of variables, that represents
the current values of the local variables of all processes of the original distributed
system. They consist of the input bounded variables of the implementation. A
SGP-system 〈V;S〉 then consists of a knowledge vector V and a SGP-process S.

Structural congruence on SGP-processes ≡S is the restriction of ≡ on SGP-
processes. Let ≡S be the least congruence that satisfies the rules S ≡S eval(S)
and 〈V;S〉 ≡S 〈V;S′〉 if S ≡S S′. We write V(ṽ) := ẽ for the result of replacing,
for all vi ∈ ṽ, the current value of the variable vi in the vector V by the value
that results from the evaluation of the expressions ei. The semantics of SGP-
systems is given in Fig. 1. We naturally extend substitution to SGP-systems,
i. e., 〈V;S〉 σ = 〈Vσ;Sσ〉. Let eval(〈V;S〉) be the result of replacing all variables
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v in conditions and expressions in S that are not sequentially hidden after an
assignment of v by the current value of v in V, e. g. :

eval(〈(v = 5); if v > 6 then 0 else v := v + 1.v := v + 1.0〉)
= 〈(v = 5); if 5 > 6 then 0 else v := 5 + 1.v := v + 1.0〉
�−→ 〈(v = 5); v := 5 + 1.v := v + 1.0〉
�−→ eval(〈(v = 6); v := v + 1.0〉) = 〈(v = 6); v := 6 + 1.0〉
�−→ eval(〈(v = 7);0〉) = 〈(v = 7);0〉

3.2 Mapping Well-Typed Systems onto SGP-Systems

We use the global type of a well-typed process P to sequentialise P into a
SGP-process. Because of the parallel operator, SGP-processes are not com-
pletely sequential. However, since we remove communication and with it all
forms of interaction from SGP-processes, parallel composition in SGP-processes
is between independent parts only. More precisely, SGP-systems cover read and
write operations on their vector of variables that simulate the evolution of knowl-
edge in the original distributed system.

The main idea of the algorithm is simple. We fuse matching senders and
receivers, i. e., the receiver that receives a message with the sender that trans-
mitted this message, into a single SGP value assignment. The value assignment
captures what the processes gain as new information from a communication.
The problem is that finding the matching communication partners in the gen-
eral π-calculusis NP-hard. In the π-calculusit is possible to have several matching
receivers for a single sender or vice versa. Performing a communication step can
unguard further senders and receivers. So different choices of matching pairs of
communication partners and different orders in that communications are per-
formed influence the further behaviour. To reduce the complexity of this prob-
lem, we use the type information that allows us to completely avoid the search
for matching communication partners.

Firstly, well-typedness guarantees that there are no races at runtime, i. e., in
no state there is more than one matching receiver for a sender and vice versa. This
ensures, that for each well-typed system there is indeed a single SGP-abstraction
that captures its overall behaviour, whereas without well-typedness (i. e., in the
presence of races) several SGP-abstractions might be necessary to describe the
behaviour of a single system. Secondly, well-typedness also ensures that there
are no orphan communication partners, i. e., each sender will eventually meet a
matching receiver and vice versa. Finally, the global type of a well-typed system
tells us when and where communication takes place. Or, more precisely, the
global type tells us one possible order of the communications and well-typedness
ensures that all other possible orderings of communications of the system are
similar (see Sect. 4). Accordingly, we do not search for matching communication
partners but follow the structure of the global type. If the global type specifies
that next there is a communication then we know that in the mentioned actors
the respective send and receive action is indeed unguarded or guarded only by
conditionals, that can be resolved without interactions.



204 K. Peters et al.

Similarly, it is difficult in general π-calculussystems to identify at which point
we have to introduce a global loop to translate the recursive behaviour of the
single actors into a recursion of the global abstraction. Again we follow the
structure of the global type and simply introduce a global loop if the global type
loops, while ignoring the structure of recursion in the actors and only unfolding
local recursion if necessary.

When we remove communication prefixes in order to obtain a SGP-process,
we lose their respective scopes. To avoid ambiguities in SGP-systems and to
clarify the owner of variables, we indicate input bounded variables, i. e., the
variables a SGP-process may write on, by its corresponding actor. The variables
indicated by an actor are the local knowledge of this actor. SGP-processes that
are derived from well-typed processes will not have write access on variables of
other actors but may read them to perform value updates.

The following mapping relies on the fact that the parallel composition
∏

i∈I Pi

is well-typed w. r. t. the global type G. We prove in Theorem 2 below, that this
mapping indeed produces a SGP-process in this case.

Definition 2. The partial mapping SGP
({Pi}i∈I , G

)
is defined inductively as:

1. 0, if G = end
2. Xt, else if G = t
3. SGP

({
P ′

j

} ∪ {Pi}i∈I\{j} , G
)
,

else if there is some j ∈ I such that Pj = (νs)P ′
j

4. SGP
(
{Pj1, Pj2} ∪ {Pi}i∈I\{j} , G

)
,

else if there is some j ∈ I such that Pj = Pj1 | Pj2

5. SGP
({

P ′
j {(μX)P ′

j/X}} ∪ {Pi}i∈I\{j} , G
)
,

else if there is j ∈ I such that Pj = (μX) P ′
j

6. x̃m@s[r] := ẽ.SGP
(
{Qm {x̃m@s[r]/x̃m} , Q} ∪ {Pi}i∈I\{k,l} , Gm

)
,

else if there are k, l ∈ I, m ∈ J ⊆ J′ such that
G = r1 → r2 :

{
lj
〈
Ũj

〉
.Gj

}
j∈J

, Pk = s[r1, r2]!lm〈ẽ〉.Q,

and Pl = s[r2, r1]? {lj(x̃j).Qj}j∈J′

7. SGP
({Pi}i∈I1

, G1

) ‖ SGP
(
{Pj}j∈I2

, G2

)
,

else if there are some I1 ∪ I2 = I such that G = G1, G2,⋃
i∈I1

r(Pi) = r(G1), and
⋃

j∈I2
r(Pj) = r(G2)

8. (μXt) SGP
({Pi}i∈I , G′), else if G = (μt) G′

9. τ.SGP({P ′
1, . . . , P

′
n} , G),
else if {Pi}i∈I = {a[2..n](s).P ′

1, a(s[2]).P ′
2, . . . , a(s[n]).P ′

n}
10. if c then SGP

(
{Pj1} ∪ {Pi}i∈I\{j} , G

)
else SGP

(
{Pj2} ∪ {Pi}i∈I\{j} , G

)
,

else if there is some j ∈ I such that Pj = if c then Pj1 else Pj2

Note that the different cases of this definition are ordered. Thus, a conditional
is not resolved (Case 10) unless none of the other cases can be applied. The first
two cases provide the base cases for global types that are terminated (Case 1) or
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reduced to a type variable (Case 2). In these two cases the considered processes
are ignored. The next three cases do not alter the type but prepare processes by
removing restriction on session channels (Case 3)—which is safe because we will
also remove all communication prefixes—splitting parallel compositions (Case 4),
and unfolding recursion (Case 5). Because we require that process variables are
guarded by a communication prefix, we cannot unfold the same recursion twice
without applying another case in between.

The next three cases map processes that are well-typed w. r. t. a global
type on communication (Case 6), parallel composition (Case 7), and recursion
(Case 8), i. e., here we follow the structure of the global type to map the process.
Case 6 unifies the sender and the receiver of a communication specified in the
global type and maps it on corresponding value assignments. These assignments
simulate the reception of the values ẽ on the variables x̃m@s[r] of the receiver
s[r], where x̃@s[r] = x1s[r], . . . , xns[r] is the result of indicating the variables with
the actor s[r] of the receiving end. The substitution of x̃m into x̃m@s[r] ensures
that names of different parallel branches are not confused.

This substitution does not remove all remaining name clashes but only the
harmful clashes between parallel composed components of the considered system.
Sequential composed input binders on the same variable and of the same actor
are translated to the same name. If we apply this algorithm on processes that are
not well-typed, we may still have parallel occurrences of syntactically the same
name in parallel composed input binders. But well-typedness ensures that all
such occurrences are linked to different actors and are thus distinguished. With
that, we unify variables—that might have been denoted the same on purpose—
and reduce the vector of variables in the SGP-system. Also, input bounded
variables of different iterations of recursion are unified.

Case 7 maps a parallel composition of global types on a parallel composi-
tion of SGP-processes. Note that in both cases, parallel composition is between
independent objects that have no means of interaction. To split the parallel com-
ponents of the system accordingly, we rely on their roles. Well-typedness of the
system ensures that it can be split as required.

Case 8 introduces recursion if the global type tells us to do so. This case
does not alter the considered system or enforces any requirements on the struc-
ture of the system. Well-typedness ensures that the structure of the system
w. r. t. recursion matches the recursion of the global type, but not necessarily
that the system and the global type use recursion at the same time. For exam-
ple a[2](s). (μX) s[1, 2]!l〈5〉.s[1, 2]?l′(x).X | a(s[2]). (μX) s[2, 1]?l(x).s[2, 1]!l′〈6〉.X is
well-typed w. r. t. 1 → 2 : l〈N〉. (μt) 2 → 1 : l′〈N〉.1 → 2 : l〈N〉.t, although the
global type partially unfolds the recursion in comparison to the recursion of the
process. Therefore, we rely on well-typedness and use only the global type to
determine the correct place of recursion, where Case 5 allows to unfold recursion
in processes. To ensure that the process variables of nested recursions are not
confused, the Cases 2 and 8 use the type variable of the global type as index to
distinguish process variables.

Case 9 unifies session invitations and the corresponding acceptances and
maps them on an empty value assignment τ . The session invitation mechanism
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is already validated in the well-typedness proof and does not influence the data of
the processes in the system. Thus, it is safe to ignore this step in SGP-processes.

Case 10 maps a conditional of one of the parallel components of the system
to a conditional in the SGP-process. Global types do not consider conditionals of
processes, but well-typedness ensures that both cases of the conditional have to
follow the same global type. Because of that, both cases of the SGP-conditional
inherit the same global type. To avoid unnecessary branching, we delay the map-
ping of conditionals until this is necessary e. g. to unguard a sender or receiver
of a communication that is specified in the global type.

The mapping in Definition 2 is not deterministic, because it does not enforce
an order in that several unguarded conditionals are mapped in Case 10 and this
leads to different possible SGP-processes. Similarly, it is not specified in which
order several restrictions in Case 3, several parallel compositions in Case 4, or
several recursive processes in Case 5 are handled, though different orders in these
cases will not lead to different SGP-processes. The other cases are guided by the
global type or the fact that there is only one session. To obtain a determinis-
tic version—and simplify the proofs—and to minimize the size of the computed
SGP-process, we assume that Definition 2 gives precedence to parallel branches
that implement (1) senders and (2) receivers that are unguarded in the global
type and (3) smaller roles. However, different orders in that conditionals are
handled lead to weakly bisimilar SGP-processes, because only unguarded condi-
tionals are mapped, the translated subprocesses of the conditional are guarded
by the resulting SGP-conditional, and an unguarded conditional will reduce to
the same case in a single τ -step regardless of when we perform this step.

3.3 Asynchrony and Interleaved Sessions

The mapping in Definition 2 is designed for a synchronous variant of multiparty
session types and only single sessions, because the syntax and semantics is sim-
pler in these cases. However, the mapping in Definition 2 is exactly the same for
the case of multiparty asynchronous session types as introduced in [19,20].

Note that the semantics of the session calculus defined in [19,20] use mes-
sages queues to reflect the asynchronous nature of communication. Sending and
receiving are decoupled into two separate steps to transmit and then read from
message queues. Nonetheless, when we remove communication in the mapping
SGP(·, ·), we unify sending and receiving into value assignments as described in
the Case 6 of Definition 2. This is because, SGP-processes are designed to track
the evolution of data values of processes and therefore only the reception of val-
ues is relevant. Intuitively, value assignments of SGP-processes reflect the case
that a participant of a session has learned new information by the reception of
values and this information flow is covered by value assignments. To determine
the correct point in the behaviour of the system in that a particular participant
gains new information through the reception of values, we rely on the fact that
for this communication to happen both communication partners, the sender and
the receiver have to be unguarded. Well-typedness and the structure of the global
type, guide us in the case of concurrently enabled communication prefixes.
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The definition of well-typed processes for several interleaved sessions is more
difficult. As described in [3], we have to ensure that actions of different sessions do
not cause deadlocks by cyclic dependencies. Processes with only acyclic depen-
dencies between interactions of different sessions are denoted as globally pro-
gressing. However, adapting SGP(·, ·) to allow for several interleaved sessions in
processes that are globally progressing is straightforward. First we remove name
clashes between session channels using alpha conversion. Then we adapt the map-
ping SGP(·, ·) of Definition 2 into SGP’(·, ·), where the latter expects a set {Pi}i∈I

and a set {(Gj , sj)}j∈J of pairs of global types and session channels as input
such that the parallel composition

∏
I∈I Pi is well-typed w. r. t. {(Gj , sj)}j∈J

and
∏

I∈I Pi does not contain name clashes between session channels.

Definition 3. SGP’
(
{Pi}i∈I , {(Gj , sj)}j∈J

)
is defined inductively as:

1. (a) 0, if J = ∅
(b) SGP’

(
{Pi}i∈I , {(Gj , sj)}j∈J\{k}

)
,

else if there is some k ∈ J such that Gk = end
2. XG, else if G = {Gj}j∈J = {tj}j∈J

3. SGP’
(
{P ′

k} ∪ {Pi}i∈I\{k} , {(Gj , sj)}j∈J

)
,

else if there is k ∈ I such that Pk = (νs)P ′
k

4. SGP’
(
{Pk1, Pk2} ∪ {Pi}i∈I\{k} , {(Gj , sj)}j∈J

)
,

else if there is some k ∈ I such that Pk = Pk1 | Pk2

5. SGP’
(
{P ′

k {(μX)P ′
k/X}} ∪ {Pi}i∈I\{k} , {(Gj , sj)}j∈J

)
,

else if there is k ∈ I such that Pk = (μX) P ′
k

6. x̃n@s[r] := ẽ.SGP’(P,G) with P = {Qn {x̃n@s[r]/x̃n} , Q} ∪ {Pi}i∈I\{m,o} and
G = {(Gl,n)} ∪ {(Gj , sj)}j∈j\{L},

else if there are m, o ∈ I, l ∈ J, n ∈ K ⊆ K′ such that
Gl = r1 → r2 :

{
lk

〈
Ũk

〉
.Gl,k

}
k∈K

, Pm = s[r1, r2]!ln〈ẽ〉.Q,

and Po = s[r2, r1]? {lk(x̃k).Qk}k∈K′

7. (a) SGP’
(
{Pi}i∈I1

, {(Gj , sj)}j∈J1

)
‖ SGP’

(
{Pi}i∈I2

, {(Gj , sj)}j∈J2

)
,

else if there are some I1 ∪ I2 = I, J1 ∪ J2 = J such that J1 ∩ J2 = ∅ and⋃
i∈Ik

act(Pi) = {sj[r] | j ∈ Jk ∧ r ∈ r(Gj)} for k ∈ {1, 2}
(b) SGP’

(
{Pi}i∈I , {(Gk1, sk) , (Gk2, sk)} ∪ {(Gj , sj)}j∈J

)
,

else if there is k ∈ J such that Gk = Gk1, Gk2

8. (μXG) SGP’
(
{Pi}i∈I ,

{(
G′

j , sj
)}

j∈J

)
,

else if Gj = (μtj) G′
j for all j ∈ J and G = {tj}j∈J

9. τ.SGP’
(
{P ′

1, . . . , P
′
n} ∪ {Pi}i∈I\{k1,...,kn} , {(Gj , sj)}j∈J

)
,

else if there are k1, . . . , kn ∈ I such that PK1 = a[2..n](s).P ′
1,

Pk2 = a(s[2]).P ′
2, . . . , Pkn = a(s[n]).P ′

n

10. if c then SGP’({Pk1} ∪ P,G) else SGP’({Pk2} ∪ P,G)
with P = {Pi}i∈I\{k} and G = {(Gj , sj)}j∈J,

else if there is k ∈ I such that Pk = if c then Pk1 else Pk2
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To deal with multiple sessiones (and their global types), we split Case 1
into a case to introduce the SGP-process 0 as soon as the set of considered
global types is empty (Case 1a) and a case to remove terminated global types
end from the set {Gj}j∈J (Case 1b). In a similar way, we split Case 7 into
a case to introduce a parallel composition of SGP-processes if the considered
sets of processes can be partitioned into two sets that implement the actors of
different sessions (Case 7a) and a case to split parallel global types (Case 7b),
i. e., to replace {Gj}j∈J by {Gk1, Gk2}∪{Gj}j∈J\{k} if there is a k ∈ J such that
Gk = Gk1, Gk2. The adaptation of the Cases 3, 4, 5, 6, 9, and 10 to multiple
global types is straightforward. The Cases 2 and 8 for recursion, are replaced by
variants that require all types of the considered set of global types to be reduced
to a type variable or a recursive global type, respectively. With that we follow
[3], that similarly requires that interleaved sessions can be joined in recursion.
The remaining cases are straightforwardly adapted to sets of types.

Note that an implementation of this algorithm should exploit the acyclic
dependency relation that is build according to [3] between interactions of differ-
ent sessions. This relation tells us for the Cases 6 and 9, whether the required
communication partners for a session are already unguarded or guarded by
another session. In the latter case this communication will introduce a depen-
dency from another session to this session and the respective case cannot be
applied. Similarly, this relation tells us for Case 7a that it is possible to intro-
duce a SGP parallel composition if and only if we can split the set of sessions
into two disjoint sets such that there are no dependencies between the sessions
in different sets.

We overload the definition of SGP∗(·, ·) for interleaved sessions. Let P be
well-typed w. r. t. {(Gj , sj)}j∈J and S = SGP’

(
{P} , {(Gj , sj)}j∈J

)
. Then the

corresponding SGP-system is SGP∗
(
{P} , {(Gj , sj)}j∈J

)
= 〈V;S〉, where V is

the vector of names in S.
Note that the results of Sect. 4 are proved in [26] for both variants: SGP(·, ·)

and SGP’(·, ·). As we claim, we can extend this algorithm to all variants of MPST
that satisfy linearity, i. e., all MPST variants we are aware of. This also includes
variants with session delegation. Delegation can be handled similarly to session
invitations using a substitution for the delegated session name.

4 Relating the Implementation and Its Sequentialisation

We show that for all processes P that are well-typed w. r. t. the global types
{(Gj , sj)}j∈J, the mapping SGP

(
{P} , {(Gj , sj)}j∈J

)
is defined and returns a

SGP-process. Therefore, we show that all cases of Definition 3 except for Case 8
preserve well-typedness in their recursive calls. By an induction over J and the
structure of the respective types, we show then that—after some preparation
steps in the Cases 3, 4, 5, and 10 that do not alter the type—well-typedness
ensures that the structure of the system is as required by the respective case to
reduce the types. The case of a single session—if P is well-typed w. r. t. G then
SGP({P} , G) is a SGP-process—is a special case of the following theorem.
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Theorem 2. If the process P is well-typed w. r. t. {(Gj , sj)}j∈J then

SGP’
(
{P} , {(Gj , sj)}j∈J

)
is defined and returns a SGP-process.

Given a well-typed process, the computation of the mapping and the size of
the constructed SGP-process are usually linear in the size of P combined with
the sum of the sizes of its types. As discussed in [26], an exponential blow-up
cannot be completely avoided but results only from not optimal conditionals,
i. e., conditionals that are not only used to branch between alternative labels of
an immediately following sender, or from actors that are not influenced by the
choice of a branch of a communication in that the sender is preceded by such a
conditional. By design, the algorithm in Definition 2 will even in these bad cases
minimize the size of the generated SGP-process by delaying the mapping of con-
ditionals as long as possible. In general the computation of the SGP-system is
efficient, i. e., usually fast, and the construction does not suffer from the problem
of state space explosion, i. e., the generated SGP-system is usually not consid-
erably larger than the original system. Since the construction sequentialises the
original system and thereby removes all forms of interaction and restriction, the
verification of the SGP-abstraction is much easier than the verification of the
original system.

It remains to show, that the SGP-abstraction of a well-typed system that is
generated by SGP∗(·, ·) and the original system are semantically similar enough,
such that the analysis of the SGP-abstraction allows to verify properties of the
original system. Intuitively, a well-typed system and its sequentionalisation into
a SGP-system have the same steps, but SGP-systems may force an order on steps
that are unordered in the original system. This happens for global types such
as 1 → 2 : l〈N〉.3 → 4 : l〈N〉.end that combine causally unrelated communications
sequentially.

Example 1. Consider the global type G = 1 → 2 : l〈N〉.3 → 4 : l〈N〉.end that
consists of two causally independent communications. The system

P = a[2..4](s).s[1, 2]!l〈5〉.0 | a(s[2]).s[2, 1]?l(x).0
| a(s[3]).s[3, 4]!l〈4〉.0 | a(s[4]).s[3, 4]?l(x).0

is a well-typed implementation of this global type. The algorithm of Definition 2
maps this process to the SGP-system SGP∗(P,G) = 〈(x2, x4) ;S〉, where S =
τ.x2:=5.x4:=4.0. The process P has, modulo structural congruence, two maximal
runs

P P ′
(νs)(s[3, 4]!l〈4〉.0 | s[3, 4]?l(x).0)

(νs)(s[1, 2]!l〈5〉.0 | s[2, 1]?l(x).0)
0

where P ′ = (νs)(s[1, 2]!l〈5〉.0 | s[2, 1]?l(x).0 | s[3, 4]!l〈4〉.0 | s[3, 4]?l(x).0). But the
abstraction SGP∗(P,G) simulates only the sequence of steps at the top

〈(x2 = 0, x4 = 0) ;S〉 �−→ 〈(x2 = 0, x4 = 0) ;x2 := 5.x4 := 4.0〉
�−→ 〈(x2 = 5, x4 = 0) ;x4 := 4.0〉 �−→ 〈(x2 = 5, x4 = 4) ;0〉
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in that first process 2 receives the value 5—and the SGP-process accordingly
updates the variable x2 of 2—and then 4 receives the value 4.

Except for such sequentialisations from the global type, the original system
and its SGP-system are similar. In particular, this means that each step of the
SGP-system can be simulated by the original system. Thus, SGP-systems do not
introduce new behaviour.

Theorem 3 (Soundness). If P is well-typed w. r. t. G then for all S ′ such
that SGP∗({P} ,G) �−→ S ′ there exist some P ′,G′ such that P �−→ P ′, P ′ is
well-typed w. r. t. G′, and SGP∗({P ′} ,G′) ≡S S ′.

Although the SGP-system can perform intuitively the same steps as the
original system, the order that is forced on some steps by the above discussed
sequentialisations prevents us from obtaining the same result in the other direc-
tion. However, only the order of steps can differ. Because of that, whenever the
original system does a step there is a sequence of steps bringing the original
system towards a state that can be reached by the SGP-system. To prove this
result, we rely on the observation that the behaviour of a SGP-process follows
the global type it was constructed from and well-typedness forces processes to
similarly follow the specification in their types. Since renamings of input binders
change the vector of variables of a SGP-system, we assume that no alpha con-
version is used to rename input binders in the following.

Theorem 4 (Completeness). Let G = {(Gj , sj)}j∈J. If the system P is well-
typed w. r. t. G then for all P �−→ P ′ there exist P ′′,G′′ such that P ′ �−→∗ P ′′,
P ′′ is well-typed w. r. t. G′′, and SGP∗({P} ,G) �−→∗ SGP∗({P ′′} ,G′′).

Interestingly, the combination of Theorem 3 and Theorem 4 is similar to
(weak) operational correspondence as it is introduced in [14] as criterion for the
quality of encodings. Using the results from [25], then the sequentialisation of a
system is correspondence similar to the original system, where correspondence
simulation � was introduced in [25].

Corollary 1. If P is well-typed w. r. t. G = {(Gj , sj)}j∈J then SGP∗(P,G) � P .

Correspondence similarity is strictly weaker than bisimilarity, but it implies
coupled similarity. Coupled similarity was introduced in [23] as a weaker variant
of bisimilarity that allows to relate the distributed implementation to a global
specification. Similarly, we relate the sequentialisation SGP∗(P,G) to the dis-
tributed implementation in P . As explained in [23], bisimilarity is in general too
strict to relate a distributed implementation with a global specification. So, fol-
lowing the hierarchy in [12,13], coupled similarity (or the only slightly stronger
correspondence simulation) is intuitively the strictest simulation relation that
we could expect here.
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5 Using SGP-Abstractions for Verification

To verify properties that are based on data values, we can use standard verifi-
cation techniques such as model checking on the generated SGP-systems. The
correspondence simulation SGP∗(P,G) � P between the SGP-system and the
original system P ensures that properties that are valid for the SGP-system are
also valid for P , if these properties are preserved modulo �. For the presented
approach, this is the case for all properties on the values of data variables—that
reflect the reception of values in the original system—that do not require to
compare different such variables that are updated concurrently in the original
system as explained in Example 1.

Accordingly, we cannot use this method to verify properties on the relation
between variables that are updated concurrently in the original system. This is
because, we use the structure of the global type to sequentialise. If—as in the
case of G in Example 1—the global type combines independent communications
sequentially, then the mapping SGP(P,G) forces an order on the corresponding
value updates following the global types G and not the process P .

However, this problem occurs only w. r. t. communications that are causally
unrelated, i. e., such properties are in general problematic in distributed systems.
Since these values are altered independently in the original system, properties
that relate their values will often not hold in all runs. The easiest way to avoid
such false positives, is to compute the causal relation of the communications in
G. Remember that global types do not contain binders. Thus, computing the
causality relation for a single session can be done in a similar way as in the
π-calculus (compare e. g. to [27]), but does not have to bother about binders and
scope extrusion. To obtain a causality relation for the case of globally interleaved
sessions, we combine the relation that captures dependencies between the inter-
actions of different sessions of [3] with the causality within a session. A property
of the SGP-system then holds for the original system if it is invariant under
different linearisations of this causal order.

To illustrate the verification of system properties, we use the model checker
Spin [16,17] and translate SGP-systems into Promela, the input language of Spin.
Therefore, we provide an algorithm to translate a SGP-process into Promela
code. This algorithm serves as a role model to obtain similar mappings for other
model checkers. We choose SPIN to illustrate how our algorithm for well-typed
systems compares to the standard partial order reduction techniques that are
implemented in SPIN and that work without the type information. Other imple-
mentations might prefer a model checker that is specialised on the analyses of
data instead of concurrency issues such as nuXmv [8].

First we generate a preamble for the Promela program, i. e., declare variables
and set their initial values. The variables are obtained from the vector of variables
V in a SGP-system 〈V;S〉. Sometimes the initial values are directly specified by
the implementation or are given as parameters of the implementation. Otherwise,
the developer has to pick suitable initial values respecting their respective sorts.

The translation into Promela consists of two layers. The outer layer �S� cre-
ates the proctype that is required by Promela and passes the term onto the inner
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layer �S�i. The inner layer is simple: Variable assignments are translated to
variable assignments encapsulated in an atomic block if multiple assignments
are done simultaneously. Recursion is implemented by introducing a label and
jumping to that label when the recursion variable is called.

Definition 4 (Translation of SGP-Processes into Promela)

�S� = active proctype ModelS() {
�S�i

LEnd:
}

�ṽ := ẽ.S�i = atomic {v1 = e1; . . . ; vn = en; } �S�i

�if c then S1 else S2�i = if
:: c −> �S1�i

:: else −> �S2�i

fi

�S1 ‖ S2�i = run(S1); run(S2)
�0�i = goto LEnd;

�τ.S�i = skip; �S�i

�(μX) S�i = LX: �S�i

�X�i = goto LX;

where for each run(Si) a separate proctype is introduced with �Si�.

Note that, if ṽ and ẽ are singletons in ṽ := ẽ.S, the atomic block is omitted.
In [26] we present a toy example to illustrate our approach. It implements

a simple auctioneer system consisting of an auctioneer and two bidders. After
translating this example into a SGP-system and then into Promela, some prop-
erties given as LTL-formulae are verified in SPIN.

Moreover, to visualise the state-space explosion problem, we implemented the
key-exchange part of the Needham-Schroeder protocol. We derived the sequen-
tialised (s) version out of the distributed (d) version using our algorithm. The
following table shows time and memory needed to check our Promela implemen-
tation of the Needham-Schroeder protocol. Spin crashed before it could compute
the distributed versions for more than 6 participants.

participants 2(d) 2(s) 4(d) 4(s) 6(d) 6(s) 8(d) 8(s) 10(d) 10(s)

seconds 0.01 0 0.19 0 51.7 0.05 – 1.27 – 36.2

MB 128 128 137 129 1836 138 – 360 – 5809
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6 Conclusions

We introduce a mapping from well-typed systems—that are distributed concur-
rent systems that interact by communication—into SGP-systems—that simulate
the information flow of the original system from a global point of view and that
do not have interactions. The algorithm to compute these SGP-systems is usu-
ally linear in the size of the original system. Without interactions and only finite
vectors of variables, the verification of properties is significantly more efficient
for SGP-systems than for the original system. The presented mapping ensures
that properties that hold for the SGP-system are also valid for the original
system modulo coupled similarity. Finally, we present a second mapping from
SGP-systems into Promela; the input language of the Spin model checker.

To formalise the relation between the original system and its sequentiali-
sation into a SGP-system, we relate them by correspondence simulation. Cor-
respondence simulation was described in [25] to describe the relation that the
criterion operational correspondence forces on processes and their encodings. As
discussed in [14,15], operational correspondence is essential to reason about the
quality of encodings between process calculi. In this sense, the presented map-
ping is a good encoding. Moreover, correspondence similarity implies coupled
similarity. As discussed in [23], coupled similarity is a good way to relate cen-
tral specifications—or in our case global sequentialisations—to their distributed
implementations. Since bisimilarity is in general too strict to relate the original
system and its sequentialisation, coupled similarity (or the only slightly stronger
correspondence simulation) is intuitively the strictest simulation relation that
we could expect here.

Multiparty session types are already a very efficient verification tool for all
properties about the communication structure of systems. The presented sequen-
tialisation allows us to benefit from their efficiency also in the verification of prop-
erties that are usually not in the range of type systems, because they require the
consideration of concrete runs of the system or the values of variables.

Due to the interleaving of independent actions, the state space of a concurrent
system is in the worst case exponentially larger than of its sequentialisation. As
an example, we implemented the Needham-Schroeder public key protocol with 10
pairs of processes that interact with the same server (see [26]). Spin generated
for the original system more than 35 million states (matching more than 154
million states while using more than 7,5GB memory) before crashing after 969
seconds. For the sequentialisation Spin computed the complete model in only 62
seconds generating 75 million states.

The Scribble project [18,31] provides a tool set that allows to specify and
check multiparty session types. They also provide a tool to check a given imple-
mentation against a given type. The presented algorithms could support such
tool sets by increasing the kinds of properties that can be analysed within such
a tool set, while the efficiency of such tools is not negatively influenced. In fact,
the derivation of SGP-abstractions can be directly integrated into the type check
such that SGP-abstracts are produced as a by-product of type checking.
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6. Caires, L., Pérez, J.A.: Multiparty session types within a canonical binary theory,
and beyond. In: Albert, E., Lanese, I. (eds.) FORTE 2016. LNCS, vol. 9688, pp.
74–95. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39570-8 6
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