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Preface

This volume contains the proceedings of the 16th International Colloquium on
Theoretical Aspects of Computing (ICTAC 2019), which was held in Hammamet,
Tunisia, during October 31 – November 4, 2019. Established in 2004 by the Inter-
national Institute for Software Technology of the United Nations University
(UNU-IIST), the ICTAC conference series aims at bringing together researchers and
practitioners from academia, industry, and government to present research and
exchange ideas and experience addressing challenges in both theoretical aspects of
computing and the exploitation of theory through methods and tools for system
development. ICTAC also specifically aims to promote research cooperation between
developing and industrial countries.

We received a total of 138 submissions, of which 20 were accepted for publication
(19 regular papers and one tool paper). The acceptance rate was therefore
approximately 14.5%. Papers were assigned to three reviewers, with the reviewing
phase being followed by discussions. Reviewing was single-blind. The program also
included three keynote presentations from Patrick Cousot (Courant Institute of
Mathematical Sciences, New York University, USA), Thomas A. Henzinger (Institute
of Science and Technology, Austria), and Dominique Mery (University of Lorraine,
France). There was also a collocated summer school and two workshops.

We are grateful for the support provided by the many people who contributed to
ICTAC 2019. We received invaluable advice from the Steering Committee at a number
of important times, particularly from the Steering Committee chair (Ana Cavalcanti),
and the incoming chair (Martin Leucker). We also received advice and support from
the general chair (Mohamed Jmaiel). We would like to thank the members of the
Program Committee for their timely and high-quality reviews as well as their
contributions to the discussions. We also received invaluable support from Saoussen
Cheikhrouhou who helped us to publicize the event.

Naturally, the conference could not have taken place without presentations. We
would like to thank our three keynotes (Patrick Cousot, Thomas A. Henzinger, and
Dominique Mery) for accepting our invitations – it was a pleasure and honor to have
such a distinguished set of keynotes. We would also like to thank the authors for
submitting and then revising a set of high-quality papers. Finally, we appreciate the
support and advice provided by Alfred Hofmann and Anna Kramer from Springer.

November 2019 Robert M. Hierons
Mohamed Mosbah
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Calculational Design of a Regular Model
Checker by Abstract Interpretation⋆

Abstract. Security monitors have been used to check for safety program
properties at runtime, that is for any given execution trace. Such security
monitors check a safety temporal property specified by a finite automa-
ton or, equivalently, a regular expression. Checking this safety temporal
specification for all possible execution traces, that is the program se-
mantics, is a static analysis problem, more precisely a model checking
problem, since model checking specializes in temporal properties. We
show that the model checker can be formally designed by calculus, by
abstract interpretation of a formal trace semantics of the programming
language. The result is a structural sound and complete model checker,
which proceeds by induction on the program syntax (as opposed to the
more classical approach using computation steps formalized by a tran-
sition system). By Rice theorem, further hypotheses or abstractions are
needed to get a realistic model checking algorithm.

Keywords: Abstract interpretation · Calculational design · Model checking.

1 Introduction

Model checking [9,33] consists in proving that a model of a given program/com-
puter system satisfies a temporal specification1. Traditionally, the model of the
given program/computer system is a transition system and its semantics is the
set of traces generated by the transition system. The temporal specification is
usually one of the many variants of temporal logics such as the Linear Time
Temporal logic (LTL), the Computation Tree Logic (CTL), or the combination
CTL∗ of the two. The semantics of the temporal specification is a set of traces.
The problem is therefore to check that the set of traces of the semantics of the
given program/computer system is included in the set of traces of the semantics
of the temporal specification. This is a Galois connection-based abstraction and
so a model checking algorithm can be designed by calculus. To show that we
consider a non-conventional temporal specification using regular expressions [25]
and a structural fixpoint prefix-closed trace semantics which diffrs from the
⋆ Supported by NSF Grant CCF-1617717.
1 We define model checking as the verification of temporal properties and do not

reduce it to the reachability analysis (as done e.g. in [10, Ch. 15, 16, 17, etc.]) since
reachability analysis predates model checking [14] including for the use of transition
systems [12].

© Springer Nature Switzerland AG 2019
R. M. Hierons and M. Mosbah (Eds.): ICTAC 2019, LNCS 11884, pp. 3–21, 2019.
https://doi.org/10.1007/978-3-030-32505-3_1

Patrick Cousot

CS, CIMS, NYU, New York, NY, USA
pcousot@cims.nyu.edu

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32505-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-32505-3_1
http://orcid.org/0000%E2%88%920003%E2%88%920101%E2%88%929953
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traditional small-step operational semantics specified by a transition system.
There are properties of traces that are not expressible in temporal logic but are
easily expressible using regular expressions [36].

2 Syntax and Trace Semantics of the Programming
Language

Syntax Programs are a subset of C with the following context-free syntax.

x, y,… ∈ X variable (X not empty)
A ∈ A ∶∶=1 | x | A1 - A2 arithmetic expression
B ∈ B ∶∶=A1 < A2 | B1 nand B2 boolean expression
E ∈ E ∶∶=A | B expression
S ∈ S ∶∶= statement

x = A ; assignment
| ; skip
| if (B) S | if (B) S else S conditionals
| while (B) S | break ; iteration and break
| { Sl } compound statement

Sl ∈ Sl∶∶=Sl S | 𝜖 statement list
P ∈ P ∶∶=Sl program

A break exits the closest enclosing loop, if none this is a syntactic error. If P is
a program then int main () { P } is a valid C program. We call “[program]
component” S ∈ Pc ≜ S∪Sl∪P either a statement, a statement list, or a program.
We let ◁ be the syntactic relation between immediate syntactic components. For
example, if S = if (B) S𝑡 else S𝑓 then B◁ S, S𝑡 ◁ S, and S𝑓 ◁ S.

Program labels Labels are not part of the language, but useful to discuss
program points reached during execution. For each program component S, we
define

atJSK the program point at which execution of S starts;
aftJSK the program exit point after S, at which execution of S is supposed to nor-

mally terminate, if ever;
escJSK a boolean indicating whether or not the program component S contains a

break ; statement escaping out of that component S;
brk-toJSK the program point at which execution of the program component S goes to

when a break ; statement escapes out of that component S;
brks-ofJSK the set of labels of all break ; statements that can escape out of S
inJSK the set of program points inside S (including atJSK but excluding aftJSK and

brk-toJSK);
labsJSK the potentially reachable program points while executing S either at, in, or

after the statement, or resulting from a break.

;
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Prefix trace semantics Prefix traces are non-empty finite sequences 𝜋 ∈ 𝕊+
of states where states ⟨ℓ, 𝜌⟩ ∈ 𝕊 ≜ (L × Ev) are pairs of a program label ℓ ∈ 𝕊
designating the next action to be executed in the program and an environment
𝜌 ∈ Ev ≜ X → 𝕍 assigning values 𝜌(x) ∈ 𝕍 to variables x ∈ X. A trace 𝜋 can be
finite 𝜋 ∈ 𝕊+ or infinite 𝜋 ∈ 𝕊∞ (recording a non-terminating computation) so
𝕊+∞ ≜ 𝕊+ ∪ 𝕊∞. Trace concatenation ⌢⋅ is defined as follows
𝜋1𝜎1 ⌢⋅ 𝜎2𝜋2 undefined if 𝜎1 ≠ 𝜎2 𝜋1 ⌢⋅ 𝜎2𝜋2 ≜ 𝜋1 if 𝜋1 ∈ 𝕊∞ is infinite
𝜋1𝜎1 ⌢⋅ 𝜎1𝜋2 ≜ 𝜋1𝜎1𝜋2 if 𝜋1 ∈ 𝕋+ is finite

In pattern matching, we sometimes need the empty trace ∋. For example if 𝜎𝜋𝜎′
= 𝜎 then 𝜋 = ∋ and so 𝜎 = 𝜎′.

Formal definition of the prefix trace semantics The prefix trace semantics
𝓢∗JSK is given structurally (by induction on the syntax) using fixpoints for the
iteration.
• The prefix traces of an assignment statement S ∶∶= ℓ x = A ; (where atJSK = ℓ)
either stops in an initial state ⟨ℓ, 𝜌⟩ or is this initial state ⟨ℓ, 𝜌⟩ followed by the
next state ⟨aftJSK, 𝜌[x ←𝓐JAK𝜌]⟩ recording the assignment of the value 𝓐JAK𝜌
of the arithmetic expression to variable x when reaching the label aftJSK after
the assignment.

𝓢∗JSK = {⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ Ev} ∪ {⟨ℓ, 𝜌⟩⟨aftJSK, 𝜌[x←𝓐JAK𝜌]⟩ ∣ 𝜌 ∈ Ev} (1)

The value of an arithmetic expression A in environment 𝜌 ∈ Ev ≜ X → 𝕍 is
𝓐JAK𝜌 ∈ 𝕍:

𝓐J1K𝜌 ≜ 1 𝓐JxK𝜌 ≜ 𝜌(x) 𝓐JA1 - A2K𝜌 ≜𝓐JA1K𝜌 −𝓐JA2K𝜌 (2)

• The prefix trace semantics of a break statement S ∶∶= ℓ break ; either stops
at ℓ or goes on to the break label brk-toJSK (which is defined as the exit label of
the closest enclosing iteration).

𝓢∗JSK ≜ {⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ Ev} ∪ {⟨ℓ, 𝜌⟩⟨brk-toJSK, 𝜌⟩ ∣ 𝜌 ∈ Ev} (3)

• The prefix trace semantics of a conditional statement S ∶∶= if ℓ (B) S𝑡 is
• either the trace ⟨ℓ, 𝜌⟩ when the observation of the execution stops on entry

of the program component for initial environment 𝜌;
• or, when the value of the boolean expression B for 𝜌 is false ff, the initial state
⟨ℓ, 𝜌⟩ followed by the state ⟨aftJSK, 𝜌⟩ at the label aftJSK after the conditional
statement;
• or finally, when the value of the boolean expression B for 𝜌 is true tt, the

initial state⟨ℓ, 𝜌⟩ followed by a prefix trace of S𝑡 starting atJS𝑡K in environment
𝜌 (and possibly ending aftJS𝑡K = aftJSK).

�̂�∗JSK ≜ {⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ Ev} ∪ {⟨ℓ, 𝜌⟩⟨aftJSK, 𝜌⟩ ∣𝓑JBK𝜌 = ff} (4)
∪ {⟨ℓ, 𝜌⟩⟨atJS𝑡K, 𝜌⟩𝜋 ∣𝓑JBK𝜌 = tt ∧ ⟨atJS𝑡K, 𝜌⟩𝜋 ∈ �̂�∗JS𝑡K}

Observe that definition (4) includes the case of a conditional within an itera-
tion and containing a break statement in the true branch S𝑡. Since brk-toJSK =
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brk-toJS𝑡K, from ⟨atJS𝑡K, 𝜌⟩𝜋⟨brk-toJS𝑡K, 𝜌′⟩ ∈ 𝓢∗JS𝑡K and 𝓑JBK𝜌 = tt, we infer
that ⟨atJSK, 𝜌⟩⟨atJS𝑡K, 𝜌⟩𝜋⟨brk-toJSK, 𝜌′⟩ ∈ 𝓢∗JSK.
• The prefix traces of the prefix trace semantics of a non-empty statement list
Sl ∶∶= Sl′ S are the prefix traces of Sl′ or the finite maximal traces of Sl′ followed
by a prefix trace of S.

�̂�∗JSlK ≜ �̂�∗JSl′K ∪ �̂�∗JSl′K ⌢⋅ 𝓢∗JSK (5)
𝓢 ⌢⋅ 𝓢′ ≜ {𝜋 ⌢⋅ 𝜋′ ∣ 𝜋 ∈ 𝓢 ∧ 𝜋′ ∈ 𝓢′ ∧ 𝜋 ⌢⋅ 𝜋′ is well-defined}

Notice that if 𝜋 ∈ �̂�∗JSl′K, 𝜋′ ∈ 𝓢∗JSK, and 𝜋 ⌢⋅ 𝜋′ ∈ �̂�∗JSlK then the last state of
𝜋 must be the first state of 𝜋′ and this state is atJSK = aftJSl′K and so the trace
𝜋 must be a maximal terminating execution of Sl′ i.e. S is executed only if Sl′
terminates.
• The prefix finite trace semantic definition 𝓢∗JSK (6) of an iteration statement
of the form S ∶∶= while ℓ (B) S𝑏 where ℓ = atJSK is the ⊆-least solution lfp⊆𝓕∗JSK
to the equation 𝑋 =𝓕∗JSK(𝑋). Since 𝓕∗JSK ∈ ℘(𝕊+) → ℘(𝕊+) is ⊆- monotone (if
𝑋 ⊆ 𝑋′ then 𝓕∗JSK(𝑋) ⊆ 𝓕∗JSK(𝑋′) and ⟨℘(𝕊+), ⊆, ∅, 𝕊+, ∪, ∩⟩ is a complete
lattice, lfp⊆𝓕∗JSK exists by Tarski’s fixpoint theorem and can be defined as the
limit of iterates [15]. In definition (6) of the transformer 𝓕∗JSK, case (6.a) corre-
sponds to a loop execution observation stopping on entry, (6.b) corresponds to
an observation of a loop exiting after 0 or more iterations, and (6.c) corresponds
to a loop execution observation that stops anywhere in the body S𝑏 after 0 or
more iterations. This last case covers the case of an iteration terminated by a
break statement (to aftJSK after the iteration statement).

𝓢∗Jwhile ℓ (B) S𝑏K = lfp ⊆̇𝓕∗Jwhile ℓ (B) S𝑏K (6)

𝓕∗𝕊 Jwhile ℓ (B) S𝑏K𝑋 ≜ {⟨ℓ, 𝜌⟩ | 𝜌 ∈ Ev} (a)
∪ {𝜋2⟨ℓ′, 𝜌⟩⟨aftJSK, 𝜌⟩ | 𝜋2⟨ℓ′, 𝜌⟩ ∈ 𝑋 ∧𝓑JBK 𝜌 = ff ∧ ℓ′ = ℓ}2 (b)
∪ {𝜋2⟨ℓ′, 𝜌⟩⟨atJS𝑏K, 𝜌⟩ ⋅ 𝜋3 | 𝜋2⟨ℓ′, 𝜌⟩ ∈ 𝑋 ∧𝓑JBK 𝜌 = tt ∧

⟨atJS𝑏K, 𝜌⟩ ⋅ 𝜋3 ∈ 𝓢∗JS𝑏K ∧ ℓ′ = ℓ} (c)

• The other cases are similar.

Semantic properties As usual in abstract interpretation [16], we represent
properties of entities in a universe U by a subset of this universe. So a property
of elements of U belongs to ℘(U). For example “to be a natural” is the property
N ≜ {𝑛 ∈ Z ∣ 𝑛 ⩾ 0} of the integers Z. The property “𝑛 is a natural” is “𝑛 ∈ N”.
By program component (safety) property, we understand a property of their
prefix trace semantics 𝓢∗JSK ∈ ℘(𝕊+). So program properties belong to ℘(℘(𝕊+)).
The collecting semantics is the strongest program property, that is the singleton
{𝓢∗JSK}.
2 A definition of the form 𝑑(�⃗�) ≜ {𝑓(�⃗�′) ∣ 𝑃(�⃗�′, �⃗�)} has the variables �⃗�′ in 𝑃(�⃗�′, �⃗�) bound

to those of 𝑓(�⃗�′) whereas �⃗� is free in 𝑃(�⃗�′, �⃗�) since it appears neither in 𝑓(�⃗�′) nor (by
assumption) under quantifiers in 𝑃(�⃗�′, �⃗�). The �⃗� of 𝑃(�⃗�′, �⃗�) is therefore bound to the
�⃗� of 𝑑(�⃗�).
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3 Specifying computations by regular expressions

Stephen Cole Kleene introduced regular expressions and finite automata to spec-
ify execution traces (called events) of automata (called nerve nets) [25]. Kleene
proved in [25] that regular expressions and (non-deterministic) finite automata
can describe exactly the same classes of languages (see [34, Ch. 1, Sect. 4]). He
noted that not all computable execution traces of nerve nets can be (exactly)
represented by a regular expression. The situation is the same for programs for
which regular expressions (or equivalently finite automata) can specify a super-
set of the prefix state trace semantics 𝓢∗JSK of program components S ∈ Pc.

Example 1 (Security monitors). An example is Fred Schneider’s security moni-
tors [35,29] using a finite automata specification to state requirements of hard-
ware or software systems. They have been used to check for safety program
properties at runtime, that is for any given execution trace in the semantics
𝓢∗JSK. The safety property specified by the finite automaton or, equivalently,
an regular expression is temporal i.e. links events occurring at different times in
the computation (such as a file must be opened before being accessed and must
eventually be closed). ⊓⊔

Syntax of regular expressions Classical regular expressions denote sets of
strings using constants (empty string 𝜀, literal characters 𝑎, 𝑏, etc.) and operator
symbols (concatenation ∙, alternation ||, repetition zero or more times ∗ or one
or more times +). We replace the literal characters by invariant specifications
L : B stating that boolean expression B should be true whenever control reaches
any program point in the set L of program labels. The boolean expression B
may depend on program variables x, y,… ∈ X and their initial values denoted
x, y,… ∈ X where X ≜ {x ∣ x ∈ X}.

L ∈ ℘(L) sets of program labels
x, y,… ∈ X program variables
x, y,… ∈ X initial values of variables

B ∈ B boolean expressions such that 𝕧𝕒𝕣𝕤JBK ⊆ X ∪X

R ∈ R regular expressions (7)
R ∶∶= 𝜀 empty
| L : B invariant B at L
| R1R2 (or R1 ∙ R2) concatenation
| R1 || R2 alternative
| R∗1 | R+1 zero/one or more occurrences of R
| (R1) grouping

We use abbreviations to designate sets of labels such as ? : B ≜ L : B so
that B is invariant, ℓ : B ≜ {ℓ} : B so that B is invariant at program label ℓ,
¬ℓ : B ≜ L ⧵ {ℓ} : B when B holds everywhere but at program point ℓ, etc.
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Example 2. (? : tt)∗ holds for any program. (? : x >= 0)∗ states that the value
of x is always positive or zero during program execution. (? : x >= x)∗ states
that the value of x is always greater than or equal to its initial value x during
execution. (? : x >= 0)∗ ∙ ℓ : x == 0 ∙ (? : x < 0)∗ states that the value of x
should be positive or zero and if program point ℓ is ever reached then x should
be 0, and if computations go on after program point ℓ then x should be negative
afterwards. ⊓⊔
Example 3. Continuing Ex. 1 for security monitors, the basic regular expressions
are names 𝑎 of program actions. We can understand such an action 𝑎 as desig-
nating the set L of labels of all its occurrences in the program. If necessary, the
boolean expression B can be used to specify the parameters of the action. ⊓⊔
There are many regular expressions denoting the language {϶} containing only the
empty sequence ϶ (such that 𝜀, 𝜀𝜀, 𝜀∗, etc.), as shown by the following grammar.

R𝜀 ∋ R ∶∶= 𝜀 | R1R2 | R1 || R2 | R∗1 | R+1 | (R1) empty regular expressions
For specification we use only non-empty regular expressions R ∈ R+ since traces
cannot be empty.

R+ ∋ R ∶∶= L : B | 𝜀R2 | R1𝜀 | R1R2 | R1 || R2 | R+1 | (R1) non-empty r.e.

We also have to consider regular expressions R ∈ R∖| containing no alternative ||.
R∖| ∋ R ∶∶= 𝜀 | L : B | R1R2 | R∗1 | R+1 | (R1) ||-free regular expressions

Relational semantics of regular expressions The semantics (2) of expres-
sions is changed as follows (𝜚(x) denotes the initial values x of variables x and
𝜌(x) their current value, ↑ is the alternative denial logical operation)

𝓐J1K𝜚, 𝜌 ≜ 1 𝓐JA1 - A2K𝜚, 𝜌 ≜𝓐JA1K𝜚, 𝜌 −𝓐JA2K𝜚, 𝜌 (8)
𝓐JxK𝜚, 𝜌 ≜ 𝜚(x) 𝓑JA1 < A2K𝜚, 𝜌 ≜𝓐JA1K𝜚, 𝜌 <𝓐JA2K𝜚, 𝜌
𝓐JxK𝜚, 𝜌 ≜ 𝜌(x) 𝓑JB1 nand B2K𝜚, 𝜌 ≜𝓑JB1K𝜚, 𝜌 ↑𝓑JB2K𝜚, 𝜌

We represent a non-empty finite sequence 𝜎1…𝜎𝑛 ∈ 𝕊+ ≜ ⋃
𝑛∈N⧵{0}
[1, 𝑛] → 𝕊 of

states 𝜎𝑖 ∈ 𝕊 ≜ (L × Ev) by a map 𝜎 ∈ [1, 𝑛] → 𝕊 (which is the empty sequence
𝜎 = ϶ when 𝑛 = 0).

The relational semantics 𝓢rJRK ∈ ℘(Ev × 𝕊∗) of regular expressions R relates
an arbitrary initial environment 𝜚 ∈ Ev to a trace 𝜋 ∈ 𝕊∗ by defining how the
states of the trace 𝜋 are related to that initial environment 𝜚.

𝓢rJ𝜀K ≜ {⟨𝜚, ϶⟩ ∣ 𝜚 ∈ Ev} 𝓢rJRK1 ≜ 𝓢rJRK (9)
𝓢rJL : BK ≜ {⟨𝜚, ⟨ℓ, 𝜌⟩⟩ ∣ ℓ ∈ L ∧𝓑JBK𝜚, 𝜌} 𝓢rJRK𝑛+1 ≜ 𝓢rJRK𝑛 ⦿𝓢rJRK
𝓢rJR1R2K ≜ 𝓢rJR1K ⦿𝓢rJR2K 𝓢rJR∗K ≜ ⋃

𝑛∈N
𝓢rJRK𝑛

𝓢 ⦿𝓢′ ≜ {⟨𝜚, 𝜋 ⋅ 𝜋′⟩ ∣ ⟨𝜚, 𝜋⟩ ∈ 𝓢 ∧ ⟨𝜚, 𝜋′⟩ ∈ 𝓢′} 𝓢rJR+K ≜ ⋃
𝑛∈N⧵{0}

𝓢rJRK𝑛
𝓢rJR1 || R2K ≜ 𝓢rJR1K ∪𝓢rJR2K 𝓢rJ(R)K ≜ 𝓢rJRK
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Example 4. The semantics of the regular expression R ≜ ℓ : x = x ∙ ℓ′ : x = x + 1
is 𝓢rJRK = {⟨𝜚, ⟨ℓ, 𝜌⟩⟨ℓ′, 𝜌′⟩⟩ ∣ 𝜌(x) = 𝜚(x) ∧ 𝜌′(x) = 𝜚(x) + 1}. ⊓⊔

4 Definition of regular model checking

Let the prefix closure prefix(Π) of a set Π ∈ ℘(Ev × 𝕊+) of stateful traces be

prefix(Π) ≜ {⟨𝜚, 𝜋⟩ ∣ 𝜋 ∈ 𝕊+ ∧ ∃𝜋′ ∈ 𝕊∗ . ⟨𝜚, 𝜋 ⋅ 𝜋′⟩ ∈ Π} prefix closure.

The following Def. 1 defines the model checking problem P, 𝜚 ⊨ R as checking
that the semantics of the given program P ∈ P meets the regular specification
R ∈ R+ for the initial environment 𝜚3.

Definition 1 (Model checking).

P, 𝜚 ⊨ R ≜ ({𝜚} ×𝓢∗JPK) ⊆ prefix(𝓢rJR ∙ (? : tt)∗K)
The prefix closure prefix allows the regular specification R to specify traces sat-
isfying a prefix of the specification only, as in ℓ x = x + 1 ;ℓ′ ⊨ ℓ : x = x ∙
ℓ′ : x = x + 1 ∙ ℓ″ : x = x + 3. The extension of the specification by (? : tt)∗

allows for the regular specification R to specify only a prefix of the traces, as in
ℓ x = x + 1 ;ℓ′ x = x + 2 ; ℓ″ ⊨ ℓ : x = x ∙ ℓ′ : x = x + 1. Model checking is a boolean
abstraction ⟨℘(𝕊+), ⊆⟩ −−−−−−→←−−−−−−𝛼𝜚,R

𝛾𝜚,R
⟨B, ⇐⟩ where 𝛼𝜚,R(Π) ≜ ({𝜚} × Π) ⊆ prefix(𝓢rJR ∙

(? : tt)∗K)).
5 Properties of regular expressions

Equivalence of regular expressions We say that regular expressions are
equivalent when they have the same semantics i.e. R1 ≎ R2 ≜ (𝓢rJR1K = 𝓢rJR2K).
Disjunctive normal form dnf of regular expressions As noticed by Kleene
[25, p. 14], regular expressions can be put in the equivalent disjunctive normal
form of Hilbert—Ackermann. A regular expression is in disjunctive normal form
if it is of the form (R1 || … || R𝑛) for some 𝑛 ⩾ 1, in which none of the R𝑖, for
1 ⩽ 𝑖 ⩽ 𝑛, contains an occurrence of ||. Any regular expression R has a disjunctive
normal form dnf(R) defined as follows.

dnf(𝜀) ≜ 𝜀 dnf(L : B) ≜ L : B
dnf(R1 || R2) ≜ dnf(R1) || dnf(R2) dnf(R+) ≜ dnf(RR∗)

dnf(R∗) ≜ let R1 ||… || R𝑛 = dnf(R) in ((R1)∗…(R𝑛)∗)∗ dnf((R)) ≜ (dnf(R))
dnf(R1R2) ≜ let R11 ||… || R𝑛11 = dnf(R1) and R12 ||… || R𝑛22 = dnf(R2) in

𝑛1
||
𝑖=1

𝑛2
||
𝑗=1

R𝑖1R
𝑗
2

3 We understand ”regular model checking” as checking temporal specifications given
by a regular expression. This is different from [1] model checking transition systems
which states are regular word or tree languages.
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The Lem. 1 below shows that normalization leaves the semantics unchanged. It
uses the fact that (R1 || R2)∗ ≎ (R1∗R2∗)∗ where the R1 and R2 do not contain
any || [23, Sect. 3.4.6, p. 118]. It shows that normalization in (10) can be further
simplified by 𝜀R ≎ R𝜀 ≎ R and (𝜀)∗ ≎ 𝜀 which have equivalent semantics.

Lemma 1. dnf(R) ≎ R.

first and next of regular expressions Janusz Brzozowski [7] introduced the
notion of derivation for regular expressions (extended with arbitrary Boolean
operations). The derivative of a regular expression R with respect to a symbol
𝑎, typically denoted as 𝐷𝑎(R) or 𝑎−1R, is a regular expression given by a simple
recursive definition on the syntactic structure of R. The crucial property of these
derivatives is that a string of the form 𝑎𝜎 (starting with the symbol 𝑎) matches
an expression R iff the suffix 𝜎 matches the derivative 𝐷𝑎(R) [7,32,2].

Following this idea, assume that a non-empty regular expression R ∈ R+ has
been decomposed into disjunctive normal form (R1 || … || R𝑛) for some 𝑛 ⩾ 1, in
which none of the R𝑖, for 𝑖 ∈ [1, 𝑛], contains an occurrence of ||. We can further
decompose each R𝑖 ∈ R+ ∩ R∖| into ⟨L : B, R′𝑖⟩ = fstnxt(R𝑖) such that

– L : B recognizes the first state of sequences of states recognized by R𝑖;
– the regular expression R′𝑖 recognizes sequences of states after the first state

of sequences of states recognized by R𝑖.
We define fstnxt for non-empty ||-free regular expressions R ∈ R+∩R∖| by structural
induction, as follows.

fstnxt(L : B) ≜ ⟨L : B, 𝜀⟩ (10)
fstnxt(R1R2) ≜ fstnxt(R2) if R1 ∈ R𝜀

fstnxt(R1R2) ≜ let ⟨R𝑓1 , R𝑛1⟩ = fstnxt(R1) in ( R𝑛1 ∈ R𝜀 ? ⟨R
𝑓
1 , R2⟩ : ⟨R

𝑓
1 , R𝑛1 ∙ R2⟩ )

if R1 ∉ R𝜀
fstnxt(R+) ≜ let ⟨R𝑓, R𝑛⟩ = fstnxt(R) in ( R𝑛 ∈ R𝜀 ? ⟨R𝑓, R∗⟩ : ⟨R𝑓, R𝑛 ∙ R∗⟩ )
fstnxt((R)) ≜ fstnxt(R)

The following Lem. 2 shows the equivalence of an alternative-free regular ex-
pression and its first and next decomposition.

Lemma 2. Let R ∈ R+ ∩R∖| be a non-empty ||-free regular expression and ⟨L : B,
R′⟩ = fstnxt(R). Then R′ ∈ R∖| is ||-free and R ≎ L : B ∙ R′.

6 The model checking abstraction

The model checking abstraction in Section 4 is impractical for structural model
checking since e.g. when checking that a trace concatenation 𝜋1⌢⋅𝜋2 of a statement
list Sl ∶∶= Sl′ S for a specification R where 𝜋1 is a trace of Sl′ and 𝜋2 is a trace of
S, we first check that 𝜋1 satisfies R and then we must check 𝜋2 for a continuation
R2 of R which should be derived from 𝜋1 and R. This is not provided by the
boolean abstraction 𝛼𝜚,R which needs to be refined as shown below.
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Example 5. Assume we want to check ℓ1 x = x + 1 ;ℓ2 x = x + 2 ;ℓ3 for the
regular specification ? : x = x ∙ ? : x = x + 1 ∙ ? : x = x + 3 by first checking the
first statement and then the second. Knowing the boolean information that
ℓ1 x = x + 1 ;ℓ2 model checks for ? : x = x ∙ ? : x = x + 1 is not enough. We
must also know what to check the continuation ℓ2 x = x + 2 ;ℓ3 for. (This is
? : x = x + 1 ∙ ? : x = x + 3 that is if x is equal to the initial value plus 1 at ℓ2, it
is equal to this initial value plus 3 at ℓ3.) ⊓⊔

The model-checking 𝓜𝑡⟨𝜚, R⟩𝜋 of a trace 𝜋 with initial environment 𝜚 for a
||-free specification R ∈ R∖| is a pair ⟨𝑏, R′⟩ where the boolean 𝑏 states whether the
specification R holds for the trace 𝜋 and R′ specifies the possible continuations
of 𝜋 according to R, 𝜀 if none.

Example 6. For Sl = ℓ1 x = x + 1 ;ℓ2 x = x + 2 ;ℓ3, we have 𝓢∗JSlK = {⟨ℓ1, 𝜌⟩⟨ℓ2,
𝜌[x← 𝜌(x)+1]⟩⟨ℓ3, 𝜌[x← 𝜌(x)+3]⟩ ∣ 𝜌 ∈ Ev} and 𝓜𝑡⟨𝜌, ? : x = x ∙ ? : x = x+1 ∙
? : x = x + 3⟩(⟨ℓ1, 𝜌⟩⟨ℓ2, 𝜌[x ← 𝜌(x) + 1]⟩⟨ℓ3, 𝜌[x ← 𝜌(x) + 3]⟩) = ⟨tt, 𝜀⟩ (we have

ignored the initial empty statement list in Sl to simplify the specification). ⊓⊔

The fact that 𝓜𝑡⟨𝜚, R⟩𝜋 returns a pair ⟨𝑏, R′⟩ where R′ is to be satisfied by
continuations of 𝜋 allows us to perform program model checking by structural
induction on the program in Section 8. The formal definition is the following.

Definition 2 (Regular model checking).
– Trace model checking (𝜚 ∈ Ev is an initial environment and R ∈ R+ ∩ R∖|

is a non-empty and ||-free regular expression):

𝓜𝑡⟨𝜚, 𝜀⟩𝜋 ≜ ⟨tt, 𝜀⟩ (11)
𝓜𝑡⟨𝜚, R⟩∋ ≜ ⟨tt, R⟩
𝓜𝑡⟨𝜚, R⟩𝜋 ≜ let ⟨ℓ1, 𝜌1⟩𝜋′ = 𝜋 and ⟨L : B, R′⟩ = fstnxt(R) in 𝜋 ≠ ∋

( ⟨𝜚, ⟨ℓ1, 𝜌1⟩⟩ ∈ 𝓢rJL : BK ? 𝓜𝑡⟨𝜚, R′⟩𝜋′ : ⟨ff, R′⟩ )

– Set of traces model checking (for an ||-free regular expression R ∈ R∖|):

𝓜∖|⟨𝜚, R⟩Π ≜ {⟨𝜋, R′⟩ | 𝜋 ∈ Π ∧ ⟨tt, R′⟩ =𝓜𝑡⟨𝜚, R⟩𝜋} (12)

– Program component S ∈ Pc model checking (for an ||-free regular expres-
sion R ∈ R∖|):

𝓜∖|JSK⟨𝜚, R⟩ ≜𝓜∖|⟨𝜚, R⟩(𝓢∗JSK) (13)

– Set of traces model checking (for regular expression R ∈ R):

𝓜⟨𝜚, R⟩Π ≜ let (R1 ||… || R𝑛) = dnf(R) in (14)
𝑛
⋃
𝑖=1
{𝜋 ∣ ∃R′ ∈ R . ⟨𝜋, R′⟩ ∈𝓜∖|⟨𝜚, R𝑖⟩Π}
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– Model checking of a program component S ∈ Pc (for regular expression
R ∈ R):

𝓜JSK⟨𝜚, R⟩ ≜𝓜⟨𝜚, R⟩(𝓢∗JSK) (15) ⊓⊔

The model checking 𝓜𝑡⟨𝜚, R⟩𝜋 of a stateful trace 𝜋 in (11) returns a pair ⟨𝑏,
R′⟩ specifying whether 𝜋 satisfies the specification R (when 𝑏 = tt) or not (when
𝑏 = ff). So if 𝓜𝑡⟨𝜌, R⟩(𝜋) = ⟨ff, R′⟩ in (12) then the trace 𝜋 is a counter example
to the specification R. R′ specifies what a continuation 𝜋′ of 𝜋 would have to
satisfy for 𝜋 ⌢⋅ 𝜋′ to satisfy R (nothing specific when R′ = 𝜀).

Notice that 𝓜𝑡⟨𝜚, R⟩𝜋 checks whether the given trace 𝜋 satisfies the regular
specification R for initial environment 𝜚. Because only one trace is involved, this
check can be done at runtime using a monitoring of the program execution. This
is the case Fred Schneider’s security monitors [35] in Ex. 1 (using an equivalent
specification by finite automata).

The set of traces model checking 𝓜∖|⟨𝜚, R⟩Π returns the subset of traces of
Π satisfying the specification R for the initial environment 𝜚. Since all program
executions 𝓢∗JPK are involved, the model checking 𝓜∖|JPK⟨𝜚, R⟩ of a program P
becomes, by Rice theorem, undecidable.

The regular specification R is relational in that it may relate the initial and
current states (or else may only assert a property of the current states when R
never refer to the initial environment 𝜚). If 𝜋⟨ℓ, 𝜌⟩𝜋′ ∈ 𝓢∗JSK is an execution trace
satisfying the specification R then R in (15) determines a relationship between the
initial environment 𝜚 and the current environment 𝜌. For example R = ⟨{atJSK},
B⟩ ∙ R′ with 𝓑JBK𝜚, 𝜌 = ∀x ∈ X . 𝜚(x) = 𝜌(x) expresses that the initial values of
variables x are denoted x. 𝓑JBK𝜚, 𝜌 = tt would state that there is no constraint
on the initial value of variables. The difference with the invariant specifications
of is that the order of computations is preserved. R can specify in which order
program points may be reached, which is impossible with invariants 4.

The model checking abstraction (12) which, given an initial environment
𝜚 ∈ Ev and an ||-free regular specification R ∈ R∖|, returns the set of traces
satisfying this specification is the lower adjoint of the Galois connection

⟨℘(𝕊+), ⊆⟩ −−−−−−−−−−→←−−−−−−−−−−
𝓜∖|⟨𝜚, R⟩

𝛾𝓜∖|⟨𝜚, R⟩
⟨℘(𝕊+), ⊆⟩ for R ∈ R∖| in (12) (16)

4 By introduction of an auxiliary variable C incremented at each program step one
can simulate a trace with invariants. But then the reasoning is not on the original
program P but on a transformed program P. Invariants in P holding for a given value
of 𝑐 of C also hold at the position 𝑐 of the traces in P. This king of indirect reasoning
is usually heavy and painful to maintain when programs are modified since values of
counters are no longer the same. The use of temporal specifications has the advantage
of avoiding the reasoning on explicit positions in the trace.
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If ⟨C, ⩽⟩ is a poset, ⟨A, ⊑, ⊔, ⊓⟩ is a complete lattice, ∀𝑖 ∈ [1, 𝑛] . ⟨C, ⩽⟩ −−−−−→←−−−−−𝛼𝑖
𝛾𝑖 ⟨A,

⊑⟩ then ⟨C, ⩽⟩ −−−−→←−−−−𝛼
𝛾
⟨A, ⊑⟩ where 𝛼 ≜

𝑛
⨆̇
𝑖=1
𝛼𝑖 and 𝛾 =

𝑛
⨅̇
𝑖=1
𝛾𝑖, pointwise. This implies

that
⟨℘(𝕊+), ⊆⟩ −−−−−−−−−−→←−−−−−−−−−−

𝓜⟨𝜚, R⟩

𝛾𝓜⟨𝜚, R⟩
⟨℘(𝕊+), ⊆⟩ for R ∈ R in (14) (17)

To follow the tradition that model checking returns a boolean answer this ab-
straction can be composed with the boolean abstraction

⟨℘(𝕊+), ⊆⟩ −−−−−−−−−−→←−−−−−−−−−−
𝛼𝓜⟨𝜚, R⟩

𝛾𝓜⟨𝜚, R⟩
⟨B, ⇐⟩ (18)

where 𝛼𝓜⟨𝜚, R⟩(𝑋) ≜ ({𝜚} × 𝑋) ⊆𝓜⟨𝜚, R⟩(𝑋).

7 Soundness and completeness of the model checking
abstraction

The following Th. 1 shows that the Def. 1 of model checking a program semantics
for a regular specification is a sound and complete abstraction of this semantics.

Theorem 1 (Model checking soundness (⇐) and completeness (⇒)).

P, 𝜚 ⊨ R⇔ 𝛼𝓜⟨𝜚, R⟩(𝓢∗JPK)
At this point we know, by (15) and Th. 1 that a model checker 𝓜JSK⟨𝜚, R⟩

is a sound and complete abstraction 𝓜⟨𝜚, R⟩(𝓢∗JSK) of the program component
semantics 𝓢∗JSK which provides a counter example in case of failure. This allows
us to derive a structural model checker �̂�JPK⟨𝜚, R⟩ in Section 8 by calculational
design.

8 Structural model checking

By Def. 1 of the model checking of S, 𝜚 ⊨ R of a program P ∈ P for a regular
specification R ∈ R+ and initial environment 𝜚, Th. 1 shows that a model checker
𝓜JPK⟨𝜚, R⟩ is a sound and complete abstraction 𝓜⟨𝜚, R⟩(𝓢∗JPK) of the program
semantics 𝓢∗JPK. This abstraction does not provide a model checking algorithm
specification.

The standard model checking algorithms [10] use a transition system (or a
Kripke structure variation [26]) for hardware and software modeling and pro-
ceeding by induction on computation steps.

In contrast, we proceed by structural induction on programs, which will be
shown in Th. 2 to be logically equivalent (but maybe more efficient since fixpoints
are computed locally). The structural model checking�̂�JPK⟨𝜚, R⟩ of the program
P proceeds by structural induction on the program structure:
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{
{
{

�̂�JSK⟨𝜚, R⟩ ≜ �̂�JSK( ∏
S′◁ S

�̂�JS′K)⟨𝜚, R⟩
S ∈ Pc

where the transformer �̂� uses the results of model checking of the immediate
components S′ ◁ S and involves a fixpoint computation for iteration statements.

The following Th. 2 shows that the algorithm specification is correct, that
is �̂�JSK = 𝓜JSK for all program components S. So together with Th. 1, the
structural model checking is proved sound and complete.

Theorem 2. ∀S ∈ Pc, R ∈ R, 𝜚 ∈ Ev . �̂�∖|JSK⟨𝜚, R⟩ =𝓜∖|JSK⟨𝜚, R⟩ and �̂�JSK⟨𝜚,
R⟩ =𝓜JSK⟨𝜚, R⟩.
The proof of Th. 2 is by calculational design and proceeds by structural induction
on the program component S. Assuming 𝓜JS′K = �̂�JS′K for all immediate
components S′ ◁ S of statement, the proof for each program component S has
the following form.

𝓜JSK⟨𝜚, R⟩
≜ 𝓜⟨𝜚, R⟩(𝓢∗JSK) H(15)I
= 𝓜⟨𝜚, R⟩(𝓕JSK( ∏

S′◁ S
𝓢∗JS′K)⟨𝜚, R⟩)

Hby structural definition 𝓢∗JSK =𝓕JSK(∏S′◁ S𝓢∗JS′K) of the stateful
prefix trace semantics in Section 2I

= ... Hcalculus to expand definitions, rewrite and simplify formulæ by
algebraic lawsI

= �̂�JSK( ∏
S′◁ S

𝓜JS′K)⟨𝜚, R⟩
Hby calculational design to commute the model checking abstraction
on the result to the model checking of the arguments of 𝓢∗JSKI

= �̂�JSK( ∏
S′◁ S

�̂�JS′K)⟨𝜚, R⟩ Hind. hyp.I
≜ �̂�JSK⟨𝜚, R⟩ Hby defining �̂�JSK ≜ �̂�JSK(∏S′◁ S �̂�JS′K)I

For iteration statements, 𝓕JSK(∏S′◁ S𝓢∗JS′K)⟨𝜚, R⟩ is a fixpoint, and this
proof involves the fixpoint transfer theorem [16, Th. 7.1.0.4 (3)] based on the
commutation of the concrete and abstract transformer with the abstraction. The
calculational design of the structural model checking �̂�JSK is shown below.

Definition 3 (Structural model checking).
– Model checking a program P ∶∶= Sl ℓ for a temporal specification R ∈ R

with alternatives.

�̂�JPK⟨𝜚, R⟩ ≜ let (R1 ||… || R𝑛) = dnf(R) in (19)
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𝑛
⋃
𝑖=1
{𝜋 ∣ ∃R′ ∈ R . ⟨𝜋, R′⟩ ∈�̂�∖|JSlK⟨𝜚, R𝑖⟩}

Proof. In case (19) of a program P ∶∶= Sl ℓ, the calculational design is as
follows.

𝓜JPK⟨𝜚, R⟩
≜ 𝓜⟨𝜚, R⟩(𝓢∗JPK) H(15)I
= let (R1 ||… || R𝑛) = dnf(R) in

𝑛
⋃
𝑖=1
{𝜋 ∣ ∃R′ ∈ R . ⟨𝜋, R′⟩ ∈𝓜∖|⟨𝜚, R𝑖⟩(𝓢∗JPK)}H (14)I

= let (R1 ||… || R𝑛) = dnf(R) in
𝑛
⋃
𝑖=1
{𝜋 ∣ ∃R′ ∈ R . ⟨𝜋, R′⟩ ∈𝓜∖|⟨𝜚, R𝑖⟩(𝓢∗JSlK)}Hdef. of 𝓢∗JPK ≜ 𝓢∗JSlKI

= let (R1 ||… || R𝑛) = dnf(R) in
𝑛
⋃
𝑖=1
{𝜋 ∣ ∃R′ ∈ R . ⟨𝜋, R′⟩ ∈�̂�∖|⟨𝜚, R𝑖⟩(𝓢∗JSlK)}Hind. hyp.I

= let (R1 ||… || R𝑛) = dnf(R) in
𝑛
⋃
𝑖=1
{𝜋 ∣ ∃R′ ∈ R . ⟨𝜋, R′⟩ ∈�̂�∖|JSlK⟨𝜚, R𝑖⟩} H(13)I

= �̂�JPK⟨𝜚, R⟩ H(19)I ⊓⊔
Definition 3 (Structural model checking, contn’d)

– Model checking an empty temporal specification 𝜀.

�̂�∖|JSK⟨𝜚, 𝜀⟩ ≜ {⟨𝜋, 𝜀⟩ | 𝜋 ∈ 𝓢∗JSK} (20)

– It is assumed below that R ∈ R∖| ∩ R+ is a non-empty, alternative ||-free
regular expression.

– Model checking a statement list Sl ∶∶= Sl′ S

�̂�∖|JSlK⟨𝜚, R⟩ ≜�̂�∖|JSl′K⟨𝜚, R⟩ (21)
∪ {⟨𝜋 ⋅ ⟨atJSK, 𝜌⟩ ⋅ 𝜋′, R″⟩ | ⟨𝜋 ⋅ ⟨atJSK, 𝜌⟩, R′⟩ ∈�̂�∖|JSl′K⟨𝜚, R⟩ ∧

⟨⟨atJSK, 𝜌⟩ ⋅ 𝜋′, R″⟩ ∈�̂�∖|JSK⟨𝜚, R′⟩}
– Model checking an empty statement list Sl ∶∶= 𝜖

�̂�∖|JSlK⟨𝜚, R⟩ ≜ let ⟨L : B, R′⟩ = fstnxt(R) in (22)
{⟨⟨atJSlK, 𝜌⟩, R′⟩ | ⟨𝜚, ⟨atJSlK, 𝜌⟩⟩ ∈ 𝓢rJL : BK}

(In practice the empty statement list 𝜖 needs not be specified so we could
eliminate that need by ignoring 𝜖 in the specification R and defining�̂�∖|JSlK⟨𝜚,
R⟩ ≜ {⟨⟨atJSlK, 𝜌⟩, R⟩ | 𝜌 ∈ Ev}.)
– Model checking an assignment statement S ∶∶= ℓ x = A ;
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�̂�∖|JSK⟨𝜚, R⟩ ≜ let ⟨L : B, R′⟩ = fstnxt(R) in (23)
{⟨⟨atJSK, 𝜌⟩, R′⟩ | ⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL : BK} (a)
∪ {⟨⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌[x←𝓐JAK𝜌]⟩, 𝜀⟩ | R′ ∈ R𝜀 ∧ (b)
⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL : BK}

∪ {⟨⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌[x←𝓐JAK𝜌]⟩, R″⟩ | R′ ∉ R𝜀 ∧ (c)
⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL : BK ∧ ⟨L′ : B′, R″⟩ = fstnxt(R′) ∧
⟨𝜚, ⟨aftJSK, 𝜌[x←𝓐JAK𝜌]⟩⟩ ∈ 𝓢rJL′ : B′K}

For the assignment S ∶∶= ℓ x = A ; in (23), case (a) checks the prefixes that stops
at ℓ whereas (b) and (c) checks the maximal traces stopping after the assignment.
In each trace checked for the specification R, the states are checked successively
and the continuation specification is returned together with the checked trace,
unless the check fails. Checking the assignment S ∶∶= ℓ x = A ; in (23) for ⟨L : B,
R′⟩ = fstnxt(R) consists in first checking L : B at ℓ and then checking on R′ after
the statement. In case (b), R′ is empty so trivially satisfied. Otherwise, in case
(c), ⟨L′ : B′, R″⟩ = fstnxt(R′) so L′ : B′ is checked after the statement while R″ is
the continuation specification.

Proof. In case (23) of an assignment statement S ∶∶= ℓ x = A ;, the calcula-
tional design is as follows.

𝓜∖|JSK ⟨𝜚, R⟩
= {⟨𝜋, R′⟩ | 𝜋 ∈ 𝓢∗JSlK ∧ ⟨tt, R′⟩ =𝓜𝑡⟨𝜚, R⟩𝜋} H(13) and (12) I
= {⟨𝜋, R′⟩ | 𝜋 ∈ {⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ Ev}∪{⟨ℓ, 𝜌⟩⟨aftJSK, 𝜌[x← 𝑣]⟩ ∣ 𝜌 ∈ Ev∧𝑣 =𝓐JAK𝜌∧⟨tt,

R′⟩ =𝓜𝑡⟨𝜚, R⟩𝜋} H(1)I
= {⟨⟨ℓ, 𝜌⟩, R′⟩ | 𝜌 ∈ Ev ∧ ⟨tt, R′⟩ =𝓜𝑡⟨𝜚, R⟩⟨ℓ, 𝜌⟩} ∪
{⟨⟨ℓ, 𝜌⟩⟨aftJSK, 𝜌[x ← 𝑣]⟩, R′⟩ | 𝜌 ∈ Ev ∧ 𝑣 = 𝓐JAK𝜌⟨tt, R′⟩ = 𝓜𝑡⟨𝜚, R⟩⟨ℓ,
𝜌⟩⟨aftJSK, 𝜌[x← 𝑣]⟩} Hdef. ∪ and ∈I

= {⟨⟨ℓ, 𝜌⟩, R′⟩ | ⟨tt, R′⟩ = let ⟨L : B, R″⟩ = fstnxt(R) in ( ⟨𝜚, ⟨ℓ, 𝜌⟩⟩ ∈ 𝓢rJL : BK ? ⟨tt,
R″⟩ : ⟨ff, R′⟩ )} ∪
{⟨⟨ℓ, 𝜌⟩⟨aftJSK, 𝜌[x ← 𝑣]⟩, R′⟩ | 𝑣 = 𝓐JAK𝜌 ∧ ⟨tt, R′⟩ = let ⟨L : B, R″⟩ =
fstnxt(R) in ( ⟨𝜚, ⟨ℓ, 𝜌⟩⟩ ∈ 𝓢rJL : BK ? 𝓜𝑡⟨𝜚, R″⟩⟨aftJSK, 𝜌[x← 𝑣]⟩ : ⟨ff, R″⟩ )}H(11)I

= {⟨⟨ℓ, 𝜌⟩, R′⟩ | ⟨L : B, R′⟩ = fstnxt(R) ∧ ⟨𝜚, ⟨ℓ, 𝜌⟩⟩ ∈ 𝓢rJL : BK} ∪
{⟨⟨ℓ, 𝜌⟩⟨aftJSK, 𝜌[x← 𝑣]⟩, R′⟩ | 𝑣 =𝓐JAK𝜌∧∃R″ ∈ R . ⟨L : B, R″⟩ = fstnxt(R)∧⟨𝜚,
⟨ℓ, 𝜌⟩⟩ ∈ 𝓢rJL : BK ∧ ( R″ ∈ R𝜀 ? tt : 𝓜𝑡⟨𝜚, R″⟩⟨aftJSK, 𝜌[x← 𝑣]⟩ = ⟨tt, R′⟩ )}Hdef. = and 𝓜𝑡⟨𝜚, 𝜀⟩𝜋 ≜ ⟨tt, 𝜀⟩ by (11)I
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= {⟨⟨ℓ, 𝜌⟩, R′⟩ | ⟨L : B, R′⟩ = fstnxt(R) ∧ ⟨𝜚, ⟨ℓ, 𝜌⟩⟩ ∈ 𝓢rJL : BK} ∪
{⟨⟨ℓ, 𝜌⟩⟨aftJSK, 𝜌[x← 𝑣]⟩, R′⟩ | 𝑣 =𝓐JAK𝜌∧∃R″ ∈ R . ⟨L : B, R″⟩ = fstnxt(R)∧⟨𝜚,
⟨ℓ, 𝜌⟩⟩ ∈ 𝓢rJL : BK ∧ ( R″ ∈ R𝜀 ? tt : let ⟨L′ : B′, R‴⟩ = fstnxt(R″) in ⟨𝜚, ⟨aftJSK,
𝜌[x← 𝑣]⟩⟩ ∈ 𝓢rJL′ : B′K )} H(11)I

= let ⟨L : B, R′⟩ = fstnxt(R) in
{⟨⟨ℓ, 𝜌⟩, R′⟩ | ⟨𝜚, ⟨ℓ, 𝜌⟩⟩ ∈ 𝓢rJL : BK}
∪ {⟨⟨ℓ, 𝜌⟩⟨aftJSK, 𝜌[x← 𝑣]⟩, 𝜀⟩ | 𝑣 =𝓐JAK𝜌 ∧ ⟨𝜚, ⟨ℓ, 𝜌⟩⟩ ∈ 𝓢rJL : BK ∧ R′ ∈ R𝜀}
∪ {⟨⟨ℓ, 𝜌⟩⟨aftJSK, 𝜌[x ← 𝑣]⟩, R″⟩ | 𝑣 = 𝓐JAK𝜌 ∧ ⟨𝜚, ⟨ℓ, 𝜌⟩⟩ ∈ 𝓢rJL : BK ∧ R′ ∉
R𝜀 ∧ let ⟨L′ : B′, R″⟩ = fstnxt(R′) in ⟨𝜚, ⟨aftJSK, 𝜌[x← 𝑣]⟩⟩ ∈ 𝓢rJL′ : B′K}Hdef. ∪I

= �̂�∖|JSK R H(23)I ⊓⊔
Definition 3 (Structural model checking, continued)

– Model checking a conditional statement S ∶∶= if ℓ (B) S𝑡

�̂�∖|JSK⟨𝜚, R⟩ ≜ let ⟨L′ : B′, R′⟩ = fstnxt(R) in (24)
{⟨⟨atJSK, 𝜌⟩, R′⟩ | ⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL′ : BK}
∪ {⟨⟨atJSK, 𝜌⟩⟨atJS𝑡K, 𝜌⟩𝜋, R″⟩ |𝓑JBK𝜌 = tt ∧
⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL′ : B′K ∧
⟨⟨atJS𝑡K, 𝜌⟩𝜋, R″⟩ ∈�̂�∖|JS𝑡K⟨𝜚, R′⟩}

∪ {⟨⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩, 𝜀⟩ | |𝓑JBK𝜌 = ff ∧ R′ ∈ R𝜀 ∧
⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL′ : BK}

∪ {⟨⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩, R″⟩ |𝓑JBK𝜌 = ff ∧ R′ ∉ R𝜀 ∧
⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL′ : B′K ∧ ⟨L″ : B″, R″⟩ = fstnxt(R′) ∧
⟨𝜚, ⟨aftJSK, 𝜌⟩⟩ ∈ 𝓢rJL″ : B″K}

– Model checking a break statement S ∶∶= ℓbreak ;

�̂�∖|JSK⟨𝜚, R⟩ ≜ let ⟨L : B, R′⟩ = fstnxt(R) in (25)
{⟨⟨atJSK, 𝜌⟩, R′⟩ | ⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL : BK}
∪ {⟨⟨atJSK, 𝜌⟩⟨brk-toJSK, 𝜌⟩, 𝜀⟩ | R′ ∈ R𝜀 ∧
⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL : BK}

∪ {⟨⟨atJSK, 𝜌⟩⟨brk-toJSK, 𝜌⟩, R″⟩ | R′ ∉ R𝜀 ∧
⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL : BK ∧ ⟨L′ : B′, R″⟩ = fstnxt(R′) ∧
⟨𝜚, ⟨brk-toJSK, 𝜌⟩⟩ ∈ 𝓢rJL′ : B′K}

– Model checking an iteration statement S ∶∶= while ℓ (B) S𝑏
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�̂�∖|JSK⟨𝜚, R⟩ ≜ lfp⊆ (�̂�∖|JSK⟨𝜚, R⟩) (26)
�̂�∖|JSK⟨𝜚, R⟩ 𝑋 ≜ let ⟨L′ : B′, R′⟩ = fstnxt(R) in (27)
{⟨⟨atJSK, 𝜌⟩, R′⟩ | 𝜌 ∈ Ev ∧ ⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL′ : B′K} (a)
∪ {⟨𝜋2⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩, 𝜀⟩ | ⟨𝜋2⟨atJSK, 𝜌⟩, 𝜀⟩ ∈ 𝑋 ∧

𝓑JBK 𝜌 = ff}
∪ {⟨𝜋2⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩, 𝜀⟩ | ⟨𝜋2⟨atJSK, 𝜌⟩, R″⟩ ∈ 𝑋 ∧ (b)

𝓑JBK 𝜌 = ff ∧ R″ ∉ R𝜀 ∧ ⟨L′ : B′, R′⟩ = fstnxt(R″) ∧ R′ ∈ R𝜀 ∧
⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL′ : B′K}}

∪ {⟨𝜋2⟨atJSK, 𝜌⟩⟨aftJSK, 𝜌⟩, R′⟩ | ⟨𝜋2⟨atJSK, 𝜌⟩, R″⟩ ∈ 𝑋 ∧ (c)
𝓑JBK 𝜌 = ff ∧ R″ ∉ R𝜀 ∧ ⟨L′ : B′, R‴⟩ = fstnxt(R″) ∧ R‴ ∉ R𝜀 ∧
⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL′ : B′K ∧ ⟨L″ : B″, R′⟩ = fstnxt(R‴) ∧
⟨𝜚, ⟨aftJSK, 𝜌⟩⟩ ∈ 𝓢rJL″ : B″K}

∪ {⟨𝜋2⟨atJSK, 𝜌⟩⟨atJS𝑏K, 𝜌⟩𝜋3, 𝜀⟩ | ⟨𝜋2⟨atJSK, 𝜌⟩, 𝜀⟩ ∈ 𝑋 ∧ (d)
𝓑JBK 𝜌 = tt ∧ ⟨atJS𝑏K, 𝜌⟩𝜋3 ∈ 𝓢∗JS𝑏K}

∪ {⟨𝜋2⟨atJSK, 𝜌⟩⟨atJS𝑏K, 𝜌⟩𝜋3, 𝜀⟩ | ⟨𝜋2⟨atJSK, 𝜌⟩, R″⟩ ∈ 𝑋 ∧ (e)
𝓑JBK 𝜌 = tt ∧ R″ ∉ R𝜀 ∧ ⟨L : B, 𝜀⟩ = fstnxt(R″) ∧
⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL : BK ∧ ⟨atJS𝑏K, 𝜌⟩𝜋3 ∈ 𝓢∗JS𝑏K}

∪ {⟨𝜋2⟨atJSK, 𝜌⟩⟨atJS𝑏K, 𝜌⟩𝜋3, R′⟩ | ⟨𝜋2⟨atJSK, 𝜌⟩, R″⟩ ∈ 𝑋 ∧ (f)
𝓑JBK 𝜌 = tt ∧ R″ ∉ R𝜀 ∧ ⟨L : B, R⁗⟩ = fstnxt(R″) ∧
⟨𝜚, ⟨atJSK, 𝜌⟩⟩ ∈ 𝓢rJL : BK ∧ R⁗ ∉ R𝜀 ∧
⟨L′ : B′, R‴⟩ = fstnxt(R⁗) ∧ ⟨𝜚, ⟨atJS𝑏K, 𝜌⟩⟩ ∈ 𝓢rJL′ : B′K ∧
⟨⟨atJS𝑏K, 𝜌⟩𝜋3, R′⟩ ∈𝓜∖|JS𝑏K⟨𝜚, R‴⟩}

The model checking of an iteration statement S ∶∶= while ℓ (B) S𝑏 in (27)
checks one more iteration (after checking the previous ones as recorded by 𝑋)
while the fixpoint (26) repeats this check for all iterations. Case (a) checks the
prefixes that stops at loop entry ℓ. (b) and (c) check the exit of an iteration
when the iteration condition is false, (b) when the specification stops at loop
entry ℓ before leaving and (c) when the specification goes further. (d), (e) and
(f) check one more iteration when the iteration condition is true. In case (d), the
continuation after the check of the iterates is empty so trivially satisfied by any
continuation of the prefix trace. In case (e), the continuation after the check of
the iterates just impose to verify L : B on iteration entry and nothing afterwards.
In case (f) the continuation after the check of the iterates requires to verify L : B
at the loop entry, L′ : B′ at the body entry, and the rest R‴ of the specification
for the loop body (which returns the possibly empty continuation specification
R′). The cases (b) to (f) are mutually exclusive.
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9 Notes on implementations and expressivity
Of course further hypotheses and refinements would be necessary to get an effec-
tive algorithm as specified by the Def. 3 of structural model checking. A common
hypothesis in model checking is that the set of states 𝕊 is finite. Traces may still
be infinite so the fixpoint computation (26) may not converge. However, infinite
traces on finite states must involve an initial finite prefix followed by a finite
cycle (often called a lasso). It follows that the infinite set of prefix traces can
be finitely represented by a finite set of maximal finite traces and finite lassos.
Regular expressions L : B can be attached to the states as determined by the
analysis, and there are finitely many of them in the specification. These finiteness
properties can be taken into account to ensure the convergence of the fixpoint
computation in (26).

A symbolic representation of the states in finite/lasso stateful traces may be
useful as in symbolic execution [24] or using BDDs [6] for boolean encodings
of programs. By Kleene theorem [34, Theorem 2.1, p. 87], a convenient repre-
sentation of regular expressions is by (deterministic) finite automata e.g. [28].
Symbolic automata-based algorithms can be used to implement a data structure
for operations over sets of sequences [22].

Of course the hypothesis that the state space is finite and small enough to
scale up and limit the combinatorial blow up of the finite state-space is unre-
alistic [11]. In practice, the set of states 𝕊 is very large, so abstraction and a
widening/dual narrowing are necessary. A typical trivial widening is bounded
model checking (e.g. widen to all states after 𝑛 fixpoint iterations) [5]. Those of
[30] are more elaborated.

10 Conclusion
We have illustrated the idea that model checking is an abstract interpretation,
as first introduced in [17]. This point of view also yields specification-preserving
abstract model checking [18] as well as abstraction refinement algorithms [20].

Specifications by temporal logics are not commonly accepted by program-
mers. For example, in [31], the specifications had to be written by academics.
Regular expressions or path expressions [8] or more expressive extensions might
turn out to be more familiar. Moreover, for security monitors the false alarms of
the static analysis can be checked at runtime [35,29].

Convergence of model checking requires expressivity restrictions on both the
considered models of computation and the considered temporal logics. For some
expressive models of computation and temporal logics, state finiteness is not
enough to guarantee termination of model checking [17,21]. Finite enumeration
is limited, even with symbolic encodings. Beyond finiteness, scalability is always a
problem with model checking and the regular software model checking algorithm
�̂� is no exception, so abstraction and induction are ultimately required to
reason on programs.

Most often, abstract model checking uses homomorphic/partitioning abstrac-
tions e.g. [4]. This is because the abstraction of a transition system on concrete
states is a transition system on abstract states so model checkers are reusable in
the abstract. However, excluding edgy abstractions as in [13], state-based finite
abstraction is very restrictive [21] and do not guarantee scalability (e.g. SLAM
[3]). Such restrictions on abstractions do not apply to structural model checking
so that abstractions more powerful than partitioning can be considered.
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As an alternative approach, a regular expression can be automatically ex-
tracted by static analysis of the program trace semantics that recognizes all
feasible execution paths and usually more [19]. Then model-checking a regular
specification becomes a regular language inclusion problem [27].
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Abstract. The verification of distributed algorithms is a challenge for
formal techniques supported by tools, as model checkers and proof assis-
tants. The difficulties, even for powerful tools, lie in the derivation of
proofs of required properties, such as safety and eventuality, for dis-
tributed algorithms. Verification by construction can be achieved by
using a formal framework in which models are constructed at different
levels of abstraction; each level of abstraction is refined by the one below,
and this refinement relationships is documented by an abstraction rela-
tion namely a gluing invariant. The highest levels of abstraction are used
to express the required behavior in terms of the problem domain and the
lowest level of abstraction corresponds to an implementation from which
an efficient implementation can be derived automatically. In this paper,
we describe a methodology based on the general concept of refinement
and used for developing distributed algorithms satisfying a given list of
safety and liveness properties. The modelling methodology is defined in
the Event-B modelling language using the IDE Rodin.
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1 Introduction

The verification of distributed algorithms is a challenge for formal techniques
supported by tools, as model checkers and proof assistants. The difficulties, even
for powerful tools, lie in the derivation of proofs of required properties, such as
safety and eventuality, for distributed algorithms. Verification by construction
can be achieved by using a formal framework in which models are constructed
at different levels of abstraction; each level of abstraction is refined by the one
below, and this refinement relationships is documented by an abstraction relation
namely a gluing invariant. The highest levels of abstraction are used to express
the required behavior in terms of the problem domain and the lowest level of
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abstraction corresponds to an implementation from which an efficient implemen-
tation can be derived automatically. In this paper, we describe a methodology
based on the general concept of refinement and used for developing distributed
algorithms satisfying a given list of safety and liveness properties. The modelling
methodology is defined in the Event-B modelling language using the IDE Rodin.
More precisely, we show how Event-B models can be developed for specific prob-
lems and how they can be simply reused by controlling the composition of state-
based models through the refinement relationship. Following Polya [34], we have
identified patterns [29] expressed as Event-B models which can be replayed for
developing distributed algorithms from requirements. Consequently, we obtain a
(re)development of correct-by-construction existing distributed algorithms and a
framework for deriving new distributed algorithms (by integrating models) and
for ensuring the correctness of resulting distributed algorithms by construction.
We illustrate our methodology using classical problems as communication in
a network, leader election protocol, self-stabilisation. Patterns are guiding the
derivation of solutions from problems and we are introducing a new pattern in
the case of the dynamic networks. We illustrate the methodology on algorithms
dealing with dynamic topology as for instance the management of spanning trees
[14] where the leader election process is still possible. The development in [18] has
already addressed the case study of using patterns [21] in Event-B for distributed
algorithms operating in a dynamic network and our current work is considering
a simpler way to develop the protocols acting whil the network is modified and
by niot using the pattern plugin. Our pattern is in fact a technique based on the
observation of invariant and on the properties of the underlying structures. In
our case, we have made a constant as a variable and we have played with the
property of being a forest. Let us recall that the main idea is to guide the user to
show how a pattern or a recipe can be used for deriving a new correct algorithmic
solution from a previous development by reusing as much as possible previous
proofs required by our refinement-based technique. Section 2 summarizes related
works and modelling techniques integrating patterns. Section 3 shortly describes
the Event-B modelling language and its IDE Rodin [2] as well as tools added
to Rodin as plugins. In Sect. 4, we review the service as event paradigm which
is expressing principles used for developing distributed algorithms and we sum-
marize two patterns (the distributed pattern and the PCAM pattern) used for
developing the previous problems. In Sect. 5, we add a new pattern, which is
making a simple transformation of static properties to variables of the model.
Finally, Sect. 6 summarizes the technique for developing the distributed algo-
rithm and its proof of correctness. We discuss possible further developments and
works on distributed algorithms using refinement.

2 Patterns as Methodological Supports

Patterns [20] have greatly improved the development of programs and software
by identifying practices that could be replayed and reused in different software
projects. Moreover, they help to communicate new and robust solutions for devel-
oping a software for instance; it is clear that design patterns are a set of recipes
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that are improving software production. When developing (formal) system mod-
els, we are waiting for adequate patterns for developing models and later for
translating models into programs or even software. Abrial et al. [21] have already
addressed the definition of patterns in the Event-B modelling language and have
proposed a plugin which is implementing the instantiation of a pattern. Cansell
et al. [10] propose a way to reuse and to instantiate patterns. Moreover, pat-
terns intends to make the refinement-based development simpler and the tool
BART [16] provides commands for automatic refinement using the AtelierB tool-
box [15]. The BART process is rule-based so that the user can drive refinement.
We aim to develop patterns which are following Pólya’s approach in a smooth
application of Event-B models corresponding to classes of problems to solve
as for instance an iterative algorithm, a recursive algorithm [27], a distributed
algorithm . . . Moreover, no plugin is necessary for applying our patterns [29],
which are organized with respect to paradigms identified in our refinement-based
development. A paradigm [29] is a distinct set of patterns, including theories,
research methods, postulates, and standards for what constitutes legitimate con-
tributions to designing programs. A pattern [29] for modelling in Event-B is a set
(project) of contexts and machines that have parameters as sets, constants, vari-
ables . . . The notion of pattern has been introduced progressively in the Event-B
process for improving the derivation of formal models and for facilitating the
task of the person who is developing a model. In our work, students are the
main target for testing and using these patterns. Our definition is very general
but we do not want a very precise definition since the notion of pattern should be
as simple as possible and should be helpful. We [29] have listed and documented
a list of paradigms as the inductive paradigm, the call-as-event paradigm and the
service-as-event paradigm; each paradigm gathers parametrized patterns which
can be applied for developing a given algorithmic solution.

3 The Modelling Framework: Event-B for Step-Wise
Development

This section describes the essential components of the modelling framework. In
particular, we will use the Event-B modelling language [1] for modelling systems
in a progressive way. Event-B has two main components: context and machine.
A context is a formal static structure that is composed of several other clauses,
such as carrier sets, constants, axioms and theorems. A machine is a formal
structure composed of variables, invariants, theorems, variants and events; it
expresses state-related properties. A machine and a context can be connected
with the sees relationship.

Events play an important role for modelling the functional behaviour of a
system and are observed. An event is a state transition that contains two main
components: guard and action. A guard is a predicate based on the state vari-
ables that defines a necessary condition for enabling the event. An action is
also a predicate that allows modifying the state variables when the given guard
becomes true. A set of invariants defines required safety properties that must
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be satisfied by all the defined state variables. There are several proof obliga-
tions, such as invariant preservation, non-deterministic action feasibility, guard
strengthening in refinements, simulation, variant, well-definiteness, that must be
checked during the modelling and verification process.

Event-B allows us modelling a complex system gradually using refinement.
The refinement enables us to introduce more detailed behaviour and the required
safety properties by transforming an abstract model into a concrete version. At
each refinement step, events can be refined by: (1) keeping the event as it is; (2)
splitting an event into several events; or (3) refining by introducing another event
to maintain state variables. Note that the refinement always preserves a relation
between an abstract model and its corresponding concrete model. The newly
generated proof obligations related to refinement ensures that the given abstract
model is correctly refined by its concrete version. Note that the refined version
of the model always reduces the degree of non-determinism by strengthening the
guards and/or predicates. The modelling framework has a very good tool support
(Rodin) for project management, model development, conducting proofs, model
checking and animation, and automatic code generation. There are numerous
publications and books available for an introduction to Event-B and related
refinement strategies [1].

Since models may generate very tough proof obligations to automatically
discharge, the development of proved models can be improved by the refinement
process. The key idea is to combine models and elements of requirements using
the refinement. The refinement [7,8] of a machine allows us to enrich a model
in a step-by-step approach, and is the foundation of our correct-by-construction
approach. Refinement provides a way to strengthen the invariant and to add
details to a model. It is also used to transform an abstract model into a more
concrete version by modifying the state description. This is done by extending
the list of state variables, by refining each abstract event into a corresponding
concrete version, and by adding new events. The next diagram illustrates the
refinement-based relationship among events and models:

I(x) x x′ I(x′)

J(x, y) y y′ J(x′, y′)
�

�ae(x,x′)

�

�

�ce(y,y′)

�

We suppose that an abstract model AM with variables x and invariant I(x)
is refined by a concrete model CM with variables y and gluing invariant J(x, y).
The abstract state variables, x, and the concrete ones, y, are linked together by
means of the, so-called, gluing invariant J(x, y). A number of proof obligations
ensure that (1) each abstract event of AM is correctly refined by its correspond-
ing concrete version of CM , (2) each new event of CM refines skip, which is
intending to model hidden actions over variables appearing in the refinement
model CM . More formally, if BA(ae)(x, x′) and BA(ce)(y, y′) are respectively
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the abstract and concrete before-after predicates of events, we say that ce in
CM refines ae in AM or that ce simulates ae, if one proves the following state-
ment corresponding to proof obligation: I(x) ∧ J(x, y) ∧ BA(ce)(y, y′) ⇒
∃x′ · (BA(ae)(x, x′) ∧ J(x′, y′)). To summarise, refinement guarantees that the
set of traces of the abstract model AM contains (modulo stuttering) the traces
of the concrete model CM .

The next diagram summarises links between contexts (CC extends AC); AC
defines the set-theoretical logical and problem-based theory of level i called T hi,
which is extended by the set-theoretical logical and problem-based theory of
level i called T hi+1, which is defined by CC. Each machine (AM , CM) sees set-
theoretical and logical objects defined from the problem statement and located
in the contexts models (AC, CC). The abstract model AM of the level i is
refined by CM ; state variables of AM is x and satisfies the invariant I(x). The
refinement of AM by CM is checking the invariance of J(x, y) and does need
to prove the invariance of I(x), since it is obtained freely from the checking of
AM .

I(x) AM AC T hi

J(x, y) CM CC T hi+1

�SEES

�
REFINES

�SEES

�
EXTENDS

The management of proof obligations is a technical task supported by the
Rodin tool [2], which provides an environment for developing correct-by-cons-
truction models for software-based systems according to the diagram. Moreover,
the Rodin platform integrates ProB, a tool for animating Event-B models and
for model-checking finite configurations of Event-B models at different steps of
refinement. ProB is used for checking deadlock-freedom and for helping in the
discovery of invariants.

4 The Service-as-Event Paradigm

The next question is to handle concurrent and distributed algorithms correspond-
ing to different programming paradigms as message-passing or shared-memory or
coordination-based programming. C. Jones [23] develops the rely/guarantee con-
cept for handling (possible and probably wanted) interferences among sequential
programs. Rely/Guarantee intends to make implicit [4,9] interferences as well as
cooperation proofs in a proof system. In other methods as Owicki and Gries [33],
the management of non-interference proofs among annotated processes leads to
an important amount of extra proof obligations: checking interference freeness
is explicitly expressed in the inferences rules. When considering an event as
modelling a call of function or a call of a procedure, we implicitly express a
computation and a sequence of states. We [31] propose a temporal extension of
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Event-B to express liveness properties. The extension is a small bridge between
Event-B and TLA/TLA+ [24] with a refinement perspective. As C. Jones in
rely/guarantee, we express implicit properties of the environment on the protocol
under description by extending the call-as-event paradigm by a service-as-event
paradigm. In [5,6], the service-as-event paradigm is explored on two different
classes of distributed programs/algorithms/applications: the snapshot problem
and the self-healing P2P by Marquezan et al. [26]. The self-healing problem is
belonging to the larger class of self-� systems [17].

We [29] identify one event which simulates the execution of an algorithm
either as an iterative version or as a recursive version and we separate the prob-
lem to solve into three problem domains: the domain for expressing pre/post
specifications, the domain of Event-B models and the domain of programs/al-
gorithms. The translation function generates effective algorithms producing the
same traces of states. We are introducing patterns which are representatives of
the service-as-event paradigm.

4.1 The PCAM Pattern

Coordination [13] is a paradigm that allows programmers to develop distributed
systems; web services are using this paradigm for organising interactions among
services and processes. In parallel programming, coordination plays also a cen-
tral role and I. Foster [19] has proposed the PCAM methodology for designing
concurrent programs from a problem statement: PCAM emphasizes a decompo-
sition into four steps corresponding to analysis of the problem and leading to a
machine-independant solution. Clearly, the goal of I. Foster is to make concurrent
programming based on abstractions, which are progressively adding details lead-
ing to specific concurrent programming notation as, for instance MPI (http://
www.open-mpi.org/). The PCAM methodology identifies four distinct stages
corresponding to a Partition of identified tasks from the problem statement and
which are concurrently executed. A problem is possibly an existing complex C or
Fortran code for a computing process requiring processors and concurrent execu-
tions. Communication is introduced by an appropriate coordination among tasks
and then two final steps, Agglomeration and Mapping complete the methodol-
ogy steps. The PCAM methodology includes features related to the functional
requirements in the two first stages and to the implementation in the two last
stages. I. Foster has developed the PCAM methodology together with tools for
supporting the implementation of programs on different architectures. The suc-
cess of the design is mainly due to the coordination paradigm which allows us
to freely organise the stages of the development.

The PCAM methodology includes features related to the functional require-
ments in the two first stages and to the implementation in the two last stages.
The general approach is completely described in [28].

http://www.open-mpi.org/
http://www.open-mpi.org/
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Problem Specification model

Task model

Communication modelDistributed Algorithm

formalisation

partitioning

solving

programming

checking

We consider the two first stages (Partitioning, Communication) for produc-
ing state-based models satisfying functional requirements and which will be a
starting point for generating a concurrent program following the AM last suffix.
We have described a general methodology for developing correct by construction
concurrent algorithms and we have developed a solution specified by a unique
event.

4.2 The Distributed Pattern

The main idea is to analyse a problem as a pre/post specification which is then
refined by a machine corresponding to the simulation of a recursive function
or procedure. The class of algorithms is the class of sequential algorithms and
there is no concurrent or distributed interpretation of an event. However, an
event can be observed in a complex environment. The environment may be
active and should be expressed by a set of events which are simulating the
environment. Since the systems under consideration are reactive, it means that
we should be able to model a service that a system should ensure. For instance,
a communication protocol is a service which allows to transfer a file of a process
A into a file of a process B.

Figure 1 sketches the distributed pattern. The machine SERVICE is modelling
services of the protocol; the machine PROCESS is refining each service considered
as an event and makes the (computing) process explicit. The machine COMMU-
NICATION is defining the communications among the different agents of the
possible network. Finally the machine LOCALALGO is localizing events of the
protocol. The distributed pattern is used for expressing phases of the target
distributed algorithm (for instance, requesting mutual exclusion) and to have a
separate refinement of each phase. We sketch the service-as-event paradigm as
follows. We consider one service. The target algorithm A is first described by a
machine M0 with variables x satisfying the invariant I(x).

The first step is to list the services e S =̂ {s0, s1, . . . , sm} provided by the
algorithm A and to state for each service si a liveness property Pi � Qi. We
characterise by Φ0 =̂ {P0 � Q0, P1 � Q1, . . . , Pm � Qm}. We add a list of
safety properties defined by Σ0 = {Safety0, Safety1, . . . , Safetyn}. An event
is defined for each liveness property and standing for the eventuality of e by a
fairness assumption which is supposed on e. Liveness properties can be visualised
by assertions diagrams helping to understand the relationship among phases.
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LOCALALGO

COMMUNICATION

PROCESS

SERVICE service description

distributed algorithm

C0

formalisation

translation

verification

SEES

SEES

SEES

REFINES

REFINES

REFINES

Fig. 1. The distributed pattern

The second step is its refinement M1 with variables y glued properties in by
J(x, y) using the Event-B refinement and using the REF refinement which is
defined using the temporal proof rules for expanding liveness properties. P � Q
in Φ0 is proved from a list of Φ1 using temporal rules. For instance, P � Q
in Φ0 is then refined by P � R,R � Q , if P � R,R � Q � P � Q. If we
consider C as the context and M as the machine, C,M satisfies P � Q and C,M
satisfies �Safety. We use a temporal semantics relating contexts, machines and
properties [31]. The link called LIVE expresses the satisfaction relationship. The
next diagram is summarising the relationship among models.

M0C0 L0

M1C1 L1

SEES

SEES

EXTENDS REFINES REF

LIVE

LIVE

Liveness properties can be gathered in assertions diagrams. For instance,
P

e−→ Q means that

– ∀x, x′ · P (x) ∧ I(x) ∧ BA(e)(x, x′) ⇒ Q(x′)
– ∀x · P (x) ∧ I(x) ⇒ (∃x′ · BA(e)(x, x′))
– ∀f �= e · ∀x, x′ · P (x) ∧ I(x) ∧ BA(f)(x, x′) ⇒ (P (x′) ∨ Q(x′))

P
e−→ Q expresses implicitly that tyhe event e is under weak fairness. Each

liveness property Pi � Qi in Φ0 is modelled by an event:

EVENT ei =̂ WHEN Pi(x) THEN x : |Qi(x′) END

We can add some fairness assumption over the event:



30 D. Méry

– Pi
ei−→ Qi with weak fairness on e (WFx(ei)),

– Pi
ei=⇒ Qi, with strong fairness on e (SFx(ei)).

If we consider the leader election protocol [3], we have the following elements:

– Sets: ND (set of nodes).
– Constants: g is acyclic and connected (acyclic(g) ∧ connected(g)).
– Variables: x = (sp, rt) (sp is a spanning tree of g).
– Precondition:

P (x) =̂ sp = ∅ ∧ rt ∈ ND
– Postcondition: Q(x) =̂ spanning(sp, rt, g)

We can express the main liveness property: (sp = ∅ ∧ rt ∈ ND) �
spanning(sp, rt, g) and we define the machine Leader0 satisfying the liveness
property:

EVENT election0 =̂
BEGIN

sp, rt : |spanning(sp′, rt′, g)
END

C0 Leader0
SEES�� LIVE �� (WFx(election0), {P � Q})

We have introduced the service specification which should be refined sepa-
rately from events of the machine M0. The next refinement should first intro-
duce details of a computing process and then introduce communications in a
very abstract way. The last refinement intends to localise the events. The model
LOCALALGO is in fact an expression of a distributed algorithm. A current work
explores the DistAlgo programming language as a possible solution for translat-
ing the local model into a distributed algorithm. Liu et al. [25] have proposed
a language for distributed algorithms, DistAlgo, which is providing features for
expressing distributed algorithms at an abstract level of abstractions. The Dis-
tAlgo approach includes an environment based on Python and managing links
between the DistAlgo algorithmic expression and the target architecture. The
language allows programmers to reason at an abstract level and frees her/him
from architecture-based details. According to experiments of authors with stu-
dents, DistAlgo improves the development of distributed applications. From our
point of view, it is an application of the coordination paradigm based on a given
level of abstraction separating the concerns.

4.3 Applying the Distributed Pattern

The distributed pattern (Fig. 1) is applied for the famous sliding window protocol.
The service description is expressing that a process P is sending a file IN to a
process Q and the received file is stored in a variable OUT. The service is simply
expressed by the liveness property (at(P, s) ∧ IN ∈ 0..n → D) � (at(Q, r) ∧
OUT = IN) and the event EVENT communication =̂ WHEN at(P, s) ∧
IN ∈ 0..n → D THEN OUT := IN END is defining the service. at(P, s)
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means that P is at the sending statement called s and at(Q, r) means that Q
is at the receiving statement r. The context C0 and the machine SERVICE are
defined in Fig. 1. The next step is to decompose the liveness property using
one of the possible inference rules of the temporal framework as transitivity,
induction, confluence of the leadsto operatior. In this configuration, we have to
introduce the computation process which is simulating the protocol. Obviously,
we use and induction rule to express that te file IN is sent item per item and
we introduce sending and receiving events and the sliding events. In the new
machine PROTOCOL, variables are OUT, i, chan, ack, got and satisfied the
following invariant:

INVARIANTS
inv1 : OUT ∈ N �→ D
inv2 : i ∈ 0 .. n + 1
inv3 : 0 .. i − 1 ⊆ dom(OUT ) ∧ dom(OUT ) ⊆ 0 .. n
inv7 : chan ∈ N �→ D
inv8 : ack ⊆ N

inv9 : got ⊆ i .. i + l ∩ 0 .. n
inv10 : got ⊆ N

inv12 : dom(chan) ⊆ 0 .. i + l ∩ 0 .. n
inv13 : got ⊆ dom(OUT )
inv14 : ack ⊆ dom(OUT )
inv16 : 0 .. i − 1 � OUT = 0 .. i − 1 � IN
inv17 : chan ⊆ IN
inv18 : OUT ⊆ IN
inv19 : ack ⊆ 0 .. i + l ∩ 0 .. n

Name Total Auto Inter
protocol-swp 124 101 23

C0 1 1 0
SERVICE 4 2 20
PROCESS 63 51 12
WINDOW 19 13 6
BUFFER 21 18 3
LOCAL 16 16 0

The variable got is simulating a window identified by the values between i
and i+l in the variables chan, got and ack. The sliding window is in fact defined
by the variable i which is sliding or incrementing, when the value OUT(i) is
received or equivalently when iinack. The events are send, receive, receiveack,
sliding together with events which are modelling possible loss of messages. The
machine PROCESS is simulating the basic mechanism of the sliding window pro-
tocol and is expressing the environment of the protocol. The next refinement
WINDOW is introducing an explicit window variable satisfying the invariant
w ∈ N �→D∧w ⊆ chan∧dom(w) ⊆ i..i+l. The events are enriched by guards and
actions over the variable window. The window variable is still an abstract view
of the window which is contained in a buffer b. The buffer b is introduced in the
refinement called BUFFER. The new variable b is preparing the localisation and
introduced the explicit communications: b ∈ 0 .. l �→D ∧∀k ·k ∈ dom(b)⇒ i+k ∈
dom(w) ∧ b(k) = w(i + k) ∧ ∀h·h ∈ dom(w) ⇒ h − i ∈ dom(b) ∧ w(h) = b(h − i).
The visible variables of the machine are OUT, i, chan, ack, got, w and b and in
the next refinement, we obtain a local model called LOCAL with OUT, i, chan,
ack, got and b: the window is not part of the implementation of the protocol.
The events are localised by hiding the variable w and the final model can now
be transformed into the Sliding Window Protocol. The proof obligations sum-
mary shows that proof obligations for the machine PROCESS correspond to the
main effort of proof, when the induction is introduced. However, we have not
checked the liveness properties using the temporal proof system namely TLA
and it remains to be effectively supported by the toolbox for TLA/TLA+. We
use the temporal proof rules to as guidelines for decomposing liveness proper-
ties while we are refining events in Event-B. The technique has been already
used for developing population protocols [31] and it was also a way to deal with



32 D. Méry

questions related to dynamic topologies. In the newt section, we focus on the
(re-)development of the leader election while the topology is modified with
respect to given operations.

5 Modifying the Topology

5.1 Problem Statement

The paper [14] is addressing the problem of building and maintaining a forest
of spanning trees in highly dynamic networks. The question is to allow modifi-
cations of the topology, while maintaining the property to relain a forest which
is silply to express that there is no cycle introduced by actions over topology as
adding a link or deleting a link: topological events can occur at any time and any
rate. Moreover, we can not assume any stable periods. The algorithm operates
at a coarse-grain level, using atomic pairwise interactions as population protocol
or graph relabeling systems and it works forever. The algorithm is merging trees
following some rules:

– Each tree in the forest has exactly one token (also called root) that performs a
random walk inside the tree, switching parent- child relationships as it crosses
edges.

– When two tokens are located on both sides of a same edge, their trees are
merged upon this edge and one token disappears.

– Whenever an edge that belongs to a tree disappears, its child endpoint regen-
erates a new token instantly.

In [14], the two following properties are proved to be satisfied by the
algorithm:

– Lemma 1: At any time, there is at least one token per tree.
– Lemma 2: At any time, there is at most one token per tree.

The problem is in fact generalizing the leader election protocol and illustrates
a protocol in a dynamic network. The distributed pattern (Fig. 1) has been
used and we are proposing a refinement-based development for the algorithm.
The idea is to transform a constant of the model into a variable and we are
keeping the time reference as an implicit feature. The development is based on a
superposition of three operations (op1, op2, op3) defining the new protocol on a
dynamic network managed by two specific operations (topop1, topo2). The final
model should satisfy the property proved in [14] at any time, there is one and
only token per tree.
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5.2 Scenario of the Protocol

We give a short description of the protocol operations over a graph.

(1) each node has a token

1 2

3
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6

8

9

7

(2) a link is created between two nodes
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8

9

7

(3) a link is created between two nodes
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9

7

1

(4) a link is created between two nodes
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(5) a link is created between two nodes
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(6) op1 is applied between two nodes 7 and 3
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(7) op1 is applied between two nodes 6 and 1
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(8) op1 is applied between two nodes 6 and 5
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(9) creating a link between two nodes
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(10) op1 is applied between two nodes 9 and 2
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(11) a link is created between two nodes
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(12) op1 is applied on 7 and 4
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(13) deleting the link between 7 and 3
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(14) op3 is applied on 3
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(15) op2 is applied on 6 and1
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(16) op2 is applied on 6 and 1

2

3

45

6

8

9

7

5.3 First Model Dynamic Network Management

The first machine is expressing the environment of the protocol to develop and
we transform the constant g (see [3]) into a variable g which is an undirected
graph; the variable t is modelling the forest. The event operation is modelling
the abstract view of the protocol which is maintaining the invariant: the event
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operation is keeping the invariant. The two other operations are expressing the
two possible operations over the graph either adding a link or deleting a link.

axm1 : g ∈ N ↔ N

axm2 : g = g−1

axm3 : id ∩ g = ∅

inv1; : t ∈ N �→ N

inv3; : t ∩ t−1 = ∅

inv11 : ∀S·(S ⊆ N ∧ S ⊆ t−1[S] ⇒ S = ∅)
inv21 : t ⊆ g
inv22 : token ⊆ N
inv23 : dom(t) ⊆ N \ token

EVENT operation
BEGIN

act1 : g, t, token : |

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

g′ ∈ N ↔ N∧
g′ = g′−1∧
id ∩ g′ = ∅∧
t′ ∈ N �→ N∧
t′ ∩ t′−1 = ∅∧
∀S·(S ⊆ N∧
S ⊆ t′−1[S] ⇒ S = ∅)∧
t′ ⊆ g′ ∧ token′ ⊆ N∧
dom(t′) ⊆ N \ token′

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

END

EVENT removing
ANY

x, y
WHERE

grd1 : x �→ y ∈ g
THEN

act1 : g := g \ {x �→ y, y �→ x}
act2 : t := t \ {x �→ y, y �→ x}

END

EVENT adding
ANY

x, y
WHERE

grd1 : x ∈ N
grd2 : y ∈ N
grd3 : x �→ y /∈ g
grd4 : x �= y

THEN
act1 : g := g ∪ {x �→ y, y �→ x}

END

5.4 Second Model Network Reconfiguration

The new model is adding three operations which are maintaining the invariant
and the safety property dom(t) ⊆ N \ token. The safety property is expressing
that there is at most one token per tree. However, we can not prove that there
is at least one token per tree and it means that our modelling technique is not
a programming technique which is what is assumed in [14]. More precisely, the
operation op3 (see 14) is not observed immediatly after the deletion of an edge
and the fact that a node is no more related to another node.

EVENT op1
REFINES operation

ANY
x, y

WHERE
grd1 : x �→ y ∈ g
grd2 : x /∈ dom(t)
grd3 : y /∈ dom(t)

THEN
act1 : t := t ∪ {x �→ y}
act2 : token := token \ {x}

END

EVENT op2
REFINES operation
ANY

x, y
WHERE

grd1 : x �→ y ∈ t
grd2 : y /∈ dom(t)

THEN
act1 : t := (t \ {x �→ y}) ∪ {y �→ x}
act2 : token := (token \ {y}) ∪ {x}

END

EVENT op3
REFINES operation
ANY

x
WHERE

grd1 : x /∈ token
grd2 : x /∈ dom(t)
grd3 : x /∈ dom(g)

THEN
act1 : token := token ∪ {x}

END

Name Total Auto Inter
dynamic-leader 34 29 5

C0 1 1 0
DM1 25 23 2
DM2 8 5 3

The summary of proof obligations shows
that the proofs are mainly automatic.
Thanks to the previous development [3]
which is using properties over graph and
which is describing the leader election pro-
tocol as a forest leading to a tree. Moreover,
the new operations are preserving the property of the forest topology.

The next step is to refine the current model into an Event-B-like local model
to get a set of rules in Visidia [36]. We have simply re-applied the properties over
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trees by generalizing the graph as a variable and the summary of proof obliga-
tions is very good since we have only 15% (5 out of 34) of manually discharged
proof obligations.

6 Conclusion and Perspectives

The refinement-based modelling technique combines modelling and proving
through discharging proof obligations and helps to discover invariants when
developing distributed algorithms [3,11,12,22,29,32]. Moreover, the refinement-
based methodology can integrate different computation models as the local
model computation [18,30,35,36]. Our contribution aims to assist anyone who
wants to obtain a completely checked Event-B project for a given problem with
less toil. The toil is related to the use of the Rodin platform [2]: it is a real
and useful proof companion but it requires a specific skill in proof development.
Following the ideas of Pólya, we enrich the library of patterns [29] for providing
guidelines for defining fully proved Event-B models, when considering problems
to solve defined by explicit inductive definitions.

Our illustration is based on a protocol which is applying rules called opera-
tions which can modify the graph while the topology of the graph may evolve.
We show that the operations are maintaining the property of the graph to be
a forest which is expressed as an acyclic graph. Our solution is simplifying the
solution that was proposed in [18]. Moreover, the use of Event-B tool supporting
the patterns is not necessary. Proofs obligations are simple to verify and are
mainly automatic but they are derived from properties over graphs which have
been developed separatly.

Archives of Event-B projects are available at the following link http://eb2all.
loria.fr and are used by students of the MsC programme at Université de Lor-
raine and Telecom Nancy. In a current project namely Atlas of Correct-by-
Construction Distributed Algorithms, we aim to develop a complete library
of correct-by-construction distributed algorithms for the main distributed algo-
rithms that are fundamental as communication, security, computation, election
. . . Others links as http://rimel.loria.fr or http://visidia.labri.fr can be also used.
Finally, the translation from Event-B models into a distributed algorithm should
be improved and we plan to explore distributed programming languages with a
high level of abstraction as for instance DistAlgo [25].

Acknowledgement. The author thanks the organizers and the chairs of the con-
ference ICTAC for the invitation to give a keynote. He especially thanks Mohamed
Mosbah, Yves Métivier, Pierre Castéran, Mohamed Tounsi and researchers who have
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tributed algorithms simpler.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

http://eb2all.loria.fr
http://eb2all.loria.fr
http://rimel.loria.fr
http://visidia.labri.fr
http://rimel.loria.fr


Verification by Construction of Distributed Algorithms 37

2. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. Int. J. Softw. Tools Tech-
nol. Transf. 12(6), 447–466 (2010)
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5. Andriamiarina, M.B., Méry, D., Singh, N.K.: Analysis of self-� and P2P systems
using refinement. In: Ameur, Y.A., Schewe, K. (eds.) ABZ 2014. LNCS, vol. 8477,
pp. 117–123. Springer, USA (2014). https://doi.org/10.1007/978-3-662-43652-3 9
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28. Méry, D.: Playing with state-based models for designing better algorithms. Future
Gener. Comput. Syst. 68, 445–455 (2017). https://doi.org/10.1016/j.future.2016.
04.019
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Abstract. This paper studies linear time-branching time spectrum of equiv-
alences for interactive Markov chains (IMCs). We define several variants of
trace equivalence by performing button pushing experiments on stochastic trace
machines. We establish the relation between these equivalences and also compare
them with bisimulation for IMCs. Next, we define several variants of stutter trace
equivalence for IMCs.We perform button pushing experiments with stutter insen-
sitive stochastic trace machines to obtain these equivalences. We investigate the
relationship among these stutter equivalences and also compare them with weak
bisimulation for IMCs. Finally, we discuss the relation between several strong
and weak equivalences defined in this paper.

Keywords: Markov · Equivalence · Trace · Stutter · Bisimulation · Stochastic

1 Introduction

Equivalence relations are widely used for comparing and relating the behavior of sys-
tem models. For example, equivalences have been used to efficiently check if the imple-
mentation is an approximation of specification of the expected behavior. Additionally,
equivalences are also used for reducing the size of models by combining equivalent
states into a single state. The reduced state space obtained under an equivalence relation,
called a quotient system, can then be used for formal verification provided it preserves a
rich class of the properties of interest [4,5,22]. For non-deterministic and probabilistic
models, one usually distinguishes between linear time and branching time equivalence
relations [4–6,34]. Trace equivalence is one of the most widely used equivalence rela-
tions to compare the linear time behavior of models. For non-deterministic models, two
states are trace equivalent if the sets of words starting from these states are the same
[4,34]. Additionally, for Markov chains, similar words need to have the same proba-
bility [4,6]. Similarly, in the weak setting, stutter trace equivalence has been proposed
where two words are said to be equivalent if they differ in at most the number of times
a set of propositions may adjacently repeat [4]. In the branching time setting, bisim-
ulation relations are used to compare the branching time behavior of system models
[4,5,20,23,26]. Bisimulation can also be used to substantially reduce the state-space
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of models to be verified [22]. The condition to exhibit identical stepwise behavior is
slightly relaxed in case of simulation relations [4,5]. Stuttering variants of bisimulation
and simulation pre-orders have also been defined for non-deterministic and Markovian
models [4,5].

In this paper we focus on studying the linear time-branching time spectrum of equiv-
alence relations for interactive Markov chains (IMCs) [19,20]. IMCs extend labeled
transition systems (LTSs) with stochastic aspects. IMCs thus support both reason-
ing about non-deterministic behaviors as in LTSs [4] and stochastic phenomena as in
continuous-time Markov chains (CTMCs) [3]. IMCs are compositional and are widely
used for performance and dependability analysis of complex distributed systems, e.g.,
shared memory mutual exclusion protocols [24]. They have been used as semantic
model for amongst others dynamic fault trees [10,11], architectural description lan-
guages such as AADL [9,13], generalized stochastic Petri nets [21] and Statemate [8].
They are also used for modeling and analysis of GALS (Globally Asynchronous Locally
Synchronous) hardware design [14]. For analysis, an IMC is closed1 followed by appli-
cation of model checking algorithms [18,25] to compute the probability of linear or
branching real-time objectives, e.g., extremal time-bounded reachability probabilities
[20,25] and expected time [18].

We define several variants of trace equivalence for closed IMC models using but-
ton pushing experiments with stochastic trace machines. Since schedulers are used
to resolve non-deterministic choices in IMCs, for every class of IMC scheduler, we
define a corresponding variant of trace equivalence. Roughly speaking, two IMCs I1, I2

are trace equivalent (w.r.t. scheduler class C), denoted ≡C , if for every scheduler D
of class C of I1 there exists a scheduler D′ of class C of I2 such that for all out-
comes/timed traces, i.e., (σ, θ), we have P trace

I1,D (σ, θ) = P trace
I2,D′(σ, θ) and vice versa.

Here, P trace
I1,D (σ, θ) denote the probability of all timed paths that are compatible with

the outcome/timed trace (σ, θ) in I1 under scheduler D. More specifically, we define
six variants of trace equivalence on the basis of increasing power of schedulers, namely
stationary deterministic (SD), stationary randomized (SR), history-dependent determin-
istic (HD), history-dependent randomized (HR), timed history-dependent deterministic
(THD) and timed history-dependent randomized (THR) trace equivalence. We study
the connections among these trace equivalences and also compare them with strong and
weak bisimulation for IMCs [19,20].

In the weak setting, we define several variants of stutter trace equivalence for closed
IMC models. We perform button pushing experiments on stutter insensitive stochas-
tic trace machines to obtain these equivalences. We define six variants of stutter trace
equivalence on the basis of increasing power of schedulers, namely stationary determin-
istic (SD), stationary randomized (SR), history-dependent deterministic (HD), history-
dependent randomized (HR), timed history-dependent deterministic (THD) and timed
history-dependent randomized (THR) stutter trace equivalence. We study the connec-
tions among these equivalences and their relationship with (strong) trace equivalence
for IMCs. We also relate these stutter trace equivalences with strong and weak bisimu-
lation for IMCs. Put in a nutshell, the major contributions of this paper are as follows:

1 An IMC is said to be closed if it is not subject to any further synchronization.
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– We define several variants of trace equivalence by experimenting with stochastic
trace machines, establish connections among these equivalences and compare them
with bisimulation.

– We define several variants of stutter trace equivalence by experimenting with stut-
ter insensitive stochastic trace machines, establish connections among these equiva-
lences and compare them with weak bisimulation.

– We also investigate the connections between strong equivalences and weak/stutter
equivalences defined in this paper. Finally, we use these results to sketch the linear
time-branching time spectrum of equivalences for closed IMCs.

We believe that our work is an important step forward in understanding the linear time-
branching time spectrum of equivalences for models that support both non-deterministic
and stochastic behavior.

1.1 Related Work

Branching Time: For continuous-time Markov chains (CTMCs), several variants of
weak and strong bisimulation equivalence and simulation pre-orders have been defined
in [5]. Their compatibility to (fragments of) stochastic variants of computation tree logic
(CTL) has been thoroughly investigated, cf. [5]. In [26], authors have defined strong
bisimulation relation for continuous-time Markov decision processes (CTMDPs). This
paper also proves that continuous stochastic logic (CSL) properties are preserved under
bisimulation for CTMDPs. Strong and weak bisimulation relations for IMCs have been
defined in [19,20]. Both strong and weak bisimulation preserve time-bounded (as well
as unbounded) reachability probabilities. For Markov automata (MAs), strong and weak
bisimulation relations have been defined in [15–17]. In [17], weak bisimulation has
been defined over state probability distributions rather than over individual ones. In
[15,16], it has been shown that weak bisimulation provides a sound and complete proof
methodology for a touchstone equivalence called reduction barbed congruence. Notions
of early and late semantics for MAs have been proposed in [33]. Using these semantics,
early and late weak bisimulations have been defined and it has been proved that late
weak bisimulation is weaker than all of the other variants defined in [15–17].

Linear Time: In [6], Bernardo considered Markovian testing equivalence over sequen-
tial Markovian process calculus (SMPC), and coined the term T-lumpability [7] for the
induced state-level aggregation where T stands for testing. His testing equivalence is a
congruence w.r.t. parallel composition, and preserves transient as well as steady-state
probabilities. Bernardo’s T-lumpability has been reconsidered in [32] where weighted
lumpability (WL) is defined as a structural notion on CTMCs. Note that deterministic
timed automaton (DTA) [1] and metric temporal logic (MTL) [12,27] specifications are
preserved under WL [32]. In [35], several linear time equivalences (Markovian trace
equivalence, failure and ready trace equivalence) for CTMCs have been investigated.
Testing scenarios based on push-button experiments have been used for defining these
equivalences. Trace semantics for CTMDPs have been defined in [29]. Similarly, trace
semantics for open interactive Markov chains (IMCs) have been defined in [36]. In this
paper testing scenarios using button pushing experiments have been used to define sev-
eral variants of trace equivalences that arise by varying the type of schedulers. Recently,
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trace equivalences have been defined for MA models [30,31]. This paper also uses but-
ton pushing experiments to define several variants of trace equivalence for MA models.
Note that the trace machine used in [36] for open IMCs does not display Markovian
transitions and τ actions. Additionally, it uses a timer to count down from a certain
value that is set by an external observer at the beginning of the experiment. Moreover,
in [36], trace denotes an ordered sequence of visible actions on a path fragment. Due to
these differences, the precise relation of our work to the equivalences defined in [36] is
not yet clear to us. Note that, our definitions of (stutter) trace equivalences allow inves-
tigating the preservation of linear real-time objectives, e.g., DTA specifications [1] and
MTL formulas [12,27].

Organisation of the Paper. Section 2 briefly recalls the main concepts of IMCs.
Section 3 defines trace equivalences. Section 4 compares trace equivalence with bisim-
ulation. Section 5 defines stutter trace equivalences. Section 6 relates stutter trace equiv-
alence with weak bisimulation. Section 7 sketches the linear time-branching time spec-
trum. Finally, Sect. 8 concludes the paper and provides pointers for future research.

2 Preliminaries

This section presents the necessary definitions and basic concepts related to interactive
Markov chains (IMCs) that are needed for the understanding of the rest of this paper.

Definition 1 (IMC). An interactive Markov chain (IMC) is a tuple I = (S, s0, Act,
AP,→,⇒, L) where:

– S is a finite set of states,
– s0 is the initial state,
– Act is a finite set of actions,
– AP is a finite set of atomic propositions,
– →⊆ S × Act × S is a set of interactive transitions,
– ⇒⊆ S × R≥0 × S is a set of Markovian transitions, and
– L : S → 2AP is a labeling function.

We abbreviate (s, a, s′) ∈ → as s a−→ s′ and similarly, (s, λ, s′) ∈ ⇒ by s
λ=⇒ s′. Let

IT (s) and MT (s) denote the set of interactive and Markovian transitions that leave
state s. A state s is Markovian iff MT (s) �= ∅ and IT (s) = ∅; it is interactive
iff MT (s) = ∅ and IT (s) �= ∅. Further, s is a hybrid state iff MT (s) �= ∅ and
IT (s) �= ∅; finally s is a deadlock state iff MT (s) = ∅ and IT (s) = ∅. W.l.o.g. in
this paper we only consider IMCs that do not have any deadlock states. Let MS ⊆ S
and IS ⊆ S denote the set of Markovian and interactive states in an IMC I. For any
Markovian state s ∈ MS, let R(s, s′) =

∑{λ|s λ=⇒ s′} be the rate to move from state
s to state s′. For C ⊆ S, let R(s, C) =

∑
s′∈C R(s, s′) be the rate to move from state

s to a set of states C. The exit rate for a state s is defined by: E(s) =
∑

s′∈S R(s, s′).
It is easy to see that an IMC where MT (s) = ∅ for any state s is an LTS [4]. An

IMC where IT (s) = ∅ for any state s is a CTMC [5]. The semantics of IMCs can thus
be given in terms of the semantics of CTMCs (for Markovian transitions) and LTSs (for
interactive transitions).
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The meaning of a Markovian transition s
λ=⇒ s′ is that the IMCmoves from state s to

s′ within t time units with probability 1 − e−λ·t. If s has multiple outgoing Markovian
transitions to different successors, then we speak of a race between these transitions,
known as the race condition. In this case, the probability to move from s to s′ within t

time units is R(s,s′)
E(s) · (1 − e−E(s)·t).

Example 1. Consider the IMC I shown in Fig. 1, where S = {s0, s1, s2, s3, s4, s5,
s6, s7, s8, s9}, AP = {a, b, c}, Act = {α, β, γ} and s0 is the initial state. The set of
interactive states is IS = {s0, s1, s2}; MS contains all the other states. Note that there
is no hybrid state in IMC I. Non-determinism between action transitions appears in
state s0. Similarly, race condition due to multiple Markovian transitions appears in s3
and s4.

s0 {a}

{b}s1 s2 {b}

s3 {a} s4 {c}

{b}s5

{b}s6

{b}s7

{c}s9

{a}s8

α

γ

β

α

4

8
4

2

2

2
2

1

1

Fig. 1. An example IMC I

We assume that in closed IMCs all outgoing interactive transitions from every state
s ∈ S are labeled with τ ∈ Act (internal action).

Definition 2 (Maximal progress [20]). In any closed IMC, interactive transitions take
precedence over Markovian transitions.

Intuitively, the maximal progress assumption states that in closed IMCs, τ labeled tran-
sitions are not subject to interaction and thus can happen immediately2, whereas the
probability of a Markovian transition to happen immediately is zero. Accordingly, we
assume that each state s has either only outgoing τ transitions or outgoing Markovian

2 We restrict to models without zenoness. In simple words, this means that τ cycles are not
allowed.
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transitions. In other words, a closed IMC only has interactive and Markovian states. We
use a distinguished action ⊥ /∈ Act to indicate Markovian transitions and extend the set
of actions to Act⊥ = Act ∪ {⊥}.
Definition 3 (IMC timed paths). Let I = (S, s0, Act, AP,→,⇒, L) be an IMC. An

infinite path π in I is a sequence s0
σ0,t0−−−→ s1

σ1,t1−−−→ s2 . . . sn−1
σn−1,tn−1−−−−−−−→ sn . . .

where si ∈ S, σi ∈ Act or σi = ⊥, and ti ∈ R≥0 is the sojourn time in state si. For

σi ∈ Act, si
σi,ti−−−→ si+1 denotes that after residing ti time units in si, the IMC I has

moved via action σi to si+1. Instead, si
⊥,ti−−−→ si+1 denotes that after residing ti time

units in si, a Markovian transition led to si+1. A finite path π is a finite prefix of an
infinite path. The length of an infinite path π, denoted |π| is ∞; the length of a finite
path π with n + 1 states is n.

Let PathsI = PathsI
fin ∪ PathsI

ω denote the set of all paths in I that start in s0,
where PathsI

fin =
⋃

n∈N
PathsI

n is the set of all finite paths in I and PathsI
n denote

the set of all finite paths of length n that start in s0. Let PathsI
ω is the set of all infinite

paths in I that start in s0. For infinite path π = s0
σ0,t0−−−→ s1

σ1,t1−−−→ s2 . . . and any i ∈ N,
let π[i] = si, the (i + 1)st state of π. For any t ∈ R≥0, let π@t denote the sequence of
states that π occupies at time t. Note that π@t is in general not a single state, but rather
a sequence of several states, as an IMC may exhibit immediate transitions and thus may
occupy various states at the same time instant. Let Act(s) denote the set of enabled
actions from state s. Note that in case s is a Markovian state then Act(s) = {⊥}. Step
s

σ,t−−→ s′ is a stutter step if σ = τ , t = 0 and L(s) = L(s′).

Example 2. Consider an example timed path π = s0
α,0−−→ s1

γ,0−−→ s3
⊥,1.5−−−→ s2

γ,0−−→ s5.
Here we have π[2] = s3 and π@(1.5 − ε) = 〈s3〉, where 0 < ε < 1.5. Similarly,
π@1.5 = 〈s2s5〉.
σ-algebra. In order to construct a measurable space over PathsI

ω, we define the follow-
ing sets: Ω = Act⊥ ×R≥0×S and the σ-field J = (2Act⊥ ×JR ×2S), where Act⊥ =
Act∪{⊥}, JR is the Borel σ-field over R≥0 [2,3]. The σ-field over PathsI

n is defined
as JPathsI

n
= σ({S0 × M0 × . . . × Mn−1|S0 ∈ 2S ,Mi ∈ J , 0 ≤ i ≤ n − 1}). A set

B ∈ JPathsI
n
is a base of a cylinder setC ifC = Cyl(B) = {π ∈ PathsI

ω|π[0 . . . n] ∈
B}, where π[0 . . . n] is the prefix of length n of the path π. The σ-field JPathsI

ω
of mea-

surable subsets of PathsI
ω is defined as JPathsI

ω
= σ(∪∞

n=0{Cyl(B)|B ∈ JPathsI
n
}).

2.1 Schedulers

Non-determinism in an IMC is resolved by a scheduler. Schedulers are also known as
adversaries or policies. More formally, schedulers are defined as follows:

Definition 4 (Scheduler). A scheduler for an IMC I = (S, s0, Act, AP,→,⇒, L) is
a measurable function D : PathsI

fin → Distr(Act), such that for n ∈ N,

D(s0
σ0,t0−−−→ s1

σ1,t1−−−→ . . .
σn−1,tn−1−−−−−−−→ sn)(α) > 0 implies α ∈ Act(sn)

where Distr(Act) denotes the set of all distributions on Act.
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Schedulers can be classified3 according to the way they resolve non-determinism and
the information on the basis of which a decision is taken. For example, the next
action can be selected with probability one (deterministic schedulers) or at random
according to a specific probability distribution (randomized schedulers). Similarly, non-
determinism can be resolved by only considering the current state (stationary sched-
ulers) or complete (time-abstract/timed) history. More formally, schedulers can be clas-
sified as follows:

Definition 5 (Classes of schedulers). A scheduler D for an IMC I is

– stationary deterministic (SD) if D : S → Act such that D(s) ∈ Act(s)
– stationary randomized (SR) if D : S → Distr(Act) such that D(s)(α) > 0 implies

α ∈ Act(s)
– history-dependent deterministic (HD) if D : (S × Act)∗ × S → Act such that we

have D (s0
σ0−→ s1

σ1−→ . . .
σn−1−−−→

︸ ︷︷ ︸
time-abstract history

sn) ∈ Act(sn)

– history-dependent randomized (HR) if D : (S ×Act)∗ ×S → Distr(Act) such that

D (s0
σ0−→ s1

σ1−→ . . .
σn−1−−−→

︸ ︷︷ ︸
time-abstract history

sn)(α) > 0 implies α ∈ Act(sn)

– timed history-dependent deterministic (THD) if D : (S × Act × R>0)∗ × S → Act

such that D (s0
σ0,t0−−−→ s1

σ1,t1−−−→ . . .
σn−1,tn−1−−−−−−−→

︸ ︷︷ ︸
timed history

sn) ∈ Act(sn)

– timed history-dependent randomized (THR) scheduler has been already defined in
Definition 4

Let Adv(I) denotes the set of all schedulers of I. Let AdvC(I) denotes the set of all
schedulers of class C, e.g.,AdvTHD(I) denotes the set of all THD schedulers of IMC I.
Let PathsI

D denotes the set of all infinite paths of I under D ∈ Adv(I) that start in s0.
Once the non-deterministic choices of a IMC I have been resolved by a scheduler, say
D, the induced model obtained is purely stochastic. To that end the unique probability
measure for probability space (PathsI

ω,JPathsI
ω
) can be defined [25].

Remark 1. If the alternating sequences of state labels and actions are same for two
time-abstract histories H and H′, then for both the histories non-determinism will be
resolved in the same way from state s. In other words, if two histories have the same
traces then the decision taken by a history-dependent scheduler D from s is going to be
the same for both the histories. The same holds true for timed histories where sequences
of state labels, actions and timing information are taken into account.

3 Stochastic Trace Machines

This section proposes several variants of trace equivalence for closed IMCs. These
equivalences are obtained by performing push-button experiments with a stochastic

3 We only consider schedulers that make a decision as soon as a state is entered. Such schedulers
are called early schedulers.
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trace machine I. The machine is equipped with an action display, a state label display,
a timer and a reset button. Action display shows the last action that has been executed
by the trace machine. For Markovian states, action display shows the distinguished
action ⊥. Note that this display is blank at the beginning of the experiment. The state
label display shows the set of atomic propositions that are true in the current state of the
machine I. The timer display shows the absolute time. The reset button is used to restart
the machine for another run starting from the initial state. Consider a run of the machine
(under scheduler D of class C) which always starts from the initial state. The state label
display shows the label of the current state and action display shows the last action that
has been executed. Note that the action display remains unchanged until the next action
is executed by the machine. An external observer records the sequence of state labels,
actions and time checks where each time check4 is recorded at an arbitrary time instant
between the occurrence of two successive actions. The observer can press the reset but-
ton to stop the current run. Once the reset button is pressed, the action display will be
blank and the state label display shows the set of atomic propositions that are true in the
initial state. The machine then starts for another run and the observer again records the
sequence of actions, state labels and time checks. Note that the machine needs to be exe-
cuted for infinitely many runs to complete the whole experiment. It is assumed that the
observer can distinguish between two successive actions that are equal. For a sequence
of τ actions, state labels can be different but the recorded time checks are going to
stay the same. This is because τ actions are executed immediately. An outcome of
this machine is (σ, θ) = (〈L(s0)σ0L(s1)σ1 . . . L(sn−1)σn−1L(sn)〉, 〈t′0, t′1, . . . , t′n〉),
where σ0, . . . , σn−1 ∈ {τ,⊥}. This outcome can be interpreted as follows: for 0 ≤
m < n, action σm of machine is performed in the time interval (ym, ym+1] where
ym = Σm

i=0t
′
i.

Definition 6. Let (σ, θ) = (〈L(s0)σ0L(s1)σ1 . . . L(sn−1)σn−1L(sn)〉, 〈t′0, t′1, . . . ,
t′n〉) be an outcome of I under D ∈ Adv(I), then a path π = s0

σ0,t0−−−→ s1
σ1,t1−−−→

s2 . . . sn−1
σn−1,tn−1−−−−−−−→ sn . . . ∈ PathsI

D is said to be compatible with (σ, θ), denoted
π  (σ, θ), if the following holds:

Trace(π[0 . . . n]) = σ and Σi
j=0tj ∈ (yi, yi+1] for 0 ≤ i < n

where yi = Σi
j=0t

′
j .

Remark 2. Time check t′i recorded by the external observer should not be confused
with ti in Definition 6. Here, ti denote the time spent in state si of a path π. If si is a
Markovian state then ti > 0 otherwise ti = 0.

Definition 7. Let (σ, θ) be an outcome of trace machine I under D ∈ Adv(I). Then
the probability of all the paths compatible with (σ, θ) is defined as follows:

P trace
I,D (σ, θ) = PrD({π ∈ PathsI

D|π  (σ, θ)})

4 Time check should not be confused with the absolute time displayed by the timer.
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Definition 8. Let P trace
I,D be an observation of machine I under D ∈ Adv(I). Then the

set of observations for scheduler class C, denoted OC(I), is defined as follows:

OC(I) = {P trace
I,D |D ∈ AdvC(I)}

Definition 9. Two IMCs I1, I2 are trace equivalent w.r.t. scheduler class C denoted
I1 ≡C I2 iff OC(I1) = OC(I2).

Example 3. Consider the IMCs I and I ′ shown in Fig. 2. These two systems are ≡SD,
≡SR, ≡HD, ≡HR, ≡THD and ≡THR.

s0 {a}

s1 {b} s2 {b}

{a}s3 s4 {c} s5 {a} s6 {c}

τ
τ

4 6
1 3 3 3

s0 {a}

s1 {b}

s2 {a} s3 {c}

τ

4
6

2 1 2 1 2 1

Fig. 2. IMCs I (left) and I′ (right)

Next, we study the relationship between several variants of trace equivalence defined
in this section. Connections among these equivalences can be understood from Fig. 3.
Here, a directed edge from node labeled with, say ≡C1 , to node labeled with ≡C2

denotes implication, i.e., ≡C1 =⇒ ≡C2 . Similarly, an edge that connects two nodes
in both the directions denote bi-implication, i.e., coincidence. To avoid clutter, we have
omitted the directed edge between ≡C1 =⇒ ≡C3 whenever we have ≡C1 =⇒ ≡C2 and
≡C2 =⇒ ≡C3 .

Theorem 1. The following holds:

– ≡SD =⇒ ≡SR, ≡SD =⇒ ≡HD, ≡SD =⇒ ≡HR, ≡SD �=⇒ ≡THD, ≡SD

�=⇒ ≡THR

Theorem 2. The following holds:

– ≡SR �=⇒ ≡SD, ≡SR �=⇒ ≡HD, ≡SR =⇒ ≡HR, ≡SR �=⇒ ≡THD, ≡SR

�=⇒ ≡THR

Theorem 3. The following holds:

– ≡HD =⇒ ≡SD, ≡HD =⇒ ≡SR, ≡HD �=⇒ ≡THD, ≡HD =⇒ ≡HR, ≡HD

�=⇒ ≡THR
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≡SD ≡SR

≡HR

≡THR

≡HD

≡THD

Fig. 3. Connections among six trace equivalences

Theorem 4. The following holds:

– ≡HR �=⇒ ≡SD, ≡HR =⇒ ≡SR, ≡HR �=⇒ ≡HD, ≡HR �=⇒ ≡THD, ≡HR

�=⇒ ≡THR

Theorem 5. The following holds:

– ≡THD =⇒ ≡SD, ≡THD =⇒ ≡SR, ≡THD =⇒ ≡HD, ≡THD =⇒ ≡HR, ≡THD

=⇒ ≡THR

Theorem 6. The following holds:

– ≡THR �=⇒ ≡SD, ≡THR =⇒ ≡SR, ≡THR �=⇒ ≡HD, ≡THR =⇒ ≡HR, ≡THR

�=⇒ ≡THD

s0 {a}

s1 {b} s2 {b}

s3 {a} s4 {c} s5 {a} s6 {c}

2
4

τ
τ τ τ

4 2 4 2

s0 {a}

s1 {b}

s2 {a} s3 {c}

6

τ
τ

4 2

Fig. 4. IMCs I (left) and I′ (right)

Example 4. Consider the two IMCs I and I ′ shown in Fig. 4. These two systems are
≡SR, ≡HR and ≡THR. Note that these two systems are �≡ SD, �≡ HD and �≡ THD.



The Linear Time-Branching Time Spectrum of Equivalences 51

4 Trace Equivalences Versus Bisimulation

This section investigates the relationship of bisimulation to trace equivalences. We
first recall the definition of bisimulation for IMCs [20]. Let Post(s, τ, C) = {s′ ∈
C|s τ−−→ s′}.
Definition 10. (Strong bisimulation [19,20]) Let I = (S, s0, Act, AP,→,⇒, L) be a
closed IMC. An equivalence relation R ⊆ S × S is a strong bisimulation on I if for
any (s1, s2) ∈ R and equivalence class C ∈ S/R the following holds:

– L(s1) = L(s2),
– R(s1, C) = R(s2, C),
– Post(s1, τ, C) �= ∅ ⇔ Post(s2, τ, C) �= ∅.

States s1 and s2 are strongly bisimilar, denoted s1 ∼ s2, if (s1, s2) ∈ R for some strong
bisimulation5 R.

Strong bisimulation is rigid as it requires that each individual step should be mimicked.

Example 5. Consider the two IMCs shown in Fig. 2. Here, s0 ∼ s′
0.

Theorem 7. The following holds:

– ∼ �=⇒ ≡SD and ≡SD �=⇒ ∼
– ∼ =⇒ ≡SR and ≡SR �=⇒ ∼
– ∼ �=⇒ ≡HD and ≡HD �=⇒ ∼

– ∼ =⇒ ≡HR and ≡HR �=⇒ ∼
– ∼ �=⇒ ≡THD and ≡THD �=⇒ ∼
– ∼ =⇒ ≡THR and ≡THR �=⇒ ∼

s0 {a}

s1 {b} s2 {b}

s3 {a} s4 {c}

s0 {a}

s1 {b}

{a}s2 s3 {c}

τ

τ

τ

τ

2 4 2 4

τ

τ
τ

Fig. 5. IMCs I (left) and I′ (right)

Example 6. Consider the two IMCs shown in Fig. 5. These two IMCs are ≡SD, ≡HD,
≡THD, ≡SR, ≡HR and ≡THR trace equivalent but not bisimilar, i.e., �∼.

5 Note that the definition of strong bisimulation has been slightly modified to take into account
the state labels.
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5 Stutter Insensitive Stochastic Trace Machines

This section proposes several variants of stutter trace equivalence for closed IMCs. We
perform experiments on stutter insensitive trace machine I to obtain these equivalences.
Since our machine is insensitive to stutter steps, action display remains blank if the last
action executed is an internal, i.e., τ action and shows ⊥6 otherwise. In other words, for
interactive states no action is displayed on the action display. Note that when the display
goes blank, the only information that an observer can deduce is that a τ action is being
executed. From this information alone, it is not possible to find out if this τ action is

part of a (sequence of) stutter step(s) or a non-stuttering step, i.e., s
τ,0−−→ s′ such that

L(s) �= L(s′). As in the case of trace machine presented in Sect. 3, an observer records
the sequence of actions, state labels and time checks. The machine needs to be executed
for infinitely many runs to complete the whole experiment. An observable outcome of
this machine is (σ, θ) = (〈L(s0)σ0L(s1)σ1 . . . L(sn−1)σn−1L(sn)〉, 〈t′0, t′1, . . . , t′n〉),
where σi = ⊥ or σi = ∅. Here, ∅ denotes that the action display is blank.

Example 7. Consider a path π = s0
τ,0−−→ s1

τ,0−−→ s2
τ,0−−→ s3

⊥,4−−→ s4. Let L(s0) =
L(s1) = L(s2) = {a}, L(s3) = {b} and L(s4) = {c}. Here, the alternating sequence
of state labels and actions recorded by an external observer is σ = 〈{a}∅{b}⊥{c}〉. In
this example we have two stutter steps.

Example 8. Consider another path π′ = s0
⊥,2−−→ s1

⊥,3−−→ s2
⊥,1−−→ s3. Let L(s0) =

L(s1) = {a}, L(s2) = L(s3) = {b}. Here, the alternating sequence of state labels and
actions recorded by an external observer is σ = 〈{a}⊥{a}⊥{b}⊥{b}〉. This is because
the observer can distinguish between two successive ⊥ labeled transitions.

Definition 11 (τ -closure). Let (σ, θ) be an observable outcome of I under some sched-
uler, say D ∈ Adv(I). Then τ -closure of σ, denoted στ , is obtained by replacing every
instance of ∅ in σ with τ .

Example 9. Let σ = 〈{a}∅{b}∅{a}⊥{c}∅{b}〉, then στ = 〈{a}τ{b}τ{a}⊥{c}
τ{b}〉.
Definition 12. Let (σ, θ) = (〈L(s0)σ0L(s1)σ1 . . . L(sn−1)σn−1L(sn)〉, 〈t′0, t′1, . . . ,
t′n〉) be an observable outcome of I under some scheduler, say D ∈ Adv(I) and
στ = 〈L(s0)σ′

0L(s1)σ
′
1 . . . L(sn−1)σ′

n−1L(sn)〉 be the τ -closure of σ, then a path

π = s0
σ0,t0−−−→ s1

σ1,t1−−−→ s2 . . . sm−1
σm−1,tm−1−−−−−−−→ sm ∈ PathsI

D is said to be compati-
ble with (σ, θ), denoted π  (σ, θ), if exactly one of the following holds:

– n = m and Trace(π[0 . . . m]) = στ and Σi
j=0tj ∈ (yi, yi+1] for 0 ≤ i < n

– m > n and Trace(π[0 . . . m]) = L(s0) τL(s0)
︸ ︷︷ ︸

n0−times

σ′
0L(s1) τL(s1)

︸ ︷︷ ︸
n1−times

σ′
1L(s2) . . .

L(sn−1) τL(sn−1)
︸ ︷︷ ︸

nn−1−times

σ′
n−1L(sn) and Σn0

k=0tk ∈ (y0, y1], Σn0+n1+1
k=0 tk ∈ (y1,

y2],. . . ,Σm+n−1
k=0 tk ∈ (yn−1, yn]

6 Recall that we use a distinguished action ⊥ to indicate Markovian transitions.
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where yi = Σi
j=0t

′
j , nk ≥ 0 for 0 ≤ k ≤ n − 1 and m = n0 + n1 + . . . + nn−1.

The first condition corresponds to the case where stuttering is absent in path π. The
second condition corresponds to the case where stuttering is present in π. Since our
machine is insensitive to stutter steps, it is possible that multiple paths of different
lengths are compatible with the same outcome of trace machine I. In other words, our
machine does not distinguish between paths that have different number of stutter steps
as long as one of the conditions of Definition 12 is satisfied. The probability of all the
paths compatible with an observable outcome is defined as follows:

Definition 13. Let (σ, θ) be an observable outcome of trace machine I under D ∈
Adv(I). Let |σ| = n. Then the probability of all the paths compatible with (σ, θ) is
defined as follows:

P trace
I,D (σ, θ) =

m∑

i=n

PrD({π ∈ PathsI
D | |π| = i ∧ π  (σ, θ)})

where m is the length of the longest path that is compatible with (σ, θ).

Informally, P trace
I,D is a function that gives the probability to observe (σ, θ) in machine

I under scheduler D.

Definition 14 (Set of observations). Let P trace
I,D be an observation of machine I under

D ∈ Adv(I). Then the set of observations for scheduler class C, denoted OC(I), is
defined as follows:

OC(I) = {P trace
I,D | D ∈ AdvC(I)}

Informally, OC(I) denote a set of functions where each function assigns a probability
value to every possible observable outcome of the trace machine, i.e., (σ, θ).

Definition 15 (Stutter trace equivalence). Two IMCs I1, I2 are stutter trace equiva-
lent w.r.t. scheduler class C denoted I1 �C I2 iff OC(I1) = OC(I2).

This definition says that for every D ∈ AdvC(I1) there exists a scheduler D′ ∈
AdvC(I2) such that for all outcomes (σ, θ) we have P trace

I1,D (σ, θ) = P trace
I2,D′(σ, θ) and

vice versa. Next, we investigate the connections between trace equivalence (≡C) and
stutter trace equivalence (�C).

Theorem 8. The following holds:

– ≡SD =⇒ �SD and ≡HD =⇒ �HD and ≡THD =⇒ �THD and ≡SR =⇒ �SR

and ≡HR =⇒ �HR and ≡THR =⇒ �THR

– �SD �=⇒ ≡SD and �HD �=⇒ ≡HD and �THD �=⇒ ≡THD and �SR �=⇒ ≡SR

and �HR �=⇒ ≡HR and �THR �=⇒ ≡THR

This theorem says that ≡C is strictly finer than �C . Next, we study the relationship
between several variants of stutter trace equivalence defined in this section. Connections
among these equivalences can be understood from Fig. 6.

Theorem 9. The following holds:
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SD SR

HR

THR

HD

THD

Fig. 6. Connections among six stutter trace equivalences

– �SD =⇒ �SR, �SD �=⇒ �HD, �SD =⇒ �HR, �SD �=⇒ �THD, �SD

�=⇒ �THR

Theorem 10. The following holds:

– �SR �=⇒ �SD, �SR �=⇒ �HD, �SR =⇒ �HR, �SR �=⇒ �THD, �SR

�=⇒ �THR

Theorem 11. The following holds:

– �HD =⇒ �SD, �HD =⇒ �SR, �HD =⇒ �HR, �HD �=⇒ �THD, �HD

�=⇒ �THR

Theorem 12. The following holds:

– �HR �=⇒ �SD, �HR =⇒ �SR, �HR �=⇒ �HD, �HR �=⇒ �THD, �HR

�=⇒ �THR

Theorem 13. The following holds:

– �THD =⇒ �SD, �THD =⇒ �SR, �THD =⇒ �HD, �THD =⇒ �HR, �THD

=⇒ �THR

Theorem 14. The following holds:

– �THR �=⇒ �SD, �THR =⇒ �SR, �THR �=⇒ �HD, �THR =⇒ �HR, �THR

�=⇒ �THD

6 Stutter Trace Equivalence Versus Weak Bisimulation

This section investigates the relationship between weak bisimulation and stutter trace
equivalence. First, we fix some notations. A sequence of zero or more τ -labeled transi-
tions is denoted by s τ∗−−→ s′. Similarly, a sequence of one or more τ -labeled transitions

is denoted by s τ+−−−→ s′.
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Definition 16. (Weak bisimulation [20]) Let I = (S, s0, Act, AP,→,⇒, L) be a
closed IMC. An equivalence relation R ⊆ S × S is a weak bisimulation on I if for
any (s1, s2) ∈ R and equivalence class C ∈ S/R the following holds:

– L(s1) = L(s2),
– ∃s′ ∈ C : s1

τ+−−−→ s′ ⇔ ∃s′′ ∈ C : s2
τ+−−−→ s′′,

– s1
τ∗−−→ s′ ∧ s′ ∈ MS ⇒ s2

τ∗−−→ s′′ ∧ s′′ ∈ MS ∧ R(s′, C) = R(s′′, C) for some
s′′ ∈ S.

States s1 and s2 are weakly bisimilar, denoted s1 ≈ s2, if (s1, s2) ∈ R for some weak
bisimulation7 R.

The first condition asserts that s1 and s2 are equally labeled. The second condition
asserts that if s1 can reach some equivalence class C solely via one or more τ -steps
then s2 can also do so and vice versa. Similarly, third condition requires that if s1 can
reach a Markovian state s′ solely via zero or more τ -steps then s2 can also reach a
Markovian state s′′ such that both these Markovian states have the same rate of moving
to any equivalence class C. Note that in both these conditions all the extra steps are
taken within the equivalence class of s1, i.e., [s1] before reaching C. Similarly, for s2
all the extra steps are taken within [s2].

Theorem 15. The following holds:

– ≈ �=⇒ �SD and ≈ �=⇒ �HD and ≈ �=⇒ �THD and �SD �=⇒ ≈ and �HD

�=⇒ ≈ and �THD �=⇒ ≈
– ≈ =⇒ �SR and ≈ =⇒ �HR and ≈ =⇒ �THR and �SR �=⇒ ≈ and �HR �=⇒ ≈

and �THR �=⇒ ≈

7 Linear Time-Branching Time Spectrum

This section sketches the linear time-branching time spectrum of equivalences for
closed IMCs. We first relate weak bisimulation to trace equivalences defined in Sect. 3.
Next, we study the connections between stutter trace equivalences and bisimulation for
closed IMCs.

Theorem 16. The following holds:

– ≈ �=⇒ ≡SD and ≈ �=⇒ ≡HD and ≈ �=⇒ ≡THD and ≡SD �=⇒ ≈ and ≡HD

�=⇒ ≈ and ≡THD �=⇒ ≈
– ≈ �=⇒ ≡SR and ≈ �=⇒ ≡HR and ≈ �=⇒ ≡THR and ≡SR �=⇒ ≈ and ≡HR �=⇒ ≈

and ≡THR �=⇒ ≈
Theorem 17. The following holds:

– ∼ �=⇒ �SD and ∼ �=⇒ �HD and ∼ �=⇒ �THD and �SD �=⇒ ∼ and �HD

�=⇒ ∼ and �THD �=⇒ ∼
7 Note that the definition of weak bisimulation has been slightly modified to take into account
the state labels.
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– ∼ =⇒ �SR and ∼ =⇒ �HR and ∼ =⇒ �THR and �SR �=⇒ ∼ and �HR �=⇒ ∼
and �THR �=⇒ ∼

Connections between trace relations, stutter trace relations, strong bisimulation and
weak bisimulation have been depicted in Fig. 7. A total of 121 connections have been
investigated in this paper.

≡SD

≡SR

≈

≡HR

≡THR

HR

≡HD

∼

SD

HD

SR

THD

THR

≡THD

Fig. 7. Linear time-branching time spectrum for IMCs

8 Conclusions and Future Work

This paper presented several variants of trace and stutter trace equivalence for closed
IMCs. These equivalences were obtained as a result of button pushing experiments
performed on stochastic trace machines. We investigated the relationship among these
trace equivalences and also compared them with strong bisimulation for IMCs. In the
weak setting, we compared stutter trace equivalences with trace equivalences, bisimula-
tion and weak bisimulation for IMCs. Additionally, we also established the relationship
among these stutter trace equivalences. Finally, we used these results to sketch the linear
time-branching time spectrum of equivalences for IMCs. Some interesting directions
for future research are as follows:

– Investigate the connections between (stutter) trace equivalence and (weak) interac-
tive Markovian equivalence (IME) [28].

– Define approximate (stutter) trace equivalence for IMCs.
– Study ready trace and failure trace semantics for IMCs and update the linear time-
branching time spectrum of equivalences accordingly.

– Investigate the preservation of linear real-time objectives, e.g., MTL formulas [12,
27] and DTA specifications [1].
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Abstract. We lay out a general method for computing branching dis-
tances between labeled transition systems. We translate the quantitative
games used for defining these distances to other, path-building games
which are amenable to methods from the theory of quantitative games.
We then show for all common types of branching distances how the
resulting path-building games can be solved. In the end, we achieve a
method which can be used to compute all branching distances in the
linear-time–branching-time spectrum.

Keywords: Quantitative verification · Branching distance ·
Quantitative game · Path-building game

1 Introduction

During the last decade, formal verification has seen a trend towards modeling
and analyzing systems which contain quantitative information. This is motivated
by applications in real-time systems, hybrid systems, embedded systems and
others. Quantitative information can thus be a variety of things: probabilities,
time, tank pressure, energy intake, etc.

A number of quantitative models have hence been developed: probabilis-
tic automata [43], stochastic process algebras [36], timed automata [2], hybrid
automata [1], timed variants of Petri nets [30,42], continuous-time Markov
chains [44], etc. Similarly, there is a number of specification formalisms for
expressing quantitative properties: timed computation tree logic [35], probabilis-
tic computation tree logic [31], metric temporal logic [37], stochastic continuous
logic [3], etc.

Quantitative verification, i.e., the checking of quantitative properties for
quantitative systems, has also seen rapid development: for probabilistic sys-
tems in PRISM [38] and PEPA [27], for real-time systems in Uppaal [40],
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Fig. 1. Three timed automata modeling a train crossing.

RED [51], TAPAAL [5] and Romeo [26], and for hybrid systems in HyTech [33],
SpaceEx [25] and HySAT [24], to name but a few.

Quantitative verification has, however, a problem of robustness. When the
answers to model checking problems are Boolean—either a system meets its
specification or it does not—then small perturbations in the system’s parameters
may invalidate the result. This means that, from a model checking point of view,
small, perhaps unimportant, deviations in quantities are indistinguishable from
larger ones which may be critical.

As an example, Fig. 1 shows three simple timed-automaton models of a train
crossing, each modeling that once the gates are closed, some time will pass before
the train arrives. Now assume that the specification of the system is

The gates have to be closed 60 seconds before the train arrives.

Model A does guarantee this property, hence satisfies the specification. Model
B only guarantees that the gates are closed 58 s before the train arrives, and in
model C, only one second may pass between the gates closing and the train.

Neither of models B and C satisfies the specification, so this is the result
which a model checker like for example Uppaal would output. What this does not
tell us, however, is that model C is dangerously far away from the specification,
whereas model B only violates it slightly (and may be acceptable from a practical
point of view given other constraints on the system which we have not modeled
here).

In order to address the robustness problem, one approach is to replace the
Boolean yes-no answers of standard verification with distances. That is, the
Boolean co-domain of model checking is replaced by the non-negative real num-
bers. In this setting, the Boolean true corresponds to a distance of zero and
false to the non-zero numbers, so that quantitative model checking can now
tell us not only that a specification is violated, but also how much it is violated,
or how far the system is from corresponding to its specification.

In the example of Fig. 1, and depending on precisely how one wishes to mea-
sure distances, the distance from A to our specification would be 0, whereas the
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distances from B and C to the specification may be 2 and 59, for example. The
precise interpretation of distance values will be application-dependent; but in
any case, it is clear that C is much farther away from the specification than B is.

The distance-based approach to quantitative verification has been developed
in [8,11,28,34,46–48] and many other papers. Common to all these approaches
is that they introduce distances between systems, or between systems and spec-
ifications, and then employ these for approximate or quantitative verification.
However, depending on the application context, a plethora of different distances
are being used. Consequently, there is a need for a general theory of quantitative
verification which depends as little as possible on the concrete distances being
used.

Different applications foster different types of quantitative verification, but it
turns out that most of these essentially measure some type of distances between
labeled transition systems. We have in [21] laid out a unifying framework which
allows one to reason about such distance-based quantitative verification inde-
pendently of the precise distance. This is essentially a general metric theory
of labeled transition systems, with infinite quantitative games as its main the-
oretical ingredient and general fixed-point equations for linear and branching
distances as one of its main results.

The work in [21] generalizes the linear-time–branching-time spectrum of pre-
orders and equivalences from van Glabbeek’s [50] to a quantitative linear-time–
branching-time spectrum of distances, all parameterized on a given distance on
traces, or executions; cf. Fig. 2. This is done by generalizing Stirling’s bisim-
ulation game [45] along two directions, both to cover all other preorders and
equivalences in the linear-time–branching-time spectrum and into a game with
quantitative (instead of Boolean) objectives.

What is missing in [21] are actual algorithms for computing the different
types of distances. (The fixed-point equations mentioned above are generally
defined over infinite lattices, hence Tarski’s fixed-point theorem does not help
here.) In this paper, we take a different route to compute them. We translate
the general quantitative games used in [21] to other, path-building games. We
show that under mild conditions, this translation can always be effectuated, and
that for all common trace distances, the resulting path-building games can be
solved using various methods which we develop.

We start the paper by reviewing the quantitative games used to define linear
and branching distances in [21] in Sect. 2. Then we show the reduction to path-
building games in Sect. 3 and apply this to show how to compute all common
branching distances in Sect. 4. We collect our results in the concluding Sect. 5.
The contributions of this paper are the following:

(1) A general method to reduce quantitative bisimulation-type games to path-
building games. The former can be posed as double path-building games,
where the players alternate to build two paths; we show how to transform
such games into a form where the players instead build one common path.
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Fig. 2. The quantitative linear-time–branching-time spectrum from [21]. The nodes
are different system distances, and an edge d1 −→ d2 or d1 ��� d2 indicates that
d1(s, t) ≥ d2(s, t) for all states s, t, and that d1 and d2 in general are topologically
inequivalent.

(2) A collection of methods for solving different types of path-building games.
Standard methods are available for solving discounted games and mean-
payoff games; for other types we develop new methods.
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(3) The application of the methods in (2) to compute various types of distances
between labeled transition systems defined by the games of (1).

2 Linear and Branching Distances

Let Σ be a set of labels. Σω denotes the set of infinite traces over Σ. We generally
count sequences from index 0, so that σ = (σ0, σ1, . . . ). Let R∗ = R≥0 ∪ {∞}
denote the extended non-negative real numbers.

2.1 Trace Distances

A trace distance is a hemimetric D : Σω × Σω → R∗, i.e., a function which
satisfies D(σ, σ) = 0 and D(σ, τ) + D(τ, υ) ≥ D(σ, υ) for all σ, τ, υ ∈ Σω.

The following is an exhaustive list of different trace distances which have been
used in different applications. We refer to [21] for more details and motivation.

The Discrete Trace Distance: Ddisc(σ, τ) = 0 if σ = τ and ∞ otherwise. This is
equivalent to the standard Boolean setting: traces are either equal (distance 0)
or not (distance ∞).

The Point-Wise Trace Distance: Dsup(σ, τ) = supn≥0 d(σn, τn), for any given
label distance d : Σ × Σ → R∗. This measures the greatest individual symbol
distance in the traces and has been used for quantitative verification in, among
others, [9,10,12,19,39,46].

The Discounted Trace Distance: D+(σ, τ) =
∑∞

n=0 λnd(σn, τn), for any given
discounting factor λ ∈ [0, 1[. Sometimes also called accumulating trace distance,
this accumulates individual symbol distances along traces, using discounting
to adjust the values of distances further off. It has been used in, for example,
[6,19,39,46].

The Limit-Average Trace Distance: Dlavg(σ, τ) = lim infn≥1
1
n

∑n−1
i=0 d(σi, τi).

This again accumulates individual symbol distances along traces and has been
used in, among others, [6,7]. Both discounted and limit-average distances are
well-known from the theory of discounted and mean-payoff games [16,52].

The Cantor Trace Distance: DC(σ, τ) = 1
1+inf{n|σn �=τn} . This measures the

(inverse of the) length of the common prefix of the traces and has been used
for verification in [14].

The Maximum-Lead Trace Distance: D±(σ, τ) = supn≥0

∣
∣
∑n

i=0(σi − τi)
∣
∣. Here

it is assumed that Σ admits arithmetic operations of + and −, for instance
Σ ⊆ R. As this measures differences of accumulated labels along runs, it is
especially useful for real-time systems, cf. [20,34,46].
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2.2 Labeled Transition Systems

A labeled transition system (LTS) over Σ is a tuple (S, i, T ) consisting of a set
of states S, with initial state i ∈ S, and a set of transitions T ⊆ S × Σ × S. We
often write s

a−→ t to mean (s, a, t) ∈ T . We say that (S, i, T ) is finite if S and
T are finite. We assume our LTS to be non-blocking in the sense that for every
state s ∈ S there is a transition (s, a, t) ∈ T .

We have shown in [21] how any given trace distance D can be lifted to a
quantitative linear-time–branching-time spectrum of distances on LTS. This is
done via quantitative games as we shall review below. The point of [21] was
that if the given trace distance has a recursive formulation, which, as we show
in [21], every commonly used trace distance has, then the corresponding linear
and branching distances can be formulated as fixed points for certain monotone
functionals.

The fixed-point formulation of [21] does not, however, give rise to actual
algorithms for computing linear and branching distances, as it happens more
often than not that the mentioned monotone functionals are defined over infinite
lattices. Concretely, this is the case for all but the point-wise trace distances in
Sect. 2.1. Hence other methods are required for computing them; developing
these is the purpose of this paper.

2.3 Quantitative Ehrenfeucht-Fräıssé Games

We review the quantitative games used in [21] to define different types of linear
and branching distances for any given trace distance D. For conciseness, we only
introduce simulation games and bisimulation games here, but similar definitions
may be given for all equivalences and preorders in the linear-time–branching-
time spectrum [50].

Quantitative Simulation Games. Let S = (S, i, T ) and S ′ = (S′, i′, T ′) be
LTS and D : Σω × Σω → R∗ a trace distance. The simulation game from S
to S ′ is played by two players, the maximizer and the minimizer. A play begins
with the maximizer choosing a transition (s0, a0, s1) ∈ T with s0 = i. Then the
minimizer chooses a transition (s′

0, a
′
0, s

′
1) ∈ T ′ with s′

0 = i′. Now the maximizer
chooses a transition (s1, a1, s2) ∈ T , then the minimizer chooses a transition
(s′

1, a
′
1, s

′
2) ∈ T ′, and so on indefinitely. Hence this is what should be called a

double path-building game: the players each build, independently, an infinite path
in their respective LTS.

A play hence consists of two infinite paths, π starting from i, and π′ starting
from i′. The utility of this play is the distance D(σ, σ′) between the traces σ, σ′ of
the paths π and π′, which the maximizer wants to maximize and the minimizer
wants to minimize. The value of the game is, then, the utility of the play which
results when both maximizer and minimizer are playing optimally.

To formalize the above intuition, we define a configuration for the maximizer
to be a pair (π, π′) of finite paths of equal length, π in S and starting in i, π′ in
S ′ starting in i′. The intuition is that this covers the history of a play; the choices
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both players have made up to a certain point in the game. Hence a configuration
for the minimizer is a similar pair (π, π′) of finite paths, but now π is one step
longer than π′.

A strategy for the maximizer is a mapping from maximizer configurations
to transitions in S, fixing the maximizer’s choice of a move in the given con-
figuration. Denoting the set of maximizer configurations by Conf, such a strat-
egy is hence a mapping θ : Conf → T such that for all (π, π′) ∈ Conf with
θ(π, π′) = (s, a, t), we have end(π) = s. Here end(π) denotes the last state of π.
Similarly, and denoting the set of minimizer configurations by Conf′, a strategy
for the minimizer is a mapping θ′ : Conf′ → T ′ such that for all (π, π′) ∈ Conf′

with θ′(π, π′) = (s′, a′, t′), end(π′) = s′.
Denoting the sets of these strategies by Θ and Θ′, respectively, we can now

define the simulation distance from S to S ′ induced by the trace distance D,
denoted Dsim(S,S ′), by

Dsim(S,S ′) = sup
θ∈Θ

inf
θ′∈Θ′

D(σ(θ, θ′), σ′(θ, θ′)),

where σ(θ, θ′) and σ′(θ, θ′) are the traces of the paths π(θ, θ′) and π′(θ, θ′)
induced by the pair of strategies (θ, θ′).

Remark 1. If the trace distance D is discrete, i.e., D = Ddisc as in Sect. 2.1, then
the quantitative game described above reduces to the well-known simulation
game [45]: The only choice the minimizer has for minimizing the value of the
game is to always choose a transition with the same label as the one just chosen
by the maximizer; similarly, the maximizer needs to try to force the game into
states where she can choose a transition which the minimizer cannot match.
Hence the value of the game will be 0 if the minimizer always can match the
maximizer’s labels, that is, iff S is simulated by S ′.

Quantitative Bisimulation Games. There is a similar game for computing
the bisimulation distance between LTS S and S ′. Here we give the maximizer
the choice, at each step, to either choose a transition from sk as before, or to
“switch sides” and choose a transition from s′

k instead; the minimizer then has
to answer with a transition on the other side.

Hence the players are still building two paths, one in each LTS, but now
they are both contributing to both paths. The utility of such a play is still the
distance between these two paths, which the maximizer wants to maximize and
the minimizer wants to minimize. The bisimulation distance between S and
S ′, denoted Dbisim(S,S ′), is then defined to be the value of this quantitative
bisimulation game.

Remark 2. If the trace distance D = Ddisc is discrete, then using the same
arguments as in Remark 1, we see that Dbisim

disc (S,S ′) = 0 iff S and S ′ are
bisimilar. The game which results being played is precisely the bisimulation game
of [45], which also has been introduced by Fräıssé [23] and Ehrenfeucht [15] in
other contexts.
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The Quantitative Linear-Time–Branching-Time Spectrum. The above-
defined quantitative simulation and bisimulation games can be generalized using
different methods. One is to introduce a switch counter sc into the game which
counts how often the maximizer has switched sides during an ongoing game.
Then one can limit the maximizer’s capabilities by imposing limits on sc: if the
limit is sc = 0, then the players are playing a simulation game; if there is no
limit (sc ≤ ∞), they are playing a bisimulation game. Other limits sc ≤ k, for
k ∈ N, can be used to define k-nested simulation distances, generalizing the
equivalences and preorders from [29,32].

Another method of generalization is to introduce ready moves into the game.
These consist of the maximizer challenging her opponent by switching sides,
but only requiring that the minimizer match the chosen transition; afterwards
the game finishes. This can be employed to introduce the ready simulation dis-
tance of [41] and, combined with the switch counter method above, the ready
k-nested simulation distance. We refer to [21] for further details on these and
other variants of quantitative (bi)simulation games.

For reasons of exposition, we will below introduce our reduction to path-
building games only for the quantitative simulation and bisimulation games; but
all our work can easily be transferred to the general setting of [21].

3 Reduction

In order to compute simulation and bisimulation distances, we translate the
games of the previous section to path-building games à la Ehrenfeucht-Mycielski
[16]. Let D : Σω × Σω → R∗ be a trace distance, and assume that there are
functions valD : Rω

∗ → R∗ and fD : Σ × Σ → R∗ for which it holds, for all
σ, τ ∈ Σ∞, that

D(σ, τ) = valD(0, fD(σ0, τ0), 0, fD(σ1, τ1), 0, . . . ). (1)

We will need these functions in our translation, and we show in Sect. 3.2 below
that they exist for all common trace distances.

3.1 Simulation Distance

Let S = (S, i, T ) and S ′ = (S′, i′, T ′) be LTS. We construct a turn-based game
U = U(S,S ′) = (U, u0,−�) as follows, with U = U1 ∪ U2:

U1 = S × S′ U2 = S × S′ × Σ u0 = (i, i′)

−� = {(s, s′)
0−� (t, s′, a) | (s, a, t) ∈ T}

∪ {(t, s′, a)
fD(a,a′)−−−−−−� (t, t′) | (s′, a′, t′) ∈ T ′}

This is a two-player game. We again call the players maximizer and minimizer,
with the maximizer controlling the states in U1 and the minimizer the ones in
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U2. Transitions are labeled with extended real numbers, but as the image of fD

in R∗ is finite, the set of transition labels in U is finite.
The game on U is played as follows. A play begins with the maximizer choos-

ing a transition (u0, a0, u1) ∈ −� with u0 = i. Then the minimizer chooses a tran-
sition (u1, a1, u2) ∈ −�. Then the maximizer chooses a transition (u2, a2, u3) ∈ −�,
and so on indefinitely (note that U is non-blocking). A play thus induces an infi-
nite path π = (u0, a0, u1), (u1, a1, u2), . . . in U with u0 = i. The goal of the
maximizer is to maximize the value valD(U) := valD(a0, a1, . . . ) of the trace of
π; the goal of the minimizer is to minimize this value.

This is hence a path-building game, variations of which (for different val-
uation functions) have been studied widely in both economics and computer
science since Ehrenfeucht-Mycielski’s [16]. Formally, configurations and strate-
gies are given as follows. A configuration of the maximizer is a path π1 in U
with end(π1) ∈ U1, and a configuration of the minimizer is a path π2 in U
with end(π2) ∈ U2. Denote the sets of these configurations by Conf1 and Conf2,
respectively. A strategy for the maximizer is, then, a mapping θ1 : Conf1 → −�
such that for all π1 ∈ Conf1 with θ1(π1) = (u, x, v), end(π1) = u. A strategy for
the minimizer is a mapping θ2 : Conf2 → −� such that for all π2 ∈ Conf2 with
θ2(π2) = (u, x, v), end(π2) = u. Denoting the sets of these strategies by Θ1 and
Θ2, respectively, we can now define

valD(U) = sup
θ1∈Θ1

inf
θ2∈Θ2

valD(σ(θ1, θ2)),

where σ(θ1, θ2) is the trace of the path π(θ1, θ2) induced by the pair of strategies
(θ1, θ2).

By the next theorem, the value of U is precisely the simulation distance from
S to S ′.

Theorem 3. For all LTS S, S ′, Dsim(S,S ′) = valD(U(S,S ′)).

Proof. Write S = (S, i, T ) and S ′ = (S′, i′, T ′). Informally, the reason for the
equality is that any move (s, a, t) ∈ T of the maximizer in the simulation distance

game can be copied to a move (s, s′)
0−� (t, s′, a), regardless of s′, in U . Similarly,

any move (s′, a′, t′) of the minimizer can be copied to a move (t, s′, a)
fD(a,a′)−−−−−−�

(t, t′), and all the moves in U are of this form.
To turn this idea into a formal proof, we show that there are bijections

between configurations and strategies in the two games, and that under these
bijections, the utilities of the two games are equal. For (π, π′) ∈ Conf in the
simulation distance game, with π = (s0, a0, s1), . . . , (sn−1, an−1, sn) and π′ =
(s′

0, a
′
0, s

′
1), . . . , (s

′
n−1, a

′
n−1, s

′
n), define

φ1(π, π′) =((s0, s′
0), 0, (s1, s′

0, a0)), ((s1, s′
0, a0), fD(a0, a

′
0), (s1, s

′
1)), . . . ,

((sn, s′
n−1, an−1), fD(an−1, a

′
n−1), (sn, s′

n)).

It is clear that this defines a bijection φ1 : Conf → Conf1, and that one can
similarly define a bijection φ2 : Conf′ → Conf2.
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Now for every strategy θ : Conf → T in the simulation distance game,
define a strategy ψ1(θ) = θ1 ∈ Θ1 as follows. For π1 ∈ Conf1, let (π, π′) =
φ−1
1 (π1) and s′ = end(π′). Let θ(π, π′) = (s, a, t) and define θ1(π1) =

((s, s′), 0, (t, s′, a)). Similarly we define a mapping ψ2 : Θ′ → Θ2 as follows.
For θ′ : Conf′ → T ′ and π2 ∈ Conf2, let (π, π′) = φ−1

2 (π2) with π =
(s0, a0, s1), . . . , (sn, an, sn+1). Let θ′(π, π′) = (s′, a′, t′) and define ψ2(θ′)(π2) =
((sn+1, s

′, an), fD(an, a′), (sn+1, t
′)).

It is clear that ψ1 and ψ2 indeed map strategies in the simulation distance
game to strategies in U and that both are bijections. Also, for each pair (θ, θ′) ∈
Θ × Θ′, D(σ(θ, θ′), σ′(θ, θ′)) = valD(σ(ψ1(θ), ψ2(θ′))) by construction. But then

Dsim(S,S ′) = sup
θ∈Θ

inf
θ′∈Θ′

D(σ(θ, θ′), σ′(θ, θ′))

= sup
θ∈Θ

inf
θ′∈Θ′

valD(σ(ψ1(θ), ψ2(θ′)))

= sup
θ1∈Θ1

inf
θ2∈Θ2

valD(σ(θ1, θ2)) = valD(U),

the third equality because ψ1 and ψ2 are bijections. 	


3.2 Examples

We show that the reduction applies to all trace distances from Sect. 2.1.

1. For the discrete trace distance D = Ddisc, we let

valD(x) =
∞∑

n=0

xn, fD(a, b) =

{
0 if a = b,

∞ otherwise,

then (1) holds. In the game on U , the minimizer needs to play 0-labeled
transitions to keep the distance at 0.

2. For the point-wise trace distance D = Dsup, we can let

valD(x) = sup
n≥0

xn, fD(a, b) = d(a, b).

Hence the game on U computes the sup of a trace.
3. For the discounted trace distance D = D+, let

valD(x) =
∞∑

n=0

√
λ

n
xn, fD(a, b) =

√
λ d(a, b),

then (1) holds. Hence the game on U is a standard discounted game [52].
4. For the limit-average trace distance D = Dlavg, we can let

valD(x) = lim inf
n≥1

1
n

n−1∑

i=0

xi, fD(a, b) = 2d(a, b) ;

we will show below that (1) holds. Hence the game on U is a mean-payoff
game [52].
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5. For the Cantor trace distance D = DC, let

valD(x) =
2

1 + inf{n | xn �= 0} , fD(a, b) =

{
0 if a = b,

1 otherwise.

The objective of the maximizer in this game is to reach a transition with
weight 1 as soon as possible.

6. For the maximum-lead trace distance D = D±, we can let

valD(x) = sup
n≥0

∣
∣

n∑

i=0

xi

∣
∣, fD(a, b) = a − b,

then (1) holds.

3.3 Bisimulation Distance

We can construct a similar turn-based game to compute the bisimulation dis-
tance. Let S = (S, i, T ) and S ′ = (S′, i′, T ′) be LTS and define V = V(S,S ′) =
(V, v0,−�) as follows, with V = V1 ∪ V2:

V1 = S × S′ V2 = S × S′ × Σ × {1, 2} v0 = (i, i′)

−� = {(s, s′)
0−� (t, s′, a, 1) | (s, a, t) ∈ T}

∪{(s, s′)
0−� (s, t′, a′, 2) | (s′, a′, t′) ∈ T ′}

∪{(t, s′, a, 1)
fD(a,a′)−−−−−−� (t, t′) | (s′, a′, t′) ∈ T ′}

∪{(s, t′, a′, 2)
fD(a,a′)−−−−−−� (t, t′) | (s, a, t) ∈ T}

Here we have used the minimizer’s states to both remember the label choice of
the maximizer and which side of the bisimulation game she plays on. By suitable
modifications, we can construct similar games for all distances in the spectrum
of [21]. The next theorem states that the value of V is precisely the bisimulation
distance between S and S ′.

Theorem 4. For all LTS S, S ′, Dbisim(S,S ′) = valD(V(S,S ′)).

Proof. This proof is similar to the one of Theorem 3, only that now, we have
to take into account that the maximizer may “switch sides”. The intuition is
that maximizer moves (s, a, t) in the S component of the bisimulation distance

games are emulated by moves (s, s′)
0−� (t, s′, a, 1), maximizer moves (s′, a′, t′)

in the S ′ component are emulated by moves (s, s′)
0−� (s, t′, a′, 2), and similarly

for the minimizer. The values 1 and 2 in the last component of the V2 states
ensure that the minimizer only has moves available which correspond to playing
in the correct component in the bisimulation distance game (i.e., that ψ2 is a
bijection). 	
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4 Computing the Values of Path-Building Games

We show here how to compute the values of the different path-building games
which we saw in the last section. This will give us algorithms to compute all simu-
lation and bisimulation distances associated with the trace distances of Sect. 2.1.

We will generally only refer to the games U for computing simulation distance
here, but the bisimulation distance games V are very similar, and everything we
say also applies to them.

Discrete Distance: The game to compute the discrete simulation distances is a
reachability game, in that the goal of the maximizer is to force the minimizer
into a state from which she can only choose ∞-labeled transitions. We can hence
solve them using the standard controllable-predecessor operator defined, for any
set S ⊆ U1 of maximizer states, by

cpre(S) = {u1 ∈ U1 | ∃u1
0−� u2 : ∀u2

x−� u3 : u3 ∈ S}.

Now let S ⊆ U1 be the set of states from which the maximizer can force the
game into a state from which the minimizer only has ∞-labeled transitions, i.e.,

S = {u1 ∈ U1 | ∃u1
0−� u2 : ∀u2

x−� u3 : x = ∞},

and compute S∗ = cpre∗(S) =
⋃

n≥0 cpre
n(S). By monotonicity of cpre and as

the subset lattice of U1 is complete and finite, this computation finishes in at
most |U1| steps.

Lemma 5. valD(U) = 0 iff u0 /∈ S∗.

Proof. As we are working with the discrete distance, we have either valD(U) =
0 or valD(U) = ∞. Now uo ∈ S∗ iff the maximizer can force, using finitely
many steps, the game into a state from which the minimizer only has ∞-labeled
transitions, which is the same as valD(U) = ∞. 	


Point-Wise Distance: To compute the value of the point-wise simulation distance
game, let W = {w1, . . . , wm} be the (finite) set of weights of the minimizer’s
transitions, ordered such that w1 < · · · < wm. For each i = 1, . . . , m, let Si =
{u1 ∈ U1 : ∃u1

0−� u2 : ∀u2
x−� u3 : x ≥ wi} be the set of maximizer states from

which the maximizer can force the minimizer into a transition with weight at
least wi; note that Sm ⊆ Sm−1 ⊆ · · · ⊆ S1 = U1. For each i = 1, . . . , m, compute
S∗

i = cpre∗(Si), then S∗
m ⊆ S∗

m−1 ⊆ · · · ⊆ S∗
1 = U1.

Lemma 6. Let p be the greatest index for which u0 ∈ S∗
p , then p = valD(U).

Proof. For any k, we have u0 ∈ S∗
k iff the maximizer can force, using finitely many

steps, the game into a state from which the minimizer only has transitions with
weight at least wk. Thus u0 ∈ S∗

p iff (1) the maximizer can force the minimizer
into a wp-weighted transition; (2) the maximizer cannot force the minimizer into
a wp+1-weighted transition. 	
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Discounted Distance: The game to compute the discounted simulation distance
is a standard discounted game and can be solved by standard methods [52].

Limit-Average Distance: For the limit-average simulation distance game, let
(yn)n≥1 be the sequence (1, 1, 3

2 , 1, 5
4 , . . . ) and note that limn→∞ yn = 1. Then

valD(x) = valD(x) lim
n→∞ yn = lim inf

n≥1

yn

n

n−1∑

i=0

xi

= lim inf
2k≥1

1
2k

k−1∑

i=0

fD(σi, τi)

= lim inf
k≥1

1
k

k−1∑

i=0

d(σi, τi) = Dlavg(σ, τ),

so, indeed, (1) holds. The game is a standard mean-payoff game and can be
solved by standard methods, see for example [13].

Cantor Distance: To compute the value of the Cantor simulation distance game,
let S1 ⊆ U1 be the set of states from which the maximizer can force the game
into a state from which the minimizer only has 1-labeled transitions, i.e., S1 =
{u1 ∈ U1 | ∃u1

0−→ u2 : ∀u2
x−→ u3 : x = 1}. Now recursively compute Si+1 =

Si ∪ cpre(Si), for i = 1, 2, . . . , until Si+1 = Si (which, as Si ⊆ Si+1 for all i and
U1 is finite, will happen eventually). Then Si is the set of states from which the
maximizer can force the game to a 1-labeled minimizer transition which is at
most 2i steps away. Hence valD(U) = 0 if there is no p for which u0 ∈ Sp, and
otherwise valD(U) = 1

p , where p is the least index for which u0 ∈ Sp.

Maximum-Lead Distance: For the maximum-lead simulation distance game, we
note that the maximizer wants to maximize supn≥0

∣
∣
∑n

i=0 xi

∣
∣, i.e., wants the

accumulated values
∑n

i=0 xi or −∑n
i=0 xi to exceed any prescribed bounds. A

weighted game in which one player wants to keep accumulated values inside
some given bounds, while the opponent wants to exceed these bounds, is called
an interval-bound energy game. It is shown in [4] that solving general interval-
bound energy games is EXPTIME-complete.

We can reduce the problem of computing maximum-lead simulation distance
to an interval-bound energy game by first non-deterministically choosing a bound
k and then checking whether player 1 wins the interval-bound energy game on
U for bounds [−k, k]. (There is a slight problem in that in [4], energy games
are defined only for integer -weighted transition systems, whereas we are dealing
with real weights here. However, it is easily seen that the results of [4] also apply
to rational weights and bounds; and as our transition systems are finite, one can
always find a sound and complete rational approximation.)

We can thus compute maximum-lead simulation distance in non-
deterministic exponential time; we leave open for now the question whether
there is a more efficient algorithm.
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5 Conclusion and Future Work

We sum up our results in the following corollary which gives the complexities of
the decision problems associated with the respective distance computations. Note
that the first part restates the well-known fact that simulation and bisimulation
are decidable in polynomial time.

Corollary 7

1. Discrete simulation and bisimulation distances are computable in PTIME.
2. Point-wise simulation and bisimulation distances are computable in PTIME.
3. Discounted simulation and bisimulation distances are computable in NP ∩

coNP.
4. Limit-average simulation and bisimulation distances are computable in NP ∩

coNP.
5. Cantor simulation and bisimulation distances are computable in PTIME.
6. Maximum-lead simulation and bisimulation distances are computable in

NEXPTIME.

In the future, we intend to expand our work to also cover quantitative speci-
fication theories. Together with several coauthors, we have in [17,18] developed
a comprehensive setting for satisfaction and refinement distances in quantita-
tive specification theories. Using our work in [22] on a qualitative linear-time–
branching-time spectrum of specification theories, we plan to introduce a quan-
titative linear-time–branching-time spectrum of specification distances and to
use the setting developed here to devise methods for computing them through
path-building games.

Another possible extension of our work contains probabilistic systems, for
example the probabilistic automata of [43]. A possible starting point for this
is [49] which uses simple stochastic games to compute probabilistic bisimilarity.
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Abstract. Clinical pathways are multidisciplinary structured care plans
that aim at increasing the quality of healthcare delivery. Despite the
wide-spread adoption of clinical pathways by governments and healthcare
authorities, works that associate formal semantics to clinical pathways do
not model clearly the roles of health professionals during the care process.
This has motivated us to propose a formal modelling approach for clinical
pathways, based on Bigraphical Reactive Systems. We concentrate on
showing graphically relationships among the healthcare stakeholders. To
meet the control flow requirement of clinical pathways, we apply the
Maude strategies language over a Maude implementation of Bigraphical
reactive Systems key concepts.

Keywords: Clinical pathways · Roles coordination · Bigraphical
Reactive Systems · Maude strategies

1 Introduction

Over the few past decades, healthcare systems have experienced the challenges
of population ageing and the increased number of chronic diseases. In order to
improve outcomes of clinical practices, national and international organisations
such as the World Health Organization (WHO) have defined medical guidelines
to be implemented by governments and healthcare ministries.

Clinical Pathways (CPs) were established as a tool to implement paper-based
medical guidelines for a particular disease. CPs ensure visualization, documen-
tation and communication [2].

Clinical Pathways are a method for patient-care management for a well-
defined group of patients during a well-defined period of time [7]. CPs are consid-
ered as a standardization of medical practices, which provides a comprehensive
guide of treatment for a specific disease. One of the most important objectives of
CPs is to facilitate the communication and coordination among the healthcare
workers.

In fact, there is no single, widely accepted approach to implement CPs. How-
ever, modelling languages should genuinely describe activities and process flow,
c© Springer Nature Switzerland AG 2019
R. M. Hierons and M. Mosbah (Eds.): ICTAC 2019, LNCS 11884, pp. 76–90, 2019.
https://doi.org/10.1007/978-3-030-32505-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32505-3_5&domain=pdf
https://doi.org/10.1007/978-3-030-32505-3_5


Clinical Pathways Formal Modelling Using Bigraphical Reactive Systems 77

and permit the annotation of relevant information and knowledge at the appro-
priate level of abstraction [25].

Two families of languages have been widely used to model CPs. The first fam-
ily concerns generic modelling languages such as UML activity diagrams, Event
Process Chains (EPCs), and Business Process Model and Notation (BPMN).
The second family is about the domain specific modelling languages [3,25]. The
main drawback of these languages is the lack of formal semantics, thus there is
no support for a formal analysis of CPs.

Formal methods have also been applied in the field of healthcare systems.
However, deduced models of CPs-formal-based approaches did not show clearly
the healthcare stakeholders and their relationships during the care process.

The contribution of the approach we propose is the use of Bigraphical Reac-
tive Systems (BRSs) as a formal modelling and analysis framework for the
Chronic Obstructive Pulmonary Disease (COPD) clinical pathway. We aim at
providing an intuitive and understandable model of CPs. To meet the control flow
requirement of CPs, we provide a Maude implementation of BRSs key concepts.
By means of this implementation, we are able to order execution of reaction
rules.

BRSs have been introduced by Robin Milner [19] in order to provide an
intuitive and graphical notation for distributed systems, showing both locality
and connectivity. In our work, we apply the BRSs sorting logic to depict the
structure of COPD CP, and reaction rules are used to describe care activities.

This paper is organised as follow: after reviewing some related works on for-
mal modelling and analysis of healthcare systems, we present elementary con-
cepts of BRSs, rewriting logic and the strategies language of Maude. In Sect. 4,
we show how to apply our proposal on the COPD clinical pathway. Section 5
concludes this paper and provides future directions for this work.

2 Related Work

Formal methods have been applied to describe and validate critical systems such
as healthcare systems. In this section, we review relevant related works aimed
at improving outcomes of healthcare practices.

In [21], the authors used Meta-ECATNets [14], multilevel algebraic Petri nets,
to model CPs. Their work aimed at controlling flexibility and adjusting the pre-
established healthcare processes. A Meta-ECATNet with two levels were intro-
duced, the higher level controls and manages transitions of the lower-level net
(treatment actions). The Meta-ECATNets clinical pathways were implemented
using the Real-time Maude system and checked by applying the TCTL model-
checking technique [15].

Modular Petri nets were used for modelling healthcare systems in [16]. The
medical protocol Petri net module is composed of: input places, output places,
activity places, resources places and two kinds of transitions (immediate and
timed). Patients undergoing therapies are considered as tokens within activity
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places. The treatment duration is defined by the firing delay of the output tran-
sition. To obtain the global health Petri net model, basic Petri net modules
are fused on common inputs and outputs places. At the analysis step, authors
were interested in checking the following properties: conservation of resources,
repetitiveness of a medical protocol and its violation.

Oueida et al. [22] proposed a modular approach based on Petri nets to
describe activities of emergency units. More precisely, this work aimed at effi-
ciently controlling the work-flow synchronization among activities using a new
class of Petri nets, called Resource Preservation Nets (RPN). The main objective
was to improve the patients performance indicators: length of stay, resources uti-
lization rates and waiting time. In order validate the soundness of the obtained
model, authors have applied structural analysis of Petri nets.

All aforementioned works are useful; they apply Petri nets to model and/or
reason about important aspects of healthcare systems. However, none of them
shows clearly the roles of health-care professionals during the care process. Thus,
the implementation of these approaches will very likely lead to some communi-
cation and coordination inconsistencies among the members of the multidisci-
plinary care team.

The authors of [9] have proposed a timed extension of the process alge-
bra Communicating Sequential Processes (CSP) to model and verify health-
care work-flows. The approach integrates real-time constraints by means of the
real-time logic duration calculus and data aspects using first-order formulae.
The authors have checked the consistency of time constraints and the absence
of blocking behaviour. To do so, the process with timing constraints is trans-
lated into timed automaton. Then, this automaton is converted into a Tran-
sition Constraint System to be checked using the model checkers ARMC [23]
and SLAB [23]. This work uses another formalism (CSP) to verify healthcare
workflows. But, like the previous works, the deduced models do not model col-
laboration between stakeholders, and no graphical notation for timed CSP has
been employed. A distinctive aspect of our proposal is the use of BRSs, which are
considered as a meta-calculus tool, to define diverse calculi and models of concur-
rent systems such as Petri nets and CSP [20]. Furthermore, the understandable
bigraphical models of CPs improve the coordination among the medical staff.

In [1], the authors proposed a framework to resolve conflicts in the treatments
given to patients suffering from two or more chronic diseases. First, BPMN was
used to capture medical guidelines. Then, the deduced models were translated
to an intermediate formal model (the labelled event structure) capturing the
flattened structure of the pathway. Next, correctness of the resulting model was
checked using together the constraint solver z3 [8] and the theorem prover isabelle
[23]. This work tackled the important problem of combining multiple clinical
pathways. In addition, the deduced BPMN models provided a suitable graphical
representation of CPs that can be used by clinicians. However, since the work
transforms semi-formal models to formal ones, an additional operation to check
the transformation process is needed.
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3 Preliminaries

3.1 Bigraphical Reactive Systems Review

Bigraphs are a formalism initially introduced by Milner in [19]. Bigraphs are
devoted to model and analyse spatial evolution and concurrency of distributed
systems.

Bigraphs have been considered as a unifying framework for several other
formalisms such as: Petri nets, CCS and λ-calculus [20]. An important advantage
of bigraphs is their graphical notation that simplifies the modelling task. Also,
bigraphs are characterized by their rigorous mathematical basis.

A bigraph is composed of two sub-graphs: a place graph and a link graph.
The place graph represents the embedding of nodes. It consists of the following
elements: Regions, nodes and sites (hole). Regions (called also roots) are the
outermost elements of a place graph, they may include nodes and/or sites. A
node could contain other nodes and sites. It is worth to mention that sibling
nodes are unordered, while roots and holes are indexed.

Figure 1 shows the graphical notation associated to bigraphs. The two regions
of this figure are depicted with dashed rectangles and nodes are depicted using
solid circles. Ports are connection points for nodes, they are shown as black dots.

Fig. 1. Anatomy of bigraphs

The link-graph captures connectivity and communication between compo-
nents of the system. A link graph connects bigraph nodes through their ports.
Links and edges (closed links) are graphically depicted as continuous lines.

Definition 1 (Bigraphs). A bigraph B is a tuple: B = (V,E, ctrl, prnt, link) :
〈m,X〉 → 〈n, Y 〉, where:
– V is the set of nodes.
– E is a finite set of hyper-links.
– ctrl : V → K is a function that associates to each node v ∈ V a control k ∈ K

defining its arities, K is the signature.
– m and n are the number of sites and the number of regions respectively.
– X and Y are the sets of inner names and the set of outer names respectively.
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– The parent map prnt associates to each node and site its parent (node or
region).

– The function link merges ports and inner names with edges and outer names.
– 〈m,X〉 and 〈n, Y 〉 are the inner face and the outer face of B.

The composition and tensor product operations are applied on basic bigraphs
to obtain complex ones. The composition of two bigraphs is to insert the first
bigraph regions’ content inside sites of the second one having similar indexes,
and merging links on common names. For the tensor product, it consists of
juxtaposing the place graphs, constructing the union of the link graphs and
increasing the indexes of sites and regions. Formal definition of composition and
tensor product operations can be found in [20].

Nodes and links may be classified using controls. The latter show the
behaviour of nodes through their status: active, passive and atomic. An atomic
node cannot contain another node, active and passive status define whether reac-
tion may occur within a node or not. The different controls used in a bigraph
make its signature. To enhance the characterization of bigraphs, the sorting
mechanism associates sorts to controls and uses the formation rules to express
well-formedness conditions for bigraphs.

A Bigraphical Reactive system (BRS) consists of a bigraph endowed with
a set of reaction rules. A reaction rule describes the evolution of a bigraph. It
modifies the nodes’ connectivity and nesting. The reaction rule has two parts:
the redex (left part) that must be found in the initial bigraph (the agent), and
the reactum that substitutes the redex.

Several complementary tools to edit and analyse BRSs have been proposed,
such as: Big Red [10], BigMC [24] and BPLTool [12]. Each of these tools addresses
a specific modelling issue.

3.2 Maude Strategies Language

Various formalisms have been introduced to improve reliability of information
technology systems. Rewriting logic is one of the most commonly applied for-
malisms to ensure correctness of concurrent systems [18].

In rewriting logic, static and dynamic aspects of systems are modelled using
membership equational and rewriting theories. The membership equational the-
ory describing the system states is noted (Σ,E∪A), where Σ is the theory signa-
ture and E∪A is a set of equations and equational attributes defining properties
of the different operators. The rewriting theory includes a set of rewriting rules
having the form l : t → t′ if cond, where t and t′ represent the system’s states
and cond the rule condition.

The Maude system [6] is one of the most efficient implementations of rewriting
logic. In fact, Maude provides two kind of modules: functional and system. The
functional modules make concrete equational theories, they use equations to
identify data and memberships to give type information for some data. System
modules deal with rewriting aspects, they describe transitions between states.
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Unlike equations, Maude rewriting rules could be divergent, leading to have
many final states [5]. In order to look for states satisfying some properties, we
could use the search command. In certain cases, users look only for some exe-
cutions satisfying some constraints. In this case, the Maude system provides a
strategy language that controls and guides non-deterministic behaviour when
applying rewriting rules [17].

Maude strategies can be applied either at the metalevel using descent func-
tions [6], or at the object level. At the metalevel, we take advantage of the
reflective property of rewriting logic; rewrite rules are applied at a higher level.

Contrary to metalevel strategies, the object level strategies do not use the
reflective capabilities, and they are based on a clear separation between the
rewrite rules and the strategy expressions [17]. Consequently, different strategy
modules could control rules of a single system module.

Basically, an object level strategy is to apply a rewriting rule (using its label)
on a given term. Moreover, variables of this rule could be instantiated before its
execution. Besides, conditions of conditional rewrite rules might be controlled
using a search expression.

Strategies of Maude can be combined using the following combinators: “;”
for concatenation, “|” for union, “∗” for zero or more iterations and “+” for one
or more iterations.

4 A BRSs Formal Modelling Approach of Clinical
Pathways

In the present work, we propose a BRS based formalisation of COPD clini-
cal pathway. The main objective is to provide an intuitive and understandable
model, that improves the coordination of roles through the care process. In prac-
tical terms, we apply the BRSs sorting to determine the involved partners, and
we use reaction rules to implement care activities. In addition, to respect the
control flow of activities a Maude based implementation is proposed.

4.1 Case Study: COPD Clinical Pathway

To show the usefulness of our proposal, we apply it on the Chronic Obstruc-
tive Pulmonary Disease (COPD) clinical process. COPD is a chronic respiratory
disease that causes blockage of airflow from the lungs. Shortness of breath and
coughing are the main symptoms of COPD. COPD is frequently associated with
obstructive lung changes caused by smoking and permanent exposure to harmful
fumes or dust. According to [4], COPD is a major cause of morbidity and mor-
tality in adulthood, it will become the third leading cause of death worldwide
by 2020.

To diagnose COPD, the ratio of Forced Expiratory Volume in one second to
Forced Vital Capacity (FEV1/FVC) is calculated. According to this ratio four
stages of COPD can be identified [26]:
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– Stage 1 (Early COPD) when FEV1/FVC < 70% and FVC ≥ 80%.
– Stage 2 (Mild COPD) when FEV1/FVC < 70% and 50% ≤ FVC < 80%.
– Stage 3 (Severe COPD) when FEV1/FVC<70% and 30% ≤ FVC < 50%.
– Stage 4 (Very severe COPD) when FEV1/FVC < 70% and FVC < 30%.

The COPD patients treatment procedure often involves a whole medical staff.
To reduce symptoms and slow down the progression of the disease, patients must
take various medications and should follow a healthy lifestyle.

The COPD care pathway published by the French National Authority for
Health (FNAH) [11] recommends the following plan of medical examinations:
up to the stage 2, the monitoring is exclusively done by the general practitioner
twice a year. The patient at the stage 3 or 4 who does not require supplemental
oxygen, should consult his/her treating doctor every three months and the pul-
monologist once a year. The patients at the stage 4 and requiring supplemental
oxygen should consult the general practitioner every month and the pulmonolo-
gist twice a year.

4.2 A BRSs Formal Model for COPD Clinical Pathway

In this work, we address the formal modelling of COPD clinical pathway using
BRSs. The BRSs formalism enables describing the collaborative plan of inter-
vention which involves a multidisciplinary care team.

Figure 2 shows the bigraphical model associated with COPD healthcare sys-
tem. Each actor involved in the cure of COPD is modelled by a node having
well-defined control.

The set of controls associated to a bigraph depicts the type of modelled
entities. It shows also how nodes behave dynamically. Thus, we have four kinds
of nodes: P , G, L and S modelling respectively the following actors: the patient,
the general practitioner, the laboratory technician and the pulmonologist.

The bigraph regions indexed 0, 1 and 2 depict respectively: the general prac-
titioner office, the medical laboratory and the pulmonologist office. The sites
represent placeholders for hosting further patients nodes. They indicate if there
are patients in doctors’ offices or in the laboratory.

The dynamics of the cure process is achieved using BRSs reaction rules.
Table 1 shows the reaction rules that implement COPD care activities.

A set of tools for editing, executing and checking BRSs was proposed. But,
these tools are not yet sufficiently mature, they do not allow expressing all con-
cepts of BRSs. Also, the provided checking techniques only allow the verification
of limited reachability properties, such as the deadlock freedom property [13,24].

Another limit of BRS tools is that they are unable to make an order among
reaction rules. To overcome this limitation, we provide a Maude implementation
of BRSs that enables ordering treatment tasks within CPs (the control flow
requirement of CPs). More concretely, the Maude strategy expressions guide the
execution of reaction rules.
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Table 1. Reaction rules of COPD treatment process
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Fig. 2. The COPD pathway bigraphical model

Listing 1.1 shows the functional Maude module (the equational theory
achievement) that implements key elements of bigraphs. To do that, we have
followed the approach of BigMC [24] which represents nodes using their controls
(their kinds) and link graphs are restricted to show outer names.

Data and operations of some predefined Maude modules are reused using the
import statements of line 2 (see Listing 1.1). From lines 3 to 6, we declare sorts
and subsort relations which are required to represents elements of bigraphs. The
operation of lines 21 implements the nesting of nodes. The operator “|” declared
on line 23 implements the juxtaposition of nodes, the identity element “nil”
denotes the empty bigraph, and the operator “||” concatenates roots. Finally,
the operation of line 27 defines sites indexed by natural numbers.

The “BIGRAPH” module of listing 1.1 constitutes a generic model of CPs.
To model any CP as a bigraph, we need importing the module “BIGRAPH” and
using its operators to define the CP bigraph architecture. In addition, we use
constants of the sorts “Qid” and “String” to name controls and outer names.

So, in order to encode the COPD biraph of Fig. 2 in Maude we use the
following equation:

eq system = %passive ’P:2; %active ’G:1; %active ’L:1; %active ’S:1 & ’P[−,−] | ’G[−] ||
’L[−] || ’S[−] .

Bigraphs dynamics is implemented using Maude rewriting rules. The rewrite
rules lefthand side and righthand side encode the reaction rules redex and reac-
tum. The Maude system module “REACTION-RULES” of Listing 1.2 shows
rewriting rules that implement reaction rules of Table 1. At the first line, the
module “BIGRAPH” of Listing 1.1 is included. Then, dedicated labelled rewrite
rules are given. Note that nodes attached to a common name are linked together
and the character “-” represents an anonymous outer name that may not be
referenced elsewhere.

To respect the COPD plan of examination mentioned in the Sect. 4.1, we
make use of the Maude object level strategies. We use a strategy provided in a
separate module. This makes it possible to control, in different ways, treatments
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Listing 1.1. The Maude implmentation of the term language representation of
Bigraphs

1 (fmod BIGRAPH is

2 protecting NAT . protecting STRING . protecting QID .

3 sorts Bigraph Cntrl Cntrls BigTerms BigTerm Nams Nam CtrlNm .

4 subsort Cntrl < Cntrls . subsort Nam < Nams .

5 subsort Qid < CtrlNm . subsort String < Nam .

6 subsort BigTerm < BigTerms .

7 ∗∗∗ Associate controls to nodes

8 op %passive : : CtrlNm Nat −> Cntrl [ctor prec 25] .

9 op %active : : CtrlNm Nat −> Cntrl [ctor prec 25] .

10 op ; : Cntrls Cntrls −> Cntrls [ctor assoc comm prec 26] .

11 op & : Cntrls BigTerms −> Bigraph [ctor prec 27] .

12 ∗∗∗ Declaring outer names

13 op ‘, : Nams Nams −> Nams [ctor assoc comm prec 26] .

14 op − : −> Nam [ctor] .

15 op < > : BigTerm −> BigTerm [ctor] .

16 ∗∗∗ Declaring the empty bigraph

17 op nil : −> BigTerm [ctor] .

18 ∗∗∗ Nodes structure

19 op ‘[ ‘] : CtrlNm Nams −> BigTerm [ctor prec 22] .

20 ∗∗∗ Nesting of nodes

21 op ‘[ ‘]. : CtrlNm Nams BigTerm −> BigTerm [ctor prec 24 ] .

22 ∗∗∗ Juxtaposition of nodes

23 op | : BigTerm BigTerm −> BigTerm [ctor assoc comm id: nil prec 24 ] .

24 ∗∗∗ Juxtaposition of roots

25 op || : BigTerm BigTerm −> BigTerm [ctor assoc prec 25] .

26 ∗∗∗ numbered sites

27 op $ : Nat −> BigTerm [ctor prec 21] .

28 endfm)

of the COPD. We Apply the strategies combinators: “;”, “|”, “*” and “+” over
COPD reaction rules (identified by the corresponding rules labels) to implement
the following types of treatments controls: sequential, conditional and iteration.

In the module COPD-STRAT of Listing 1.3 the strategy expression “path-
Way” controls rewriting rules of the system module “REACTION-RULES”.

The strategy “pathWay” begins by the sub strategy “rl1 ; rl2 ; rl3” that
executes sequentially the clinical examination and the laboratory tests. Then,
the strategy “( rl4 ; rl5 | rl6 )” reflects either referral to a pulmonologist to
confirm diagnosis or the launch of the monitoring within a stage. Finally, the
last three iterative strategy expressions implement the three main treatment
procedures.

Note that the strategy expression uses the three copies: rl7’, rl7” and rl7’’’
of the rule rl7 to start differently the three main treatment procedures of the
COPD.
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Listing 1.2. COPD CP reaction rules

1 ( mod REACTION−RULES is

2 including BIGRAPH .

3 ∗∗∗ The first appointment with the general practitioner

4 rl [ rl1 ] : ctrls & ’P[−,−] | ’G[−] || ’L[−] || ’S[−] X ls => ctrls & ’G[”cl−ex”] . <’P[”

cl−ex”,−] > || ’L[−] || ’S[−] X ls .’ gp−examination .

5 ∗∗∗ Performing medical analysis to identify COPD

6 rl [ rl2 ] : ctrls & ’G[”cl−ex”] . < ’P[”cl−ex”,−] > || ’L[−] || ’S[−] X ls => ctrls & ’G

[”cl−ex”] || ’L[”med−an”] . < ’P[ ”cl−ex”, ”med−an”] > || ’S[−] X ls.’lab−analysis .

7 ∗∗∗ Receiving medical analysis results

8 rl [ rl3 ] : ctrls & ’G[”cl−ex”] || ’L [”med−an”] . <’P[”cl−ex”, ”med−an”] > || ’S[−] X

ls => ctrls & ’G[”cl−ex”] . < ’P[”cl−ex”, ”med−an”] > || ’L[”med−an”] || ’S[−] X ls.’

rcv−analysis .

9 ∗∗∗ The plumonologist performs further examinations to confirm COPD

10 rl [ rl4 ] : ctrls & ’G[”cl−ex”].< ’P[”cl−ex”, ”med−an”] > || ’L [”med−an”] || ’S[−] X ls

=> ctrls & ’G[−] || ’L[”med−an”] || ’S[”cl−ex”] . <’P [”cl−ex”, ”med−an”] > X ls . ’

diag−diff .

11 ∗∗∗ The start of a new medical stage

12 rl [ rl5 ] : ctrls & ’G[−] || ’L[”med−an”] || ’S [”cl−ex”] . < ’P[ ”cl−ex”, ”med−an”] >

X ls => ctrls & ’P[−, −] | ’G [−] || ’L[−] || ’S[−] X ls .

13 ∗∗∗ The start of a new medical stage

14 rl [ rl6 ] : ctrls & ’G[”cl−ex”] . < ’P[”cl−ex”, ”med−an”] > || ’L[”med−an”] || ’S[−] X

ls => ctrls & ’P[−, −] | ’G [−] || ’L[−] || ’S[−] X ls .

15 ∗∗∗ Monitoring by the general practitioner during a stage

16 rl [ rl7 ] : ctrls & ’P[−,−] | ’G[−] || ’L[−] || ’S[−] X ls => ctrls & ’G[”md−suprvs”] .

< ’P[”md−suprvs”,−] > || ’L[−] || ’S[−] X ls .

17 ∗∗∗ Monitoring by the plumonologist during a stage

18 rl [ rl8 ] : ctrls & ’P[−,−] | ’G[−] || ’L[−] || ’S[−] X ls => ctrls & ’G[−] || ’L[−] | ’S

[”md−suprvs”] . < ’P [”md−suprvs”, −] > X ls .

19 endm)

4.3 Execution and Analysis of COPD Clinical Pathway

In addition to the ease of its understanding, the bigraphical model of COPD CP
can be analysed formally using the Maude System. The application of strategy
expressions to guide execution of medical treatments reduces the size of the
generated state space and minimizes the execution time for checking.

To ask for an execution of the COPD CP according to the strategy expres-
sion “pathWay” we use the command “(srew system using pathWay .)”. The
command “(next .)” can be used to generate the next solution (see Listing 1.5).

Listing 1.3. COPD CP control flow

1 (smod COPD−STRAT is

2 strat pathWay : @ Bigraph .

3 var B : Bigraph .

4 sd pathWay := rl1 ; rl2 ; rl3 ; ( rl4 ; rl5 | rl6 ) ; ( rl7 ’ ; rl8 ; rl7 ; rl8 ) ∗ ; (

rl7 ’’ ; rl8 ; rl7 ; rl8 ; rl7 ; rl8 ; rl7 ; rl9 ; rl10 ) ∗ ; ( rl7 ’’’ ; rl8 ; rl7 ;

rl8 ; rl7 ; rl8 ; rl7 ; rl8 ; rl7 ; rl8 ; rl7 ; rl9 ; rl10 ; rl7 ; rl8 ; rl7 ; rl8 ;

rl7 ; rl8 ; rl7 ; rl8 ; rl7 ; rl8 ; rl7 ; rl9 ; rl10 ) ∗ .

5 endsm)
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Listing 1.4. COPD CP test strategies

1 including SYSTEM . var B : Bigraph .

2 rl [ test1 ] : BX(((’gp−examination.’lab−analysis). ’rcv−analysis).’diag−diff).’stage3 =>

BX(((’gp−examination . ’lab−analysis).’rcv−analysis).’diag−diff).’stage3 .

3 rl [ test2 ] : BX((((gp−examination.’lab−analysis). ’rcv−analysis).’diag−diff).’stage2) .’

stage1 => BX((((gp−examination.’lab−analysis).’rcv−analysis). ’diag−diff).’stage2 ).’

stage1 .

4 rl [ test3 ] : BX((((gp−examination.’lab−analysis). ’rcv−analysis).’diag−diff).’stage1) .’

stage1 => BX((((gp−examination.’lab−analysis).’rcv−analysis). ’diag−diff).’stage1 ).’

stage1 .

Listing 1.5. Execution and analysis of the COPD CP BRS model

1 Maude > (srew system using pathWay . )

2 rewrites : 463 in 6296478266ms cpu (431ms real) (0 rewrites/second)

3 rewrite with strategy :

4 result System :

5 %active ’L:1 ; %active ’G:1 ; %active ’S:1 ; %passive ’P : 2 & ’G[−] |’P[−,−] || ’L[−] ||
’S[−]X(((’gp−examination). ’lab−analysis).’rcv−analysis).’stage1

6 =================

7 Maude > (next .)

8 rewrites : 545 in 6296478266ms cpu (35ms real) (0 rewrites/second)

9 next solution rewriting with strategy :

10 result System :

11 %active ’L:1; %active ’G:1; %passive ’S:1; %passive ’P:2 & ’G[−]| ’P[−,−]|| ’L[−]|| ’S[−]

X(((’gp−examination). ’lab−analysis).’rcv−analysis).’stage2

12 =================

13 Maude > (srew system using pathWay ; test1 .)

14 rewrites : 2679 in 6296478266ms cpu (172ms real) (0 rewrites/second)

15 rewrite with strategy :

16 result System :

17 %active ’L:1; %active ’G:1; %active ’S:1; %passive ’P:2 & ’G[−]| ’P[−,−]|| ’L[−]|| ’S[−]

X(((’gp−examination. ’lab−analysis).’rcv−analysis).’diag−diff) .’ stage3

18 =================

19 Maude > (srew system using pathWay ; test2 .)

20 rewrites : 3262 in 6296478266ms cpu (176ms real) (0 rewrites/second)

21 rewrite with strategy :

22 No possible rewriting .

23 =================

24 Maude > (srew system using pathWay ; test3 .)

25 rewrites : 1491 in 6296478266ms cpu (111ms real) (0 rewrites/second)

26 rewrite with strategy :

27 result System :

28 %active ’LA : 1 ; %active ’MG : 1 ; %passive ’MP : 1 ; %passive ’P : 2 & ’MG[−]| ’P

[−,−]|| ’LA[−]|| ’MP[−]X((((’gp−examination . ’lab−analysis). ’rcv−analysis). ’diag−
diff). ’stage1). ’stage1

To be able to check some useful properties on the COPD CP, we have
expanded the bigraphical model that represents the COPD CP by an ordered list
of quoted identifiers. Each element of this list represents important examinations
and the beginning of the three main treatment procedures.
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The two rewriting rules “test1” and “test2” (see Listing 1.4, lines 3 and 4) are
then combined with the strategy expression “pathWay” to check the properties:

– A patient who suffers from the COPD can be at a severe stage after the first
diagnosis,

– Can early stages of COPD be reversed? More precisely, the property checks
whether or not the second treatment procedure could come first.

The strategy command associated to the first property succeeds and returns
a Maude term that represents a patient at the last treatment procedure after
the first diagnostic (see the commands of line 15, Listing 1.5).

Concerning the second property, its strategy command fails by returning as
results the message “No possible rewriting” (see line 22, Listing 1.5). This result
is due to the fact that COPD is a chronic disease, a patient suffering from the
COPD cannot be cured by medication.

Finally, the last strategy rewrite command of the Listing 1.5 checks repetitive-
ness of medical examinations of the first stage. The command succeeds because
COPD patients can remain at the same stage for an indefinite period.

5 Conclusion

In this paper, we have proposed a BRSs approach for modelling both structural
and behavioural aspects of clinical pathways. The sorting mechanism of BRSs
is used to distinguish between the healthcare practitioners and to identify their
roles in the healthcare process. Reaction rules are applied to simulate the dif-
ferent care activities. To respect medical dependencies among treatment steps,
we have used the strategies language of Maude over a Maude implementation of
key elements of bigraphs.

In this paper, we have focused more specifically on modelling coordination
between the healthcare professionals for a single CP. Our proposal can be used
to resolve contradictions and conflicts that can arise when combining several
CPs.

As future extension of this work, we plan to enlarge the proposed formalisa-
tion to tackle the resources management using bigraphs with sharing. We intend
also to tackle the exception and deviation issue of CPs.
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Abstract. Register automata (RA) are a computational model that
can handle data values by adding registers to finite automata. Recently,
weighted register automata (WRA) were proposed by extending RA so
that weights can be specified for transitions. In this paper, we first inves-
tigate decidability and complexity of decision problems on the weights
of runs in WRA. We then propose an algorithm for the optimum run
problem related to the above decision problems. For this purpose, we
use a register type as an abstraction of the contents of registers, which
is determined by binary relations (such as =, <, etc.) handled by WRA.
Also, we introduce a subclass where both the applicability of transition
rules and the weights of transitions are determined only by a register
type. We present a method of transforming a given WRA satisfying the
assumption to a weighted directed graph such that the optimal run of
WRA and the minimum weight path of the graph correspond to each
other. Lastly, we discuss the optimal run problem for weighted timed
automata as an example.

1 Introduction

There have been many extensions of finite automata that can manipulate data
values. Among them, register automata (abbreviated as RA) introduced in [12]
have the advantages that important decision problems including membership
and emptiness are decidable and the class of languages accepted by RA is closed
under standard language operations except complementation. In a k-RA, k reg-
isters are associated with each state. An input is a finite sequence of pairs of
a symbol from a finite alphabet and a data value from an infinite set. Each
transition can compare the contents of the registers and the current input data
value and if this test succeeds, the input data value is loaded to the registers
specified by the transition and the state is changed. The complexity of decision
problems has been analyzed [11,18]. Also, [13] points out that RA is a good
formal model for querying structured data such as XML documents. Recently,
weighted RA was proposed in [5] by incorporating weights into RA so that var-
ious quantities such as time, information flow and costs needed for transitions
and/or data manipulations can be formally represented as weights. A k-WRA is
c© Springer Nature Switzerland AG 2019
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https://doi.org/10.1007/978-3-030-32505-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32505-3_6&domain=pdf
https://doi.org/10.1007/978-3-030-32505-3_6


92 H. Seki et al.

a k-RA equipped with weight functions for transitions and data manipulations.
The weight function for data manipulations can represent weights depending on
data values such as the cost depending on the elapsed time in timed automata. A
semiring is assumed to represent weights and to assign a weight to a switch (one
step move), a run (accepting sequence of switches), a data word in a system-
atic way. Closure properties of the data series recognized by WRA are discussed
and an MSO logical counterpart of WRA is proposed and studied in depth in
[5]. However, decidability and complexity of basic problems on WRA were not
discussed. Timed automata (abbreviated as TA) are well-known extensions of
finite automata that can deal with time by clock variables [3]. TA was extended
to weighted TA (WTA) and the optimal-reachability problems have been inves-
tigated [4,15]. In [5], TA and WTA are shown to be regarded as subclasses of
RA and WRA, respectively.

In this paper, we discuss optimal run problems and related decision problems
for WRA, motivated by [3]. First, we clarify the decidability and complexity
of the decision problems on weight computation and weight realizability. More
concretely, we show that the problem to decide whether there is a run of a given
data word whose weight takes a given value in a given WRA is NP-complete, and
the problem to compute the weight of a given data word, which is the sum of all
runs of the data word, in a given WRA is in PSPACE and #P-hard. We also show
that the following two weight realizability problems are both undecidable: the
problem to decide whether there is a run in a given WRA whose weight takes a
given value and the problem to decide whether there is a data word whose weight
in a given WRA equals to a given value. Note that the former two problems and
the latter two problems can be regarded as extensions of the membership and
emptiness problems for RA, which are known to be NP-complete and PSPACE-
complete, respectively.

Next, we utilize register type, which was introduced in [20] as an abstraction
of the contents of registers, by identifying the data values indistinguishable by
comparisons allowed in the guards of transitions. We show an equivalence trans-
formation from a given k-WRA to a k-WRA such that the exact register type
is annotated to each state by associating register types with states before and
after a transition. A WRA obtained by this transition decomposition by register
type is called a normal form WRA.

Then, we move to the main topic, the optimal run problem for WRA, which
is a problem to compute a run whose weight takes the infimum among all the
runs in a given WRA. The idea is simple and similar to the one in [4]: A given
WRA is translated into a directed graph where a node stands for a state and an
edge between two nodes stands for switches between them where the weight of
the edge is the infimum of the weights of those switches. In order to determine
the weight of each edge, the infimum of the weights must be independent of the
contents of registers. However, this does not hold in general, unlike for WTA. To
overcome this issue, we introduce two reasonable assumptions: for each transi-
tion, the infimum of the weights of switches realized by the transition is uniquely
determined independent of the contents of registers (weighted simulation); and
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the above infimum can be computed when weighted simulation holds (weight
computability). These two assumptions are a weighted version of simulation and
progress proposed in [20]. For a given WRA satisfying the above two properties,
we can construct a directed graph as intended, and we can obtain an optimal
run by an existing graph algorithm that computes the minimum-weight path in
the constructed graph.

Finally, we discuss the optimal run problem for weighted timed automata
(WTA) as an example of the application of the proposed method. We focus on
the subclass of WRA obtained from WTA by the translation of [5]. Intuitively,
a register type corresponds to a clock region of TA [3]. Moreover, [4] shows that
there always exists an optimal (minimum weight) path that visits only boundary
regions and limit regions because all clock constrains of TA are linear. If we
restrict the register types to those corresponding to boundary regions and limit
regions, weighted simulation and weight computability hold where the directed
graph constructed in our paper corresponds to the subregion graph in [4].

Related Work. Register automata (RA) were proposed by Kaminsky and
Francez [12] as finite-memory automata where they show that the membership
and emptiness problems are decidable, and the class of languages recognized by
RA are closed under union, concatenation and Kleene-star. Later, the compu-
tational complexity of the above two problems are analyzed in [11,18]. In [10],
register context-free grammars (RCFG) as well as pushdown automata over an
infinite alphabet were introduced as extensions of RA and the equivalence of the
two models were shown. Properties of RCFG such as closure and complexity of
decision problems are investigated in depth in [10,19,20].

As extensions of finite automata other than RA, data automata [9], peb-
ble automata (PA) [16] and nominal automata (NA) [8] are known. Libkin and
Vrgoč [14] argue that RA is the only model that has efficient data complexity
for membership among the above mentioned formalisms. Neven et al. consider
variations of RA and PA, which are either one way or two ways, deterministic,
nondeterministic or alternating. They show inclusion and separation relation-
ships among these automata, FO(∼, <) and EMSO(∼, <), and give the answer
to some open problems including the undecidability of the universality problem
for RA [17].

Time-optimal reachability and the related and generalized problems for
weighed timed automata (WTA) have been investigated. The single-source opti-
mal reachability problem for WTA is solved by a branch-and-bound algorithm
in [7]. Alur et al. [4] solved the optimal reachability problem for TA, which
is more general than the single-source one, by introducing limited regions and
transforming a WTA to a weighted graph. The decision version of the optimal
reachability problem is shown to be PSPACE-complete in [15].

The existing study most related to this paper is Babari et al.’s [5,6], where
RA is extended to weighted RA (WRA), and properties including closure and
MSO logical characterizations are studied in depth as mentioned in the beginning
of this section. Note that WRA is different from cost register automata [2] where
data values and weights are not separated and the basic problems are undecidable
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even for very restricted subclass such as copyless cost register automata (CRA)
[1]. This paper partially answers to open problems and conjectures raised in [5]
about the decidability of the optimal run problem for WRA under reasonable
assumptions as well as the complexity of decision problems for WRA which are
counterparts of the membership and emptiness problems for models without
weights.

2 Definitions

Let B = {0, 1} be the set of truth values, N = {0, 1, . . .} be the set of natural
numbers and R≥0 be the set of nonnegative reals. For a natural number k ∈ N,
let [k] = {1, . . . , k}. By |β|, we mean the cardinality of β if β is a set and the
length of β if β is a finite sequence. Let Σ be a finite alphabet and D be an
infinite set of data values. We call w ∈ (Σ × D)+ a data word (over Σ and D).
For a finite collection R of binary relations over D, D = 〈D,R〉 is called a data
structure.

Intuitively, an automaton is equipped with a certain number of registers that
can store a data value. Formally, an assignment of data values to k registers
(abbreviated as k-register assignment or just assignment if k is irrelevant) is a
mapping θ : [k] → D. The collection of k-register assignments is denoted as Θk.
For a k-register assignment θ, θ(i)(i ∈ [k]) is the data value assigned to the i-th
register by θ. Let Fk denote the set of guard formulas (or simply, guards) defined
by ϕ := tt | xR

i | xR−1

i | inR | ϕ ∧ ϕ | ¬ϕ (i ∈ [k], R ∈ R). For an assignment θ,
a data value d ∈ D and a guard ϕ, the satisfaction relation (θ, d) |= ϕ is defined
inductively on the structure of ϕ as (θ, d) |= xR

i iff (θ(i), d) ∈ R, (θ, d) |= xR−1

i

iff (d, θ(i)) ∈ R, (θ, d) |= inR iff (d, d) ∈ R and the meaning of tt, ∧ and ¬ are
defined in the usual way. Define ff ≡ ¬tt, ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2).

Definition 1 ([12,13]). A k-register automaton (k-RA) over a finite alphabet
Σ and a data structure D is a tuple A = (Q,Q0, T,Qf ) where

– Q is a finite set of states,
– Q0, Qf ⊆ Q are sets of initial and final states, respectively,
– T ⊆ Q × Σ × Fk × 2[k] × Q is a set of state transitions. ��
Let A = (Q,Q0, T,Qf ) be a k-RA over Σ and 〈D,R〉. A state transition (or
transition) t = (q, a, ϕ, Λ, q′) ∈ T where q, q′ ∈ Q, a ∈ Σ,ϕ ∈ Fk, Λ ∈ 2[k]

is written as q →a
ϕ,Λ q′ and we denote by label(t) the second component a of

t. The description length of a k-RA A = (Q,Q0, T,Qf ) is defined as ‖A‖ =
|Q| + |T |max{(log |Q| + k) + ‖ϕ‖ | q →a

ϕ,Λ q′ ∈ T}, where ‖ϕ‖ is the description
length of ϕ, defined in a usual way.

For an assignment θ ∈ Θk, Λ ∈ 2[k] and a data value d ∈ D, the updated
assignment θ[Λ ← d] ∈ Θk is θ[Λ ← d](i) = d if i ∈ Λ and θ[Λ ← d](i) = θ(i)
otherwise. For a state q ∈ Q and an assignment θ ∈ Θk, (q, θ) is called an
instantaneous description (ID). For two IDs c = (q, θ) and c′ = (q′, θ′), if there
are d ∈ D, t = q →a

ϕ,Λ q′ ∈ T such that (θ, d) |= ϕ and θ′ = θ[Λ ← d], then
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c �t,d c′ is called a switch from c to c′ by t and d in A. The initial value of any
register is ⊥ (⊥ ∈ D). The initial ID and an accepting ID are c0 ∈ Q0 × ⊥k and
cf ∈ Qf × Θk, respectively. A run in A is a finite sequence of switches from the
initial ID to an accepting ID ρ = c0 �t1,d1 c1 �t2,d2 c2 · · · �tn,dn

cn. The label
of a run ρ is label(ρ) = (label(t1), d1) . . . (label(tn), dn) and ρ is called a run of
label(ρ) in A. For w ∈ (Σ × D)+, RunA(w) is the set of all runs of w in A.

We define L(A) = {w | RunA(w) �= ∅}, called the data language recognized
by A. A data language L ⊆ (Σ × D)+ is recognizable if there is an RA A such
that L = L(A).

Example 1. Let Σ = {a}, R = {<,=, >}. An example of 2-RA A1 is shown in
Fig. 1 where ⊥ = 0. For an input data word w, A1 loads any data value, say
di, in w to the first register nondeterministically by t2. After that, every time a
data value not equal to di comes, A1 stays at q1 by t3 or t4 until the same value
di comes, at which A1 moves to q2 by t5. In this way, A1 nondeterministically
chooses two positions having an identical data value di from the input data
word, and the data values between them are not equal to di. We have L(A1) =
{(a, d1) . . . (a,dn) ∈ (D × Σ)+ | i, j ∈ [n], i < j, di = dj and for k = i + 1, ..., j −
1, di �= dk}.

Fig. 1. RA A1

We will use notations Σ, D = 〈D,R〉 and S = (S,+, ·, 0, 1) to implicitly
denote a finite alphabet, a data structure and a semiring, respectively.

Definition 2 ([5]). A k-register weighted automaton (k-WRA) over Σ,D,S is
a tuple A = (Q,Q0, T,Qf ,wt) where

– (Q,Q0, T,Qf ) is a k-RA over Σ,D, called the base RA of A,
– wt = (wtt,wtd) where wtt : T → S and wtd : (T × [k]) → ((D × D) → S). ��
Let A = (Q,Q0, T,Qf ,wt) be a k-WRA as above. wtt(t) represents the weight of
a transition t ∈ T . wtd(t, j) is the weight of the j-th register at a transition t ∈ T .
More precisely, wtd(t, j)(θ(j), d) represents the weight needed for manipulating
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the j-th register for a switch (q, θ) �t,d c′. The weight of a switch c �t,d c′ is
defined as

wt((q, θ) �t,d c′) =
k∏

j=1

wtd(t, j)(θ(j), d) · wtt(t).

A run in A is just a run in the base RA of A. The weight of a run ρ = c0 �t1,d1

c1 �t2,d2 c2 · · · �tn,dn
cn in A is defined as

wt(ρ) =
n∏

i=1

wt(ci−1 �ti,di
ci).

We assume that there are constants W1,W2 ∈ R≥0 such that for any t ∈ T , wtt(t)
can be computed in W1 time and for t ∈ T, j ∈ [k], d1, d2 ∈ D, wtd(t, j)(d1, d2)
can be computed in W2 time. We define the description length of a k-WRA A
as ‖A‖ = ‖Ab‖ where Ab is the base RA of A.1

A data series over Σ, D and S is a mapping U : (Σ × D)+ → S. The
data series recognized by a WRA A is the data series [[A]] defined as [[A]](w) =∑

ρ∈RunA(w) wt(ρ) for each w ∈ (Σ × D)+. A data series U : (Σ × D)+ → S is
recognizable if there is a WRA that recognizes U .

Example 2. Let Σ = {a}, D = 〈N, {<,=, >}〉, and the semiring Rtrpc = (R≥0 ∪
{∞},min,+,∞, 0), known as a tropical semiring, where min acts as the addi-
tion and + acts as the multiplication of the semiring. Let A2 be 2-WRA that
has A1 of Example 1 as its base RA. The weight functions wt = (wtt,wtd) are
defined as: wtt(t3) = 1 and wtt(t) = 0 for every transition t other than t3, and
wtd(t, j)(d, d′) = 0 for every argument. A2 nondeterministically chooses two posi-
tions having an identical data value di and counts the data values greater than
di between them by t3. The data series recognized by A2 is such that for w ∈
(Σ × D)+, [[A2]](w) = min{the number of d in di+1, · · · , dj−1 such that d > di |
w = (a, d1) . . . (a,dn), i, j ∈ [n], i < j, di = dj and for k = i+1, ..., j −1, di �= dk}.

3 Decision Problems

In this section, we analyze the computational complexity of the following prob-
lems for WRA. The results are summarized in Table 1.

Definition 3 (The weight computation problems)
Input: a k-WRA A over Σ, D, S and a data word w ∈ (Σ × D)+. For the run
weight computation problem, a weight s ∈ S is also given.
(The run weight computation problem) ∃ρ ∈ RunA(w).wt(ρ) = s?
(The data word weight computation problem) Compute [[A]](w).
The input size of both problems is ‖A‖ + |w|.
1 We do not include the size of the weight part because of the assumption that the
computation of the weights of a single transition and a single register can be done
in constant time.
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Table 1. Complexity results

Problem Complexity

Run weight computation NP-complete

Data word weight computation PSPACE-solvable, #P-hard (#P-complete when
a weight is a natural number, a transition weight
function is bounded and every register
manipulation weight is 1)

Run weight realizability Undecidable

Data word weight realizability Undecidable

Definition 4 (The weight realizability problems)
Input: a k-WRA A over Σ, D, S and a weight s ∈ S
(The run weight realizability problem) ∃w.∃ρ ∈ RunA(w).wt(ρ) = s?
(The data word weight realizability problem) ∃w.[[A]](w) = s?
The input size of both problems is ‖A‖.
Theorem 1. The run weight computation problem is NP-complete.

Proof. Assume we are given a k-WRA A = (Q,Q0, T,Qf ,wt) over Σ, 〈D,R〉,
S = (S,+, ·, 0, 1), a data word w ∈ (Σ × D)+ and s ∈ S.

(NP solvability). By the assumption on complexity of computing weights of
WRA, wt(c �t,d c′) can be computed in O(W1 + W2k) time. Thus, for any run
ρ ∈ RunA(w), the weight wt(ρ) can be computed in O((W1 + W2k)|w|) time.
Hence, we can nondeterministically choose a run of w and test whether wt(ρ) = s
in polynomial time.

(NP-hardness). We restrict the problem as:

For every transition t ∈ T , j ∈ [k] and d1, d2 ∈ D, wtt(t) =
wtd(t, j)(d1, d2) = 1. Also s = 1.

Then, for any switch c �t,d c′, we have wt(c �t,d c′) = 1. This implies that
for every run ρ ∈ RunA(w), we have wt(ρ) = 1 = s. Therefore, the problem
restricted in this way asks for an input k-WRA A and a data word w, whether
∃ρ ∈ RunA(w). The k-WRA in this setting can be regarded as a RA (standard
register automata without weight) and the above problem is equivalent to the
membership problem that asks whether a given data word w is accepted by
A regarded as an RA. Hence the run weight computation problem is NP-hard
because the membership problem for RA is NP-complete [13]. ��
To discuss the complexity of the data word computation problem, we use the
complexity class #P, the class of function problems that can be solved by count-
ing the number of accepting runs of a polynomial-time non-deterministic Turing
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machine. An example of #P-complete problem is #SAT: How many different
variable assignments will satisfy a given general boolean formula?

Let N = (N,+, ·, 0, 1) be the semiring of natural numbers.

Lemma 1. The data word weight computation problem of k-WRA A =
(Q,Q0, T,Qf , (wtt,wtd)) over Σ, 〈D,R〉 and N is #P-hard even if wtt(t) =
wtd(t, j)(d, d′) = 1 for every t ∈ T, j ∈ [k], d, d′ ∈ D.

Proof. We reduce #2SAT problem, which is known to be #P-complete, to
the data word weight computation problem. Let φ = c1 ∧ c2 ∧ · · · ∧ cm be
a given 2-CNF, where each ci (i ∈ [m]) is a clause consisting of two liter-
als and z1, . . . , zn are Boolean variables appearing in φ. We construct n-WRA
Aφ = (Q,Q0, T,Qf , (wtt,wtd)) over Σ, 〈D,R〉,N and input data word w from
φ as follows. Let Σ = {a}, D be an infinite set containing � and ⊥, and let
R = {=, �=} where = and �= are (an extension of) the equality on Boolean val-
ues (logical equivalence) and its negation, respectively. Note that ⊥ is the initial
value. The values of all weight functions wtt and wtd are defined as 1 ∈ N. Let
Q = {qi | i ∈ [n]} ∪ {qk,l | k ∈ [m], l ∈ [2]} ∪ {q′

k | k ∈ [m]} ∪ {qr, qf}, Q0 = {q1}
and Qf = {qf}. The input word is w = (a,�) · · · (a,�) of length |w| = n + 2m.
We construct the following transitions and add them to T : The first group of
transitions nondeterministically simulates an assignment of a Boolean value to
each zi (i ∈ [n]). If xi is updated to be �, it means zi is assigned tt, and other-
wise, it means zi is assigned ff .

q1 →a
tt,{1} q2, q1 →a

tt,∅ q2, . . . , qn →a
tt,{n} q1,1, qn →a

tt,∅ q1,1.

The second group of transitions deterministically evaluates the truth value of
each clause ck = yk,1 ∨ yk,2 (k ∈ [m]).

qk,1 →a
x=

i ,∅ q′
k, qk,1 →a

x�=
i ,∅ qk,2 if yk,1 = zi,

qk,1 →a
x�=

i ,∅ q′
k, qk,1 →a

x=
i ,∅ qk,2, if yk,1 = zi,

qk,2 →a
x=

i ,∅ qk+1,1, qk,2 →a
x�=

i ,∅ qr, if yk,2 = zi,

qk,2 →a
x�=

i ,∅ qk+1,1, qk,2 →a
x=

i ,∅ qr, if yk,2 = zi,

q′
k →a

tt,∅ qk+1,1

where qm+1,1 is the final state qf . The state qr is a dead state with no outgo-
ing transition. The states q′

k are used to skip the evaluation of literals when a
preceding literal evaluates to � in the clause.

For a truth-value assignment α : {z1, . . . , zn} → {tt,ff }, let θα ∈ Θn be
θα(xi) = � if α(zi) = tt and θα(xi) = ⊥ otherwise. Assume Aφ is fed with the
input data word w = (a,�) . . . (a,�) of length n + 2m. After conducting the
first group of transitions, the assignment of Aφ becomes θα for some truth-value
assignment α. Because the second group of transitions deterministically verifies
whether φ evaluates to tt without register update, that part of the run is uniquely
determined. In other words, there is a one-to-one correspondence between the
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set of maximal sequences of switches of w in Aφ and the set of assignments.
Therefore, a maximal sequence of switches of w in Aφ is a run ρ of w if and only
if φ is satisfied by the truth-value assignment α corresponding to the assignment
θα obtained by ρ. ��
Lemma 2. The data word weight computation problem for k-WRA is PSPACE-
solvable. When the semiring is N , wtt is bounded and wtd(t, j)(d1, d2) = 1
for every t ∈ T and j ∈ [k] and d1, d2 ∈ D for a given k-WRA A =
(Q,Q0, T,Qf , (wtt,wtd)), the problem becomes #P-solvable.

Proof. PSPACE-solvability is easy to show. The weight of a run of an input data
word can be calculated in polynomial time by the proof of Theorem 1, and we
need additional polynomial space to store the sum of the weights of all runs of
the input data word.

Next, we discuss #P-solvability. From a k-WRA A = (Q,Q0, T,Qf , (wtt,
wtd)) over Σ, 〈D,R〉, N , we construct k-WRA A′ = (Q′, Q′

0, T
′, Q′

f , (wtt′,wtd′))
such that [[A′]] = [[A]] by dividing each run in A into several runs whose weights
are 1. For M = max{wtt(t) | t ∈ T}, we introduce new states q1, . . . , qM not
included in Q. Note that M is a constant by the assumption. The set of the
states of A′ is Q′ = {(q, qi) | q ∈ Q, i ∈ [M ]}, and the set of transitions is
T ′ = {(q, qi) →a

ϕ,Λ (q′, qj) | t = q →a
ϕ,Λ q′ ∈ T,wtt(t) = m, i ∈ [M ], j ∈ [m]}.

Also, let Q′
0 = {(qI , q1) | qI ∈ Q0}, and Q′

f = {(qf , qi) | qf ∈ Qf , i ∈ [M ]}. This
construction of A′ can be done in polynomial time. Therefore, the data word
weight computation problem is in #P under the given condition.

Theorem 2. Let A = (Q,Q0, T,Qf , (wtt,wtd)) be a k-WRA over Σ, 〈D,R〉,
N . If max{wtt(t) | t ∈ T} is uniformly bounded and wtd(t, j)(d1, d2) = 1 for
every t ∈ T , j ∈ [k] and d1, d2 ∈ D, then the data word weight computation
problem is #P-complete.

Proof. By Lemmas 1 and 2.

Theorem 3. The run weight realizability problem for k-WRA is undecidable
even if k = 1, all the values of weight functions are one and every relation of
the data structure is decidable.

Proof. We prove the theorem by a reduction from the Post correspondence
problem (PCP). Let I = 〈(u1, . . . , um), (v1, . . . , vm)〉 be a given instance of
PCP over Σ where ui, vi ∈ Σ∗ for i ∈ [m]. From I, we construct a 1-WRA
AI = ({q0, q, qf}, {q0}, T, {qf},wt) over {a}, 〈D,R〉,N where the data structure
〈D,R〉, the set T of transitions and the weight functions wt = (wtt,wtd) are
defined as follows.

– D = Σ∗×Σ∗ with ⊥ = (ε, ε) ∈ D as the initial value and R = {Ri | i ∈ [m]}∪
{EQ} where for x, y, x′, y′ ∈ Σ∗, (x, y)Ri(x′, y′) ⇔ (x′ = xui and y′ = yvi)
for i ∈ [m] and (x, y)EQ(x′, y′) ⇔ (x = y).

– T = {q0 →a

x
Ri
1 ,{1} q, q →a

x
Ri
1 ,{1} q | i ∈ [m]} ∪ {q →a

xEQ
1 ,∅ qf}.

– wtt(t) = wtd(t, 1)(d1, d2) = 1 for every t ∈ T , d1, d2 ∈ D.
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It is easy to see that I has a solution of PCP if and only if there is a run ρ of
some w ∈ ({a} × D)+ in AI such that wt(ρ) = 1.

Corollary 1. The data word weight realizability problem of k-WRA is undecid-
able even if k = 1, all the values of weight functions are one and every relation
of the data structure is decidable. ��
The above results imply that the realizability problems are already undecidable
for ordinary RA (w/o weights). This motivates us to introduce a subclass of
WRA for which the realizability problems and related optimization problems
are solvable while the weights make sense, which are given in Sect. 5.2.

4 Transition Decomposition by Register Type

In this section, we will define a normal form WRA. First, we introduce a register
type as a finite abstraction of assignments with respect to the relations in R of
a given data structure 〈D,R〉.
Definition 5 ([20]). A register type (of k registers) for a data structure 〈D,R〉
is an arbitrary function γ : ([k] × [k]) → (R → B). Let Γk denote the collection
of all register types of k registers. For an assignment θ ∈ Θk and a register type
γ ∈ Γk, if ∀i, j ∈ [k]∀R ∈ R.(γ(i, j)(R) = 1 ⇔ (θ(i), θ(j)) ∈ R) holds, we write
θ : γ and we say that the type of θ is γ. ��

Let A = (Q,Q0, T,Qf ,wt) be an arbitrary k-WRA. From A, we define
k-WRA A′ = (Q′, Q′

0, T
′, Q′

f ,wt′) as follows: Q′ = Q × Γk. Q′
0 = Q0 × {γ0}

where γ0 is defined as ∀R ∈ R[
(∀i, j ∈ [k].γ0(i, j)(R) = 1) ⇔ ((⊥,⊥) ∈ R)

]
.

Q′
f = Qf ×Γk. T ′ is the smallest set of transitions t′ = (p, γ) →a

ϕ′,Λ (q, γ′) where

t = p →a
ϕ,Λ q ∈ T , γ, γ′ ∈ Γk, ϕ′ = ϕ ∧ ∏

R∈R(
∏k

i=1 αR
i ∧ βR

i ) ∧ δR,
αR

i ∈ {xR
i ,¬xR

i }, βR
i ∈ {xR−1

i ,¬xR−1

i }, δR ∈ {inR,¬inR}, ϕ′ �≡ ff and
if θ ∈ Θk, d ∈ D, θ : γ, (θ, d) |= ϕ′, (p, θ) �t,d (q, θ[Λ ← d]) then
θ[Λ ← d] : γ′.

In the above definition, ϕ′ says that in addition to ϕ, whether the contents of
the i-th register and an input data value d satisfies R (resp. d is reflexive on
R) is exactly determined by αR

i and βR
i (resp. by δR). Furthermore, an input

data value is loaded to the registers specified by Λ when t′ is applied. Therefore,
if t ∈ T , γ ∈ Γk and ϕ′ are given, the transition belonging to T ′ is uniquely
determined. We write that transition as st,γ,ϕ′ . Finally, define wt′ = (wtt′,wtd′)
where for each t′ = st,γ,ϕ′ ∈ T ′, wtt′(t′) = wtt(t) and for j ∈ [k], wtd′(t′, j) =
wtd(t, j). This completes the definition of k-WRA A′.
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Example 3. Let k = 2, R = {R} and consider transition t = p →a
xR
1 ,{2} q and

register type γ such that γ(i, j)(R) = 1 ((i, j) = (1, 1), (1, 2), (2, 2)), γ(2, 1)(R) =
0. If we merge transitions whose target states are the same, then we have the
following four transitions:

(p, γ) →a

xR
1 ∧xR−1

1 ∧inR,{2} (q, γ(1)), (p, γ) →a

xR
1 ∧xR−1

1 ∧¬inR,{2} (q, γ(2)),

(p, γ) →a

xR
1 ∧¬xR−1

1 ∧inR,{2} (q, γ(3)), (p, γ) →a

xR
1 ∧¬xR−1

1 ∧¬inR,{2} (q, γ(4))

where

γ(i)(1, 2)(R) = 1, γ(i)(2, 1)(R) = 1 (i = 1, 2),

γ(i)(1, 2)(R) = 1, γ(i)(2, 1)(R) = 0 (i = 3, 4),

γ(i)(2, 2)(R) = 0 (i = 2, 4), γ(i)(j, j)(R) = 1 (otherwise).

Theorem 4. Let A = (Q,Q0, T,Qf ,wt) be an arbitrary k-WRA and A′ =
(Q′, Q′

0, T
′, Q′

f ,wt′) be the k-WRA obtained from A by the transition decompo-
sition by register type. Also let w = (a1, d1) · · · (an, dn) ∈ (Σ × D)+ be an arbi-
trary data word. For a run ρ = c0 �t1,d1 c1 �t2,d2 · · · �tn,dn

cn ∈ RunA(w), there
exists a run ρ′ = c′

0 �st1,γ0,ϕ′
1
,d1 c′

1 �st2,γ1,ϕ′
2
,d2 · · · �stn,γn−1,ϕ′

n
,dn

c′
n ∈ RunA′(w)

such that wt(ρ′) = wt(ρ). Conversely, for a run ρ′ ∈ RunA′(w), there exists a
run ρ ∈ RunA(w) such that wt(ρ) = wt(ρ′).

Proof. Consider a data word w and a run ρ stated in the lemma and assume
ci = (qi, θi), θi : γi for i ∈ {0} ∪ [n]. By the construction of T ′, there exists
a unique transition sti,γi−1,ϕ′

i
= (qi−1, γi−1) →ai

ϕ′
i,Λ

(qi, γi) ∈ T ′ such that
((qi−1, γi−1), θi−1) �sti,γi−1,ϕ′

i
,di

((qi, γi), θi) in A′ where ϕ′
i is determined by

whether (θi−1, di) |= xR
j , (θi−1, di) |= xR−1

j and (θi−1, di) |= inR hold or not
for j ∈ [k] and R ∈ R. If we concatenate the above switches, we obtain a run ρ′

of w in A′ and wt(ρ′) = wt(ρ).
Conversely, for i ∈ [n], let c′

i−1 �sti,γi−1,ϕ′
i
,di

c′
i be a switch in A′ where

sti,γi−1,ϕ′
i

= (qi−1, γi−1) →ai

ϕ′
i,Λ

(qi, γi) ∈ T ′. The transition of A corresponding
to sti,γi−1,ϕ′

i
∈ T ′ is exactly ti ∈ T . By the construction of T ′, (θi−1, di) |= ϕ′

i

implies (θi−1, di) |= ϕi. Therefore, ci−1 �ti,di
ci is a switch in A. The rest of the

proof is similar to the former case; we lift the obtained switches to the run. ��
A WRA obtained by the above transformation is called a normal form WRA.

5 The Optimal Run Problem

5.1 Definition of the Problem

We introduce the problem of computing the optimal (infimum) weight of the
runs from the initial ID to an accepting ID of a given WRA. We assume the
tropical semiring Rtrpc (see Example 2) because by Rtrpc we can represent the
minimum weight by the addition of the semiring. Of course, we could use the
max-tropical semiring (R ∪ {−∞},max,+,−∞, 0) instead.
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Definition 6 (The optimal run problem)
Input: a k-WRA A over Σ, 〈D,R〉,Rtrpc

Output: The infimum of {wt(ρ) | ∃w ∈ (Σ × D)+.ρ ∈ RunA(w)} ��
By Theorem 4 and the definition of the problem, the following property holds.

Corollary 2. Let A = (Q,Q0, T,Qf ,wt) be an arbitrary k-WRA and A′ =
(Q′, Q′

0, T
′, Q′

f ,wt′) be the normal form k-WRA obtained from A. The solutions
to the optimal run problem for A and A′ are the same. ��

Let A and A′ be as assumed in the above corollary. We will transform A′

to an edge-weighted directed graph G = 〈V,E〉 such that the solution of the
optimal run problem is equal to the weight of the minimum-weight path of G.
The difficulty lies in the requirement that we must construct G without knowing
an input data word w to A′ or assignments appearing in a run of w in A′. To
overcome this problem, we introduce two properties in the next subsection.

5.2 Weighted Simulation and Weight Computability

Let A = (Q,Q0, T,Qf ,wt) be an arbitrary k-WRA and A′ =
(Q′, Q′

0, T
′, Q′

f ,wt′) be the normal form k-WRA obtained from A. We say
that k-WRA A′ has weighted simulation property if every t′ = (p, γ) →a

ϕ′,Λ
(q, γ′) ∈ T ′ satisfies the following condition: for every θ ∈ Θk such that θ : γ,
inf{wt(((p, γ), θ) �t′,d ((q, γ′), θ[Λ ← d])) | d ∈ D, θ[Λ ← d] : γ′} takes a same
value2. Also, we say that k-WRA A′ has weight computability if the above infi-
mum, denoted as wt(t′), can be computed in polynomial time of ‖A‖. Weighted
simulation is a natural extension of the property of TA and WTA that the
infinite set of IDs can be divided into finite sets called clock regions such that
any IDs belonging to a same clock region are indistinguishable. The above two
properties are undecidable in general because a binary relation appearing in the
guard of a transition may be undecidable. Weighted simulation says that if two
assignments θ1, θ2 have a same register type γ, the infimum of the weights of
switches from (p, θ1) to (q, θ′

1) by t′ is the same as that from (p, θ2) to (q, θ′
2) by

t′. This property, together with weight computability, enables us to compute the
infimum of the weights from (p, γ) to (q, γ′) without knowing an assignment or
an input data value.

These assumptions also make the following two problems related to the weight
realizability problems decidable.

Definition 7 (The weight bounding problems)
Input: a k-WRA A over Σ, 〈D,R〉, Rtrpc and a weight s ∈ R≥0

(The run weight bounding problem) ∃w.∃ρ ∈ RunA(w).wt(ρ) ≤ s?
(The data word weight bounding problem) ∃w.[[A]](w) ≤ s?
The input size for both problems is ‖A‖.
2 If there is no such a switch (p, θ) �t′,d (q, θ[Λ ← d]) for any d ∈ D, we define the
infimum as ∞.
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Theorem 5. The run weight bounding problem for k-WRA over Σ, 〈D,R〉,
Rtrpc is PSPACE-complete if weighted simulation and weight computability hold.

Proof (PSPACE-solvability). Let A = (Q,Q0, T,Qf ,wt) be a k-WRA over Σ,
〈D,R〉 and S and s ∈ R≥0. Let A′ = (Q′, Q′

0, T
′, Q′

f ,wt′) be the normal form
k-WRA obtained from A. By weighted simulation, the number of IDs of A′ that
must be examined is not more than |Q′|(k + 1)k by a similar reason discussed
in [13]. Therefore, it is enough to check whether wt(ρ) ≤ s for every run ρ of
w whose length is at most |Q′|(k + 1)k. By the proof of Theorem 1, computing
the weight of a run can be done in polynomial time. Also, the space needed to
simulate a run of an input data word of length |Q′|(k+1)k is log(|Q′|(k+1)k) =
k log(k + 1) + log |Q′|. Because Q′ = Q × Γk holds, |Q′| ∈ O(|Q|2k2|R|). Hence,
the space complexity is O(k log k + log |Q|+ k2|R|), which is a polynomial order
of k, |Q| and |R|. Consequently, this problem can be solved in PSPACE.

(PSPACE-Hardness). As in the proof of NP-hardness in Theorem 1, we assume
the value of every weight function is 0. Then, for every data word w and every run
ρ ∈ RunA(w), wt(ρ) = 0. When the given semiring value is s = 0, the run weight
realizability problem is expressed as: for a given k-WRA A, ∃w,∃ρ ∈ RunA(w)?,
which is equivalent to the emptiness problem for k-RA. Because the emptiness
problem for RA is PSPACE-complete [13], the run weight bounding problem is
PSPACE-hard.

Theorem 6. The data word weight bounding problem of k-WRA over Σ,
〈D,R〉, Rtrpc is PSPACE-complete if weighted simulation and weight com-
putability hold.

Proof. Let A be a given k-WRA and s be a semiring value.

(PSPACE-solvability). We only need to take the sum of the weights of all the
runs of w in A to compute [[A]](w), which needs only O(1) additional space.
Therefore, this problem can be solved in PSPACE.

(PSPACE-hardness). The run weight bounding problem is PSPACE-complete
by Theorem 5, and so this problem is PSPACE-hard.

5.3 Transformation to a Directed Graph

We will present a transformation from a given k-WRA to an edge-weighted
directed graph when weighted simulation and weight computability hold. Let A
be a k-WRA over Σ, 〈D,R〉 and Rtrpc that satisfies weighted simulation and
weight computability and A′ = (Q′, Q′

0, T
′, Q′

f ,wt′) be the normal form k-WRA
obtained from A.

Construct the edge-weighted directed graph G = 〈V,E〉 where V and E are
the sets of nodes and edges respectively, where V = Q′ and E ⊆ V ×V ×T ′×R≥0

is defined as follows: For each transition st,γ,ϕ′ = (p, γ) →a
ϕ′,Λ (q, γ′) ∈ T ′ of

A′, compute wt(st,γ,ϕ′), which is possible by weighted simulation and weight
computability. If wt(st,γ,ϕ′) < ∞, add ((p, γ), (q, γ′), st,γ,ϕ′ ,wt(st,γ,ϕ′)) to E.
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For a path π in an edge-weighted directed graph, the weight of π is the sum
of the weights of the edges in π, denoted by wt(π).

Theorem 7. Let A and A′ be the WRA above, and A′ have weighted simulation
property and weight computability. Let G = 〈V,E〉 be the directed graph obtained
from A′ by the above construction. For a path π in G starting with the initial
state and ending with a final state of A′, there is a run ρ in A′ such that wt(ρ) =
wt(π). Conversely, for a run ρ in A′, there is a path π in G such that wt(π) =
wt(ρ).

Proof. Let π = e1e2 · · · en be a path in G starting with the initial state and
ending with a final state of A′ where ei ∈ E (i ∈ [n]). By the construction
of G, for the i-th edge ei = (vi−1, vi, si,mi) of π (i ∈ [n]), the third compo-
nent si can be written as si = sti,γi−1,ϕ′

i
= (pi−1, γi−1) →ai

ϕ′
i,Λ

(pi, γi) ∈ T ′

(p0 is the initial state and pn is a final state) and mi = wt(sti,γi−1,ϕ′
i
) =

inf{wt((pi−1, θi−1) �sti,γi−1,ϕ′
i
,di

(pi, θi−1[Λ ← di])) | di ∈ D} for some
θi−1 ∈ Θk such that θi−1[Λ ← di] : γi. Note that (p0, θ0) is the initial ID. By
weighted simulation, there is a run ρ = (p0, θ′

0) �st1,γ0,ϕ′
1
,d′

1
(p1, θ′

1) �st2,γ1,ϕ′
2
,d′

2

· · · �stn,γn−1,ϕ′
n

,d′
n

(pn, θ′
n) of some data word (a1, d

′
1) · · · (an, d′

n) where θ′
0 = θ0

and ai is the second component of ti. Also, it is easy to see wt(π) = wt(ρ). The
converse direction holds by the construction of G. ��
By Theorems 4 and 7, the optimal run problem for a given k-WRA A can be
solved by solving the minimum weight path problem for the directed graph G
obtained from A via the normal form A′ if A′ satisfies weighted simulation and
weight computability. Furthermore, we can find the original transition t ∈ T of
A from a given transition st,γ,ϕ′ ∈ T ′ as described in the proof of Theorem 4.
In this way, we can easily reconstruct the run in A that provide the infimum
weight from a minimum path found in G.

The description length ‖A′‖ of k-WRA A′ = (Q′, Q′
0, T

′, Q′
f ,wt′) can be

represented by the following relationship between the sizes of the corresponding
components of A′ and A: |Γk| = 2k2|R|, |Q′| = |Q| × |Γk|, |Q′

0| = |Q0|, |Q′
f | =

|Qf | × |Γk|, |T ′| = (|Q| × |Γk|) × |Σ| × 22k|R|+|R| × 2k × (|Q| × 1).

Theorem 8. When the normal form k-WRA A′ constructed from k-WRA
A = (Q,Q0, T,Qf ,wt) has weighted simulation property and weight com-
putability, the time complexity of the optimal run problem for k-WRA A is
O(2k2|R||Q|(4k|R|2|R|+k|Σ||Q| + k2|R|)).
Proof. The above complexity is derived from the time complexity O(|E| +
|V | log |V |) of Dijkstra algorithm by |V | = |Q′|, |E| = |T ′|.
Example 4. Consider the WRA A2 of Example 2 again. Let A′

2 be the normal
form WRA obtained from A2. A′

2 satisfies weighted simulation and weight com-
putability. We show the directed graph G1 for A′

2. For a label (t′, w) of an edge,
t′ represents the applied transition and w represents the infimum of the weights
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of switches corresponding to the edge. The register types γ0, γ1, γ2 in the node
labels are as follows where γ0 is the initial register type:

γ0(1, 2)(<) = 0, γ0(2, 1)(<) = 0, γ0(1, 2)(=) = γ0(2, 1)(=) = 1,
γ1(1, 2)(<) = 0, γ1(2, 1)(<) = 1, γ1(1, 2)(=) = γ1(2, 1)(=) = 0,
γ2(1, 2)(<) = 1, γ2(2, 1)(<) = 0, γ2(1, 2)(=) = γ2(2, 1)(=) = 0,
γm(j, j)(<) = 0, γm(j, j)(=) = 1, for m ∈ {0} ∪ [2], j ∈ [2],

γm(i, j)(>) = γm(j, i)(<) for m ∈ {0} ∪ [2], i, j ∈ [2].

The edge with (st1,γ0,tt, 0) represents the three edges generated from t1 in A2.
The optimal paths of G1 are the simple paths from (q0, γ0) to (q2, γ0), and the
weight infimum is 0 (Fig. 2).

Fig. 2. The directed graph G1 for A2 of Example 2.

6 Weighted Timed Automata

Weighted timed automata (WTA) are an extension of timed automata (TA) by
introducing the weight to TA. In this subsection, we directly define WTA as a
subclass of WRA based on Lemma 5.1 of [5] that every k-WTA can be simulated
by a (k + 1)-WRA by using one extra register to keep the current time instant
(in particular, a clock reset can be simulated by loading the current time to the
corresponding register). An input data word w = (a1, d1)(a2, d2) . . . (an, dn) to a
WTA means ai occurs at time instant di (i ∈ [n]). In every switch, an input data
value is loaded to the last register xk+1 so that xk+1 remembers when the latest
symbol ai occurred. The guard formula of every transition requires that an input
data value is always not less than xk+1 to guarantee that d1 ≤ d2 ≤ . . . ≤ dn.

For a binary relation �� over R≥0 and c ∈ N, let �� c be the binary relation
defined as �� c = {(r, r′) | r, r′ ∈ R≥0, r′ −r �� c}. Note that (θ, d) |= x�	c

i means
d − θ(i) �� c, not θ(i) − d �� c. We let the data structure D

timed = 〈R≥0, {�� c |
�� ∈ {<,=, >}, c ∈ N}〉 with the initial value ⊥ = 0.
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Definition 8 ([5]). A k-register weighted timed automaton (abbreviated as k-
WTA) over Σ is a k-WRA Atimed = (Q,Q0, T,Qf , (wtt,wtd)) over Σ, Dtimed

and Rtrpc where

– Atimed
b = (Q,Q0, T,Qf ) is a k-RA (called the base k-TA of Atimed) such that

for each transition q →a
ϕ,Λ q′ ∈ T , ϕ = ϕ′ ∧ x≥0

k for some ϕ′ ∈ Fk,
– wtt is a function from T to N, and
– for each q ∈ Q, a constant natural number wq ∈ N is specified and for each

transition t = q →a
ϕ,Λ q′ ∈ T and d, d′ ∈ R≥0,

wtd(t, j)(d, d′) = 0 (j ∈ [k − 1]), (1)
wtd(t, k)(d, d′) = wq(d′ − d). (2)

L(Atimed
b ) is the timed language recognized by Atimed

b and [[Atimed]] is the timed
series recognized by Atimed. ��
By the above definition, the weight of a switch (q, θ) �t,d (q′, θ′) is wtt(t) +
wtd(t, k)(θ(k), d) = wtt(t) + wq(d − θ(k)). Intuitively, wtt represents the cost
of executing t and wq(d − θ(k)) is the cost of time consumption at state q.
(Remember that θ(k) is the time at which the latest event occurred.) As in the
case of k-WRA, we define the optimal run problem for k-WTA as follows.

Definition 9 (The optimal run problem)
Input: k-WTA Atimed

Output: The infimum of {wt(ρ) | ∃w ∈ (Σ × R≥0)+. ρ ∈ RunAtimed(w)}
Example 5. ([4]). Let Atimed

1 be a 3-WTA shown in Fig. 3 where wq0 = 3,
wq1 = 1, wq2 = 0, wtt(tj) = 1 (j ∈ [3]). Let Atimed

1,b be the base k-TA of Atimed
1 .

Then, L(Atimed
1,b ) = {(a, 2)} ∪ {(a, d)(a, 2) | 0 ≤ d < 2}. ρ1 ∈ RunAtimed

1
((a, 2))

is unique and wt(ρ1) = wtd(t1, 3)(0, 2) + wtt(t1) = 3 · 2 + 1 = 7. For each
wd = (a, d)(a, 2) where 0 ≤ d < 2, ρd ∈ RunAtimed

1
(wd) is unique and wt(ρd) =

wtd(t2, 3)(0, d)+wtt(t2)+wtd(t3, 3)(d, 2)+wtt(t3) = 3d+1+(2−d)+1 = 4+2d.
We have inf{wt(ρ) | ∃w ∈ (Σ × D)+. ρ ∈ RunAtimed

1
(w)} = 4.

Example 6. ([4]). Let Atimed
2 be a 2-WTA shown in Fig. 4 where wq0 = 1,

wq1 = 2, wq2 = 0, wtt(t1) = wtt(t2) = 1. Let Atimed
2,b be the base k-TA of Atimed

2 .
Then, L(Atimed

2,b ) = {(a, 2 − ξ)(a, 2) | 0 < ξ ≤ 2}. For each wξ = (a, 2 − ξ)(a, 2)
where 0 < ξ ≤ 2, ρξ ∈ RunAtimed

2
(wξ) is unique and

wt(ρξ) = wtd(t1, 2)(0, 2 − ξ) + wtt(t1) + wtd(t2, 2)(2 − ξ, 2) + wtt(t2)
= (1 · (2 − ξ)) + 1 + (2 · ξ) + 1 = 4 + ξ.

Hence, inf{wt(ρ) | ∃w ∈ (Σ × D)+. ρ ∈ RunAtimed
2

(w)} = 4. ��

In [4], an algorithm that solves the optimal run problem for WTA is proposed
by extending the region construction for TA. Region construction is a well-known
method to divide the infinite set of IDs of TA into a finite set of regions where
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Fig. 3. WTA Atimed
1

Fig. 4. WTA Atimed
2

two IDs in a same region are indistinguishable (or bisimilar) with respect to any
transition and time progress. In [4], a sub-region is defined as a refinement of a
region by distinguishing x < y and x � y where the distance of x and y is large
in the former case while the distance is very (arbitrarily) small in the latter case.
This distinction is needed because it may happen that there is no run that has
the minimum weight but there are infinite number of runs whose weights has the
infimum as shown in Example 5 (see [4] for details). An edge-weighted directed
graph, called the sub-region graph G is constructed from a given WTA and a
minimum weight path of G is computed by any existing graph algorithm, which
corresponds to a solution to the optimal run problem for the WTA.

The method proposed in this paper can also compute an optimal run of a
WTA by distinguishing < and � as follows. Let cmax be the largest natural
number appearing in the guard formula of some transition in a given WTA and
let RBL be the collection of relations {�� c | �� ∈ {�,=,�}, c ∈ N, c ≤ cmax}\{�
0}. We redefine the data structure for WTA as D

timed,BL = 〈R≥0,RBL〉. A
boundary region is a region specified by at least one constraints using = and
no constraints using � or �. A limit region is a region specified by at least one
constraints using � or �. Since the guard formula of any transition of WTA is
a linear constraint on the contents of registers, it suffices to consider only the
boundary regions and limit regions to compute the solution of the optimal run
problem for WTA (see [4] for example). This implies weighted simulation and
weight computability if we replace every < and > with � and �, respectively,
and use D

timed,BL instead of Dtimed.

Example 7. Let us revisit Example 6. First, we replace every < and > with �
and �, respectively, and consider its normal form. Since cmax = 2, RBL = {=
0,� 0,� 1,= 1,� 1,� 2,= 2,� 2}. After simplifications by using properties of
the total order on N, we have the following eight register types to be considered in
this example: γ1 : x2−x1 = 0, γ2 : x2−x1 � 0, γ3 : x2−x1 � 1, γ4 : x2−x1 = 1,
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γ5 : x2 − x1 � 1, γ6 : x2 − x1 � 2, γ7 : x2 − x1 = 2, γ8 : x2 − x1 � 2. Note
that by the above specification, γm(2, 1)(R) and γm(i, i)(R) (m ∈ [8], i = 1, 2,
R ∈ RBL) are uniquely determined and not described. Atimed

2 is transformed
to A′

2 = ({(qi, γj) | i = 0, 1, 2, j ∈ [8]}, {(q0, γ1)}, T ′, {(q2, γ7)}, (wtt′,wtd′))
where T ′ consists of the following transitions:

(q0, γ1) →a
x=0
1 ,{2} (q1, γ1), (q0, γ1) →a

x
�0
1 ,{2}

(q1, γ2),

(q0, γ1) →a

x
�1
1 ,{2} (q1, γ3), (q0, γ1) →a

x=1
1 ,{2} (q1, γ4),

(q0, γ1) →a

x
�1
1 ,{2}

(q1, γ5), (q0, γ1) →a

x
�2
1 ,{2} (q1, γ6),

(q1, γj) →a
x=2
1 ,{2} (q2, γ7) (j ∈ [6])

and wtt′, wtd′ are defined accordingly. Note that (θ, d) |= in=0 ∧¬inR ∧¬inR−1

for R ∈ RBL\{= 0} and an input data value is always loaded to x2 (the previous
data in x2 is overwritten), and hence constraints on x2 and an input data value
are not needed in the guard formulas. We have the following six kinds of runs,
each of which corresponds to one of the above six transitions from (q0, γ) followed
by the last transition, which have the following weights: wt(ρ1) = 6, wt(ρ1) =
6− ξ, wt(ρ1) = 5+ ξ, wt(ρ1) = 5, wt(ρ1) = 5− ξ, wt(ρ1) = 4+ ξ for small ξ > 0.
Hence, the solution of the optimal run problem for this example is 4, which is
realized by ρ6 by ξ → 0. ��

7 Conclusion

In this paper, we discussed the optimal run problem for weighted register
automata (WRA). We first introduced register type to WRA and provided a
transformation from a given WRA into a normal form such that the register
types before and after each transition are uniquely determined. Because the deci-
sion problem related to the optimal run problem is undecidable, we proposed
a sufficient condition called weighted simulation and weight computability for
the problem to become decidable. Lastly, we illustrated computing the optimal
run of weighted timed automata as an example. Investigating the problem for
semirings other than the tropical reals is an interesting future study.

Acknowledgements. The authors thank the reviewers for providing valuable com-
ments to the paper. This work was supported by JSPS KAKENHI Grant Number
JP19H04083.
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Abstract. Time4sys is a formalism developed by Thales Group, realiz-
ing a graphical specification for real-time systems. However, this formal-
ism does not allow to perform formal analyses for real-time systems. So a
translation of this tool to a formalism equipped with a formal semantics is
needed. We present here Time4sys2imi, a tool translating Time4sys mod-
els into parametric timed automata in the input language of IMITATOR.
This translation allows not only to check the schedulability of real-time
systems, but also to infer some timing constraints (deadlines, offsets. . .)
guaranteeing schedulability. We successfully applied Time4sys2imi to var-
ious examples.

Keywords: Real-time systems · Scheduling · Model checking ·
Parametric timed automata · Parameter synthesis

1 Introduction

Due to the increasing complexity in real-time systems, designing and analyzing
such systems is an important challenge, especially for safety-critical real-time
systems, for which the correctness is crucial. The scheduling problem for real-
time systems consists in deciding which task the processor runs at each moment
by taking into consideration the needs of urgency, importance and reactivity in
the execution of the tasks. Systems can feature one processor (“uniprocessor”)
or several processors (“multiprocessor”). Each processor features a scheduling
policy, according to which it schedules new task instances. Tasks are usually
characterized by a best and worst case execution times (BCET and WCET),
and are assigned a deadline and often a priority. Tasks can be activated peri-
odically (“periodic task”), sporadically (“sporadic tasks”), or be activated upon
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completion of another task—to which we refer to “dependency” or “task chain”.
This latter feature is often harder to encode using traditional scheduling models.
Periodic tasks may be subject to a “jitter”, i.e., a variation in the period; all
tasks can be subject to an “offset”, i.e., a constant time from the system start to
the first activation of the task. The schedulability problem consists in verifying
that all tasks can finish their computation before their relative deadline, for a
given scheduling policy. This problem is a very delicate task: The origin of com-
plexity arises from a large number of parameters to consider (BCET and WCET,
tasks priorities, deadlines, periodic and sporadic tasks, tasks chains, etc.). The
schedulability problem becomes even more complicated when periods, deadlines
or execution times become uncertain or completely unknown: we refer to this
problem as schedulability under uncertainty.

Thales Group, a large multinational company specialized in aerospace,
defense, transportation and security, developed a graphical formalism Time4sys1

to allow interoperability between timed verification tools. Time4sys responds to
a need to unify the approaches within Thales Group: This formalism is being
rolled out at TSA (Thales Airborne Systems) and studies are underway at TAS
(Thales Alenia Space). Time4sys is now an open source framework, offering many
features to represent real-time systems. However, Time4sys lacks for a formal-
ization: it does not perform any verification nor simulation, nor can it assess the
schedulability of the depicted systems.

Since Time4sys does not allow to perform formal analyzes for real-time sys-
tems, a translation to a well-grounded formalism is needed to verify and analyze
real-time systems. In this paper, we present a tool Time4sys2imi which allows to
translate Time4sys into parametric timed automata (PTAs) [2] described in the
input language of IMITATOR. PTAs extend finite-state automata with clocks
(i.e., real-valued variables evolving at the same rate) and parameters (unknown
timing constants). PTAs are a formalism well-suited to verify systems where
some timing delays are known with uncertainty, or completely unknown. IMI-
TATOR [5] is the de-facto standard tool to analyze models represented using
PTAs. This translation allows not only to assess the schedulability of systems
modeled using Time4sys, but only to synthesize some timing constants guaran-
teeing schedulability.

In [4], we presented a set of rules translating Time4sys to PTAs. We introduce
here the tool performing this translation, with its practical description, as well
as a set of case studies, absent from [4].

Related Works. Scheduling using (extensions) of timed automata was proposed
in the past (e. g., [1]). For uniprocessor real-time systems only, (parametric)
task automata offer a more compact representation than (parametric) timed
automata [3,8,12]; however [8,12] do not offer an automated translation and,
while [3] comes with a script translating some parametric task automata to
parametric timed automata, the case of multiprocessor is not addressed. Schedu-
lability analysis under uncertainty was also tackled in the past, e. g., in [7,9,15].

1 https://github.com/polarsys/time4sys.

https://github.com/polarsys/time4sys
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The main difference with our tool is that we allow here a systematic translation
from an industrial formalism.

An export from Time4sys is available to Cheddar [14]. However, while Ched-
dar is able to deduce schedulability of real-time systems, it suffers from two main
limitations:

1. it does not allow task dependencies; and
2. all timing constants must be fixed in order to study the schedulability.

In contrast, our translation in Time4sys2imi allows for both.
A model represented with Time4sys can also be exported to MAST [10] which

is an open-source suite of tools to perform schedulability analysis of real-time
distributed systems. However, the effectiveness of this tool is limited: it does not
allow us to have a complete solution to our problem since it only works with
instantiated systems, so we can not perform a real-time system with unknown
parameters.

Outline. Section 2 describes Time4sys, and states the problem. Section 3 exposes
the architecture of Time4sys2imi. As a proof of concept, Sect. 4 gives the results
obtained on some examples. We discuss future works in Sect. 5.

2 Time4sys in a Nutshell

We review here Time4sys, and make a few (minor) assumptions to ease our
translation.

Time4sys is a formalism that provides an environment to prepare the design
phase of a system through the graphical visualization developed. Time4sys con-
tains two modes: Design and Analysis. In our translation, we use the Time4sys
Design mode which uses a subset of the OMG MARTE standard [13] as a basis
for displaying a synthetic view to the real-time system. This graphical represen-
tation encompasses all the elements and properties that can define a real-time
system.

The Time4sys Design tool allows users to define the following elements:

– Hardware Resource: a hardware resource in Time4sys is a processor, and
it contains a set of tasks; it is also assigned a scheduling policy.

– Software Resource: a software resource in Time4sys is a task, and it fea-
tures a (relative) deadline.

– Execution Step: an execution step can be seen as a subtask. It is charac-
terized by a BCET, a WCET, and a priority. In our translation, we assume
that each software resource contains exactly one execution step. That is, we
do not encompass for subtasks.

– Event: an event can be seen as an activation policy for tasks. There are two
main types of Events:

• PeriodicEvent: defined by its period, its jitter and its phase (i.e., offset).
• SporadicEvent: defined by its minimum and maximum interarrival

times, its jitter and its phase.
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Fig. 1. Example of a Time4sys design

Example 1. Figure 1 shows an example of a real-time system designed with
Time4sys. In this example, we have two hardware resources (HardwareRe-
source0, HardwareResource1) both using fixed priority as a scheduling policy,
two software resources (SoftwareResource1, SoftwareResource2) in each hard-
ware resource, and four execution tasks, with the following timing constraints:

– Step1: WCET = BCET = 6 ps
– Step2: WCET = BCET = 4 ps
– Step3: WCET = BCET = 5 ps
– Step4: WCET = BCET = 5 ps

Finally, this example features two periodic events, both characterized by a 10 ps
period, a 0 ps jitter and a 0 ps phase (“offset”).

In this example, we start executing with Step1 in the CPU HardwareRe-
source0. After 6 ps, the execution of Step1 ends so Step2 takes its place. At
the same time, Step3 in the CPU HardwareResource1 starts performing. At
t = 10 ps, the execution of Step2 finishes and a new period of Step1 starts,
however at that time Step3 is still executing. So this real-time system is not
schedulable i.e., the period of StepT1 is strictly less than the WCET of Step1
plus the WCET of Step3.

Objective

The main objective of Time4sys2imi is as follows: given a real-time system with
some unknown timing constants (period, jitter, deadlines. . .), synthesize the tim-
ing constants for which the system is schedulable. Note that, when all timing
constants are known precisely, this problem is schedulability analysis.
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3 Architecture and Principle

The main purpose of Time4sys2imi is to perform the translation of Time4sys
models into the input language of IMITATOR. The schedulability analysis itself
is done by IMITATOR, using reachability synthesis.

3.1 Targeted User

The application is intended primarily for the designer of real-time systems, aim-
ing to verify the schedulability of her/his system, or synthesize the timing con-
stants ensuring schedulability.

Time4sys2imi can automatically analyze a graphical representation of a real-
time system realized by Time4sys using IMITATOR. The end-user does not need
to have skills on PTAs nor on model checking.

Time4sys2imi allows the user to:

– Use the GUI of Time4sys2imi (cf. Fig. 2) and configure the options of both
the translation and IMITATOR.

– Import an XML file generated by Time4sys. This file contains the data that
describes the real-time system to be analyzed.

– Generate an .imi model analyzable by IMITATOR.

Fig. 2. GUI of Time4sys2imi
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3.2 User Workflow

The analysis of real-time systems, using the proposed translation, can be summed
up in three main parts:

1. Graphical modeling of a real-time system containing all its components with
Time4sys. This part allows us to have a complete architecture of the system
on the one hand. The architecture is encoded in an XML file automatically
generated by Time4sys. This file contains all the data needed to describe the
system.

2. The second part is the automatic translation of the XML file to the input lan-
guage of IMITATOR, and is performed by Time4sys2imi. Time4sys2imi creates
an .imi file that is analyzable with IMITATOR.

3. Finally, the user can run IMITATOR from Time4sys2imi to get the answer to
the schedulability problem.

The translation rules are described in [4]. In short, we translate each task,
each task chain and each processor scheduling policy (earliest deadline first,
rate monotonic, shortest job first. . .) into a PTA; most of these PTAs feature a
special location corresponding to a deadline miss (i.e., this location is reachable
iff a deadline miss occurs). Timing constants are encoded either as constants
(if they are known) or as timing parameters (if they are unknown). Then, we
build (on-the-fly) the synchronous product of these PTAs. Finally, the set of
valuations for which the system is schedulable is exactly those for which the
special deadline miss locations in the synchronous product are unreachable. See
[4] for details.

3.3 Global Architecture

Time4sys2imi is made of 5,500 lines of Java code, and can therefore run under
any operating system. We explain in Fig. 3 the global architecture of the system.

Time4sys2imi takes as input the Time4sys model in XML, then we used the
DOM parser to extract data. These data are translated into an abstract syn-
tax for PTAs. We then translate these abstract PTAs into the concrete input
language of IMITATOR.

Time4sys
model

Parsing Trans-
lation

PTA
model

IMITA-
TOR

Fig. 3. Workflow of Time4sys2imi

3.4 Detailed Architecture

The global process is in Fig. 4.
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Fig. 4. Detailed architecture

Level 1. This level is the interface between the translation tool and the user: It
allows the user to import the XML file to be translated, to choose the name
of the IMITATOR model and to confirm the translation request.

Level 2. This level is loaded by the translation of the XML file through the
following steps:
1. Parsing the XML file that Time4sys generates in order to get an abstract

data structure from Time4sys.
2. Translation of the result into an abstract data structure of PTAs.
3. Construct an IMITATOR file from the PTAs abstract data structure.

Level 3. This level shows the XML files generated by Time4sys when designing
a real-time system.

4 Proof of Concept

As a proof of concept to show the applicability of our translation tool, we mod-
eled some real-time systems with Time4sys, then we translated those models to
PTAs using with Time4sys2imi and analyzed them using IMITATOR.

We give in Table 1 a list of four case studies with, from top to bottom, the
number of CPU, of tasks and task chains in the original Time4sys model, followed
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by the number of automata, locations, clocks, discrete variables2 and parame-
ters in the translated IMITATOR target model. We also give the name of the
constants that are indeed parameterized (if any), and give the analysis time by
IMITATOR. The translation time using Time4sys2imi is always negligible in our
experiments. Finally, we give whether the system is schedulable (if it is entirely
non-parametric), or we give the condition for which it is schedulable. The para-
metric results (i.e., the constraints over the valuations ensuring schedulability)
are given in [6].

We ran experiments on an ASUS X411UN Intel CoreTM i7-8550U 1.80 GHz
with 8 GiB memory running Linux Mint 19 64 bits. All experiments were con-
ducted using IMITATOR 2.10.4 “Butter Jellyfish”.

Source, binaries, examples and results are available at www.imit-
ator.fr/static/ICTAC19.

From Table 1, we see that the analysis time using IMITATOR remains small,
with the exception of the larger model with 11 concurrent tasks featuring depen-
dencies, for which the analysis time using IMITATOR for a three-dimensional
analysis becomes above 2 min.

Example 2. Consider again the real-time system modeled in Fig. 1 using
Time4sys. We translate it using Time4sys2imi.

First, we consider a non-parametric analysis: applying IMITATOR to the
PTAs translated using Time4sys2imi shows that the system is not schedulable,
as it was expected from Example 1.

Second, we parameterize the BCET and WCET of Step1. The result of the
schedulability synthesis using IMITATOR yields the following constraint: 0 ≤
BCETStep1 ≤ WCETStep1 < 5.

This constraint explains why this real-time system was not schedulable when
WCET = BCET = 6 i.e., the values taken for WCET and BCET are not in
the interval for which the system is schedulable.

Additional examples with models and translated PTAs are given in [6].

5 Perspectives

A short term future work will be to optimize our translation: while we followed
the rules developed in [4], it is likely that varying the rules in order to optimize
the size of the automata or reducing the clocks, may help to make the model
more compact and the analysis more efficient.

Second, when the model is entirely non-parametric, we believe that using the
Uppaal model checker [11] instead of IMITATOR may be more efficient; for that
purpose, we plan to develop a translator to the input language of Uppaal too;
this implies to modify only the last step of our translation (from the abstract
(P)TAs into the concrete input language of the target model checker).

2 Discrete variables are global rational-valued variables that can be read and modified
by the PTAs.

https://www.imitator.fr/static/ICTAC19
https://www.imitator.fr/static/ICTAC19
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Third, so far the analysis using IMITATOR is exact, i.e., sound and complete;
however, it may sometimes be interesting to get only some ranges of parame-
ter valuations for which the system is schedulable. Such optimizations (on the
IMITATOR side) should help to make the analysis faster.

Seeing from our experiments, it is unlikely that the toolkit made of Time4sys,
Time4sys2imi and IMITATOR can analyze models with hundreds of processors
and thousands of tasks, especially with unknown timing constants. However, we
believe that our approach can give first useful guarantees at the preliminary
stage of system design and verification, notably to help designers to exhibit
suitable ranges of timing parameters guaranteeing schedulability. Finally, real-
time systems with uncertain timing constants were recently proved useful when
Thales Group published an open challenge3 for a system (actually modeled using
Time4sys) with periods known with a limited precision only; while this problem
was not strictly speaking a schedulability problem (but rather a computation
of minimum/maximum execution times), it shed light on the practical need for
methods to formally analyze real-time systems under uncertainty in the industry.

Acknowledgements. We thank Romain Soulat and Laurent Rioux from Thales R&D
for useful help concerning Time4sys.
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P.C. (eds.) FTSCS 2013. CCIS, vol. 419, pp. 212–228. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-05416-2 14

https://doi.org/10.1016/j.ic.2007.01.009
https://doi.org/10.1016/j.ic.2007.01.009
https://doi.org/10.1109/TIME.2012.10
https://doi.org/10.1109/EMRTS.2001.934015
https://doi.org/10.1109/EMRTS.2001.934015
https://doi.org/10.1007/s100090050010
https://doi.org/10.1109/RTCSA.1999.811218
https://doi.org/10.1109/RTCSA.1999.811218
http://www.omg.org/omgmarte/
https://doi.org/10.1145/1032297.1032298
https://doi.org/10.1145/1032297.1032298
https://doi.org/10.1007/978-3-319-05416-2_14


Testing Real-Time Systems Using
Determinization Techniques for Automata

over Timed Domains

Moez Krichen1,2(B)

1 Faculty of Computer Science and Information Technology,
Al-Baha University, Al Bahah, Kingdom of Saudi Arabia

2 ReDCAD Research Laboratory, University of Sfax, Sfax, Tunisia
moez.krichen@redcad.org

Abstract. In this work, we are interested in Model-Based Testing for
Real-Time Systems. The proposed approach is based on the use of the
model of Automata over Timed Domains (ATD) which corresponds to
an extension of the classical Timed Automaton Model. First, we explain
the main advantages of adopting this new formalism. Then, we propose
a testing framework based on ATD and which is an extension of our
initial framework presented in previous contributions. We extend the
notion of correctness requirements (soundness and completeness) along
with the notion of timed input-output conformance relation (tioco) used
to compare between implementations and specifications. Moreover we
propose a determinization technique used to generate test cases. Finally,
several possible extensions of the present work are proposed.

Keywords: Model-Based Testing · Real-time systems · Automaton
over timed domains · Correctness · Conformance relation ·
Determinization

1 Introduction

In general MBT (model based testing) [12] consists in describing the behavior
of the SUT (system under test) using a particular adequate formalism and then
generating automatically test scenarios from the considered description with
respect to some coverage criteria adopting some selection methods. The following
step consists in executing the obtained case studies on the SUT and collecting the
corresponding verdicts in order to check whether the implementation conforms
to its specification or not.

This paper extends some of our previous contributions [5–9] about MBT for
real-time systems. Theses works were mainly built on the classical timed automa-
ton model [1]. Our new proposed approach is mainly inspired by [3,4]. We adopt
a new variant of timed automata called automata over timed domains (ATD).
This new variant allows to model a much wider class of timed systems and it is
equipped with a determinization technique which can be used for test generation.
c© Springer Nature Switzerland AG 2019
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Next in Sect. 2 we propose some definitions related to the proposed formalism.
In Sect. 3 we give details about the determinization procedure for ATD. Section 4
introduces the adopted testing framework. Finally Sect. 5 proposes some directions
for future work.

2 Definitions

2.1 Timed Domains and Updates

Let N (respectively R≥ 0) be the set of natural numbers (respectively the set
of non-negative real-numbers). Timed domains are introduced to represent the
progression of continuous entities. A timed domain Dom is made of a set of
values denoted by Val and a time transition function denoted by � encoding
the progression of those values when time evolves.

Definition 1. A timed domain is a tuple Dom = 〈Val,�〉 such that:

– Val is the set of values;
– �: Val×R≥0 → Val is the time transition function such that for all val ∈ Val

and all t, t′ ∈ R≥0 we have � (� (val, t), t′) =� (val, t + t′).

For simplicity we will write val
t� val′ instead of � (val, t) = val′. Moreover

we consider the particular symbol ⊥ which is assigned to the considered resource
as soon as it becomes inactive and no longer evolves over time (that is for each
t ∈ R≥0 we have ⊥ t� ⊥).

For the timed domains Dom = 〈Val,�Val〉 and Dom′ = 〈Val′,�Val′〉 we
associate the product

Dom × Dom′ = 〈ValProd,�Prod〉

such that
ValProd = (Val ∪ {⊥}) × (Val′ ∪ {⊥})

and for (val, val′) ∈ ValProd and t ∈ R≥0 we have

�Prod

(
(val, val′), t

)
=

(
�Val (val, t),�Val′ (val′, t)

)
.

For n ∈ N>1, we define the timed domain Domn inductively as

Dom1 = Dom

and
Domn+1 = Dom × Domn.

Moreover, for Dom = 〈Val,�Val〉 we define the timed domain

P(Dom) = 〈ValP ,�P〉

such that
ValP = P(Val)

and
∀V ∈ ValP · ∀t ∈ R≥0 : �P (V, t) = {�Val (val, t) | val ∈ V }.



126 M. Krichen

Definition 2. Consider a timed domain Dom = 〈Val,�〉 and an alphabet Δ.
An update set for Dom and Δ is a set U ⊆ Δ × ValVal.

For an update set U and a symbol δ ∈ Δ, we define the set

Uδ = {y ∈ ValVal | (δ, y) ∈ U}.

An element from Uδ is called a δ-update.1

Let Dom and Dom′ be two timed domains. Moreover consider two update
sets U (for Dom and Δ) and U ′ (for Dom′ and Δ). We then define the update
set U × U ′ with respect to Dom × Dom′ and Δ such that

U × U ′ =
{(

δ, (y, y′)
)

| δ ∈ Δ ∧ (y, y′) ∈ Uδ × U ′
δ

}
.

For n ∈ N>1, we define the update set Un for Domn and Δ inductively as

U1 = U

and
Un+1 = U × Un.

We also define the update set P(U) with respect to P(Dom) and Δ such that

P(U) =
{(

δ,Y
)

∈ Δ × P(Val)P(Val) | ∀V ⊆ Val · Y(V ) =
⋃

(y,val)∈Uδ×V

{y(val)}
}
.

2.2 Automata over Timed Domains (ATD)

Definition 3. Consider a timed domain Dom = 〈Val,�〉 and an update set U
for Dom over Δ. An automaton on Dom and U is a tuple A = 〈S, sini, vini, E, T 〉
where:

– S is a finite set of states;
– sini ∈ S is the initial state;
– valini ∈ Val is the initial value;
– E ⊆ S × Val × U × S is the set of edges;
– T ⊆ S is the set of terminal states.

For the automaton over timed domains (ATD) A over Dom and U , we con-
sider the set CA = S × Val called the set of configurations of A. The ATD A
yiels a timed labeled transition system (TLTS)

LA = 〈CA, cini
A ,→A〉

where cini
A is the initial configuration of A such that

cini
A = (sini, valini)

and
→A= ( t→A)t∈R≥0 � (

δ,y−→A)(δ,y)∈U

1 Or simply an update.
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such that

– (s, val) t→A (s′, val′) if and only if s = s′ and val
t� val′ ;

– (s, val)
δ,y−→A (s′, val′) if and only if (s, val, (δ, y), s′) ∈ E and val′ = y(val).

Similarly, the ATD A yiels an observable timed labeled transition system
(OTLTS)

OLA = 〈CA, cini
A ,−→→A〉

where
−→→A= ( t−→→A)t∈R≥0 � ( δ−→→A)δ∈Δ

such that

– (s, val) t−→→A (s′, val′) if and only if (s, val) t→A (s′, val′) ;

– (s, val) δ−→→A (s′, val′) if and only if ∃y ∈ ValVal : (s, val)
δ,y−→A (s′, val′).

The first type of transitions is called timed transitions and the second type
discrete transitions. For (s, val) ∈ CA and μ ∈ R≥0 � Δ, we write (s, val)

μ−→→A
if there exists (s′, val′) ∈ CA such that (s, val)

μ−→→A (s′, val′).

2.3 Finitely Representable ATD

A set of guards is a set G ⊆ P(Val). For δ ∈ Δ, a G-guarded update for δ is a
couple (G,Γ) ∈ G × P(Uδ). For I ⊆ N, consider ΨI = {(Gi,Γi) | i ∈ I} a set of
G-guarded updates for δ. Also consider A = 〈S, sini, valini, E, T 〉 an automaton
on Dom and U . A pair of states (s, s′) of A is said to be compatible with ΨI if
the two following conditions hold:

– ∀ i ∈ I.∀ val ∈ Gi.∀ y ∈ Γi : (s, val, (δ, y), s′) ∈ E ;
– ∀ (s, val, (δ, y), s′) ∈ E.∃ i ∈ I : v ∈ Gi ∧ y ∈ Γi .

Definition 4. The ATD A is said to be finitely representable using G if for
every pair of states (s, s′) of A and for every δ ∈ Δ, there is a finite set Ψ of
G-guarded updates for δ, such that (s, s′) is compatible with Ψ .

2.4 Deterministic ATD (DATD)

Consider the ATD A = 〈S, sini, valini, E, T 〉 on Dom and U . Let (s, v) be a
possible configuration of A. A timed trace from (s, val) is a sequence ttr =
(si, vali)0≤i≤n such that:

– (s0, val0) = (s, val) ;
– ∀1 ≤ i ≤ n.∃wi ∈ R≥0 � Δ : (si, vali)

wi−→→A (si+1, vali+1).

The timed trace ttr is said to be produced by the timed word tw = (wi)1≤i≤n.
In this case we write (s, val) tw−→→A (sn, valn) and (s, val) tw−→→A . The duration
of tw is defined as follows

Duration(tw) =
∑

1≤i≤n

|wi|
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where

|wi| =

{
wi ifwi ∈ R≥0

0 otherwise

that is Duration(tw) denotes the complete amount of time consumed during the
execution of the timed word tw.

In general given a timed word tw ∈ (R≥0 � Δ)∗, the set TTrA((s, val), tw)
stands for the set of timed traces produced by tw starting from (s, val).

Definition 5. The ATD A is said to be deterministic if for any timed word
tw ∈ (R≥0�Δ)∗ the cardinality of TTrA((sini, valini), tw) is less or equal to one.

For a positive integer n, we say that the timed word tw ∈ (R≥0 � Δ)n is
accepted by the ATD A if there is a timed trace ttr = (si, vali)0≤i≤n such that
ttr ∈ TTrA((sini, valini), tw) and sn+1 ∈ T (i.e. sn+1 is a terminal state of
A). In this case all the configurations (si, vali) are said to be reachable. The
set of accepted timed words by A is denoted Lang(A) and the set of reachable
configurations is denoted Reach(A).

3 Determinization of Non-Deterministic ATD (NDATD)

Consider the (possibly) non-deterministic ATD A = 〈S, sini, valini, E, T 〉 on
D and U and let Δ be the alphabet corresponding to the update set U . For
simplicity we assume that

S = {s1, · · · , sp}
such that p ∈ N>0 and sini = s1. For every state s ∈ S, we let index(s) denote
the index of s. That is if s = si then index(s) = i. For each 1 ≤ i ≤ p, we consider
the set V ali ⊆ Val which corresponds to the set of values corresponding to the
state si.

For V = (Vi)1≤i≤p ∈ P(Val)p we consider the set

SV = {s ∈ S | Vindex(s) �= ∅}

which is the group of states the system may occupy when the values for the
different states are given by V.

For δ ∈ Δ and 1 ≤ i ≤ j ≤ p, we associate the set

λi→j
δ = {(val, y) ∈ Val × Uδ | (si, val, (δ, y), sj) ∈ E}

which corresponds the different ways allowing to move from state si to state sj .
We also define

λ→j
δ = (λi→j

δ )1≤i≤p

which in turn records all the ways which allow to reach state sj starting from
any other state of the ATD A.
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For the considered letter δ and each λi→j
δ , we associate the successor function

succδ,λi→j
δ

: Val → P(Val)

such that for v ∈ Val we have

succδ,λi→j
δ

(val) = {y(val) | (val, y) ∈ λi→j
δ }

which collects all possible obtained values of val after executing instructions in
λi→j

δ .
In a natural way we extend succδ,λi→j

δ
to elements from P(V)al and we define

the function
Succδ,λi→j

δ
: P(Val) → P(Val)

such that for V ⊆ Val we have

Succδ,λi→j
δ

(V ) =
⋃

val∈V

succδ,λi→j
δ

(val)

which this time collects the possible obtained values of all elements in V after
executing instructions in λi→j

δ .
Moreover we define the function

Succδ,λ→j
δ

: P(Val)p → P(Val)

such that for V = (Vi)1≤i≤p ∈ P(Val)p we have

Succδ,λ→j
δ

(V) =
⋃

1≤i≤p

Succδ,λi→j
δ

(Vi)

which aggregates the possible updated values of V1, · · · , Vp following respectively
the instructions in δ1→j , · · · , δp→j .

Furthermore, we define the function

Succδ,A : P(Val)p → P(Val)p

such that for Val ∈ P(Val)p we have

Succδ,A(V) =
(
Succδ,λ→1

δ
(V), · · · ,Succδ,λ→p

δ
(V)

)

which can be seen as the successor of V after the execution of δ.

Lemma 1. Let V = (Vi)1≤i≤p ∈ P(Val)p and V′ = (V ′
i )1≤i≤p = Succδ,A(V).

Then for every s′ ∈ S and v′ ∈ V:

val′ ∈ V ′
index(s′) ⇔ ∃(s, val, (δ, y), s′) ∈ E s.t. v ∈ Vindex(s) and v′ = y(val).
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Finally we define the update set Pp(U) with respect to P(D)p and Δ such
that2

Pp(U) = {(δ,Succδ,A) | δ ∈ Δ}.

We now have all the ingredients to define a deterministic ATD (DATD)

Adet = 〈Sdet, s
det
ini , valdet

ini , Edet, Tdet〉

on P(D)p and Pp(U) which is equivalent to the considered NDATD A. The
proposed DATD Adet is defined as follows:

– Sdet = P(S);
– sdet

ini = {sini};
– valdet

ini =
(
{valini}, ∅, · · · , ∅

)
∈ P(V)p;

– Edet is to the set of transitions (SV,V, (δ,Succδ,A), S′) such that V ∈ P(Val)p

and S′ = SV′ with V′ = Succδ,A(V);
– Tdet = {S′ ⊆ S | S′ ∩ T �= ∅}.

4 Testing Framework

4.1 ATD with Inputs and Outputs (ATDIO)

Consider the ATD A = 〈S, sini, vini, E, T 〉 on D and U and let Δ be the alphabet
corresponding to the update set U . We assume that the alphabet Δ is split
into two disjoint sets namely ΔI a set of inputs and ΔO a set of outputs (i.e.,
Δ = ΔI � ΔO)3. In this case the ATD A is called an ATD with inputs and
outputs (ATDIO). Moreover for we suppose that all the states of A are terminal
(i.e., T = E).

The ATDIO A is said to be input-enabled if for any reachable configuration
conf ∈ Reach(A) and any input symbol inp ∈ ΔI we have conf

inp−−→→A .
Moreover the considered ATDIO is called non-blocking if for any reachable

configuration conf ∈ Reach(A) and any duration t ∈ R≥0 there exists tw ∈
(R≥0 � ΔO)∗ such that conf

tw−→→A and Duration(tw) = t.
Next we suppose that the specification of the system under test and the

implementation are given as two non-blocking ATDIO Sp and Im respectively.4

4.2 Parallel Composition of OTLTS with Inputs and Outputs

Given two OTLTS with inputs and outputs LTS1 and LTS2, we define the par-
allel product LTS1||LTS2. For i = 1, 2, LTSi = (Qi, q

i
0,Δ

i
I ∪ Δ(3−i)→i,Δ

i
O ∪

Δi→(3−i), T
i
d, T

i
t ). The sets Δ1

I , Δ1
O, Δ2

I , Δ2
O, Δ1→2 and Δ2→1 are pairwise

disjoint. The two OTLTS synchronize on shared common actions Δ1↔2 =
Δ1→2 ∪ Δ2→1 and time delays. The parallel product of the two OTLTS is

LTS1||LTS2 = (Q, (q1
0 , q2

0),ΔI,ΔO, Td, Tt)
2 Note that Pp(U) is not the same as P(U)p.
3 � stands for the disjoint union symbol.
4 We do not assume Im is known.
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such that
ΔI =

⋃

i=1,2

Δi
I , ΔO =

⋃

i=1,2

Δi
O

and Q, Td and Tt are the smallest groups of elements such that:

– (q1
0 , q2

0) ∈ Q;
– For (q1, q2) ∈ Q and δ ∈ R:

q1 < aq′
1 ∈ T 1

d ⇒ (q′
1, q2) ∈ S ∧ (q1, q2) < a(q′

1, q2) ∈ Td;

– For (q1, q2) ∈ Q and a ∈ Δ1
I ∪ Δ1

O ∪ {τ1}:

q1 < aq′
1 ∈ T 1

d ⇒ (q′
1, q2) ∈ S ∧ (q1, q2) < a(q′

1, q2) ∈ Td;

– For (q1, q2) ∈ Q and a ∈ Δ2
I ∪ Δ2

O ∪ {τ2}:

q2 < aq′
2 ∈ T 2

d ⇒ (q1, q
′
2) ∈ S ∧ (q1, q2) < a(q1, q

′
2) ∈ Td;

– For (q1, q2) ∈ Q and a ∈ Δ1↔2:

q1 < aq′
1 ∈ T 1

d ∧ q2 < aq′
2 ∈ T 2

d ⇒ (q′
1, q

′
2) ∈ Q ∧ (q1, q2) < τa(q′

1, q
′
2) ∈ Td.

4.3 Conformance Relation

Given a ATDIO A and a timed word tw ∈ (R≥0 � Δ)∗, A after tw is the set of
configurations of A that can be reached after the execution of tw. Formally:

A after tw = {conf ∈ CA | cA
ini

tw−→→A conf}.

Given configuration conf ∈ CA, out(conf) is the set of all observations (either
outputs or the elapsing of time) that may happen when the system is at configu-
ration conf . The definition is extended in a natural way to a set of configurations
Conf . Formally:

out(conf) = {μ ∈ R≥0 � ΔO | conf
μ−→→A } , out(Conf) =

⋃

conf∈Conf

out(conf).

The definition of the relation tioco [10,11] is as follows:

Im tioco Sp iff ∀tw ∈ Lang(Sp) : out(Im after tw) ⊆ out(Sp after tw).

The relation indicates that the implementation Im conforms to the specification
Sp if and only if for any timed word tw of Sp, the set of outputs (including time
elapse) of Im after the execution of tw is a subset of the set of outputs that can
be generated by Sp.
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4.4 Timed Test Cases

A timed test case for the specification Sp over Δτ is a total function

TTest : (R≥0 � Δ)∗ → ΔI ∪ {WT,PS,FL}.

TTest(tw) indicates the action that must executed by the tester once it
observes tw. If TTest(tw) = inp ∈ ΔI then the tester produces input inp.
If TTest(tw) = WT then the tester lets time elapse (waits). If TTest(tw) ∈
{PS,FL} then the tester emits a verdict and stops.

The execution of TTest on Im may be seen as the parallel composition of
the OTLTS with inputs and outputs defined by TTest and Im. The product
TIOLTS is denoted by Im‖TTest. In a formal fashion, we announce that the
implementation Im passes TTest, denoted Im passes TTest, if state FL can not
be reached in Im‖TTest. We declare that the implementation passes (respec-
tively fails) the test suite T T if it passes all tests (respectively fails at least one
test) in T T . T T is said to be sound with respect to Sp if

∀Im : Im tioco Sp ⇒ Im passes T T .

Similarly T T is said to be complete with respect to Sp if

∀Im : Im passes T T ⇒ Im tioco Sp.

Our goal it then to produce test suites which are both sound and complete.
More precisely, we aim to generate timed tests in the form of deterministic
ATDIO and which are finitely representable. For that purpose we need to use
the determinization technique proposed in Sect. 3.

5 Future Work

The work proposed in this paper is at its beginning. In the future we need to
work on many aspects:

– First, we need to extend the presented framework to the case where the specifi-
cation of the SUT is given as a product of ATDIO and not simply one ATDIO.
In this way we can deal with distributed and multi-components systems.

– Second, we should find a way which guarantees that the generated timed tests
are finitely representable so that we can store them and execute them later
on. For that, we need to use some approximation techniques based on game
theory techniques like the ones proposed in [2].

– Third, we need to use some coverage and selection techniques which allow to
reduce the size of generated test cases and to efficiently deal the state explosion
problem usually encountered when following model-based approaches.
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Abstract. A prototyping high-level language is used to describe multi-
agent systems using timeouts for migration between explicit locations
and local communication in a distributed system. We translate such a
high-level specification into the real-time Maude rewriting language. We
prove that this translation is correct, and provide an operational cor-
respondence between the evolutions of the mobile agents with timeouts
and their rewriting translations. These results allow to analyze the multi-
agent systems with timeouts for migration and communication by using
the real-time Maude tools. A running example is used to illustrate the
whole approach.

1 Introduction

Multi-agent systems are composed of a large number of agents that behave
according to their timed actions. The mobility of agents and the communication
between agents may lead to unexpected behaviours. Components can be highly
heterogeneous, having individual objectives and using different temporal scales
to achieve them. As multi-agent systems are getting more complex, automated
verification of such systems is needed. Actually, the specification and analysis of
multi-agent systems represent an active research direction in the last years. It is
important to have modelling techniques able to describe easily such systems, as
well as tools to simulate and verify some complex (qualitative and quantitative)
properties of their behaviours. We take a step in this direction by developing a
high-level specification language for specifying the mobile agents with timeouts,
and providing a way to perform automated verification of some complex systems
involving explicit locations and timeouts for migration and local communication
in distributed networks.

There exist already some approaches to formalize timed systems, for instance
timed automata [1]. Software platforms as Uppaal [3] represent model checking
tools used for the simulation and verification of real-time systems modelled as
timed automata [10]. Logic-based models complement the timed automata mod-
els as they are able to capture other aspects of real-time systems: e.g., mobility of
agents and the communication between agents. Rewriting logic is appropriate for
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providing a general semantic framework for various languages and models of con-
currency [11]. Maude is a system that supports computations based on rewriting
and equational logic, while real-time Maude [14] provides a specification formal-
ism with several decidability results for many system properties. Also, in real-time
Maude different types of communication used in process calculi can be modelled.
The real-time Maude tool is developed using an extension of rewriting logic, and
seem to be an appropriate tool for specification, validation and verification of real-
time systems using features as migration of agents and communication between
agents. This tool is useful in applications that use features not yet implemented in
several existing model checkers for real-time systems [13].

For the specification of the multi-agent systems with timeouts for migration
and local communication we use a real-time version of an existing high-level
framework called TiMo , a framework able to describe easily interacting mobile
agents in distributed systems. Then we translate this high-level specification
into real-time Maude. There are some problems to overcome in order to obtain
a fully executable specification in real-time Maude. Firstly, the transitions of a
system need sometimes to use fresh names (to overcome binding problems); this
is due to the fact that the communication of values takes place eventually after
alpha-converting (to avoid clashes) in the high-level specification. Secondly, since
infinite computations are not supported by real-time Maude, implementing an
unbounded recursion operator is not possible; a solution to this problem is to
consider a bounded recursion in which a process can be unfolded only a finite
number of times during an execution. This restriction does not influence the
results because we model real systems in which the recursive processes need to
be unfolded only for a finite number of times.

2 Syntax and Semantics of the High-Level Specification

In the high-level specification language, the processes are allowed to migrate
between explicit distributed locations and to communicate locally with other
processes. The coordination of the processes in time and space is done by using
timed migration and timed communication. The timeouts added to a migration
action enforce the process to migrate to the target location after a period of time
equal to the timeout constraint. Two processes are allowed to communicate only
if they are both available into the same location at the same unit of time, and if
the timeout restrictions of the active communication actions are non-negative.
If a communication action cannot be executed before its timeout restriction
expires, then the action is removed and the actions of an alternative process are
executed as a continuation. The transitions involving either processes migration
between locations, processes communication or unfolding of recursive processes
are executed in a maximal parallel manner. This means that if a process can
migrate, communicate or unfold, it has to do it. The transitions with timeouts are
alternated with transitions involving the passage of time over all the processes;
a global clock is used to model the passage of time. The operational semantics
of the high-level specification is provided by using these two types of transitions:
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a transition relation for timed migration and communication actions executed
in the maximal parallel manner, and a transition relation used to model the
passage of time.

A timeout restriction assigned to a migration action is given as a natural
number t, while a timeout restriction assigned to a communication action is
given as Δt, where t ∈ N. The t notation means that migration action can be
consumed exactly after t units of time, while the Δt notation means that the
communication can be consumed at any moment in the next t units of time.

The syntax of the high-level language is given in Table 1, where the following
notations are used:

• we use the set Loc of locations, set Chan of communication channels, and set
Id of process identifiers;

• for each process identifier id ∈ Id there exists a unique process definition
id(u1, . . . , umid

)
def
= Pid in which the mid parameters are identified by the

distinct variables ui;
• a, l, t denote a communication channel, a location or a location variable, and

an action timeout, respectively; u and v denote a tuple of variables and a
tuple of expressions built from values (e.g., strings, integers, bools), variables
and allowed operations.

Table 1. The syntax of the high-level language

Processes P,Q ::= aΔt! v then P else Q (output)
aΔt?(u) then P else Q (input)
gotl then P (move)
0 (termination)
id(v) (recursion)
P | Q (parallel)

Located Processes L ::= l[[P ]]
Multi-Agent Systems N ::= L N || N 0

An output communication process aΔt!〈z〉 then P else Q describes the fact that
for t time units the process is available for sending on channel a the value z.
Whenever the process succeeds in sending the value before the deadline, it con-
tinues its evolution according to process P ; otherwise, it continues its evolution
by the alternative process Q. The input communication process aΔt?(x) then P
else Q describes the fact that for t time units the process is available to receive
on channel a a value to instantiate the variable x. In a similar manner as for
the output communication process, the continuation of an input communication
process depends on the success of the communication.

A migration process gotl then P indicates a location change after t time units,
namely after t units of time the process continues its execution as P at loca-
tion l (and not at the current location). Since variables are instantiated through
communication, this means that the location variables can be instantiated; this
feature allows a flexible behaviour as processes can adapt their migration based
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on received information. The process 0 models an inactive process, while the
process P | Q models the parallel composition of the process P and Q that
might also interact through communication. A process P currently located in
location l is denoted by l[[P ]], while a system is composed of located processes
composed by using the parallel operator.

There is only one binding operator in our calculus: in the input process
aΔt?(u) then P else Q, the variable u is bound in process P . However, as pro-
cess Q is an alternative process executed when the input action is not consumed,
this means that variable u is not bound in process Q. Given a process P , we
denote by fv(P ) its set of free variables. In case ui are the mid parameters of
the process Pid, then the assumption fv(Pid) ⊆ {u1, . . . , umid

} holds. As usu-
ally assumed in process calculi, we consider that processes are defined up to
an alpha-conversion. Also, P{v/u, . . .} denotes a process P in which v replaces
all the free occurrences of the variable u, possible after using alpha-conversion
inside P to remove possible clashes. A system N is said to be well-formed if
fv(N) = ∅.

Operational Semantics. The structural equivalence relation ≡ represents an
ingredient of the operational semantics; it is defined as the smallest congruence
relation satisfying the equations of Table 2. The purpose of this relation ≡ is to
provide a way of rearranging the processes in a system such that they can evolve
by using the operational semantics rules from Table 3.

Table 2. Structural congruence in high-level specification

(PNull) P | 0 ≡ P

(LNull) N || 0 ≡ N

(LComm) N || N ′ ≡ N ′ || N

(LAssoc) (N || N ′) || N ′′ ≡ N || (N ′ || N ′′)

(LSplit) l[[P | Q]] ≡ l[[P ]] || l[[Q]]

The equalities of Table 2 are useful for transforming a system N into the
system l1[[P1]] || . . . || ln[[Pn]] composed of located process l[[Pi]] such that
there do not exist Qi and Ri such that Pi ≡ Qi | Ri. A located process that
cannot be split into parallel located processes by using the rule (LSplit) is
called a component of N , while the component decomposition of a system N is
the system l1[[P1]] || . . . || ln[[Pn]], where all li[[Pi]] are components.

Table 3 presents the operational semantics rules. The transitions of the form
N −→ N ′ indicate either processes migrating between locations, processes com-
municating locally or unfolding of processes, all these executed in parallel in one
step. The passing of t time units is given by transitions of the form N

t� N ′.
In rule (Com), two process aΔt!〈v〉 then P else Q and aΔt?(u) then P ′ else Q′,

both located at location l, are using channel a to communicate a tuple of values v
to be used for the instantiation of the variable u. Applying the rule (Com) does not
lead to a location change for any of the involved processes, but to a consumption
of the output and input action. Upon a successful communication, the processes
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Table 3. The operational semantics of the high-level language

(Stop) l[[0]] �−→ (DStop) l[[0]]
t� l[[0]]

(Com) l[[aΔt!〈v〉 then P else Q]] || l[[aΔt′
?(u) then P ′ else Q′]] −→ l[[P ]] || l[[P ′{v/u}]]

(DPut)
t ≥ t′ > 0

l[[aΔt!〈v〉 then P else Q]]
t′
� l[[aΔt−t′

!〈v〉 then P else Q]]

(Put0) l[[aΔ0!〈v〉 then P else Q]] −→ l[[Q]]

(DGet)
t ≥ t′ > 0

l[[aΔt?(u) then P else Q]]
t′
� l[[aΔt−t′

?(u) then P else Q]]

(Get0) l[[aΔ0?(u) then P else Q]] −→ l[[Q]]

(DMove)
t ≥ t′

l[[gotl′ then P ]]
t′
� l[[got−t′

l′ then P ]]

(Move0) l[[go0l′ then P ]] −→ l′[[P ]]

(DCall)
l[[Pid{v/x}]] t� l[[P ′

id]] id(v)
def
= Pid

l[[id(v)]]
t� l[[P ′

id]]

(Call)
l[[Pid{v/x}]] −→ l[[P ′

id]] id(v)
def
= Pid

l[[id(v)]] −→ l[[P ′
id]]

(DPar)
N1

t� N ′
1 N2

t� N ′
2 N1 || N2 �−→

N1 || N2
t� N ′

1 || N ′
2

(Par)
N1 −→ N ′

1 N2 −→ N ′
2

N1 || N2 −→ N ′
1 || N ′

2

(DEquiv)
N1 ≡ N ′

1 N ′
1

t� N ′
2 N ′

2 ≡ N2

N1
t� N2

(Equiv)
N1 ≡ N ′

1 N ′
1 −→ N ′

2 N ′
2 ≡ N2

N1 −→ N2

aΔt!〈v〉 then P else Q and aΔt?(u) then P ′ else Q′ continue their executions as pro-
cesses P and P ′{v/u}, respectively. If the process aΔ0!〈v〉 then P else Q exists in
the system, then the communication action is discarded by using the rule (Put0),
and the execution continues as the alternative process Q. In a similar manner, by
using the rule (Get0), the process aΔ0?(u) then P ′ else Q′ continues its execution
as the alternative process Q. In rule (Move0), a process go0l′ then P is able to
change its location by migrating from the current location l to the given location
l′ where it continues its execution as process P . The unfolding of recursive pro-
cesses is performed by using the rule (Call). In order to use the structural equiv-
alence relation ≡ to rearrange a system such that its components can interact for
communication or migration, the rule (Equiv) its used. Composing larger systems
from smaller systems is done by using the rule (Par) for the parallel composition
operator.

The passage of time is described by the rules having their names starting
with the capital letter D. The hypothesis N1 || N2 	−→ from the rule (DPar)
indicates the fact that placing the two systems N1 and N2 in parallel does
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not trigger the application of a rule (Com) that would modify these systems.
The negative premises are essential to separate the steps based on the execution
of actions by those based on time passing (i.e., time cannot pass when an action
is executed).

A transition of the form N −→ N1 followed by a time passing transition of
the form N1

t� N ′ describe a complete step that can be written as:

N −→ N1
t� N ′.

Thus, a complete step indicates that a parallel execution of processes migrating
between locations, processes communicating or unfolding is necessarily followed
by a time step. We say that the system N ′ is directly reachable from N if a
complete computational step N

Λ−→ N1
t� N ′ exists. If N 	−→, then only a time

step N
t� N ′ can be performed in the system N .

Theorem 1. For all the systems N , N1 and N2,

if N
t�N1 and N

t�N2, then N1≡N2.

Theorem 1 claims that nondeterminism cannot be introduced upon executing a
time transition in a system, namely the obtained system is unique up to struc-
tural congruence.

Theorem 2. For all the systems N , N1, N2 and 0 < t′ < t, we have N
t� N2

if and only if there is a N1 such that N
t′
� N1 and N1

t−t′
� N2.

Theorem 2 claims that whenever a time transition of length t can be performed
in a system N leading to a system N2, then always a time transition of length t′

with 0 < t′ < t can be performed in the same system N leading to a system N1

followed by another time transition of length t − t′ in the systems N1 leading
to N2, and vice versa. This result ensures that the passage of time in a system
is continuous (no jumps).

Example 1. Let us consider an example in which a client wants to buy, at a good
price, a flight ticket to a given location. The scenario is depicted in Fig. 1, where
the names and values have the meanings given below (we explain the names and
values in the order they appear, from left to right).

• The process client initially resides at location home. It has access to 130 cash
units to be used for purchasing a flight ticket. Once the client reaches the
travelshop location, an agent communicates to it the location of a standard
offer. The client process goes to this location to receive the standard offer
details. Here it also receives the location for a special offer. After receiving
the information about the special offer, it goes to the bank for paying the
cheaper offer between the standard and the special offers, and returns home
(its initial location).

• The process update is able to migrate to the special location by starting from
its initial location travelshop in order to communicate locally a reduction for
the price special from 90 to 60 cash units.



140 B. Aman and G. Ciobanu

• The process agent resides at the travelshop location, and has access to 100
cash units available in the cash register. Once a client reaches the travelshop
location and the agent is available for communication, the client receives the
location where the details of the standard offer are available. The agent has
also the possibility to go to the bank to withdraw the available money from
the till . Regardless of the amount of money taken from the bank , the agent
always returns to travelshop , its initial location.

• The process flightinfo process residing at the standard location is able to do
only local communications in order to provide to any interested client the
details about the standard offer: the price of 110 cash units, and the location
where the special offer resides.

• The process saleinfo process residing at the special location is able to do only
local communications in order to provide (to any interested client) the details
about the standard offer: the price of 90 cash units, and the location of the
bank for the payment. The saleinfo process can also interact locally with the
update process in order to modify the price of the special offer.

• The process till process owning 10 cash units and residing at the bank location
is able to do only local communications: it can interact with a client to receive
the payment for a flight ticket, and can interact with the agent in order to
transfer the accumulated cash to it.

Fig. 1. Initial scenario

After all the interactions described in Fig. 1, the system looks like in Fig. 2.

Fig. 2. A possible outcome



Verification of Multi-agent Systems with Timeouts 141

In the above example we have: (i) agents migrating in a distributed network
with explicit locations; (ii) local communication of these agents (to get specific
results); (iii) both migration and communication require certain time indicated
by timeouts.

We show how this example can be easily described in our high-level language.
First of all, in order to simplify the syntax, we consider that:

aΔ∞!〈v〉 then P else Q can be written as a!〈v〉 → P ,
aΔ∞?(u) then P else Q can be written as a?(u) → P , and
gotl then P can be written as gotl → P .

This is because branch Q is ignored as it can never be executed.
The system presented in Fig. 1 is described in the high-level language as:

TravelShop = home [[client (130)]] || travelshop [[update (60) | agent (100)]]
|| standard [[flightinfo (110, special )]] || special [[saleinfo (90, bank )]]

|| bank [[till (10)]],

where:
client (init ) = go5travelshop → flight ?(standardoffer )

→ go4standardoffer → finfo2a ?(p1) → finfo2b ?(specialoffer )
→ go3specialoffer → sinfo2a ?(p2) → sinfo2b ?(paying )
→ go6paying → payc !〈min{p1, p2}
→ go4home → client (init − min{p1, p2}) ;

update (saleprice ) = go1special → info1 !〈saleprice 〉 ;
agent (balance ) = flight !〈standard 〉

→ go20bank → paya ?(profit )
→ go12travelshop → agent (balance + profit ) ;

flightinfo (price ,next ) = finfo2a !〈price 〉 → finfo2b !〈next 〉
→ flightinfo (price ,next ) ;

saleinfo (price ,next ) = info1 Δ2?(newprice )
then sinfo2a !〈newprice 〉 → sinfo2a !〈next 〉 → saleinfo (newprice ,next )
else sinfo2a !〈newprice 〉 → sinfo2a !〈next 〉 → saleinfo (price ,next ) ;

till (cash ) = payc Δ22?(newpayment )
then paya 10!〈cash + newpayment 〉 then till (0)

else till (cash + newpayment ))
else paya 10!〈cash 〉 then till (0)

else till (cash )) .

3 Translating the High-Level Specification into Maude

In what follows we define a rewriting theory corresponding to the semantics of
our high-level language defined in Table 3. The syntax used to give the rewriting
theory is that of real-time Maude. A rewrite theory R is defined as a triple
(Σ,E,R), where Σ stands for signature of function symbols, E and R are sets of
Σ-equations and Σ-rewrite rules, respectively. The Σ-equations and Σ-rewrite
rules can contain side conditions; for example, the conditions appearing in a
rewrite rule can contain equations or other rewrite rules. Just like in [9], we use
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a typed setting given as an order-sorted equational logic (Σ,E) including sorts
and an inclusion relation subsort between sorts. Given a rewrite theory R, we
write R 
 t ⇒ t′ if t ⇒ t′ is provable in R by using the rewrite rules of R.
Rewriting logic is basically a computational logic that combines term rewriting
with equational logic.

Let us discuss first the high-level recursion operator that is not directly encod-
able into real-time Maude (because infinite computations are not supported into
this tool). Our solution is to use the construction id(v, n) that is an extension of
the constructions id(v) of our language with a number n that limits the number
of recursive calls to be executed during the evolution of the system.

In order to translate the high-level language (whose syntax is given in
Table 1), we consider sorts corresponding to sets from our language: e.g., for
the set Chan of channels, the sort Channel is created. Certain new aspects are
provided by the sorts AGuard and MGuard. The sort AGuard contains the action
parts aΔt!〈v〉 and aΔt?(u) of the communication processes aΔt!〈v〉 then P else Q
and aΔt?(u) then P else Q, while the sort MGuard contains the action part gotl
of the migration processes of the form gotl then P . The elements of the sorts
AGuard and MGuard are essential in constructing the sequential processes of our
language. Among the subsorting relations between the given sorts, we explain
subsorts Var < Location Channel Value that illustrates the fact that loca-
tion names, channel names or values can be used to instantiate variables. To
work with multisets of values, we use the sort MValue.

sorts Location Channel Value MValue Var Process

AGuard MGuard System .

subsorts Var < Location Channel Value < MValue .

subsort Location < Value .

subsorts System < GlobalSystem .

To each operator used in the syntax of Table 1 we attach the attribute ctor
marking the fact that this operator is used to construct the system, and attribute
prec followed by a number marking its applicability precedence with respect to
other operators. Moreover, in order to encode properly into real-time Maude the
parallel operators | and || from Table 1, we add to them the attributes comm and
assoc to illustrate that they are commutative and associative constructors that
respect the rules of Table 2.

op _^_!‘<_> : Channel TimeInf Value -> AGuard [ctor prec 2] .

op _^_?‘(_‘) : Channel TimeInf Var -> AGuard [ctor prec 2] .

op go‘^__ : TimeInf Location -> MGuard [ctor prec 2] .

op _then‘(_‘)else‘(_‘) : AGuard Process Process -> Process

[ctor prec 1] .

op _then‘(_‘) : MGuard Process -> Process [ctor prec 1] .

op _|_ : Process Process -> Process [ctor prec 4 comm assoc] .

op stop : -> Process [ctor] .

op _‘[‘[_‘]‘] : Location Process -> System [ctor prec 3] .

op _||_ : System System -> System [ctor prec 5 comm assoc] .

op void : -> System [ctor] .
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As already stated, most of the rules of the structural congruence (Table 2) are
encoded by using the attributes comm and assoc when defining the previous
operators. For the rest of the rules we provide the following equations:

eq P | stop = P .

eq M || void = M .

eq k[[P | Q]] = (k[[P]]) || (k[[Q]]) .

As communication between two processes by using rule (Com)) leads to a substi-
tution of variables by the communicated values, we need to define this operation
explicitly in real-time Maude. Such an operator acts only upon the free occur-
rences of a name, while leaving bound names as they are.

op _‘{_/_‘} : Process Value Var -> Process [prec 8] .

eq ((c ^ t ! < b + a > ) then (P) else (Q)) { V / b } =

(( c ^ t ! < V + a > ) then (P { V / b } ) else (Q { V / b } )) .

eq ((c ^ t ! < min(b , a) > ) then (P) else (Q)) { V / b } =

(( c ^ t ! < min(V , a) > ) then (P { V / b } )

else (Q { V / b } )) .

eq ((c ^ t ! < X > ) then (P) else (Q)) { V / X } =

(( c ^ t ! < V > ) then (P { V / X } ) else (Q { V / X })) .

ceq ((c ^ t ! < W > ) then (P) else (Q)) { V / X } =

(( c ^ t ! < W > ) then (P { V / X } )

else (Q { V / X })) if V =/= W .

eq ((c ^ t ? ( X )) then (P) else (Q)) {V / X} =

((c ^ t ? ( X )) then (P) else (Q)) .

ceq ((c ^ t ? ( Y )) then (P) else (Q)) {V / X} =

((c ^ t ? ( Y )) then (P { V / X } )

else (Q { V / X } )) if X =/= Y .

eq ((go ^ t X) then (P)) {V / X} = ((go ^ t V) then (P {V / X})) .

ceq ((go ^ t l) then (P)) {V / X} =

((go ^ t l) then (P {V / X})) if X =/= l .

eq (P | Q) {V / X} = ((P {V / X}) | (Q {V / X})) .

eq stop {V / X} = stop .

eq (P) { V / X } = (P) [owise] .

However, the above operator does not take into account the need for alpha-
conversion in order to avoid name clashes once substitution takes place. To
illustrate this issue, let us consider the process P = at(b) then (got′

l then X) else
stop) in which the name b is bound inside the input prefix. If the substitution
{b/X} needs to be performed over this process, the obtained process would be
P{b/X} = at(b) then (got′

l then b) else stop). This means that once variable X
is replaced by the name b, name b would become bound not only in the input
action. To avoid this, we define an operator able to perform alpha-conversion by
using terms of the form [X] that contain fresh names:

op ‘[_‘] : Var -> System [ctor] .

The terms of the form [X] containing fresh names are composed with the system
by using the parallel operator ||. Using the given fresh names, the renaming is
done (when necessary) before substitution. This is provided by the operator:

op _‘(_/_‘) : Process Value Var -> Process [prec 8] .



144 B. Aman and G. Ciobanu

This operator has a definition similar with the substitution operator, except the
case when we deal with bound names.

eq ((c ^ t ? ( X )) then (P) else (Q)) (V / X) =

((c ^ t ? ( V )) then (P { V / X } ) else (Q { V / X } )) .

It is worth noting that this is different from the substitution operator that does
not allow the change of the bound name:

eq ((c ^ t ? ( X )) then (P) else (Q)) {V / X} =

((c ^ t ? ( X )) then (P) else (Q)) .

As most of the rules in Table 3 contain hypotheses, translating these rules in real-
time Maude requires the use of conditional rewrite rules in which the conditions
are the hypotheses of rules of Table 3. Notice that in what follows we do not
directly implement the rules (PAR), (DEquiv) and (Equiv) as rewrite rules
into real-time Maude, due to the fact that the commutativity, associativity and
the congruence rewriting of the parallel operators | and || are already encoded
into the matching mechanism of Maude. In order to identify for each of the below
rewrite rule which rule from Table 3 it models, we consider simple intuitive names
for these rewrite rules. More complicated names could be considered by using
rewriting rules similar with the ones given for the executable specification of the
π-calculus in Maude [15].

crl [Comm] : (k[[(c ^ t ! < V >) then (P) else (Q) ]])

|| (k[[(c ^ t’ ? ( X )) then (P’) else (Q’) ]])

=> (k [[ P ]]) || (k [[ P’ {V / X} ]]) if notin(V , bnP(P’)) .

crl [Comm’] : (([Z]) || (k[[(c ^ t ! < V >) then (P) else (Q) ]]))

|| (k[[(c ^ t’ ? ( X )) then (P’) else (Q’) ]])

=> (([X]) || (k [[ P ]])) || (k [[ (P’ (Z / V)) { V / X} ]])

if in(V , bnP(P’)) /\ (notin(Z , bnP(P’))) .

crl [Input0] : (k[[ (c ^ t ! < V >) then (P) else (Q) ]]) => k[[Q]]

if t == 0 .

crl [Output0] : (k[[(c ^ t ? ( X )) then (P) else (Q) ]]) => k[[Q]]

if t == 0 .

crl [Move] : k[[(go ^ t l) then (P)]] => l[[P]] if t == 0 .

It is also worth noting that there are two instances for the rule [Comm]. This is
a consequence of the fact that after communication, before a substitution takes
place, one may need to perform alpha-conversion to avoid name clashes. Rule
[Comm] is applicable if the variable V is not bound inside process P (modelled by
the condition notin(V , bnP(L’)), and so only a simple substitution is enough
to complete the replacement of the variable X by name V . On the other hand,
rule [Comm’] is applicable if the variable V is bound inside process P (modelled
by the condition in(V , bnP(L’)); in this case an alpha-conversion is needed to
avoid the clash of name V . To be able to perform the alpha-conversion we also
check before applying the rule [Comm’] if a fresh name [Z] exists in the system,
name not present in process P ′ (modelled by the condition notin(Z , bnP(Q))).
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The conditions of the rules [Comm] and [Comm’] make use of the functions in,
notin and bnP for checking the membership of a name to the set of bound names
for a given process.

A tick rewriting rule is used to model the passing of time in the encoded
system by a positive amount of time that is at most equal with the maximal
times that can elapse in the system. Such a tick rule has the form:

crl [tick] : {M} => {delta(M, t)} in time t if t <= mte(M) [nonexec] .

The [tick] rule uses the function delta to decrease all time constraints in a
system by the same positive value. In order to correctly model the steps needed
to obtain complete computational steps, namely the time cannot elapse if rewrite
rules are applicable, we use the frozen attribute for the function delta. The
attribute (1) marks the argument to be frozen (first one in this case).

op delta : System TimeInf -> System [frozen (1)] .

eq delta (k[[(c ^ t ! < V >) then (P) else (Q) ]] , t’) =

k[[((c ^ (t monus t’) ! < V >) then (P) else (Q)) ]] .

eq delta (k[[(c ^ t ? ( X ) ) then (P) else (Q) ]] , t’) =

k[[((c ^ (t monus t’) ? ( X )) then (P) else (Q)) ]] .

eq delta (k[[(go ^ t l) then (P)]] , t’) =

k[[(go ^ (t monus t’) l) then (P)]] .

eq delta (k[[P | Q]] , t’) = delta (k[[P]] , t’)

|| delta (k[[Q]] , t’) .

eq delta (M || N , t’) = delta(M , t’) || delta(N , t’) .

eq delta (void , t’) = void .

eq delta (l[[stop]] , t’) = l[[stop]] .

eq delta (M , t’) = M [owise] .

The function mte from the condition of rule [tick] is used to compute the
maximal time that can be elapsed in a system, a time that is equal with the
minimum time constraint of the applicable actions in the system.

op mte : System -> TimeInf [frozen (1)] .

eq mte (k[[(c ^ t ! < V >) then (P) else (Q) ]] ) = t .

eq mte (k[[(c ^ t ? ( X ) ) then (P) else (Q) ]]) = t .

eq mte (k[[(go ^ t l) then (P)]]) = t .

eq mte (k[[P | Q]] ) = min(mte (k[[P]]) , mte (k[[Q]] )) .

eq mte (M || N) = min(mte(M) , mte(N)) .

eq mte (void) = INF .

eq mte (l[[stop]]) = INF .

eq mte (M) = INF [owise] .

The full description of the translation into real-time Maude is available at
https://profs.info.uaic.ro/∼bogdan.aman/RTMaude/TiMoSpec.rtmaude .

https://profs.info.uaic.ro/~bogdan.aman/RTMaude/TiMoSpec.rtmaude
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In order to study the correspondence between the operational semantics of our
high-level specification language and that of the real-time Maude, we inductively
define a mapping ψ : TiMo→ System as

ψ(M) =

⎧
⎪⎨

⎪⎩

l[[ϕ(P ]]] if M = l[[P ]]
ψ(N1)||ψ(N2) if M = N1||N2

void if M = 0
;

ϕ(P ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aΔt!〈v〉 then ϕ(R) else ϕ(Q) if P = aΔt!〈v〉 then R else Q

aΔt?(X) then ϕ(R) else ϕ(Q) if P = aΔt?(X) then R else Q

(got l) . ϕ(R) if P = gotl then R

stop if P = 0
ϕ(Q) | ϕ(R) if P = Q | R

ϕ(R){v/u} if P = R{v/u} and v 	∈ bn(R)
ϕ(R)(Z/v){v/u} if P = R{v/u} and v ∈ bn(R)

and Z 	∈ bn(R).

.

By RD we denote the rewrite theory defined previously in this section by the
rewrite rules [Comm], [Comm’], [Input0], [Output0], [Move] and [tick], and
also by the additional operators and equations appearing in these rewrite rules.

The next result relates the structural congruence of the high-level specifica-
tion language with the equational equality of the rewrite theory.

Lemma 1. M ≡ N if and only if RD 
 ψ(M) = ψ(N).

Proof. ⇒: By induction on the congruence rules of our high-level language.
⇐: By induction on the equations of the rewrite theory RD.

The next result emphasizes the operational correspondence between the high-
level systems M , N and their translations into a rewriting theory. We denote by
M −→ N any rule of Table 3.

Theorem 3. M −→ N if and only if RD 
 ψ(M) ⇒ ψ(N).

Proof. ⇒: By induction on the derivation M −→ N .

• (Com): We have M = l[[aΔt!〈v〉 then P else Q]] || l[[aΔt′
?(u) then P ′ else Q′]]

and N = l[[P ]] || l[[P ′{v/u}]]. By definition of ψ, we obtain ψ(M) = l[[aΔt!〈v〉
then ϕ(P ) else ϕ(Q)]] || l[[aΔt′

?(u) then ϕ(P ′) else ϕ(Q′)]]. Depending on the
fact that v appears or not as a bound name in P ′, we have two cases:

• if v /∈ bn(P ′): By applying [Comm], we have RD 
 ψ(M) ⇒ l[[ϕ(P )]] ||
l[[ϕ(P ′){v/u}]] = N ′, and by the definition of ψ, we have ψ(N) = N ′.

• if v ∈ bn(P ′): We should apply first an alpha-conversion before the value
is communicated. This is done by using a fresh name [Z] such that by
applying the rule [Comm’] we get RD 
 [Z]||ψ(M) ⇒ [[v]]||l[[ϕ(P )]] ||
l[[ϕ(P ′)(Z/v){v/u}]] = N ′. By the definition of ψ, we have ψ(N) = N ′.
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• (Move0), (Put0) and (Get0): These cases are similar to the previous one, by
using the rules [Move], [Input0] and [Output0], respectively.

• (DMove): We have that M = l[[gotl′ then P ]] and N = l[[got−t′
l′ then P ]]. By

definition of ψ, we obtain ψ(M) = l[[(got l′) . ϕ(P )]]. By applying the rule
[tick] we get RD 
 ψ(M) ⇒ l[[(got−t′

l′) . ϕ(P )]] = N ′. By definition of ψ,
we have ψ(N) = N ′.

• (DStop), (DPut) and (DGet): These cases are similar to the previous one, by
using also the rule [tick].

• The rest of the rules are simulated using the implicit constructors of Maude.

⇐: By induction on the derivation RD 
 ψ(M) ⇒ ψ(N).

• [Comm]: We have ψ(M)= l[[aΔt!〈v〉 thenP else Q]] || l[[aΔt′
?(u) thenP ′ else Q′]]

and ψ(N) = l[[P ]] || l[[P ′{v/u}]]. According to the definition of ψ, we get
M = l[[aΔt!〈v〉 then P1 else Q1]] || l[[aΔt′

?(u) then P ′
1 else Q′

1]], where
P = ϕ(P1) and Q = ϕ(Q1). By applying (Com), we get M −→ l[[P1]] ||
l[[Q1{v/u}]] = N ′. By definition of ψ, we have N = N ′.

• The other rules are treated in a similar manner.

4 Analyzing Timed Mobile Agents by Using Maude Tools

We have the translation of the high-level specification of the multi-agent systems
into real-time Maude rewriting system, and have also the operational correspon-
dence between their semantics. The TravelShop system presented in Example 1
can now be described in real-time Maude. The entire system looks like this:

eq TravelShop = home[[client(130 , 1)]]

|| travelshop[[agent(100 , 1) | update(60 , 1)]]

|| standard[[flightinfo(110 , special , 1)]]

|| special[[saleinfo(90 , bank , 1)]]

|| bank[[till(10 , 1)]] .

where, e.g., the client syntax in real-time Maude is:

ceq client(init , applyC)=

((go ^ 5 travelshop)

then ((flight ^ INF ? ( standardoffer ))

then ((go ^ 4 standardoffer)

then ((finfo2a ^ INF ? ( p1 ))

then ((finfo2b ^ INF ? ( specialoffer ))

then ((go ^ 3 specialoffer)

then ((sinfo2a ^ INF ? ( p2 ))

then ((sinfo2b ^ INF ? ( paying ))

then ((go ^ 6 paying)

then ((payc ^ INF ! < min(p1 , p2) >)

then ((go ^ 4 home)

then (client(sd(init,min(p1,p2)),applyC monus 1)))

else (stop) ) )
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else (stop) )

else (stop) ) )

else (stop) )

else (stop) ) )

else (stop) ) )

if applyC >= 1 .

Since the recursion operator cannot be directly encoded into real-time Maude,
we include for each recursion process appearing in TravelShop system a second
parameter saying how many times the process can be unfolded. For our example
this is 1 (but it could be any finite value).

Before doing any verification, we have the possibility in real-time Maude
to define the length of the time units performed by the whole system. For our
example we choose a time unit of length 1 by using the following command:

(set tick def 1 .)

When using the rewrite command (frew {TravelShop} in time < 38 .), the
Maude platform executes TravelShop by using the equations and rewrite rules
of RD as given in the previous section, and outputs the following result:

Timed fair rewrite {TravelShop} in Example with mode default time

increase 1 in time < 38

Result ClockedSystem :

{bank[[till(0,0)]]|| home[[client(70,0)]]|| special[[stop]]

|| special[[saleinfo(60,bank,0)]]

|| standard[[flightinfo(110,special,0)]]

|| travelshop[[agent(170,0)]]} in time 37

rewrites: 786514 in 404ms cpu (406ms real) (1946816 rewrites/second)

We use the real-time Maude platform to perform timed reachability tests, namely
if starting from the initial configuration of a system one can reach a given con-
figurations of the system before a time threshold. The real-time Maude is able
to provide answers to such inquires by searching into the state space obtained
into the given time framework for the given configuration. As we are interested
in searching the appearance of the given configuration within a time-framework,
the fact that multiple computational steps can be performed is marked by the
use of the =>*. Also, the annotation [n] bounds the number of performed com-
putational steps to n, thus reducing the possible state space.

(tsearch [2] {TravelShop} =>* {bank[[till(0,0)]]|| home[[client(70,0)]]

|| special[[stop]]||special[[saleinfo(60,bank,0)]]

|| standard[[flightinfo(110,special,0)]]

|| travelshop[[agent(170,0)]]} in time < 40 . )
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The result of performing the above inquiry is:

Timed search [2] in Example

{TravelShop} =>* {bank[[till(0,0)]]|| home[[client(70,0)]]

|| special[[stop]]|| special[[saleinfo(60,bank,0)]]

|| standard[[flightinfo(110,special,0)]]

|| travelshop[[agent(170,0)]]}

in time < 40 and with mode default time increase 1 :

Solution 1

TIME_ELAPSED:Time --> 37

Solution 2

TIME_ELAPSED:Time --> 38

rewrites: 3684 in 24ms cpu (25ms real) (153500 rewrites/second)

Instead of searching for the entire reachable system, we can also search only for
certain parts of it: for instance, to check when the client remains with 70 cash
units in a given interval of time. This can be done by using the command:

(tsearch {TravelShop} =>* {home[[client(70,0)]] || X:System}

in time-interval between >= 22 and < 40 . )

The answer returns that there exists such a situation at time 22.

Timed search [1] in Example

{TravelShop} =>* {home[[client(70,0)]]|| X:System}

in time between >= 22 and < 40 and with mode default time increase 1 :

Solution 1

TIME_ELAPSED:Time --> 22 ; X:System --> bank[[(paya ^ 6 ! < 70 >) then

(till(0,0))else(till(70,0))]]|| special[[stop]]|| special[[saleinfo(60,

bank,0)]]|| standard[[flightinfo(110,special,0)]]|| travelshop[[(go ^

3 bank) then ((paya ^ INF ?(profit)) then ((go ^ 12 travelshop) then

(agent(profit + 100,0)))else(stop))]]

The real-time Maude tool allows also the following command to find the shortest
time to reach a desired configuration:

(find earliest {TravelShop} =>* {home[[client(70,0)]] || X:System} . )

It returns the same solution as the previous one, and tells that it was reached
in time 22.
If time is not relevant for such a search, we can use the untimed search command:

(utsearch [1] {TravelShop} =>* {home[[client(70,0)]] || X:System} . )
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5 Conclusion and Related Work

In the current paper we translated our high-level specifications of the multi-
agent systems with timeouts for migration and communication into an existing
rewriting engine able to execute and analyze timed systems. This translation
satisfies an operational correspondence result. Thus, such a translation is suitable
for analyzing complex multi-agent systems with timeouts in order to be sure that
they have the expected behaviours and properties. We analyze the multi-agent
systems with timeouts by using the real-time Maude software platform. The
approach is illustrated by an example.

The used high-level specification is given in a language forthcoming realistic
programming systems for multi-agent systems, a language with explicit locations
and timeouts for migration and communication. It is essentially a simplified ver-
sion of the timed distributed π-calculus [7]. It can be viewed as a prototyping
language of the TiMo family for multi-agent systems in which the agents can
migrate between explicit locations in order to perform local communications with
other agents. The initial version of TiMo presented in [5] lead to some exten-
sions; e.g., with access permissions in perTiMo [6], with real-time in rTiMo [2].
In [4] it was presented a Java-based software in which the agents are able to
perform timed migration just like in TiMo . Using the model checker Process
Analysis Toolkit (PAT), the tool TiMo@PAT [8] was created to verify timed
systems. In [16], the authors consider an UTP semantics for rTiMo in order to
provide a different understanding of this formalism. Maude is used in [17] to
define a rewrite theory for the BigTiMo calculus, a calculus for structure-aware
mobile systems combining TiMo and the bigraphs [12]. However, the authors
of [17] do not tackle the fresh names and recursion problems presented in our
current approach.
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Abstract. Self-loop alternating automata (SLAA) with Büchi or co-
Büchi acceptance are popular intermediate formalisms in translations
of LTL to deterministic or nondeterministic automata. This paper con-
siders SLAA with generic transition-based Emerson-Lei acceptance and
presents translations of LTL to these automata and back. Importantly,
the translation of LTL to SLAA with generic acceptance produces con-
siderably smaller automata than previous translations of LTL to Büchi
or co-Büchi SLAA. Our translation is already implemented in the tool
LTL3TELA, where it helps to produce small deterministic or nondeter-
ministic automata for given LTL formulae.

1 Introduction

Translation of linear temporal logic (LTL) [23] into equivalent automata over infi-
nite words is an important part of many methods for model checking, controller
synthesis, monitoring, etc. This paper presents improved translations of LTL
to self-loop alternating automata (SLAA) [27], which are alternating automata
that contain no cycles except self-loops. The SLAA class is studied for more than
20 years under several different names including very weak [13,25], linear [17],
linear weak [14], or 1-weak [22] alternating automata. The first publications show-
ing that any LTL formula can be easily translated to an SLAA with only a linear
number of states in the length of the formula are even older [19,28]. An LTL to
SLAA translation forms the first step of many LTL to automata translations.
For example, it is used in popular tools LTL2BA [13] and LTL3BA [3] trans-
lating LTL to nondeterministic automata, and also in the tool LTL3DRA [2]
translating a fragment of LTL to deterministic automata.

A nice survey of various instances of LTL to SLAA translations can be found
in Tauriainen’s doctoral thesis [27], where he also presents another improved LTL
to SLAA translation. To our best knowledge, the only new improvement since
publication of the thesis has been presented by Babiak et al. [3]. All the LTL
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to SLAA translations considered so far produce SLAA with (state-based) Büchi
or co-Büchi acceptance. The only exception is the translation by Tauriainen
producing SLAA with transition-based co-Büchi acceptance.

In this paper, we follow a general trend of recent research and development
in the field of automata over infinite words and their applications: consider a
more general acceptance condition to construct smaller automata. In theory, this
change usually does not decrease the upper bound on the size of constructed
automata. Moreover, the complexity of algorithms processing automata with
a more involved acceptance condition can be even higher. However, practical
experiences show that achieved reduction of automata size often outweighs com-
plications with a more general acceptance condition. This can be documented
by observations of nondeterministic as well as deterministic automata.

Nondeterministic automata are traditionally considered with Büchi accep-
tance. However, all three most popular LTL to nondeterministic automata trans-
lators, namely LTL2BA [13], LTL3BA [3], and Spot [9], translate LTL formulae
to transition-based generalized Büchi automata (TGBA), which are further trans-
formed to Büchi automata. When solving emptiness check, which is the central
part of many model checking tools, algorithms designed for TGBA perform bet-
ter than algorithms analyzing the corresponding Büchi automata [7,24].

Deterministic automata were typically considered with Rabin or Streett
acceptance. Tools of the Rabinizer family [16] and the tool LTL3DRA [2] produce
also deterministic automata with transition-based generalized Rabin acceptance.
The equivalent Rabin automata are often dramatically larger. Direct processing
of generalized Rabin automata can be substantially more efficient as shown by
Chatterjee et al. [6] for probabilistic model checking and LTL synthesis.

All the previously mentioned acceptance conditions can be expressed by a
generic acceptance condition originally introduced by Emerson and Lei [11] and
recently reinvented in the Hanoi omega-automata (HOA) format [1]. Emerson-
Lei acceptance condition is any positive boolean formula over terms of the form
Inf and Fin , where is an acceptance mark. A run of a nondeterministic
automaton (or an infinite branch of a run of an alternating automaton) satisfies
Inf or Fin if it visits the acceptance mark infinitely often or finitely often,
respectively. The acceptance marks placed on states denote traditional state-
based acceptance, while marks placed on transitions correspond to transition-
based acceptance.

Some tools that work with transition-based Emerson-Lei automata (TELA)
already exist. For example, Delag [20] produces deterministic TELA and Spot is
now able to produce both deterministic and nondeterministic TELA. The pro-
duced TELA are often smaller than the automata produced by the tools men-
tioned in the previous paragraphs. The development version of Spot provides
also an emptiness check for TELA, and a probabilistic model checking algo-
rithm working with deterministic Emerson-Lei automata has been implemented
in PRISM. In both cases, an improved performance over previous solutions has
been reported [4].
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Fig. 1. Automata for the formula ϕ = F(Ga ∨ GFb): the co-Büchi SLAA produced by
the basic translation (left), the Inf-less SLAA produced by F-merging (middle), and
the SLAA produced by F,G-merging (right). Graphical notation is explained in Sect. 2.

This paper presents a translation of LTL to SLAA with transition-based
Emerson-Lei acceptance. The translation aims to take advantage of the generic
acceptance and produce SLAA with less states. We present it in three steps.

1. Section 3 recalls a basic translation producing co-Büchi SLAA. The descrip-
tion uses the same terminology and notation as the following modified trans-
lations. In particular, the acceptance marks are on transitions.

2. In Sect. 4, we modify the translation such that states for subformulae of the
form Fψ are merged with states for ψ. The technique is called F-merging. The
acceptance condition of constructed SLAA is a positive boolean combination
of Fin-terms. We call such automata Inf-less SLAA.

3. Finally, we further modify the translation in Sect. 5, where states for some
subformulae of the form Gψ are merged with states for ψ. The resulting tech-
nique is thus called F,G-merging. Constructed SLAA use acceptance condition
containing both Inf- and Fin-terms.

The difference between these translations is illustrated by Fig. 1 showing three
SLAA for the formula F(Ga ∨GFb). One can observe that the initial state of the
middle automaton is merged with the states for Ga and GFb due to F-merging.
In the automaton on the right, the state for GFb is merged with Fb and the initial
state is then merged with Ga and GFb. Hence, the resulting automaton contains
only one state and the LTL to SLAA translation in this case produces directly
a nondeterministic automaton.

LTL to SLAA translations are traditionally accompanied by automata sim-
plification based on transition dominance [13]. Section 6 extends this idea to
SLAA with generic acceptance.

Section 7 completes the theoretical part of the paper with a backward trans-
lation which takes an SLAA with transition-based Emerson-Lei acceptance and
produces an equivalent LTL formula. Altogether, we get that SLAA with the
generic acceptance have the same expressiveness as LTL.
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The three presented LTL to SLAA translations have been implemented and
Sect. 8 provides their experimental comparison extended with the results of the
LTL to SLAA translation implemented in LTL3BA. On randomly generated
formulae containing only temporal operators F and G, which are favourable to
our translation improvements, the F,G-merging can save over 45% of states.
This is a considerable reduction, especially with respect to the fact that even
the simplest LTL to SLAA translations produce automata of linear size and thus
the space for reduction is not big.

As we said at the beginning, SLAA are mainly used as an intermediate for-
malism in translations of LTL to other kinds of automata. We have already
developed a dealternation algorithm transforming the produced SLAA to non-
deterministic TELA. Both F,G-merging translation and dealternation are imple-
mented in LTL3TELA 2.1 [18], which combines them with some heuristics and
many functions of Spot in order to translate LTL to small deterministic and non-
deterministic automata. Experiments1 show that the tool produces, on average,
smaller automata than established state-of-the-art translators.

2 Preliminaries

This section recalls the notion of linear temporal logic [23] and the definition
of self-loop alternating automata [27]. We always use automata with transition-
based acceptance condition given in the format of Emerson-Lei acceptance. For
example, co-Büchi automaton is an automaton with acceptance condition Fin .

2.1 Linear Temporal Logic (LTL)

We define the syntax of LTL formulae directly in the positive normal form as

ϕ :: = tt | ff | a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | ϕ U ϕ | ϕRϕ,

where tt stands for true, ff for false, a ranges over a set AP of atomic proposi-
tions, and X,U,R are temporal operators called next, until, and release, respec-
tively. A word is an infinite sequence u = u0u1u2 . . . ∈ Σω, where Σ = 2AP . By
ui.. we denote the suffix ui.. = uiui+1 . . .. We define when a word u satisfies ϕ,
written u |= ϕ, as follows:

u |= tt
u |= a iff a ∈ u0

u |= ¬a iff a �∈ u0

u |= ϕ1 ∨ ϕ2 iff u |= ϕ1 or u |= ϕ2

u |= ϕ1 ∧ ϕ2 iff u |= ϕ1 and u |= ϕ2

u |= Xϕ iff u1.. |= ϕ
u |= ϕ1 U ϕ2 iff ∃i ≥ 0 such that ui.. |= ϕ2 and ∀ 0 ≤ j < i . uj.. |= ϕ1

u |= ϕ1 Rϕ2 iff ∃i ≥ 0 such that ui.. |= ϕ1 and ∀ 0 ≤ j ≤ i . uj.. |= ϕ2,
or ∀i ≥ 0 . ui.. |= ϕ2

1 https://github.com/jurajmajor/ltl3tela/blob/master/ATVA19.md.

https://github.com/jurajmajor/ltl3tela/blob/master/ATVA19.md
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A formula ϕ defines the language L(ϕ) = {u ∈ (2AP(ϕ))ω | u |= ϕ}, where
AP(ϕ) denotes the set of atomic propositions occurring in ϕ. Further, we use
derived operators eventually (F) and always (G) defined by Fϕ ≡ tt U ϕ and
Gϕ ≡ ff Rϕ. A temporal formula is a formula where the topmost operator is
neither conjunction, nor disjunction. A formula without any temporal operator is
called state formula. Formulae tt ,ff , a,¬a are both temporal and state formulae.

2.2 Self-Loop Alternating Automata (SLAA)

An alternating automaton is a tuple A = (S,Σ,M,Δ, sI , Φ), where

– S is a finite set of states,
– Σ is a finite alphabet,
– M is a finite set of acceptance marks,
– Δ ⊆ S × Σ × 2M × 2S is an alternating transition relation,
– sI ∈ S is the initial state, and
– Φ is an acceptance formula, which is a positive boolean combination of terms

Fin and Inf , where ranges over M.

An alternating automaton is a self-loop alternating automaton (SLAA) if there
exists a partial order on S such that for every (s, α,M,C) ∈ Δ, all states in C
are lower or equal to s. In other words, SLAA contain no cycles except self-loops.

Subsets C ⊆ S are called configurations. A quadruple t = (s, α,M,C) ∈ Δ is
called a transition from s to C under α (or labelled by α or α-transition) marked
by elements of M . A transition t = (s, α,M,C) ∈ Δ is looping (or simply a loop)
if its destination configuration C contains its source s.

A multitransition T under α is a set of transitions under α such that the
source states of the transitions are pairwise different. The source configuration
dom(T ) of a multitransition T is the set of source states of transitions in T . The
destination configuration range(T ) is the union of destination configurations of
transitions in T . For an alternating automaton A, ΓA denotes the set of all
multitransitions of A and ΓA

α denotes the set of all multitransitions of A under α.
A run ρ of an alternating automaton A over a word u = u0u1 . . . ∈ Σω is

an infinite sequence ρ = T0T1 . . . of multitransitions such that dom(T0) = {sI}
and, for all i ≥ 0, Ti is labelled by ui and range(Ti) = dom(Ti+1). Each run ρ
defines a directed acyclic edge-labelled graph Gρ = (V,E, λ), where

V =
∞⋃

i=0

Vi, where Vi = dom(Ti) × {i},

E =
∞⋃

i=0

{(
(s, i), (s′, i + 1)

) | (s, α,M,C) ∈ Ti, s
′ ∈ C

}
, and

the labeling function λ : E → 2M assigns to each edge e = ((s, i), (s′, i+1)
) ∈ E

the acceptance marks from the corresponding transition, i.e., λ(e) = M where
(s, α,M,C) ∈ Ti. A branch of the run ρ is a maximal (finite or infinite) sequence
b = (v0, v1)(v1, v2) . . . of consecutive edges in Gρ such that v0 ∈ V0. For an infinite
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branch b, let M(b) denote the set of marks that appear in infinitely many sets
of the sequence λ((v0, v1))λ((v1, v2)) . . .. An infinite branch b satisfies Inf if

∈ M(b) and it satisfies Fin if �∈ M(b). An infinite branch is accepting if
it satisfies the acceptance formula Φ. We say that a run ρ is accepting if all its
infinite branches are accepting. The language of A is the set L(A) = {u ∈ Σω |
A has an accepting run over u}.

Several examples of SLAA are given in Fig. 1. Examples of SLAA with their
runs can be found in Fig. 5. Note that a transition (s, α,M,C) ∈ Δ of an alter-
nating automaton is visualised as a branching edge leading from s to all states
in C. In this paper, an automaton alphabet has always the form Σ = 2AP ′

,
where AP ′ is a finite set of atomic propositions. To keep the visual representa-
tion of automata concise, edges are labelled with boolean formulae over atomic
propositions in a condensed notation: ā denotes ¬a and conjunctions are omit-
ted. Hence, abc̄ would stand for a ∧ b ∧ ¬c. Every edge represents all transitions
under combinations of atomic propositions satisfying its label.

3 Basic Translation

This section presents a basic translation of LTL to co-Büchi SLAA similar to the
one implemented in LTL3BA [3]. To simplify the presentation, in contrast to the
translation of LTL3BA we omit the optimization called suspension, we describe
transitions for each α ∈ Σ separately, and we slightly modify the acceptance
condition of the SLAA; in particular, we switch from state-based to transition-
based acceptance.

Let ϕ be an LTL formula, where subformulae of the form Fψ and Gψ are
seen only as abbreviations for tt U ϕ and ff Rϕ, respectively. An equivalent
SLAA is constructed as Aϕ = (S,Σ, { },Δ, ϕ,Fin ), where states in S are
subformulae of ϕ and Σ = 2AP(ϕ). The construction of the transition relation
Δ treats it equivalently as a function Δ : S × Σ → 2P where P = 2M × 2S .
The construction of Δ is defined inductively and it directly corresponds to the
semantics of LTL. The acceptance mark is used to ensure that an accepting
run cannot stay in a state ψ1 U ψ2 forever. In other words, it ensures that ψ2

will eventually hold. The translation uses an auxiliary product operator ⊗ and
a marks eraser me defined for each P, P ′ ⊆ P as:

P ⊗ P ′ = {(M ∪ M ′, C ∪ C ′) | (M,C) ∈ P, (M ′, C ′) ∈ P ′}
me(P ) = {(∅, C) | (M,C) ∈ P}

The product operator is typically used to handle conjunction: to get successors of
ψ1 ∧ ψ2, we compute the successors of ψ1 and the successors of ψ2 and combine
them using the product operator ⊗. The marks eraser has two applications.
First, it is used to remove unwanted acceptance marks on transitions looping
on states of the form ψ1 Rψ2. Second, it is used to remove irrelevant accepting
marks from the automaton, which are all marks not lying on loops. Indeed, only
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looping transition can appear infinitely often on some branch of an SLAA run
and thus only marks on loops are relevant for acceptance.

Δ(tt , α) = {(∅, ∅)}
Δ(ff , α) = ∅
Δ(a, α) = {(∅, ∅)} if a ∈ α, ∅ otherwise

Δ(¬a, α) = {(∅, ∅)} if a /∈ α, ∅ otherwise

Δ(ψ1∧ψ2, α) = me
(
Δ(ψ1, α) ⊗ Δ(ψ2, α)

)

Δ(ψ1∨ψ2, α) = me
(
Δ(ψ1, α) ∪ Δ(ψ2, α)

)

Δ(Xψ, α) =
{
(∅, {ψ})

}

Δ(ψ1Uψ2, α) = me
(
Δ(ψ2, α)

) ∪
({

({ }, {ψ1Uψ2})
}⊗me

(
Δ(ψ1, α)

))

Δ(ψ1Rψ2, α) = me
(
Δ(ψ1, α)⊗Δ(ψ2, α)

) ∪ me
({

(∅, {ψ1Rψ2})
} ⊗ Δ(ψ2, α)

)

The automaton Aϕ has at most |ϕ| states as the states are subformulae of ϕ.
To prove that the constructed automaton is a self-loop alternating automaton,
it is enough to consider the partial order ‘being a subformula of’ on states.

4 F-Merging Translation

Now we modify the basic translation on subformulae of the form Fψ. The modi-
fied translation produces Inf-less SLAA, which are SLAA without Inf terms in
acceptance formulae.

Before giving the formal translation, we discuss three examples to explain
the ideas behind F-merging. We start with a formula Fψ where ψ is a temporal
formula. Further, assume that the state ψ of the SLAA constructed by the basic
translation has two types of transitions: non-looping labelled by α and loops
labelled by β. The SLAA A for Fψ can be found in Fig. 2 (left). States Fψ and
ψ can be merged into a single state that represents their disjunction (which is
equivalent to Fψ) as shown by the SLAA AF of Fig. 2 (right). The construction
is still correct: (i) Clearly, each sequence of transitions that can be taken in A
can be also taken in AF. (ii) The sequences of transitions of AF that cannot
be taken in A are those where the tt-loop is taken after some β-loop. However,
every accepting run of AF use the tt-loop only finitely many times and thus we
can find a corresponding accepting run of A: instead of each β-loop that occurs
before the last tt-loop we can use the tt-loop since β implies tt .

The second example deals with the formula Fψ where ψ = (aR b) ∧ Gc.
Figure 3 (left) depicts the SLAA A produced by the basic translation. The state
ψ is dotted as it is unreachable. Hence, merging Fψ with ψ would not save any
state. However, we can modify the translation rules to make ψ reachable and aR b
unreachable at the same time. The modification is based on the following obser-
vation. Taking the red bc-edge in A would mean that both aR b and Gc have to
hold in the next step, which is equivalent to (aR b) ∧ Gc. Thus we can replace
the red edge by the red bc-loop as shown in the automaton A′ of Fig. 3 (right).
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Fψ ψ

A
α

β

tt

β

α

Fin

Fψ ψ∨

AF

α

β

tt

Fin

Fig. 2. Automata for Fψ: the SLAA A built by the basic translation (left) and the
SLAA AF built by the F-merging translation (right).

Because transitions leaving the state Fψ are computed from transitions of ψ, this
replacement makes the state (aR b) ∧ Gc reachable and the state aR b becomes
unreachable. The states Fψ and ψ of A′ can be now merged for the same reason
as in Fig. 2.

While the previous paragraph studied a formula Fψ where ψ is a conjunction,
the third example focuses on disjunctions. Let us consider a formula Fψ where
ψ = ψ1 ∨ψ2 ∨ψ3 and each ψi is a temporal formula. As in the previous example,
the state ψ is unreachable in the SLAA produced by the basic translation and
thus merging Fψ with ψ does not make any sense. However, we can merge the
state Fψ with states ψ1, ψ2, ψ3 as indicated in Fig. 4. In contrast to the original
SLAA, a single run of the merged SLAA can use a loop corresponding to a state
ψi and subsequently a transition corresponding to a different ψj . Instead of every
such a loop, the original SLAA can simply use the tt-loop of Fψ. However, as the
tt-loop is marked by , we can use it only finitely many times. In fact, the runs
of the merged automaton that contain infinitely many loops corresponding to
two or more different states ψi should be nonaccepting. Therefore we adjust the
acceptance formula to Fin ∧(Fin 1 ∨Fin 2 ∨Fin 3 ) and place the new acceptance
marks as shown in Fig. 4. Clearly, Fin 1 says that transitions of ψ2 and ψ3 are

Gc

c

aR b

b

ab

(aR b)∧Gc

abc

bc
F((aR b)∧Gc)

bc

abc
ttA

Fin

Gc

c

aR b

b

ab

(aR b)∧Gc

abc
bc

F((aR b)∧Gc)
bc

abc
ttA′

Fin

Fig. 3. Automata for F((aR b) ∧ Gc): the SLAA A built by the basic translation (left)
and the modified SLAA A′ where states in the grey area can be merged (right). (Color
figure online)
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F(ψ1 ∨ ψ2 ∨ ψ3)

ψ1 ψ2 ψ3

ψ

32 31 21

tt

Fin ∧ (Fin 1 ∨ Fin 2 ∨ Fin 3 )

Fig. 4. Transitions of the state F(ψ1 ∨ ψ2 ∨ ψ3) merged with states ψ1, ψ2, and ψ3.

taken only finitely many times, Fin 2 does the same for transitions of ψ1 and ψ3,
and Fin 3 for transitions of ψ1 and ψ2.

The F-merging translation combines the ideas presented above when pro-
cessing any F-subformula, while other subformulae are handled as in the basic
translation. Hence, we no longer treat Fψ as an abbreviation for tt Uψ. Further,
we think about formulae Fψ as formulae of the form F

∨
i

∧
j ψi,j , where ψi,j are

temporal formulae. Formally, we define formula decomposition into disjunctive
normal form ψ as follows:

ψ = {{ψ}} if ψ is a temporal formula

ψ1 ∨ ψ2 = ψ1 ∪ ψ2

ψ1 ∧ ψ2 = {C1 ∪ C2 | C1 ∈ ψ1 and C2 ∈ ψ2}.

Let K ∈ ψ be a set of temporal formulae. We use ψK to denote ψK =
∧

ψ′∈K ψ′.
Clearly, ψ is equivalent to

∨
K∈ψ ψK . We define two auxiliary transition functions

ΔL,ΔNL to implement the trick illustrated with red edges in Fig. 3. Intuitively,
ΔL(ψK , α) is the set of α-transitions of ψK such that their destination configu-
ration subsumes K (the transitions are looping in this sense, hence the subscript
L), while ΔNL(ψK , α) represents the remaining α-transitions of ψK (non-looping,
hence the subscript NL). To mimic the trick of Fig. 3, we should replace in the
destination configuration of each looping transition all elements of K by the
state corresponding to ψK . To simplify this step, we define the destination con-
figurations of looping transitions in ΔL(ψK , α) directly without elements of K.

ΔL(ψK , α) =
{
(M,C � K) | (M,C) ∈ Δ(ψK , α), K ⊆ C

}

ΔNL(ψK , α) =
{
(M,C) | (M,C) ∈ Δ(ψK , α), K �⊆ C

}

Simultaneously with the trick of Fig. 3, we apply the idea indicated in Fig. 4 and
merge the state Fψ with all states ψK for K ∈ ψ. Hence, instead of extending
the looping transitions with states ψK , we extend it with the merged state called
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simply Fψ. Altogether, we get

Δ(Fψ, α) =
{
({ }, {Fψ})

} ∪
∪

⋃

K∈ψ

(
me

(
ΔNL(ψK , α)

) ∪ {
(MK , {Fψ})

} ⊗ ΔL(ψK , α)
)

where

MK = { K′ | K ′ ∈ ψ and K ′ �= K}.

In other words, the merged state Fψ has three kinds of transitions: the tt-loop
marked by , non-looping transitions of states ψK for each disjunct K ∈ ψ, and
the looping transitions of states ψK which are marked as shown in Fig. 4. Finally,
we redefine the set of acceptance marks M and the acceptance formula Φ of the
constructed SLAA as follows, where Fϕ denotes the set of all subformulae of ϕ
of the form Fψ:

M = { } ∪ { K | Fψ ∈ Fϕ and K ∈ ψ}
Φ = Fin ∧

∧

Fψ∈Fϕ

∨

K∈ψ

Fin
K

In fact, we can reduce the number of orange marks (marks with an upper
index) produced by F-merging translation. Let nϕ = max{|ψ| | Fψ ∈ Fϕ} be the
maximal number of such marks corresponding to any subformula Fψ of ϕ. We
can limit the total number of orange marks to nϕ by reusing them. We redefine
M and Φ as

M = { } ∪ { i | 1 ≤ i ≤ nϕ} and Φ = Fin ∧
nϕ∨

i=1

Fin
i

and alter the above definition of MK . For every Fψ ∈ Fϕ, we assign a unique
index iK , 1 ≤ iK ≤ nϕ, to each K ∈ ψ. Sets MK in transitions of Fψ are then
defined to contain all orange marks except iK , formally MK = M�{ ,

iK }.
This optimization is correct as any branch of an SLAA run cannot cycle between
two states of the form Fψ.

5 F,G-Merging Translation

We further improve the F-merging translation by adding a special rule also for
subformulae of the form Gψ. The resulting F,G-merging translation produces
SLAA with an acceptance formula that is not Inf-less.

We start again with a simple example. Consider the formula GFa. The basic
translation produces the SLAA A from Fig. 5 (top). In general, each transition
of the state Gψ is a transition of ψ extended with a loop back to Gψ. The
one-to-one correspondence between transitions of Gψ and ψ leads to the idea
to merge the states into one that corresponds to their conjunction (Gψ) ∧ ψ,
which is equivalent to Gψ. However, merging these states needs a special care.
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GFa

Fa

tt

a

tt
a

A
Fin

0 1 2 3 4 5 6

· · ·

∅ ∅ ∅ ∅{a} {a}

GFa ∧ Fatt a

AF,G

Fin ∨ Inf · · ··

Fig. 5. An SLAA A for the formula GFa built by the basic translation (top) and an
equivalent SLAA AF,G built by the F,G-merging translation (bottom) and their runs
over the word (∅∅{a})ω.

Figure 5 (bottom) shows an SLAA where the states GFa and Fa are merged.
Consider now the word u = (∅∅{a})ω and the runs of the two automata over
u. The branches of the top run collapse into a single branch in the bottom
run. While each branch of the top run has at most one occurrence of , the
single branch in the bottom run contains infinitely many of these marks. The
SLAA AF,G accepts u only because of the added marks. The intuition for their
placement is explained using the concept of escaping multitransitions.

A multitransition T of an SLAA A′ is s-escaping for a state s if it contains
a non-looping transition (s, α,M,C) ∈ T . For an acceptance mark , we define
its owners O( ) = {s ∈ S | (s, α,M,C) ∈ Δ and ∈ M} as the set of all
states with outgoing transitions marked by . The following observation holds
for every mark with a single owner s. A run of A′ satisfies Fin (i.e., all its
infinite branches satisfy Fin ) if and only if the run contains only a finite number
of multitransitions T marked by or if it contains infinitely many s-escaping
multitransitions.

Transitions of AF,G correspond to multitransitions of A with source configu-
ration {GFa,Fa}. The observation implies that AF,G would be equivalent to A
if we mark all transitions corresponding to Fa-escaping multitransitions with a
new mark and change the acceptance formula to Fin ∨ Inf as shown in
Fig. 5 (bottom).

This approach naturally extends to the case of Gψ where ψ =
∧

i ψi is a con-
junction of temporal formulae. In this case, Gψ can be merged with all states ψi

into a single state representing the conjunction (Gψ) ∧ ∧
i ψi. However, we have

to pay a special attention to acceptance marks as the observation formulated
above holds only for marks with a single owner. For every ψi with a -marked
transition, we need to track ψi-escaping multitransitions separately. To imple-
ment this, we create a copy of for each ψi and we use a specific ψi

mark to
label transitions corresponding to ψi-escaping multitransitions.
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Unfortunately, due to the duality of the F and G operators and the fact that
the transition relation of SLAA is naturally in disjunctive normal form (which is
suitable for F), we did not find any way to improve the translation of Gψ if ψ is a
disjunction. On the bright side, we can generalize the merging to G

∧
i ψi where

each ψi is a temporal or state formula (which can contain disjunctions). This
is due to the fact that a state formula ψi affects only the labels of transitions
with origin in the state G

∧
i ψi and thus it does not create any reachable state

or acceptance mark.
Formally, we first modify the translation rules introducing acceptance marks

to work with marks of the form ψ as discussed above. More precisely, we
change the rule for ψ1Uψ2 presented in the basic translation and the rule for Fψ
of the F-merging translation to the following (note that the optimization reusing
orange marks make no longer sense as we need to create their copies for each Fψ
anyway).

Δ(ψ1Uψ2, α) = me
(
Δ(ψ2, α)

)∪
({

({ ψ1Uψ2
}, {ψ1Uψ2})

}⊗me
(
Δ(ψ1, α)

))

Δ(Fψ, α) =
{
({ Fψ}, {Fψ})

} ∪
∪

⋃

K∈ψ

(
me

(
ΔNL(ψK , α)

) ∪ {
(MK , {Fψ})

} ⊗ ΔL(ψK , α)
)
,

where MK = { K′
Fψ | K ′ ∈ ψ and K ′ �= K}

Further, we add a specific rule for formulae Gψ where ψ =
∧

ψ′∈K ψ′ for
some set K of temporal and state formulae. Formulae Gψ of other forms are
handled as ff Rψ. On the top level, the rule simply defines transitions of Gψ as
transitions of Gψ ∧ ∧

ψ′∈K ψ′:

Δ(Gψ, α) =
{
(∅, {Gψ})

} ⊗
⊗

ψ′∈K

Δ′(ψ′, α)

The definition of Δ′(ψ′, α) differs from Δ(ψ′, α) in two aspects. First, it removes
ψ′ from destination configurations because ψ′ is merged with Gψ and the state
Gψ is added to each destination configuration by the product on the top level.
Second, it identifies all non-looping transitions of ψ′ and marks them with ψ′

as ψ′-escaping. We distinguish between looping and non-looping transitions only
when ψ′ has the form ψ1 Uψ2 or Fψ1. All other ψ′ have only looping transitions
(e.g., G-formulae) or no marked transitions (e.g., state formulae or R- or X-
formulae) and thus there are no ψ′-escaping transitions or we do not need to
watch them. Similarly to Fϕ, we use Uϕ for the set of all subformulae of ϕ of
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the form ψ1 U ψ2. The function Δ′(ψ′, α) is defined as follows:

Δ′(ψ′, α) =

⎧
⎨

⎩
Δ′

L(ψ
′, α) ∪ Δ′

NL(ψ
′, α) if ψ′ ∈ Fϕ or ψ′ ∈ Uϕ

{
(M,C � {ψ′}) | (M,C) ∈ Δ(ψ′, α)

}
otherwise

Δ′
L(ψ

′, α) =
{
(M,C � {ψ′}) | (M,C) ∈ Δ(ψ′, α), ψ′ ∈ C

}

Δ′
NL(ψ

′, α) =
{
({ ψ′}, C) | (M,C) ∈ Δ(ψ′, α), ψ′ /∈ C

}

Finally, we redefine the set of marks M and the acceptance formula Φ. Now
each subformula from Uϕ and Fϕ has its own set of marks, and the marks are
used to implement the intuition given using the Fig. 5.

M = { ψ, ψ | ψ ∈ Uϕ} ∪
{

Fψ, Fψ,
K
Fψ | Fψ ∈ Fϕ and K ∈ ψ

}

Φ =
∧

ψ∈Uϕ

(
Fin ψ ∨ Inf ψ

) ∧
∧

Fψ∈Fϕ

⎛

⎝
(
Fin Fψ ∧

∨

K∈ψ

Fin
K
Fψ

)
∨ Inf Fψ

⎞

⎠

Theorem 1. Let ϕ be an LTL formula and let Aϕ be the corresponding SLAA
built by the F,G-merging translation. Then L(Aϕ) = L(ϕ). Moreover, the number
of states of Aϕ is linear to the size of ϕ and the number of acceptance marks is
at most exponential to the size of ϕ.

The proof can be found in the full version of this paper [5].

6 SLAA Simplification

Simplification by transition dominance is a basic technique improving various
automata constructions [13]. The idea is that an automata construction does
not add any transition that is dominated by some transition already present
in the automaton. In SLAA, a transition (q, α,M1, C1) dominates a transition
(q, α,M2, C2) if C1 ⊆ C2 and M1 is “at least as helpful and at most as harmful for
acceptance” as M2. In the rest of this section, we focus on the precise formulation
of the last condition.

In the classic case of co-Büchi SLAA with acceptance formula Fin , the con-
dition translates into ∈ M1 =⇒ ∈ M2. For Büchi SLAA with acceptance
formula Inf , the condition has the form ∈ M2 =⇒ ∈ M1.

Now consider an SLAA with an arbitrary acceptance formula Φ. Let Fin(Φ)
and Inf(Φ) be the sets of all acceptance marks appearing in Φ in subformulae
of the form Fin and Inf , respectively. A straightforward formulation of the
condition is M1 ∩ Fin(Φ) ⊆ M2 and M2 ∩ Inf(Φ) ⊆ M1. This formulation is
correct, but we can do better. For example, consider the case Φ = Fin 1 ∧(Fin 2 ∨
Inf 3 ) and transitions t1 = (q, α, { 1 , 2 }, {p}) and t2 = (q, α, { 1 }, {p, p′}). Then
t1 does not dominate t2 according to this formulation as { 1 , 2 } ∩ Fin(Φ) =
{ 1 , 2 } �⊆ { 1 }. However, any branch of an accepting run cannot take neither
t1 nor t2 infinitely often and thus t1 can be seen as dominating in this case.
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To formalize this observation, we introduce transition dominance with respect to
acceptance formula.

A minimal model O of an acceptance formula Φ is a subset of its terms
satisfying Φ and such that no proper subset of O is a model of Φ. For example,
the formula Φ = Fin 1 ∧ (Fin 2 ∨ Inf 3 ) has two minimal models: {Fin 1 ,Fin 2 }
and {Fin 1 , Inf 3 }. For each minimal model O, by Fin(O) and Inf(O) we denote
the sets of all acceptance marks appearing in O in terms of the form Fin and
Inf , respectively. We say that a transition (q, α,M1, C1) dominates a transition
(q, α,M2, C2) with respect to Φ if C1 ⊆ C2 and for each minimal model O of Φ
it holds Fin(O) ∩ M2 = ∅ =⇒ Fin(O) ∩ M1 = ∅ and Inf(O) ∩ M1 = ∅ =⇒
Inf(O) ∩ M2 = ∅. In other words, if t2 can be used infinitely often without
breaking some Fin of a minimal model then t1 can be used as well, and if an
infinite use of t1 does not satisfy any term Inf of a minimal model then an
infinite use of t2 does not as well.

Note that our implementation of LTL to SLAA translation used later in
experiments employs this simplification.

7 Translation of SLAA to LTL

This section presents a translation of an SLAA to an equivalent LTL formula.
Let A = (S,Σ,M,Δ, sI , Φ) be an SLAA. We assume that the alphabet has the
form Σ = 2AP ′

for some finite set of atomic propositions AP ′. For each α ∈ Σ,
ϕα denotes the formula

ϕα =
∧

a∈α

a ∧
∧

a∈AP ′
�{α}
¬a.

For each state s ∈ S we construct an LTL formula ϕ(s) such that u ∈ Σω

satisfies ϕ(s) if and only if u is accepted by A with its initial state replaced by
s. Hence, A is equivalent to the formula ϕ(sI).

The formula construction is inductive. Let s be a state such that we have
already constructed LTL formulae for all its successors. Further, let Mod(Φ)
denote the set of all minimal models of Φ. Further, given a set of states C, by
ϕ(C) we denote the conjunction ϕ(C) =

∧
s∈C ϕ(s). We define ϕ(s) as follows:

ϕ(s) = ϕ1(s) ∨ (
ϕ2(s) ∧ ϕ3(s)

)

ϕ1(s) =
∨

(s,α,M,C)∈Δ
s∈C

ϕα ∧ Xϕ(C � {s}) U
∨

(s,α,M,C)∈Δ
s �∈C

ϕα ∧ Xϕ(C)

ϕ2(s) = G
∨

(s,α,M,C)∈Δ
s∈C

ϕα ∧ Xϕ(C � {s})

ϕ3(s) =
∨

O∈Mod(Φ)

( ∧

∈Inf(O)

(
GF

∨

(s,α,M,C)∈Δ

s∈C, ∈M

ϕα ∧ Xϕ(C � {s}) ) ∧

∧
∧

∈Fin(O)

(
FG

∨

(s,α,M,C)∈Δ

s∈C, �∈M

ϕα ∧ Xϕ(C � {s}) ) )
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Intuitively, ϕ1(s) covers the case when a run leaves s after a finite number
of looping transitions. Note that ϕ1(s) ignores acceptance marks on looping
transitions of s as they play no role in acceptance of such runs. Further, ϕ2(s)
describes the case when a run never leaves s. In this case, ϕ3(s) ensures that
the infinite branch of the run staying in s forever is accepting. Indeed, ϕ3(s)
says that the branch satisfies some prime implicant of the acceptance condition
Φ as all Inf-marks of the prime implicant have to appear infinitely often on the
branch and each Fin-mark of the prime implicant does not appear at all after a
finite number of transitions.

Theorem 2. Let A be an SLAA over an alphabet Σ = 2AP ′
and with initial

state sI . Further, let ϕ(sI) be the formula constructed as above. Then L(A) =
L(ϕ(sI)).

The statement can be proven straightforwardly by induction reflecting the induc-
tive definition of the translation.

Theorems 1 and 2 imply that LTL and the class of SLAA with alphabets of
the form 2AP ′

have the same expressive power.

8 Implementation and Experimental Evaluation

We have implemented the presented translations in a tool called LTL3TELA
which also offers dealternation algorithms for Inf-less SLAA and SLAA produced
by the F,G-merging translation. Given an LTL formula, LTL3TELA first applies
the formula optimization process implemented in SPOT. The processed formula
is then translated to SLAA by one of the three presented translation, unreachable
states are removed and transition reductions suggested by Babiak et al. [3] are
applied.

Table 1. Reference table of tools used for the experimental evaluation.

Tool Version Homepage

LTL3BA 1.1.3 https://sourceforge.net/projects/ltl3ba

LTL3TELA 2.1.0 https://github.com/jurajmajor/ltl3tela

SPOT library 2.7.4 https://spot.lrde.epita.fr

8.1 Evaluation Settings

We compare the LTL to SLAA translation implemented in LTL3BA and the
translations presented in this paper as implemented in LTL3TELA. Table 1 pro-
vides homepages and versions numbers of SPOT and both compared translators.
All scripts and formulae used for the evaluation presented below are available
in a Jupyter notebook that can be found at https://github.com/jurajmajor/
ltl3tela/blob/master/Experiments/Evaluation ICTAC19.ipynb.

https://sourceforge.net/projects/ltl3ba
https://github.com/jurajmajor/ltl3tela
https://spot.lrde.epita.fr
https://github.com/jurajmajor/ltl3tela/blob/master/Experiments/Evaluation_ICTAC19.ipynb
https://github.com/jurajmajor/ltl3tela/blob/master/Experiments/Evaluation_ICTAC19.ipynb
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The presented improvements can only be applied on certain kinds of formu-
lae: formulae that contain at least one Fψ subformula where ψ contains some
temporal subformula or G

∧
i ψi subformula where at least one ψi is temporal.

We call such formulae mergeable. We first evaluate how likely we can obtain
a formula that is mergeable in Sect. 8.2 and then we present the impact of our
merging technique on mergeable formulae in Sect. 8.3. We consider formulae that
come from two sources.

(i) We use formulae collected from literature [10,12,15,21,26] that can be
obtained using the tool genltl from SPOT [8]. For each such a formula, we
added its negation, simplified all the formulae and removed duplicates and
formulae equivalent to tt or ff . The resulting benchmark set contains 221
formulae.

(ii) We use the tool randltl from SPOT to generate random formulae. We
generate formulae with up to five atomic propositions and with tree size
equal to 15 (the default settings of randltl) before simplifications. We
consider 4 different sets of random formulae. The generator allows the user
to specify priority for each LTL operator which determines how likely the
given operator appears in the generated formulae. By default, all operators
(boolean and temporal) have priority 1 in randltl. For the sets rand1,
rand2, and rand4, the number indicates the priority that was used for F
and G. The last set called randfg uses priority 2 for F and G and sets 0 to
all other temporal operators. For Sect. 8.2 we generated 1000 formulae for
each priority setting, for Sect. 8.3 we generate for each priority setting 1000
formulae that are mergeable (and throw away the rest).

8.2 Mergeability

The set of formulae from literature contains mainly quite simple formulae. As
a result, only 24 out of the 221 formulae are mergeable. For rand1, rand2,
rand4, and randfg we have 302, 488, 697, and 802 mergeable formulae out of
1000, respectively. Consistently with intuition, the ratio of mergeable formulae
increases considerably with F and G being more frequent.

Table 2. Comparison of LTL to SLAA translations on mergeable formulae.

States Acceptance marks

lit rand1 rand2 rand4 randfg lit rand1 rand2 rand4 randfg

# of form. 24 1000 1000 1000 1000 24 1000 1000 1000 1000

LTL3BA 140 6253 6313 6412 5051 24 1000 1000 1000 1000

basic 140 6234 6287 6393 5051 24 997 1000 1000 1000

F-merging 110 5418 5296 5231 3926 46 1160 1244 1347 1343

F,G-merging 65 4595 4300 4015 2744 98 2971 3317 3677 2978



168 F. Blahoudek et al.

Table 3. Number of alternating automata that use only existential branching. The
numbers of formulae are the same as in Table 2 for each set.

Deterministic Nonalternating

lit rand1 rand2 rand4 randfg lit rand1 rand2 rand4 randfg

LTL3BA 0 5 2 0 0 6 148 114 89 144

basic 0 5 2 0 0 6 148 114 89 144

F-merging 2 64 53 40 73 6 171 146 119 192

F,G-merging 10 133 126 124 217 18 356 367 385 603

8.3 Comparison on Mergeable Formulae

Table 2 shows the cumulative numbers of states and acceptance marks of SLAA
produced by LTL3BA and the translations presented in Sects. 3, 4, and 5 as
implemented in LTL3TELA for mergeable formulae. The scatter plots in Fig. 6
offer more details on the improvement (in the number of states) of F,G-merging
over basic translation. The missing plot for rand2 was omitted for space reasons
as it is very similar to the one for rand1.

Merging of states has a positive impact also on the type of the produced
automaton as it removes both some universal and nondeterministic branching
from the automaton. Table 3 shows for each set of formulae and each translation
the number of automata that have no universal branching (right part) and that
are even deterministic (left part).

One can observe in the tables that the basic translation produces similar
SLAA as LTL3BA. Further, the F-merging and F,G-merging translations bring
gradual improvement both in the number of states and in the numbers of deter-
ministic and nonalternating automata in comparison to the basic translation on
all sets of formulae. The ratio of states that can be saved by merging grows
with the increasing occurrence of F and G operators up to 45% (randfg) in the
benchmarks that use randomly generated formulae.

The scatter plots reveal that most cases fit into the category the F,G-merging
translation saves up to 3 states. But there are also cases where the F,G-merging
translation reduces the resulting SLAA to 1 state only while the basic translation
needs 8 or even more states. However, we still have one case where the basic
translation produces smaller automaton than the F,G-merging (see Fig. 6, rand4)
and F-merging translations.

Table 3 confirms by numbers that the F- and F,G-merging translations often
build automata with fewer branching. The numbers of deterministic and non-
alternating (without universal branching) automata are especially appealing for
the F,G-merging translation on formulae from the set randfg.

On the downside, the presented translations produce SLAA with more accep-
tance marks than the translation of LTL3BA. This is the price we pay for small
automata. Basic translation sometimes uses 0 acceptance marks if there is no F
or U operator.
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Fig. 6. Effect of F,G-merging on SLAA size for mergeable formulae. A dot represents
the number of states of the SLAA produced by F,G-merging (y-axis) and by the basic
translation (x-axis) for the same formula. The color of the dot reflects the number of
dots at the position. (Color figure online)

9 Conclusion

We have presented a novel translation of LTL to self-loop alternating automata
(SLAA) with Emerson-Lei acceptance condition. To our best knowledge, it is
the first translation of LTL producing SLAA with other than Büchi or co-Büchi
acceptance. Our experimental results demonstrated that the expressive accep-
tance condition allows to produce substantially smaller SLAA comparing to these
produced by LTL3BA when F or G operators appear in the translated formula.

This work opens doors for research of algorithms processing SLAA with
Emerson-Lei acceptance, in particular the algorithms transforming these SLAA
to nonalternating automata with various degrees of determinism: nondetermin-
istic, deterministic, or semi-deterministic (also known as limit-deterministic)
automata. Our implementation can serve as a natural source of such automata
and already helped to build a tool that can produce small deterministic and
nondeterministic TELA.
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2. Babiak, T., Blahoudek, F., Křet́ınský, M., Strejček, J.: Effective translation of LTL
to deterministic Rabin automata: beyond the (F,G)-fragment. In: Van Hung, D.,
Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 24–39. Springer, Cham (2013).
https://doi.org/10.1007/978-3-319-02444-8 4
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Abstract. Monitors are a synchronization construct which allows to
keep a thread waiting until a specific resource for that thread is avail-
able. One potential problem with these constructs is starvation; a situ-
ation where a thread, competing for a resource, infinitely waits for that
resource because other threads, that started competing for that resource
later, get it earlier infinitely often. In this paper a modular approach
to verify starvation-freedom of monitors is presented, ensuring that each
time that a resource is released and its associated condition variable is
notified each waiting thread approaches the front of the waiting queue;
more specifically, the loop in which the wait command is executed (that
checks the waiting condition) has a loop variant. To this end, we intro-
duce notions of publishable resources and publishable obligations, which
are published from the thread notifying a condition variable to all of the
threads waiting for that condition variable. The publishable resources
ensure the waiting threads that they are approaching the front of the
waiting queue, by allowing to define an appropriate loop variant for the
related loop. The publishable obligations ensure that for any thread wait-
ing for a condition variable v there is another thread obliged to notify v,
which only waits for waitable objects whose levels, some arbitrary num-
bers associated with each waitable object, are lower than the level of v
(preventing circular dependencies). We encoded the proposed separation
logic-based proof rules in the VeriFast program verifier and succeeded in
verifying deadlock-freedom and starvation-freedom of two monitors, hav-
ing no scheduling policy, which implement two common queue locking
algorithms, namely ticket lock and CLH lock.

Keywords: Starvation-freedom · Monitors · Condition variables ·
Modular verification · Separation logic · Hoare logic

1 Introduction

Multithreaded programs use synchronizations such as locks and condition vari-
ables to control the execution of threads. Monitors are one of the popular con-
structs used to synchronize threads [32–34]. This construct, consisting of a lock
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and some condition variables associated with that lock, provides some APIs for
its clients, namely wait(v, l), causing the calling thread to release the lock l and
wait for a notification on the condition variable v, and notify(v)/notifyAll(v),
causing one/all thread(s) waiting for v to resume its/their execution. Each con-
dition variable is associated with a lock; a thread must acquire the associated
lock for waiting or notifying on a condition variable, and when a thread is notified
it must reacquire the associated lock before it can continue execution.

Monitors allow to keep a thread waiting until a desired condition is met,
e.g. an item is produced (in a producer-consumer program), a writer finishes its
writing (in a readers-writer lock), or a specific number of threads finish a specific
task (in a barrier). However, one potential problem with these constructs is
starvation; a situation where a thread, competing for a resource, infinitely waits
for that resource because other threads, that started competing for that resource
later, get it earlier infinitely often. For example, a shared buffer allows starvation
if it is possible that a thread starts a take operation but it never completes, while
other threads’ take operations complete infinitely often. As another example, a
readers-writers lock allows starvation if it is possible that a thread attempts to
enter the write lock but never succeeds, while other threads successfully acquire
and release the write lock infinitely often.

Several approaches to verify termination, deadlock-freedom, liveness, and
finite blocking of threads have been introduced. Some of these approaches only
work with non-blocking algorithms [27], where the suspension of one thread can-
not lead to the suspension of other threads. These approaches are not applicable
for condition variables because suspension of a notifying thread causes other
waiting threads to be blocked forever. Some other approaches are also presented
to verify termination of programs using some blocking constructs such as chan-
nels [13,19,20] and semaphores [11]. These approaches are not general enough to
cover condition variables because unlike channels and semaphores a notification
on a condition variable is lost when there is no thread waiting for that condition
variable. There are also some approaches [4,17,35] to verify correctness of pro-
grams in the presence of monitors. However, these approaches either only cover
a very specific application of monitors, such as a buffer program with only one
producer and one consumer, or are not modular and suffer from a long verifi-
cation time when the size of the state space, such as the number of threads, is
increased.

Recently, Hamin et al. [6,7] introduced a modular approach to verify absence
of deadlock in monitors. This approach ensures that in any state of the execution
there is a thread running, not waiting for a lock or condition variable, until the
program terminates. The main idea behind this approach is to make sure that
for any condition variable v for which a thread is waiting there exists a thread
obliged to discharge an obligation for v that only waits for objects whose levels,
some arbitrary numbers associated with each waitable object, are lower than the
level of v. The notion of obligations in this approach, which is borrowed from
the approach of [20], verifying deadlock-freedom of channels, and Kobayashi’s
type system [19], verifying deadlock-freedom of π-calculus processes, makes it
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routine new tvm()
{
l := new lock();
v := new cvar();
tvm(l:=l, v:=v,
active:=new int(0),
next:=new int(0))
}

routine enter(tvm t)
{
acquire(t.l);
mine := t.next++;
while(t.active<mine)
wait(t.v, t.l);

release(t.l)
}

routine leave(tvm t)
{
acquire(t.l);
t.active++;
notifyAll(t.v);
release(t.l)
}

routine main(){
t:=new tvm;
fork(while(1){
enter(t); // CS
leave(t)
});
enter(t); // CS
leave(t)}

Fig. 1. A monitor implementing a ticket algorithm.

possible that different modules (routines) of a program are individually verified.
However, in this approach a thread which holds a resource and has an obligation
to release that resource cannot transfer that obligation to the next thread, which
acquires that resource. Later, this problem is solved in [9] by allowing obligations
to be transferred from the notifying thread to the one notified. In this approach
the transferred obligations are discharged from the notifying thread only if there
is a waiting thread onto which the transferred obligations are loaded. However,
in this approach obligations can be transferred using notify(v) but not using
notifyAll(v), which wakes up all the threads waiting for the condition variable v.

This constraint does not allow this approach to verify a monitor implementing
a ticket lock algorithm, shown in Fig. 1, for example, where the releasing thread
notifies all the waiting threads. As shown in the routine new tvm in this figure, a
tvm structure consists of a variable active, storing the now serving ticket number,
a variable next, storing the last ticket number, a lock l, protecting these variables
from concurrent accesses, and a condition variable v, keeping a thread waiting
until its ticket number equals the now serving ticket number. As shown in the
routine enter, the running thread first acquires the lock l, then it assigns the
last ticket number to its own ticket number, denoted by mine, and increases
the last ticket number. While the now serving ticket number is lower than the
ticket number of this thread it releases the lock l and waits for a notification on
the condition variable v. When this thread is notified (and reacquires l) if its
ticket number is equal (or lower than) the now serving ticket number it releases
l and continues its execution. After this thread gets service, as shown in the
routine leave, it acquires l, increases the now serving ticket number, notifies all
threads waiting for v, and releases l. After this notification, the thread whose
ticket number equals the now serving ticket number continues it execution and
the rest of the threads wait for a notification again.

Ticket lock algorithms and CLH lock algorithms [2] are two common queue
locking algorithms used to enforce fairness in concurrent constructs such as a con-
current queue and a readers-writers lock (see Fig. 2). To verify deadlock-freedom
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and starvation-freedom1 of monitors which have no scheduling policy2 and enforce
fairness by implementing these algorithms, in addition to transferring obliga-
tions using notifyAll, it is also necessary to transfer some information from the
notifying thread to the ones notified. This information must ensure the awoken
threads that they are approaching the front of the waiting queue (for example,
in Fig. 1 this information implies that the now serving ticket number has been
increased). Although the approach presented in [6] allows permissions to be trans-
ferred through notifyAll, it considers permissions as linear resources, which cannot
be in possession of more than one thread at the same time. Consequently, in that
approach a notifying thread can transfer a permission p to n number of waiting
threads only if it owns n instances of p.

routine new rdwr(){
l := new lock;
vw := new cvar; vr := new cvar;
rdwr(l:=l, vw:=vw, vr:=vr, ar:=ar,

active:=new int(0), next:=new int(0))}

routine acquire read(rdwr b){
acquire(b.l);
while(b.active < b.next)
wait(b.vr, b.l);

ar := ar + 1;
release(b.l)}

routine release read(rdwr b){
acquire(b.l);
ar := ar − 1;
notifyAll(b.vw);
release(b.l)}

routine acquire write(rdwr b)
{
acquire(b.l);
mine := b.next++;
while(0 < b.ar ∨ b.active < mine)
wait(b.vw, b.l);

release(b.l)
}

routine release write(rdwr b)
{
acquire(b.l);
b.active++;
notifyAll(b.vw);
if(b.active = b.next)
notifyAll(b.vr);

release(b.l)
}

Fig. 2. A readers-writers lock which uses a ticket algorithm to make sure that no writer
is starved, where ar denotes the number of the threads which are reading, the condition
variable vr keeps a reader waiting until all writers write, and the condition variable vw
keeps a writer waiting until its ticket number is equal the now serving ticket number
and no other thread is reading.

In this paper we introduce a mechanism which allows obligations to be
transferred from the notifying thread, executing notifyAll, to one of the noti-
fied threads. In this mechanism we make sure that a notified thread is success-
fully verified in the both cases where it receives the transferred obligations and

1 Note that we assume that the lock associated with monitors is a fair lock.
2 Note that in a monitor having no scheduling policy the blocked thread which is awoken

by notify is not necessary chosen in priority order; this monitor do not keep the order
in which threads start to wait.
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where it does not receive the transferred obligations. Additionally, we introduce
a notion of publishable resources which can be published from a thread to many
other threads. This allows to transfer this information that the waiting threads
are approaching the front of the waiting queue form a notifying thread to all of
the threads notified. Having this information in a notified thread, it is possible
to make a loop variant for the loop in which the wait command is executed
(the loop that checks the waiting condition). Note that this loop variant ensures
that the thread in the monitor which is waiting for a resource is not starved,
i.e. each time that this resource is released and its associated condition variable
is notified this thread approaches the front of the waiting queue. We encoded
the proposed proof rules in the VeriFast program verifier [12,14,15] and verified
that the program in Fig. 1 is deadlock-free and the loop in the routine enter is a
finite loop, implying starvation-freedom of the related monitor3.

This paper is structured as follows. Section 2 provides some background infor-
mation on the existing approaches that verify deadlock-freedom of monitors.
Section 3 introduces a mechanism to transfer obligations through broadcasts,
which makes it possible to verify deadlock-freedom of monitors implementing
some queue locking algorithms, which cannot be verified without such transfer.
Section 4 introduces a mechanism to transfer some publishable resources through
broadcasts, which makes it possible to verify starvation-freedom of monitors
implementing some queue locking algorithms. Section 5 compares this approach
with some related works and a conclusion is drawn in Sect. 6.

2 Deadlock-Free Monitors

Hamin et al. [6,7,9] introduced a modular approach for verifying absence of dead-
lock in programs synchronized using condition variables (CVs), where executing
a command wait(v, l) on a CV v, which is associated with a lock l, releases l and
suspends the running thread, and executing commands notify(v) or notifyAll(v)
wake up one or all thread(s) waiting for CV v at which point they will try to
reacquire l. This approach ensures absence of deadlock by making sure that for
any CV v for which a thread is waiting there is a thread obliged to fulfill an
obligation for v which only waits for waitable objects whose levels are lower
than the level of v. In this approach when a thread acquires a lock l, the total
number of waiting threads, and the total number of obligations of any CV v
associated with l, denoted by Wt(v) and Ot(v) respectively, can be mentioned
in the proof of that thread. Wt and Ot are actually two bags4 which keep track
of the total number of the waiting threads and the total number of the obli-
gations of the condition variables associated with a lock, respectively. In order
to ensure the mentioned constraint this approach makes sure that (1) if a com-
mand wait(v, l) is executed then 0 < Ot(v), i.e. there is an obligation for v in
3 The proof of this program, verified by the VeriFast program verifier, and the proof

of a CLH lock algorithm can be found in [8].
4 We model bags of objects as functions from objects to natural numbers. We also use

� indicating the union of two bags.
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NewLock
{true} newlock {λl. ulock(l, {[]}, {[]}) ∧ R(l)=r}

InitLock
{ulock(l,Wt , Ot) ∗ inv(Wt , Ot) ∗ obs(O)} g initl(l) {λ . lock(l) ∗ obs(O) ∧ I(l)=inv}

Acquire
{lock(l) ∗ obs(O) ∧ l ≺ O} acquire(l)

{λ . ∃Wt , Ot. locked(l,Wt , Ot) ∗ I(l)(Wt , Ot) ∗ obs(O�{[l]})}

Release
{locked(l,Wt , Ot) ∗ I(l)(Wt , Ot) ∗ obs(O�{[l]})} release(l) {λ . lock(l) ∗ obs(O)}

NewCV
{true} new cvar {λv. ucond(v) ∧ R(v)=r}

InitCV
{ucond(v) ∗ ulock(l,Wt , Ot)} g initc(v)

{λ . cond(v, M, M ′) ∗ ulock(l,Wt , Ot) ∧ L(v) = l}

Wait
{cond(v, M, M ′) ∗ locked(l,Wt , Ot) ∗ I(l)(Wt�{[v]}, Ot) ∗ obs(O�{[l]}) ∧ 0 < Ot(v) ∧
l = L(v) ∧ v ≺ O ∧ l ≺ O�M ′} wait(v, l) {λ . cond(v, M, M ′) ∗ obs(O�{[l]}�M ′) ∗

∃Wt ′, Ot′. locked(l,Wt ′, Ot′) ∗ I(l)(Wt ′, Ot′) ∗ M}

Notify
{obs(O�(0<Wt(v) ? M ′ : {[]})) ∗ cond(v, M, M ′) ∗ locked(L(v),Wt , Ot) ∗

(Wt(v)=0 ∨ M)} notify(v) {λ . obs(O) ∗ cond(v, M, M ′) ∗ locked(L(v),Wt−{[v]}, Ot)}

NotifyAll

{cond(v, M, {[]}) ∗ locked(L(v),Wt , Ot) ∗ (
Wt(v)∗
i:=1

M)} notifyAll(v)

{λ . cond(v, M, {[]}) ∗ locked(L(v),Wt [v:=0], Ot)}

ChargeObligation
{obs(O) ∗ locked(L(v),Wt , Ot)} g charge(v)
{λ . obs(O�{[v]}) ∗ locked(L(v),Wt , Ot�{[v]})}

DischargeObligation
{obs(O) ∗ locked(L(v),Wt , Ot) ∧ (0 < Wt(v) ⇒ 1 < Ot(v))} g discharge(v)

{λ . obs(O−{[v]}) ∗ locked(L(v),Wt , Ot−{[v]})}

Fig. 3. Proof rules verifying deadlock-freedom of monitors, where obs(O) denote the
bag of the obligations of the current thread; R(o) specifies the level of the waitable
object o; I(l) specifies the invariant of the lock l; Wt(v) and Ot(v) in the permission
ulock/locked denote the total number of threads waiting for v and the total number
of obligations for v, respectively; the parameters M and M ′ in the permission cond of
a condition variable denote the permissions and the obligations which are transferred
from the thread notifying that condition variable to the one notified, respectively; L(v)
denotes the lock associated with the condition variable v; and v ≺ O ⇔ ∀o∈O. R(v) <
R(o).
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the system, (2) if an obligation for v is discharged then after this discharge the
invariant 0 < Wt(v) ⇒ 0 < Ot(v) holds, i.e. if there is a thread waiting for v
then after this discharge there are still some obligations for v in the system, and
(3) a thread executes a command wait(v, l) only if the level of v is lower than
the levels of the obligations of that thread.

A program in this approach can be successfully verified if each lock associated
with some CVs has an appropriate invariant such that for any CV v associated
with that lock this invariant implies 0 < Wt(v) ⇒ 0 < Ot(v). Accordingly,
in this approach each lock invariant is parametrized over the bags Wt and Ot,
which map all CVs associated with that lock to the number of their waiting
threads and obligations, respectively.

The proof rules proposed in this approach are shown in Fig. 3. As shown in
Rule NewLock, when a lock l is created an arbitrary level is assigned to that
lock by the proof author, denoted by R(l), and an uninitialized lock permission
ulock(l, {[]}, {[]}) is produced. The second and the third parameters of this permis-
sion are two bags mapping the CVs associated with l to the total number of
threads waiting for that CV and the total number of obligations of that CV in
the system, respectively. As shown in Rule InitLock, using a ghost command5

g initl, this uninitialized lock permission can be converted to a duplicable lock
permission lock(l) if the assertion resulting from applying the invariant of that
lock, denoted by I(l), to the bags stored in the permission ulock is consumed
(the permissions described by the invariant of this lock are transferred from the
thread to the lock). As shown in Rule Acquire, when a thread acquires this lock
the permissions described by the invariant of this lock are transferred from the
lock to the thread. Additionally, a permission locked(l,Wt , Ot) is provided for
the thread, where Wt and Ot are two bags mapping the CVs associated with l
to their number of waiting threads and obligations, respectively, and are existen-
tially quantified in the postcondition. Note that to prevent circular dependencies
the precondition of this rule enforces that the level of l be lower than the levels
of the obligations of the acquiring thread. Additionally, this lock is added to
the bag of the obligations of this thread. As shown in rule Release, when this
lock is released it is discharged from the bag of the obligations and the assertion
resulting from applying the invariant of this lock to the bags stored in the per-
mission locked is consumed. Additionally, the permission locked is converted to
a permission lock.

As shown in Rule NewCV, when a CV is created an arbitrary level is assigned
to it and an uninitialized permission ucond for that CV is produced. As shown in
Rule InitCV, this permission can be converted to a duplicable permission cond if
a lock is associated to this CV, denoted by L(v). Additionally, the transferred per-
missions and obligations of this CV, denoted by M and M ′, which are transferred
from the notifying thread to the one notified, are also specified in this rule. These
permissions and obligations are consumed when a command notify(v) is executed
(if there is a thread waiting for v; see the precondition of Rule Notify), and are

5 The ghost commands are inserted into the program for verification purposes and
have no effect on the program’s behavior.
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produced when a command wait(v, l) is executed (see the postcondition of Rule
Wait). Note that notifyAll(v) transfers Wt(v) instances of these permissions,

denoted by
Wt(v)∗
i:=1

M (see the precondition of Rule NotifyAll). Also note that

notifyAll(v) transfers no obligation. As shown in Rule Wait, when a command
wait(v, l) is executed, since l is going to be released and the number of the threads
waiting for v is going to be increased, the result of applying the invariant of lock l
to bags Wt�{[v]} and Ot must be consumed, where Wt and Ot are the bags stored
in the permission locked of l. Additionally, the level of v must be lower than the
levels of all obligations of the thread except for l. Note that the level of l must
be lower than the levels of these obligations and those which are transfered from
the notifying thread, denoted by M ′, since when the thread is woken up it tries
to reacquire l. As previously mentioned, the precondition of this rule also makes
sure that 0 < Ot(v). This precondition follows from I(l)(Wt�{[v]}, Ot) provided
that the invariant of l is properly defined such that for any CV v′ associated with
l this invariant implies that if there is a thread waiting for v′ there is an obliga-
tion for v′ in the system. Lastly the precondition of this command makes sure
that v is associated with lock l, which is enforced by L(v)= l. As shown in Rules
Notify/NotifyAll, when a CV v is notified, one/all instance(s) of v is/are
removed from the bag Wt stored in the permission locked of the lock associated
with v, if any. An obligation for a CV v is loaded/unloaded when that obligation
is also loaded/unloaded onto/from the bag Ot stored in the permission locked
of the lock associated with v, as shown in Rules ChargeObligation and Dis-
chargeObligation. However, an obligation for v is discharged only if after this
discharge we have 0 < Wt(v) ⇒ 0 < Ot(v), which is enforced by the assertion
0 < Wt(v) ⇒ 1 < Ot(v) in the precondition of the rule DischargeObligation.

3 Publishable Obligations

To verify deadlock-freedom of the program shown in Fig. 1 it is necessary to
transfer an obligation of v from the thread running leave to the thread whose
ticket number equals to the new value of active, if there exists such a thread.
However, it is impossible to verify deadlock-freedom of this program using the
proof system introduced by Hamin et al. [6,9] due to the following reasons: (1)
this approach does not allow obligations to be transferred through broadcasts,
because it is not clear which of the waiting threads should receive the transferred
obligations, and (2) (even if such a transfer is possible) this approach allows obli-
gations to be transferred through notifications only if there is a thread waiting
for that condition variable (0 < Wt(v)), because it ensures that a thread will
immediately receive the transferred obligations. Note that in this program there
might be a situation where the thread whose ticket number equals the new value
of active is not waiting for v but has been already awoken (by a broadcast issued
beforehand) and is waiting to reacquire the lock associated with v.
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InitCV
{ucond(v) ∗ ulock(l,Wt , Ot, It)} g initc(v)

{λ . cond(v, M, M ′) ∗ ulock(l,Wt , Ot, It) ∧ L(v) = l}

Wait
{cond(v, M, M ′) ∗ locked(l,Wt , Ot, It) ∗ I(l)(Wt�{[v]}, Ot, It∪{(v, id)}) ∗ obs(O�{[l]}) ∧

l = L(v) ∧ v ≺ O ∧ l ≺ O�M ′ ∧ 0 < Ot(v)} wait(v, l)
{λ . cond(v, M, M ′) ∗ M ∗ ∃Wt ′, Ot′, It′. I(l)(Wt ′, Ot′, It′) ∗
(v, id) ∈ It′ ? locked(l,Wt ′, Ot′, It′−{(v, id)}) ∗ obs(O�{[l]}) :

locked(l,Wt ′, Ot′, It′) ∗ obs(O�{[l]}�M ′)}

NotifyAll

{obs(O�((v, id)∈It ? M ′ : {[]})) ∗ cond(v, M, M ′) ∗ locked(L(v),Wt , Ot, It) ∗ (
Wt(v)∗
i:=1

M)}
notifyAll(v) {λ . obs(O) ∗ cond(v, M, M ′) ∗ locked(L(v),Wt [v:=0], Ot, It−{(v, id)})}

Fig. 4. New proof rules verifying deadlock-freedom of monitors allowing obligations to
be transferred through broadcasts.

We address the problems above by extending the Hamin et al. approach such
that, under some circumstances, we allow obligations to be transferred through
broadcasts even if there is no thread waiting for the related condition variable. To
this end, in addition to the bags Wt and Ot, we introduce a new set It consisting
of condition variable-identifier pairs, such that for any condition variable v and
identifier id if (v, id) ∈ It then there exists a thread such that (1) this thread
either (1–1) is waiting for v, or (1–2) is awoken by a notification on v but has
not yet reacquired the lock associated with v and it also has not received any
obligation through that notification, and (2) if (v, id) is removed from It then
the transferred obligations, which are transferred through a notification on v,
are loaded onto this thread. Having this set, we allow some obligations to be
transferred through broadcasts on v from the notifying thread to a thread in It,
if there exists such a thread.

The updated version of the proof rules is shown in Fig. 4, where, in addition
to the bags Wt and Ot, the permissions locked/ulock and the lock invariants are
parametrized over the set It (see Rules InitCV). As shown in Rule NotifyAll,
the transferred obligations are discharged from the notifying thread only if the
set It, stored in the associated locked permission, is not empty. After this noti-
fication a thread is removed from It, if any. As shown in Rule Wait a thread
having a permission locked(l,Wt , Ot, It) can wait for the condition variable asso-
ciate with l only if there exists an identifier id such that the assertion resulting
from applying the invariant of l to Wt �{[v]}, Ot, and It∪ s{(v, id)} is consumed,
because this thread is going to wait for v. When this thread is awoken the result
of applying the invariant of the associated lock to the two new bags Wt ′ and Ot′

and the new set It′ is produced for the thread. If (v, id) is still in It′ it means
that this thread has not yet been the target of an obligation transfer, hence the
transferred obligations are not loaded onto this thread. Additionally, this thread
is removed from the set It′, stored in the related locked permission (because it is
awoken and has acquired the associated lock). If (v, id) is not in It′ anymore it
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means that this thread has been the target of an obligation transfer, hence the
transferred obligations must be loaded onto this thread.

NewCounter
{true} g new ctr {λg. ctr(g, 0)}

IncCounter
{ctr(g, n)} g inc(g) {λ . ctr(g, n+1) ∗ tic(g)}

DecCounter
{ctr(g, n) ∗ tic(g)} g dec(g) {λ . ctr(g, n−1) ∧ 0<n}

NewICounter
{true} g new ictr {λg. ictr(g, 0)}

IncICounter
{ictr(g, n)} g iinc(g) {λ . ictr(g, n+1) ∗ itic(g)}

Fig. 5. Ghost counters and ghost monotonic counters.

It can be proved that any program verified by the mentioned proof rules,
where the verification starts from an empty bag of obligations and also ends with
such a bag, never deadlocks, i.e. it always has a running thread, not waiting for
any waitable object such as a condition variable or a lock, until it terminates. We
know that for any waitable object o all of these proof rules preserve the invariant
0 < Wt(o) ⇒ 0 < Ot(o), where Wt(o) and Ot(o) denote the total number of
waiting threads and obligations for o in the system, respectively. Additionally,
these rules ensure that a thread waits for a waitable object o only if the level
of o is lower than the levels of the obligations of that thread. Note that these
two invariants hold even when some obligations are transferred using notifyAll.
Now consider a deadlocked state, where each thread of a verified program is
waiting for an object. Among all of these objects take the one having a minimal
wait level, namely omin. By the invariants above there exists a thread having an
obligation for omin that is waiting for an object whose level is lower than the
level of omin, which contradicts minimality of the level of omin.

Using the proposed proof rules it is possible to verify deadlock-freedom of
the program shown in Fig. 1, as shown in Figs. 6 and 7. Note that to verify this
program it is necessary to (1) keep track of the number of the elements in the
set It, and (2) make sure that the variable next is not decreased at all. To
meet the first condition we use the notion of ghost counters and corresponding
ghost counter tickets [6], both of which are a particular kind of ghost resources6.
Specifically, as shown in Fig. 5, there are three operations on a ghost counter:
g new ctr, g inc, and g dec, where g new ctr allocates a new ghost counter whose
value is zero and returns a ghost counter identifier g for it; g inc(g) increments
the value of the ghost counter with identifier g and produces a ticket for the
counter; and g dec(g) consumes a ticket for the ghost counter g and decrements
the ghost counter’s value. Since these are the only operations that manipulate

6 Some logics for program verification, such as Iris [16], include general support for
defining ghost resources such as our ghost counters. In particular, our ghost counters
can be obtained in Iris as an instance of the authoritative monoid [16, p. 5].
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tvm(tvm t, gctr gt, cond v) ::= lock(t.l) ∗ cond(v, true, {[v]}) ∧
R(t.l) < R(v) ∧ L(v)=t.l ∧ I(t.l) = linv(t) ∧ gt = t.gt ∧ v = t.v

linv′(tvm t) ::= λWt . λOt. λIt.

∃active, next. t.active
.5→−� active ∗ m.next

.5→−� next ∧ active � next ∗ ictr(t.gn, next)∧
(active < next ⇒ 0 < Ot(t.v)) ∧
(next � active + 1 ⇒ Wt(t.v) = 0) ∧
It = {(v, id) | active<id<next} ∗
∃Tr. ctr(t.gt, T r) ∧ (active + 1 < next ⇒ next − active − 1 � Tr ∧ Tr � |It|)

linv(tvm t) ::= λWt . λOt. λIt.

linv′(t)(Wt , Ot, It) ∗ ∃ac, nx. t.active
.5→−� ac ∗ m.next

.5→−� nx

routine new tvm(){
req : {true}
l := new lock();
{ulock(l, {[]}, {[]}, {}) ∧ R(l)=r − 1} gt := g new ctr; gn := g new ictr;
{ulock(l, {[]}, {[]}, {}) ∗ ctr(gt, 0) ∗ ictr(gn, 0)}
v := new cvar(); g initc(v);
{ulock(l, {[]}, {[]}, {}) ∗ ctr(gt, 0) ∗ ictr(gn, 0) ∗ cond(v, true, {[v]}) ∧ R(v)=r ∧ L(v)=l}
t:=tvm(l:=l, v:=v, active := new int(0), next := new int(0), gt:=gt, gn:=gn);
g initl(l); t
ens : {λt. tvm(t, gt, v) ∧ R(v)=r}}

routine enter(tvm t){
req : {obs(O) ∗ tvm(t, gt, v) ∧ v ≺ O}
acquire(t.l);
{obs(O�{[l]}) ∗ tvm(t, gt, v) ∗ ∃Wt , Ot, It. locked(l,Wt , Ot, It) ∗ linv(t)(Wt, Ot, It)}
mine := t.next++; g ictr inc(t.gn); g ctr inc(gt);
if(t.next = t.active+1) g charge(v);
inv : tvm(t, gt, v) ∗ tic(gt) ∗ ∃active, next. t.active

.5→−� active ∗ m.next
.5→−� next ∧

mine < next ∗ ∃Wt , Ot, It. locked(l,Wt , Ot, It) ∗
mine � active ? obs(O�{[l, v]}) ∗ linv′(t)(Wt, Ot, It) :
obs(O�{[l]}) ∗ linv′(t)(Wt�{[v]}, Ot, It∪{(v, mine)})

while(t.active < mine)
wait(t.v, t.l);

{obs(O�{[l, v]}) ∗ tvm(t, gt, v) ∗
∃Wt , Ot, It. locked(l,Wt , Ot, It) ∗ linv(t)(Wt, Ot, It) ∗ tic(gt)}
release(t.l)
ens : {obs(O�{[v]}) ∗ tvm(t, gt, v) ∗ tic(gt)}}

Fig. 6. The proof of deadlock-freedom of the program shown in Fig. 1 (part one).

ghost counters or ghost counter tickets, it follows that the value of a ghost
counter g is always equal to the number of tickets for g in the system. Similarly,
to meet the second condition we use a ghost monotonic counter, which is similar
to a ghost counter but does not have an operation g dec.
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As shown in Figs. 6 and 7 the precondition and the postcondition of each
routine are denoted by req and ens. Note that we use separation logic [26] to
reason about the ownership of permissions. As shown in the routine new tvm,
after creating the lock l a permission ulock with two bags Wt and Ot, and a set
It, which are initially empty, is produced for this lock. Additionally, we assign
an arbitrary level, which is a level lower than the level of v, to this lock. Using
the ghost commands g new ctr and g new ictr a ghost counter gt and a ghost
monotonic counter gn is added to the resources of the current thread.

After creating and initializing the condition variable v a permission cond is
produced for this condition variable where no permission but an obligation for v
is transferred through any notification on this condition variable. We also assign
r and l as the level and the associated lock of this condition variable, respectively.
After creating the resulting tvm structure t, we initialize the lock l by consuming
the assertion resulting from applying the invariant of l to the bags and the set
in the permission ulock, i.e. linv(t)({[]}, {[]}, {}). Note that gt and gn are two ghost
fields added to the structure tvm that hold the identifiers of the ghost counters
gt and gn. Lastly, we encapsulate all the resulting permissions in a predicate
tvm. This predicate is used in the precondition of the routine enter. Another
precondition of this routine is that the level v must be lower that the levels of
all obligations of the current thread (v ≺ O), because this thread might wait for
v and l (note that the level of l is lower than the level of v, which by v ≺ O
implies l ≺ O). After acquiring l, this lock is loaded onto the obligations of the
current thread and the invariant of this lock is produced. After incrementing the
ghost counters gt and gn (we leak a ticket itic(gn)), and (conditionally) loading
an obligation of v, the invariant of the loop, denoted by inv, holds. Note that
this invariant ensures that if the body of the loop is executed (t.active < mine)
there exists an obligation for v in the system (0 < Ot(v)), which is implied by
mine < next. After execution of wait(v, l) there exists two bags Wt ′ and Ot′ and
a set It′ such that the permissions described by linv(t)(Wt ′, Ot′, It′) is produced
for this thread. If (v,mine) /∈ It′, which means mine � active, then this thread
receives the transferred obligations, which is {[v]}. Otherwise, if (v,mine) ∈ It′,
which means active < mine, it does not receive these obligations and again
waits for v. Lastly, after releasing l the post condition of this routine shows that
an obligation of v is loaded onto the current thread and a permission tic(gt) is
produced. As shown in the specification of the routine leave, this routine requires
a permission tic(gt) and discharges an obligation for v. This permission ensures
that if a thread is waiting to enter (active + 1 < next) the set It is not empty
(0 < |It|), which makes it possible to transfer an obligation of v through the
command notifyAll. If there is no thread waiting to enter we can safely discharge
an obligation for v. Before releasing the lock l, we decrement the counter gt to
be able to consume the assertion resulting from applying the invariant of l to the
bags and the set in the related locked permission. The routine main is deadlock-
free, because starting from an empty bag of obligations, the verification of this
routine ends with such a bag too.
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routine leave(tvm t){
req : {obs(O�{[v]}) ∗ tvm(t, gt, v) ∗ tic(gt) ∧ v ≺ O}
acquire(t.l);
{obs(O�{[l, v]}) ∗ tic(gt) ∗ tvm(t, gt, v) ∗
∃Wt , Ot, It. locked(l,Wt , Ot, It) ∗ linv(t)(Wt, Ot, It)}
t.active++; if(t.next = t.active) g discharge(v);
notifyAll(t.v); g ctr dec(gt);
{obs(O�{[l]}) ∗ tvm(t, gt, v) ∗ ∃Wt , Ot, It. locked(l,Wt , Ot, It) ∗ linv(t)(Wt, Ot, It)}
release(t.l)
ens : {obs(O) ∗ tvm(t, gt, v)}}

routine main(){
req : {obs({[]})}
t:=new tvm;
{obs({[]}) ∗ tvm(t, gt, v) ∧ R(v) = r}
fork(
inv : {obs({[]}) ∗ tvm(t, gt, v)}
while(1){

enter(t); // get service
{obs({[v]}) ∗ tvm(t, gt, v) ∗ tic(gt)}
leave(t)});

{obs({[]}) ∗ tvm(t, gt, v)}
enter(t); // get service
{obs({[v]}) ∗ tvm(t, gt, v) ∗ tic(gt)}
leave(t)
ens : {obs({[]})}}

Fig. 7. The proof of deadlock-freedom of the program shown in Fig. 1 (part two).

4 Publishable Resources

In Sect. 3 we proved that the program in Fig. 1 is deadlock-free, i.e. there is at
least one thread in this program running. However, a stronger liveness property
of this program is starvation-freedom, which implies that any thread calling
enter eventually gets service (under the fairness assumption that every thread is
scheduled to execute infinitely often). To achieve this goal we need to make sure
that the loop in the routine enter eventually terminates, which means we need
to provide a variant (ranking function) for this loop, e.g. an expression whose
range is restricted to the non-negative integers and its value is decreased in each
iteration of the loop.

Such a variant can be established for this loop if after each broadcast any
thread waiting for v is ensured that the new value of the variable active is greater
than the one before executing the wait command. This information must be
transferred from the notifying thread to all of the waiting threads.

A first attempt to transfer this information is to create a ghost counter gp,
keeping track of the value of active, and to transfer a ticket for this counter from
the notifying threads to the ones notified. However, this attempt fails because
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NewPCounter
{true} g new pctr {λg. pctr(g, 0)}

IncPCounter
{pctr(g, n)} g pinc(g) {λ . pctr(g, n+1) ∗ ptic(g, 1, 0)}

DecPCounter
{pctr(g, n) ∗ ptic(g, n′, p) ∧ 0 < n′} g pdec(g) {λ .ctr(g, n−1) ∗ ptic(g, n′−1, p) ∧ n′�n}

Minimum
pctr(g, n) ∗ ptic(g, n′, p) ⇒ pctr(g, n) ∗ ptic(g, n′, p) ∧ n′ + p � n

Merge
ptic(g, n1, p1) ∗ ptic(g, n2, p2) ⇔ ptic(g, n1+n2, p1+p2)

publishable(ptic(g, n, p)) = ptic(g, 0, n) unpublishable(ptic(g, n, p)) = ptic(g, 0, p+n)

Fig. 8. Publishable ghost counters.

the notifying thread requires Wt(v) instances of this ticket (while it can produce
only one instance of this ticket).

To address this problem, instead of a ghost counter, we use a publishable
ghost counter7, shown in Fig. 8. Tickets of this counter consist of two values;
the first value indicates the number of the tickets of the current thread which
have not been published to any other thread, and the second value indicates
the number of the tickets which have been already published to some other
threads. A permission ptic(g, u, p), for example, indicates that the current thread
has a total of u+p tickets for g; u tickets unpublished and p tickets published.
Accordingly, the value of the counter, shown in the predicate pctr indicates the
maximum number of the tickets that a thread can have. Obviously, a thread
having a ticket ptic(g, u, p) can publish u tickets for g (ptic(g, 0, u)), and after
publishing these tickets it has a ticket ptic(g, 0, p+u), which is not publishable
anymore. Accordingly, we update the proof rule for notifyAll, as shown in Fig. 9,
such that it transfers a publishable part of a resource from the notifying thread
to the notified ones, and makes this resource unpublishable.

Having this rule, it is possible that the notifying thread in Fig. 1 having a
ticket ptic(gp, 1, 0), publishes a ticket ptic(gp, 0, 1) to all of the waiting threads
and informs them that the value of active has been increased, where gp is a
publishable ghost counter keeping track of the value of active. Accordingly,
the verification of this program is shown in Fig. 10 where the loop in the rou-
tine enter has an appropriate variant implying the termination of that loop8.

7 This conuter is an instance of a max and plus united monoid [22].
8 Note that this loop terminates because (1) (we assume that) each thread is scheduled

to execute infinitely often, (2) for any thread waiting for v there is an obligation for v
which is discharged in a finite number of steps, and (3) each time that an obligations
for v is discharged (and v is notified) the variant of this loop is decreased.
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As shown in the routine new tvm in this figure, a publishable ghost counter
gp is created which keeps track of the value of active. As shown in the rou-
tine enter, this counter as well as a ticket ptic(gp, 0, activemin) is asserted in
the invariant of the loop. Note that a ticket ptic(gp, 0, 0) can be produced by
increasing and then decreasing the counter gp. Since whenever the thread is
notified it receives a ticket ptic(gp, 0, 1) from the notifier thread, the value of
activemin in this ticket is increased (using the Rule Merge in Fig. 8), which
implies that the variant of the loop (mine − active) is decreased in each itera-
tion. Additionally, by Rule Minimum we have activemin � active, and by the
loop invariant we have active � mine, which implies that after each iteration
the variant of the loop remains non-negative (activemin � mine). As shown in
the routine leave, since the variable active is increased, we can obtain a ticket
ptic(gp, 1, 0) using the ghost command g pctr inc(t.gp). The publishable part
of this ticket (ptic(gp, 0, 1)) is transferred to the waiting threads through the
command notifyAll, and the unpublishable part (ptic(gp, 0, 1)) is leaked in this
routine.

NotifyAll
{obs(O�((v, id) ∈ It ? M ′ : {[]})) ∗ cond(v, M, M ′) ∗ locked(L(v),Wt , Ot, It) ∗ Mp ∧

publishable(Mp) = M} notifyAll(v)
{λ . obs(O) ∗ cond(v, M, M ′) ∗ locked(L(v),Wt [v:=0], Ot, It−{(v, id)}) ∗

unpublishable(Mp)}

Fig. 9. Transferring publishable resources through broadcasts, where publishable(Mp)
denotes the publishable part of the resource Mp and unpublishable(Mp) denotes the
unpublishable part of Mp which remains after publishing Mp.

Publishable Points-to Resource. The notion of publishable resource can be also
used to prove some other properties. For example, consider a publishable version

of a points-to permission x
(u,p)�−−−→ v, where u is the fraction of the ownership of

the location x which has not been published, p is the fraction of the ownership

of the location x which has been published, publishable(x
(u,p)�−−−→ v) = x

(0,u)�−−−→ v,

and unpublishable(x
(u,p)�−−−→ v) = x

(0,p+u)�−−−−−→ v. Although a resource x
(0,1)�−−−→ v gives

no information about the value stored in the location x and gives no permission

to access x, a resource x1
(0,1)�−−−→ v1 ∗ x2

(0,1)�−−−→ v2 ensures that x1 
= x2. However,
transferring or publishing these publishable and unpublishable resources through
other synchronizations such as locks and channels requires future investigations.
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tvm(tvm t, gctr gt, cond v) ::= lock(t.l) ∗ cond(v, ptic(t.gp, 0, 1), {[v]}) ∧
R(t.l) < R(v) ∧ L(v)=t.l ∧ I(t.l) = linv(t) ∧ gt = t.gt ∧ v = t.v

linv′(tvm t) ::= λWt . λOt. λIt.

∃active, next. t.active
.5→−� active ∗ m.next

.5→−� next ∧ active � next ∗ ictr(t.gn, next)
∧ (active < next ⇒ 0 < Ot(t.v)) ∧ (next � active + 1 ⇒ Wt(t.v) = 0) ∧
It = {(v, id) | active<id<next} ∗
∃Tr. ctr(t.gt, T r) ∧ (active + 1 < next ⇒ next − active − 1 � Tr ∧ Tr � |It|)

linv(tvm t) ::= λWt . λOt. λIt. linv′(t)(Wt , Ot, It) ∗
∃active, next. t.active

.5→−� active ∗ m.next
.5→−� next ∗ pctr(t.gp, active)

routine new tvm(){ req : {true}
l := new lock();
{ulock(l, {[]}, {[]}, {}) ∧ R(l)=r − 1} gt := g new ctr; gn := g new ictr; gp := g new pctr;
{ulock(l, {[]}, {[]}, {}) ∗ ctr(gt, 0) ∗ ictr(gn, 0) ∗ pctr(gp, 0)}
v := new cvar(); g initc(v);
{ulock(l, {[]}, {[]}, {}) ∗ ctr(gt, 0) ∗ ictr(gn, 0) ∗ pctr(gp, 0) ∗
cond(v, ptic(gp, 0, 1), {[v]}) ∧ R(v)=r ∧ L(v)=l}
t:=tvm(l:=l, v:=v, active := new int(0), next := new int(0), gt:=gt, gn:=gn, gp:=gp);
g initl(l); t ens : {λt. tvm(t, gt, v) ∧ R(v)=r}}

routine enter(tvm t){ req : {obs(O) ∗ tvm(t, gt, v) ∧ v ≺ O}
acquire(t.l);
{obs(O�{[l]}) ∗ tvm(t, gt, v) ∗ ∃Wt , Ot, It. locked(l,Wt , Ot, It) ∗ linv(t)(Wt, Ot, It)}
mine := t.next++; g ictr inc(t.gn); g ctr inc(gt);
if(t.next = t.active+1) g charge(v);
inv : tvm(t, gt, v) ∗ tic(gt) ∗ ∃active, next. t.active

.5→−� active ∗ m.next
.5→−� next ∗

∃activemin. pctr(t.gp, active) ∗ ptic(t.gp, 0, activemin) ∧
mine < next ∗ ∃Wt , Ot, It. locked(l,Wt , Ot, It) ∗
mine � active ? obs(O�{[l, v]}) ∗ linv′(t)(Wt, Ot, It) :
obs(O�{[l]}) ∗ linv′(t)(Wt�{[v]}, Ot, It∪{(v, mine)})

var : mine − activemin
while(t.active < mine)
wait(t.v, t.l);

{obs(O�{[l, v]}) ∗ tvm(t, gt, v) ∗
∃Wt , Ot, It. locked(l,Wt , Ot, It) ∗ linv(t)(Wt, Ot, It) ∗ tic(gt)}
release(t.l)
ens : {obs(O�{[v]}) ∗ tvm(t, gt, v) ∗ tic(gt)}}

routine leave(tvm t){ req : {obs(O�{[v]}) ∗ tvm(t, gt, v) ∗ tic(gt) ∧ v ≺ O}
acquire(t.l);
{obs(O�{[l, v]}) ∗ tic(gt) ∗ tvm(t, gt, v) ∗
∃Wt , Ot, It. locked(l,Wt , Ot, It) ∗ linv(t)(Wt, Ot, It)}
t.active++; g pctr inc(t.gp); if(t.next = t.active) g discharge(v);
notifyAll(t.v); g ctr dec(gt);
{obs(O�{[l]}) ∗ tvm(t, gt, v) ∗ ∃Wt , Ot, It. locked(l,Wt , Ot, It) ∗ linv(t)(Wt, Ot, It)}
release(t.l)
ens : {obs(O) ∗ tvm(t, gt, v)}}

Fig. 10. The proof of termination of the monitor shown in Fig. 1.
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5 Related Works

Separation Logic. Jung et al. [16] proposed a concurrent separation logic, namely
Iris, for reasoning about safety of concurrent programs, as the logic in logical
relations, to reason about type-systems and data-abstraction. In this logic user-
defined protocols on shared state are expressed through partial commutative
monoids and is enforced through invariants. However, the Iris program logic and
many other logics such as [23,25] only prove per-thread safety (i.e. no thread
ever crashes): their adequacy theorems state that the program does not reach a
state where some thread cannot make a step. This works because these logics
do not consider blocking constructs, where a thread may legitimately be stuck
temporarily.

Liveness Properties. Several approaches to verify termination [5,21,28], total
correctness [3], and lock freedom [10] of concurrent programs have been pro-
posed. These approaches are only applicable to non-blocking algorithms, where
the suspension of one thread cannot lead to the suspension of other threads.
Consequently, they cannot be used to verify deadlock-freedom of programs using
monitors and channels, where the suspension of a notifying/sending thread might
lead a waiting thread to be infinitely blocked. In [24] a compositional app-
roach to verify termination of multi-threaded programs is introduced, where
rely-guarantee reasoning is used to reason about each thread individually while
there are some assertions about other threads. In this approach a program is
considered to be terminating if it does not have any infinite computations. As a
consequence, it is not applicable to programs using monitors because a waiting
thread that is never notified cannot be considered as a terminating thread.

Verification of Monitors Through Model Checking. There are also some other
approaches addressing some common synchronization bugs of programs in the
presence of condition variables. In [35], for example, an approach to identify
some potential problems of concurrent programs consisting waits and notifies
commands is presented. However, it does not take the order of execution of
theses commands into account. In other words, it might accept an undesired
execution trace where the waiting thread is scheduled after the notifying thread,
that might lead the waiting thread to be infinitely suspended. [17] uses Petri
nets to identify some common problems in multithreaded programs such as data
races, lost signals, and deadlocks. However the model introduced for condition
variables in this approach only covers the communication of two threads and
it is not clear how it deals with programs having more than two threads com-
municating through condition variables. Recently, [1,4] have introduced an app-
roach ensuring that every thread synchronizing under a set of condition variables
eventually exits the synchronization block if that thread eventually reaches that
block. This approach succeeds in verifying one of the applications of condition
variables, namely the buffer. However, since this approach is not modular and
relies on a Petri net analysis tool to solve the termination problem, it suffers
from a long verification time when the size of the state space is increased, such
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that the verification of a buffer application having 20 producer and 18 consumer
threads, for example, takes more than two minutes.

Modular Verification of Channels. Inspired by the notion of capabilities [18,19]
and implicit dynamic frames [29–31], Leino et al. later integrated deadlock pre-
vention into a verification system for an object-oriented and imperative program-
ing language. In this approach each thread trying to receive a message from a
channel must spend one credit for that channel, where a credit for a channel
is obtained if a thread is obliged to discharge an obligation for that channel. A
thread can discharge an obligation for a channel if it either sends a message on
that channel or delegates that obligation to another thread. However this app-
roach is not general enough to support condition variables, since, unlike channels,
a notification on a condition variable is lost if there is no thread waiting for that
condition variable.

Modular Verification of Monitors. Recently, Hamin et al. [6,7] introduced a
modular approach to verify deadlock-freedom of monitors. Later, in [9] this app-
roach is extended by allowing obligations to be transferred through notifications.
However, in this approach obligations can be transferred using notify(v) but not
using notifyAll(v). This constraint does not allow this approach to verify monitors
implementing queue locking algorithms, for example, where the releasing thread
notifies all the waiting threads. Additionally, in this approach it is impossible
to transfer a permission, indicating that the awoken threads are approaching
the front of the waiting queue, from the notifying thread to all of the notified
threads. In this paper we introduce a mechanism which allows obligations to be
transferred from the notifying thread, executing notifyAll, to one of the notified
threads. Additionally, we introduce a notion of publishable resources which can
be published from a thread to many other threads.

6 Conclusion

In this paper we introduce two mechanisms to transfer obligations and pub-
lishable resources through broadcasts. The first mechanism allows to transfer
an obligation through notifyAll from the thread holding a resource to the next
thread, which acquires that resource. The second mechanism allows to publish
a resource from a notifying thread to many other notified threads. These mech-
anisms allow the modular approaches, verifying deadlock-freedom of monitors,
to verify a wider range of interesting programs. Additionally, these mechanisms
allows these approaches to verify termination of the loop in which the wait com-
mand is executed (the loop that checks the waiting condition), which ensures
that a thread will not infinitely wait in a monitor. The notion of publishable
resources introduced in this paper, used to prove termination of the loops, can
be also used to prove some other properties. However, transferring or publish-
ing these resources through other synchronizations such as locks and channels
requires future investigations.
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Abstract. The additional complexity caused by concurrently commu-
nicating processes in distributed systems render the verification of such
systems into a very hard problem. Multiparty session types were devel-
oped to govern communication and concurrency in distributed systems.
As such, they provide an efficient verification method w. r. t. proper-
ties about communication and concurrency, like communication safety
or progress. However, they do not support the analysis of properties that
require the consideration of concrete runs or concrete values of variables.
We sequentialise well-typed systems of processes guided by the struc-
ture of their global type to obtain interaction-free abstractions thereof.
Without interaction, concurrency in the system is reduced to sequential
and completely independent parallel compositions. In such abstractions,
the verification of properties such as e. g. data-based termination that
are not covered by multiparty session types, but rely on concrete runs or
values of variables, becomes significantly more efficient.

Keywords: Concurrency · Verification · Multiparty session types

1 Introduction

Modern society is increasingly dependent on large-scale software systems that
are distributed, collaborative, and communication-centred. One of the techniques
developed to handle the additional complexity caused by distributed actors
are multiparty session types (MPST) [19]. MPST allow to specify the desired
behaviour of communication protocols as by-design correct types that are used
to verify the communication structure of software products. The properties guar-
anteed by well-typed processes cover communication safety (all processes con-
form to globally agreed communication protocols) and liveness properties such
as deadlock-freedom. Their main advantage is that their verification method is
extremely efficient—in comparison to e. g. standard model checking.

MPST were developed to govern communication and concurrency in dis-
tributed systems. However, as it is typical for type systems, standard MPST
variants (without dependable types) do not support the analysis of properties
that require the consideration of concrete runs or concrete values of variables.
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The hardest part about the verification of distributed systems is the state
space explosion that results from concurrent communication attempts, i. e., the
exponential blow-up that results from computing all possible combinations of
potential communication partners. The problem of concurrency mainly lies in
the communication structure, which is already completely captured by MPST.
We show that the knowledge of a program/system to be well-typed, allows us to
sequentialise it following the structure of its global type and thereby to remove
all communication. Accordingly, we show how we can benefit from the effort we
spend on an MPST analysis of a system also for the verification of its properties
that go beyond its communication structure.

We use the global type of a well-typed system to guide its sequentialisation.
We refer to the result as sequential global process (SGP), although it might still
contain parallel compositions, albeit only on completely independent parts. Since
the structure of communication was already verified by the well-typedness proof,
we can reduce communication to value updates. More precisely, we map well-
typed systems that interact concurrently, to SGP-systems without any inter-
action mechanisms or name binders. Such SGP-systems consist of a vector of
variables with values and a SGP-process that simulates the data flow of the
original system. Therefore, we translate the reception of data in communication
into updates of the vector in the SGP-system. By removing the communication
we remove also the problem of state space explosion. Our translation is valid if
the considered process is well-typed w. r. t. a (set of) global type(s). Thereby,
we sequentialise communications that may happen concurrently in the original
system but are sequential in global types. Note that such communications are
always causally independent of each other, thus ordering them does not sig-
nificantly influence the behaviour of the system, e. g. it does not influence what
values are computed. Apart from such sequentialisations the original system and
its abstraction into a SGP-system behave similarly.

Contributions. We provide an algorithm to remove communication from well-
typed systems and thereby sequentialise them, while preserving the evolution of
data of the original system. Deriving this algorithm was technically challenging
but the result is a simple rewriting function and easy to automate.

Then we prove that, provided that the original system was well-typed, the
algorithm produces a SGP-system that is closely related to the original system:
the original system and its abstraction are related by a variant of operational
correspondence [14] and are coupled similar [23]. With that, the derived SGP-
system is a good abstraction of the original system that can be used instead of
the original to verify properties on concrete data. Since the mapping into SGP-
systems is usually linear and because SGP-systems do not contain any form of
interaction or binders, properties can be checked more efficiently.

Finally, we provide a mapping—that is again a simple rewriting algorithm—
from SGP-processes into Promela, the input language of the model checker Spin
[16,17]. With that, the properties that are not already guaranteed by the MPST
analysis but require the consideration of concrete runs or concrete data can be
checked. Since the main challenge here is the sequentialisation of concurrent
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systems into interaction-free abstractions, the translation of SGP-systems into
Promela is simple and can be used as a role model to obtain similar mappings
for other model checkers.

Related Work. Intuitively, the technique that we present in this paper is a
special case of partial order reduction (compare e. g. to [24]) as they can be
found in model checkers. This technique tries to reduce the state space that has
to be inspected in verification, by identifying different sequences of transitions
that lead to similar states. Here, instead of searching for such similar states, we
follow the structure of the global type, where well-typedness ensures that the
generated abstraction captures the complete state space of the original system
modulo coupled similarity.

The approach of [1] is very similar to this paper. Just as our algorithm, they
rewrite a program (written in Haskell) by replacing communication with value
updates, to obtain a sequential abstraction of the program on that verification—
e. g. of termination based on values that are computed at runtime—can be done
efficiently. The main difference is that [1] requires that the considered pro-
grams satisfy symmetric non-determinism whereas we require that programs
are well-typed using MPST. Assuming asynchronous communication, symmet-
ric non-determinism means that every receive in a given program location can
receive only messages from either a single process or a set of symmetric pro-
cesses, i. e., processes running the same code, at the same program location.
MPST are more flexible, i. e., are not limited to systems that satisfy symmetric
non-determinism. Hence, the method presented here can be applied to a larger
class of programs.

Interestingly, we find a similar idea also in papers about the verification of
distributed algorithms via invariants that use so-called standard forms (com-
pare e. g. to [9,29]), where the global view gets constructed by gathering and
combining all local processes. In case of [29] standard forms have their own
TLA-like semantics that is 1-to-1 correspondent to the calculus semantics for
proving properties on data. The main difference to these approaches is that we
completely remove communication and present an algorithm to automatically
derive this global view from a given well-typed system and its global type.

In [6] global types are translated into processes to mediate between multi-
party and binary session types. These mediator processes capture the behaviour
of global types—w. r. t. the communication structure and not values—to pro-
vide a disciplined communication exchange that allows to translate MPST into
binary sessions. In contrast to this approach, we map processes onto processes
and use global types to guide this mapping, where the communication structure
is removed and our focus is on the evolution of data.

Choreographies [22] are global descriptions of distributed systems from which
the distributed system is generated by endpoint projection. In contrast, we
start with the distributed system and its global type. Note that global types
describe solely the communication structure, i. e., interactions, of the system
and do not contain any other implementation details of single peers. With that,
MPST have an advantage in comparison to choreographies in industrial settings,
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where different parts are developed independently. Moreover, we also consider
the case of interleaved MPST sessions. Our challenge is to derive a global descrip-
tion on how the data evolves in the system. This is related to the extraction of
choreographies from distributed systems as discussed in [7,10]. However, without
the global type as guide, the described algorithms to extract choreographies are
exponential, whereas our algorithm is usually linear.

In [5] MPST are extended by assertions that allow to verify properties on
data values provided that these properties are satisfied in all runs. In contrast,
our approach allows to efficiently compute the exact values that are computed
in concrete runs. Moreover, the language of assertions is limited to the language
defined in [5] and an extension might require to redo some proofs, whereas here
only the translation into Promela, i. e., the use of a concrete model checker, forces
us to limit the languages of expressions and properties. The algorithm to sequen-
tialise systems into SGP-systems does not rely on such limitations. A prominent
example of a property that cannot be analysed statically is termination of a loop
after computing some value. To prove such properties, a type system can use
dependent types such as e. g. in [28]. In contrast to such extensions of MPST with
dependable types, we do not add any complexity to the type system (or provide
any new variant of MPST). Instead we provide a simple rewriting algorithm that
transforms a well-typed system (after the type check) into an abstraction on that
remaining properties on data can be verified with existing specialised tools.

Overview. In Sect. 2 we introduce multiparty session types very briefly.
Section 3 describes how well-typed systems are sequentialised. Section 3.1 intro-
duces a calculus for sequential global processes, Sect. 3.2 describes an algorithm
to map into SGP-systems for the case of synchronous MPST and single sessions,
and Sect. 3.3 discusses asynchronous variants of MPST and extends the algo-
rithm to cover interleaved sessions. Section 4 shows operational correspondence
and relates the original system and its abstraction by coupled similarity. Then,
Sect. 5 illustrates how the sequentialisation can be used to verify properties of
the original system. It discusses the limits of this method, i. e., what kind of prop-
erties cannot be analysed this way and presents a mapping from SGP-processes
into Promela. We conclude in Sect. 6. Missing proofs and additional material can
be found in [26].

2 Multiparty Session Types in a Nutshell

Our aim is to use the structure of a global type to remove communication—and
with that the related concurrency—from the problem of verifying properties on
the evolution of values. We conjecture that this procedure can be used for all kind
of MPST variants but explain the method on a simple variant of synchronous
MPST w. r. t. a single session. Later we extend our algorithm to asynchronous
MPST with interleaved sessions. To explain the basic idea, we use a variant of
multiparty synchronous session types as introduced in [2] with some alternations
similar to variants as e. g. in [4,11,30].



200 K. Peters et al.

MPST were developed to govern communication and concurrency in dis-
tributed systems. Therefore, systems are checked against a global type. Global
types specify the desired communication structure from a global point of view.
The specified communication structure of a global type describes a session and
the participants of such a session are called roles. Here, they are given by

G ::= r1 → r2 :
{
li
〈
Ũi

〉
.Gi

}
i∈I

| G1, G2 | (μt) G | t | end

The first construct specifies a communication from Role r1 to r2 that offers
different branches for the receiver with respect to a label li that is transmitted
by the sender, where Ũi are the sorts (i. e., base types) of the transmitted values.
If I is a singleton, we abbreviate communication with r1 → r2 : l

〈
Ũ

〉
.G. The other

constructs introduce parallel composition, recursion, and successful termination.
The systems, that we want to analyse, are modelled in a session calculus. As

usual, we use an extension of the π-calculus [21] given by

P ::= a[2..n](s).P | a(s[r]).P | s[r1, r2]!l〈ẽ〉.P | s[r2, r1]? {li(x̃i).Pi}i∈I

| if c then P1 else P2 | P1 | P2 | 0 | (νs)P | (μX) P | X

The first two constructs are used to initiate a session. The next two constructs
model the sender and the receiver of a communication within a session, where
the x̃i are (input bounded) variables that are instantiated as result of a communi-
cation by the received values. The remaining constructs introduce conditionals,
parallel composition, termination, restriction, and recursion. Since we want to
use the model checker Spin later, we restrict expressions e (the values that are
transmitted in communication) and conditions c (used to guide conditionals) to
functions that are known by Promela, the input language of Spin.

We use structural congruence (≡) to abstract from syntactically different
but semantically similar processes, where ≡ is the least congruence that satisfies
alpha-conversion (≡α) and the rules:

P | 0 ≡ P P1 | P2 ≡ P2 | P1 P1 | (P2 | P3) ≡ (P1 | P2) | P3

(μX) P ≡ P {(μX)P/X} (νs)(νs′)P ≡ (νs′)(νs)P (νs)0 ≡ 0
(νs)(P1 | P2) ≡ P1 | (νs)P2 if s /∈ fn(P1)

The reduction semantics of the session calculus is given by the rules:

(Link)
a[2..n](s).P1 | a(s[2]).P2 | . . . | a(s[n]).Pn �−→ (νs)(P1 | P2 | . . . | Pn)

(Com)
j ∈ I

s[r1, r2]!lj〈ẽ〉.P | s[r2, r1]? {li(x̃i).Pi}i∈I �−→ P | (Pj {ẽ/x̃j})

(If-T)
c

if c then P1 else P2 �−→ P1
(If-F)

¬c
if c then P1 else P2 �−→ P2

(Par)
P1 �−→ P ′

1

P1 | P2 �−→ P ′
1 | P2

(Res)
P �−→ P ′

(νs)P �−→ (νs)P ′

(Struc)
P1 ≡ P2 P2 �−→ P ′

2 P ′
2 ≡ P ′

1

P1 �−→ P ′
1
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The Rule Link initialises a session s on the roles 1, . . . ,n, where 1 requested the
session on channel a and each i participates in the session as Pi. Communication
within a session s is described by Rule Com, where in the case of matching
roles and labels the continuations of sender and receiver are unguarded and the
variables x̃ are replaced by the values ẽ in the receiver. The Rules If-T and If-F
reduce conditionals as expected. The remaining rules allow for steps in various
contexts and are standard.

Let r(·) return the roles used in a global type or a process. A process P has
an actor on c[r1] if P has an unguarded subterm of the form c[2..n](s).P with
r1 = 1 or c(s[r1]).P (for session invitations) or an unguarded subterm of the
form c[r1, r2]!l〈ẽ〉.P or c[r1, r2]? {li(x̃i).Pi}i∈I (for communication). Let act(P ) be
set of actors in P . If unambiguous, i. e., if there is only one session, we omit the
session channel and abbreviate actors by their role.

The processes P are checked against their specification in type judgements
Γ � P �Δ, where Γ,Δ are type environments that are built from the type infor-
mation in the global type. A system that passes such a type check is denoted as
well-typed. The design of MPST guarantees strong properties for the communi-
cation structure of well-typed systems.

Theorem 1. Assume Γ � P � Δ, i. e., P is well-typed.

Subject Reduction: If P �−→ P ′ then there is Δ′ such that Γ � P ′ � Δ′.
Linearity: P has no two unguarded senders/receivers for the same actor.
Progress: If P �−→∗ P ′ then either P ′ ≡ 0 or P ′ �−→ P ′′.

To prove these properties, we have to reason about the typing rules that
define under which circumstances a type judgement is valid. Due to space lim-
itations, the typing rules as well as some other important aspects of MPST
(e. g. projection and local types) and the proofs are postponed to [26]. Note that
we do not introduce a new variant of MPST. Instead we rely on a standard MPST
variant of that we introduced global types and the session calculus, because they
are necessary to understand the remainder of this paper.

3 Sequentialising Well-Typed Systems

MPST are designed to analyse the communication structure of a system. Well-
typed systems are guaranteed to satisfy properties like communication safety or
progress. What remains, are safety and liveness properties that involve data.

We use the global type of a well-typed term to guide the sequentialisation
of the implementation. The result is a kind of process that we call sequential
global process (SGP), although it might still contain parallel compositions but
only on completely independent parts. This abstraction of the implementation
allows us to analyse properties on the values of data in the implementation
without the problem of state space explosion that is caused by the concurrency
of communication in the original system.
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(Ass) 〈V; ṽ := ẽ.S →−�〉 eval(〈V(ṽ) := ẽ;S〉) (Par)
〈V;S1 V〈→−�〉 ′;S′

1〉
〈V;S1 ‖ S2 V〈→−�〉 ′;S′

1 ‖ S2〉
(If-T)

c
〈V; if c then S1 else S2 V〈→−�〉 ;S1〉 (If-F)

¬c
〈V; if c then S1 else S2 V〈→−�〉 ;S2〉

(Struc)
S1 ≡S S2 S2 S→−� ′

2 S ′
2 ≡S S ′

1

S1 S→−� ′
1

Fig. 1. Reduction Semantics of SGP-Systems.

3.1 A Calculus for Sequential Global Processes

SGP-processes are simple processes consisting of assignments of values to vari-
ables, conditionals, parallelism, termination, and recursion.

Definition 1 (SGP-Processes). SGP-processes are given by

S ::= ṽ := ẽ.S | if c then S1 else S2 | S1 ‖ S2 | 0 | (μX) S | X

where ẽ are expressions to calculate a value, c are boolean conditions, and X
process variables.

SGP-processes introduce a new operator to assign values to variables in a
vector. An assignment ṽ := ẽ.S describes a SGP-process that updates the vari-
ables ṽ by the values ẽ and then continues as S, where ṽ := ẽ.S is short hand for
(v1, . . . , vn) := (e1, . . ., en).S. If ṽ (and accordingly also ẽ) is the empty sequence,
then we abbreviate this empty assignment by τ.S. Note that SGP-processes
inherit the parallel operator not from processes but from global types. Thus,
the parallel composition S1 ‖ S2 describes that S1 and S2 are independent,
i. e., all variables that appear on both sides are used as read-only on both sides.
The remaining operators for conditionals, successful termination, and recursion
are inherited from processes. Note that SGP-processes do neither contain any
interaction mechanisms nor name binders. But we still have branching via con-
ditionals and recursion.

The SGP-processes are combined with a vector V of variables, that represents
the current values of the local variables of all processes of the original distributed
system. They consist of the input bounded variables of the implementation. A
SGP-system 〈V;S〉 then consists of a knowledge vector V and a SGP-process S.

Structural congruence on SGP-processes ≡S is the restriction of ≡ on SGP-
processes. Let ≡S be the least congruence that satisfies the rules S ≡S eval(S)
and 〈V;S〉 ≡S 〈V;S′〉 if S ≡S S′. We write V(ṽ) := ẽ for the result of replacing,
for all vi ∈ ṽ, the current value of the variable vi in the vector V by the value
that results from the evaluation of the expressions ei. The semantics of SGP-
systems is given in Fig. 1. We naturally extend substitution to SGP-systems,
i. e., 〈V;S〉 σ = 〈Vσ;Sσ〉. Let eval(〈V;S〉) be the result of replacing all variables
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v in conditions and expressions in S that are not sequentially hidden after an
assignment of v by the current value of v in V, e. g. :

eval(〈(v = 5); if v > 6 then 0 else v := v + 1.v := v + 1.0〉)
= 〈(v = 5); if 5 > 6 then 0 else v := 5 + 1.v := v + 1.0〉
�−→ 〈(v = 5); v := 5 + 1.v := v + 1.0〉
�−→ eval(〈(v = 6); v := v + 1.0〉) = 〈(v = 6); v := 6 + 1.0〉
�−→ eval(〈(v = 7);0〉) = 〈(v = 7);0〉

3.2 Mapping Well-Typed Systems onto SGP-Systems

We use the global type of a well-typed process P to sequentialise P into a
SGP-process. Because of the parallel operator, SGP-processes are not com-
pletely sequential. However, since we remove communication and with it all
forms of interaction from SGP-processes, parallel composition in SGP-processes
is between independent parts only. More precisely, SGP-systems cover read and
write operations on their vector of variables that simulate the evolution of knowl-
edge in the original distributed system.

The main idea of the algorithm is simple. We fuse matching senders and
receivers, i. e., the receiver that receives a message with the sender that trans-
mitted this message, into a single SGP value assignment. The value assignment
captures what the processes gain as new information from a communication.
The problem is that finding the matching communication partners in the gen-
eral π-calculusis NP-hard. In the π-calculusit is possible to have several matching
receivers for a single sender or vice versa. Performing a communication step can
unguard further senders and receivers. So different choices of matching pairs of
communication partners and different orders in that communications are per-
formed influence the further behaviour. To reduce the complexity of this prob-
lem, we use the type information that allows us to completely avoid the search
for matching communication partners.

Firstly, well-typedness guarantees that there are no races at runtime, i. e., in
no state there is more than one matching receiver for a sender and vice versa. This
ensures, that for each well-typed system there is indeed a single SGP-abstraction
that captures its overall behaviour, whereas without well-typedness (i. e., in the
presence of races) several SGP-abstractions might be necessary to describe the
behaviour of a single system. Secondly, well-typedness also ensures that there
are no orphan communication partners, i. e., each sender will eventually meet a
matching receiver and vice versa. Finally, the global type of a well-typed system
tells us when and where communication takes place. Or, more precisely, the
global type tells us one possible order of the communications and well-typedness
ensures that all other possible orderings of communications of the system are
similar (see Sect. 4). Accordingly, we do not search for matching communication
partners but follow the structure of the global type. If the global type specifies
that next there is a communication then we know that in the mentioned actors
the respective send and receive action is indeed unguarded or guarded only by
conditionals, that can be resolved without interactions.
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Similarly, it is difficult in general π-calculussystems to identify at which point
we have to introduce a global loop to translate the recursive behaviour of the
single actors into a recursion of the global abstraction. Again we follow the
structure of the global type and simply introduce a global loop if the global type
loops, while ignoring the structure of recursion in the actors and only unfolding
local recursion if necessary.

When we remove communication prefixes in order to obtain a SGP-process,
we lose their respective scopes. To avoid ambiguities in SGP-systems and to
clarify the owner of variables, we indicate input bounded variables, i. e., the
variables a SGP-process may write on, by its corresponding actor. The variables
indicated by an actor are the local knowledge of this actor. SGP-processes that
are derived from well-typed processes will not have write access on variables of
other actors but may read them to perform value updates.

The following mapping relies on the fact that the parallel composition
∏

i∈I Pi

is well-typed w. r. t. the global type G. We prove in Theorem 2 below, that this
mapping indeed produces a SGP-process in this case.

Definition 2. The partial mapping SGP
({Pi}i∈I , G

)
is defined inductively as:

1. 0, if G = end
2. Xt, else if G = t
3. SGP

({
P ′

j

} ∪ {Pi}i∈I\{j} , G
)
,

else if there is some j ∈ I such that Pj = (νs)P ′
j

4. SGP
(
{Pj1, Pj2} ∪ {Pi}i∈I\{j} , G

)
,

else if there is some j ∈ I such that Pj = Pj1 | Pj2

5. SGP
({

P ′
j {(μX)P ′

j/X}} ∪ {Pi}i∈I\{j} , G
)
,

else if there is j ∈ I such that Pj = (μX) P ′
j

6. x̃m@s[r] := ẽ.SGP
(
{Qm {x̃m@s[r]/x̃m} , Q} ∪ {Pi}i∈I\{k,l} , Gm

)
,

else if there are k, l ∈ I, m ∈ J ⊆ J′ such that
G = r1 → r2 :

{
lj
〈
Ũj

〉
.Gj

}
j∈J

, Pk = s[r1, r2]!lm〈ẽ〉.Q,

and Pl = s[r2, r1]? {lj(x̃j).Qj}j∈J′

7. SGP
({Pi}i∈I1

, G1

) ‖ SGP
(
{Pj}j∈I2

, G2

)
,

else if there are some I1 ∪ I2 = I such that G = G1, G2,⋃
i∈I1

r(Pi) = r(G1), and
⋃

j∈I2
r(Pj) = r(G2)

8. (μXt) SGP
({Pi}i∈I , G′), else if G = (μt) G′

9. τ.SGP({P ′
1, . . . , P

′
n} , G),
else if {Pi}i∈I = {a[2..n](s).P ′

1, a(s[2]).P ′
2, . . . , a(s[n]).P ′

n}
10. if c then SGP

(
{Pj1} ∪ {Pi}i∈I\{j} , G

)
else SGP

(
{Pj2} ∪ {Pi}i∈I\{j} , G

)
,

else if there is some j ∈ I such that Pj = if c then Pj1 else Pj2

Note that the different cases of this definition are ordered. Thus, a conditional
is not resolved (Case 10) unless none of the other cases can be applied. The first
two cases provide the base cases for global types that are terminated (Case 1) or
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reduced to a type variable (Case 2). In these two cases the considered processes
are ignored. The next three cases do not alter the type but prepare processes by
removing restriction on session channels (Case 3)—which is safe because we will
also remove all communication prefixes—splitting parallel compositions (Case 4),
and unfolding recursion (Case 5). Because we require that process variables are
guarded by a communication prefix, we cannot unfold the same recursion twice
without applying another case in between.

The next three cases map processes that are well-typed w. r. t. a global
type on communication (Case 6), parallel composition (Case 7), and recursion
(Case 8), i. e., here we follow the structure of the global type to map the process.
Case 6 unifies the sender and the receiver of a communication specified in the
global type and maps it on corresponding value assignments. These assignments
simulate the reception of the values ẽ on the variables x̃m@s[r] of the receiver
s[r], where x̃@s[r] = x1s[r], . . . , xns[r] is the result of indicating the variables with
the actor s[r] of the receiving end. The substitution of x̃m into x̃m@s[r] ensures
that names of different parallel branches are not confused.

This substitution does not remove all remaining name clashes but only the
harmful clashes between parallel composed components of the considered system.
Sequential composed input binders on the same variable and of the same actor
are translated to the same name. If we apply this algorithm on processes that are
not well-typed, we may still have parallel occurrences of syntactically the same
name in parallel composed input binders. But well-typedness ensures that all
such occurrences are linked to different actors and are thus distinguished. With
that, we unify variables—that might have been denoted the same on purpose—
and reduce the vector of variables in the SGP-system. Also, input bounded
variables of different iterations of recursion are unified.

Case 7 maps a parallel composition of global types on a parallel composi-
tion of SGP-processes. Note that in both cases, parallel composition is between
independent objects that have no means of interaction. To split the parallel com-
ponents of the system accordingly, we rely on their roles. Well-typedness of the
system ensures that it can be split as required.

Case 8 introduces recursion if the global type tells us to do so. This case
does not alter the considered system or enforces any requirements on the struc-
ture of the system. Well-typedness ensures that the structure of the system
w. r. t. recursion matches the recursion of the global type, but not necessarily
that the system and the global type use recursion at the same time. For exam-
ple a[2](s). (μX) s[1, 2]!l〈5〉.s[1, 2]?l′(x).X | a(s[2]). (μX) s[2, 1]?l(x).s[2, 1]!l′〈6〉.X is
well-typed w. r. t. 1 → 2 : l〈N〉. (μt) 2 → 1 : l′〈N〉.1 → 2 : l〈N〉.t, although the
global type partially unfolds the recursion in comparison to the recursion of the
process. Therefore, we rely on well-typedness and use only the global type to
determine the correct place of recursion, where Case 5 allows to unfold recursion
in processes. To ensure that the process variables of nested recursions are not
confused, the Cases 2 and 8 use the type variable of the global type as index to
distinguish process variables.

Case 9 unifies session invitations and the corresponding acceptances and
maps them on an empty value assignment τ . The session invitation mechanism
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is already validated in the well-typedness proof and does not influence the data of
the processes in the system. Thus, it is safe to ignore this step in SGP-processes.

Case 10 maps a conditional of one of the parallel components of the system
to a conditional in the SGP-process. Global types do not consider conditionals of
processes, but well-typedness ensures that both cases of the conditional have to
follow the same global type. Because of that, both cases of the SGP-conditional
inherit the same global type. To avoid unnecessary branching, we delay the map-
ping of conditionals until this is necessary e. g. to unguard a sender or receiver
of a communication that is specified in the global type.

The mapping in Definition 2 is not deterministic, because it does not enforce
an order in that several unguarded conditionals are mapped in Case 10 and this
leads to different possible SGP-processes. Similarly, it is not specified in which
order several restrictions in Case 3, several parallel compositions in Case 4, or
several recursive processes in Case 5 are handled, though different orders in these
cases will not lead to different SGP-processes. The other cases are guided by the
global type or the fact that there is only one session. To obtain a determinis-
tic version—and simplify the proofs—and to minimize the size of the computed
SGP-process, we assume that Definition 2 gives precedence to parallel branches
that implement (1) senders and (2) receivers that are unguarded in the global
type and (3) smaller roles. However, different orders in that conditionals are
handled lead to weakly bisimilar SGP-processes, because only unguarded condi-
tionals are mapped, the translated subprocesses of the conditional are guarded
by the resulting SGP-conditional, and an unguarded conditional will reduce to
the same case in a single τ -step regardless of when we perform this step.

3.3 Asynchrony and Interleaved Sessions

The mapping in Definition 2 is designed for a synchronous variant of multiparty
session types and only single sessions, because the syntax and semantics is sim-
pler in these cases. However, the mapping in Definition 2 is exactly the same for
the case of multiparty asynchronous session types as introduced in [19,20].

Note that the semantics of the session calculus defined in [19,20] use mes-
sages queues to reflect the asynchronous nature of communication. Sending and
receiving are decoupled into two separate steps to transmit and then read from
message queues. Nonetheless, when we remove communication in the mapping
SGP(·, ·), we unify sending and receiving into value assignments as described in
the Case 6 of Definition 2. This is because, SGP-processes are designed to track
the evolution of data values of processes and therefore only the reception of val-
ues is relevant. Intuitively, value assignments of SGP-processes reflect the case
that a participant of a session has learned new information by the reception of
values and this information flow is covered by value assignments. To determine
the correct point in the behaviour of the system in that a particular participant
gains new information through the reception of values, we rely on the fact that
for this communication to happen both communication partners, the sender and
the receiver have to be unguarded. Well-typedness and the structure of the global
type, guide us in the case of concurrently enabled communication prefixes.
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The definition of well-typed processes for several interleaved sessions is more
difficult. As described in [3], we have to ensure that actions of different sessions do
not cause deadlocks by cyclic dependencies. Processes with only acyclic depen-
dencies between interactions of different sessions are denoted as globally pro-
gressing. However, adapting SGP(·, ·) to allow for several interleaved sessions in
processes that are globally progressing is straightforward. First we remove name
clashes between session channels using alpha conversion. Then we adapt the map-
ping SGP(·, ·) of Definition 2 into SGP’(·, ·), where the latter expects a set {Pi}i∈I

and a set {(Gj , sj)}j∈J of pairs of global types and session channels as input
such that the parallel composition

∏
I∈I Pi is well-typed w. r. t. {(Gj , sj)}j∈J

and
∏

I∈I Pi does not contain name clashes between session channels.

Definition 3. SGP’
(
{Pi}i∈I , {(Gj , sj)}j∈J

)
is defined inductively as:

1. (a) 0, if J = ∅
(b) SGP’

(
{Pi}i∈I , {(Gj , sj)}j∈J\{k}

)
,

else if there is some k ∈ J such that Gk = end
2. XG, else if G = {Gj}j∈J = {tj}j∈J

3. SGP’
(
{P ′

k} ∪ {Pi}i∈I\{k} , {(Gj , sj)}j∈J

)
,

else if there is k ∈ I such that Pk = (νs)P ′
k

4. SGP’
(
{Pk1, Pk2} ∪ {Pi}i∈I\{k} , {(Gj , sj)}j∈J

)
,

else if there is some k ∈ I such that Pk = Pk1 | Pk2

5. SGP’
(
{P ′

k {(μX)P ′
k/X}} ∪ {Pi}i∈I\{k} , {(Gj , sj)}j∈J

)
,

else if there is k ∈ I such that Pk = (μX) P ′
k

6. x̃n@s[r] := ẽ.SGP’(P,G) with P = {Qn {x̃n@s[r]/x̃n} , Q} ∪ {Pi}i∈I\{m,o} and
G = {(Gl,n)} ∪ {(Gj , sj)}j∈j\{L},

else if there are m, o ∈ I, l ∈ J, n ∈ K ⊆ K′ such that
Gl = r1 → r2 :

{
lk

〈
Ũk

〉
.Gl,k

}
k∈K

, Pm = s[r1, r2]!ln〈ẽ〉.Q,

and Po = s[r2, r1]? {lk(x̃k).Qk}k∈K′

7. (a) SGP’
(
{Pi}i∈I1

, {(Gj , sj)}j∈J1

)
‖ SGP’

(
{Pi}i∈I2

, {(Gj , sj)}j∈J2

)
,

else if there are some I1 ∪ I2 = I, J1 ∪ J2 = J such that J1 ∩ J2 = ∅ and⋃
i∈Ik

act(Pi) = {sj[r] | j ∈ Jk ∧ r ∈ r(Gj)} for k ∈ {1, 2}
(b) SGP’

(
{Pi}i∈I , {(Gk1, sk) , (Gk2, sk)} ∪ {(Gj , sj)}j∈J

)
,

else if there is k ∈ J such that Gk = Gk1, Gk2

8. (μXG) SGP’
(
{Pi}i∈I ,

{(
G′

j , sj
)}

j∈J

)
,

else if Gj = (μtj) G′
j for all j ∈ J and G = {tj}j∈J

9. τ.SGP’
(
{P ′

1, . . . , P
′
n} ∪ {Pi}i∈I\{k1,...,kn} , {(Gj , sj)}j∈J

)
,

else if there are k1, . . . , kn ∈ I such that PK1 = a[2..n](s).P ′
1,

Pk2 = a(s[2]).P ′
2, . . . , Pkn = a(s[n]).P ′

n

10. if c then SGP’({Pk1} ∪ P,G) else SGP’({Pk2} ∪ P,G)
with P = {Pi}i∈I\{k} and G = {(Gj , sj)}j∈J,

else if there is k ∈ I such that Pk = if c then Pk1 else Pk2
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To deal with multiple sessiones (and their global types), we split Case 1
into a case to introduce the SGP-process 0 as soon as the set of considered
global types is empty (Case 1a) and a case to remove terminated global types
end from the set {Gj}j∈J (Case 1b). In a similar way, we split Case 7 into
a case to introduce a parallel composition of SGP-processes if the considered
sets of processes can be partitioned into two sets that implement the actors of
different sessions (Case 7a) and a case to split parallel global types (Case 7b),
i. e., to replace {Gj}j∈J by {Gk1, Gk2}∪{Gj}j∈J\{k} if there is a k ∈ J such that
Gk = Gk1, Gk2. The adaptation of the Cases 3, 4, 5, 6, 9, and 10 to multiple
global types is straightforward. The Cases 2 and 8 for recursion, are replaced by
variants that require all types of the considered set of global types to be reduced
to a type variable or a recursive global type, respectively. With that we follow
[3], that similarly requires that interleaved sessions can be joined in recursion.
The remaining cases are straightforwardly adapted to sets of types.

Note that an implementation of this algorithm should exploit the acyclic
dependency relation that is build according to [3] between interactions of differ-
ent sessions. This relation tells us for the Cases 6 and 9, whether the required
communication partners for a session are already unguarded or guarded by
another session. In the latter case this communication will introduce a depen-
dency from another session to this session and the respective case cannot be
applied. Similarly, this relation tells us for Case 7a that it is possible to intro-
duce a SGP parallel composition if and only if we can split the set of sessions
into two disjoint sets such that there are no dependencies between the sessions
in different sets.

We overload the definition of SGP∗(·, ·) for interleaved sessions. Let P be
well-typed w. r. t. {(Gj , sj)}j∈J and S = SGP’

(
{P} , {(Gj , sj)}j∈J

)
. Then the

corresponding SGP-system is SGP∗
(
{P} , {(Gj , sj)}j∈J

)
= 〈V;S〉, where V is

the vector of names in S.
Note that the results of Sect. 4 are proved in [26] for both variants: SGP(·, ·)

and SGP’(·, ·). As we claim, we can extend this algorithm to all variants of MPST
that satisfy linearity, i. e., all MPST variants we are aware of. This also includes
variants with session delegation. Delegation can be handled similarly to session
invitations using a substitution for the delegated session name.

4 Relating the Implementation and Its Sequentialisation

We show that for all processes P that are well-typed w. r. t. the global types
{(Gj , sj)}j∈J, the mapping SGP

(
{P} , {(Gj , sj)}j∈J

)
is defined and returns a

SGP-process. Therefore, we show that all cases of Definition 3 except for Case 8
preserve well-typedness in their recursive calls. By an induction over J and the
structure of the respective types, we show then that—after some preparation
steps in the Cases 3, 4, 5, and 10 that do not alter the type—well-typedness
ensures that the structure of the system is as required by the respective case to
reduce the types. The case of a single session—if P is well-typed w. r. t. G then
SGP({P} , G) is a SGP-process—is a special case of the following theorem.
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Theorem 2. If the process P is well-typed w. r. t. {(Gj , sj)}j∈J then

SGP’
(
{P} , {(Gj , sj)}j∈J

)
is defined and returns a SGP-process.

Given a well-typed process, the computation of the mapping and the size of
the constructed SGP-process are usually linear in the size of P combined with
the sum of the sizes of its types. As discussed in [26], an exponential blow-up
cannot be completely avoided but results only from not optimal conditionals,
i. e., conditionals that are not only used to branch between alternative labels of
an immediately following sender, or from actors that are not influenced by the
choice of a branch of a communication in that the sender is preceded by such a
conditional. By design, the algorithm in Definition 2 will even in these bad cases
minimize the size of the generated SGP-process by delaying the mapping of con-
ditionals as long as possible. In general the computation of the SGP-system is
efficient, i. e., usually fast, and the construction does not suffer from the problem
of state space explosion, i. e., the generated SGP-system is usually not consid-
erably larger than the original system. Since the construction sequentialises the
original system and thereby removes all forms of interaction and restriction, the
verification of the SGP-abstraction is much easier than the verification of the
original system.

It remains to show, that the SGP-abstraction of a well-typed system that is
generated by SGP∗(·, ·) and the original system are semantically similar enough,
such that the analysis of the SGP-abstraction allows to verify properties of the
original system. Intuitively, a well-typed system and its sequentionalisation into
a SGP-system have the same steps, but SGP-systems may force an order on steps
that are unordered in the original system. This happens for global types such
as 1 → 2 : l〈N〉.3 → 4 : l〈N〉.end that combine causally unrelated communications
sequentially.

Example 1. Consider the global type G = 1 → 2 : l〈N〉.3 → 4 : l〈N〉.end that
consists of two causally independent communications. The system

P = a[2..4](s).s[1, 2]!l〈5〉.0 | a(s[2]).s[2, 1]?l(x).0
| a(s[3]).s[3, 4]!l〈4〉.0 | a(s[4]).s[3, 4]?l(x).0

is a well-typed implementation of this global type. The algorithm of Definition 2
maps this process to the SGP-system SGP∗(P,G) = 〈(x2, x4) ;S〉, where S =
τ.x2:=5.x4:=4.0. The process P has, modulo structural congruence, two maximal
runs

P P ′
(νs)(s[3, 4]!l〈4〉.0 | s[3, 4]?l(x).0)

(νs)(s[1, 2]!l〈5〉.0 | s[2, 1]?l(x).0)
0

where P ′ = (νs)(s[1, 2]!l〈5〉.0 | s[2, 1]?l(x).0 | s[3, 4]!l〈4〉.0 | s[3, 4]?l(x).0). But the
abstraction SGP∗(P,G) simulates only the sequence of steps at the top

〈(x2 = 0, x4 = 0) ;S〉 �−→ 〈(x2 = 0, x4 = 0) ;x2 := 5.x4 := 4.0〉
�−→ 〈(x2 = 5, x4 = 0) ;x4 := 4.0〉 �−→ 〈(x2 = 5, x4 = 4) ;0〉
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in that first process 2 receives the value 5—and the SGP-process accordingly
updates the variable x2 of 2—and then 4 receives the value 4.

Except for such sequentialisations from the global type, the original system
and its SGP-system are similar. In particular, this means that each step of the
SGP-system can be simulated by the original system. Thus, SGP-systems do not
introduce new behaviour.

Theorem 3 (Soundness). If P is well-typed w. r. t. G then for all S ′ such
that SGP∗({P} ,G) �−→ S ′ there exist some P ′,G′ such that P �−→ P ′, P ′ is
well-typed w. r. t. G′, and SGP∗({P ′} ,G′) ≡S S ′.

Although the SGP-system can perform intuitively the same steps as the
original system, the order that is forced on some steps by the above discussed
sequentialisations prevents us from obtaining the same result in the other direc-
tion. However, only the order of steps can differ. Because of that, whenever the
original system does a step there is a sequence of steps bringing the original
system towards a state that can be reached by the SGP-system. To prove this
result, we rely on the observation that the behaviour of a SGP-process follows
the global type it was constructed from and well-typedness forces processes to
similarly follow the specification in their types. Since renamings of input binders
change the vector of variables of a SGP-system, we assume that no alpha con-
version is used to rename input binders in the following.

Theorem 4 (Completeness). Let G = {(Gj , sj)}j∈J. If the system P is well-
typed w. r. t. G then for all P �−→ P ′ there exist P ′′,G′′ such that P ′ �−→∗ P ′′,
P ′′ is well-typed w. r. t. G′′, and SGP∗({P} ,G) �−→∗ SGP∗({P ′′} ,G′′).

Interestingly, the combination of Theorem 3 and Theorem 4 is similar to
(weak) operational correspondence as it is introduced in [14] as criterion for the
quality of encodings. Using the results from [25], then the sequentialisation of a
system is correspondence similar to the original system, where correspondence
simulation � was introduced in [25].

Corollary 1. If P is well-typed w. r. t. G = {(Gj , sj)}j∈J then SGP∗(P,G) � P .

Correspondence similarity is strictly weaker than bisimilarity, but it implies
coupled similarity. Coupled similarity was introduced in [23] as a weaker variant
of bisimilarity that allows to relate the distributed implementation to a global
specification. Similarly, we relate the sequentialisation SGP∗(P,G) to the dis-
tributed implementation in P . As explained in [23], bisimilarity is in general too
strict to relate a distributed implementation with a global specification. So, fol-
lowing the hierarchy in [12,13], coupled similarity (or the only slightly stronger
correspondence simulation) is intuitively the strictest simulation relation that
we could expect here.
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5 Using SGP-Abstractions for Verification

To verify properties that are based on data values, we can use standard verifi-
cation techniques such as model checking on the generated SGP-systems. The
correspondence simulation SGP∗(P,G) � P between the SGP-system and the
original system P ensures that properties that are valid for the SGP-system are
also valid for P , if these properties are preserved modulo �. For the presented
approach, this is the case for all properties on the values of data variables—that
reflect the reception of values in the original system—that do not require to
compare different such variables that are updated concurrently in the original
system as explained in Example 1.

Accordingly, we cannot use this method to verify properties on the relation
between variables that are updated concurrently in the original system. This is
because, we use the structure of the global type to sequentialise. If—as in the
case of G in Example 1—the global type combines independent communications
sequentially, then the mapping SGP(P,G) forces an order on the corresponding
value updates following the global types G and not the process P .

However, this problem occurs only w. r. t. communications that are causally
unrelated, i. e., such properties are in general problematic in distributed systems.
Since these values are altered independently in the original system, properties
that relate their values will often not hold in all runs. The easiest way to avoid
such false positives, is to compute the causal relation of the communications in
G. Remember that global types do not contain binders. Thus, computing the
causality relation for a single session can be done in a similar way as in the
π-calculus (compare e. g. to [27]), but does not have to bother about binders and
scope extrusion. To obtain a causality relation for the case of globally interleaved
sessions, we combine the relation that captures dependencies between the inter-
actions of different sessions of [3] with the causality within a session. A property
of the SGP-system then holds for the original system if it is invariant under
different linearisations of this causal order.

To illustrate the verification of system properties, we use the model checker
Spin [16,17] and translate SGP-systems into Promela, the input language of Spin.
Therefore, we provide an algorithm to translate a SGP-process into Promela
code. This algorithm serves as a role model to obtain similar mappings for other
model checkers. We choose SPIN to illustrate how our algorithm for well-typed
systems compares to the standard partial order reduction techniques that are
implemented in SPIN and that work without the type information. Other imple-
mentations might prefer a model checker that is specialised on the analyses of
data instead of concurrency issues such as nuXmv [8].

First we generate a preamble for the Promela program, i. e., declare variables
and set their initial values. The variables are obtained from the vector of variables
V in a SGP-system 〈V;S〉. Sometimes the initial values are directly specified by
the implementation or are given as parameters of the implementation. Otherwise,
the developer has to pick suitable initial values respecting their respective sorts.

The translation into Promela consists of two layers. The outer layer �S� cre-
ates the proctype that is required by Promela and passes the term onto the inner
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layer �S�i. The inner layer is simple: Variable assignments are translated to
variable assignments encapsulated in an atomic block if multiple assignments
are done simultaneously. Recursion is implemented by introducing a label and
jumping to that label when the recursion variable is called.

Definition 4 (Translation of SGP-Processes into Promela)

�S� = active proctype ModelS() {
�S�i

LEnd:
}

�ṽ := ẽ.S�i = atomic {v1 = e1; . . . ; vn = en; } �S�i

�if c then S1 else S2�i = if
:: c −> �S1�i

:: else −> �S2�i

fi

�S1 ‖ S2�i = run(S1); run(S2)
�0�i = goto LEnd;

�τ.S�i = skip; �S�i

�(μX) S�i = LX: �S�i

�X�i = goto LX;

where for each run(Si) a separate proctype is introduced with �Si�.

Note that, if ṽ and ẽ are singletons in ṽ := ẽ.S, the atomic block is omitted.
In [26] we present a toy example to illustrate our approach. It implements

a simple auctioneer system consisting of an auctioneer and two bidders. After
translating this example into a SGP-system and then into Promela, some prop-
erties given as LTL-formulae are verified in SPIN.

Moreover, to visualise the state-space explosion problem, we implemented the
key-exchange part of the Needham-Schroeder protocol. We derived the sequen-
tialised (s) version out of the distributed (d) version using our algorithm. The
following table shows time and memory needed to check our Promela implemen-
tation of the Needham-Schroeder protocol. Spin crashed before it could compute
the distributed versions for more than 6 participants.

participants 2(d) 2(s) 4(d) 4(s) 6(d) 6(s) 8(d) 8(s) 10(d) 10(s)

seconds 0.01 0 0.19 0 51.7 0.05 – 1.27 – 36.2

MB 128 128 137 129 1836 138 – 360 – 5809
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6 Conclusions

We introduce a mapping from well-typed systems—that are distributed concur-
rent systems that interact by communication—into SGP-systems—that simulate
the information flow of the original system from a global point of view and that
do not have interactions. The algorithm to compute these SGP-systems is usu-
ally linear in the size of the original system. Without interactions and only finite
vectors of variables, the verification of properties is significantly more efficient
for SGP-systems than for the original system. The presented mapping ensures
that properties that hold for the SGP-system are also valid for the original
system modulo coupled similarity. Finally, we present a second mapping from
SGP-systems into Promela; the input language of the Spin model checker.

To formalise the relation between the original system and its sequentiali-
sation into a SGP-system, we relate them by correspondence simulation. Cor-
respondence simulation was described in [25] to describe the relation that the
criterion operational correspondence forces on processes and their encodings. As
discussed in [14,15], operational correspondence is essential to reason about the
quality of encodings between process calculi. In this sense, the presented map-
ping is a good encoding. Moreover, correspondence similarity implies coupled
similarity. As discussed in [23], coupled similarity is a good way to relate cen-
tral specifications—or in our case global sequentialisations—to their distributed
implementations. Since bisimilarity is in general too strict to relate the original
system and its sequentialisation, coupled similarity (or the only slightly stronger
correspondence simulation) is intuitively the strictest simulation relation that
we could expect here.

Multiparty session types are already a very efficient verification tool for all
properties about the communication structure of systems. The presented sequen-
tialisation allows us to benefit from their efficiency also in the verification of prop-
erties that are usually not in the range of type systems, because they require the
consideration of concrete runs of the system or the values of variables.

Due to the interleaving of independent actions, the state space of a concurrent
system is in the worst case exponentially larger than of its sequentialisation. As
an example, we implemented the Needham-Schroeder public key protocol with 10
pairs of processes that interact with the same server (see [26]). Spin generated
for the original system more than 35 million states (matching more than 154
million states while using more than 7,5GB memory) before crashing after 969
seconds. For the sequentialisation Spin computed the complete model in only 62
seconds generating 75 million states.

The Scribble project [18,31] provides a tool set that allows to specify and
check multiparty session types. They also provide a tool to check a given imple-
mentation against a given type. The presented algorithms could support such
tool sets by increasing the kinds of properties that can be analysed within such
a tool set, while the efficiency of such tools is not negatively influenced. In fact,
the derivation of SGP-abstractions can be directly integrated into the type check
such that SGP-abstracts are produced as a by-product of type checking.
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Abstract. SysML activity diagram is a standard modeling language for complex
systems. It supports systems’ composition by providing the operator ‘call behav-
ior’. In general, the verification of systems modeled with those diagram inherit the
limitations of the developed built-in tools, especially the case of model checking.
To address this shortcoming, we propose a compositional verification framework
based on the call behavior operator to alleviate the state space explosion prob-
lem of model-checking. The framework decomposes a property into local sub-
properties and verify them separately on the composed behavioral diagrams. Fur-
ther, we propose to ignore the diagrams’ artifacts that are useless with respect to
the property under verification. We prove the soundness of the proposed approach
by showing that the result deduced from the verification of the local properties is
always preserved. The verification results are obtained by encoding SysML activ-
ity diagrams in the probabilistic model checker ‘PRISM’. Finally, we demonstrate
the effectiveness of our framework by verifying a set of properties on two use cases
that require a large amount of memory and a considerable time processing.

Keywords: SysML · Activity diagrams · Model-checking · Compositional
verification · Abstraction · PCTL · PRISM

1 Introduction

A major challenge in systems and software development process is to reduce as possible
bugs by advancing the error detection at early stages of their life-cycles development.
Experimentally, it has been shown that the cost of repairing a software flaw during
maintenance is approximately 500 times higher than fixing it at early design phases [4].
Further, only 15% of flaws are detected in the initial design phase, whereas the cost
of fixing them at this phase is extremely beneficial as compared to fixing them at the
development and testing phases. Yet, a more ambitious challenge is to accelerate the
verification process of a product based on its design artifacts. Here, we are interested on
systems modeled by using modern and standard language like SysML [20]. The latter
is a prominent object-oriented graphical language which today become defacto stan-
dard for software and systems modeling. Especially, SysML reuses a subset of UML
packages [14] and extends others with specific systems’ engineering features such as
probability, time, and the rate. SysML covers mainly four perspectives of systems mod-
eling: structure, behavior, requirement, and parametric diagrams. Particularly, SysML
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activity diagrams are behavioral diagrams used to model system behaviors at various
levels of abstraction [15].

For the verification of SysML activity diagrams, model checking is the most pop-
ular used technique [23]. Model checking [5] is a formal and automatic verification
technique that checks systems specifications expressed as temporal logic formula or
automata-based formalism on finite state concurrent systems. Compared to qualita-
tive model checking, quantitative verification techniques based on probabilistic model
checkers [4,12] have recently gained popularity. Probabilistic verification offers the
capability of measuring the satisfiability probability of a given property on systems that
inherently exhibit probabilistic behavior. Despite its wide use, model checking in gen-
eral is a resource-intensive process that requires a large amount of memory and time
processing. This is due to the fact that the systems’ state space may grow exponentially
with the number of variables combined with the presence of concurrent behaviors. Con-
sequently, it is of a major importance to reduce the verification process complexity.

To overcome this issue, various techniques have been explored [4,5] for qualitative
model checking and then leveraged to the probabilistic case. Among these techniques,
several solutions aim at optimizing the employed model checking algorithms by intro-
ducing symbolic data structures based on binary decision diagrams, while others target
the analysis of the model itself. Besides, two classes of solutions are found in the lit-
erature: abstraction and compositional verification. The former provides a minimized
representation of the global system under verification. Whereas, the latter avoids the
construction of the considered global system. Abstraction techniques can be classified
into four categories [5]: abstraction by state merging, on variables, by restriction, or by
observer automata. Besides, the well-known compositional verification techniques [6]
are: partitioned transition relation, lazy parallel composition, interface processes, and
assume-guarantee.

In this paper, we are interested by the interface processes and the abstraction by
restriction techniques that are consistent within the composition by call behaviors in
SysML activity diagrams. The provided framework considers as input a system mod-
eled with SysML activity diagrams and its requirements expressed in PCTL [21]. Then
it decomposes a property into local sub-properties in order to verify them separately for
each system’s sub-component in parallel. Further, in order to accelerate more the ver-
ification process, it ignores the diagrams’ artifacts that are useless with respect to the
property and the local properties under verification. For verification, each system’s com-
ponent is transformed automatically into PRISM. Finally, the framework infers safely
the verification result of the target property from the obtained results of the local prop-
erties. In a nutshell, the main contributions of this paper can be summarized as follows.

1. Proposing a complete formalization of the existing calculus dedicated to SysML
activity diagrams.

2. Developing an efficient verification approach that reduces the verification costs over-
head of probabilistic model checking.

3. Proving the soundness of the proposed approach.
4. Showing the effectiveness of the developed framework on two real use cases.

The next section compares our approach with the existing initiatives related to
the verification of SysML activity diagrams. Then, the preliminaries needed for our
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work are presented in Sect. 3. Section 4 describes and formalizes SysML activity dia-
grams. Then, our compositional verification framework is detailed in Sect. 5 and Sect. 6
presents the experimental results. Finally, Sect. 7 concludes the paper and provides
future directions.

2 Related Work

In this section, we survey the research initiatives dedicated mainly to the formaliza-
tion and the verification of SysML diagrams and to the compositional verification of
probabilistic systems.

Yuan et al. [16] construct a set of rules to transform UML state machines to Timed
Automata (TA). They apply the query view transformation approach in order to produce
TA encoded in UPPAAL input language. The properties to be verified against TA are
expressed in LTL. Apvrille and Saqui-Sannes [3] apply structural analysis to SysML by
using the TTool open-source toolkit. They translate a subset of SysML diagrams into
a Petri net and solves an equation system built upon the incidence matrix of the net.
Then, a push-button approach is applied to display verification results.

Ando et al. [1] express SysML state machine diagrams in CSP# processes that could
be verified by the PAT model checker. This work includes only a sub-set of rules and
experimenting the transformation on a toy case study. In addition, they did not detail
the temporal logic that expresses the system requirements. Carrillo et al. [8] define
SysML blocks in a refinement process. The structural architecture of a SysML block
is given by the internal block diagram and the behavior of each sub-block is described
by an interface automaton. Their main intention in a refinement process is to ensure the
consistency and the compatibility between different blocks.

Ermeson et al. [7] verify the embedded realtime systems with energy constraints
that are modeled using SysML State Machine diagram, and the MARTE UML Pro-
file (Modeling and Analysis of Real-Time and Embedded systems) is used to specify
ERTS’s (Embedded Real-time Systems) constraints such as execution time and energy.
They map only states and transitions into ETPN (Time Petri Net with Energy con-
straints). In their transformation, they don’t give the transformation of actions in a given
state even the semantics of the mutual exclusive and orthogonal states by taking just the
internal states into consideration. Furthermore, they propose a similar methodology [2]
that maps one SysML activity diagram to time Petri Net for requirement validation of
embedded real-time systems with energy constraints. The computation model formal-
ized as an ETPN is not well presented and it misses the representation of the energy
consumption values. The authors do not provide a formal transformation for SysML
elements even the values represented from MARTE profile. Also, they do not clarify
why they represent each constraint in an action by a separate transition.

Ouchani et al. [24] introduce the abstraction by merging states to reduce the verifi-
cation cost of a SysML activity diagram. In [22], the authors transform a diagram into
an equivalent hierarchical form in order to help the abstraction developed in [24].

David et al. [18] introduced an extension of UML statecharts with randomly varying
duration that allows probabilistic decision in state. The Input/Output (I/O) automata is
used to provide a compositional semantics for statecharts. Also, probability distribution
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after a continuous or discrete time is introduced as an arbitrary operator. And in [17],
they introduce means to specify system randomness within statecharts, and to verify
probabilistic temporal properties. The model is represented as MDP, and the properties
are expressed in PCTL.

Concerning the compositional verification for probabilistic systems, Feng et al. [11]
discusses assume-guarantee technique for probabilistic system by focusing more on the
learning algorithm to generate the minimal deterministic automata that represents a
probabilistic safety property. And in [10], they propose the assume-guarantee approach
where both the assumption and the guarantee properties are probabilistic safety proper-
ties such that assumptions are generated manually. Also in [9], they apply the assume-
guarantee technique on synchronous systems modeled as DTMC, where assumptions
are safety properties defined as probabilistic finite automata. To our knowledge, few
probabilistic model checkers support abstraction and compositional verification tech-
niques. As example, PRISM builds the symmetry reduction and LiQuor1 implements
the bi-simulation equivalence.

3 Preliminaries

In this section, we present the probabilistic automata as a modeling formalism and
PCTL temporal logic as a specification language.

Probabilistic automata (PAs) [12] are a modeling formalism for systems that exhibit
probabilistic and nondeterministic features. Definition 1 illustrates a PA where Dist(S)
denotes the set of convex distributions over S and μ = [. . . ,si �→ pi, . . .] is a distribution
in Dist(S) that assigns a probability μ(si) = pi to the state si.

Definition 1 (Probabilistic Automaton). A probabilistic automaton is a tuple M =
(s, S, L, Σ , δ ), where:

– s is an initial state, such that s ∈ S,
– S is a finite set of states,
– L : S → 2AP is a labeling function that assigns to each state a set of atomic proposi-

tions taken from the set of atomic propositions (AP),
– Σ is a finite set of actions,
– δ : S × Σ → Dist(S) is a probabilistic transition function assigning for each s ∈ S

and α ∈ Σ a probabilistic distribution μ ∈ Dist(S).

For PA’s composition, this concept is modeled by the parallel composition as stipulated
in Definition 2. During synchronization, each PA resolves its probabilistic choice inde-
pendently. For transitions s1

α−→ μ1 and s2
α−→ μ2 that synchronize in α then the com-

posed state (s′
1,s

′
2) is reached from the state (s1,s2) with probability μ1(s′

1)× μ2(s′
2).

In the no synchronization case, a PA takes a transition where the other remains in its
current state with probability one.

Definition 2 (Parallel Composition of PAs). The parallel composition of two PAs:
M1 = (s1, S1, L1, Σ1, δ1) and M2 = (s2, S2, L2, Σ2, δ2) is a PA M = ((s1,s2), S1 ×
S2, L(s1)∪ L(s2), Σ1 ∪ Σ2, δ ), where: δ (S1 × S2,Σ1 ∪ Σ2) is the set of transitions

(s1,s2)
α−→ μ1 × μ2 such that one of the following requirements is met.

1 http://www.i1.informatik.uni-bonn.de/baier/projectpages/LIQUOR/LiQuor.

http://www.i1.informatik.uni-bonn.de/baier/projectpages/LIQUOR/LiQuor
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1. s1
α−→ μ1,s2

α−→ μ2, and α ∈ Σ1 ∩Σ2,
2. s1

α−→ μ1,μ2 = [s2 �→ 1], and α ∈ Σ1\Σ2,

3. μ1 = [s1 �→ 1], s2
α−→ μ2, and α ∈ Σ2\Σ1.

To verify a PA, we use PCTL to express its related specifications. The following gram-
mar represents the PCTL syntax.

φ ::= � | ap | φ ∧φ | ¬φ | P�� p[ψ]
ψ ::= Xφ | φU≤kφ | φUφ

Where the term “�” means true, “ap” is an atomic proposition, k ∈ N, p ∈ [0,1], and
��∈ {<,≤,>,≥}. The operator “∧” represents the conjunction and “¬” is the negation
operator, and P is the probabilistic operator. Also, “X”, “U≤k”, and “U” are the next,
the bounded until, and the until temporal logic operators, respectively.

To specify a satisfaction relation of a PCTL formula in a state “s”, a class of adver-
saries has been defined to solve the nondeterminism in PAs. Hence, a PCTL formula
should be satisfied under all adversaries. The satisfaction relation (|=) of a PCTL for-
mula is defined as follows, where “s” is a state and “π” is a path obtained by a memo-
ryless adversary [12].

– s |= � is always satisfied.
– s |= ap ⇔ ap ∈ L(s) and L is a labeling function.
– s |= φ1 ∧φ2 ⇔ s |= φ1 ∧ s |= φ2.
– s |= ¬φ ⇔ s |= φ .
– s |= P�� p[ψ] ⇔ P({π is a path starts f rom the state s|π |= ψ}) �� p.
– π |=Xφ ⇔ π(1) |= φ where π(1) is the second state of π .
– π |= φ1U≤kφ2 ⇔ ∃i ≤ k : ∀ j < i, π( j) |= φ1 ∧π(i) |= φ2.
– π |= φ1Uφ2 ⇔ ∃ k ≥ 0 : π |= φ1U≤kφ2.

4 SysML Activity Diagrams Formalization

In this section, we describe and formalize SysML activity diagrams by providing an
adequate syntax and semantics.

As illustrated in Fig. 6, SysML activity diagrams are a graph-based representation
where their main constructs (Fig. 1) can be decomposed into two categories: activity
nodes and activity edges. The former contains three types: activity invocation, object
and control nodes. Activity invocation includes receive and send signals, action, and call
behavior. Activity control nodes are initial, flow final, activity final, decision, merge,
fork, and join nodes. Activity edges are of two types: control flow and object flow.
Control flow edges are used to show the execution path through the activity diagram
and to connect activity nodes. Object flow edges are used to show the flow of data
between activity nodes. Concurrency and synchronization are modeled using forks and
joins, whereas, branching is modeled using decision and merge nodes. While a decision
node specifies a choice between different possible paths based on the evaluation of a
guard condition (and/or a probability distribution), a fork node indicates the beginning
of multiple parallel control threads. Moreover, a merge node specifies a point from
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where different incoming control paths follow the same path, whereas a join node allows
multiple parallel control threads to synchronize and rejoin. In addition, the call behavior
action consumes its input tokens and invoke its specified behavior. The execution of the
calling artifact is blocked until it receives a reply from the invoked behavior.

Fig. 1. SysML activity diagram constructs.

4.1 Syntax of SysML Activity Diagrams

The UML superstructure [14] specifies basic rules for the execution of the various nodes
by explaining textually how tokens are passed from one node to another. For formaliza-
tion, we present in Table 1 SysML activity diagrams constructs and their representation
as NuAC terms. At the beginning, a first token starts flowing from the initial node and
moves downstream from one node to another with respect to the foregoing set of con-
trol routing rules defined by the control nodes until reaching either an activity final or a
flow final node.

However, activity diagram semantics as specified in the standard stay informal since
it is explained textually. We present in Fig. 2 the Backus-Naur-Form of the new version
of Activity Calculus (NuAC) that helps to formalize SysML activity diagrams. This
version of NuAC calculus optimizes the syntax presented in [24] and allows for multi-
plicity in join, merge, fork, and decision constructs by exploiting their commutativity
and associativity properties. We denote by A [N ] to specify N as a sub term of A
and by |A | to denote a term A without tokens. For the call behavior case of a ↑ A ′,
we denote A [a ↑ A ′] by A ↑a A ′.

During the execution, the structure of the activity diagram is kept unmodified and
the only changes is the tokens locus. The NuAC syntax was inspired by this idea so that
a NuAC term presents a static structure while tokens are the only dynamic elements.
We can distinguish two main syntactic terms: marked and unmarked. A marked NuAC
term corresponds to an activity diagram with tokens. An unmarked NuAC term corre-
sponds to the static structure of the diagram. A marked term is typically used to denote
a reachable state that is characterized by the set of tokens locations in a given term.
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Table 1. Rewriting activity diagram constructs in NuAC.

Activity Constructs NuAC Terms Description

l : N Initial node is activated when a diagram is invoked.

l : Activity final node stops the execution of the diagram.

l : Flow final node terminates the execution in its path.
l : a ↑ A N Action node defines an atomic action and it can

invoke its related behavioral diagram.

l : D((p,g,N ), Decision node selects an execution path
(1− p,¬g,N )) with a convex distribution {p,1− p}

and/or a set of guards {g,¬g}.

l : M(x,y) N , Merge node specifies the continuation,
lx or ly and x is the set of input flows x = {x1,x2}.

Fork node models the concurrency between N1 and N2.
l : F(N1,N2) It begins multiple parallel control threads.

UML 2.0 activity forks model unrestricted parallelism.

l : J(x,y) N , Join node presents the synchronization
and x is the set of input pins x = {x1,x2}.

A ::= ε | l : ιn N

N ::= N
n | l : M(x,y) N | l : J(x,y) N | l : F(N ,N ) | l : a ↑ A

n
N

| l : D((p,g,N ),(1− p,¬g,N )) | l : | l : | l

Fig. 2. Syntax of New Activity Calculus (NuAC).

To support multiple tokens, we augment the “overbar” operator with an integer n

such that N
n

denotes a term marked with n tokens with the convention that N
1
=N

and N
0
=N . Multiple tokens are needed when there are loops that encompass in their

body a fork node. Furthermore, we use a prefix label for each node to reference it and
uniquely use it in the case of a backward flow connection (case of merge or join). Par-
ticularly, labels are useful for connecting multiple incoming flows towards merge and
join nodes. Let L be a collection of labels ranged over by l0, l1, · · · and N be any node
(except initial) in the activity diagram. We write l : N to denote an l-labeled activity
node N . It is important to note that nodes with multi-inputs (e.g. join and merge) are
visited as many times as they have incoming edges. Thus, as a syntactic convention, we
use either the NuAC term (i.e. l : M(x,y)�N for merge and l : J(x,y)�N for join)
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if the current node is visited for the first time or its corresponding label (i.e. lx or ly)
if the same node is encountered later during the traversal process. Also, we denote by
D((g,N1),(¬g,N2)) or D((p,N1),(1 − p,N2)) to express a decision without proba-
bilities or guards, respectively.

4.2 Semantics of SysML Activity Diagrams

The execution of SysML activity diagrams is based on token’s flow. To give a mean-
ing to this execution, we use structural operational semantics to formally describe how
the computation steps of NuAC atomic terms take place. The operational semantics of
NuAC is based on the informally specified tokens-passing rules defined in [14].

INIT-1 l : ι N
l−→ l : ι N

ACT-1 l : a
m

N
l−→ l : a

m−1
N ∀m> 0

ACT-2 l : a
m

N
n l−→ l : a

m+1
N

n−1
∀m ≥ 0,n > 0

BH-1
A = l : ι N ∀n> 0

l : a ↑ A
n

N
l−→ l : a ↑ l : ι N

n−1
N

BH-2
A [l : ] l−→ |A | ∀n> 0

l : a ↑ A
n

N
l−→ l : a ↑ A

n
N

FORK-1 l : F(N1,N2)
m l−→ l : F(N1,N2)

m−1 ∀m> 0
PDEC-1 l : D((p,g,N1),(1− p,¬g,N2))

m l−→p l : D((p,g,N1),(1− p,¬g,N2))
m−1 ∀m> 0

MERG-1 A [l : M(x,y) N
n
, lx

m
, ly

k ] lx−→ A [l : M(x,y) N
n
, lx

m−1
, ly

k] ∀m> 0,k,n ≥ 0
MERG-2 A [l : M(x,y) N

n
, lx

m
, ly]

lx−→ A [l : M(x,y) N
n
, lx

m−1
, ly ] ∀m> 0,n ≥ 0

JOIN-1 A [l : J(x,y) N
n
, lx

m
, ly

k] lx−→ A [l : J(x,y) N
n
, lx

m−1
, ly

k−1] ∀m,k > 0,n ≥ 0
FLOWFINAL A [l : ] l−→ A [l : ]
FINAL A [l : ] l−→ |A |
ACTIVITY

N
α−→p N

A [N ] α−→p A [N ]

Fig. 3. NuAC operational semantic rules.

We define Σ as the set of non-empty actions labeling the transitions (i.e. the alphabet
of NuAC, to be distinguished from action nodes in activity diagrams). An element α ∈ Σ
is the label of the executing active node. Let Σ o be Σ ∪{o} where o denotes the empty
action. Let p be a probability value such that p ∈]0,1[. The general form of a transition
is A

α−→p A ′ and A
α−→ A ′ in the case of a Dirac (non probabilistic) transition. The

probability value specifies the likelihood of a given transition to occur and it is denoted
by P(A ,α,A ′). Figure 3 shows the operational semantic rules of NuAC. The semantics
of SysML activity diagrams expressed using A as a result of the defined semantic rules
can be described in terms of the PA stipulated in Definition 3. In addition, we propose
in Table 2 the NuAC axioms that are proved by using NuAC semantic rules.
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Definition 3 (NuAC-PA). A probabilistic automata of a NuAC term A is the tuple
MA = (s, L, S, Σ o, δ ), where:

– s is an initial state, such that L(s) = {l : ι �N },
– L : S → 2[[L ]] is a labeling function where: [[L ]] : L → {�,⊥},
– S is a finite set of states reachable from s, such that, S = {si:0≤i≤n : L(si) ∈ {N }},
– Σ o is a finite set of actions corresponding to labels in A ,
– δ : S × Σ o → Dist(S) is a partial probabilistic transition function such that, for

each s ∈ S and α ∈ Σ o assigns a probabilistic distribution μ , where:
• For S′ ⊆ S such that S′ = {si:0≤i≤n : s

α−→pi si}, each transition s
α−→pi si satis-

fies one NuAC semantic rule and μ(S′) = ∑n
i=0 pi = ∑n

i=0 μ(si) = 1.

• For each transition s
α−→1 s′′ satisfying a NuAC semantic rule, μ is defined such

that μ(s′′) = 1.

Table 2. Axioms for NuAC.

DA-1 l : D((p,g,N1),(1− p,¬g,N2)) = l : D((1− p,¬g,N2),(p,g,N1))
DA-2 l : D((p,N1),(1− p, l : D((p ,N2),(1− p ,N3)))) = l : D((p+ p − p× p ,

l : D(( p
p+p −p×p ,N1),(

p −p×p
p+p −p×p ,N2))),(1− p− p + p× p ,N3))

DA-3 l : D((p,g,N1),(1− p,¬g, l : D((p ,g ,N2),(1− p ,¬g ,N3))))
= l : D((p,g,N1),(p − p.p ,¬g∧g ,N2),((1− p)(1− p ),¬g∧¬g ,N3))

FA-1 l : F(N1,N )1 =N1
FA-2 l : F(N1,N2) = l : F(N2,N1)
FA-3 l : F(N1, l : F(N2,N3)) = l : F(l : F(N1,N2),N3) = l : F(N1,N2,N3)

JA-1 A [l : J(x,y) N ,N lx,N ly] =A [N N ]
JA-2 l : J(x,y) N = l : J(y,x) N
JA-3 A [l : J(x,x ) N , l : J(y,z) lx ] =A [l : J(x,y,z) N ]

MA-1 A [l : M(x,y) N ,N lx,N ly] =A [N N ]
MA-2 l : M(x,y) N = l : M(y,x) N
MA-3 A [l : M(x,x ) N , l : M(y,z) lx ] =A [l : M(x,y,z) N ]

CA-1 l : a ↑ = a
CA-2 A1 ↑a1 (A2 ↑a2 A3) = (A1 ↑a1 A2) ↑a2 A3 =A1 ↑a1 A2 ↑a2 A3

5 The Approach

Figure 4 depicts an overview of our compositional verification framework. It takes a set
of SysML activity diagrams composed by the call behavior interface and a Probabilistic
Computation Tree Logic (PCTL) [12] property as input. First, we develop an abstrac-
tion approach that restricts the verification of a PCTL property only on the influenced
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diagrams instead of the whole composition. Then, we propose a compositional verifi-
cation approach by interface processes that distributes a PCTL property into local ones
which helps to verify them separately for each diagram. For verification, we encode the
diagrams into the PRISM input language [19]. Finally, we deduce the result of the main
property from the results of the local properties that are verified separately for each
called diagram.

SysML Activity
Diagrams

PRISM

PRISM
Code

PCTL
Properties

Minimized
Diagrams

Local
Properties

Local
Results

Global
Results

Abstracting

Using

Decomposing

Encoding

Input

Input

Output

Infer

Fig. 4. A compositional verification framework.

5.1 The Compositional Verification

Let A be a SysML activity diagram with n call behaviors denoted by A = A0 ↑a0

A1 · · ·Ai−1 ↑ai−1 Ai · · ·An−1 ↑an−1 An. In order to reduce the diagram A , we apply
NuAC axioms and introduce the reduction rule defined in Definition 4 to remove dia-
grams Ai that are not influenced by the property φ to be verified. The obtained diagram
after applying the reduction rule is denoted by ̂A .

Definition 4. Let A be a diagram that contains n call behaviors, APφ is the atomic
propositions of the PCTL property φ , and APA i is the atomic propositions of the behav-

ioral diagram Ai. Reducing A to the diagram ̂A with respect to φ is obtained by
applying the following rule.

∀0 ≤ i ≤ n,APφ ∩APA i = /0

Ai = ε

Below, Proposition 1 shows the satisfiability probability after reduction.

Proposition 1. For a reduced diagram ̂A of A with respect to φ , we have:

[ ̂A |= φ ] ⇒ [A |= φ ].

Proof. The proof of this proposition follows an induction reasoning on the PCTL struc-
ture. First, we take the case of ψ = φ1 Uφ2.
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By definition, for 0 ≤ i ≤ n where APψ ∩ APA i = /0, then: Ai = ε . The result is
̂A =A0 ↑a0 A1 · · ·Ak−1 ↑ak−1 Ak and k ≤ n.

From the PCTL semantics, we have [(A0 ↑a0 A1 · · ·Ak−1 ↑ak−1 Ak) |= ψ] ⇔
∃m, ∀ j < m : π( j) |= φ1 ∧π(m) |= φ2 where π( j) and π(m) are the states i and j respec-
tively in a path π of A . And, by calling Ai in ai using BH-1, the only changes in the
path π are the propositions of Ai till executing BH-2, then: ∃m′ ≥ m, j′ ≥ j, ∀ j′ < m′ :
π( j′) |= φ1 ∧π(m′) |= φ2⇔ A0 ↑a1 . . . ↑ak Ak . . . ↑ai Ai |= ψ .

By calling a new Ai+1 in ai+1 up to n, we will have: ∃m′′ ≥ m′, j′′ ≥ j′, ∀ j′′ < m′′ :
π( j′′) |= φ1 ∧π(m′′) |= φ2 ⇔ A0 ↑a1 . . . ↑an An |= ψ ⇔ A |= φ1Uφ2.

For φ1U≤kφ2 and Xφ cases, we deduce the following.

– ∀0 ≤ i ≤ n,APφ ∩APA i = /0 : [Ai = ε ∧(A0 ↑a0 A1 · · ·An−1 ↑an−1 An) |= φ1U≤kφ2]⇒
[∃k′ ≥ k : A |= φ1U≤k′φ2].

– ∀0 ≤ i ≤ n,APφ ∩ APA i = /0 : [Ai = ε ∧ (A0 ↑a0 A1 · · ·An−1 ↑an−1 An) |= Xφ ] ⇒
[A |= Xφ ]. ��

For a parallel verification, we decompose the PCTL property φ into local ones φi:0≤i≤n

over Ai with respect to the call behavior actions ai:0≤i≤n (interfaces), we introduce the
decomposition operator “�” proposed in Definition 5. The operator “�” is based on sub-
stituting the propositions of Ai to the propositions related to its interface ai−1 which
allows the compositional verification. We denote by φ [y/z] substituting the atomic
proposition “z” in the PCTL property φ by the atomic proposition “y”.

Definition 5 (PCTL Property Decomposition). Let φ be a PCTL property to be ver-
ified on A1 ↑a A2. The decomposition of φ into φ1 and φ2 is denoted by φ ≡ φ1�aφ2

where APA i are the atomic propositions of Ai, then:

1. φ1 = φ([la/APA2 ]), where la is the atomic proposition related to the action a in A1.
2. φ2 = φ([�/APA1 ]).

The first rule is based on the fact that the only transition to reach a state in A2 from
A1 is the transition of the action la (BH-1). The second rule ignores the existence of
A1 while it kept unchanged till the execution of BH-2. To handle multiplicity for the
operator “�”, we have Property 1.

Property 1. The decomposition operator � is associative for A1 ↑a1 A2 ↑a2 A3, i.e. :

φ1�a1(φ2�a2φ3) ≡ (φ1�a1φ2)�a2φ3 ≡ φ1�a1φ2�a2φ3.

For the verification of φ on A1 ↑a1 A2, Theorem 1 deduces the satisfiability of φ from
the satisfiability of local properties φ1 and φ2 obtained by the operator �.

Theorem 1 (Compositional Verification). The decomposition of the PCTL property
φ by the decomposition operator � for A1 ↑a1 A2 is sound, i.e. :

A1 |= φ1 A2 |= φ2 φ = φ1�a1φ2

A1 ↑a1 A2 |= φ
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Proof. The proof of Theorem 1 follows a structural induction on the PCTL structure by
using Definition 5. As an example, we take the until operator “U”. Let φ = ap1 U ap2

where ap1 ∈ APA1 and ap2 ∈ APA2 . By applying Definition 5, we have: φ1 = ap1 U a1

and φ2 =� U ap2. Let A1 |= φ1 ⇔ ∃m1, ∀ j1 < m1 : π1( j1) |= ap1 ∧π1(m1) |= ap1 ∧a1

where π is a path in the NuAC PA of A . For A2 |= φ2 ⇔ ∃m2, ∀ j2 < m2 : π2( j2) |=
�∧ π2(m2) |= ap2. To construct A1 ↑a1 A2, BH-1 is the only transition to connect π1

and π2 which form: π = π1.π ′
2 such that π ′

2(i) = π2(i)∪ π1(m1). Then: ∃ j ≤ m, m =
m1 +m2 : π( j) |= ap1 ∧π(m) |= ap2 ⇔ A1 ↑a1 A2 |= φ . ��
Finally, Proposition 2 generalizes Theorem 1 to support the satisfiability of φ on an
activity diagram A with n call behaviors.

Proposition 2 (CV-Generalization). Let φ be a PCTL property to be verified on A ,
such that: A =A0 ↑a0 · · · ↑an−1 An and φ = φ0�a0 · · ·�an−1φn, then:

A0 |= φ0 · · ·An |= φn

φ = φ0�a0 · · ·�an−1φn

A0 ↑a0 · · · ↑an−1 An |= φ

Proof. We prove Proposition 2 by induction on n.

– The base step where “n = 1” is proved by Theorem 1.
– For the inductive step, first, we assume:

A0 |= φ0 · · ·An |= φn

φ = φ0�a0 · · ·�an−1φn

A0 ↑a0 · · · ↑an−1 An |= φ

Let A ′ =A0 ↑a0 · · · ↑an−1 An and φ ′ = φ0�a0 · · ·�an−1φn. While � and ↑ are associative
operators, then: A = A ′ ↑an An+1 and φ = φ ′�anφn+1. By assuming An |= φn and
applying Theorem 1, then:

A ′ |= φ ′ An+1 |= φn+1

A =A ′ ↑an An+1 φ = φ ′�anφn+1

A |= φ

5.2 The Encoding to PRISM

To encode a SysML activity diagram A into its equivalent PRISM code P , we
rely to the PRISM MDP formalism that refers to the PA2 which coincides with the

NuAC semantics. In PRISM, we define the NuAC transition s
l−→ μ as a proba-

bilistic command. Mainly, the probabilistic command takes the following form: [l]
g → p1 : u1 + ...+ pm : um, which means, for the action “l” if the guard “g” is true,
then, an update “ui” is enabled with a probability “pi”. The guard “g” is a predicate of
a conjunction form consisting to the evaluation of the atomic propositions related to the

2 http://www.prismmodelchecker.org/doc/manual.pdf (The introduction section, line 10).

http://www.prismmodelchecker.org/doc/manual.pdf
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state s. The update ui describes the evaluation of the atomic propositions related to the

next state si of s such that s
l−→pi si (1 ≤ i ≤ m). For the Dirac case, the command is

written simply by: [l] g → u.
The function Γ presented in Listing 1.1 produces the appropriate PRISM command

for each NuAC term. The action label of a command is the label of its related term “l”.
The guard of this command depends on how the term is activated, therefore, a boolean
proposition as a flag is assigned to define this activation. For simplicity, the flag related
to a term labeled by l is denoted by a boolean proposition l that is initialized to false
except for the initial node it is true which conforms to the premise of the NuAC rule
“INIT-1”. Concerning the command updates, they deactivate the propositions of a term
n ∈ A and activate its successors. We define three useful functions: L(n), S(Ai), and
E(Ai) that return the label of a term n, the initial and the final terms of the diagram Ai,
respectively. For example, the call behavior action “l : a ↑ Ai” (line 32) produces two
commands (line 34), and it calls the function Γ ′ (line 34). The first command in line
34 synchronizes with the first command in line 52 produced by the function Γ ′ in the
action l from the diagram A . Similarly, the second command in line 34 synchronizes
with the command of line 56 in the action L(E(Ai)) from the diagram Ai. The first
synchronization represents the NuAC rule BH-1 where the second represents the rule
BH-2. The function Γ ′ is similar to the function Γ except for the initial and the final
nodes as shown in lines 52 and 56, respectively. The generated PRISM fragment of each
diagram Ai is bounded by two PRISM primitives: the module head “Module Ai”, and
the module termination “endmodule”.

1 Γ : A → P
2 Γ (A ) = ∀n ∈ A , L(n = ι) = � , L(n = ι) = ⊥ , Case ( n ) of
3 l : ι �N ⇒ in {[l]l −→ (l′ = ⊥)&(L(N )′ = �);}∪Γ (N ) end
4 l : M(x,y)�N ⇒ in {[lx]lx −→ (l′x = ⊥)&(L(N )′ = �);}
5 ∪{[ly]ly −→ (l′y = ⊥)&(L(N )′ = �);}∪Γ (N ) end
6 l : J(x,y)�N ⇒ in {[l]lx ∧ ly −→ (l′x = ⊥)&(l′y = ⊥)&(L(N )′ = �);}∪Γ (N ) end
7 l : F(N 1,N 2) ⇒ in {[l]l −→ (l′ = ⊥)&(L(N 1)′ = �)&(L(N 2)′ = �);}∪Γ (N 1)∪Γ (N 2) end
8 l : D(A , p,g,N 1,N 2) ⇒
9 Case ( p ) of ]0,1[ ⇒

10 in {[l]l −→ p : (l′ = ⊥)&(l′g = �)+(1− p) : (l′ = ⊥)&(l′¬g = �);}
11 ∪{[l¬g]lg ∧¬g −→ (l′¬g = ⊥)&(L(N 2)′ = �);}
12 ∪{[lg]lg ∧g −→ (l′g = ⊥)&(L(N 1)′ = �);}∪Γ (N 1)∪Γ (N 2)end
13 O t h e r w i s e in {[l]l −→ (l′ = ⊥)&(l′g = �);}∪{[l]l −→ (l′ = ⊥)&(l′¬g = �);}
14 ∪{[lg]lg ∧g −→ (l′g = ⊥)&(L(N 1)′ = �);}
15 ∪{[l¬g]lg ∧¬g −→ (l′¬g = ⊥)&(L(N 2)′ = �);}
16 ∪Γ (N 1)∪Γ (N 2)end
17 l : aB �N , Case (B ) of
18 ↑ A i ⇒
19 in {[l]l → (l′ = ⊥);}
20 ∪{[L(E(A i))]L(E(A i)) → (l′ = ⊥)&(L(N )′ = �);}∪Γ ′(A i); end
21 ε ⇒ in {[l]l −→ (l′ = ⊥)&(N ′ = �);}∪Γ (N ′) end
22 l : � ⇒ in [l]l −→ (l′ = ⊥); end
23 l : �⇒ in [l]l −→ &l∈L (l′ = ⊥);end
24 / / D e f i n i n g t h e f u n c t i o n Γ ′(a ↑ A i)
25 Γ ′ : A → P
26 Γ ′(A i) = ∀m ∈ A i : L(m) = ⊥ , Case ( m ) of
27 l : ι �N ⇒ / / The a c t i o n l and t h e gua rd l a r e from t h e l i n e 4 0 .
28 in {[l]l → (L(S(A i))′ = �);
29 [L(S(A i))]L(S(A i)) → (L(S(A i))′ = ⊥)&(L(N )′ = �);}∪Γ (N ) end
30 l : � ⇒ in [L(E(A i))]L(E(A i)) → (L(E(A i))′ = ⊥); end
31 O t h e r w i s e Γ (A );

Listing 1.1. Generating PRISM commands function.
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6 Implementation and Experimental Results

For the purpose of providing experimental results demonstrating the efficiency and the
validity of our framework, we verify a set of PCTL properties on the online shopping
system [13] and the automated teller machine [13]. To this end, we compare the verifica-
tion results “β”, the verification cost in terms of the model size3 “γ”, and the verification
time “δ” (sec) with and without applying our approach.

6.1 Online Shopping System

The online shopping system aims at providing services for purchasing online items.
Figure 5a illustrates the corresponding SysML activity diagram. It contains four call-
behavior actions4, which are: “Browse Catalogue”, “Make Order”, “Process Order”,
and “Shipment” denoted by a, b, c and d, respectively. For simplicity, we take this
order to denote their called diagrams by A1 to A4, respectively, where A0 denotes the
main diagram. As an example, Fig. 5b expands the diagram related to the call behavior
action “Process Order” and it is denoted by A3. The whole diagram is written by: A =
A0 ↑a A1 ↑b A2 ↑c A3 ↑d A4. Here, we propose to verify the properties Φ1 and Φ2 that
are expressed in PCTL.

(a) Online Shopping System. (b) Process Order.

Fig. 5. SysML activity diagrams.

Property Φ1. “For each order, what is the minimum probability value to make a delivery
after browsing the catalogue?”

3 The model size is the number of transitions (edges).
4 Each call-behavior action is represented by its proper diagram.
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PCTL: Pmin =?[(Browse Catalogue) ⇒ (F(Delivery))].
In this expression, the “Browse Catalogue” proposition is part of A0 and “Delivery”

is a proposition of A3. For comparison, we verify first Φ1 on A . Then, by using Propo-
sition 1, we reduce the verification of Φ1 from A to A0 ↑c A3. And, by using the
decomposition rules of Definition 5, Φ1 is decomposed into two properties: Φ11 and
Φ12 such that: Φ11 � Pmin =?[(Browse Catalogue) ⇒ (F(Process Order))], and
Φ12 � Pmin =?[(True) ⇒ (F(Delivery))]. After the verification of Φ1 on A , Φ11 on
A0 and Φ12 on A3, Table 3 summarizes the verification results and costs for different
values of the number of orders “n”. From the obtained results, we observe that the prob-
ability values are preserved where β1 = β11 ×β12. In addition, the size of the diagrams
is minimized γ11+γ12 < γ1. Consequently, the verification time is reduced significantly
δ11 +δ12 � δ1.

Table 3. The verification cost for properties Φ1 Φ11, and Φ12.

n 3 4 5 6 7 8 9 10

β1 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76

γ1 2,213,880 4,823,290 8,434,700 13,048,110 51,145,160 202,489,260 454,033,360 805,777,460

δ1 10.764 24.364 44.098 72.173 358.558 1818.247 6297.234 17761.636

β11 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

γ11 5,486 7,266 9,046 10,826 12,606 14,386 16,166 17,946

δ11 1.09 3.12 7.511 12.86 27.03 54.38 111.74 163.89

β12 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95

γ12 12 12 12 12 12 12 12 12

δ12 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005

Property Φ2. “For each order, what is the maximum probability value to confirm a ship-
ment?”
PCTL: Pmax =?[G((CreateDelivery) ⇒ F(Con f irmShipment)].
The propositions of this property “CreateDelivery” and “ConfirmShipment” belong to
A2, and A4, respectively. Similarly to the verification of Φ1, we verify Φ2 on A . Then,
we decompose Φ2 to Φ21 and Φ22 with respect to A0 ↑b A2 ↑d A4. The PCTL expres-
sions of the decomposition are: Φ21 � Pmax=?[G((CreateDelivery)⇒ F(Shipment)],
and Φ22 � Pmax =?[G((True) ⇒ F(Con f irmShipment)]. Table 4 shows the verifi-
cation results and costs of Φ2 on A , Φ21 on A0 ↑b A2, and Φ22 on A4 for differ-
ent values of the number of orders “n”. We found: β2 = β21 × β22, γ21 + γ22 < γ2 and
δ21 +δ22 � δ2.

6.2 Automated Teller Machine

The Automated Teller Machine (ATM) is a system that interacts with a potential cus-
tomer via a specific interface and communicates with the bank over an appropriate
communication protocol. Figure 6 represents the ATM SysML activity diagram (A ′)
composed of the main diagram (A ′

0 ) “Fig. 6-(a)” and three called diagrams: (a′) Check
Card (A ′

1 )5, (b′) Authorize (A ′
2 ), and (c′) Transaction (A ′

3 ) that is showed in Fig. 6-(b).

5 The call behavior action “Check Card” is denoted by a′ and calls the diagram A ′
1 .
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Table 4. The verification cost for properties Φ2 Φ21, and Φ22.

n 3 4 5 6 7 8 9 10

β2 0.9377 0.9377 0.9377 0.9377 0.9377 0.9377 0.9377 0.9377

γ2 2,213,880 4,823,290 8,434,700 13,048,110 51,145,160 202,489,260 454033360 805,777,460

δ2 33.394 78.746 168.649 354.211 2280.252 17588.755 34290.635 63097.014

β21 0.9377 0.9377 0.9377 0.9377 0.9377 0.9377 0.9377 0.9377

γ21 9614 12017 14420 16823 19226 21629 24032 26435

δ21 4.775 12.301 32.852 83.337 274.9 450.81 586.43 652.76

β22 1 1 1 1 1 1 1 1

γ22 9 9 9 9 9 9 9 9

δ22 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

Our goal is to measure the satisfiability probability of the PCTL properties Φ3 and Φ4

on A
′
=A

′
0 ↑a′ A

′
1 ↑b′ A

′
2 ↑c′ A

′
3 .

Property Φ3. “What is the minimum probability of authorizing a transaction after insert-
ing a card”. PCTL: Pmin =?[G(InstertCard ⇒ F(DebitAccount))].
After verifying Φ3 on A

′
, we verify Φ31 on A

′
0 and Φ32 on A

′
3 such that :

Φ31 � Pmin =?[G(InstertCard) ⇒ (F(Transaction))] and : Φ32 � Pmin =
?[G((True) ⇒ F(DebitAccount))]. As a result we found the following: β3 = 0.8421,
γ3 = 606470, δ3 = 3.12, β31 = 0.8421, γ31 = 3706, and δ31 = 0.64, β32 = 1, γ32 = 15,
and δ32 = 0.007. From the obtained results, we found that the satisfiability probability
is maintained β3 = β31 × β32, with a considerable verification costs γ31 + γ32 < γ3 and
δ31 +δ32 � δ3.

Property Φ4. “What is the maximum probability of inserting a card when it is not valid.”
PCTL: Pmax =?[(CardNotValid) ⇒ (F(InsertCard))].

(a) ATM. (b) Transaction.

Fig. 6. ATM SysML activity diagram.
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Similarly to the verification of Φ3, instead of verifying Φ4 on A
′

we verify Φ41 on A
′

1

and Φ42 on A
′

0 such that :
Φ41 � Pmax =?[(CardNotValid) ⇒ (F(EndCheckCard))], and
Φ42 � Pmax =?[(CheckCard) ⇒ (F(InsertCard))].

After verification, we found the following: β4 = 0.05, γ4 = 606470, δ4 = 11.458,
β41 = 1, γ41 = 11, and δ41 = 0.004, β42 = 0.05, γ42 = 7211, and δ42 = 1.584. From
these results, we have: β4 = β41 ×β42, γ41 + γ42 < γ4 and δ41 +δ42 � δ4.

7 Conclusion

In this paper, we presented a compositional verification framework to improve the effi-
ciency of probabilistic model-checking. More specifically, our target was verifying sys-
tems modeled using SysML activity diagrams composed by the call behavior inter-
faces. We improved their verification cost by introducing a probabilistic compositional
verification approach based on decomposing a global PCTL property into local ones
with respect to interfaces between diagrams. Moreover, the presented framework can
ignore the called diagrams that are irrelevant to a given PCTL property. For verifi-
cation, we proposed an algorithm to encode the composed diagrams into PRISM input
language. Furthermore, we proposed a semantic for SysML activity diagrams that helps
on proofs and to encode easily the diagrams in PRISM. We proved the soundness of the
proposed framework by showing the satisfiability preservation of PCTL properties. In
addition, we demonstrated the effectiveness of our framework by verifying real systems
that are not symmetric, which mean, we can not benefit from the symmetry reduction
built within the PRISM model checker. In future, we would like to extend our work by
investigating several directions. First, we plan to extend our framework to handle more
compositional verification techniques like assume-guaranty and integrate them within
the PRISM implementation. Then, we explore more system features such as time and
object. Finally, we intend to apply our framework on a large systems’ applications.
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Abstract. In this paper, we study deterministic regular expressions
with interleaving (IDREs). Regular expressions extended with interleav-
ing are good at describing sequential and parallel data patterns. The
interleaving makes these expressions exponentially more succinct than
standard regular expressions. And when they obey the determinism
constraint, they are more efficient for matching and parsing processes
than general ones. However, the interleaving also makes the structure of
expressions more complex, and the semantic definition of determinism is
hard to follow, which prevent users from writing and developing IDREs.
We address this problem by proposing a determinism checking method
and a syntactic description for IDREs. Our checking method can locate
the source of nondeterminism more efficiently and accurately than the
existing method when the nondeterminism is caused by unary opera-
tors. We prove that the grammars of IDREs are context-free and suggest
effective optimization rules to simplify the grammars.

Keywords: Context-free grammars · Determinism checking ·
Deterministic regular expressions · Interleaving · Syntax

1 Introduction

Regular expressions take an important role in computer science. They have been
widely used in many applications, including programming languages [37], data
query and process [8,10,11,27], XML schema languages [5,15,16], etc. Modern
applications have various restrictions or extensions on regular expressions. One
of the restrictions is the usage of deterministic regular expressions, which repre-
sent a subclass of regular languages. They are good at efficient matching of an
input word against a regular expression. These expressions have been applied
to the document markup language SGML in 1980s [24]. Nowadays, determin-
istic expressions are still important in XML schema languages, e.g., Document
Type Definitions (DTD) [5] and XML Schema Definitions (XSD) [16], which are
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recommended by W3C (World Wide Web Consortium), and require the con-
tent models to be deterministic. Deterministic expressions are also used in other
applications (e.g., [23,29]).

Roughly speaking, determinism means that when matching a word against
an expression, a symbol in the word can be matched to only one position in
the expression without looking ahead. For instance, an expression E = (a + a ·
b) is not deterministic, where + denotes union (or disjunction) and · denotes
concatenation, since it accepts the language {a, ab}, and then when a symbol
a is input, it is impossible to decide which a in E to match without knowing
whether a symbol b will follow or not. In other word, it needs to look ahead
one position for making decision. Deterministic regular expressions show more
efficient matching in O(m + n log log m) time for an input word of length n and
a deterministic expression of length m [20], while matching requires non-linear
time for general regular expressions. Certainly, deterministic expressions also
have other advantages, e.g., they behave better than general ones on several
decision problems [30,31]. Deterministic regular expressions have been studied
in the literature, also under the name of one-unambiguous regular expressions
[7,9,13,20,25,26,33].

The interleaving operator is an extension of standard regular expressions
and is also called shuffle [6,19,36]. Regular expressions with interleaving are
double-exponentially more succinct than standard regular expressions [18]. For
instance, given an expression E = a&b&c (& represents interleaving), the lan-
guage accepted by E is {abc, acb, bac, bca, cab, cba}. We can define a standard
expression E′ = (abc + acb + bac + bca + cab + cba) accepting the same lan-
guage as E, while E′ is tedious and nondeterministic but E is succinct and
deterministic. In practice, expressions with interleaving are used in a variety
of applications, e.g., XML schema language Relax NG [15], RDF schema lan-
guage ShEx [35], path queries [2], complex event semantics [28], concurrency and
distributed systems [17,21], etc.

In this paper, we study deterministic regular expressions with interleaving
(IDREs). The addition of interleaving makes the determinism checking more
complex than that of the standard ones. For instance, a standard regular expres-
sion is deterministic if its corresponding Glushkov automaton is deterministic,
and the Glushkov automaton is quadratic in the size of the expression in opti-
mal worst case [7], but for an expression with interleaving, the number of states
of the Glushkov automaton are exponential [6]. Besides, determinism is only
defined in an arcane and semantic manner [8]. These facts make the studies on
IDREs harder than the standard ones. And since the lack of theoretical stud-
ies on IDREs, many applications are limited. For instance, in XSD and ShEx,
they only support two subclasses of IDREs. Hence, we focus on the determin-
ism checking and syntactic description problems of IDREs. Such descriptions
make it possible to automatically construct IDREs used in applications, such as
benchmarking a validator for Relax NG, or incrementally constructing IDREs.
Meanwhile, we hope our results can help users to better understand, use and
develop these kinds of expressions.

Lots of work [7,13,25,26] focused on checking determinism of standard reg-
ular expressions and regular expressions with counting. Among these methods,
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Groz et al. [20] gave the most efficient one, which supports deciding these two
kinds of expressions in O(|E|) time by decomposing the syntax tree of the expres-
sion E. But for regular expressions with interleaving, only the work in [33] gave
an O(|Σ||E|) time algorithm to decide determinism that works on marked expres-
sions with interleaving. Brüggemann-Klein [8] did a related study but checked
determinism of a restricted case of interleaving.

There are several related works on describing and constructing deterministic
expressions for users. Some works use Glushkov automata to describe deter-
ministic expressions, and try to construct deterministic expressions from non-
deterministic ones when possible [1,3,9] with the help of the automata. In [9],
an exponential time algorithm was provided to decide whether a regular lan-
guage, given by an arbitrary regular expression, is deterministic. An algorithm
was further given there to construct an equivalent deterministic expression for a
nondeterministic expression when possible, while the resulting expression could
be double-exponentially large. Bex et al. [3] and Ahonen [1] constructed deter-
ministic ones for nondeterministic expressions which may accept approximated
languages. Some works try to learn deterministic expressions from a set of exam-
ples. Many restricted subclasses of standard deterministic expressions or IDREs
(e.g., SORE and CHARE [4], DME [14], SIRE [32]) were defined, where each
symbol occurs at most once. They also proposed corresponding algorithms to
learn these subclasses of deterministic expressions.

The above works try to give alternative ways of constructing deterministic
expressions, but they are only limited on approximate or restricted deterministic
expressions. Chen et al. [12] proposed grammars of standard deterministic regu-
lar expressions and designed a generator, which inspired our work. We consider
the addition of the interleaving and develop grammars to describe the whole
class of IDREs. Then we can generate IDREs randomly based on the grammars.

The main contributions of this paper are listed as follows:

– We find a characterization of unmarked deterministic regular expressions with
interleaving. Based on this, we propose an O(|Σ||E|) time algorithm to check
determinism of IDREs. Our algorithm needs no marking pre-processing and
can locate the source of nondeterminism more efficiently and accurately than
the method in [33], when the nondeterminism is caused by unary operators.

– We translate the above characterization into a derivation system, which shows
how an IDRE can be constructed incrementally. Then we propose context-
free grammars to describe IDREs using a 5-tuple nonterminal representation.
Moreover, we suggest optimization rules to simplify the grammars effectively.

– We apply the method [12] to generate deterministic regular expressions with
interleaving from the grammars.

The rest of this paper is organized as follows. Section 2 contains basic defini-
tions. In Sect. 3 we study the characterization of IDREs and give an algorithm
to check determinism based unmarked expressions. In Sect. 4 we develop the
context-free grammars for IDREs and optimization rules. Experimental results
are shown in Sect. 5. Section 6 concludes.
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2 Preliminaries

2.1 Regular Expression with Interleaving

Let Σ be an alphabet, namely a finite non-empty set of symbols. The set of all
finite words over Σ is denoted as Σ∗. The empty word is denoted as ε.

The interleaving of two words in Σ∗ is a finite set of words defined inductively
as follows: for u, v ∈ Σ∗ and a, b ∈ Σ, u&ε = ε&u = {u}; au&bv = {aw | w ∈
u&bv} ∪ {bw | w ∈ au&v}. Naturally, the interleaving of two languages L1 and
L2 is: L1&L2 = {w ∈ u&v | u ∈ L1, v ∈ L2} [36]. For instance, L(a&(bc)) =
{abc, bac, bca}.

Regular expressions with interleaving over Σ are defined by the following
grammar:

τ → ∅ | ε | a | (τ · τ) | (τ + τ) | (τ&τ) | (τ∗) (a ∈ Σ)

where ∅ represents the empty set, · represents concatenation, + union (or dis-
junction), & interleaving and ∗ the Kleene star. The Kleene star has the highest
precedence, followed by the concatenation, and the union and the interleaving
have the lowest precedence. In practice, we usually omit parentheses as well when
there is no ambiguity. We also use E? as an abbreviation of E + ε or ε + E. For
an expression E, the language specified by E is denoted by L(E). The languages
of E1&E2 is defined as L(E1&E2) = L(E1)&L(E2); other cases of the languages
are standard and readers can refer to [22] for the definitions. The size of an
expression E, denoted by |E|, is the number of symbols and operators occurring
in E. Without additional explanations, E refers to a regular expression with
interleaving.

Expressions can be reduced by rules: E + ∅ = ∅ + E = E, E · ∅ = ∅ · E = ∅,
E&∅ = ∅&E = ∅, ∅∗ = ε, E · ε = ε · E = E,E&ε = ε&E = E, ε∗ = ε. In the
following, we only consider reduced regular expressions. Besides, for a reduced
expression, it either does not contain ∅ or is ∅. So we will not consider the
expression ∅ in the following.

2.2 Definitions for Analyzing Determinism

For an expression E, we can mark symbols with subscripts such that in the
marked expression each marked symbol occurs only once. The marking of E is
denoted by E. The same notation will also be used for dropping subscripts from
the marked form, namely E = E. The set of symbols that occur in E is denoted
by sym(E). A concise definition of determinism of an expression E can be given
with the help of its marked form.

Definition 1 ([8]). Let E be a marking of the expression E, E is determin-
istic iff for all words uxv ∈ L(E), uyw ∈ L(E) where x, y ∈ sym(E) and
u, v, w ∈ sym(E)∗, if x = y then x = y. An expression E is deterministic
iff E is deterministic.
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Example 1. The expression E1 = a∗ · a is not deterministic since one of its
marked form E1 = a∗

1 · a2, is not deterministic. E1 is nondeterministic, since for
two words a1a2, a2 ∈ L(E1) there is a1 = a2 = a but a1 �= a2. For an expression
E2 = a · a∗ with its marked form E2 = a1 · a∗

2, E2 and E2 are deterministic.

These definitions are needed for analyzing the determinism of an expression.

first(E) = {a | au ∈ L(E), a ∈ sym(E), u ∈ sym(E)∗}
followlast(E) = {a | uav ∈ L(E), u ∈ L(E), u �= ε, a ∈ sym(E), v ∈ sym(E)∗}

The computing rules of the first set can be found in [7,33]. For the followlast ,
we give computing rules of the marked expressions.

Proposition 1 ([33]). For a marked expression E, computing rules of followlast
are as follows: (fl represents followlast)

E = ε or x : fl(E) = ∅
E = F + G : fl(E) = fl(F ) ∪ fl(G)

E = F · G : fl(E) =

{
fl(G) if ε /∈ L(G)

fl(F ) ∪ fl(G) ∪ first(G) if ε ∈ L(G)

E = F&G : fl(E) =

⎧⎪⎪⎨
⎪⎪⎩

fl(F ) ∪ fl(G) if ε /∈ L(F ), ε /∈ L(G)

fl(F ) ∪ fl(G) ∪ first(G) if ε /∈ L(F ), ε ∈ L(G)

fl(F ) ∪ fl(G) ∪ first(F ) if ε ∈ L(F ), ε /∈ L(G)

fl(F ) ∪ fl(G) ∪ first(F ) ∪ first(G) if ε ∈ L(F ), ε ∈ L(G)

E = F? : fl(E) = fl(F )

E = F
∗

: fl(E) = fl(F ) ∪ first(F )

We define a Boolean function λ to check whether an expression E can accept
the empty word. λ(E) = true if ε ∈ L(E), otherwise λ(E) = false.

λ(ε) = true λ(a) = false (a ∈ Σ) λ(E1 + E2) = λ(E1) ∨ λ(E2)
λ(E∗

1 ) = true λ(E1 · E2) = λ(E1) ∧ λ(E2) λ(E1&E2) = λ(E1) ∧ λ(E2)

3 Checking Determinism Based on Unmarked
Expressions

As we can see in Definition 1, determinism is defined in an arcane and seman-
tic manner based on marked expressions. Besides, the work in [33] derives from
Definition 1 and also works on marked IDREs. When we directly use the char-
acterization in [33] to describe IDREs, suppose that the alphabet is {a}, after
the marking process, it includes {a1, a2, . . .}. We are not sure the upper limit of
subscript numbers, so the number of the alphabet is infinite. Thus the work on
marked expressions cannot be applied here. In this section, we study a charac-
terization of IDREs based on unmarked forms, and then to check determinism
based on unmarked expressions.
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3.1 A Characterization of Unmarked IDREs

In [33], they have proposed a characterization of marked IDREs, which lists
all possible conditions causing nondeterminism. We rewrite the characterization
based on the structure of an expression E, which lists conditions making sure E
deterministic, as follows.

Lemma 1. Let E be a marked expression.
(1) E = ε or x (x ∈ Σ) : E is deterministic.
(2) E = E1 +E2: E is deterministic iff E1, E2 are deterministic and first(E1)∩
first(E2) = ∅.
(3) E = E1 · E2: E is deterministic iff E1, E2 are deterministic, and

– if λ(E1), then first(E1) ∩ first(E2) = ∅ and followlast(E1) ∩ first(E2) = ∅;
– if ¬λ(E1), then followlast(E1) ∩ first(E2) = ∅.

(4) E = E1&E2: E is deterministic iff E1, E2 are deterministic, and sym(E1)∩
sym(E2) = ∅.
(5) E = E1?: E is deterministic iff E1 is deterministic.
(6) E = E

∗
1: E is deterministic iff E1 is deterministic, and for all x ∈

followlast(E1), for all y ∈ first(E1), if x = y, then x = y.

To drop the marking operators, we refer to properties in [13], which has been
proven for regular expressions with counting.

Lemma 2 ([13]). For an expression E, there are:

a. first(E) = first(E).
b. When E is deterministic, followlast(E) = followlast(E).

We can apply Lemma 2 to regular expressions with interleaving, since for the
case E1&E2, computing rules of first and followlast we defined also follow their
definitions. Hence, the proof is similar in [13]. Meanwhile, intuitively sym(E) =
sym(E). Then we can drop the marking operators for claims (1)–(5) in Lemma 1.
Next, we concentrate on the claim (6). To drop its marking operators, we define
the function W.

Definition 2. The Boolean function W(E) is defined as:

W(ε) = W(a) = true

W(E1 + E2) = W(E1) ∧ W(E2) ∧ (
followlast(E1) ∩ first(E2) = ∅)

∧ (
followlast(E2) ∩ first(E1) = ∅)

W(E1 · E2) =
(
followlast(E2) ∩ first(E1) = ∅) ∧

((¬λ(E1) ∧ ¬λ(E2)
)

∨ (
λ(E1) ∧ ¬λ(E2) ∧ W(E2)

) ∨ (
λ(E1) ∧ λ(E2) ∧ W(E1) ∧ W(E2)

)

∨
(
¬λ(E1) ∧ λ(E2) ∧ W(E1) ∧ (

first(E1) ∩ first(E2) = ∅)))

W(E1&E2) = W(E1) ∧ W(E2)

W(E1?) = W(E∗
1 ) = W(E1)
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The importance of the function W(E) can be seen from Lemma 3.

Lemma 3. For an expression E, if E is deterministic, then two statements are
equivalent:

(1) for all x ∈ followlast(E), for all y ∈ first(E), if x = y, then x = y.
(2) W(E) = true.

Proof. This lemma has been proved for regular expressions with counting [13].
Here, we only prove the case E = E1&E2. Since E is deterministic, E1 and E2

are deterministic by Definition 1 and Lemma 1.
(1) ⇒ (2) : Based on Definition 2, first(E) = first(E1) ∪ first(E2),

followlast(E) ⊇ followlast(E1) ∪ followlast(E2). Since (1) holds for E, we get
that ∀x ∈ followlast(E1) and ∀y ∈ first(E1), or ∀x ∈ followlast(E2) and
∀y ∈ first(E2), if x = y, then x = y. By the inductive hypothesis, we get
W(E1) = true and W(E2) = true. Hence, W(E) = W(E1) ∧ W(E2) = true.

(2) ⇒ (1) : Since W(E) = true, W(E1) = W(E2) = true. Let x ∈
followlast(E), y ∈ first(E), and x = y. When ε /∈ L(E1) and ε /∈ L(E2),
first(E) = first(E1) ∪ first(E2), followlast(E) = followlast(E1) ∪ followlast(E2).
Suppose that x ∈ followlast(E1) (resp. x ∈ followlast(E2)), y ∈ first(E1)
(resp. x ∈ first(E2)). Since W(E1) = true (resp. W(E2) = true) and E1

(resp. E2) is deterministic, there is x = y by the inductive hypothesis. Sup-
pose that x ∈ followlast(E1) (resp. x ∈ followlast(E2)), y ∈ first(E2) (resp. x ∈
first(E1)). Since E is deterministic, sym(E1)∩sym(E2) = ∅ by Lemmas 1 and 2.
Thus there is x = y. We can prove the other cases in a similar way.

Corollary 1. For an expression E = E∗
1 , E is deterministic iff E1 is determin-

istic and W(E1) = true.

Proof. It follows from Lemmas 1 and 3.

Then we obtain a characterization of unmarked IDREs.

Theorem 1. Let E be an expression.
(1) E = ε or a : E is deterministic.
(2) E = E1 +E2: E is deterministic iff E1, E2 are deterministic and first(E1)∩
first(E2) = ∅.
(3) E = E1 · E2: E is deterministic iff E1, E2 are deterministic, and

– if λ(E1), first(E1) ∩ first(E2) = ∅ and followlast(E1) ∩ first(E2) = ∅;
– if ¬λ(E1), followlast(E1) ∩ first(E2) = ∅.

(4) E = E1&E2: E is deterministic iff E1, E2 are deterministic, and sym(E1)∩
sym(E2) = ∅.
(5) E = E1?: E is deterministic iff E1 is deterministic.
(6) E = E∗

1 : E is deterministic iff E1 is deterministic, and W(E1) = true.

Proof. Based on Lemma 2, we can drop the marking operators for claims (1)-(5)
in Lemma 1. We replace the claim (6) with Corollary 1.
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3.2 The Checking Algorithm Determ unmarked

We complete an algorithm to decide determinism based on Theorem 1. By obser-
vation, not every subexpression should call the function W. For an expression
E, only a subexpression F is inside an iterative subexpression of E, then we
run W(F ). Referring to [13], this represents that F has the continuing property,
denoted as ct(F ) = true.

Definition 3 ([13]). For a subexpression F of E, F is continuing (i.e., ct(F ) =
true), if for any word w1, w2 ∈ L(F ), there are u, v ∈ (sym(E) ∪ �)∗ such that
u�w1��w2�v ∈ L(EF�

), where EF�
is a new version of E by replacing F with �F �

(� /∈ sym(E)).

The function markRable is designed to compute the continuing property,
shown in Fig. 1, where parameter E is the input expression, and the boolean
parameter N is the value assigned to the current expression. The computation
of markRable is actually a top-down traversal on the syntax tree of E. In this
downward propagation, the value for N is inherited from upper level subexpres-
sions to lower level subexpressions. Only in two cases the value will change, one
is that when E = E∗

1 , ct(E1) = true; the other is that when E = E1 · E2 and
ct(E) = true, ct(E1) = λ(E2) and ct(E2) = λ(E1).

Hence, we can decompose the function W into each case in Theorem 1, and
only when the function ct is true, the case runs conditions in W. We use the
following function D to check determinism, which is equivalent to Theorem 1
but is easier for implementation.

Definition 4. The Boolean function D(E) is defined as follows:

D(ε) = D(a) = true

D(E1 + E2) = D(E1) ∧ D(E2) ∧ (
first(E1) ∩ first(E2) = ∅) ∧

(
¬ct(E1 + E2)∨

((
followlast(E1) ∩ first(E2) = ∅) ∧ (

followlast(E2) ∩ first(E1) = ∅)))

D(E1 · E2) = D(E1) ∧ D(E2) ∧ (
followlast(E1) ∩ first(E2) = ∅) ∧

(
¬λ(E1)∨

(
first(E1) ∩ first(E2) = ∅)) ∧

(
¬ct(E1 · E2) ∨

((
followlast(E2) ∩ first(E1)

= ∅) ∧ (
λ(E1) ∨ ¬λ(E2) ∨ first(E1) ∩ first(E2) = ∅)))

D(E1&E2) = D(E1) ∧ D(E2) ∧ (
sym(E1) ∩ sym(E2) = ∅)

D(E1?) = D(E∗
1 ) = D(E1)

Theorem 2. For an expression E, E is deterministic iff D(E) = true.

Proof. It follows from Theorem 1 and the definitions of W and ct.

The process for Theorems 2 is formalized in Algorithm 1. In the pseudocode,
the computations for first , followlast and sym sets are omitted, which can easily
be done by their computing rules.
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Function markRable(E: Expression, N : Boolean):
case E = a or ε: ct(E) = false;
case E = E1 + E2 or E = E1&E2:

ct(E) = N ;
markRable(E1, N); markRable(E2, N);

case E = E1 · E2:
ct(E) = N ;
if ct(E), then {markRable(E1, λ(E2)); markRable(E2, λ(E1),)}
else { markRable(E1, false); markRable(E2, false);}

case E = E1? : ct(E) = N ; markRable(E1, N);
case E = E∗

1 : ct(E) = N ; markRable(E1, true);

Fig. 1. A procedure to recognize the continuing property by markRable(E, false)

Algorithm 1: Determ unmarked (E: Expression)
input : a regular expression with interleaving E
output: true if the expression E is deterministic or false otherwise

1 if E = a or E = ε then return true
2 if E = E1 + E2 then
3 if Determ unmarked(E1) and Determ unmarked(E2) then
4 if first(E1) ∩ first(E2) �= ∅ then
5 return false

6 if ct(E) and
(
followlast(E1) ∩ first(E2) �= ∅ or

followlast(E2) ∩ first(E1) �= ∅)
then return false

7 else return true

8 else return false

9 if E = E1 · E2 then
10 if Determ unmarked(E1) and Determ unmarked(E2) then
11 if followlast(E1) ∩ first(E2) �= ∅ or

(
λ(E1) and first(E1) ∩ first(E2) �= ∅)

then return false

12 if ct(E) and
(
followlast(E2) ∩ first(E1) �= ∅ or(

first(E1) ∩ first(E2) �= ∅ and ¬λ(E1)and λ(E2)
))

then return false

13 else return true

14 else return false

15 if E = E1&E2 then
16 if Determ unmarked(E1) and Determ unmarked(E2) then
17 return sym(E1) ∩ sym(E2) = ∅
18 else return false

19 if E = E1? or E = E∗
1 then return Determ unmarked(E1)

Theorem 3. Determ unmarked(E) runs in O(|Σ||E|) time.
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Proof. First we construct the syntax tree for the expression E, and call the
function λ(E) and markRable(E, false), which costs linear time. The checking
process can be done only in one bottom-up and incremental traversal on the
tree, at the same time, first , followlast and sym sets are computed in O(|Σ||E|)
time. Since the maximum number of symbols in first , sym or followlast set is
|Σ|, emptiness test of first(E1) ∩ first(E2), sym(E1) ∩ sym(E2) or first(E1) ∩
followlast(E2) for subexpressions E1 and E2 can be computed in O(|Σ|) time
by means of a hash table.

Since there are at most |E| nodes in the syntax tree, and the opera-
tions on each node can be completed in O(|Σ|) time, the time complexity of
Determ unmarked(E) is O(|Σ||E|). When the alphabet is fixed, the algorithm
runs in linear time.

3.3 The Local Nondeterminism-Locating Feature

For some kind of nondeterministic expressions, Determ unmarked(E) can locate
the source of nondeterminism more efficiently than the method in [33] (equal
to Lemma 1). We call it the local nondeterminism-locating feature, which can
locally locate a nondeterministic subexpression without checking the whole
expression, and thus is more advantageous for diagnosing purpose. Take E =
((a · a?&b) · (c + d)?)∗ as an example, we run Determ unmarked(E) and show
the syntax tree of E in Fig. 2, where some computing results are also shown. For
comparison, we also show the computation results by Lemma 1.

Fig. 2. The syntax tree of ((a · a?&b) · (c + d)?)∗

As we can see, checking by
either Determ unmarked(E)
or Lemma 1, we get that
E is not deterministic. For
Determ unmarked(E), the
sequence of nodes in the
checking process is : 1 → 2 →
3 → 4. At the node 4, it meets
the 12th line in Algorithm 1
and returns false. However, by
Lemma 1, the checking pro-
cess will return false in node
12 by checking nodes 1 →
2 → · · · → 11 → 12 step by
step. Determ unmarked(E)
can locate on the subexpres-
sion a · a? causing nondeter-
minism, but for Lemma 1, it
returns ((a ·a?&b) · (c+ d)?)∗.

This example shows that for a nondeterministic expression E, when the
source of nondeterminism is one of its subexpression E1 and E1 has the con-
tinuing property, our algorithm has the local nondeterminism-locating feature.
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4 Syntactic Description for IDREs

4.1 The Derivation System

In this section, we give the grammars to define IDREs. We translate the char-
acterization in Theorem 1 into a derivation system T for IDREs. The following
notations are needed to define T . Let � r mean that the regular expression r
satisfies determinism. A derivation rule is of the form �r1...�rn c1...cm

�r , which
means that if � r1 . . . � rn satisfy determinism and conditions c1 . . . cm hold,
then r will also satisfy determinism. We say r is derivable iff there is derivation
tree such that r is the root of the tree [34].

The system T consists of the following derivation rules, where each rule
corresponds one claim in Theorem 1.

Base: �ε �a a∈Σ Union:
�r �s first(r)∩first(s)=∅

�r+s

Inter:
�r �s sym(r)∩sym(s)=∅

�r&s

Concat:
�r �s followlast(r)∩first(s)=∅ ¬λ(r)∨first(r)∩first(s)=∅

�r·s
Opt: �r

�r? Star:
�r W(r)

�r∗

Theorem 4. A regular expression r is deterministic iff r is derivable from T .

Proof. It is proved based on Theorem 1 and derivation rules of T .

4.2 The Context-Free Grammars for IDREs

As we can see from T , to construct an IDRE, we must guarantee that all of its
subexpressions are deterministic and they meet conditions on first , followlast ,
sym sets, and the functions λ and W. Take the Union case r+s as an example,
we can give any deterministic expression r′ with the satisfied condition that
first(r′) ∩ first(s) = ∅ to replace r, and r′ + s is still deterministic.

Definition 5. A context-free grammar is a 4-tuple G = (N,T, P, S0) with N and
T disjoint sets of nonterminals and terminals respectively, P a set of productions
of the form A → α where A ∈ N , α ∈ (N ∪ T )∗, and S0 ∈ N the start symbol.

In a grammar G, a nonterminal N0 in N is useful if there is a terminal word
w such that w is derived from N0 denoted by N0

∗⇒ w. If all the nonterminals of
a production are useful, then the production is valid. The language defined by
G, denoted as L(G), is the set of strings L(G) = {w ∈ T ∗ | S0

∗⇒ w} and w is
called a sentence of G if w ∈ L(G).

We design the context-free grammars Gidre = (N,T, P, S0) to describe
IDREs. Let Σ = {a1, ..., an}, then T = {+, ·,&, ?, ∗, (, ), ∅, ε} ∪ Σ. N = R ∪ R,
where R is a finite set of nonterminal symbols. Each nonterminal in R is of the
form RF,L,S,α,β , where F,L, S ⊆ Σ∗, α, β ∈ {0, 1} (1 represents true and 0 repre-
sents false). RF,L,S,α,β is intended to describe a set of expressions in IDREs and
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each expression r satisfies F = first(r), L = followlast(r), S = sym(r), α = λ(r)
and β = W(r). We assume that all the nonterminal symbols are start symbols.

To construct P , we refer to derivation rules in T since each kind of rules
corresponds to a class of productions. Meanwhile we add the computations of
first , followlast , sym, λ and W in each class of productions. The productions P
are shown as follows, where specific conditions are listed in Table 1.

Base : R{ai},∅,{ai},0,1 → ai, i ∈ {1, · · · , n} R → ∅ | ε

Union : RF,L,S,α,β →
⋃

con1

(RF1,L1,S1,α1,β1 + RF2,L2,S2,α2,β2 )

Concat : RF,L,S,α,β →
⋃

con2

(RF1,L1,S1,α1,β1 · RF2,L2,S2,α2,β2 )

Inter : RF,L,S,α,β →
⋃

con3

(RF1,L1,S1,α1,β1 & RF2,L2,S2,α2,β2 )

Opt : RF,L,S,1,β →
⋃

α1∈{0,1}
RF,L,S,α1,β?

Star : RF,L,S,1,1 →
⋃

L=F1∪L1,α1∈{0,1}
RF1,L1,S,α1,1∗

Table 1. The specific conditions for the productions in P

Condition Details

con1
F = F1 ∪ F2, L = L1 ∪ L2, S = S1 ∪ S2, α = α1 ∨ α2,

β = (β1 ∧ β2 ∧ (F1 ∩ L2 = ∅) ∧ (L1 ∩ F2 = ∅)), F1 ∩ F2 = ∅

con2

(α1 ∧ (F = F1 ∪ F2 ∧ F1 ∩ F2 = ∅)) ∨ (¬α1 ∧ (F = F1)),

(α2 ∧ (L = L1 ∪ L2 ∪ F2)) ∨ (¬α2 ∧ (L = L2)), S = S1 ∪ S2, α = α1 ∧ α2,

β = (F1 ∩ L2 = ∅) ∧ ((¬α1 ∧ ¬α2) ∨ (α1 ∧ ¬α2 ∧ β2) ∨ (α1 ∧ α2 ∧ β1 ∧ β2)

∨(¬α1 ∧ α2 ∧ β1 ∧ F1 ∩ F2 = ∅)), L1 ∩ F2 = ∅

con3

F = F1 ∪ F2, S = S1 ∪ S2, α = α1 ∧ α2, β = β1 ∧ β2, S1 ∩ S2 = ∅
(¬α1 ∧ ¬α2 ∧ (L = L1 ∪ L2)) ∨ (¬α1 ∧ α2 ∧ (L = L1 ∪ L2 ∪ F2))

∨(α1 ∧ ¬α2 ∧ (L = L1 ∪ L2 ∪ F1)) ∨ (α1 ∧ α2 ∧ (L = L1 ∪ L2 ∪ F1 ∪ F2))

We use the union (
⋃

) to denote a set of rules with the same left hand
nonterminal. For a fixed alphabet, T , N and P are finite. Clearly, Gidre are
context-free grammars. Compared with the grammars of standard deterministic
expressions [12], we extend the set of parameters of nonterminals with S and
add the Inter class of productions, to deal with interleaving. To be mentioned,
Gidre only supports generating IDREs of reduced forms, excluding expressions
like ε · r, r · ∅, ε&r, etc.

Theorem 5. IDREs can be defined by the context-free grammars Gidre.

Proof. (⇐) We will prove that sentences generated by Gidre are IDREs. That
is, in Gidre, if there exists a nonterminal RF,L,S,α,β ∗⇒ r, then r is deterministic
satisfying first(r) = F, followlast(r) = L, sym(r) = S, λ(r) = α,W(r) = β. We
prove it by induction on the length of the derivation RF,L,S,α,β ∗⇒ r.
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Base case: If the derivation is only one-step, according to Gidre, then r = a
with a ∈ Σ. r is deterministic.

Inductive step: Suppose that the derivation has k+1 steps (k ≥ 1) and deriva-
tions with no more k-steps satisfy the claim, i.e., there exists a corresponding
nonterminal in Gidre generating a deterministic expression. If the (k + 1)-steps
derivation follows the Inter class of productions, i.e., RF,L,S,α,β ⇒ R1&R2

∗⇒ r.
Since the derivation of R1 or R2 takes no more than k steps, there are R1

∗⇒ r1
and R2

∗⇒ r2 with deterministic expressions r1, r2. Then r = r1&r2. Accord-
ing to computing rules of the Inter, r, r1 and r2 should meet all conditions in
con3. The important one condition is sym(r1) ∩ sym(r2) = ∅. Because r1, r2
are deterministic and sym(r1) ∩ sym(r2) = ∅, we get r is deterministic by
Theorem 1. Form other conditions, we know the value of F,L, S, α, β, such as
F = first(r1) ∪ first(r2), α = λ(r1) ∧ λ(r2) · · · . Hence F = first(r), L =
followlast(r), S = sym(r), α = λ(r), β = W(r) from the computations of
first, followlast, sym, λ and W. If the (k + 1)-steps derivation follows others
class of productions, the proof is in a similar way.

(⇒) We will prove that all IDREs can be generated by Gidre by induction
on the structure of an expression. That is, if an expression r ∈ IDREs with
F = first(r), L = followlast(r), S = sym(r), α = λ(r), β = W(r), then there
exists a useful nonterminal RF,L,S,α,β in Gidre, such that RF,L,S,α,β ∗⇒ r.

For the case r = a(a ∈ Σ), refer to Base in Gidre, there exists R{a},∅,{a},0,1.
For the case r = r1&r2, since r is deterministic, then r1, r2 are

deterministic by Theorem 1. By the inductive hypothesis, there exist non-
terminals R1 and R2 in Gidre satisfying that RF1,L1,S1,α1,β1

1
∗⇒ r1 and

RF2,L2,S2,α2,β2
2

∗⇒ r2, where F1 = first(r1), L1 = followlast(r1), S1 =
sym(r1), α1 = λ(r1), β1 = W(r1) and F2 = first(r2), L2 = followlast(r2), S2 =
sym(r2), α2 = λ(r2), β2 = W(r2). Referring to the computations of
first , followlast , sym, λ and W, we get first(r) = first(r1) ∪ first(r2), (¬λ(r1) ∧
¬λ(r2) ∧ followlast(r) = followlast(r1) ∪ followlast(r2)) ∨ (¬λ(r1) ∧ λ(r2) ∧
followlast(r) = followlast(r1) ∪ followlast(r2) ∪ first(r2)) ∨(λ(r1) ∧ ¬λ(r2) ∧
followlast(r) = followlast(r1) ∪ followlast(r2) ∪ first(r1)) ∨ (λ(r1) ∧ λ(r2) ∧
followlast(r) = followlast(r1) ∪ followlast(r2) ∪ first(r1) ∪ first(r2)),
sym(r) = sym(r1) ∪ sym(r2) and λ(r) = λ(r1) ∧ λ(r2), β(r) = β(r1) ∧ β(r2).
This meets the Inter in Gidre, hence there exists RF,L,S,α,β ⇒ R1&R2

∗⇒ r1&r2,
i.e., RF,L,S,α,β ∗⇒ r.

The other cases (i.e., r = r1 + r2, r = r1 · r2, r = r1?, r = r∗
1) can be proved

similarly.

Theorem 6. IDREs cannot be defined by regular grammars.

Proof. It has been proved that standard deterministic regular expressions cannot
be defined by regular grammars in [12]. Because standard deterministic regular
expressions are not closed under homomorphisms as regular languages do. Hence,
IDREs as a superset class of standard deterministic regular expressions, cannot
be defined by regular grammars.
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4.3 Optimization Rules for Valid Productions

For the grammars Gidre, since there are 2|Σ| different first , followlast and sym
sets, the number of nonterminal symbols are 23|Σ|+2. Each production uses at
most three nonterminals, then the number of possible productions of Gidre is
O(29|Σ|). Clearly, it is really a heavy task to recognize valid productions for
Gidre. We give the following rules to help recognize useful nonterminals. These
optimization rules can accelerate the process of simplifying Gidre, since the pro-
duction constructed all by useful nonterminals must be valid.

Lemma 4. The nonterminal symbol RF,L,S,α,β in Gidre is useful iff it meets
four conditions: (1) S ∩ F �= ∅; (2)F ∪ L ⊆ S; (3) (F ∩ L = ∅) → (β = 1); (4)
(α = 0 and β = 1) → (F �⊆ L).

Proof. (⇒) The necessity of this lemma is easy to prove. (1) S is the sym set
including all occurring symbols and F stores the first symbol. Since we have
ignored the ε, S and F are not empty. So S ∩ F �= ∅. (2) F and L are subsets of
S, so F ∪L ⊆ S. (3) When F ∩L = ∅, there exists no pair of symbols a = b such
that a ∈ F, b ∈ L. This case meets the statement (1) in Lemma 3, so W = true
(β = 1). (4) When α = 0 and β = 1, suppose that F ⊆ L, there at least
exists a symbol s ∈ F ∩ L. Since α = 0, RF,L,S,α,β can derive from rules Base,
Union, Concat, or Inter. If it derives from Opt, Star, then α = 1 contradicts the
precondition. For case Base, we get L = ∅, which contradicts s ∈ L. For case
Union RF,L,S,α,β → RF1,L1,S1,α1,β1 + RF2,L2,S2,α2,β2 , referring to Table 1, we get
F = F1 ∪ F2, L = L1 ∪ L2. Then s may exist in F1 ∩ L1, F1 ∩ L2, F2 ∩ L1

or F2 ∩ L2, but all these possible situations will cause W = false (β = 0) by
Definition 2, contradicts the precondition β = 1. For cases Concat and Inter,
they can be proved in a similar way.

(⇐) The sufficiency of this lemma proves that when these four condi-
tions hold, there exists an expression r ∈ IDREs such that first(r) = F ,
followlast(r) = L, sym(r) = S, λ(r) = α, W(r) = β. That is RF,L,S,α,β is
useful.

When F ∩ L = ∅, referring to conditions, we suppose F = {a1, . . . , am} and
L = {b0, . . . , bp} with ai (i ∈ [1,m]), bj (j ∈ [0, p]) are distinct symbols, then
S = {a1, . . . , am, b0, . . . , bp}. By condition (3), there is β = 1. Thus we only need
consider the following cases:

– Case 1: When α = 1, we can construct r = ((a1 + . . . + am) · (b∗
0 + . . . + b∗

p))?,
which satisfies first(r) = F, followlast(r) = L, sym(r) = S, α = 1, β = 1.

– Case 2: When α = 0, since we have guaranteed F �⊆ L, the expression
can be r = (a1 + · · · + am) . . . (b∗

0 + . . . + b∗
p), which satisfies first(r) =

F, followlast(r) = L, sym(r) = S, α = 0, β = 1.

When F ∩ L �= ∅, referring to conditions, we suppose F = {a0, . . . , am,
c1, . . . , cn} and L = {b0, . . . , bp, c1, . . . , cn}, then S = {a0, . . . , am, b0, . . . , bp,
c1, . . . , cn}. The cases include:

– Case 3: When α = 0, β = 0, we can construct r = (a0 + . . . + am + c1 . . . +
cn) · (b∗

0 + . . . + b∗
p + c∗

1 . . . + c∗
n), which satisfies first(r) = F, followlast(r) =

L, sym(r) = S, α = 0, β = 0.



Context-Free Grammars for DREs with Interleaving 249

– Case 4: When α = 1, β = 0, we can construct r = ((a0 + . . . + am + c1 . . . +
cn) · (b∗

0 + . . .+ b∗
p + c∗

1 . . .+ c∗
n))?, which satisfies first(r) = F, followlast(r) =

L, sym(r) = S, α = 1, β = 0.
– Case 5: When α = 1, β = 1, if m �= 0, we can construct r = (((a1 + . . . +

am)&(c∗
1 + . . . + c∗

n)) · (b∗
0 + . . . + b∗

p))?; if m = 0, r = ((c1& . . . &cn) · (b∗
0 +

. . .+b∗
p))

∗. Then r satisfies first(r) = F, followlast(r) = L, sym(r) = S, α =
1, β = 1.

– Case 6: When α = 0, β = 1, by condition (4), we get F �⊆ L. Hence there
must exist a symbol a ∈ F but a /∈ L, then we change the assumption
on F to F = {a1, . . . , am, c1, . . . , cn}. The expression can be r = ((a1 +
. . . + am)&(c∗

1 + . . . + c∗
n)) · (b∗

0 + . . . + b∗
p), which satisfies first(r) = F ,

followlast(r) = L, sym(r) = S, α = 0, β = 1.

5 Experiments

In this section, we implement the grammars over small alphabets to show the
effectiveness of optimization rules in Lemma 4 by showing the sizes of nontermi-
nals and productions. Then we generate sentences from the simplified grammars
by the method in [12].

Grammars over Small Alphabets. We simplify the grammars Gidre by
Lemma 4, and denote the simplified grammars as s-Gidre, which only consist
of useful nonterminals and valid productions. Experimental results are shown in
Table 2 over small alphabets. |N | and |P | represent the number of nonterminals
and productions, respectively, and |Σ| is the size of the alphabet.

Table 2. The comparison between grammars Gidre and s-Gidre

|Σ| Gidre s-Gidre
|P | in s-Gidre

|P | in Gidre
(100%)

|N | |P | |N | |P |
1 33 2,097 6 15 0.668%
2 257 103,810 44 1,116 1.074%
3 2,049 4,926,467 282 46,865 0.951%
4 16,385 – 1,652 1,495,482 –

From Table 2, we observe that the optimization rules are effective, which are
quite useful to reduce the number of productions making it reduced by about two
orders of magnitude. When n = 3, about 99.05% of productions in Gidre are not
valid. When n = 4, the executing time of generating productions of Gidre is too
long, so we cannot record, which shows the necessity of our optimization rules.

For comparison, we also complete the simplified grammars for standard deter-
ministic regular expressions in [12], denoted as s-Gdre. Results are shown in
Fig. 3. With the increase of |Σ|, the numbers of nonterminals and productions
are larger. s-Gidre increases more sharply than s-Gdre, especially for the |P |.
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Fig. 3. The comparison between grammars s-Gidre and s-Gdre

Sentences Generation by the Method in [12]. The generator in [12] is
designed for efficient and random generation. Since it does not need to preprocess
the whole grammar, this algorithm is good at efficient generation from large-scale
grammars. As we can see from Fig. 3, even when |Σ| = 4, the productions size
of s-Gidre is more than 1 million. The grammars are too large to handle with
the increasing of |Σ|. For Purdom’s method, it works in the whole grammar, so
we only record the generation results when |Σ| ≤ 4, since the rest will cost too
much time and storage. Since we have optimization rules to recognize all useful
nonterminals in s-Gidre, the generator can be applied to s-Gidre to generate
IDREs without the limit of |Σ|. We only need to input the size of the alphabet
|Σ| and the length of sentence l, then we call the generator and obtain a random
expression in IDREs with length no more than l.

We set l = 30 and use generator to successfully generate an expression in
IDREs, when |Σ| values from 1 to 7. The time cost is recorded in Table 3.

Table 3. Time cost for generating an expression in IDREs by generator

|Σ| 1 2 3 4 5 6 7

Time(s) 0.01 0.12 0.2 3 13 114 892

6 Conclusion

In this paper, we obtained a characterization of unmarked IDREs, and then
developed an O(|Σ||E|) time algorithm to decide determinism worked on
unmarked expressions. Besides, using the characterization, we developed the
context-free grammars to describe the whole class of IDREs and gave optimiza-
tion rules. Experimental results showed that our optimization rules are good at
reducing the number of productions. We also apply the method [12] to generate
IDREs from the grammars.
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One future work is to use the grammars to help users to write IDREs inter-
actively. We plan to improve the grammars and develop a tool to help users to
write IDREs efficiently.
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Abstract. Completeness in abstract interpretation is a well-known
property, which ensures that the abstract framework does not lose infor-
mation during the abstraction process, with respect to the property of
interest. Completeness has been never taken into account for existing
string abstract domains, due to the fact that it is difficult to prove it for-
mally. However, the effort is fully justified when dealing with string anal-
ysis, which is a key issue to guarantee security properties in many soft-
ware systems, in particular for JavaScript programs where poorly man-
aged string manipulating code often leads to significant security flaws.
In this paper, we address completeness for the main JavaScript-specific
string abstract domains, we provide suitable refinements of them, and
we discuss the benefits of guaranteeing completeness in the context of
abstract-interpretation based string analysis of dynamic languages.

Keywords: String abstract domains · Abstract interpretation
completeness · String analysis

1 Introduction

Despite the growth of support for string manipulation in programming lan-
guages, string manipulation errors still lead to code vulnerabilities that can be
exploited by malicious agents, causing potential catastrophic damages. This is
even more true in the context of web applications, where common programming
languages used for the web-based software development (e.g., JavaScript), offer
a wide range of dynamic features that make string manipulation challenging.

String analysis is a static program analysis technique that computes, for each
execution trace of the program given as input, the set of the possible string values
that may reach a certain program point. String analysis, as others non-trivial
analyses in the programming languages field, is an undecidable task. Thus, a
certain degree of approximation is necessary in order to find evidence of bugs
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and vulnerabilities in string manipulating code. In the recent literature, different
approximation techniques for string analysis have been developed, such as [7]:
automata-based [6,9,37,38], abstraction-based [2–4,11,12,39], constraint-based
[1,25,32,34], and grammar-based [28,36], and used, inter alia, with the purpose
of detecting web application vulnerabilities [36–38].

In this paper we focus on string analysis by means of the abstract interpreta-
tion theory [13,14]. Abstract interpretation has been proposed by P. Cousot and
R. Cousot in the 70s as a theory of sound abstraction (or approximation) of the
semantics of computer programs, and nowadays it is widely integrated in software
verification tools and used to rigorous mathematical proofs of approximations
correctness. Since the introduction of the abstract interpretation theory, many
abstract domains that represent properties of interest about numerical domains
values have been designed [8,10,13,15,18,19,29,30,33]. On the other hand, just
in the last few years, scientific community has taken an interest in the develop-
ment of abstract domains for string analysis [2,4,11,12,22,26,31], some of them
language specific, such as those defined as part of the JavaScript static analysers:
TAJS [20], SAFE [24], and JSAI [21].

Desirable features of abstract interpretation are soundness and completeness
[14]. If soundness (or correctness), as a basic requirement, actually is often guar-
anteed by static analysis tools, completeness is frequently not met. If complete-
ness is satisfied, it means that the abstract computations do not lose information,
during the abstraction process, with respect to a property of interest, and so the
abstract interpretation can be considered optimal. In [17], authors highlighted
the fact that completeness is an abstract domain property, and they presented
a methodology to obtain complete abstract domains with respect to operations,
by minimally extending or restricting the underlying domains.

1.1 Paper Contribution

Due to the important role played by JavaScript in the current landscape, its
extensive use of strings, and the difficulties in statically analyse it, we believe that
an improvement in the accuracy of JavaScript-specific string abstract domains
can lead to a preciser reasoning about strings.

Thus, in this paper, we study the completeness property, with respect to some
string operations of interest, of two JavaScript-specific string abstract domains,
i.e., those defined as part of SAFE [24] and TAJS [20] static analysers. Finally,
we define their complete versions, and we discuss the benefits of guaranteeing
completeness in the context of abstract interpretation based string analysis of
dynamic languages.

1.2 Paper Structure

Section 2 gives basics in mathematics and abstract interpretation. Section 3
presents important concepts related to the completeness property in abstract
interpretation [17], that we will use through the whole paper. Moreover, a moti-
vating example is given to show the importance to guarantee completeness
in an abstract interpretation-based analysis with respect to strings. Section 4
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defines our core language. Section 5 presents the completion of the string abstract
domain integrated into SAFE [24] and TAJS [20] static analysers with respect
to two operations of interest. Section 6 highlights the strengths and usefulness of
the completeness approach to abstract-based static analysis of JavaScript string
manipulating programs. Section 7 concludes and points out interesting aspects
for future works.

2 Background

Mathematical Notation. Given a set S, we denote by S∗ the set of all the finite
sequences of elements of S and by Sn the set of all finite sequences of S of
length n. If s = s0 . . . sn ∈ S∗, we denote by si the i-th element of s, and by
|s| = n + 1 its length. We denote by s[x/i] the sequence obtained replacing si

in s with x. Given two sets S and T , we denote with ℘(S) the powerset of S,
with S\T the set difference, with S ⊂ T the strict inclusion relation, and with
S ⊆ T the inclusion relation between S and T . A set L with ordering relation
≤ is a poset and it is denoted by 〈L,≤〉. A poset 〈L,≤〉 is a lattice if ∀x, y ∈ L
we have that x ∨ y and x ∧ y belong to L, and we say that it is also complete
when for each X ⊆ L we have that

∨
X,

∧
X ∈ L. Given a poset 〈L,≤〉 and

S ⊆ L, we denote by max(S) = {x ∈ S | ∀y ∈ S. x ≤ y ⇒ x = y} the set of
the maximal elements of S in L. As usual, a complete lattice L, with ordering
≤, least upper bound (lub) ∨, greatest lower bound (glb) ∧, greatest element
(top) �, and least element (bottom) ⊥ is denoted by 〈L,≤,∨,∧,�,⊥〉. An upper
closure operator on a poset 〈L,≤〉 is an operator ρ : L → L which is monotone,
idempotent, and extensive (i.e., x ≤ ρ(x)) and it can be uniquely identified by
the set of its fix-points. The set of all closure operators on a poset L is denoted
by uco(L). Given f : S → T and g : T → Q we denote with g ◦ f : S → Q their
composition, i.e., g ◦ f = λx.g(f(x)). Given f : Sn → T , s ∈ Sn and i ∈ [0, n),
we denote by f i

s = λz.f(s[z/i]) : S → T a generic i-th unary restriction of f .

Abstract Interpretation. Abstract interpretation [13,14] is a theoretical frame-
work for sound reasoning about program semantic properties of interest, and
can be equivalently formalized either as Galois connections or closure operators
on a given concrete domain, which is a complete lattice C [14]. Let C and A be
complete lattices, a pair of monotone functions α : C → A and γ : A → C forms
a Galois Connection (GC) between C and A if for every x ∈ C and for every
y ∈ A we have α(x) ≤A y ⇔ x ≤C γ(y). The function α (resp. γ) is the left-
adjoint (resp. right-adjoint) to γ (resp. α), and it is additive (resp. co-additive).
If 〈α, γ〉 is a GC between C and A then γ◦α ∈ uco(C). If C is a complete lattice,
then 〈uco(C),�,�,�, λx.C, id〉 forms a complete lattice [35], which is the set of
all possible abstractions of C, where the bottom element is id = λx.x, and for
every ρ, η ∈ uco(C), ρ is more concrete than η iff ρ � η iff ∀y ∈ C. ρ(y) ≤ η(y)
iff η(C) ⊆ ρ(C), (�i∈Iρi)(x) = ∧i∈Iρi(x); (�i∈Iρi)(x) = x iff ∀i ∈ I. ρi(x) = x.
The operator ρ ∈ uco(C) is disjunctive when ρ(C) is a join-sublattice of C which
holds iff ρ is additive [14]. Let L be a complete lattice, then X ⊆ L is a Moore
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family of L if X = M(X) = {∧S | S ⊆ X}, where ∧∅ = �. The condition that
any concrete element of C has the best abstraction in the abstract domain A,
implies that A is a Moore family of C. We denote by M(X) the Moore closure
of X ⊆ C, that is the least subset of C, which is a Moore family of C, and
contains X. If 〈α, γ〉 is a GC between C and A and f : C → C a concrete
function, then f � = α ◦ f ◦ γ : A → A is the best correct approximation of f
in A. Let 〈α, γ〉 be a GC between C and A, f : C → C be a concrete function
and f � : A → A be an abstract function. The function f � is a sound approxima-
tion of f if ∀c ∈ C. α(f(c)) ≤A f �(α(c)). In abstract interpretation, there exist
two notions of completeness. Backward completeness property focuses on com-
plete abstractions of the inputs, while forward completeness focuses on complete
abstractions of the outputs, both w.r.t. an operation of interest. In this paper, we
focus on the more typical notion of completeness, i.e., backward completeness.
Hence, when we will talk about completeness, we mean backward completeness.
Given a GC 〈α, γ〉 between C and A, a concrete function f : C → C, and an
abstract function f � : A → A, then f � is backward complete for f (for short
complete) if ∀c ∈ C. α(f(c)) = f �(α(c)). If the backward completeness property
is guaranteed, no loss of information arises during the input abstraction process,
w.r.t. an operation of interest.

3 Making Abstract Interpretations Complete

In this section, we give the notions and methodologies that we will use through
the whole paper (and proposed in [17]), in order to constructively build, from
an initial abstract domain, a novel abstract domain that is complete w.r.t. an
operation of interest. Finally, a motivating example showing the usefulness of
completion of abstract domains for string analysis is given.

As reported in [17], it is worth noting that completeness is a property related
to the underlying abstract domain. Starting from this fact, in [17], authors pro-
posed a constructive method to manipulate the underlying incomplete abstract
domain in order to get a complete abstract domain w.r.t. a certain operation. In
particular, given two abstract domains A and B and an operator f : A → B, the
authors gave two different notions of completion of abstract domains w.r.t. f :
the one that adds the minimal number of abstract points to the input abstract
domain A or the other that removes the minimal number of abstract points
from the output abstract domain B. The first approach captures the notion of
complete shell of A, while the latter defines the complete core of B, both w.r.t.
an operator f .

Complete Shell vs Complete Core. We will focus on the construction of complete
shells of string abstract domains, rather than complete cores. This choice is
guided by the fact that a complete core for an operation f removes abstract
points from a starting abstract domain, and so, even if it is complete for f , the
complete core could worsen the precision of other operations.
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On the other hand, complete shells augment the starting abstract domains
(adding abstract points), and consequently it can not compromise the precision
of other operations.

Below, we provide two important theorems proved in [17] that give a con-
structive method to compute abstract domain complete shells, defined in terms
of an upper closure operator ρ. Precisely, the latter theorems present two notions
of complete shells: i. complete shells of ρ relative to η (where η is an upper clo-
sure operator), meaning that they are complete shells of operations defined on ρ
that return results in η, and ii. absolute complete shells of ρ, meaning that they
are complete shells of operations that are defined on ρ and return results in ρ.

Theorem 1 (Complete shell of ρ relative to η). Let C and D be two posets and
f : Cn → D be a continuous function. Given ρ ∈ uco(C), then Sρ

f : uco(D) →
uco(C) is the following domain transformer:

Sρ
f (η) = M(ρ ∪ (

⋃

i∈[0,n)
x∈Cn,y∈η

max({z ∈ C | (f i
x)(z) ≤D y})))

and it computes the complete shell of ρ relative to η.

As already mentioned above, the idea under the complete shell of ρ (input
abstraction) relative to η (output abstraction) is to refine ρ adding the minimum
number of abstract points to make ρ complete w.r.t. an operator f . From Theo-
rem 1, this is obtained adding to ρ the maximal elements in C, whose f image is
dominated by elements in η, at least in one dimension i. Clearly, the so-obtained
abstraction may be not an upper closure operator for C. Hence, Moore closure
operator is applied. On the other hand, absolute complete shells are involved in
the case in which the operator f of interest has same input and output abstract
domain, i.e., f : Cn → C. In this case, given ρ ∈ uco(C), absolute complete shells
of ρ can be obtained as the greatest fix-point (gfp) of the domain transformer
Sρ

f (see Theorem 1), as stated by the following theorem.

Theorem 2 (Absolute complete shell of ρ). Let C be a poset and f : Cn → C
be a continuous function. Given ρ ∈ uco(C), then Sρ

f : uco(C) → uco(C) is the
following domain transformer:

Sρ

f = gfp(λη.Sρ
f (η))

and it computes the absolute complete shell of ρ.

The completeness property for the sign abstract domain, which approximates
numerical values, has been discussed in [17]. The sign abstract domain is com-
plete for the product operation, but it is not complete w.r.t. the sum. Indeed, the
sign of e1+e2 cannot be defined by simply knowing the sign of e1 and e2. In [17],
authors computed the absolute complete shell of the sign domain w.r.t. the sum
operation, and they showed it corresponds to the interval abstract domain [13].
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3.1 Motivating Example

A common feature of dynamic languages, such as PHP or JavaScript, is to be
not typed. Hence, in those languages, it is allowed to change the variable type
through the program execution. For example, in PHP, it is completely legal
to write fragments such as $x=1;$x=true;, where the type of the variable x
changes from integer to boolean. The first attempt to static reasoning about vari-
able types was to track the latter adopting the so-called coalesced sum abstract
domain [5,23], in order to detect whether a certain variable has constant type
through the whole program execution. In Fig. 1a, we report the coalesced sum
abstract domain for an intra-procedural version of PHP [5], that tracks null,
boolean, integer, float and string types1. Consider the formal semantics of the
sum operation in PHP [16]. When one of the operand is a string, since the sum
operation is feasible only between numbers, implicit type conversion occurs and
converts the operand string to a number. In particular, if the prefix of the string
is a number, it is converted to the maximum prefix of the string correspond-
ing to a number, otherwise it is converted to 0. For example, the expression
e = "2.4hello" + "4" returns 4.4. Let +� be the abstract sum operation on
the coalesced sum abstract domain. The type of the expression e is given by:

α({"2.4hello"}) +� α({"4"}) = String +� String = �

The static type analysis based on the coalesced sum abstract domain returns �
(i.e., any possible value), since the sum between two strings may return either
an integer or a float value. Precisely, the coalesced sum abstract domain is not
complete w.r.t. the PHP sum operation, since for any string σ and σ′, it does not
meet the completeness condition: α(σ + σ′) = α(σ) +� α(σ′), e.g., α(σ + σ′) =
Float �= α(σ) +� α(σ′) = �. Intuitively, the coalesced sum abstract domain is not
complete w.r.t. the sum operation due to the loss of precision that occurs during
the abstraction process of the inputs, since the domain is not precise enough to
distinguish between strings that may be implicitly converted to integers or floats.

taolFlooB tnI StringNull

⊥

In taolFlooB t

String

StrFloatStrIntNull

⊥

Fig. 1. (a) Coalesced sum abstract domain for PHP. (b) Complete shell of coalesced
sum abstract domain w.r.t. the sum operation.

1 Closing the coalesced sum abstract domain by the powerset operation, a more precise
abstract domain is obtained, called union type abstract domain [23], that tracks the
set of types of a certain variable during program execution.
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Fig. 2. μDyn syntax. Fig. 3. μDyn semantics.

Figure 1b shows the complete shell of the coalesced sum abstract domain
w.r.t. the sum. The latter adds two abstract values to the original domain,
namely StrFloat and StrInt, that correspond to the abstractions of the strings
that may be implicitly converted to floats and to integers, respectively. Notice
that, the type analysis on the novel abstract domain is now complete w.r.t. the
sum operation. Indeed, the completeness condition also holds for the expression
e, as shown below.

α({"2.4hello" + "4"}) = Float

= α({"2.4hello"}) +� α({"4"})

= StrFloat +� StrInt

= Float

As pointed out above, guaranteeing completeness in abstract interpretation is a
precious and desirable property that an abstract domain should aim to, since it
ensures that no loss of precision occurs during the input abstraction process of
the operation of interest. It is worth noting that guessing a complete abstract
domain for a certain operation becomes particularly hard when the operation
has a tricky semantics, such as in our example or, more in general, in dynamic
languages operations. For this reason, complete shells become important since
they are able to mathematically guarantee completeness for a certain operation,
starting from an abstract domain of interest.

4 Core Language

We define μDyn, an imperative toy language expressive enough to handle some
interesting behaviors related to strings in dynamic languages, e.g., implicit
type conversion, and inspired by the JavaScript programming language [27].
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μDyn syntax is reported in Fig. 2. The μDyn basic values are represented by the
set Val = Int ∪ Float ∪ Bool ∪ Str, such that:

• Int = Z denotes the set of signed integers
• Float denotes the set of signed decimal numbers2
• Bool = {true, false} denotes the set of booleans
• Str = Σ∗ denotes the set of strings over an alphabet Σ

We consider Σ∗ composed of two sets, namely Σ∗ = Σ∗
Num ∪ Σ∗

NotNum, where:
– Σ∗

Num is the set of numeric strings (e.g., "42", "-7.2")
– Σ∗

NotNum is the set of non numeric strings (e.g., "foo", "-2a")
Moreover, we consider Σ∗

Num additionally composed of four sets:

Σ∗
Num = Σ∗

UInt ∪ Σ∗
UFloat ∪ Σ∗

SInt ∪ Σ∗
SFloat

which correspond to the set of unsigned integer strings, unsigned float strings,
signed integer strings and signed float strings, respectively.

μDyn programs are elements generated by S syntax rules. Program states
State : Id → Val, ranging over ξ, are partial functions from identifiers to val-
ues. The concrete semantics of μDyn statements follows [5], and it is given by
the function �·�· : Stmt × State → State, inductively defined on the struc-
ture of the statements, as reported in Fig. 3. We abuse notation in defining the
concrete semantics of expressions: �·�· : Exp × State → Val. Figure 3 shows
the formal semantics of two relevant expressions involving strings we focus on:
concat, that concatenates two strings, and string-to-number operation, namely
toNum, that takes a string as input and returns the number that it represents
if the input string corresponds to a numerical strings, 0 otherwise. We denote
by N (σ) ∈ Int ∪ Float the numeric value of a given string. For example,
toNum("4.2") = 4.2 and toNum("asd") = 0.

5 Making JavaScript String Abstract Domains Complete

In this section, we study the completeness of two string abstract domains inte-
grated into two state-of-the-art JavaScript static analysers based on abstract
interpretation, that are SAFE [24] and TAJS [20]. Both the abstract domains
track important information on JavaScript strings, e.g., SAFE tracks numeric
strings, such as "2.5" or "+5", and TAJS is able to infer when a string corre-
sponds to an unsigned integer, that may be used as array index.

For the sake of readability, we recast the original string abstract domains for
μDyn, following the notation adopted in [4]. Figure 4 depicts them. Notice that
the original abstract domain part of SAFE analyser treats the string "NaN" as
a numeric string. Since our core language does not provide the primitive value
NaN, the corresponding string, i.e., "NaN", has no particular meaning here, and
it is treated as a non-numerical string.

For each string abstract domain D, we denote by αD : ℘(Σ∗) → D its
abstraction function, by γD : D → ℘(Σ∗) its concretization function, and by
ρD : ℘(Σ∗) → ℘(Σ∗) ∈ uco(D) the associated upper closure operator.
2 Floats normally are represented in programming languages in the IEEE 754 double

precision format. For the sake of simplicity, we use instead decimal numbers.
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Fig. 4. (a) SAFE, (b) TAJS string abstract domains recasted for μDyn.

5.1 Completing SAFE String Abstract Domain

Figure 4a depicts the string abstract domain SF , i.e., the recasted version of the
domain involved into SAFE [24] static analyser. It splits strings into the abstract
values: Numeric (i.e., numerical strings) and NotNumeric (i.e., all the other
strings). Before reaching these abstract values, SF precisely tracks each string.
For instance, αSF({"+9.6", "7"})=Numeric, and αSF({"+9.6", "bar"})= �SF .

We study the completeness of SF w.r.t. concat operation. Figure 5 presents
the abstract semantics of the concatenation operation for SF , that is:

�concat(•, •)�SF : SF × SF → SF

In particular, when both abstract values correspond to single strings, the stan-
dard string concatenation is applied (second row, second column). In the case
in which one abstract value, involved in the concatenation, is a string and the
other is Numeric (third row, second column and second row, third column) we
distinguish two cases: if the string is empty or corresponds to an unsigned integer
we can safely return Numeric, otherwise NotNumeric is returned. This happens
because, when two float strings (hence numerical strings) are concatenated, a
non-numerical string is returned (e.g., concat("1.1", "2.2") = "1.12.2"). For
the same reason, when both input abstract values are Numeric, the result is not
guaranteed to be numerical, indeed, �concat(Numeric,Numeric)�SF = �SF .

Lemma 1. SF is not complete w.r.t. concat. In particular3, ∀S1, S2 ∈ ℘(Σ∗)
we have that:

αSF(�concat(S1, S2)�) � �concat(αSF(S1), αSF(S2))�SF

Consider S1 = {"2.2", "2.3"} and S2 = {"2", "3"}. The completeness prop-
erty does not hold:

αSF(�concat(S1, S2)�) = Numeric �= �SF = �concat(αSF(S1), αSF(S2))�SF

3 We abuse notation denoting with �·� the additive lift to set of basic values of the
concrete semantics, i.e., the collecting semantics.
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Fig. 5. SAFE concat abstract semantics.

Fig. 6. Absolute complete shell of ρSF w.r.t. concat.

The SF abstract domain loses too much information during the abstraction
process; information that can not be retrieved during the abstract concatenation.
Intuitively, to gain completeness w.r.t. concat operation, SF should improve
the precision of the numerical strings abstraction, e.g., discriminating between
float and integer strings. Following Theorem2, we can formally construct the
absolute complete shell of ρSF w.r.t. concat operation SρSF

concat, and we denote it
by Sf. This leads to a novel abstract domain, given in Fig. 6, that is complete
for concat.

In particular, the points inside dashed boxes are the abstract values added
during the iterative computations of Sf, the points inside standard boxes are
instead obtained by the Moore closure of the other points of the domain, while
the remaining abstract values were already in SF . The meaning of abstract val-
ues in Sf is intuitive. In order to satisfy the completeness property, Sf splits the
Numeric abstract value, already taken into account in SF , into all the strings
corresponding to unsigned integer (UInt), unsigned floats (UFloat), and signed
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numbers (SignedNum). Moreover, particular importance is given to the empty
string, since the novel abstract domain specifies whether each abstract value
contains "". Indeed, the UIntε abstract value represents the strings correspond-
ing to unsigned integer or to the empty string, and the UNumε abstract value
represents the strings corresponding to unsigned numbers or to the empty string.
An unexpected abstract value considered in Sf is NotUnsignedNotEmpty, such
that:

γSf(NotUnsignedNotEmpty) = {σ ∈ Σ∗ | σ ∈ Σ∗
SInt ∪ Σ∗

SFloat ∪ (Σ∗
NotNum \ {""})}

Namely, the abstract point whose concretization corresponds to the set of any
non-numerical string, except the empty string, and any string corresponding
to a signed number. This abstract point has been added to Sf following the
computation of the formula below:

NotUnsignedNotEmpty ∈ max({Z ∈ ℘(Σ∗) | �concat(Numeric, Z)�}
⊆

γSF(NotNumeric))

Informally speaking, we are wondering the following question: which is the max-
imal set of strings s.t. concatenated to any possible numerical string will pro-
duce any possible non-numerical string? Indeed, in order to be sure to obtain
non-numerical strings, the maximal set doing so is exactly the set of any non-
numerical non-empty string, and any string corresponding to a signed number,
that is NotUnsignedNotEmpty.

Theorem 3. ρSf is the absolute complete shell of ρSF w.r.t. concat operation
and it is complete for it.

For example, consider again S1 = {"2.2", "2.3"} and S2 = {"2", "3"}.
Given Sf, the completeness condition holds:

αSf(�concat(S1, S2)�) = UFloat = �concat(αSf(S1), αSf(S2))�Sf

= �concat(UFloat,UInt)�Sf

5.2 Completing TAJS String Abstract Domain

Figure 4b depicts the string abstract domain T J , the recasted version of
the domain integrated into TAJS static analyser [20]. Differently from SF ,
it splits the strings into Unsigned, that denotes the strings corresponding to
unsigned numbers, and NotUnsigned, any other string. Hence, for example,
αT J ({"9", "+9"}) = �T J and αT J ({"9.2", "foo"}) = NotUnsigned. As for SF ,
before reaching these abstract values, T J precisely tracks single string values.

In this section, we focus on the toNum (i.e., string-to-number) operation. Since
this operation clearly involves numbers, in Fig. 7 we report the TAJS numerical
abstract domain, denoted by T J N. The latter domain behaves similarly to T J ,
distinguishing between unsigned and not unsigned integers. Below we define the
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⊥T JN

0 1 2 3 . . . −5 +6 −2.2 3.4 . . .

UnsignedInt NotUnsignedInt

T JN

Fig. 7. TAJS numerical abstract domain.

abstract semantics of the string-to-number operation for T J . In particular, we
define the function:

�toNum(•)�T J : T J → T J N

that takes as input a string abstract value in T J , and returns an integer abstract
value in T J N.

�toNum(s)�T J =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⊥T JN
�s�T J = ⊥T J

�toNum(σ)� �s�T J = σ

UnsignedInt �s�T J = Unsigned

�T JN
�s�T J = NotUnsigned ∨ �s�T J = �T J

When the input evaluates to ⊥T J , bottom is propagated and ⊥T JN
is returned

(first row). While, if the input evaluates to a single string value, the abstract
semantics relies on its concrete one (second row). When the input evaluates to the
string abstract value Unsigned (third row), the integer abstract value UnsignedInt
is returned. Finally, when the input evaluates to NotUnsigned or �J S , the top
integer abstract value is returned (fourth row).

Lemma 2. T J is not complete w.r.t. toNum. In particular, ∀S ∈ ℘(Σ∗) we
have that:

αT J (�toNum(S)�) � �toNum(αT J (S))�T J

Consider S = {"2.3", "3.4"}. The completeness property does not hold:

αT J (�toNum(S)�) = NotUnsignedInt �= �T JN
= �toNum(αT J (S))�T J

Again, the completeness condition does not hold because the T J string abstract
domain loses too much information during the abstraction process, and the latter
information cannot be retrieved during the abstract toNum operation. In partic-
ular, when non-numeric strings and unsigned integer strings are converted to
numbers by toNum, they are mapped to the same value, namely 0. Indeed, T J
does not differentiate between non-numeric and unsigned integer string values,
and this is the principal cause of the T J incompleteness w.r.t. toNum. Addi-
tionally, more precision can be obtained if we could differentiate numeric strings
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Fig. 8. Complete shell of ρT J relative to ρT JN
w.r.t. toNum.

holding float numbers from those holding integer numbers. Thus, in order to
make T J complete w.r.t. toNum, we have to derive the complete shell of the T J
string abstract domain relative to the T J N numerical abstract domain, apply-
ing Theorem 1. In particular, let ρT J and ρT JN

be the upper closure operators
related to T J and T J N abstract domains, respectively. By applying Theorem1,
we obtain SρT J

toNum(T J N) (depicted in Fig. 8), i.e., the complete shell of ρT J relative
to ρT J N

w.r.t. toNum, and we denote it by Tj.
In particular, the abstract points inside dashed boxes are the abstract val-

ues added during the iterative computations of Tj, the points inside the stan-
dard boxes are instead obtained by the Moore closure of the other points of
the domain, while the remaining abstract values were already in T J . A non-
intuitive point added by Tj is SignedOrFloats, namely the abstract value s.t. its
concretization contains any float string and the signed integers. This abstract
point is added during the iterative computation of Tj, following the formula
below:

SignedOrFloats ∈ max({Z ∈ ℘(Σ∗) | �toNum(Z)� ⊆ γT J (NotUnsigned)})

Informally speaking, we are wondering the following question: which is the max-
imal set of strings Z s.t. toNum(Z) is dominated by NotUnsigned? In order to
obtain from toNum(Z) only values dominated by NotUnsigned, the maximal set
doing so is exactly the set of the float strings and the signed strings. Other
strings, such that: unsigned integer strings or not numerical strings are excluded,
since they are both converted to unsigned integers, and they would violate the
dominance relation.

Similarly, the abstract point UnsignedOrNotNumeric is added to the absolute
complete shell Tj, when the following formula is computed:

UnsignedOrNotNumeric = max({Z ∈ ℘(Σ∗) | toNum(Z) ⊆ γT J (Unsigned)})

In order to obtain from toNum(Z) only abstract values dominated by
Unsigned, the maximal set doing so is exactly the set of the unsigned integer
strings and the non-numerical strings, since the latter are converted to 0.
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Theorem 4. ρTj is the complete shell of ρT J relative to ρT JN
w.r.t. toNum oper-

ation and hence it is complete for it.

For example, consider again the string set S = {"2.3", "3.4"}. Given Tj,
the completeness condition holds:

αTj(�toNum(S)�) = NotUnsignedInt

= �toNum(αTj(S))�T J

= �toNum(SignedOrFloats)�T J

6 What We Gain from Using a Complete Abstract
Domain?

Now, we discuss and evaluate the benefits of adopting the complete shells
reported in Sect. 5 and, more in general, complete domains, w.r.t. a certain oper-
ation. In particular, we compare the μDyn versions of the string abstract domains
adopted by SAFE and TAJS with their corresponding complete shells, we dis-
cuss the complexity of the complete shells, and finally we argue how adopting
complete abstract domains can be useful into static analysers.

Precision. In the previous section, we focused on the completeness of the string
abstract domains integrated into SAFE and TAJS, for μDyn, w.r.t. two string
operations, namely concat and toNum, respectively. While string concatenation
is common in any programming language, toNum assumes critical importance in
the dynamic language context, mostly where implicit type conversion is provided.
Since type conversion is often hidden from the developer, aim to completeness
of the analysis increases the precision of such operations. For instance, let x
be a variable, at a certain program execution point. x may have concrete value
in the set S = {"foo", "bar"}. If S is abstracted into the starting TAJS string
abstract domain, its abstraction will corresponds to Unsigned, losing the informa-
tion about the fact that the concrete value of x surely does not contain numerical
values. Hence, when the abstract value of S is used as input of toNum, the result
will return �T JN

, i.e., any possible concrete integer value. Conversely, abstract-
ing S in Tj (the absolute complete shell of T J relative to toNum discussed in
Sect. 5.2) leads to a more precise abstraction, since Tj is able to differentiate
between non-numerical and numerical strings. In particular, the abstract value
of S in Tj is NotNumeric, and �toNum(NotNumeric)�T J will precisely return 0.

Adopting a complete shell w.r.t. a certain operation does not compromise the
precision of the others. For example, consider again the original string abstract
domain into TAJS static analyser and the following JavaScript fragment.

1 var obj = {
2 "foo" : 1,
3 "bar" : 2,
4 "1.2" : 3,
5 "2.2" : "hello"
6 }
7

8 y = obj[idx];
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Suppose that the value of idx is the abstraction, in the starting TAJS string
abstract domain, of the string set S = {"foo", "bar"}, namely the abstract value
NotUnsinged. The variable idx is used to access the property of the object obj at
line 8 and, to guarantee soundness, it accesses all the properties of obj, included
the fields "1.2" and "2.2", introducing noise in the abstract computation, since
"1.2" and "2.2" are false positives values introduced by the abstraction of the
values of idx. If we analyse the same JavaScript fragment with the absolute com-
plete shell (w.r.t. toNum operation) of the TAJS string abstract domain defined
in Sect. 5.2, we obtain more precise results. Indeed, in this case, the value of idx
corresponds to the abstract value NotNumeric, and when it is used to access the
object obj at line 8, only "foo" and "bar" are accessed, since they are the only
non-numerical string properties of obj.

Complexity of the Complete Shells. We evaluate the complexity of the complete
shells we have provided in the previous section. As usual in static analysis by
abstract interpretation, there exists a trade-off between precision and efficiency:
choose a preciser abstract domain may compromise the efficiency of the abstract
computations. A representative example is reported in [17]: the complete shell of
the sign abstract domain w.r.t. addition is the interval abstract domain. Hence,
starting from a finite height abstract domain (signs) we obtain an infinite height
abstract domain (intervals). In particular, fix-point computations on signs con-
verge, while on intervals may diverge. Indeed, after the completion, the interval
abstract domain should be equipped also with a widening [13] in order to still
guarantee termination. A worst-case scenario is when the complete shells w.r.t.
a certain operation exactly corresponds to the collecting abstract domain, i.e.,
the concrete domain. Clearly, we cannot use the concrete domain due to unde-
cidability reasons, but this suggest us to change the starting abstract domain,
since it is not able to track any information related to the operation of interest.
An example is the suffix abstract domain [12] with substring operation: since
this abstract domain tracks only the common suffix of a strings set, it can not
track the information about the indexes of the common suffix, and the complete
shell of the suffix abstract domain w.r.t. substring would lead to the concrete
domain. Hence, if the focus of the abstract interpreter is to improve the precision
of the substring operation, we should change the abstract domain with a more
precise one for substring, such as the finite state automata [6] abstract domain.

Consider now the complete shells reported in Sect. 5. The obtained com-
plete shells still have finite height, hence termination is still guaranteed without
the need to equip the complete shells with widening operators. Moreover, the
complexity of the string operations of interest is preserved after completion.
Indeed, in both TAJS and SAFE starting abstract domains, concat and toNum
operations have constant complexity, respectively, and the same complexity is
preserved in the corresponding complete shells. It is worth noting that also the
complexity of the abstract domain-related operations, such as least upper bound,
greatest lower bound and the ordering operator, is preserved in the complete
shells. Hence, to conclude, as far as the complete shells we have reported for
TAJS and SAFE are concerned, there is no worsening when we substitute the
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original string abstract domains with the corresponding complete shells, and this
leads, as we have already mentioned before, to completeness during the input
abstraction process w.r.t. the relative operations, namely concat for SAFE and
toNum for TAJS.

False Positives Reduction. In static analysis, a certain degree of abstraction
must be added in order to obtain decidable procedures to infer invariants on a
generic program. Clearly, using less precise abstract domains lead to an increase
of false positive values of the computed invariants. In particular, after a program
is analysed, this burdens the phase of false positive detection: when a program is
analysed, the phase after consists to detect which values of the invariants derived
by the static analyser are spurious values, namely values that are not certainly
computed by the concrete execution of the program of interest. In particular,
using imprecise (i.e., not complete) abstract domains clearly augment the num-
ber of false positives in the abstract computation of the static analyser, burdening
the next phase of detection of the spurious values. On the other hand, adopt-
ing (backward) complete abstract domains w.r.t. a certain operation reduce the
numbers of false positives introduced during the abstract computations, at least
in the input abstraction process. Clearly, in this way, the next phase of detection
of false positives will be lighten since less noise has been introduced during the
abstract computation of the invariants. Consider againt the JavaScript fragment
reported in the previous paragraph. As we already discussed before, using the
starting TAJS abstract domain to abstract the variable idx leads to a loss of
precision, since the spurious value "foo" and "bar" are taken into account in its
abstract value, namely Unsigned. Using the complete shell of TAJS w.r.t. toNum
instead does not add noise when idx is used to access obj.

7 Conclusion

This paper addressed the problem of backward completeness in JavaScript-
purpose string abstract domains, and provides, in particular, the complete shells
of TAJS and SAFE string abstract domains w.r.t. concat and toNum operations.
Our results can be easily applied also to JSAI string abstract domain [21], as it
can be seen as an extension of the SAFE domain. The next issue we would like
to investigate concerns forward completeness [17], meaning that no loss of preci-
sion occurs during the output abstraction process of a certain operation, and the
integration of the completeness methodologies. As a final goal of our research, we
aim to integrate the notion of complete shell into an industrial JavaScript static
analyzer, so that, depending on the target program, an optimal string abstract
domain is automatically selected from a set of domains and their complete shells,
based on the specific string operations the program makes use of.
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Abstract. The number of malware is growing fast recently. Traditional
malware detectors based on signature matching and code emulation are
easy to bypass. To overcome this problem, model-checking appears as an
efficient approach that has been extensively applied for malware detec-
tion in recent years. Pushdown systems were proposed as a natural model
for programs, as they allow to take into account the program’s stack into
the model. CARET and BCARET were proposed as formalisms for mali-
cious behavior specification since they can specify properties that require
matchings of calls and returns which is crucial for malware detection. In
this paper, we propose to use BCARET for malicious behavior specifi-
cation. Since BCARET formulas for malicious behaviors are huge, we
propose to extend BCARET with variables, quantifiers and predicates
over the stack. Our new logic is called SBPCARET. We reduce the mal-
ware detection problem to the model checking problem of PDSs against
SBPCARET formulas, and we propose an efficient algorithm to model
check SBPCARET formulas for PDSs.

1 Introduction

The number of malware is growing fast in recent years. Traditional approaches
including signature matching and code emulation are not efficient enough to
detect malwares. While attackers can use obfuscation techniques to hide their
malware from the signature based malware detectors easily, the code emulation
approaches can only track programs in certain execution paths due to the limited
execution time. To overcome these limitations, model-checking appears as an
efficient approach for malware detection, since model-checking allows to check
the behaviors of a program in all its execution traces without executing it.

A lof of works have been investigated to apply model-checking for malware
detection [2–4,7,10–12]. [4] proposed to use finite state graphs to model the pro-
gram and use the temporal logic CTPL to specify malicious behaviours. However,
finite graphs are not exact enough to model programs, as they don’t allow to
take into account the program’s stack into the model. Indeed, the program’s
stack is usually used by malware writers for code obfuscation as explained in [5].
In addition, in binary codes and assembly programs, parameters are passed to
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functions by pushing them on the stack before the call is made. The values of
these parameters are used to determine whether the program is malicious or not
[6]. Therefore, being able to record the program’s stack is critical for malware
detection. To this aim, [10–13] proposed to use pushdown systems to model pro-
grams, and defined extensions of LTL and CTL (called SLTPL and SCTPL) to
precisely and compactly describe malicious behaviors. However, these logics can-
not specify properties that require matchings of calls and returns, which is crucial
to describe malicious behaviours [8]. Let us consider the typical behaviour of a
spyware to illustrate this. The typical behaviour of a spyware is seeking personal
information (emails, bank account information,...) on local drives by searching
files that match specific conditions. To do that, it has to search directories of the
host to look for interesting files whose names match a certain condition. If a file is
found, the spyware will invoke a payload to steal the information, then continue
looking for the remaining matching files. If a folder is found, it will pass into
the folder path and continue investigating the folder recursively. To obtain this
behavior, the spyware first calls the API FindFirstF ileA to search for the first
matching file in a given folder path. After that, it has to check whether the call
to the API function FindFirstF ileA is successful or not. When the function call
fails, the spyware will call the API GetLastError. Otherwise, when the function
call succeeds, a search handle h will be returned by FindFirstF ileA. There are
two possibilities in this case. If the returned result is a folder, it will call the
API function FindFirstF ileA again to search for matching results in the found
folder. If the returned result is a file, it will call the function FindNextF ileA
using h as first parameter to look for the remaining matching files. This behav-
ior cannot be described by LTL or CTL since it requires to express that the
return value of the API function FindFirstF ileA should be used as input to
the function FindNextF ileA.

CARET was introduced to express linear-temporal properties that involve
matchings of calls and returns [1] and CARET model-checking for PDSs was
considered [6,7]. However, the above behaviour cannot be described by CARET
since it is a branching-time property. To specify that behaviour naturally and
intuitively, BCARET was introduced to express these branching-time proper-
ties that involve matchings of calls and returns [8]. Using BCARET, the above
behavior can be expressed by the following formula:

ϕsb =
∨

d∈D

EF g

(
call(FindFirstF ileA) ∧ EXa(eax = d) ∧ AF a

(
call(GetLastError) ∨ call(FindFirstF ileA)

∨
(
call(FindNextF ileA) ∧ dΓ ∗

)))

where the
∨

is taken over all possible memory addresses d that contain the
values of search handles h in the program, EXa is a BCARET operator saying
that “next in some run, in the same procedural context”; EF g is the standard
CTL EF operator (eventually in some run), while AF a is a BCARET operator
stating that “eventually in all runs, in the same procedural context”.
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In binary codes and assembly programs, the return value of an API function
is placed in the register eax. Therefore, the return value of FindFirstF ileA
is the value of the register eax at the corresponding return-point of the call.
Then, the subformula (call(FindFirstFileA) ∧ EXa(eax = d)) expresses that
there is a call to the API function FindFirstF ileA whose return value is d
(the abstract successor of a call is its corresponding return-point). A call to
FindNextFileA requires a search handle h as parameter and h must be put
on top of the program’s stack (as parameters are passed through the stack in
assembly programs). To express that d is on top of the program stack, we use
the regular expression dΓ ∗. Thus, the subformula [call(FindNextFileA) ∧ dΓ ∗]
states that the API FindNextFileA is invoked with d as parameter (d stores the
information of the search handle h). Therefore, ϕsb states that there is a call
to the function FindFirstF ileA whose return value is d (the search handle),
then, in all runs starting from that call, there will be either a call to the API
GetLastError or a call to the API function FindFirstF ileA or a call to the
function FindNextF ileA in which d is used as a parameter.

However, it can be seen that this formula is huge, since it considers the
disjunction (of different BCARET formulas) over all possible memory addresses d
which contain the information of search handles h in the program. To represent it
in a more compact fashion, we follow the idea of [4,6,10,12] and extend BCARET
with variables, quantifiers, and predicates over the stack. We call our new logic
SBPCARET. The above formula can be concisely described by a SBPCARET
formula as follows:

ϕ′
sb = ∃xEF g

(
call(FindFirstF ileA) ∧ EXa(eax = x) ∧ AF a

(
call(GetLastError) ∨ call(FindFirstF ileA)

∨
(
call(FindNextF ileA) ∧ xΓ ∗

)))

Thus, we propose in this work to use pushdown systems (PDSs) to model
programs, and SBPCARET formulas to specify malicious behaviors.We reduce
the malware detection problem to the model checking problem of PDSs against
SBPCARET formulas, and we propose an efficient algorithm to check whether a
PDS satisfies a SBPCARET formula. Our algorithm is based on a reduction to
the emptiness problem of Symbolic Alternating Büchi Pushdown Systems. This
latter problem is already solved in [10].

The rest of paper is organized as follows. In Sect. 2, we recall the definitions of
Pushdown Systems. Section 3 introduces our logic SBPCARET. Model checking
SBPCARET for PDSs is presented in Sect. 4. Finally, we conclude in Sect. 5.

2 Pushdown Systems: A Model for Sequential Programs

Pushdown systems is a natural model that was extensively used to model sequen-
tial programs. Translations from sequential programs to PDSs can be found e.g.
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in [9]. As will be discussed in the next section, to precisely describe malicious
behaviors as well as context-related properties, we need to keep track of the call
and return actions in each path. Thus, as done in [8], we adapt the PDS model
in order to record whether a rule of a PDS corresponds to a call, a return, or
another instruction. We call this model a Labelled Pushdown System. We also
extend the notion of run in order to take into account matching returns of calls.

Definition 1. A Labelled Pushdown System (PDS) P is a tuple (P, Γ,Δ, �),
where P is a finite set of control locations, Γ is a finite set of stack alphabet,
� /∈ Γ is a bottom stack symbol and Δ is a finite subset of ((P × Γ ) × (P ×
Γ ∗)×{call, ret, int}). If ((p, γ), (q, ω), t) ∈ Δ (t ∈ {call, ret, int}), we also write
〈p, γ〉 t−→ 〈q, ω〉 ∈ Δ. Rules of Δ are of the following form, where p ∈ P, q ∈
P, γ, γ1, γ2 ∈ Γ , and ω ∈ Γ ∗:

– (r1): 〈p, γ〉 call−−→ 〈q, γ1γ2〉
– (r2): 〈p, γ〉 ret−−→ 〈q, ε〉
– (r3): 〈p, γ〉 int−−→ 〈q, ω〉

Intuitively, a rule of the form 〈p, γ〉 call−−→ 〈q, γ1γ2〉 corresponds to a call state-

ment. Such a rule usually models a statement of the form γ
call proc−−−−−−→ γ2. In this

rule, γ is the control point of the program where the function call is made, γ1
is the entry point of the called procedure,and γ2 is the return point of the call.
A rule r2 models a return, whereas a rule r3 corresponds to a simple statement
(neither a call nor a return). A configuration of P is a pair 〈p, ω〉, where p is a
control location and ω ∈ Γ ∗ is the stack content. For technical reasons, we sup-
pose w.l.o.g. that the bottom stack symbol � is never popped from the stack, i.e.,
there is no rule in the form 〈p, �〉 t−→ 〈q, ω〉 ∈ Δ (t ∈ {call, ret, int}). P defines
a transition relation =⇒P (t ∈ {call, ret, int}) as follows: If 〈p, γ〉 t−→ 〈q, ω〉, then
for every ω′ ∈ Γ ∗, 〈p, γω′〉 =⇒P 〈q, ωω′〉. In other words, 〈q, ωω′〉 is an immediate
successor of 〈p, γω′〉. Let ∗=⇒P be the reflexive and transitive closure of =⇒P .

A run of P from 〈p0, ω0〉 is a sequence 〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉... where
〈pi, ωi〉 ∈ P × Γ ∗ s.t. for every i ≥ 0, 〈pi, ωi〉 =⇒P 〈pi+1, ωi+1〉. Given a con-
figuration 〈p, ω〉, let Traces(〈p, ω〉) be the set of all possible runs starting from
〈p, ω〉.

2.1 Global and Abstract Successors

Let π = 〈p0, ω0〉〈p1, ω1〉... be a run starting from 〈p0, ω0〉. Over π, two kinds of
successors are defined for every position 〈pi, ωi〉:
– global-successor : The global-successor of 〈pi, ωi〉 is 〈pi+1, ωi+1〉 where

〈pi+1, ωi+1〉 is an immediate successor of 〈pi, ωi〉.
– abstract-successor : The abstract-successor of 〈pi, ωi〉 is determined as follows:

• If 〈pi, ωi〉 =⇒P 〈pi+1, ωi+1〉 corresponds to a call statement, there are two
cases: (1) if 〈pi, ωi〉 has 〈pk, ωk〉 as a corresponding return-point in π,
then, the abstract successor of 〈pi, ωi〉 is 〈pk, ωk〉; (2) if 〈pi, ωi〉 does not
have any corresponding return-point in π, then, the abstract successor of
〈pi, ωi〉 is ⊥.
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• If 〈pi, ωi〉 =⇒P 〈pi+1, ωi+1〉 corresponds to a simple statement, the abstract
successor of 〈pi, ωi〉 is 〈pi+1, ωi+1〉.

• If 〈pi, ωi〉 =⇒P 〈pi+1, ωi+1〉 corresponds to a return statement, the abstract
successor of 〈pi, ωi〉 is defined as ⊥.

p0, ω0 p1, ω1

p2, ω2

p3, ω3 p4, ω4

p5, ω5

p6, ω6

p7, ω7

p8, ω8

p9, ω9

p10, ω10

pk, ωkint

call

call retglobal-successor

abstract-successor

Fig. 1. Two kinds of successors on a run

For example, in Fig. 1:

– The global-successors of 〈p1, ω1〉 and 〈p2, ω2〉 are 〈p2, ω2〉 and 〈p3, ω3〉 respec-
tively.

– The abstract-successors of 〈p2, ω2〉 and 〈p5, ω5〉 are 〈pk, ωk〉 and 〈p9, ω9〉
respectively.

Let 〈p, ω〉 be a configuration of a PDS P. A configuration 〈p′, ω′〉 is defined as
a global-successor of 〈p, ω〉 iff 〈p′, ω′〉 is a global-successor of 〈p, ω〉 over a run
π ∈ Traces(〈p, ω〉). Similarly, a configuration 〈p′, ω′〉 is defined as an abstract-
successor of 〈p, ω〉 iff 〈p′, ω′〉 is an abstract-successor of 〈p, ω〉 over a run π ∈
Traces(〈p, ω〉).

A global-path of P from 〈p0, ω0〉 is a sequence 〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉...
where 〈pi, ωi〉 ∈ P × Γ ∗ s.t. for every i ≥ 0, 〈pi+1, ωi+1〉 is a global-
successor of 〈pi, ωi〉. Similarly, an abstract-path of P from 〈p0, ω0〉 is a
sequence 〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉... where 〈pi, ωi〉 ∈ P × Γ ∗ s.t. for every
i ≥ 0, 〈pi+1, ωi+1〉 is an abstract-successor of 〈pi, ωi〉. For instance, in
Fig. 1, 〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉〈p3, ω3〉〈p4, ω4〉〈p5, ω5〉... is a global-path, while
〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉〈pk, ωk〉... is an abstract-path.

3 Malicious Behaviour Specification

In this section, we define the Stack Branching temporal Predicate logic of CAlls
and RETurns (SBPCARET) as an extension of BCARET [8] with variables and
regular predicates over the stack contents. The predicates contain variables that
can be quantified existentially or universally. Regular predicates are expressed by
regular variable expressions and are used to describe the stack content of PDSs.

3.1 Environments, Predicates and Regular Variable Expressions

Let X = {x1, ..., xn} be a finite set of variables over a finite domain D. Let
B : X ∪ D → D be an environment that associates each variable x ∈ X with
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a value d ∈ D s.t B(d) = d for every d ∈ D. Let B[x ← d] be an environment
obtained from B such that B[x ← d](x) = d and B[x ← d](y) = B(y) for every
y �= x. Let Absx(B) = {B′ ∈ B | ∀y ∈ X , y �= x,B(y) = B′(y)} be the function
that abstracts away the value of x. Let B be the set of all environments.

Let AP = {a, b, c, ...} be a finite set of atomic propositions. Let APD be a
finite set of atomic predicates of the form b(α1, ..., αm) such that b ∈ AP and
αi ∈ D for every 1 ≤ i ≤ m. Let APX be a finite set of atomic predicates
b(α1, ..., αn) such that b ∈ AP and αi ∈ X ∪ D for every 1 ≤ i ≤ n.

Let P = (P, Γ,Δ) be a Labelled PDS. A Regular Variable Expression (RVE)
e over X ∪ Γ is defined by e ::= ε | a ∈ X ∪ Γ | e + e | e.e | e∗. The language
L(e) of a RVE e is a subset of P × Γ ∗ × B and is defined as follows:

– L(ε) = {(〈p, ε〉, B) | p ∈ P,B ∈ B}
– for x ∈ X , L(x) = {(〈p, γ〉, B) | p ∈ P, γ ∈ Γ,B ∈ B s.t B(x) = γ}
– for γ ∈ Γ , L(γ) = {(〈p, γ〉, B) | p ∈ P,B ∈ B}
– L(e1.e2) = {(〈p, ω′ω′′〉, B) | (〈p, ω′〉, B) ∈ L(e1); (〈p, ω′′〉, B) ∈ L(e2)}
– L(e∗) = {(〈p, ω〉, B) | ω ∈ {v ∈ Γ ∗ | (〈p, v〉, B) ∈ L(e)}∗}.

3.2 The Stack Branching Temporal Predicate Logic of CAlls and
RETurns - SBPCARET

A SBPCARET formula is a BCARET formula where predicates and RVEs are
used as atomic propositions and where quantifiers are applied to variables. For
technical reasons, we assume w.l.o.g. that formulas are written in positive normal
form, where negations are applied only to atomic predicates, and we use the
release operator R as the dual of the until operator U . From now on, we fix a
finite set of variables X , a finite set of atomic propositions AP , a finite domain
D, and a finite set of RVEs V. A SBPCARET formula is defined as follows,
where v ∈ {g, a}, x ∈ X , e ∈ V, b(α1, ..., αn) ∈ APX :

ϕ := true | false | b(α1, ..., αn) | ¬b(α1, ..., αn) | e | ¬e | ϕ ∨ ϕ | ϕ ∧ ϕ | ∀xϕ |
∃xϕ | EXvϕ | AXvϕ | E[ϕUvϕ] | A[ϕUvϕ] | E[ϕRvϕ] | A[ϕRvϕ]

Let λ : P −→ 2APD be a labelling function which associates each control
location to a set of atomic predicates. Let ϕ be a SBPCARET formula over
AP . Let 〈p, ω〉 be a configuration of P. Then we say that P satisfies ϕ at 〈p, ω〉
(denoted by 〈p, ω〉 |=λ ϕ) iff there exists an environment B ∈ B such that 〈p, ω〉
satisfies ϕ under B (denoted by 〈p, ω〉 |=B

λ ϕ). The satisfiability relation of a
SBPCARET formula ϕ at a configuration 〈p0, ω0〉 under the environment B
w.r.t. the labelling function λ, denoted by 〈p0, ω0〉 �B

λ ϕ, is defined inductively
as follows:

– 〈p0, ω0〉 �B
λ true for every 〈p0, ω0〉

– 〈p0, ω0〉 �
B
λ false for every 〈p0, ω0〉

– 〈p0, ω0〉 �B
λ b(α1, ..., αn), iff b(B(α1), ..., B(αn)) ∈ λ(p0)
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– 〈p0, ω0〉 �B
λ ¬b(α1, ..., αn), iff b(B(α1), ..., B(αn)) /∈ λ(p0)

– 〈p0, ω0〉 �B
λ e iff (〈p0, ω0〉, B) ∈ L(e)

– 〈p0, ω0〉 �B
λ ¬e iff (〈p0, ω0〉, B) /∈ L(e)

– 〈p0, ω0〉 �B
λ ϕ1 ∨ ϕ2 iff (〈p0, ω0〉 �B

λ ϕ1 or 〈p0, ω0〉 �B
λ ϕ2)

– 〈p0, ω0〉 �B
λ ϕ1 ∧ ϕ2 iff (〈p0, ω0〉 �B

λ ϕ1 and 〈p0, ω0〉 �B
λ ϕ2)

– 〈p0, ω0〉 �B
λ ∀xϕ iff for every d ∈ D, 〈p0, ω0〉 �B[x←d]

λ ϕ

– 〈p0, ω0〉 �B
λ ∃xϕ iff there exists d ∈ D, 〈p0, ω0〉 �B[x←d]

λ ϕ
– 〈p0, ω0〉 �B

λ EXgϕ iff there exists a global-successor 〈p′, ω′〉 of 〈p0, ω0〉 such
that 〈p′, ω′〉 �B

λ ϕ
– 〈p0, ω0〉 �B

λ AXgϕ iff 〈p′, ω′〉 �B
λ ϕ for every global-successor 〈p′, ω′〉 of 〈p0, ω0〉

– 〈p0, ω0〉 �B
λ E[ϕ1U

gϕ2] iff there exists a global-path π = 〈p0, ω0〉〈p1, ω1〉
〈p2, ω2〉... of P starting from 〈p0, ω0〉 s.t. ∃i ≥ 0, 〈pi, ωi〉 �B

λ ϕ2 and for
every 0 ≤ j < i, 〈pj , ωj〉 �B

λ ϕ1

– 〈p0, ω0〉 �B
λ A[ϕ1U

gϕ2] iff for every global-path π =
〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉...of P starting from 〈p0, ω0〉, ∃i ≥ 0, 〈pi, ωi〉 �B

λ ϕ2

and for every 0 ≤ j < i, 〈pj , ωj〉 �B
λ ϕ1

– 〈p0, ω0〉 �B
λ E[ϕ1R

gϕ2] iff there exists a global-path π

= 〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉... of P starting from 〈p0, ω0〉 s.t. for every i ≥ 0,
if 〈pi, ωi〉 �

B
λ ϕ2 then there exists 0 ≤ j < i s.t. 〈pj , ωj〉 �B

λ ϕ1

– 〈p0, ω0〉 �B
λ A[ϕ1R

gϕ2] iff for every global-path π = 〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉...
of P starting from 〈p0, ω0〉, for every i ≥ 0, if 〈pi, ωi〉 �

B
λ ϕ2 then there exists

0 ≤ j < i s.t. 〈pj , ωj〉 �B
λ ϕ1

– 〈p0, ω0〉 �B
λ EXaϕ iff there exists an abstract-successor 〈p′, ω′〉 of 〈p0, ω0〉

such that 〈p′, ω′〉 �B
λ ϕ

– 〈p0, ω0〉 �B
λ AXaϕ iff 〈p′, ω′〉 �B

λ ϕ for every abstract-successor 〈p′, ω′〉 of
〈p0, ω0〉

– 〈p0, ω0〉 �B
λ E[ϕ1U

aϕ2] iff there exists an abstract-path π =
〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉... of P starting from 〈p0, ω0〉 s.t. ∃i ≥ 0, 〈pi, ωi〉 �B

λ ϕ2

and for every 0 ≤ j < i, 〈pj , ωj〉 �B
λ ϕ1

– 〈p0, ω0〉 �B
λ A[ϕ1U

aϕ2] iff for every abstract-path π = 〈p0, ω0〉〈p1, ω1〉
〈p2, ω2〉... of P, ∃i ≥ 0, 〈pi, ωi〉 �B

λ ϕ2 and for every 0 ≤ j < i, 〈pj , ωj〉 �B
λ ϕ1

– 〈p0, ω0〉 �B
λ E[ϕ1R

aϕ2] iff there exists an abstract-path π =
〈p0, ω0〉〈p1, ω1〉〈p2, ω2〉... of P starting from 〈p0, ω0〉 s.t. for every i ≥ 0, if
〈pi, ωi〉 �

B
λ ϕ2 then there exists 0 ≤ j < i s.t. 〈pj , ωj〉 �B

λ ϕ1

– 〈p0, ω0〉 �B
λ A[ϕ1R

aϕ2] iff for every abstract-path π = 〈p0, ω0〉〈p1, ω1〉
〈p2, ω2〉... of P starting from 〈p0, ω0〉, for every i ≥ 0, if 〈pi, ωi〉 �

B
λ ϕ2 then

there exists 0 ≤ j < i s.t. 〈pj , ωj〉 �B
λ ϕ1

Other SBPCARET operators can be expressed by the above operators:
EF gϕ = E[true Ugϕ], EF aϕ = E[true Uaϕ], AF gϕ = A[true Ugϕ], AF aϕ =
A[trueUaϕ],...

Closure. Given a SBPCARET formula ϕ, the closure Cl(ϕ) is the set of all sub-
formulae of ϕ, including ϕ. Let AP+(ϕ) = {b(α1, ..., αn) ∈ APX | b(α1, ..., αn) ∈
Cl(ϕ)}; AP−(ϕ) = {b(α1, ..., αn) ∈ APX | ¬b(α1, ..., αn) ∈ Cl(ϕ)}, Reg+(ϕ) =
{e ∈ V | e ∈ Cl(ϕ)}, Reg−(ϕ) = {e ∈ V | ¬e ∈ Cl(ϕ)}.
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4 SBPCARET Model-Checking for Pushdown Systems

In this section, we show how to do SBPCARET model-checking for PDSs. Let
then P be a PDS, ϕ be a SBPCARET formula, and V be the set of RVEs
occurring in ϕ. We follow the idea of [10] and use Variable Automata to represent
RVEs.

4.1 Variable Automata

Given a PDS P = (P, Γ,Δ) s.t. Γ ⊆ D, a Variable Automaton (VA) [10] is a
tuple (Q,Γ, δ, s, F ), where Q is a finite set of states, Γ is the input alphabet,
s ∈ Q is an initial state; F ⊆ Q is a finite set of accepting states; and δ is a finite
set of transition rules of the form p

α−→ {q1, ..., qn} where α can be x, ¬x, or γ,
for any x ∈ X and γ ∈ Γ .

Let B ∈ B. A run of VA on a word γ1, ..., γm under B is a tree of height m
whose root is labelled by the initial state s, and each node at depth k labelled
by a state q has h children labelled by p1, ..., ph respectively, such that:

– either q
γk−→ {p1, ..., ph} ∈ δ and γk ∈ Γ ;

– or q
x−→ {p1, ..., ph} ∈ δ, x ∈ X and B(x) = γk;

– or q
¬x−−→ {p1, ..., ph} ∈ δ, x ∈ X and B(x) �= γk.

A branch of the tree is accepting iff the leaf of the branch is an accepting
state. A run is accepting iff all its branches are accepting. A word ω ∈ Γ ∗ is
accepted by a VA under an environment B ∈ B iff the VA has an accepting run
on the word ω under the environment B.

The language of a VA M , denoted by L(M), is a subset of (P × Γ ∗) × B.
(〈p, ω〉, B) ∈ L(M) iff M accepts the word ω under the environment B.

Theorem 1. [10] For every regular expression e ∈ V, we can compute in poly-
nomial time a Variable Automaton M s.t. L(M) = L(e).

Theorem 2. [10] VAs are closed under boolean operations.

4.2 Symbolic Alternating Büchi Pushdown Systems (SABPDSs)

Definition 2. A Symbolic Alternating Büchi Pushdown System (SABPDS) is
a tuple BP = (P, Γ,Δ, F ), where P is a set of control locations, Γ ⊆ D is stack
alphabet, F ⊆ P × 2B is a set of accepting control locations and Δ is a finite set

of transitions of the form 〈p, γ〉 R

↪−→ {〈p1, ω1〉, ..., 〈pn, ωn〉} where p ∈ P , γ ∈ Γ ,
for every 1 ≤ i ≤ n: pi ∈ P , ωi ∈ Γ ∗; and R : (B)n → 2B is a function that
maps a tuple of environments (B1, ..., Bn) to a set of environments.

A configuration of a SABPDS BP is a tuple 〈�p,B�, ω〉, where p ∈ P is the
current control location, B ∈ B is an environment and ω ∈ Γ ∗ is the current stack

content. Let 〈p, γ〉 R

↪−→ {〈p1, ω1〉, ..., 〈pn, ωn〉} be a rule of Δ, then, for every ω ∈



BCARET Model Checking for Malware Detection 281

Γ ∗, B,B1, ..., Bn ∈ B, if B ∈ R(B1, ..., Bn), then the configuration 〈�p,B�, γω〉
(resp. {〈�p1, B1�, ω1ω〉, ..., 〈�pn, Bn�, ωnω〉}) is an immediate predecessor (resp.
successor) of {〈�p1, B1�, ω1ω〉, ..., 〈�pn, Bn�, ωnω〉} (resp. 〈�p,B�, γω〉).

A run ρ of a SABPDS BP starting form an initial configuration
〈�p0, B0�, ω0〉 is a tree whose root is labelled by 〈�p0, B0�, ω0〉, and whose
other nodes are labelled by elements in P × B × Γ ∗. If a node of ρ
is labelled by a configuration 〈�p,B�, ω〉 and has n children labelled by
〈�p1, B1�, ω1〉, ..., 〈�pn, Bn�, ωn〉 respectively, then, 〈�p,B�, ω〉 must be a prede-
cessor of {〈�p1, B1�, ω1〉, ..., 〈�pn, Bn�, ωn〉} in BP. A path of a run ρ is an infinite
sequence of configurations c0c1c2... s.t. c0 is the root of ρ and ci+1 is one of the
children of ci for every i ≥ 0. A path is accepting iff it visits infinitely often
configurations with control locations in F . A run ρ is accepting iff every path
of ρ is accepting. The language of BP, L(BP), is the set of configurations c s.t.
BP has an accepting run starting from c.

BP defines the reachability relation =⇒BP : 2(P×B)×Γ ∗ → 2(P×B)×Γ ∗
as fol-

lows: (1) c =⇒BP {c} for every c ∈ P × B × Γ ∗, (2) c =⇒BPC if C is an immediate
successor of c; (3) if c =⇒BP {c1, c2, ..., cn} and ci =⇒BP Ci for every 1 ≤ i ≤ n,
then c =⇒BP

⋃n
i=1 Ci. Given c0 =⇒BP C ′, then, BP has an accepting run from c0

iff BP has an accepting run from c′ for every c′ ∈ C ′.

Theorem 3. [10] The membership problem of SABPDS can be solved effectively.

Functions of R. In what follows, we define several functions of R which will be
used in the next sections. These functions were first defined in [10].

1. id(B) = {B}. This is the identity function.
2.

equal(B1, ..., Bn) =
{

B1 if Bi = Bj for every 1 ≤ i, j ≤ n;
∅ otherwise

This function checks whether all the environments are equal and returns {B1}
(which is also equal to Bi for every i). Otherwise, it returns the emptyset.

3.

meetx{c1,...,cn}(B1, ..., Bn) =
⎧
⎪⎨

⎪⎩

Absx(B1) if Bi(x) = ci for 1 ≤ i ≤ n,

and Bi(y) = Bj(y) for y �= x, 1 ≤ i, j ≤ n;
∅ otherwise

This function checks whether (1) Bi(x) = ci for every 1 ≤ i ≤ n (2) for every
y �= x; every 1 ≤ i, j ≤ n Bi(y) = Bj(y). If the conditions are satisfied, it
returns Absx(B1)1, otherwise it returns the emptyset.

1 Absx(B1) is as defined in Sect. 3.1.
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4.

joinx
c (B1, ..., Bn) =

⎧
⎪⎨

⎪⎩

B1 if Bi(x) = c for 1 ≤ i ≤ n

and Bi = Bj for 1 ≤ i, j ≤ n;
∅ otherwise

This function checks whether Bi(x) = c for every i. If this condition is satis-
fied, equal(B1, ..., Bn) is returned, otherwise, the emptyset is returned.

5.

join¬x
c (B1, ..., Bn) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B1 if Bi(x) �= c for 1 ≤ i ≤ n

and Bi = Bj for 1 ≤ i, j ≤ n;
∅ otherwise

This function checks whether Bi(x) �= c for every i. If this condition is satis-
fied, equal(B1, ..., Bn) is returned, otherwise, the emptyset is returned.

4.3 From SBPCARET Model Checking of PDSs to the Membership
Problem in SABPDSs

Let P = (P, Γ,Δ) be a PDS. We suppose w.l.o.g. that P has a bottom stack
symbol � that is never popped from the stack. Let AP be a set of atomic
propositions. Let ϕ be a SBPCARET formula over AP , λ : P −→ 2APD be
a labelling function. Given a configuration 〈p0, ω0〉, we propose in this section
an algorithm to check whether 〈p0, ω0〉 �λ ϕ, i.e., whether there exists an envi-
ronment B s.t. 〈p0, ω0〉 �B

λ ϕ. Intuitively, we compute an SABPDS BPϕ s.t.
〈p, ω〉 �B

λ ϕ iff 〈��p, ϕ�, B�, ω〉 ∈ L(BPϕ) for every p ∈ P , ω ∈ Γ ∗, B ∈ B.
Then, to check if 〈p0, ω0〉 �λ ϕ, we will check whether there exists a B ∈ B s.t.
〈��p0, ϕ�, B�, ω0〉 ∈ L(BPϕ).

Let Reg+(ϕ) = {e1, ..., ek} and Reg−(ϕ) = {ek+1, ..., em}. Using Theorems
1 and 2; for every 1 ≤ i ≤ k, we can compute a VA Mei

= (Qei
, Γ, δei

, sei
, Fei

)
s.t. L(Mei

) = L(ei). In addition, for every k + 1 ≤ j ≤ m, we can compute a
VA M¬ej

= (Q¬ej
, Γ, δ¬ej

, s¬ej
, F¬ej

) s.t. L(M¬ej
) = (P × Γ ∗) × B \ L(ej). Let

M be the union of all these automata, S and F be respectively the union of all
states and final states of these automata.

Let BPϕ = (P ′, Γ ′,Δ′, F ) be the SABPDS defined as follows:

– P ′ = P ∪ (P × Cl(ϕ)) ∪ S ∪ {p⊥}
– Γ ′ = Γ ∪ (Γ × Cl(ϕ)) ∪ {γ⊥}
– F = F1 ∪ F2 ∪ F3 ∪ F4 where
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• F3 = P × ClR(ϕ) × B where ClR(ϕ) is the set of formulas of Cl(ϕ) in the
form E[ϕ1R

vϕ2] or A[ϕ1R
vϕ2] (v ∈ {g, a})

• F4 = F × B

The transition relation Δ′ is the smallest set of transition rules defined as
follows: For every p ∈ P , φ ∈ Cl(ϕ), γ ∈ Γ and t ∈ {call, ret, int}:

(���1) If φ = b(α1, ..., αn), then, 〈�p, φ�, γ〉 id
↪−→ 〈�p, φ�, γ〉 ∈ Δ′

(���2) If φ = ¬b(α1, ..., αn), then, 〈�p, φ�, γ〉 id
↪−→ 〈�p, φ�, γ〉 ∈ Δ′

(���3) If φ = φ1 ∧ φ2, then, 〈�p, φ�, γ〉 equal
↪−−−→ [〈�p, φ1�, γ〉, 〈�p, φ2�, γ〉] ∈ Δ′

(���4) If φ = φ1 ∨ φ2, then, 〈�p, φ�, γ〉 id
↪−→ 〈�p, φ1�, γ〉 ∈ Δ′ and 〈�p, φ�, γ〉 id

↪−→
〈�p, φ2�, γ〉 ∈ Δ′

(���5) If φ = ∃xφ1, then, 〈�p, φ�, γ〉
meetx

{c}
↪−−−−−→ 〈�p, φ1�, γ〉 ∈ Δ′ for every c ∈ D

(���6) If φ = ∀xφ1, then, 〈�p, φ�, γ〉 meetx
D

↪−−−−→ [〈�p, φ1�, γ〉, ..., 〈�p, φ1�, γ〉] ∈ Δ′ where
〈�p, φ1�, γ〉 is repeated m times in the right-hand side, where m is the number
of elements in D

(���7) If φ = EXgφ1, then

〈�p, φ�, γ〉 id
↪−→ 〈�q, φ1�, ω〉 ∈ Δ′ for every 〈p, γ〉 t−→ 〈q, ω〉 ∈ Δ

(���8) If φ = AXgφ1, then,

〈�p, φ�, γ〉 equal
↪−−−→ [〈�q1, φ1�, ω1〉, ..., 〈�qn, φ1�, ωn〉] ∈ Δ′, where for every 1 ≤

i ≤ n, 〈p, γ〉 t−→ 〈qi, ωi〉 ∈ Δ and these transitions are all the transitions of Δ

that are in the form 〈p, γ〉 t−→ 〈q, ω〉 that have 〈p, γ〉 on the left hand side.
(���9) If φ = EXaφ1, then,

(a) 〈�p, φ�, γ〉 id
↪−→ 〈q, γ′�γ′′, φ1�〉 ∈ Δ′ for every 〈p, γ〉 call−−→ 〈q, γ′γ′′〉 ∈ Δ

(b) 〈�p, φ�, γ〉 id
↪−→ 〈�q, φ1�, ω〉 ∈ Δ′ for every 〈p, γ〉 int−−→ 〈q, ω〉 ∈ Δ

(c) 〈�p, φ�, γ〉 id
↪−→ 〈p⊥, γ⊥〉 ∈ Δ′ for every 〈p, γ〉 ret−−→ 〈q′, ε〉 ∈ Δ

(���10) If φ = AXaφ1, then,

〈�p, φ�, γ〉 equal
↪−−−→ [〈p1, γ′

1�γ
′′
1 , φ1�〉, ..., 〈pm, γ′

m�γ′′
m, φ1�〉, 〈�q1, φ1�, ω1〉, ..., 〈�qn,

φ1�, ωn〉, 〈p⊥, γ⊥〉, ..., 〈p⊥, γ⊥〉] ∈ Δ′, where 〈p⊥, γ⊥〉 is repeated k times in
the right-hand side s.t.:
(a) for every 1 ≤ i ≤ m, 〈p, γ〉 call−−→ 〈pi, γ

′
iγ

′′
i 〉 ∈ Δ and these transitions are

all the transitions of Δ that are in the form 〈p, γ〉 call−−→ 〈q, γ′γ′′〉 that have
〈p, γ〉 on the left hand side.

(b) for every 1 ≤ i ≤ n, 〈p, γ〉 int−−→ 〈qi, ωi〉 ∈ Δ and these transitions are all
the transitions of Δ that are in the form 〈p, γ〉 int−−→ 〈q, ω〉 that have 〈p, γ〉
on the left hand side.

(c) for every 1 ≤ i ≤ k, 〈p, γ〉 ret−−→ 〈q′
i, ε〉 ∈ Δ and these transitions are all the

transitions of Δ that are in the form 〈p, γ〉 ret−−→ 〈q′, ε〉 that have 〈p, γ〉 on
the left hand side.

(���11) If φ = E[φ1U
gφ2], then,
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(a) 〈�p, φ�, γ〉 id
↪−→ 〈�p, φ2�, γ〉 ∈ Δ′

(b) 〈�p, φ�, γ〉 equal
↪−−−→ [〈�p, φ1�, γ〉, 〈�q, φ�, ω〉] ∈ Δ′ for every 〈p, γ〉 t−→ 〈q, ω〉 ∈ Δ

(���12) If φ = E[φ1U
aφ2], then,

(a) 〈�p, φ�, γ〉 id
↪−→ 〈�p, φ2�, γ〉 ∈ Δ′

(b) 〈�p, φ�, γ〉 equal
↪−−−→ [〈�p, φ1�, γ〉, 〈q, γ′�γ′′, φ�〉] ∈ Δ′ for every 〈p, γ〉 call−−→

〈q, γ′γ′′〉 ∈ Δ

(c) 〈�p, φ�, γ〉 equal
↪−−−→ [〈�p, φ1�, γ〉, 〈�q, φ�, ω〉] ∈ Δ′ for every 〈p, γ〉 int−−→

〈q, ω〉 ∈ Δ

(d) 〈�p, φ�, γ〉 id
↪−→ 〈p⊥, γ⊥〉 ∈ Δ′ for every 〈p, γ〉 ret−−→ 〈q′, ε〉 ∈ Δ

(���13) If φ = A[φ1U
gφ2], then,

(a) 〈�p, φ�, γ〉 id
↪−→ 〈�p, φ2�, γ〉 ∈ Δ′

(b) 〈�p, φ�, γ〉 equal
↪−−−→ [〈�p, φ1�, γ〉; 〈�q1, φ�, ω1〉, ..., 〈�qn, φ�, ωn〉] ∈ Δ′ where for

every 1 ≤ i ≤ n,〈p, γ〉 t−→ 〈qi, ωi〉 ∈ Δ and these transitions are all the
transitions of Δ that are in the form 〈p, γ〉 t−→ 〈q, ω〉 that have 〈p, γ〉 on
the left hand side.

(���14) If φ = A[φ1U
aφ2], then,

(a) 〈�p, φ�, γ〉 id
↪−→ 〈�p, φ2�, γ〉 ∈ Δ′

(b) 〈�p, φ�, γ〉 equal
↪−−−→ [〈�p, φ1�, γ〉; 〈p1, γ′

1�γ
′′
1 , φ�〉, ..., 〈pm, γ′

m�γ′′
m, φ�〉;

〈�q1, φ�, ω1〉, ..., 〈�qn, φ�, ωn〉, 〈p⊥, γ⊥〉, ..., 〈p⊥, γ⊥〉] ∈ Δ′, where 〈p⊥, γ⊥〉
is repeated k times in the right-hand side s.t.:

– for every 1 ≤ i ≤ m, 〈p, γ〉 call−−→ 〈pi, γ
′
iγ

′′
i 〉 ∈ Δ and these transitions

are all the transitions of Δ that are in the form 〈p, γ〉 call−−→ 〈q, γ′γ′′〉
that have 〈p, γ〉 on the left hand side.

– for every 1 ≤ i ≤ n, 〈p, γ〉 int−−→ 〈qi, ωi〉 ∈ Δ and these transitions are
all the transitions of Δ that are in the form 〈p, γ〉 int−−→ 〈q, ω〉 that
have 〈p, γ〉 on the left hand side.

– for every 1 ≤ i ≤ k, 〈p, γ〉 ret−−→ 〈q′
i, ε〉 ∈ Δ and these transitions are all

the transitions of Δ that are in the form 〈p, γ〉 ret−−→ 〈q′, ε〉 that have
〈p, γ〉 on the left hand side.

(���15) If φ = E[φ1R
gφ2], then, we add to Δ′ the rule:

(a) 〈�p, φ�, γ〉 equal
↪−−−→ [〈�p, φ2�, γ〉, 〈�p, φ1�, γ〉] ∈ Δ′

(b) 〈�p, φ�, γ〉 equal
↪−−−→ [〈�p, φ2�, γ〉, 〈�q, φ�, ω〉] ∈ Δ′ for every 〈p, γ〉 t−→

〈q, ω〉 ∈ Δ
(���16) If φ = A[φ1R

gφ2], then, we add to Δ′ the rule:

(a) 〈�p, φ�, γ〉 equal
↪−−−→ [〈�p, φ2�, γ〉, 〈�p, φ1�, γ〉] ∈ Δ′

(b) 〈�p, φ�, γ〉 equal
↪−−−→ [〈�p, φ2�, γ〉; 〈�q1, φ�, ω1〉, ..., 〈�qn, φ�, ωn〉] ∈ Δ′ where for

every 1 ≤ i ≤ n, 〈p, γ〉 t−→ 〈qi, ωi〉 ∈ Δ and these transitions are all the
transitions of Δ that are in the form 〈p, γ〉 t−→ 〈q, ω〉 that have 〈p, γ〉 on
the left hand side.
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(���17) If φ = E[φ1R
aφ2], then,

(a) 〈�p, φ�, γ〉 equal
↪−−−→ [〈�p, φ2�, γ〉, 〈�p, φ1�, γ〉] ∈ Δ′

(b) 〈�p, φ�, γ〉 equal
↪−−−→ [〈�p, φ2�, γ〉, 〈q, γ′�γ′′, φ�〉] ∈ Δ′ for every 〈p, γ〉 call−−→

〈q, γ′γ′′〉 ∈ Δ

(c) 〈�p, φ�, γ〉 equal
↪−−−→ [〈�p, φ2�, γ〉, 〈�q, φ�, ω〉] ∈ Δ′ for every 〈p, γ〉 int−−→

〈q, ω〉 ∈ Δ

(d) 〈�p, φ�, γ〉 id
↪−→ 〈p⊥, γ⊥〉 ∈ Δ′ for every 〈p, γ〉 ret−−→ 〈q′, ε〉 ∈ Δ

(���18) If φ = A[φ1R
aφ2], then,

(a) 〈�p, φ�, γ〉 equal
↪−−−→ [〈�p, φ2�, γ〉, 〈�p, φ1�, γ〉] ∈ Δ′

(b) 〈�p, φ�, γ〉 equal
↪−−−→ [〈�p, φ2�, γ〉; 〈p1, γ′

1�γ
′′
1 , φ�〉, ..., 〈pm, γ′

m�γ′′
m, φ�〉;

〈�q1, φ�, ω1〉, ..., 〈�qn, φ�, ωn〉, 〈p⊥, γ⊥〉, ..., 〈p⊥, γ⊥〉] ∈ Δ′, where 〈p⊥, γ⊥〉
is repeated k times in the right-hand side s.t.:

– for every 1 ≤ i ≤ m, 〈p, γ〉 call−−→ 〈pi, γ
′
iγ

′′
i 〉 ∈ Δ and these transitions

are all the transitions of Δ that are in the form 〈p, γ〉 call−−→ 〈q, γ′γ′′〉
that have 〈p, γ〉 on the left hand side.

– for every 1 ≤ i ≤ n, 〈p, γ〉 int−−→ 〈qi, ωi〉 ∈ Δ and these transitions are
all the transitions of Δ that are in the form 〈p, γ〉 int−−→ 〈q, ω〉 that
have 〈p, γ〉 on the left hand side.

– for every 1 ≤ i ≤ k, 〈p, γ〉 ret−−→ 〈q′
i, ε〉 ∈ Δ and these transitions are all

the transitions of Δ that are in the form 〈p, γ〉 ret−−→ 〈q′, ε〉 that have
〈p, γ〉 on the left hand side.

(���19) for every 〈p, γ〉 ret−−→ 〈q, ε〉 ∈ Δ:

– 〈q, �γ′′, φ1�〉 id
↪−→ 〈�q, φ1�, γ

′′〉 ∈ Δ′ for every γ′′ ∈ Γ , φ1 ∈ Cl(ϕ)

(���20) 〈p⊥, γ⊥〉 id
↪−→ 〈p⊥, γ⊥〉 ∈ Δ′

(���21) for every 〈p, γ〉 t−→ 〈q, ω〉 ∈ Δ: 〈p, γ〉 id
↪−→ 〈q, ω〉 ∈ Δ′

(���22) If φ = e, e is a regular expression, then, 〈�p, φ�, γ〉 id
↪−→ 〈se, γ〉 ∈ Δ′

(���23) If φ = ¬e, e is a regular expression, then, 〈�p, φ�, γ〉 id
↪−→ 〈s¬e, γ〉 ∈ Δ′

(���24) for every transition q
α−→ {q1, .., qn} in M: 〈q, γ〉 R

↪−→ [〈q1, ε〉, ..., 〈qn, ε〉] ∈ Δ′,
where:
(a) R = equal iff α = γ
(b) R = joinx

γ iff α = x ∈ X
(c) R = join¬x

γ iff α = ¬x and x ∈ X
(���25) for every q ∈ F , 〈q, �〉 id

↪−→ 〈q, �〉 ∈ Δ′

Roughly speaking, the SABPDS BPϕ is a kind of product between P and the
SBPCARET formula ϕ which ensures that BPϕ has an accepting run from
〈��p, ϕ�, B�, ω〉 iff the configuration 〈p, ω〉 satisfies ϕ under the environment B.
The form of the control locations of BPϕ is ��p, φ�, B� where φ ∈ Cl(ϕ), B ∈ B.
Let us explain the intuition behind our construction:
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– If φ = b(α1, ..., αn), then, for every ω ∈ Γ ∗, 〈p, ω〉 �B
λ φ iff

b(B(α1), ..., B(αn)) ∈ λ(p). Thus, for such a B, BPϕ should have an
accepting run from 〈��p, b(α1, ..., αn)�, B�, ω〉 iff b(B(α1), ..., B(αn)) ∈ λ(p).
This is ensured by the transition rules in (���1) which add a loop at
〈��p, b(α1, ..., αn)�, B�, ω〉 and the fact that ��p, b(α1, ..., αn)�, B� ∈ F
(because it is in F1). The function id in (���1) ensures that the environments
before and after are the same.

– If φ = ¬b(α1, ..., αn), then, for every ω ∈ Γ ∗, 〈p, ω〉 �B
λ φ iff

b(B(α1), ..., B(αn)) /∈ λ(p). Thus, for such a B, BPϕ should have an
accepting run from 〈��p,¬b(α1, ..., αn)�, B�, ω〉 iff b(B(α1), ..., B(αn)) /∈ λ(p).
This is ensured by the transition rules in (���2) which add a loop at
〈��p,¬b(α1, ..., αn)�, B�, ω〉 and the fact that ��p,¬b(α1, ..., αn)�, B� ∈ F
(because it is in F2). The function id in (���2) ensures that the environments
before and after are the same.

– If φ = φ1 ∧ φ2, then, for every ω ∈ Γ ∗, 〈p, ω〉 �B
λ φ iff (〈p, ω〉 �B

λ φ1 and
〈p, ω〉 �B

λ φ2). This is ensured by the transition rules in (���3) stating that
BPϕ has an accepting run from 〈��p, φ1∧φ2�, B�, ω〉 iff BPϕ has an accepting
run from both 〈��p, φ1�, B�, ω〉 and 〈��p, φ2�, B�, ω〉. (���4) is similar to (���3).

– If φ = ∃xφ1, then, for every ω ∈ Γ ∗, 〈p, ω〉 �B
λ φ iff there exists c ∈ D

s.t. 〈p, ω〉 �B[x←c]
λ φ1. This is ensured by the transition rules in (���5) stating

that BPϕ has an accepting run from 〈��p,∃xφ1�, B�, ω〉 iff there exists c ∈
D s.t. BPϕ has an accepting run from 〈��p, φ1�, B[x ← c]�, ω〉 since B ∈
meetx{c}(B[x ← c])

– If φ = ∀xφ1, then, for every ω ∈ Γ ∗, 〈p, ω〉 �B
λ φ iff for every c ∈ D,

〈p, ω〉 �B[x←c]
λ φ1. This is ensured by the transition rules in (���6) stating that

BPϕ has an accepting run from 〈��p,∀xφ1�, B�, ω〉 iff for every c ∈ D, BPϕ

has an accepting run from 〈��p, φ1�, B[x ← c]�, ω〉 since if D = {c1, ..., cm},
then, B ∈ meetxD(B[x ← c1], ..., B[x ← cm])

– If φ = EXgφ1, then, for every ω ∈ Γ ∗, 〈p, ω〉 �B
λ φ iff there exists an

immediate successor 〈p′, ω′〉 of 〈p, ω〉 s.t. 〈p′, ω′〉 �B
λ φ1. This is ensured by

the transition rules in (���7) stating that BPϕ has an accepting run from
〈��p,EXgφ1�, B�, ω〉 iff there exists an immediate successor 〈p′, ω′〉 of 〈p, ω〉
s.t. BPϕ has an accepting run from 〈��p′, φ1�, B�, ω′〉. (���8) is similar to (���7).

– If φ = E[φ1U
gφ2], then, for every ω ∈ Γ ∗, 〈p, ω〉 �B

λ φ iff 〈p, ω〉 �B
λ φ2

or (〈p, ω〉 �B
λ φ1 and there exists an immediate successor 〈p′, ω′〉 of 〈p, ω〉

s.t. 〈p′, ω′〉 �B
λ φ). This is ensured by the transition rules in (���11) stating

that BPϕ has an accepting run from 〈��p,E[φ1U
gφ2]�, B�, ω〉 iff BPϕ has an

accepting run from 〈��p, φ2�, B�, ω〉 (by the rules in (���11)(a) or (BPϕ has an
accepting run from both 〈��p, φ1�, B�, ω〉 and 〈��p′, φ�, B�, ω′〉 where 〈p′, ω′〉 is
an immediate successor of 〈p, ω〉) (by the rules in (���11)(b)). (���13) is similar
to (���11).

– If φ = E[φ1R
gφ2], then, for every ω ∈ Γ ∗, 〈p, ω〉 �B

λ φ iff (〈p, ω〉 �B
λ φ2 and

〈p, ω〉 �B
λ φ1) or (〈p, ω〉 �B

λ φ2 and there exists an immediate successor 〈p′, ω′〉
of 〈p, ω〉 s.t. 〈p′, ω′〉 �B

λ φ). This is ensured by the transition rules in (���15)
stating that BPϕ has an accepting run from 〈��p,E[φ1R

gφ2]�, B�, ω〉 iff BPϕ
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has an accepting run from both 〈��p, φ2�, B�, ω〉 and 〈��p, φ1�, B�, ω〉 (by the
rules in (���15)(a)); or BPϕ has an accepting run from both 〈��p, φ2�, B�, ω〉
and ��p′, φ�, B�, ω′〉 where 〈p′, ω′〉 is an immediate successor of 〈p, ω〉 (by the
rules in (���15)(b)). In addition, for Rg formulas, the stop condition is not
required, i.e, for a formula φ1R

gφ2 that is applied to a specific run, we don’t
require that φ1 must eventually hold. To ensure that the runs on which φ2

always holds are accepted, we add ��p, φ�, B� to the Büchi accepting condition
F (via the subset F3 of F ). (���16) is similar to (���15).

– If φ = EXaφ1, then, for every ω ∈ Γ ∗, 〈p, ω〉 �B
λ φ iff there exists an abstract-

successor 〈pk, ωk〉 of 〈p, ω〉 s.t. 〈pk, ωk〉 �B
λ φ1 (A1) . Let π ∈ Traces(〈p, ω〉)

be a run starting from 〈p, ω〉 on which 〈pk, ωk〉 is the abstract-successor of
〈p, ω〉. Over π, let 〈p′, ω′〉 be the immediate successor of 〈p, ω〉. In what follows,
we explain how we can ensure this.

call

EXaφ1

ret

return-point

γ , φ1encoded & passed down

p, ω

p , ω pk−1, ωk−1

pk, ωk

Fig. 2. 〈p, ω〉 =⇒P 〈p′, ω′〉 corresponds to a call statement

1. Firstly, we show that for every abstract-successor 〈pk, ωk〉 �= ⊥ of 〈p, ω〉,
〈��p,EXaφ1�, B�, ω〉 =⇒BPϕ

〈��pk, φ1�, B�, ωk〉 where B ∈ B. There are two pos-
sibilities:

• If 〈p, ω〉 =⇒P 〈p′, ω′〉 corresponds to a call statement. Let us consider Fig. 2
to explain this case. 〈��p, φ�, B�, ω〉 =⇒BPϕ 〈��pk, φ1�, B�, ωk〉 is ensured by the
rules in (���9)(a), the rules in (���21) and the rules in (���19) as follows: rules in
(���9)(a) allow to record φ1 in the return point of the call, rules in (���21) allow
to mimic the run of the PDS P and rules in (���19) allow to extract and put
back φ1 when the return-point is reached. In what follows, we show in more
details how this works: Let 〈p, γ〉 call−−→ 〈p′, γ′γ′′〉 be the rule associated with
the transition 〈p, ω〉 =⇒P 〈p′, ω′〉, then we have ω = γω′′ and ω′ = γ′γ′′ω′′.
Let 〈pk−1, ωk−1〉 =⇒P 〈pk, ωk〉 be the transition that corresponds to the
ret statement of this call on π.Let then 〈pk−1, β〉 ret−−→ 〈pk, ε〉 ∈ Δ be the
corresponding return rule. Then, we have necessarily ωk−1 = βγ′′ω′′, since
as explained in Sect. 2, γ′′ is the return address of the call. After applying
this rule, ωk = γ′′ω′′. In other words, γ′′ will be the topmost stack symbol
at the corresponding return point of the call. So, in order to ensure that
〈��p, φ�, B�, ω〉 =⇒BPϕ

〈��pk, φ1�, B�, ωk〉, we proceed as follows: At the call
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〈p, γ〉 call−−→ 〈p′, γ′γ′′〉, we encode the formula φ1 into γ′′ by the rule in (���9)(a)

stating that 〈�p,EXaφ1�, γ〉 id
↪−→ 〈p′, γ′�γ′′, φ1�〉 ∈ Δ′. This allows to record

φ1 in the corresponding return point of the stack. After that, the rules in
(���21) allow BPϕ to mimic the run π of P from 〈p′, ω′〉 till the corresponding
return-point of this call, where �γ′′, φ1� is the topmost stack symbol. More
specifically, the following sequence of P: 〈p′, γ′γ′′ω′′〉 ∗=⇒P 〈pk−1, βγ′′ω′′〉 ∗=⇒P
〈pk, γ′′ω′′〉 will be mimicked by the following sequence of BPϕ: 〈�p′, B�,
γ′�γ′′, φ1�ω

′′〉 =⇒BPϕ
〈�pk−1, B�, β�γ′′, φ1�ω

′′〉 =⇒BPϕ
〈�pk, B�, �γ′′, φ1�ω

′′〉
using the rules of (���21). At the return-point, we extract φ1 from
the stack and encode it into pk by adding the transition rules

in (���19) 〈pk, �γ′′, φ1�〉 id
↪−→ 〈�pk, φ1�, γ

′′〉. Therefore, we obtain that
〈��p, φ�, B�, ω〉 =⇒BPϕ

〈��pk, φ1�, B�, ωk〉. The property holds for this case.
• If 〈p, ω〉 =⇒P 〈p′, ω′〉 corresponds to a simple statement. Then, the

abstract successor of 〈p, ω〉 is its immediate successor 〈p′, ω′〉. Thus,
we get that 〈pk, ωk〉 = 〈p′, ω′〉. From the transition rules (���9)(b),
we get that 〈��p,EXaφ1�, B�, ω〉 =⇒BPϕ

〈��p′, φ1�, B�, ω′〉. Therefore,
〈��p,EXaφ1�, B�, ω〉 =⇒BPϕ

〈��pk, φ1�, B�, ωk〉. The property holds for this
case.

2. Now, let us consider the case where 〈pk, ωk〉, the abstract successor of 〈p, ω〉,
is ⊥. This case occurs when 〈p, ω〉 =⇒P 〈p′, ω′〉 corresponds to a return state-
ment. Then, one abstract successor of 〈p, ω〉 is ⊥. Note that ⊥ does not satisfy
any formula, i.e., ⊥ does not satisfy φ1. Therefore, from 〈��p,EXaφ1�, B�, ω〉,
we need to ensure that the path of BPϕ reflecting the possibility in (A1) that
〈pk, ωk〉 �B

λ φ1 is not accepted. To do this, we exploit additional trap con-
figurations. We use p⊥ and γ⊥ as trap control location and trap stack sym-
bol to obtain these trap configurations. To be more specific, let 〈p, γ〉 ret−−→
〈p′, ε〉 be the rule associated with the transition 〈p, ω〉 =⇒P 〈p′, ω′〉, then
we have ω = γω′′ and ω′ = ω′′. We add the transition rule in (���9)(c) to
allow 〈��p,EXaφ1�, B�, ω〉 =⇒BPϕ 〈�p⊥, B�, γ⊥ω′′〉. Since a run of BPϕ includes
only infinite paths, we equip these trap configurations with self-loops by the
transition rules in (���20), i.e., 〈�p⊥, B�, γ⊥ω′′〉 =⇒BPϕ

〈�p⊥, B�, γ⊥ω′′〉. As a
result, we obtain a corresponding path in BPϕ: 〈��p,EXaφ1�, B�, ω〉 =⇒BPϕ

〈�p⊥, B�, γ⊥ω′′〉 =⇒BPϕ
〈�p⊥, B�, γ⊥ω′′〉. Note that this path is not accepted by

BPϕ because �p⊥, B� /∈ F .
In summary, for every abstract-successor 〈pk, ωk〉 of 〈p, ω〉, if 〈pk, ωk〉 �= ⊥,

then, 〈��p,EXaφ1�, B�, ω〉 =⇒BPϕ
〈��pk, φ1�, B�, ωk〉; otherwise 〈��p,

EXaφ1�, B�, ω〉 =⇒BPϕ 〈�p⊥, B�, γ⊥ω′′〉 =⇒BPϕ 〈�p⊥, B�, γ⊥ω′′〉 which is not
accepted by BPϕ. Therefore, (A1) is ensured by the transition rules in (���9)
stating that BPϕ has an accepting run from 〈��p,EXaφ1�, B�, ω〉 iff there exists
an abstract successor 〈pk, ωk〉 of 〈p, ω〉 s.t. BPϕ has an accepting run from
〈��pk, φ1�, B�, ωk〉.

– If φ = AXaφ1: this case is ensured by the transition rules in (���10) together
with (���19) and (���21). The intuition of (���10) is similar to that of (���9).
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– If φ = E[φ1U
aφ2], then, for every ω ∈ Γ ∗, 〈p, ω〉 �B

λ φ iff 〈p, ω〉 �B
λ φ2 or

(〈p, ω〉 �B
λ φ1 and there exists an abstract successor 〈pk, ωk〉 of 〈p, ω〉 s.t.

〈pk, ωk〉 �B
λ φ) (A2) . Let π ∈ Traces(〈p, ω〉) be a run starting from 〈p, ω〉 on

which 〈pk, ωk〉 is the abstract-successor of 〈p, ω〉. Over π, let 〈p′, ω′〉 be the
immediate successor of 〈p, ω〉.

1. Firstly, we show that for every abstract-successor 〈pk, ωk〉 �= ⊥ of 〈p, ω〉,
〈��p, φ�, B�, ω〉 =⇒BPϕ {〈��p, φ1�, B�, ω〉, 〈��pk, φ�, B�, ωk〉} where B ∈ B. There
are two possibilities:

• If 〈p, ω〉 =⇒P 〈p′, ω′〉 corresponds to a call statement. From the rules
in (���12)(b), we get that 〈��p, φ�, B�, ω〉 =⇒BPϕ {〈��p, φ1�, B�, ω〉, 〈p′, ω′〉}
where 〈p′, ω′〉 is the immediate successor of 〈p, ω〉. Thus, to ensure that
〈��p, φ�, B�, ω〉 =⇒BPϕ

{〈��p, φ1�, B�, ω〉, 〈��pk, φ�, B�, ωk〉}, we only need to
ensure that 〈p′, ω′〉 =⇒BPϕ 〈��pk, φ�, B�, ωk〉. As for the case φ = EXaφ1,
〈p′, ω′〉 =⇒BPϕ

〈��pk, φ�, B�, ωk〉 is ensured by the rules in (���21) and the rules
in (���19): rules in (���21) allow to mimic the run of the PDS P before the return
and rules in (���19) allow to extract and put back φ1 when the return-point is
reached.

• If 〈p, ω〉 =⇒P 〈p′, ω′〉 corresponds to a simple statement. Then, the
abstract successor of 〈p, ω〉 is its immediate successor 〈p′, ω′〉. Thus, we get
that 〈pk, ωk〉 = 〈p′, ω′〉. From the transition rules (���12)(c), we get that
〈��p,E[φ1U

aφ2]�, B�, ω〉 =⇒BPϕ {〈��p, φ1�, B�, ω〉, 〈��p′, φ�, B�, ω′〉}. There-
fore, 〈��p,E[φ1U

aφ2]�, B�, ω〉 =⇒BPϕ
{〈��p, φ1�, B�, ω〉, 〈��pk, φ�, B�, ωk〉}. In

other words, BPϕ has an accepting run from both 〈��p, φ1�, B�, ω〉 and
〈��pk, φ�, B�, ωk〉 where 〈pk, ωk〉 is an abstract successor of 〈p, ω〉. The prop-
erty holds for this case.

2. Now, let us consider the case where 〈pk, ωk〉 = ⊥. As explained previously,
this case occurs when 〈p, ω〉 =⇒P 〈p′, ω′〉 corresponds to a return statement.
Then, the abstract successor of 〈p, ω〉 is ⊥. Note that ⊥ does not satisfy any
formula, i.e., ⊥ does not satisfy φ. Therefore, from 〈��p,E[φ1U

aφ2]�, B�, ω〉, we
need to ensure that the path reflecting the possibility in (A2) that (〈p, ω〉 �B

λ φ1

and 〈pk, ωk〉 �B
λ φ) is not accepted by BPϕ. This is ensured as for the case

φ = EXaφ1 by the transition rules in (���12)(d).
In summary, for every abstract-successor 〈pk, ωk〉 of 〈p, ω〉, if 〈pk, ωk〉 �= ⊥,

then, 〈��p,E[φ1U
aφ2]�, B�, ω〉 =⇒BPϕ

{〈��p, φ1�, B�, ω〉, 〈��pk, E[φ1U
aφ2]�, B�,

ωk〉}; otherwise 〈��p,E[φ1U
aφ2]�, B�, ω〉 =⇒BPϕ

〈�p⊥, B�, γ⊥ω′′〉 =⇒BPϕ
〈�p⊥, B�,

γ⊥ω′′〉 which is not accepted by BPϕ. Therefore, (A2) is ensured
by the transition rules in (���12) stating that BPϕ has an accepting
run from 〈��p,E[φ1U

aφ2]�, B�, ω〉 iff BPϕ has an accepting run from
〈��p, φ2�, B�, ω〉; or BPϕ has an accepting run from both 〈��p, φ1�, B�, ω〉 and
〈��pk, E[φ1U

aφ2]�, B�, ωk〉 where 〈pk, ωk〉 is an abstract successor of 〈p, ω〉.

– The intuition behind the rules corresponding to the cases φ = A[φ1U
aφ2],

φ = A[φ1R
aφ2] are similar to the previous case.
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– If φ = e(e ∈ V). Given p ∈ P , e ∈ V, ω ∈ Γ ∗, we get that the SABPDS
BPϕ should accept 〈��p, e�, B�, ω〉 iff (〈p, ω〉, B) ∈ L(Me). To check whether
(〈p, ω〉, B) ∈ L(Me), we let BPϕ go to state se, the initial state corresponding
to p in Me by adding rules in (���22); and then, from this state, we will check
whether ω is accepted by Me under B. This is ensured by the transition rules
in (���24) and (���25). (���24) lets BPϕ mimic a run of Me on ω under B, which
includes three possibilities:

• if BPϕ is in a state �q,B� with γ on the top of the stack where γ ∈ Γ , and
if q

γ−→ {q1, ..., qn} is a transition rule in Me, then, BPϕ will move to states
�q1, B�, ..., �qn, B� and pop γ from its stack. Note that popping γ allows us
to check the rest of the word. This is ensured by the rules corresponding to
(���24)(a). Then function equal ensures that all these environments are the
same.

• if BPϕ is in a state �q,B� with γ on the top of the stack, and if q
x−→ {q1, ..., qn}

is a transition rule in Me where x ∈ X , then, BPϕ can mimic a run of Me

under B iff B(x) = γ. If this condition is guaranteed, BPϕ will move to states
�q1, B�, ..., �qn, B� and pop γ from its stack. Again, popping γ allows us to
check the rest of the word. This is ensured by the rules corresponding to
(���24)(b). Then function joinx

γ ensures that all these environments are the
same B and B(x) = γ.

• Similar to (���24)(b), (���24)(c) deals with the cases where q
¬x−−→ {q1, ..., qn}

is a transition rule in Me where x ∈ X .

In each VA Me, a configuration is accepted if the run with the word ω reaches
a final state in Fe; i.e., if BPϕ reaches a state q ∈ Fe with an empty stack, i.e.,
with a stack containing the bottom stack symbol �. Thus, we should add Fe × B
as a set of accepting control locations in BPϕ. This is why F4 is a set of accepting
control locations. In addition, since BPϕ only recognizes infinite paths, (���25)
adds a loop on every configuration 〈�q,B�, �〉 where q ∈ Fe.

– If φ = ¬e(e ∈ V). This case is ensured by the transition rules in (���23), (���24)
and (���25). The intuition behind this case is similar to the case φ = e.

We can show that:

Theorem 4. Given a PDS P = (P, Γ,Δ), a set of atomic propositions AP , a
labelling function λ : APD → 2P and a SBPCARET formula ϕ, we can compute
an SABPDS BPϕ such that for every configuration 〈p, ω〉, for every B ∈ B,
〈p, ω〉 �B

λ ϕ iff BPϕ has an accepting run from the configuration 〈��p, ϕ�, B�, ω〉.

5 Conclusion

In this paper, we present a new logic SBPCARET and show how it can pre-
cisely and succinctly specify malicious behaviors. We then propose an efficient
algorithm for SBPCARET model-checking for PDSs. Our algorithm is based
on reducing the model checking problem to the emptiness problem of Symbolic
Alternating Büchi Pushdown Systems.
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Abstract. With the immutability property and decentralized architec-
ture, Blockchain technology is considered as a revolution for several
topics. For electronic voting, it can be used to ensure voter privacy,
the integrity of votes, and the verifiability of vote results. More pre-
cisely permissioned Blockchains could be the solution for many of the
e-voting issues. In this paper, we start by evaluating some of the exist-
ing Blockchain-based e-voting systems and analyze their drawbacks. We
then propose a fully-decentralized e-voting system based on permissioned
Blockchain. Called DABSTERS, our protocol uses a blinded signature
consensus algorithm to preserve voters privacy. This ensures several secu-
rity properties and aims at achieving a balance between voter privacy
and election transparency. Furthermore, we formally prove the security
of our protocol by using the automated verification tool, ProVerif, with
the Applied Pi-Calculus modeling language.

Keywords: Permissioned Blockchain · Electronic voting · Blind
signature · Formal verification · Applied Pi-Calculus · ProVerif

1 Introduction

Voting is the cornerstone of a democratic country. The list of security properties
that must respect a secure voting protocol includes the following features. Eli-
gibility: only registered voters can vote and only one vote per voter is counted.
If the voter is allowed to vote more than once, the most recent ballot will be
tallied and all others must be discarded. Individual verifiability: the voter
him/herself must be able to verify that his/her ballot was cast as intended and
counted as cast. Universal verifiability: after the tallying process, the results
are published and must be verifiable by everybody. Vote-privacy: the con-
nection between a voter and his/her vote must not be reconstructable without
his/her help. Receipt-freeness: a voter cannot prove to a potential coercer
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that he/she voted in a particular way. Coercion resistance: even when a voter
interacts with a coercer during the voting process, the coercer will be not sure
whether the voter obeyed their demand or not. Integrity: ballots are not altered
or deleted during any step of the election. Fairness: no partial results are pub-
lished before tallying has ended, otherwise voters may be influenced by these
results and vote differently. Robustness: the system should be able to tolerate
some faulty votes. Vote-and-go: a voter does not need to wait for the end of the
voting phase or trigger the tallying phase. Voting policy: specify if a voter has
the right to vote more than once or he/she has not the right to change his/her
opinion once he/she casted a vote.

Traditionally, during an election, the voter goes to a polling station and
makes his/her choice in an anonymous manner, without any external influence.
To perform the tally, we need to trust a central authority. From this comes the
risk of electoral fraud. The tallying authority has the possibility to falsify votes
and thus to elect a candidate who should not be elected. It is also possible for the
registration authority to allow ineligible voters to vote. Hence, voting becomes
useless and we notice a decrease in voter turnout in elections. Decentralized
systems can be a good alternative to traditional voting since we need a secure,
verifiable and privacy preserving e-voting systems for our elections. Blockchain is
a distributed ledger that operates without the need to a trusted party. Expanding
e-voting into Blockchain technology could be the solution to alleviate the present
issues in voting.

Due to the proliferation of Blockchain implementations, the European
Blockchain Observatory and Forum has published a technical report [14] where
it recommends the use of private or permissioned Blockchains for sensitive data
storage, which is the architecture implemented in an e-voting system. In this
Blockchain architecture, the user credentials are generated by a Certificate
Authority (CA). Hence, the users must be enrolled into the system through
the CA before joining the network. This model is suitable for an e-voting sys-
tem because the user management can rely on the Blockchain platform, due
to their formal enrolling process. The advantage of having a minimum level of
trust through our knowing the participants is that we can achieve security for
the Blockchain replication process by using Byzantine Agreement as a consensus
mechanism. Although permissioned Blockchains have several features suitable for
services that involve sensitive data, such as user personal information, they have
drawbacks related to transactions and user linkability. This is due to the fact that
each user credential, public key pair and certificates, are issued for specific users
that were previously enrolled in the CA. In order to overcome this drawback,
we use, in this paper, the Okamoto-Schnorr blind signature scheme to sign the
transactions without linking the user to it. This model allows validating trans-
actions without exposing the user’s identification, and therefore maintaining the
privacy of the votes.

Related Work: In the last few decades, a considerable number of Blockchain-
based e-voting protocols have been proposed to address the security issues of
traditional voting protocols. Due to the limitation on the number of pages, we
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give a brief overview of some of these systems and evaluate their security in
Table 1, in which we use the following abbreviations1.

– Open Vote Network (OVN) [15]: It is a self-tallying, boardroom scale e-voting
protocol implemented as a smart contract in Ethereum. This protocol guar-
antees voter’s privacy and removes the need to trust the tallying authorities
whether to ensure the anonymity of voters or to guarantee the verifiability
of elections. However, it suffers from several security issues. For example, it
supports only elections with two options (yes or no) and with a maximum of
50 voters due to the mathematical tools that they used and to the gas limit
for blocks imposed by Ethereum. Additionally, this protocol does not provide
any mechanism to ensure coercion resistance and needs to trust the election
administrator to ensure voter’s eligibility. Open Vote Network is not resistant
to the misbehavior of a dishonest miner who can invalidate the election by
modifying voters’ transactions before storing them on blocks. Dishonest voter
can also invalidate the election by sending an invalid vote or by abstaining
during the voting phase.

– E-Voting with Blockchain: An E-Voting Protocol with Decentralization and
Voter Privacy (EVPDVP) [10]: Implemented on a private network that uses
the Ethereum Blockchain API, this protocol uses the blind signature to ensure
voters privacy. It needs a central authority (CA) as a trusted party to ensure
voters eligibility and allow voters to change and update their votes. To ensure
fairness, voters include in their ballots a digital commitment of their choices
instead of the real identity of the chosen candidate. To tally ballots, voters
must broadcast to the network a ballot opening message during the counting
phase.

– Verify-Your-Vote: A Verifiable Blockchain-based Online Voting Protocol
(VYV) [7]: It is an online e-voting protocol that uses Ethereum Blockchain as
a bulletin board. It is based on a variety of cryptographic primitives, namely
Elliptic Curve Cryptography [9], pairings [4,19] and Identity Based Encryp-
tion [5]. The combination of security properties in this protocol has numerous
advantages. It ensures voter’s privacy because the Blockchain is characterized
by the anonymity of its transactions. It also ensures fairness, individual and
universal verifiability because the ballot structure includes counter-values,
which serve as receipts for voters, and homomorphism of pairings. However,
the registration phase of this protocol is centralized. A unique authority, which
is the registration agent, is responsible for verifying the eligibility of voters
and registering them. A second problem is inherent in the use of Ethereum
because each transaction sent by the protocol entities in the Blockchain passes
through miners who validate it, put it in the current block and execute the
consensus algorithm. Any dishonest miner in the election Blockchain can mod-
ify transactions before storing them on blocks. Additionally, this protocol is
not coercion resistent.

– TIVI [21]: It is a commercial online voting solution based on biometric
authentication, designed by the company Smartmatic. It checks the elec-

1 TCA: Trusted Central Authority; SV: Single Vote; MV: Multiple Votes.
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tor’s identity via a selfie using facial recognition technology. TIVI ensures
the secrecy of votes so long as the encryption remains uncompromised. It
provides also voters’ privacy thanks to its mixing phase and offers the possi-
bility to follow votes by the mean of a QR code stored during voting phase and
checked later via a smartphone application. However, this system does not
provide any mechanism to protect voters from coercion or to ensure receipt-
freeness. Additionally, TIVI uses the Ethereum Blockchain as a ballot box so
it is not resistant to misbehaving miners that could invalidate the election by
modifying votes before storing them on the election Blockchain.

– Follow My Vote (FMV) [8]: It is a commercial online voting protocol that
uses the Ethereum Blockchain as a ballot box. A trusted authority authen-
ticates eligible voters and provides them with pass-phrases needed in case of
changing their votes in the future. Voters can watch the election progress in
real time as votes are cast. It includes an authentication phase which ensures
voters’ eligibility. It allows voters to locate their votes, and check that they
are both present and correct using their voters’ IDs. Nevertheless, this voting
system requires a trusted authority to ensure votes confidentiality and hide
the correspondence between the voters’ real identities and their voting keys.
If this authority is corrupted, votes are no longer anonymous. Votes secrecy
is not verified by this system because votes are cast without being encrypted.
Moreover, the ability to change votes, coupled with the ability to observe the
election in real time compromise fairness property. This system is not coer-
cion resistance and is not universally verifiable because we have no way to
verify that the votes present in the election final result are cast by eligible
voters.

– BitCongress [11]: A commercial online voting platform based on a combi-
nation of three networks which are: Bitcoin, Counterparty (a decentralized
asset creation system and decentralized asset exchange) and a Smart Contract
Blockchain. It aims at preventing double voting by using the time stamp sys-
tem of the Bitcoin Blockchain. This platform does not ensure voters eligibility
because it allows any Bitcoin address to register for the election. It performs
the tally using, by default, a modified version of Borda count and a Quota
Borda system for large scale elections. It ensures individual and universal
verifiability but it is not coercion resistent.

– Platform-independent Secure Blockchain-based Voting System (PSBVS) [22]:
Implemented in the Hyperledger Fabric Blockchain [2], this protocol uses Pail-
lier cryptosystem [18] to encrypt votes before being cast, proof of knowledge
to ensure the correctness and consistence of votes, and Short Linkable Ring
Signature (SLRS) [3] to guarantee voters privacy. In the other hand, this pro-
tocol does not include a registration phase in which we verify, physically or
by using biometric techniques, the eligibility of the voter. A voter can register
him/herself by simply providing his/her e-mail address, identity number or
an invitation URL with a desired password. These mechanisms are not suffi-
cient to verify the eligibility of a voter and information like e-mail address or
identity number can be known by people other than the voter him/herself.
Also, with reference to the definition of coercion resistance given by
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Juels et al. [12], this protocol is not coercion resistant. In fact, if a voter
gives his/her secret key to a coercer, the coercer can vote in the place of the
voter who cannot modify this vote later. We mention here that the coerced
voter cannot provide a fake secret key to the coercer because a vote with a
fake secret key is rejected by the smart contract.

Table 1. Security evaluation of OVN, EVPDVP, VYV, TIVI, FMV, BitCongress,
PSBVS and DABSTERS.

OVN EVPDVP VYV TIVI FMV BitCongress PSBVS DABSTERS

Eligibility TCA TCA TCA � TCA X X �
Individual verif � � � � � � � �
Universal verif � � � X X � � �
Vote-Privacy � � � � TCA � � �
Receipt-freeness X � � X X X � �
Coercion resistance X X X X X X X X

Fairness X � � � X X � �
Integrity � � X � X � � �
Robustness X � � � � � � �
Vote-and-go X X � � � � � �
Voting policy SV MV MV SV MV MV SV MV

Contributions: In this paper, we aim at designing a secure online e-voting pro-
tocol that addresses the security issues mentioned in the related work section
by using the Blockchain technology and a variety of cryptographic primitives.
Called DABSTER, our protocol uses a new architecture based on permissioned
Blockchain and blind signature. It satisfies the following security properties:
eligibility, individual verifiability, universal verifiability, vote-privacy, receipt-
freeness, fairness, integrity and robustness. Our contributions can be summarized
as follows:

– A new architecture of trust for electronic voting systems. This architecture is
based on permissioned Blockchain and on a blind consensus which provides
voter’s privacy and vote’s integrity.

– A secure and fully distributed electronic voting protocol based on our pro-
pounded architecture.

– A detailed security evaluation of the protocol and a formal security proof using
the Applied Pi-Calculus modeling language and the automated verification
tool ProVerif.

Outline: In the next section, we give an overview of the Byzantine Fault Tol-
erante (BFT) with blind signature consensus algorithms. Then in Sect. 3, we
describe our proposed e-voting protocol, DABSTERS, and give its different
stakeholders and phases as well as the structure of each voter’s ballot. In Sect. 4,
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we evaluate the security of our protocol using Proverif when it is possible. The
conclusion is a summary of DABSTERS and a proposal for ongoing evaluation
of its performance.

2 Background

We give a definition of the Okamoto-Schnorr blind signature, before using it in
a Byzantine based consensus.

2.1 Blind Signature

Let p and q be two large primes with q|p − 1. Let G be a cyclic group of prime
order q, and g and h be generators of G. Let H : {0, 1}∗ → Zq be a cryptographic
hash function.

Key Generation: Let (r, s) r←− Zq and y = grhs be the A’s private and public
key, respectively.

Blind signature protocol:
1. A chooses (t, u) r←− Zq, computes a = gthu, and sends a to the user.
2. The user chooses (β, γ, δ) r←− Zq and computes the blind version of a as

α = ag−βh−γyδ, and ε = H(M, α). Then calculates e = ε − δ mod q, and
sends e to the A.

3. A computes S = u− es mod q and R = t− er mod q, sends (S,R) to the
user.

4. The user calculates ρ = R − β mod q and σ = S − γ mod q.
Verification: Given a message M ∈ {0, 1}∗ and a signature (ρ, σ, ε), we have

α = gρhσyε mod p.

The Okamoto-Schnorr blind signature scheme is suitable with a private
Blockchain architecture due to the blinding process that can be performed
by the same authority responsible of the enrollment process (see Fig. 1, where
the authority A blindly signs a message for the user). We use BlindSign(M,(β,
σ, γ), y) and VerifyBlindSign(M, (ρ, δ, ε), y) to blind sign and to verify the blinded
signature, respectively using Okamoto-Schnorr, where M corresponds to the
message to be signed, (β, σ, γ) to the secret values randomly chosen, (ρ, δ, ε)
to the blinded signature; and y to the RA’s public key. The result obtained from
the function BlindSign corresponds to the blinded signature (ρ, σ, ε). On the
other hand, the function VerifyBlindSign returns a response valid or invalid.

2.2 BFT Based Consensus Algorithm

Now, considering a permissioned Byzantine Fault Tolerance (BFT) based consen-
sus protocol like the one introduced in Hyperledger Fabric [2]. In this protocol,
the digital signature is used as a user authentication method without protecting
the user privacy. Hence, for a privacy preserving consensus protocol, we need to
add the following properties to the BFT based consensus algorithm:
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Fig. 1. Okamoto-Schnorr blind signature diagram, where y
r←− Zq means that y is

randomly chosen in Zq.

– Alice sends a newly signed transaction to the registration authority (RA)
which is responsible for the enrollment of Alice.

– Alice’s signature is validated only by the RA.
– The RA anonymises Alice’s identity.
– The RA signs the transaction sent by Alice to the network.
– All the node of the transactions validation process can validate the RA’s

signature.
– The RA signature cannot be duplicated.

Now, to keep the privacy of the client and peers involved in the transactional
process, we need to hide his ID and make his signature blind. However, we do
not address the ID hiding process with any particular mechanism. Therefore, we
consider that the ID is replaced by a value corresponding to the anonymised user
ID, and this process can be performed by using different schemes. As presented
in [13], to address the issue related to the digital signature, we replace the signing
mechanism used in the original protocol by the Okamoto-Schnorr blind signature
scheme [16]. In order to maintain the consistency and liveness that the protocol
has, we keep the transactional flow. However, the steps are modified in order to
accept the new blind signature scheme to authenticate the clients and peers.

The transactional process based on our BFT consensus algorithm with Blind
Signature consists of the following steps:

1. Initiating Transactions: The client cbc generates a message M to execute
an operation obc in the network with a blinded signature by using Blind-
Sign((M, β, σ, γ), y).

2. Transaction Proposal: The submitting peer spbc receives the message M
coming from the client cbc, validates the client blinded signature by using Ver-
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ifyBlindSign(M,(ρ, δ, ε), y) and proposes a transaction with the client instruc-
tion obc.

3. Transaction Endorsement: The endorser peers epbc validate the client
blinded signature using VerifyBlindSign(M,(ρ, δ, ε), y) and verify if the trans-
action is valid by simulating the operation obc using his local version of the
Blockchain. Then, the endorser peers generate signed transactions with the
result of the validation process and send it to the submitting peer spbc.

4. Broadcasting to Consensus: The submitting peer spbc collects the
endorsement coming from the endorsing peers connected to the network. Once
spbc collects enough valid answers from the endorsing peers, it broadcasts the
transaction proposal with the endorsements to the ordering service.

5. Commitment: All the transactions are ordered within a block, and are
validated with their respective endorsement. Then, the new block is spread
through the network to be committed by the peers.

3 Description of DABSTERS

Our protocol is implemented over a new architecture of trust. It is based on a
BFT-based consensus protocol [2] and on a blinded signature consensus protocol,
called BlindCons [13], presented in Sect. 2. It eliminates the risk of invalidating
the election because of dishonest miners who modify the transactions before
storing them on blocks. We also propose a distributed enrollment phase to reduce
the need to trust election agents and impose the publication of the list of eligible
registered voters at the end of the enrollment phase. This list is auditable and
verifiable by all parties.

Our scheme unfolds in 5 stages. It starts with an enrollment phase in which
registration authorities (RAs) verify the eligibility of voters by verifying the exis-
tence of their names and their identity card numbers in a list published before-
hand and containing the names of all persons who have the right to vote. Then,
all eligible voters are registered and provided with credentials. The enrollment
phase is offline. At the end of this phase, RAs construct a list containing the
names of all registered eligible voters and their ID card numbers. This list can
be rejected or published on the election Blockchain during the validation phase.
Once the list is validated, we move to the third stage which is voting phase.
Each eligible voter (Vi) initiates a transaction in which he/she writes his/her
encrypted vote, signs the transaction using his/her credential and sends it to the
RAs to check his/her signature and blind it. Then, the voter sends the transac-
tion with the blinded signature and his/her anonymous ID (his/her credential)
to the consensus peers to be validated and stored in the election Blockchain
anonymously. After validating and storing all votes in our Blockchain, tallying
authorities (TAs) read these encrypted votes from the network, decrypt them,
and proceed to the tally. The final stage is the verification phase. During this
phase, voters make sure that their votes have been considered correctly and
check the accuracy of the tally. The individual verifiability is ensured due to
the structure of our ballots and the universal verification is ensured thanks to
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the homomorphism property of pairings. Except the enrollment phase, all the
phases of our protocol are on-chain. Therefore, we call the BFT based consensus
protocol with each transaction initiated by authorities and the BlindCons with
each transaction initiated by eligible voters because we do not need to hide the
identity of our authorities but we need to ensure voter’s privacy. In the follow-
ing, we give a detailed description of the role of our protocol stakeholders, the
structure of our ballot, the different protocol phases and the two consensus.

3.1 Protocol Stakeholders

DABSTERS involves three main entities:

– Registration authorities (RAs): they verify the eligibility of every person wish-
ing to register to the election and provide eligible voters by their credentials
which are constructed by cooperation between all RAs.

– Eligible voters (V): every eligible voter (Vi) has the right to vote more than
once before the end of the voting phase and only his/her last vote is counted.
Voters have the possibility to verify that their votes are cast as intended
and counted as cast during the verification phase. Also, they can check the
accuracy of the election final result but they are not obliged to participate in
the verification phase (they can vote and go).

– Tallying authorities (TAs): the protocol includes as many tallying authorities
as candidates. Before the voting phase, they construct n ballots, where n is
the number of registered voters. Thus, every voter has a unique ballot which is
different from the other ballots. TAs encrypt ballots and send them to voters
during the voting phase. They decrypt votes and calculate the election final
result during the tallying phase and publish the different values that allow
voters to check the accuracy of the count during the verification phase.

DABSTERS also involves observers and election organizers who have the right
to host the Blockchain peers to ensure the correctness of the execution of the
protocol.

3.2 Ballot Structure:

Fig. 2. Ballot structure [17]

As illustrated in Fig. 2, each ballot is
composed of a unique bulletin num-
ber BN calculated as follows: BN =
{g,D}PKA

, where g is a generator
of an additive cyclic group G, D is
a random number and PKA is the
administrator’s public key. It con-
tains also a set of candidates’ names
namej and candidates’ pseudo IDs,
denoted Cj , which are the positions of candidates in the ballot, calculated from
an initial order and an offset value. In addition, each ballot includes a set of
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counter-values CVBN,namej ,k that are receipts for each voter. They are calcu-
lated using the following formula: CVBN,namej ,k = e(Qnamej , Sk · QBN ); where
e(., .) is the pairing function, Sk is the secret key of the tallying authority
TAk, Qnamej = H1(namej) and QBN = H1(BN) are two points of the elliptic
curve E.

3.3 Protocol Stages

Our solution includes the following phases:

Enrollment Phase: Every person who has the right to vote and desires to do
so, physically goes to the nearest registration station. He/she provides his/her
national identity card to the RAs, who verify his/her eligibility by checking if
his/her name and ID card number exists in a list, previously published, contains
all persons that are able to participate in the election. If he/she is an eligible
voter, the RAs save the number of his/her ID card and provide him with a
credential that allows him to participate in the voting process. Voters’ credentials
are calculated using elliptic curve cryptography and have this form:

CredentialVi
= SM · H1(IDVi

) where:

– SM = S1 ·S2 . . . , SR is a secret master key calculated by cooperation between
all RAs. Each registration authority participates with its secret fragment Sr;
r ∈ {1 . . . R},

– H1 is an hash function defined as follows: H1 : {0, 1}∗ → G1; G1 an additive
cyclic group of order prime number q,

– IDVi
is the number of the ID card of the voter Vi.

Validation Phase: After registering all eligible voters, RAs create a list con-
taining the names and the identity card numbers of all registered voters. This list
should be viewable and verifiable by voters, election organizers and observers.
Thus, RAs send this list in a transaction on our election Blockchain. This trans-
action passes through the five steps of the BFT based consensus protocol to be
validated if the list is correct or rejected if the list contains names of ineligible
voters.

– Step1: Transaction initiation. RAs generate the list of eligible voters to
be validated by the network. The list is sent to a submitter peer. In the case
of an offline or misbehaving submitter peer, RAs send the transaction to the
next submitter peer.
This step is illustrated by Fig. 3.

• IDRA is the ID of the registration authorities,
• Write(List) is the operation invoked by the RAs to be executed by the

network. It consists of writing the list of eligible voters and their ID card
numbers in the Blockchain,

• List is the payload of the submitted transaction, which is the list of
registered voters to be published on the Blockchain,
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Fig. 3. Step1: Transaction initiation.

• σRA is the signature of the registration authorities,
• retryF lag is a boolean variable to identify whether to retry the submis-

sion of the transaction in case of the transaction fails.
– Step2: Transaction proposal. The submitter peer receives the transaction

and verifies the RAs signature. Then prepares a transaction proposal to be
sent to the endorsing peers. Endorsing peers are composed of some voters,
election organizers and observers who desire to host the Blockchain peers.
This step is described in Fig. 4.

Fig. 4. Step2: Transaction proposal.

• mRA = (IDRA,Write(List), List, σRA)
• Transprop = (SP,Write(List), List, StateUpdate, V erDep):

* StateUpdate corresponds to the state machine after simulate locally
the operation coming in Write(List).

* VerDep is the version dependency associated to the variable to be
created or modified. It is used to keep the consistency of the variables
across the different machine state version.

– Step3: Transaction endorsement. Each endorser peer verifies the signa-
ture of the registration authorities σRA coming in mRA and checks that the
list of eligible voters in mRA and Transprop is the same. Then, each endorser
verifies the eligibility of all names and ID card numbers included in the list.
If they are all valid, the endorser peer generates a transaction valid message
to be sent to the submitter peer (Fig. 5). But if the list includes names of
ineligible voters, the endorser peer generates a transaction invalid message
(Fig. 6).

• TxID is the transaction ID,
• σEP is the signature of the endorser peer.
• Error: can has the following values:
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Fig. 5. Step3: Transaction endorsement: valid transaction.

Fig. 6. Step3: Transaction endorsement: invalid transaction.

* INCORRECT-STATE: when the endorser tries to validate the trans-
action with a different local version of the Blockchain than the one
coming in the transaction proposal.

* INCORRECT-VERSION: when the version of the variable where the
list will be recorded differs from the one referred in the transaction
proposal.

* REJECTED: for any other reason.
• InvalidList: is the list of ineligible names that were included in the list

sent by the RAs.
– Step4: Broadcasting to Consensus. The submitter peer waits for the

response from the endorser peers. When it receives enough Transaction Valid
messages adequately signed, the peer stores the endorsing signatures into
packaged called endorsement. Once the transaction is considered endorsed,
the peer invokes the consensus services by using broadcast(blob), where blob
= (Transprop, endorsement) (Fig. 7).
The number of responses and endorsement to consider the transaction pro-
posal as endorsed is equal to 50% + 1 of the total number of endorser peers.
If the transaction has failed to collect enough endorsements, it abandons this
transaction and notifies the RAs.

Fig. 7. Step4: Broadcasting to consensus.
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– Step5: Commitment. Once the submitter peer broadcasts the transaction
to consensus, the ordering services put it into the current block, which will
be sent to all peers once built. Finally, if the transaction was not validated,
the registration authorities are informed by the submitter peer SP.

In the case of an invalid list, the registration authorities have to correct the
list and restart the validation phase. We move to the next phase (which is the
voting phase) only when we obtain a valid list of registered voters.

Fig. 8. Interaction between TAs and peers.

Voting Phase: Two entities participate during this phase:

– The tallying authorities who have constructed ballots before the beginning
of the voting phase. To construct a ballot, TAs calculate, locally, the unique
ballot number BN = {g,D}PKTA

, the offset value offset = H(g) mod m
and the counter-values CVBN,namej ,k = e(Qnamej , Sk · QBN ), where g is a
generator of G an additive cyclic group of order a prime number, D is a ran-
dom number, PKTA is TAs’ public key, m is the number of candidates, e(., .)
is the pairing function, Sk is the secret key of the tallying authority TAk,
Qnamej = H1(namej) and QBN = H1(BN) are two points of the elliptic
curve E. Then, TAs choose, randomly, a blank ballot for each voter, encrypt
it with the voter’s public key and transmit it to the corresponding voter
via the Blockchain. Ballots are sent encrypted because they contain secret
information like the BN , the offset and counter-values. To send encrypted
ballots to voters via the Blockchain, TAs interact with the BFT consensus
peers. These interactions unfold in five steps, the same steps as those pre-
sented in Sect. 3.3, and described in Fig. 8.
1. Transaction initiation. TAs initiate a transaction and send it to a

submitter peer SP. The transaction contains their ID (IDTA), the list of
encrypted ballots, the transaction payload, their signature (σTA) and the
value of the variable retryFlag.
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2. Transaction proposal. SP verifies the TAs signature and prepares a
transaction proposal Transprop = (SP, Write(Enc Ballot), Enc Ballot,
stateUpdate, V erDep) to be sent to the endorsing peer with the TAs
message mTA = (IDTA, Write(Enc Ballot), Enc Ballot, σTA).

3. Transaction endorsement. EP verifies the σTA coming in mTA, sim-
ulates the transaction proposal and validates that the stateUpdate and
verDep are correct. If the validation process is successful, the endorser
peer generates a transaction valid message to be sent to the submitter
peer.

4. Broadcasting to consensus. When the SP receives a number of
Transaction Valid message equals to 50% + 1 of the total number of
endorser peers, adequately signed, he stores the endorsing signatures
into an endorsement package and invokes the consensus services by using
broadcast(blob); where blob = (Transprop, endorsement).

5. Commitment. Ordering services (Or) add the transaction to a block.
Once they collect enough endorsed transactions, they broadcast the
new block to all other peers. A block has the following form: B =
([tx1, tx2, . . . , txk];h) where h corresponds to the hash value of the pre-
vious block.

– Every eligible voter retrieves his/her ballot, decrypts it using his/her secret
key and encrypts his/her vote by voting then sends it in a transaction through
the Blockchain. To encrypt his/her vote, the voter uses the Identity Based
Encryption [5] and encrypts his/her ballot number BN with QCj

= H1(Cj)
where Cj is the pseudo ID of the chosen candidate. Thus, each encrypted vote
has the following form: Enc V ote = {BN}QCj

.
To be read from the Blockchain or be written on it, voters’ transactions
pass through the blinded signature consensus. We model in Fig. 9 the steps
through which a transaction of an eligible voter passes. We take the exam-
ple of a transaction containing an encrypted vote. During the interactions
between TAs and peers, we use the digital signature as user authentication
method without protecting the TAs privacy because we do not need to hide
the identity of our protocol authorities. However, when it comes to interac-
tions between voters and peers, we need to preserve voters’ privacy by blinding
their signatures. The privacy preserving consensus adds two steps:
(i) The signature of each eligible voter is blinded automatically after the

vote is cast by the function BlindSign(M, (β, γ, δ), PKRA), where M =
(CredentialVi

|| Write(Enc V ote)||Enc V ote||retryF lag) is the message
to be signed, (β, γ, δ) are secret values randomly chosen by the voter and
PKRA is the public key of the RAs.

(ii) RAs blind the signature of each eligible voter by providing him the tuple
(R,S), allowing the voter to construct his/her blinded signature (ρ, σ, ε)
to be used during his/her interactions with the peers.

The other steps are the same as the BFT based consensus, but instead of sending
their signatures, the voters send their blinded signatures provided by the RAs.
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Fig. 9. Interactions between eligible voter and BlindCons peers.

1. Initiating transaction:
< SUBMIT, CredentialVi

, Write(Enc V ote), Enc vote, retryFlag, (ρ, σ, ε) >
2. Transaction Proposal: < PROPOSAL, mVi

, transprop >
3. Transaction Endorsement: < TRANSACTION-VALID, Txid, σep >
4. Broadcasting to consensus: broadcast(blob)
5. Commitment: B = ([Tx1, Tx2, . . . , Txk], h)

The voters who intend to verify that their votes were properly counted must
memorize the counter-values that correspond to their chosen candidates.

Tallying Phase: After all votes have been cast, TAs proceed to the tally. We
have as many TAs as candidates. Each tallying authority TAk is responsible
for counting the number of votes for a specific pseudo ID Cj : for example the
first tallying authority TA1 decrypts, with its secret key S1 · QC1 , all bulletins
that were encrypted with the public key QC1 (certainly these ballots contain
votes for candidates with Cj = 0). TAk starts by initiating a transaction to read
encrypted votes from the Blockchain. This transaction passes through the five
steps of the BFT based consensus. Then, it decrypts the votes with its secret key
Sk that were encrypted with QCj

in order to reveal the bulletin number BN .
Then, it reconstructs the ballot, identifies the chosen candidate, and added to
the corresponding counter. At the end of this phase, TAk publishes the count

for each candidate using the following formula: σk,namej =
lj∑

i=1

Sk · QBNi
; Where

lj is the number of votes received by the candidate j, Sk is the private key of
the tallying authority k, QBNi

= H1(BNi) and BNi is the ballot number of the
vote i that corresponds to the candidate with name namej .

Verification Phase: This phase allows voters to check that their votes were
counted as cast and that the election final result corresponds to the sum of all
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eligible votes. It includes two sub-phases. During the first one, TAs calculate
the list of chosen counter-values from each ballot number and the name of the
chosen candidate, and publish this list on the Blockchain. Each eligible voter can
read this list and verify the existence of his/her counter-value to be sure that
his/her vote was counted correctly. The second sub-phase uses the homomor-
phism of pairings to check the accuracy of the tally. Using the published counts
and the reconstructed counter-values, we can verify that the announced result
corresponds to the sum of all eligible votes, as follows:

l∏

i=1

CVBNi
=

m∏

k=1

m∏

j=1

lj∏

i=1

CVBNi,namej
,k =

m∏

k=1

m∏

j=1

lj∏

i=1

e(Qnamej , Sk ·QBNi
)

=

m∏

k=1

m∏

j=1

e(Qnamej ,

lj∑

i=1

Sk ·QBNi
) =

m∏

k=1

m∏

j=1

e(Qnamej , σk,namej ) (1)

where l =
m∑

j=1

lj is the total number of votes. These equalities use the bilinear

property of pairing:
lj∏

i=1

e(Qnamej , Sk · QBNi
) = e(Qnamej ,

lj∑

i=1

Sk · QBNi
).

4 Security Evaluation of DABSTER

Thanks to the use of the BFT based consensus, the BlindCons and a variety
of cryptographic primitives, our protocol ensures several security properties. We
discuss the security properties ensured by our protocol and prove, formally, that
our solution guarantees vote secrecy, vote privacy, and voter’s authentication.

4.1 Informal Security Evaluation

We evaluate our protocol according to a list of security properties that must
respect a secure and practical voting system.

– Eligible voter: The registration and the validation phases of our protocol
ensure that only eligible voters participate in the voting process. During the
registration phase, RAs verify the identity of each voter via a face to face
meeting and only eligible voters are provided with credentials. During the
validation phase, RAs send the list of registered voters to the consensus peers,
which are composed of voters, election organizers and observers, in order to
verify the eligibility of all registered voters and validate or reject this list.

– Individual verifiability: This property is ensured by our protocol because
our ballot structure includes counter-values. These values serve as receipts for
voters and enable them to verify that their votes have been cast as intended
without disclosing who they voted for. In fact, counter-values are calculated
using the following formula: CVBN,namej ,k = e(Qnamej , Sk · QBN ). Thus, we
cannot get the name of the candidate from the value of CVBN,namej ,k.
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– Universal verifiability: From the parameters published by the TAs during
the verification phase, everyone can verify the accuracy of the final result by
checking the Eq. (1).

– Vote-Privacy: This property is ensured thanks to the BlindCons. Before
interacting with the consensus peers, RAs blind the signature of all eligible
voters to hide their real identities. Voters’ transactions are signed by the blind
signature issued by the RAs and not with the voter’s signature. Thus voters’
identities are kept private and no one can link a vote to a voter.

– Receipt-freeness: In our case, a voter cannot find his/her vote from the
counter-value CVBN,namej ,k and the other public parameters. He/she cannot
therefore prove that he/she voted for a given candidate.

– Coercion resistance: Our protocol is not resistant to coercion. A coercer
can force a voter to vote for a certain candidate and check his/her submission
later using the counter-value.

– Integrity: The BFT based consensus and the blind signature algorithm pre-
vent votes from being altered while keeping the voter’s secrecy. Each transac-
tion is stored in the Blockchain after being validated by 50%+1 of the endors-
ing peers. This eliminates the risk of modifying transactions before storing
them. We mention here that the BFT consensus is based on the assumption
that 2/3 of the endorsing peers are honest.

– Fairness: During the voting phase, each eligible voter encrypts his/her ballot
number BN with QCj

= H1(Cj) where Cj is the pseudo-ID of the desired can-
didate. Ballot numbers are secret and candidates’ pseudo-IDs do not reflect
the real identities of candidates thanks to the offset value, so nobody can
identify the chosen candidate from the encrypted vote. Thus, we cannot get
partial results before the official count.

– Robustness: Our scheme is resistant to the misbehavior of dishonest voters
which cannot invalidate the election by casting an invalid vote or by refusing
to cast a vote.

– Vote-and-go: Our protocol does not need the voter to trigger the tallying
phase, they can cast their votes and quit before the voting ends.

– Voting policy: DABSTERS gives the possibility to eligible voters to vote
more than once and only their last votes are counted. It means that we have
a maximum of one vote per voter in the final tally. In fact, every eligible
voter has a unique valid credential which is sent with his/her vote in the
transaction.

4.2 Formal Security Evaluation

ProVerif is a fully automated and efficient tool to verify security protocols.
It is capable of proving reachability properties, correspondence assertions, and
observational equivalence. To perform an automated security analysis using this
verification tool, we model our protocol in the Applied Pi-Calculus [1] which
is a language for modeling and analyzing security protocols. It is a variant of
the Pi-Calculus extended with equational theory over terms and functions and
provides an intuitive syntax for studying concurrency and process interaction.
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The Applied Pi-Calculus allows to describe several security goals and to deter-
mine whether the protocol meets these goals or not. To describe our protocol
with the Applied Pi calculus, we need to define a set of names, a set of vari-
ables and a signature that consists of the function symbols which will be used
in order to define terms. These function symbols have arities and types. To
represent the encryption, decryption, signature, blind signature and hash oper-
ations, we use the following function symbols: pk(skey), aenc(x,pk(skey)),
adec(x,skey), spk(sskey), sign(x,sskey), checksign(x,spk(sskey)),
BlindSign(x,smkey), checkBlindSign(x, spk(smkey)), H1(x). Intuitively,
the pk function generates the corresponding public key of a given secret key,
aenc and adec stand, respectively, for asymmetric encryption and asymmetric
decryption, aenc and adec follow this equation: adec(aenc(x,y),pk(y))=x.
The spk function generates the corresponding public key of a given sig-
nature secret key, sign and checksign provide, respectively, the signa-
ture of a given message and the verification of the signature. They
respect the following equation: checksign(sign(x,y),spk(y))=x. BlindSign
and checkBlind- Sign stand, respectively, for blind sign and check
blinded signature, BlindSign and checkBlindSign follow the equation
checkBlindSign(BlindSign(x,y),spk(y))=x. We also assume the hash oper-
ation which is denoted with the function H1.

Because of the limitation on the number of pages, we put all ProVerif codes
online2 and give only the queries, the results of executing these codes, and the
time it takes ProVerif to prove the properties in Table 2 (Execution times are
expressed in seconds).

Table 2. ProVerif results and execution times.

Property to
evaluate

Description Result Exec time

Vote secrecy To capture the value of a given vote, an
attacker has to intercept the values of two
parameters: the ballot number BN and
the pseudo ID of the chosen candidate Cj

Proved 0.012 s

Voter’s
authentication

We use correspondence assertion to prove
this property

Proved 0.010 s

Vote privacy To express vote privacy we prove the
observational equivalence between two
instances of our process that differ only in
the choice of candidates

Proved 0.024 s

4.3 Blockchain Security Evaluation

DABSTERS Blockchain protocol has the following security properties.
2 http://sancy.univ-bpclermont.fr/∼lafourcade/DABSTERS FormalVerif/.

http://sancy.univ-bpclermont.fr/~lafourcade/DABSTERS_FormalVerif/
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Consistency: A Blockchain protocol achieves consistency if it is capable of
ensuring that each valid transaction sent to the network will stay immutable in
the Blockchain.

Definition 1 (Consistency). A Blockchain protocol P is T − consistent if a
valid transaction tx is confirmed and stays immutable in the Blockchain after
T − round of new blocks.

Theorem 1. DABSTERS Blockchain protocol is 1-consistent.

Proof. The consistency is achieved by agreeing on the validity of the transaction
through a Byzantine Agreement process. Hence, the probability to not settling
it in a new block is negligible if the transaction has at least 50% + 1 of valid
endorsement and the network have at most �n−1

3 � out of total n malicious peers,
as it has been shown in [6,14] under the terminology of safeness. The protocol
achieves consistency after a new block is created (1-consistency) due to the chain
is growing without forks.

Liveness: A consensus protocol ensures liveness if a honest client submits a
valid transaction and a new block is generated with the transaction in it. Hence,
the protocol must ensure that the Blockchain growths if valid clients generate
valid transactions.

Definition 2 (Liveness). A consensus protocol P ensures liveness for a
Blockchain C if P ensures that after a period of time t, the new version of the
Blockchain C ′ is C ′ > C, if a valid client cibc has broadcasted a valid transaction
txi during the time t.

Theorem 2. DABSTERS Blockchain protocol achieves liveness.

Proof. Our protocol is a BFT-based consensus. Thus, liveness is achieved if after
the transaction validation process, the network agrees in new block B with the
transactions broadcasted by the clients during a period of time t. Hence, for
valid transactions txi, where i ∈ N0, issued by valid a client ci during a period
of time t, the probability that C ′ = C is neglected if we have at most �n−1

3 � out
of total n malicious peers [6].

Blindness: We use the definition of blindness defined by Schnorr in [20]. A
signature is properly blinded if the signer cannot get any information about the
signature if the receiver follows the protocol correctly.

Definition 3 (Blind signature). A signing scheme is blind if the signature
(m, ρ, σ, ε) generated by following correctly the protocol, is statistically indepen-
dent of the interaction (a, e,R, S) with that provides the view to the signer.

Theorem 3. Okamoto-Schnorr signature (m, ρ, δ, ε) is statistically independent
to the interaction (a, e,R, S) between the authority A and the user.
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Proof. We recall how the protocol works. To generate a blind signature
(m, ρ, σ, ε) the user chooses randomly (β, γ, δ) ∈ Zq to respond to the commit-
ment a generated by A with the challenge e = H(m,agβhγyδ) − δ mod q. The
authority A then sends (R,S) = (t−er, u−es) to finally obtain the signature by
calculating (ρ, σ) = (R−β, S−γ). Hence, for the constant interaction (a, e,R, S)
and a unique set (β, γ, δ) randomly chosen per signature, we generate a signature
(m, ρ, δ, ε) = (m,R − β, S − γ, e + γ) that is uniformly distributed over all the
signatures of the message m due to the random (β, γ, δ) ← Zq [20].

5 Conclusion

We proposed a fully decentralized electronic voting system that combines sev-
eral security properties. This protocol, called DABSTERS, uses a new architec-
ture that allows enhancement of the security of e-voting systems and guarantees
the trustworthiness required by voters and election organizers. DABSTERS is
designed to be implemented on private Blockchains and uses a new blinded sig-
nature consensus algorithm to guarantee vote integrity and voter’s privacy due
to the unlinkability property that the blinded signature has. Future work will be
dedicated to evaluating the performance and the scalability of DABSTERS.

Acknowledgments. This work has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under the Grant Agreement No. 826404,
Project CUREX.
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Abstract. Controlling the propagation of information in social networks
is a problem of growing importance. On one hand, users wish to freely
communicate and interact with their peers. On the other hand, the infor-
mation they spread can bring to harmful consequences if it falls in the
wrong hands. There is therefore a trade-off between utility, i.e., reach-
ing as many intended nodes as possible, and privacy, i.e., avoiding the
unintended ones. The problem has attracted the interest of the research
community: some models have already been proposed to study how infor-
mation propagate and to devise policies satisfying the intended privacy
and utility requirements. In this paper we adapt the basic framework
of Backes et al. to include more realistic features, that in practice influ-
ence the way in which information is passed around. More specifically,
we consider: (a) the topic of the shared information, and (b) the time
spent by users to forward information among them. For both features,
we show a way to reduce our model to the basic one, thus allowing
the methods provided in the original paper to cope with our enhanced
scenarios. Furthermore, we propose an enhanced formulation of the util-
ity/privacy policies, to maximize the expected number of reached users
among the intended ones, while minimizing this number among the unin-
tended ones, and we show how to adapt the basic techniques to these
enhanced policies.

Keywords: Diffusion networks · Privacy/utility · Submodular
functions

1 Introduction

In the last decade there has been a tremendous increase in the world-wide diffu-
sion of social networks, leading to a situation in which a large part of the popu-
lation is highly inter-connected. A consequence of such high connectivity is that,
once a user shares a piece of information, it may spread very quickly. The impli-
cations of this phenomenon have attracted the attention of many researchers,
interested in studying the potentials and the risks behind such implications.
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The involvement of the scientific community with this topic has already pro-
duced a large body of literature; see, for instance, [4,6,15,21,22], just to cite a
few.

In general, diffusion [13] is a process by which information, viruses, gossips
and any other behaviors spread over networks. Here, we follow a natural and
common approach to modeling the net as a graph where nodes represent the
users and edges are labeled by the likelihood of transmission between users.

One of the strengths, but also the main potential hazard, of social networks
relies on the speed by which information can be diffused: once a piece of infor-
mation becomes viral, there is no way to control it. This means that it can reach
users that it was not meant to reach. If the information is a sensitive one, users
naturally have an interest in controlling this phenomenon. In [1], this problem
is addressed by defining two types of propagation policies that reconcile privacy
(i.e., protecting the information from those who should not receive it) and utility
(i.e., sharing the information with those who should receive it). Note that in the
framework of [1], instead of considering privacy in terms of an adversary inferring
sensitive information from the data published by the user, the authors consider
privacy in terms of controlling the spreading of information within a network of
users that share the information with each other. Thus the goal is to enable users
to share information in social networks in a such a way that, ideally, only the
intended recipients receive the information.1 Utility-restricted privacy policies
minimize the risk, i.e., the expected number of malicious users that receive the
information, while satisfying a constraint on the utility, i.e., a lower bound on
the number of friends the user wants to reach. Dually, privacy-restricted utility
policies maximize the number of friends with whom the information is shared,
while respecting an upper bound on the number of malicious nodes reached by
the information spread. The authors of [1] prove that Maximum k-Privacy -
the minimization problem corresponding to the utility-restricted provacy poli-
cies - and Maximum τ -Utility - the maximization problem corresponding to
the privacy-restricted utility policies - are NP-hard, and propose algorithms for
approximating the solution.

Being one of the first framework to study the trade-off between privacy and
utility, the model proposed in [1] is quite basic. One limitation is that the likeli-
hood that governs the transmission along an edge is a constant, fixed in time and
irrespective of any other features. We argue that this is not a realistic assumption,
and we propose to enrich the framework for modeling the situations described
in the following two scenarios.

First, imagine that you are a scientific researcher spending some time on a
social network. Suddenly, you see a news about the proof of the century, stating
that P = NP. Whom do you wish to share such an information with? Probably
with a colleague or someone interested in the subject. To support this kind of
scenario, following [7], we consider social networks in which a user may choose
the peers to whom to send a piece of information based on the topic of that

1 Even if this notion of privacy seems closer to the notion of secrecy, for the sake of
continuity we adopt the terminology used in [1].
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Fig. 1. A topic vector diffusion network, in which we use topic vectors with three
components (science, movies, society)

Fig. 2. A time diffusion network with sampled times for traversing the edge

information. To model such a situation, we label the edges of the net by topic
vectors, defined as vectors in which each component represents the probability of
a user to send an information of the corresponding topic (or tag) to the user at
the other end of the edge. Furthermore, a piece of information is usually related
to several topics, not just one. To model this latter aspect, we also tag a message
with a probability distribution (topic distribution) over the topics, representing
the weight of each topic in the message. To obtain the probability that a node
vi sends a message to another node vj we then consider the scalar product of
the topic vector of the edge (vi, vj) and the topic distribution of the message.

As an example, assume that there are three topics, science, movies, and
society. Figure 1 represents a net whose edges are labeled with instances of these
kinds of topic vectors. For example, if v3 receives a message about a new movie
of a director he likes, the probability that it will forward it to v2 (rather than
not) is 0.5, while the probability of forwarding it to v4 is 0.6 and to v5 is 0.1,
representing the fact that v2 and v3 are much more interested than v5 in the
kind of movies that v3 likes. Note that the sum of these probabilities is not 1,
because these are independent events. Further, consider the P = NP message,
and assume that its topic distribution is (0.9, 0, 0.1). Since the edge (v7, v6) has
topic vector (0.8, 0.3, 0.1), the probability that v7 sends the message to v6 is
0.9 × 0.8 + 0 × 0.3 + 0.1 × 0.1 = 0.73. Note that, being the convex combination
of probabilities, the result of such scalar product is always a probability.

Second, imagine that you are a night owl; at midnight, you see a funny photo
and you want to share it with one of your friends. However, he is a sleepyhead
and sleeps all night; thus, he will be able to forward such a photo only the next
morning. If we are tracking the diffusion process until a few hours forward, there
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Fig. 3. A general diffusion network in which green nodes are friends and red nodes are
malicious. (Color figure online)

will be no further diffusion of the photo from your friend. On the other hand, if
you had sent the photo during the day, he may have seen and forwarded it soon
afterwards. This scenario can be modeled by labeling each edge (vi, vj) with a
probability density function over time δij , representing the probability that the
information takes a certain time t for traveling from vi to vj . For instance, if
vi is the night owl and vj the sleepyhead, then it is likely that δij will be a big
amount of time, but there is still some probability that the information arrives
at vi when they are both awake, in which case the transmission time will be
shorter. Each edge may have a different density function: for instance, if vi has
another friend vz who is a night owl as well, then the moment in which vz sees the
information sent by vi will be likely to be closer to the one in which vi forwards
the information; hence, the amount of time for the transmission from vi to vz

will be small. By sampling the time for each edge, we obtain a snapshot of the
net, which will have the same structure as a standard net. Figure 2 represents
an instance of such a net.

Another limitation of the standard framework is in the way in which the
trade-off problem is formulated in [1]: for maximizing privacy and utility, the
corresponding problems try to minimize the number of malicious nodes infected
up to time t (given a bound on the number of friends initially sharing the infor-
mation), or to maximize the number of friends initially sharing the information
(given a bound on the number of malicious nodes infected up to time t). By
contrast, we argue that utility would be better expressed in terms of the friends
reached by the information up to time t, instead of the initial friends only. Fur-
thermore, privacy and utility would be more symmetric, in that both of them
would be expressed in terms of nodes reached at time t.

As an example, consider Fig. 3 and suppose we want to monitor the diffusion
up to time t = 1. Consider first the maximum utility problem under the con-
straint of reaching (at time t = 1) at most one malicious node. In the standard
framework, there are two solutions for the set of initial nodes: either {v1} or
{v5}. They are considered equivalent because we only consider further infection
of the malicious nodes (and in both cases, in 1 time unit just one malicious node
gets infected). By contrast, we argue that {v1} is a better solution, because if
we start with {v1} then in 1 time unit the information will reach also the friend
node v3, whereas no further friend will be reached if we start with {v5}.



Enhanced Models for Privacy and Utility 317

Consider now the maximum privacy problem. Assume that we want to min-
imize the number of malicious nodes infected up to time t = 1 under the con-
straint of having at least two friend sharing the information. The solution of the
problem in [1] is any subset formed by two friend nodes. Any such subset, in
fact, leads to infect two malicious nodes at time t = 1. By contrast, we argue
that the optimal solution would be the (smaller) initial set {v1}. In fact this
solution would respect the constraint if, as we propose, we count also the friends
infected at time t = 1, and would minimize the malicious nodes infected in the
same time unit.

1.1 Related Work

There is a huge literature on information propagation in social networks, but
most of the papers focus on maximizing the spread of information in the whole
network. See for instance [5,9,11,14,18]. To make such works closer to real life
situations, some papers revisit them on either the influence problem or the net-
work model. For example, in [2,3,20], the problem is modified by considering
the scenario where a company wants to use viral marketing to introduce a new
product into a market when a competing product is simultaneously being intro-
duced. Referring to A and B as the two technologies of interest, they denote
with IA (IB) the initial set of users adopting technology A (B). Hence, they try
to maximize the expected number of consumers that will adopt technology A,
given IA and IB, under the assumption that consumers will use only one of the
two products and will influence their friends on the product to use. In [2], the
authors consider the problem of limiting the spread of misinformation in social
networks. Considering the setting described before (with the two competitive
companies), they refer to one of the two companies as the “bad” company and
to the other one as the “good” company.

In the papers mentioned so far, authors always assume that all the selected
top influential nodes propagate influence as expected. However, some of the
selected nodes could not work well in practice, leading to influence loss. Thus,
the objective of [24] is to find the set K of the most influential nodes with which
initially the information should be shared, given a threshold on influence loss
due to a failure of a subset of nodes R ⊆ K. This problem, as all the previous
ones, are proven to be NP-hard; furthermore, all of [2,3,20,24] assume that the
diffusion process is timeless.

A different research line consists in making the underlying network model
closer to reality, instead of modifying the problem itself. For example, topic
of information is handled in [7], where the authors infer what we call topic
vector. Always considering the information item, the model in [23] endows each
node with an influence vector (how authoritative they are on each topic) and a
receptivity vector (how susceptible they are on each topic). While for diffusion
networks there exists a good amount literature about the role of users’ interests
[7,23,25,26], the same is not true for the role of time with respect to user habits.

An orthogonal research line is represented by works like [7,10], aiming at
inferring transmission likelihoods: given the observed infection times of nodes,



318 D. Gorla et al.

they infer the edges of the global diffusion network and estimate the transmission
rates of each edge that best explain the observed data. This leads to an interest-
ing problem that can be solved with convex optimization techniques. Note that,
as in [1], we are not dealing with this aspect, since we assume that the inference
has already happened and we have an accurate estimate of the transmission
likelihoods (whatever they are) for the whole network.

1.2 Contributions

The contributions of our paper are the following:

– We extend the basic graph diffusion model proposed in [1] by considering a
more sophisticate labeling of the edges. This allows us to take into account,
for the propagation of information, (a) the topics and (b) the probabilistic
nature of the transmission rates.

– We reformulate the optimization goals of [1] by considering a notion of utility
which takes into account the friend nodes reached up to a certain time t,
rather than the initial set only. We argue that this notion is more natural,
besides being more in line with that of privacy (the infected malicious nodes
are counted up to time t as well).

– We prove that the resulting optimization problems are NP-hard and provide
suitable approximation algorithms.

1.3 Paper Organization

This paper is organized as follows. In Sect. 2, we recall the basic notions and
results from [1]. Then, in Sect. 3, we present the two enhanced models, one where
information transmission is ruled by the topic of conversation, the other one
based on the transmission time. In Sect. 4, we then modify the basic definitions
of utility-restricted privacy policies and privacy-restricted utility policies, and
show that all the theory developed by [1] with the original definitions can be
smoothly adapted to these new (and more realistic) definitions. Finally, in Sect. 5,
we conclude the paper, by also drawing lines for future research.

2 Background

In this section we recall the basic notions from [1], which will be used in the rest
of the paper.

2.1 Submodular Functions

Definition 1 (Submodular function [8]). A function f : 2V → R is submod-
ular if, for all S, T ⊆ V , it holds that f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ).



Enhanced Models for Privacy and Utility 319

Defining f(j|S) := f(S ∪ {j}) − f(S) as the profit (or cost) of j ∈ V in the
context of S ⊆ V , then f is submodular iff f(j|S) ≥ f(j|T ), for all S ⊆ T and
j �∈ T . The function f is monotone iff f(j|S) ≥ 0, for all S ⊆ V and j �∈ S.
Moreover, f is normalized if f(∅) = 0. An example of submodular function is
given in [19]. Assume a factory able of making any finite set of products from
a given set E and let c : 2E → R be the associated cost function. Let subset S
be currently produced, and let us consider also producing product e �∈ S. The
marginal setup cost for adding e to S is c(e|S). Suppose that S ⊂ T and that
e �∈ T . Since T includes S, it is reasonable to guess that the marginal setup cost
of adding e to T is not larger than the marginal setup cost of adding e to S;
that is, for all S ⊂ T ⊂ T ∪ {e}, it holds that c(e|T ) ≤ c(e|S).

Given a submodular function f, the curvature κf of f is defined as

κf := minj∈V
f(j|V \ {j})

f({j})

Intuitively, this factor measures how close a submodular function is to a modular
function, where f : 2V → R is modular if, for all S, T ⊆ V , f(S) + f(T ) =
f(S ∪ T ) + f(S ∩ T ). It has been noticed that the closer the function to being
modular, the easier it is to optimize.

2.2 Diffusion Networks

Definition 2 (General Diffusion Network). A general diffusion network is
a tuple N = (V, γ), where V = {vi}i=1...n is the set of nodes and γ = (γij)i,j=1...n

is the transmission matrix of the network (with γij ≥ 0, for all i, j).

Thus, V and γ define a directed graph where each γij > 0 represents an
edge between nodes vi and vj along which the information can potentially flow,
together with the flow likelihood. Let us now consider a general diffusion network
N in which F ⊆ V is the set of friendly nodes and M ⊆ V is the set of malicious
nodes, with F ∩ M = ∅. The idea is to maximize the number of friends and
minimizing the number of enemies reached by an information in a certain time
window.

Definition 3 (Utility-restricted Privacy Policy). A utility-restricted pri-
vacy policy Π is a 4-tuple Π = (F,M, k, t) where F is the set of friend nodes, M
is the set of malicious nodes, k is the number of nodes the information should
be shared to, and t is the period of time in which the policy should be valid.

Definition 4 (Privacy-restricted Utility Policy). A privacy-restricted util-
ity policy Υ is a 4-tuple Υ = (F,M, τ, t) where F is the set of friend nodes, M
is the set of malicious nodes, τ is the expected number of nodes in M receiving
the information during the diffusion process, and t is the period of time in which
the policy should be valid.

Both the policies are focused on bounding the risk that a malicious node gets
infected by time t, given that F ′ ⊆ F is initially infected.
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Definition 5 (Risk). Let N be a diffusion network. The risk ρN (F ′,M, t)
caused by F ′ ⊆ V with respect to M ⊆ V within time t is given by

ρN (F ′,M, t) =
∑

m∈M

Pr[tm ≤ t|F ′]

Here, Pr[tm ≤ t|F ′] is the likelihood that the infection time tm of malicious node
m is at most t, given that F ′ is infected at time t = 0.

Hence, the risk function gives us an upper bound on the number of malicious
nodes receiving the information in a given time window, given that a subset
of friendly nodes was initially infected. This definition of risk function recalls
the one of influence function [1,9,11]. Here, instead of being interested in the
expected number of infected nodes in a set of malicious nodes, we are interested
in the infection in the whole network. Thus, given A ⊆ V , the influence in
the network N within time t is denoted by σN (A, t). Rodriguez et al. show in
[11] that computing σN (A, t) is #P -hard and they approach the problem of
the influence estimation by using a randomized approximation algorithm. As
already written in [1], since the risk function is just a generalization the regular
influence function, computing ρN (F ′,M, t) is also #P -hard; however, we can use
the algorithm in [11] to approximate the risk function up to a constant factor:
we simply ignore the infection times for nodes not in M .

To make notation lighter, we shall usually omit the subscript N from ρN ,
when clear from the context. To maximally satisfy a utility-restricted privacy
policy and a privacy-restricted utility policy, the following two problems are
defined.

Definition 6 (Maximum k-privacy – MP). Given a utility-restricted pri-
vacy policy Π = (F,M, k, t) and a general diffusion network N , the maximum
k-privacy problem (MP, for short) is given by

minimize
F ′⊆F

ρ(F ′,M, t)

subject to |F ′| ≥ k
(1)

Definition 7 (Maximum τ-utility – MU). Given a privacy-restricted utility
policy Γ = (F,M, τ, t) and a general diffusion network N , the maximum τ -utility
problem (MU, for short) is given by

maximize
F ′⊆F

|F ′|
subject to ρ(F ′,M, t) ≤ τ

(2)

The idea behind MP is to look for a subset of at least k friendly nodes with
which initially share the information, in order to minimize the diffusion between
malicious nodes at time t. By contrast, MU looks for the maximum set of friendly
nodes with which initially share the information, in order to infect at most τ
malicious nodes at time t. Both problems are NP-hard. However, they can be
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approximated and the approximation algorithms rely on the submodularity of
the risk function: since ρ is submodular, monotone and with a non-zero curva-
ture, it is possible to derive an efficient constant factor approximation, where
the approximation factor depends on the structure of the underlying network N .

Optimizing submodular functions is a difficult task, but we can get around the
problem by choosing a proper surrogate function for the objective and optimize
it; the surrogate functions usually are upper or lower bounds. For example, the
majorization-minimization algorithms begin with an arbitrary solution Y to the
optimization problem and then optimize a modular approximation formed via
the current solution Y . Therefore, following the work in [1,12], we can solve
MP (and MU) by choosing a surrogate function for ρ. In Algorithm 1, given a
candidate solution Y ⊆ F , the modular approximation of the risk function ρ is
given by

mgY
(X) = ρ(Y ) + gY (X) − gY (Y )

where

gY (X) =
∑

v∈X

gY (v) and gY (v) =

{
ρ(v|F \ {v}), if v ∈ Y

ρ(v|Y ), otherwise.

Due to the submodularity of the risk function, we can use this submodular
approximation as an upper bound for the risk, i.e. mgY

(Y ) ≥ ρ(Y ) [1,12].

Algorithm 1. Maximum k-Privacy
Require: Instance F , M , k of maximum k-privacy
Ensure: satisfyingMP(F, M, k)
1: C ← {X ⊆ F : |X| = k}
2: Select a random candidate solution X1 ∈ C
3: t ← 0
4: repeat
5: t ← t + 1
6: Xt+1 ← argminX∈C mgXt (X)

7: until Xt+1 = Xt

8: return Xt

At each iteration, Algorithm1 finds the new set that minimizes the upper
bound of the risk function. Clearly, since this set minimizes the upper bound
of the risk function, it also minimizes the risk function.2 Now, recall that the
curvature κρ(F,M,t) of ρ(F,M, t) is given by

κρ(F,M,t) := minv∈F
ρ(v|F \ {v},M, t)

ρ({v},M, t)
2 This methodology can be seen as the gradient descent method for minimizing contin-

uous differentiable functions: we start from a random point y and we iteratively move
in the direction of the steepest descent, as defined by the negative of the gradient.
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where ρ(v|F \ {v},M, t) := ρ(F,M, t) − ρ(F \ {v},M, t). This quantity can be
used to give the approximation factor.

Theorem 1. Algorithm1 approximates maximum k-privacy to a factor 1
κρ

. That
is, let F ′ be the output and F ∗ be the optimal solution; then, ρ(F ′,M, t) ≤
1

κρ
ρ(F ∗,M, t).

Starting from the approximation algorithm for maximum k-privacy, maxi-
mum τ -utility can be approximated through Algorithm2.

Algorithm 2. Maximum τ -Utility
Require: Instance F , M , τ of maximum τ -utility
Ensure: satisfyingMU(F, M, τ)
1: for n ∈ [|F |, . . . , 1] do
2: τ ′ ← minF ′⊆F ρ(F ′, M, t) s.t. |F ′| = n
3: if τ ′ ≤ τ then
4: return n
5: return 0

Theorem 2. Let n∗ be the optimal solution to an instance of maximum τ -
utility, and let n be the output of Algorithm2 for the same instance, using a
1

κρ
-approximation for maximum k-privacy. Then n ≥ κρn

∗.

3 Enhanced Models

In this section, we provide two different models which modify the notion of
general diffusion network by using different transmission matrices. In particular,
in the first model, called topic vector diffusion network, we bind the likelihood
of transmitting an information to the topic of that information; in the second
one, called time diffusion network, we bind the likelihood to the amount of time
an information takes for been transmitted. As in [1], we are not interested in
the inference of transmission likelihoods, as the aim of the following two models
is the reduction to the general model for which the two kinds of policies are
defined.

3.1 Topic Vector Diffusion Network

We first consider a social network where edges are labeled by topic vectors, that
are vectors in which each component represents the probability of a user to send
an information of the corresponding topic (or tag) to another user.
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Fig. 4. From a topic vector diffusion network to the mmm-diffusion network. (a) A topic
vector diffusion network. (b) The associated (0.9 0.1)-Diffusion network

Definition 8 (Topic Vector Diffusion Network). A topic vector diffusion
network is a tuple NTV = (V,A, k), where V = {vi}i=1...n is the set of nodes
in the network, k is the number of topics and A = (α1α1α1, . . . ,αnαnαn) is s.t. αiαiαi is the
matrix of dimension n × k giving the topic vector that rules the transmission
rates from node vi to the other nodes in the network. That is,

αiαiαi :=

⎛

⎜⎝
α1

i1 . . . αk
i1

...
...

α1
in . . . αk

in

⎞

⎟⎠ .

where every αijαijαij = (α1
ij . . . αk

ij) is called topic vector and each αl
ij (for l = 1 . . . k)

is the probability that user i sends an information of topic l to user j.

Notice that a topic vector is not required to be a probability distribution and
that, for every i, j and l, the probability of not sending an information of topic l
from i to j is 1−αl

ij . Together, V and A define a weighted directed graph where
each αijαijαij (i.e., each row of αiαiαi having non zero components) represents an edge
between vi and vj with weight αijαijαij . For example, consider the network NTV in
Fig. 4(a), with V = {v1, v2, v3}, k = 2 and

α1α1α1 =

⎛

⎝
0 0

0.6 0.5
0.4 0.9

⎞

⎠ , α2α2α2 =

⎛

⎝
0.5 0.5
0 0

0.3 0.8

⎞

⎠ , α3α3α3 =

⎛

⎝
0.5 0.6
0.7 0.6
0 0

⎞

⎠

User v1 will send to v2 an information about topic 1 with probability 0.6 and an
information about topic 2 with probability 0.5.

Definition 9 (Information Item). An information item (or meme) is a k-
dimensional probability vector, in which each component is the weight of a topic
relating to the subject of the information. That is, mmm := (m1 . . . mk) such that
m1 + . . . + mk = 1.

For instance, consider vectors consisting of two components, science and
society. The information item associated to a tweet on a scientific paper should
be mmm = (0.9 0.1).
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Remark 1. A topic vector is different from a meme since it is not a probability
vector (indeed, each component of a topic vector is itself a probability).

Definition 10 (Probability of Infection Information Item). Let NTV be
a topic vector diffusion network, i, j ∈ V and mmm the input meme. Then, the
probability that i sends mmm to j is given by:

βijmmm = αijαijαij mmm� (3)

Notice that, since each component of αijαijαij is a probability and mmm is a proba-
bility vector, we obtain:

0 = 000mmm� ≤ αijαijαij mmm� ≤ 111mmm� = 1

Definition 11 (mmm-Diffusion Network). An mmm-diffusion network is a tuple
Nm = (V, βmmm), where V = {vi}i=1...n is the set of nodes and βmmm = (βijmmm)i,j=1...n

is the transmission matrix of the network that forwards mmm (with βijmmm ≥ 0).

Given a topic vector diffusion network and an information item, we can derive
the associated mmm-diffusion network by determining the probability of infection
between each node with respect to the information item (i.e., the transmission
matrix βmmm). Resuming the example before, with mmm = (0.9 0.1) representing the
information item of a scientific paper, consider the topic diffusion network in
Fig. 4(b), in which we suppose the topic vectors have the same tag as mmm (science
and society). By Definition 10, we have, e.g., that β32mmm = (0.7 0.6)(0.9 0.1)� =
0.69 and β31mmm = (0.5 0.6)(0.9 0.1)� = 0.51; hence, the probability that v3
forwards mmm to v2 is greater than the probability of forwarding it to v1, since mmm
is more focused on science than on society.

Even if mmm-diffusion networks seem similar to general diffusion networks, they
still have an important difference: in them, transmission depends on the informa-
tion item. Thus, modeling real-life networks is more natural and more accurate
with this enhanced framework. Nonetheless, the new framework can be reduced
to the basic one via the transformation we are going to describe now. This of
course has the advantage of reusing all the theory developed in [1] for free. To
this aim, consider a sample of messages T = {mmm1, . . . ,mmmh} and their associated
mmml-diffusion networks derived from the same topic vector diffusion network. Let
us concentrate on two nodes i, j in V and define the independent events Eijl = {i
sends mmml to j}; clearly, Pr(Eijl) = βijmmml

. We can define a random variable Xij

counting the number of information items in T sent from i to j. Thus, we can
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compute the probability that i sends 0, 1, . . . , h information items to j as follows:

Pr(Xij = 0) =
h∏

l=1

(1 − βijmmml
)

...

Pr(Xij = d) =
∑

{l1,...,ld}⊆{1,...,h}
βijmmml1

. . . βijmmmld

⎛

⎝
∏

l′∈{1,...,h}\{l1,...,ld}
(1 − βijmmml′ )

⎞

⎠

...

Pr(Xij = h) =
h∏

l=1

βijmmml

The derivation of the general diffusion network from a set of mmml-diffusion
networks (obtained from the same topic vector diffusion network) is given by
first computing for each i, j ∈ V

E[Xij ] =
h∑

d=1

dPr (Xij = d)

Then, by starting from these expected values and by dividing by h (for the sake
of normalization), we can recover a general diffusion network: the set of nodes
remains V and γij := E[Xij ]

h , for every i, j.

3.2 Time Diffusion Network

We now consider a diffusion network in which each edge (vi, vj) is equipped
with a probability density function describing, for any given time interval (pro-
viding the time spent by the information in traveling along it), the probability
of transmitting along that edge.

Definition 12 (Time transmission function). A time transmission function
f(δ) is a a probability density function over a time interval.

Definition 13 (Time diffusion network). A time diffusion network is a tuple
NT = (V, ζ), where V = {vi}i=1...n is the set of nodes in the network and
ζ = (fij(δij))i,j=1...n is the transmission matrix of the network, with fij(·) a time
transmission function and δij a time interval (for every i and j).

In contrast with the discrete-time model (which associates each edge with
a fixed infection probability), this model associates each edge with a probabil-
ity density function. Moreover, instead of considering parametric transmission
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functions such as exponential distribution, Pareto distribution or Rayleigh dis-
tribution, we consider the non-parametric ones because in real word scenarios
the waiting times obey to different distributions. So, for example, if two nodes
are usually logged-in simultaneously (hence, their respective delay in transmis-
sion is small), the time function will assign high probabilities to short intervals
and negligible probabilities to long ones; the situation is dual for users that are
usually logged-in during different moments of the day.

Now suppose that some external agent gives in input to some nodes of the
network a certain information at time t = 0. Each of these nodes try to forward
this information to their neighbors; clearly, this entails a certain amount of time.

Definition 14 (Transmission time). Given two neighbor nodes i and j of
a time diffusion network, the transmission time δij is the amount of time the
information requires for going from i to j during a diffusion process.

Starting from a time diffusion network NT , we can compute the random
transmission times associated to each edge of the network by drawing them from
the corresponding transmission functions. Consider now a diffusion process over
a time diffusion network NT with the sampled transmission times and suppose
that the initial set of infected nodes is F ′.

Definition 15 (Infection time of a node [11]). The infection time of v ∈ V
is given by:

tv({δij}(i,j)∈NT
|F ′) := minq∈Qv(F ′)

∑

(i,j)∈q

δij

where F ′ is the set of nodes infected at time t = 0 and Qv(F ′) is the set of the
directed paths from F ′ to v.

For preserving Theorems 1 and 2 also in this setting, we must first prove
submodularity of the risk function on time diffusion networks. For this purpose,
let us slightly modify Definition 5.

Definition 16 (Risk). Let NT = (V, ζ) be a time diffusion network. The risk
ρNT

(F ′,M, t) caused by F ′ ⊆ V with respect to M ⊆ V within time t is given by

ρ(F ′,M, t) =
∑

m∈M

Pr[tm({δij}(i,j)∈NT
|F ′) ≤ t]

Here, Pr[tm({δij}(i,j)∈NT
|F ′) ≤ t] is the likelihood that the infection time tm of

malicious node m is at most t, given that F ′ is infected at time t = 0.

Theorem 3. Given a time diffusion network NT = (V, ζ), a set of friend nodes
F ⊆ V , a set of malicious nodes M ⊆ V and a time window t, the risk function
ρNT

(F,M, t) is monotonically nondecreasing and submodular in F .

Proof. By definition, all nodes in F are infected at time t = 0. The infection
time of a given node in the network only depends on the transmission times
drawn from the transmission functions. Thus, given a sample {δij}(i,j)∈NT

, we
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define r{δij}(F,M, t) as the number of nodes in M that can be reached from the
nodes in F at time less than or equal to t for {δij}; and R{δij}(f,M, t) as the set
of nodes in M that can be reached from the node f at time less than or equal
to t for {δij}.

(i) r{δij}(F,M, t) is monotonically nondecreasing in F , for any sample {δij}.
Indeed, r{δij}(F,M, t) = | ∪f∈F R{δij}(f,M, t)| and so, for any n �∈ V \ (F ∪
M), r{δij}(F,M, t) ≤ r{δij}(F ∪ {n},M, t).

(ii) r{δij}(F,M, t) is submodular in F for a given sample {δij}. Let
R{δij}(f |B,M, t) defined as the set of nodes in M that can be reached
from node f in a time shorter than t, but cannot be reached from any
node in the set of nodes B ⊆ V for {δij}. For any B ⊆ B′ it holds that
|R{δij}(f |B,M, t)| ≥ |R{δij}(f |B′,M, t)|. Consider now two sets of nodes
B ⊆ B′(⊆ V ) and a node b �∈ B′:

r{δij}(B ∪ {b},M, t) − r{δij}(B,M, t)

= |R{δij}(b|B,M, t)|
≥ |R{δij}(b|B′,M, t)|
= r{δij}(B′ ∪ {b},M, t) − r{δij}(B′,M, t)

If we average over the probability space of possible transmission times,

ρNT
(F,M, t) = E{δij}∈NT

[r{δij}(F,M, t)]

is also monotonically nondecreasing and submodular. �
Given a time diffusion network, if the risk function has a nonzero curvature,

then the results of [1] also hold for this model. Let Sij(δij) be the survival
function, expressing the probability of vj not being infected by node vi in less
than δij time units. Formally, Sij(δij) := 1 − ∫ δij

0
fij(δ′)dδ′.

Theorem 4. Let NT = (V, ζ) be a time diffusion network, for which Sij(δij) > 0
until time t for all vi, vj ∈ V . Then κρ(F,M,t) > 0.

Proof. The infection time of a given node in the network only depends on the
transmission times drawn from the transmission functions. Thus, given a sample
{δij}(i,j)∈NT

, we first remove all vi ∈ F s.t. ρNT
({vi},M, t) = 0, since they can

be safely infected at time t = 0. Now pick an arbitrary v ∈ F , thus there exists
a dipath P from v to some vm ∈ M . Since by hypothesis the survival function is
nonzero until time t for all pairs of nodes on the path, then

∏
(i,j)∈P Sij(δij) > 0.

This fact, entails that the likelihood of infection of every node on this path is
decreased if this path is removed. Moreover, this implies ρNT

(F,M, t)−ρNT
(F \

{v},M, t) > 0. Thus, by definition of curvature, we obtain ρNT
(v|F \{v},M, t) >

0 and therefore κρNT
(F,M,t) > 0. �
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4 Policy Enhancements

Let us consider a general diffusion network N = (V, ζ), with fixed and disjoint
sets of friend nodes F and of malicious nodes M . Starting from the propagation
policies given for the basic framework in Sect. 2, we give a new definition for when
an initial infection F ′ ⊆ F within a network satisfies a utility-restricted privacy
policy or a privacy-restricted utility policy. To this aim, we first introduce the
notion of gain.

Definition 17 (Gain). The gain π(F ′, F, t) caused by F ′ ⊆ F within time t
is given by

π(F ′, F, t) =
∑

fi∈F

Pr[ti ≤ t|F ′]

Here, Pr[ti ≤ t|F ′] is the likelihood that the infection time ti of a friend node fi

is at most t, given that F ′ is infected at time t = 0.

Hence, the gain function is similar to the risk function but, instead of deter-
mining the expected number of infected nodes in M , it gives us the expected
number of infected nodes in F .

Remark 2. Clearly, since our definition of gain function is similar to the defini-
tion of risk function, we can state that:

1. the proof of submodularity for ρ in [1] can be easily adapted to show sub-
modularity of π;

2. computing π(F ′,M, t) is #P -hard;
3. the gain function can be approximated up to a constant factor, by following

the algorithm in [11].

Moreover, we follow the approach in [1] for the risk function and assume to have
an oracle that exactly computes the gain function for a given initial infection F ′.

Definition 18 (Satisfy a Utility-restricted Privacy Policy). An initial
infection F ′ satisfies a utility-restricted privacy policy Π = (F,M, k, t) in a
general diffusion network N if F ′ ⊆ F and π(F ′,M, t) ≥ k. A set F ′ maximally
satisfies Π in N if there is no other set F ′′ ⊆ F with π(F ′′, F, t) ≥ k and
ρ(F ′′,M, t) < ρ(F ′,M, t).

Definition 19 (Satisfy a Privacy-restricted Utility Policy). An initial
infection F ′ satisfies an extended privacy-restricted utility policy Υ = (F,M, τ, t)
in a general diffusion network N if F ′ ⊆ F and ρ(F ′,M, t) ≤ τ . A set F ′

maximally satisfies Υ in N if there is no other set F ′′ ⊆ F with ρ(F ′′,M, t) ≤ τ
and π(F ′′, F, t) > π(F ′, F, t).

For finding an initial infection meeting Definitions 18 and 19, we define the
following problems.
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Definition 20 (Extended Maximum k-Privacy - EMP). Given a utility-
restricted privacy policy Π = (F,M, k, t) and a general diffusion network N , the
extended maximum k-privacy problem (EMP, for short) is given by

minimize
F ′⊆F

ρ(F ′,M, t)

subject to π(F ′, F, t) ≥ k

Definition 21 (Extended Maximum τ-Utility – EMU). Given a privacy-
restricted utility policy Υ = (F,M, τ, t) and a general diffusion network N , the
extended maximum τ -utility problem (EMU, for short) is given by

maximize
F ′⊆F

π(F ′, F, t)

subject to ρ(F ′,M, t) ≤ τ

Clearly, if F ′ is an optimal solution to the EMU problem with respect to Υ ,
then F ′ maximally satisfies Υ ; similarly, if F ′ is an optimal solution to the EMP
problem with respect to Π, then F ′ maximally satisfies Π. Unfortunately, EMP
and EMU problems are NP-hard; this can be proved by reducing MP and MU
to them.

Theorem 5. Extended maximum k-privacy and extended maximum τ -utility are
NP-hard.

Proof. We just show the reduction of MU to EMU since the other one is sym-
metric. Let φ be an instance of the MU problem, we can construct an instance
of the EMU problem ω by setting the time parameter of the gain function to
t = 0. Hence, F ′ is the seed set of φ, respecting the risk constraint, iff F ′ is the
maximum set of initially infected nodes always respecting the risk constraint.
As the MU problem is NP-hard [1], also EMU is NP-hard. �
However, like in the basic setting, both problems can be approximated, by
slightly modifying Algorithms 1 and 2. For EMP, it suffices to replace line 1
in Algorithm 1 with

1a : C ← {X ⊆ F : π(X,F, t) ≥ k}
1b : if C = ∅ then return ∅ //EMP cannot be satisfied.

As already written in Remark 2, we can use the algorithms in [11] for the gain
estimation: the randomized approximation algorithm for the influence estima-
tion, when used as subroutines in the influence maximization algorithm, is guar-
anteed to find in polynomial time a set of X nodes with an influence of at least
(1 − 1

e )OPT − 2Xε, where ε is the accuracy parameter and OPT is the optimal
value.

Similarly, Algorithm 2 can be easily adapted for handling EMU: it suffices to
replace line 2 with

2 : τ ′ ← minF ′⊆F ρ(F ′,M, t) s.t. π(F ′, F, t) ≥ n.
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5 Conclusion

In this paper, we proposed some enhancements of the basic model in [1] for con-
trolling utility and privacy in social networks. In particular, we added topics of
conversation and time of the infection within the transmission likelihood. Fur-
thermore, we modified the basic definitions of policy satisfaction, to make them
closer to the intuitive meaning of such policies. Then, we extended the methods
and results of [1] to our setting. We have demonstrated the applicability of our
enhanced framework on various situations. Arguably these are toy examples, but
nonetheless they reflect aspects of real-life social networks.

In the future, we are planning to extend this work and try to cope with the
problems in Definitions 20 and 21, e.g. by finding a trade-off between the risk
and the gain functions through multiobjctive optimization [16,17]. Clearly, one of
the main problems could be the submodular nature of our objective functions.
Furthermore, two other possible enhancements to be investigated are: (1) the
sets of friend and malicious nodes (F and M) are topic dependent, and (2) let
absolute time influence the likelihood of transmission (instead of letting time
intervals influence this aspect). In the first setting, we think that the reduction
to the basic framework becomes more involved, since a vector of memes cannot
rely on a single topic vector diffusion network. In the second setting, a global
time is needed for trying to reduce the new framework to the basic one. Finally,
an orthogonally research line would be the setting up of a few experiments on
real-life data, in order to empirically validate our results.
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Abstract. We propose a renovated approach around the use of Taylor
expansions to provide polynomial approximations. We introduce a coin-
ductive type scheme and finely-tuned operations that altogether con-
stitute an algebra, where our multivariate Taylor expansions are first-
class objects. As for applications, beyond providing classical expansions
of integro-differential and algebraic expressions mixed with elementary
functions, we demonstrate that solving ODE and PDE in a direct way,
without external solvers, is also possible. We also discuss the possibility
of computing certified errors within our scheme.

Keywords: Taylor expansion · Certification · PDE

1 Motivations

1.1 Taylor Expansions

Our principal motivation is to provide an automatic way of approximating arbi-
trary multivariate numerical expressions, involving elementary functions, inte-
grations, partial derivations and arithmetical operations. In terms of features,
we propose an approach where Taylor expansions are first-class objects of our
programming language, computed lazily on demand at any order. Finally, we also
wish to obtain certified errors, which will by the end include errors of approxima-
tion and numerical errors, expressed in any suitable user-provided error domain,
such as zero-centered intervals, intervals, zonotopes, etc. From a user’s perspec-
tive, a typical workflow is first to compute a certified approximation at some
order of some expression, second to evaluate the maximum error for the given
domains of variables, and maybe third to compute a finer approximation at some
higher order (without recomputing previous values) if the error is too coarse, and
so on, until the approximation meets the user’s expectations in terms of preci-
sion. We postulate that the expressions at hand are indeed analytical and possess
a valid Taylor expansion around a given point and within variables’ domains. If
it is not the case, then the error computed at every increasing order won’t show
any sign of diminishing and could even diverge. Last but not least, our approach
yields a direct means to express solutions to ODEs and PDEs and thus solve
them, without complex numerical methods based on domains discretization.

Furthermore, we aim at bringing as much robustness and correction as possi-
ble to our library through a correct-by-construction approach. The type system
c© Springer Nature Switzerland AG 2019
R. M. Hierons and M. Mosbah (Eds.): ICTAC 2019, LNCS 11884, pp. 335–352, 2019.
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is in charge of the correction as it ensures, at compile time, that dimensions
of various tensors, functions, convolutions and power series conform to their
specifications. This is of a particular importance in a complex and error-prone
context involving a vast number of numerical computations such as ODEs and
PDEs resolution. The type system which validates all dimension related issues
greatly helps in reducing the focus on purely numerical concerns: correctness
of approximation, precision, convergence. Moreover, correction could be proved
more formally with a proof assistant such as COQ. This idea could be addressed
in the future even if this work is likely to be laborious.

As a disclaimer, the current state of our contribution doesn’t allow yet the
computation of certified errors in the presence of differential equations, so we
mainly focus here on infinite Taylor expansions without remainders. Still, as one
of our prominent future goals, certified errors were taken into account in the
design stage of our framework and we discuss them along this paper.

1.2 Applications

Among many possible applications, we more specifically aim at formally ver-
ifying systems dealing with complex numerical properties, such as controllers
for embedded systems. Moreover, through certified integration of ODE, we may
also consider hybrid systems, such as a continuous plant coupled to a discrete
controller.

1.3 Outline

We start by recalling some related works around formalization and mechaniza-
tion of Taylor expansions in Sect. 2. Then, we state a mathematical formulation
of our on-demand multivariate Taylor expansions with errors in Sect. 3 before
introducing our implementation of data structures and operations that form an
algebra in Sect. 4. We separately discuss the more complex case of composition
in Sect. 5. In Sect. 6, we present some experiments done on solving differential
equations in a direct way. Finally, we open up some perspectives, notably about
errors, then conclude, respectively in Sects. 7 and 8.

2 Related Works

2.1 Taylor Series

Although Taylor expansions are well known and form a very rich and inter-
esting algebra, their realizations as software items are not widespread. From a
mathematical perspective, some weaknesses may explain this lack of success:
they only support analytical functions, a rather limited class of functions; they
don’t possess good convergence properties, uniform convergence is hardly guar-
anteed for instance; typical applications for polynomial approximations are usu-
ally not concerned with certified errors, mean error or integrated square error
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(through various norms) are more important and don’t easily fit into Taylor
expansion schemes. Finally, from a programming perspective, Taylor expansions
are: hard to implement as they require many different operations to be imple-
mented, from low-level pure numbers to high-level abstract Taylor expansions
seen as first-class citizens; error-prone with lots of complex floating-point compu-
tations on non-trivial data structures; heavily resource demanding in our multi-
dimensional setting because data structures rapidly grow as the precision order
increases.

Here are a few works dealing with Taylor expansions. In [4], the author
presents an early application of laziness to cleanly obtain Taylor polynomial
approximations. Laziness allows to augment the degree of the resulting polyno-
mial on demand. Yet, the setting is much simpler as it is strictly one-dimensional
and certified errors are not in scope. With these restrictions, the author obtains
nice formulations of automatic differentiation and polynomial approximations of
classical phenomena in physics. Speaking about implementation, related works
come in many flavors and date back to the now well established folklore of auto-
matic differentiation (forward or backward modes). As for symmetric tensor
algebra, which forms a well-suited representation basis for partial derivatives, a
huge menagerie of (mostly C++) libraries exists, for tensors of arbitrary orders
and dimensions (but some libraries put a very low upper-bound on these values).
These implementations are clearly not oriented towards reliability and proof of
correctness, but towards mere efficiency. This also comes at the expense of some
user-friendliness, as memory management and user interface are more complex
and error-prone than in our own library. Still, we may consider interfacing our
code base with a trusted and stable tensor library, for much better performance.

One of the most prominent implementation of Taylor expansions is the COSY
tool, cf. [5,8]. This tool has been used in industrial-scale engineering and sci-
entific contexts, to modelize and predict the complex dynamics of particles in
accelerators for instance. This tool supports 1D Taylor expansions with interval-
based certified errors. Polynomial degree is not refinable on demand and Taylor
expansions are not handled per se (i.e. not first-class citizens). The authors
managed anyway to implement an error refinement scheme for solved form ordi-
nary differential equations, that allows solving them with tight certified errors.
Experiments show that this tool compares favorably to other traditional approx-
imations and bounding techniques, such as branch-and-bound approaches and
interval arithmetics, in terms of speed and precision. We also aim at implement-
ing differential equation solving in our multi-dimensional setting.

At the other end of the spectrum, [7] proposes correct-by-construction uni-
variate Taylor expansions with certified errors, which appears as a huge step.
Integration of floating-point errors into this scheme is also a concern addressed
in [6]. Still, apart from its limitation to the 1D case, this approach suffers from
weaknesses: expansion degree is fixed and differential equations cannot be han-
dled. The underlying algorithm won’t be so easily turned into a co-inductive
(lazy) equivalent version.

And in the middle of the spectrum comes [1], where the author defines a way
to handle multivariate Taylor series and presents its implementation featuring
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on demand computation thanks to Scheme laziness. The few points he did not
implement and that we will try to cope with in our library are: errors certifi-
cation which is not handled and efficiency which is not optimal. For instance,
the author’s method to multiply multivariate power series is to define a generic
composition between a bivariate function and a power series and to instantiate
it with the multiplication. This method is simply built upon the chain rule but
has some drawbacks. First, the generic equation given can usually be drastically
simplified for instance in the case of multiplication and second, such a generic
scheme implies that some parts of the resulting coefficients will be computed sev-
eral times differently. Conversely, in our solution, the pervasive multiplication
operation is implemented with a strong concern on optimality.

Our work and specifically our data-structure is based on the dissertation [9,
Part 2], with the nuance that a single unbounded tree will be used instead of an
infinite sequence of finite trees, each such tree representing a symmetric tensor
of a given order. This choice notably enables the resolution of partial differential
equations, which was impossible in the setting of [9].

2.2 Differential Equations

Iterative methods are pervasive in integrating differential equations because they
often provide an efficient way to find an approximation of an ODE solution. Some
of them own validation aspects, such as [2] which relies on Runge-Kutta method
to integrate ODE with a numerical validation. The main difference between these
methods and our work as a direct method is that we don’t need these next level
iterations. We are able to yield a result in the equivalent of the first iteration.

3 Formalization

We recall the canonical presentation of a multivariate Taylor expansion at order
R in dimension N . This expansion converges to f(x) when R → +∞ for an
analytical function f only in a chosen neighbourhood of point 0.

f(x) =
∑

|α|<R

Dα
f (0) · xα

α! +
∑

|α|=R

Dα
f (λ ∗ x) · xα

α!

In the above formulation, x = (x0, . . . ,xN−1) ∈ R
N , α = (α0, . . . , αN−1) ∈

N
N indexes the derivation order of f in the symmetric tensor of partial deriva-

tives Dα
f and λ ∈ [0, 1] is an unknown coefficient that characterizes the exact

Taylor remainder. We have to compute derivatives both at point 0 for the poly-
nomial part and at point λ ∗ x for the error part. We choose to use a sin-
gle co-inductive data-structure that encodes all possible derivatives, indexed by
some α. As for the elements of this structure, we handle 〈value, error〉 pairs.
Our framework is error-agnostic as the value-error domain is user-defined and
only requires arithmetical operations. Several solutions are available in the lit-
erature: zero-centered intervals, intervals, zonotopes, etc. In the remainder, we
only assume that elements of our structures form an algebra (including addition,
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multiplication and some elementary functions), disregarding whether they are
pure values or values with errors.

This co-inductive structure, that we coin a “cotensor”, enables to compute
finer approximations on demand and also to lazily represent expansions of solu-
tions to ODEs and PDEs, when they are expressed in solved form, i.e. not
implicit (as it would for instance be the case if the solution were specified as a
zero of a polynomial form in a functional space).

4 An Algebra of Taylor Series

4.1 Data Structure

Coefficients are present in each node of a unique tree structure and are written
as so0,...,oN−1 where every oi is the number of occurrences of the variable xi in
the path that leads to the considered coefficient so0,...,oN−1 .

The principle is quite simple: at each node, we choose either to keep the same
variable accounting for the final Taylor series, or we drop it and repeat the same
process for lower dimension variables. This is pictured in tree branches of the
following example as xi for the first case and xi for the second case. The variable
at the root of the tree is Xn if the dimension is n + 1. This tree is developed
below and represents a symmetric cotensor s of dimension 4:

s0,0,0,0

s0,0,0,0

s0,0,0,0

s0,0,0,0

s1,0,0,0

...

s0,1,0,0

s0,1,0,0

...

s0,2,0,0

...

...

s0,0,1,0

s0,0,1,0

s0,0,1,0

...

s0,1,1,0

...

...

s0,2,0,0

s0,2,0,0

...

...

...

s0,0,0,1

s0,0,0,1

s0,0,0,1

s0,0,0,1

...

s0,1,0,1

...

...

s0,0,1,1

s0,0,1,1

...

...

...

s0,0,0,2

s0,0,0,2

s0,0,0,2

...

...

...

...

x3

x2

x1

x0
x0

x0
x0

x0
x0

x1

x1

x0
x0

x0
x0

x1

x1

x0
x0

x1

x2

x2

x1

x0
x0

x0
x0

x1

x1

x0
x0

x1

x2

x2

x1

x0
x0

x1

x2

x3

x3

x2

x1

x0
x0

x0
x0

x1

x1

x0
x0

x1

x2

x2

x1

x0
x0

x1

x2

x3

x3

x2

x1

x0
x0

x1

x2

x3
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4.2 Structural Decomposition

We will introduce for this co-inductive structure a few notations inspired from
the computation of the quotient and the remainder with respect to variable Xn.
We will call a left cotensor a cotensor which is the left branch of another cotensor
and we will denote Ln+1 the set of left symmetric cotensors and Rn+1 the set
of right symmetric cotensors in dimension n + 1. If V is the set of labels at the
root of the tree, we have the following definitions:

Ln+1 � Ln + Xn.Rn+1

Rn+1 � Ln + Xn.Rn+1 + V
Hence : Rn+1 = Ln+1 + V

We note that the only difference between left and right cotensors is the constant
part v ∈ V and from now, we are going to consider that right case is the general
one and that left case is the specification of the right case with constant part
equal to 0. This will prevent us from writing similar redundant equations for
all algebraic operations we will describe later. A cotensor is, then, considered a
right cotensor by default, even if it has no parent because it contains a significant
value v ∈ V which is the constant part of the Taylor series. It comes then that
a tree is interpreted as a Taylor series by adding together the term for the left
tree, Xn times the term for the right tree and the label value of the root.

4.3 Implementation

Finally, in terms of OCaml implementation, this decomposition scheme natu-
rally translates into the slightly relaxed following type definition, where Ln and
Rn have been conflated in a single type:

type (’a, _) st =

| Nil: (’a, Nat.zero) st

| Leaf: (’a, ’n Nat.succ) st

| Node: (’a, ’n) st Lazy.t

* ’a

* (’a, ’n Nat.succ) st Lazy.t

-> (’a, ’n Nat.succ) st

and

(’a, ’n) tree = (’a, ’n) st Lazy.t

Here the type of symmetric cotensors tree has two type parameters: the
type of elements ’a and the dimension type ’n. The last parameter not being
constant through recursion, it appears as _ in the type declaration. Then, the
two cases for the dimension N : N = 0 and N �= 0, are respectively handled with
Nil and Leaf/Node constructors. Leaf is only a special case of Node where all the
coefficients are zeros. Handling this particular case with a different constructor
aims at saving some computations, for instance all polynomial forms will be
represented by finite trees, not by unbounded ones with trailing zeros. And
Leaf constructor is used to mark the end of a branch when the dimension has



Taylor Series Revisited 341

decreased to 0, namely all the variables has been consumed. Type parameters of
constructors’ arguments behave accordingly to the decomposition of Rn+1.

The Nat.zero and Nat.succ type constructors encode the dimensions of
manipulated cotensors, as we use GADT1 allowed by OCaml. We use a stan-
dard type-level encoding of Peano numbers and operations that we don’t detail
here. We hereby enforce a correct-by-construction use of our data-structures.

4.4 Component-Wise Operations

From this section onward, we assume cotensor elements form a field, with arith-
metical operations on it. It may be in practice a field of coefficients or/and
errors. These elements are denoted by VA and VB . Functions “λ. � ” and “ � + � ”
straightforwardly witness the vector space structure of cotensors. The Hadamard
product “ � 	 � ” is the component-wise product of two cotensors of same dimen-
sion. Hence with the notation An+1 � AL

n + Xn.AR
n+1 + VA:

An+1 + Bn+1 = (AL
n + BL

n ) + Xn.(AR
n+1 + BR

n+1) + (VA + VB)

λ.An+1 = λ.AL
n + λ.Xn.AR

n+1 + λ.VA

An+1 	 Bn+1 = (AL
n 	 BL

n ) + Xn.(AR
n+1 	 BR

n+1) + (VA ∗ VB)

4.5 Multiplication

Let us define a new notation for cotensors in order to specify the multiplication.
We are now going to consider that the error term is no longer separated in a
precise term of the equation but is distributed in all the terms of the equation.
Which gives:

S(X0, ...,XN ) = (S0 + S1 	 X + S2 	 X2 + ... + Sm 	 Xm + ...) shortened in

= (S0 + S1X + S2X
2 + ... + SmXm + ...)

where X = (X0, ...,XN )

This notation is inspired by derivation order; even if we do not consider
order of cotensors; because it will be of a great help when defining the multipli-
cation and introducing the convolution product. Product of Taylor expansions
is really pervasive and appears in many operations (derivation formulas, compo-
sition of Taylor series, etc.). It is naturally defined with an explicit convolution.
Concretely:

S(X0, ...,XN ) × T (X0, ...,XN ) = (S0 + S1X + ... + SpX
p + ...)

× (T0 + T1X + ... + TqX
q + ...)

= R0 + R1X + R2X
2 + ... + RkXk + ...

where ∀k ∈ N, Rk =
k∑

i=0

SiTk−i

1 Generalized Algebraic Data Types.
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To compute the coefficients at order k, we need to consider every product that
will produce an order k, i.e. every coefficient of order i by every coefficient of
order k − i, i ranging from 0 to k.

In our setting, we maintain a typed convolution structure to express com-
putation of the term

∑k
i=0 SiTk−i. This structure, while geared towards static

guarantees and proof of correctness, still allows for some efficient implementa-
tion. Informally, we may specify our structure as an array containing couples
of cotensors of a specific dimension and that will represent absolute paths. The
same structure is used to represent relative paths. We introduce a path notation,
illustrated by the following examples in dimension n:

– () is the considered tree
– (n) is the tree we get when we take the n-th variable (Xn) once in the con-

sidered tree
– (n.n.n−1) when we take the Xn variable twice and then Xn−1 once

The so called “considered tree” is the original tree given in parameter if consid-
ering absolute paths or a specific tree (descendant of the original one) if consid-
ering relative paths. Through the relative paths (left part of the semi-colon), we
will store the number of times we went down a right branch since the last left
branch, namely relative paths are about the current variable and absolute paths
are about all previous variables with respect to the order. Initially, the structure
contains a couple of the two original trees given in parameter for both absolute
paths (and the part for relative paths is empty):

() ; ()
() ()

Then, at each step of the algorithm:

– If the current node is a right branch, we will update the relative paths by
adding the current node (k.k here) and shifting the lines as follows:

() (k) ; ... becomes () (k) (k.k) ; ...
(k) () ... (k.k) (k) () ...

– if the current node is a left branch, we will combine the relative paths with
the absolute ones, store the result as the new absolute paths and empty the
new relative paths:

() (n−1) ; () (n) becomes () ; () (n) (n−1) (n−1.n)
(n−1) () (n) () () (n−1.n) (n−1) (n) ()

Folding this structure to compute a term of a product simply consists in combin-
ing relative paths with absolute paths, multiplying cotensors roots column-wise
and then summing these intermediate results altogether. Associating a relative
path to an absolute one means concatenating them. Speaking in terms of trees,
it means that the relative path begins where the absolute one ends in the tree.
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4.6 Differential Operations

Cotensors of dimension N may not only be structurally decomposed on XN−1

but also on any other Xk, which we would call a non-structural decomposition.
For that purpose, the “ � [ � ]” function specializes a cotensor, i.e. drops some index
by specializing it to a specific dimension k, and therefore represents the division
by a monomial Xk. Conversely, the “ � ↑ � ” function represents the multiplication
by a monomial Xk. For a cotensor of dimension N , they are defined in terms of
polynomials as:

(S[k])(X0, . . . , XN−1) � S(X0,...,XN−1)−S(X0,...,Xk−1,0,Xk+1,...,XN−1)
Xk

(S↑k)(X0, . . . , XN−1) � Xk.S(X0, . . . , XN−1)

Using the same notations as for component-wise operations, we show how
these operators simply fit the structural decomposition:

S[k] = (SL + XN−1.SR + VS)[k]

=

⎧
⎪⎨

⎪⎩

SR, for k = N − 1
SL+XN−1.SR−SL

|Xk←0−XN−1.SR
|Xk←0+VS−VS

Xk
= SL[k] + XN−1.SR[k],

for k < N

S↑k =

⎧
⎨

⎩

0 + XN−1.S, for k = N − 1
(SL + XN−1.SR + VS).Xk = SL ↑k + XN−1.(SR ↑k) + VS .Xk,

for k < N

Differential operations introduce partial differentiation and integration in the
cotensor algebra. These differentiation and integration operators respectively
refer to S[ � ] and S ↑ � . They also use the cotensor of integration/derivation
factors “Δk”, where the oi are the variable occurrence number, such that:

(Δk)(o0,...,oN−1) � 1 + ok, for
∑

i oi = R

dS(X0,...,XN−1)
dXk

� S[k] 	 Δk

Xk∫

0

S(X0, . . . , xk, . . . , XN−1)dxk � (S 	 Δ−1
k )↑k

5 The Composition Operator

5.1 Differential Method

Principle. The Taylor series algebra with the previous operations still remains
basic, and that is why we are now interested in composing Taylor series with
elementary functions. To do so, we only need to apply elementary functions to
arbitrary arguments, i.e. to compose univariate Taylor series with multivariate
ones. A general composition scheme of Taylor series is also possible in our setting
but out of the scope of our current concerns. This method lies on a differential
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decomposition, namely a function is the sum of the integrals of its derivatives
with respect to all its variables, plus a constant term:

H : RN → R, H = H(0) +
∑

i<N

∫ Xi ∂H

∂Xi

∣
∣
∣Xk=0

k>i

dXi

Example. We need to partially evaluate the derivatives at 0 to avoid counting
several times the parts shared by different variables, as illustrates the following
concrete example:

let F : R3 → R, F (x, y, z) = x3 + 2x2y + xz + 5y2 + 3yz2

⎧
⎪⎪⎨

⎪⎪⎩

∂f
∂x = 3x2 + 4xy + z

∫ x

0
∂f
∂xdx = x3 + 2x2y + xz

∂f
∂y = 2x2 + 10y + 3z2

∫ y

0
∂f
∂y dy = 2x2y + 5y2 + 3yz2

∂f
∂z = x + 6yz

∫ z

0
∂f
∂z dz = xz + 3yz2

The blue terms are redundant and that is why we have:

F (x, y, z) = F (0, 0, 0) +
∫ x

0

∂f

∂x
dx +

∫ y

0

∂f

∂y

∣
∣
∣
x=0

dy +
∫ z

0

∂f

∂z

∣
∣
∣x=0
y=0

dz

Composition. As we are in the specific case of composition, we will use the
classic chain rule:

∂(f ◦ g)
∂Xi i<N

= (
∂g

∂Xi
)i<N × (f ′ ◦ g)

Hence :

f ◦ g = f ◦ g(0) +
∑

i<N

∫ Xi

(
∂g

∂Xi
× f ′ ◦ g)

∣
∣
∣Xk=0

k>i

dXi

The computation of the partial derivatives ∂(f◦g)
∂Xi i<N

is done case by case
with respect to the elementary function f at use, each such function having a
well-known derivative f ′. The cases where f = exp, sin, cos, log, atan, xa, . . . are
easily handled. So, according to the above equation, we only need to partially
evaluate these derivatives, to integrate them then and to finally sum the results.

This method will bring us satisfying results as detailed below, but one must
bear in mind that despite the method is very short in terms of code and then
easily implemented, it is not optimal in terms of computation. This differential
method for the composition is not canonical in that it does not compute the
minimum number of operations to produce the coefficients of the result. As a
witness of non canonicity in the definition of composition, the Δk coefficients will
be used for multiplication and division consecutively, which could be avoided.
Besides, as long as we do not handle certified errors, the method does not need
an additive decomposition of f but it will be the case as soon as we handle the
errors and we will have to deal with this constraint.
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5.2 Elementary Functions

Elementary functions, limited to one argument functions, are specified as univari-
ate Taylor series. Therefore, as only one branch of the cotensor will be mean-
ingful, such series are treated separately. This is only a matter of efficiency
and obviously not mandatory. To obtain a Taylor expansion of an elementary
function, we need to be able to compute any n-th derivative. Taylor series for
elementary functions are well known, so the first way to produce such a series
is to compute the coefficients iteratively and lazily with respect to the known
formulas, such as the following ones:

exp(x) =
∑

i∈N

xi

i!

log(1 + x) =
∑

i∈N

−(−x)i

i

(1 + x)p =
∑

i∈N

(
p
i

)
xi

sin(x) =
∑

i∈N

(−1)i

(2i+1)!x
2i+1

cos(x) =
∑

i∈N

(−1)i

(2i)! x2i

Similar formulations are available for elementary functions not presented here.

6 Experimentation

Now that the main operations are available in our algebra, we can start using
it. Differential equations are pervasive in dynamical systems and our point is to
propose a direct (i.e. non-iterative) way to solve them. By direct method, we
mean that coefficients are computed once and for all and therefore there is no
need to iterate over their values until a specific precision is reached. Precision
in our case is seen differently: coefficients are computed only once and if the
user wants a finer precision, the user will increase the order of derivation which
means that new and deeper coefficients will be computed.

6.1 Airy Equation

To illustrate this direct approach for solving ODEs and PDEs, we will use the
first dimension Airy equation which stands as follows:

f ′′ − xf = 0

As the equation contains a second derivative, we split it for convenience in two
first order equations introducing f dot as f derivative:

⎧
⎪⎪⎨

⎪⎪⎩

f dot = f dot0 +
∫ x

xf

f = f0 +
∫ x

f dot

Then, thanks to OCaml laziness, we express and solve this mutually recur-
sive system directly, with the following principle:



346 X. Thirioux and A. Maffart

– According to the second equation, computing the first coefficient of f , the
constant part, means summing the constant part of f0 with the constant part
of

∫
x

f dot. We know that the constant part of an integral will be 0, whatever
the integrand is.

– the first coefficient of f dot, or equivalently the second coefficient of f , is
computed the same way (no need to evaluate the argument of the integral).

– then the mutual recursion works and the third coefficient of f , or the second
one of f dot, is simply the result of integrating the constant part of xf ,
actually 0. The other coefficients are also computed in finite time.

So the trick is to stay a step ahead by computing a first coefficient of a
recursive Taylor series without having to evaluate itself, thanks to the integral
operator, and then to keep this advance all along the computation so that the
recursion will always end. Indeed, if the computation scheme respects the causal-
ity, for example in one dimension: computing a coefficient requires only strictly
lower order coefficients, then we can ensure the recursion will end.

Once we get the solution up to a specific order, we evaluate it as a polynomial
function so that we can draw its graph (Figs. 1 and 2):

Fig. 1. Our function (at order 150) Fig. 2. Theoretical result

We can observe that the approximation is reliable on a specific interval and
diverge outside of it. We can have this conclusion because we know the theoretical
result in this case, but we won’t know it in most cases. This is what will motivate
the necessary handling of certified errors. Intervals of errors, which are only an
example of error representation, will give the user information about how far the
theoretical function could be from the returned approximation.

6.2 Heat Equation

In order to explain the principle of causality more precisely and to show a more
general case, we are going to present the 2-dimensional heat equation example:

∂u

∂t
= α

∂2u

∂x2
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There are 2 different ways of integrating this equation and we chose to integrate
it with respect to variable t so that initial conditions are a function of variable
x at initial time t = 0. Here is the new form of the equation:

u(x, t) = u0(x) + α ×
∫ t ∂2u(x, t)

∂x2

where u0(x) will be a data we have. The causality is respected if computing any
derivative ∂i+ju

∂xi∂tj boils down to compute elements of initial condition u0(x). And
in the case of the heat equation, we can ensure it will be possible thanks to
Schwarz ’s theorem about switching partial derivatives:

∂i+ju

∂xi∂tj
=

∂i+j−1u

∂xi∂tj−1

(
∂u

∂t

)

=
∂i+j−1u

∂xi∂tj−1

(
∂2u

∂x2

)

=
∂i+j+1u

∂xi+2∂tj−1
= ... =

∂i+2ju

∂xi+2j

This graph illustrates the depen-
dencies between the partial deriva-
tives and we see that all arrows
will end up on the vertical axis
which represents the derivatives
with respect to x only, namely the
different parts of u0(x). The causal-
ity being respected ensures that
the recursion will end. This exam-
ple in 2 dimensions shows how the
principle of causality is more flexi-
ble than it was presented with the
Airy equation. Indeed, we said that
coefficients of specific order should
require strictly lower order coeffi-

cients, which is graphically represented by arrows crossing the blue line from the
top right-hand corner down to bottom left-hand corner. But we state now that
it is not a necessary condition as we can see with the heat equation where higher
order coefficients are required but with respect to other variables. So arrows are
allowed to cross the blue line in the opposite direction as long as they end on
the vertical axis.

Figure 3 shows our heat equation solution developed at order 25. The vertical
axis is the temperature. We set the initial conditions to a sinus, which concretely
means we impose the temperature on one axis to be an alternation of warm and
cold at initial time. The graph converges to a uniform average value along the
time which is consistent with the physical interpretation.

What we call order here and denote by R is only the unrolling depth of the
infinite tree we build. The graph in Fig. 4 shows the computation times (in sec-
onds, on a common laptop computer) of the heat equation solution according to
order and the graph in Fig. 5 shows this computation time divided by the num-
ber of coefficients of the solution, which lies in θ(RN ) with N the dimension,
according to [9]. By dividing the computation time by the number of computed
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Fig. 3. Heat equation solution

Fig. 4. Computation time Fig. 5. Computation time/R2

coefficients (normalized to 1 for R = 0), we aimed at evaluating the amount
of additional computation done per useful coefficient, i.e. the “administrative”
overhead induced by the resolution of the equation, due to auxiliary data struc-
tures, memory allocations, etc. We observe only a linear overhead and despite
the relative simplicity of the heat equation, it comforts us in the decisions taken
so far for implementing our framework.

7 Perspectives

7.1 Canonical Method for Composition

As defined in Sect. 5, composition involves the resolution of a partial differential
equation. This hinders the computation of error bounds. Indeed, as far as we
know, there is no established general method to solve such equations with cer-
tified errors, beyond ad-hoc situations such as elliptic, parabolic, etc., equations
with specific initial conditions.

In order to devise a direct more tractable and non recursive way to compose
Taylor series, following schemes such as Faà di Bruno’s formula, we first need to
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handle errors. As in formal power series, composition (f ◦ g) may be achieved
only when g has no constant part. To factorize out the constant part of g (so that
we fall back to evaluation at point 0), we depend on an additive decomposition
of f , when available.

Again, we sum up some decompositions of standard elementary functions.
For every An+1 ∈ Rn+1, we have the following equations, where we remark that
their right-hand sides are built from a constant part (VA) and another term
without a constant part:

exp
(
AL

n + Xn.AR
n+1 + VA

)
= exp(VA) exp

(
AL

n + Xn.AR
n+1

)

log
(
AL

n + Xn.AR
n+1 + VA

)
= log(VA) + log

(
1 + AL

n+Xn.AR
n+1

VA

)

sin
(
AL

n + Xn.AR
n+1 + VA

)
= sin(VA) cos

(
AL

n + Xn.AR
n+1

)

+ cos(VA) sin
(
AL

n + Xn.AR
n+1

)

arctan
(
AL

n + Xn.AR
n+1 + VA

)
= arctan(VA) + arctan

(
AL

n+Xn.AR
n+1

1+VA.(AL
n+Xn.AR

n+1)

)

We are currently developing a canonical composition operator f ◦g following
decomposition schemes that are all well known to strongly involve combinatorial
reasoning. Our preliminary results already show that the administrative content
of such heavy combinatorial computations, such as iterating over partitions,
combinations, permutations and so on, have a great cost and are not yet on a
par with the differential approach in terms of efficiency, at least for the tested
instances. More investigation is required in that respect. We still expect to obtain
an efficient canonical solution, with a simpler error propagation scheme and
furthermore less computations to reduce such propagation.

7.2 Certified Errors

Taylor Models. Differential equations put aside, we are already able to com-
pute certified errors in our framework. It merely requires the introduction of an
arithmetical domain for errors. We introduce below a very simple error domain
based upon symmetric zero-centered monotonic error functions.

Let us assume K stands for the value domain. Error functions are then ele-
ments of the following domain E, assuming we work in dimension N :

E � {f ∈ (K+)N → K
+ | f(0) = 0, f monotonous}

The error model is then the product K×E. The semantics � � � of an element of
this model represents a function from variable bounds to sets of possible values:

�〈v, ε〉� � X ∈ (K+)N → {k ∈ K | |k − v| ≤ ε(X)}

The error model has N + 1 constructors: (k,0) for k ∈ K, denoted “k” and
the i ∈ [0, N − 1] indexed family (0,X → Xi), denoted “Xi”. It is endowed
with a K-algebra structure and is further turned into an full-fledged domain
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using suitable definitions of elementary functions on K×E, as illustrated below.
Similar definitions may be devised for other elementary functions:

〈v1, ε1〉 + 〈v2, ε2〉 � 〈v1 + v2, ε1 + ε2〉
α × 〈v, ε〉 � 〈α × v, |α| × ε〉
〈v1, ε1〉 × 〈v2, ε2〉 � 〈v1 × v2, |v1| × ε2 + |v2| × ε1 + ε1 × ε2〉
e〈v,ε〉 � 〈ev, ev × (eε − 1)〉
log〈v, ε〉 � 〈log v, log

(
1 + ε

v

)
〉 (v �= 0)

Taylor models are then built from cotensors of 〈value, error〉 terms. We con-
sider a function f ∈ R

N → R, assumed analytical at point 0 and note respec-
tively fα and εα as the value and error at derivation multi-index α.

A Taylor model predicate T M(f,R, δ) at order R in a δ-neighbourhood of
point 0 (where δ ∈ R

+N ) is defined as the following:

T M(f,R, δ) � ∀x ∈ R
N .|x| ≤ δ =⇒ |f(x) −

|α|≤R∑

α=0

fαxα| ≤
∑

|α|=R

εα(δ)|x|α

A Taylor model for parameters R and δ is then the set of functions f such
that T M(f,R, δ) holds true.

Issues with Recursive Definitions. We recall that the above definitions must
be amended in order to account for errors in (recursive) differential equations.
Indeed, in that case, dependencies between errors at different derivation orders
do not respect the causality relation fulfilled by pure values. So we need to
compute another fixed point, different from the one for pure values. We illustrate
this discrepancy between values and errors, considering the following partial
development of a Taylor series with errors for a bivariate function f :

f(X,Y ) � 〈f0, ε0〉 + X.〈fX , εX〉 + Y.〈fY , εY 〉 + . . .

Then, integrating f along X, accounting for errors, yields the following series:
∫ X

f = 〈0, |X|.(|f0| + ε0)〉 + X.〈f0, ε0〉 + Y.〈0, |X|.(|fY | + εY )〉 + . . .

Unfortunately, we remark that the error term |X|.(|f0|+ ε0) at order 0, while
still a zero-centered monotonic error function, directly depends on ε0, the error
function of f at order 0. The same problem occurs at order Y . On the contrary,
the value part of the integrand is always 0, so is independent of f . As we wish to
define f recursively through such an integrand, setting for instance f =

∫ X
f ,

we face the necessity to find a different computation scheme for errors than for
values. This is left for future work, but we feel that it would probably imply
to transpose in our multivariate setting the kind of argumentation found in the
Picard-Lindelôf theorem (that determines existence and unicity of solutions to
ODEs in solved forms).



Taylor Series Revisited 351

Going Further. Many other sensible choices for computing errors are also
possible such as arbitrary intervals, zonotopes, etc., but we haven’t experimented
with these solutions yet. We chose to stick to the lightweight zero-centered error
domain, giving up some precision to save computation time, mostly because it
is much simpler to implement and also because we rely on on-demand cotensor
exploration to increase precision, by computing deeper coefficients of Taylor
expansions. We nevertheless plan to address the problem of finding a well-suited
error domain, in terms of precision with respect to computation time.

Accounting for numerical errors is also on our roadmap. As a first approach,
we postulate that we would only have to represent every real number with an
interval of lower and upper approximations given as two floating-point num-
bers, lifting every computation from an algebra of real numbers to an algebra
of floating-point intervals. The main question will be to test whether accumu-
lating numerical errors along a huge number of computations could significantly
degrade precision, as the derivation order increases, jeopardizing the core feature
of our framework.

Another method, closely related to our own functional language framework
exploiting laziness, would be to consider using a setup for exact real number alge-
bra, as illustrated for instance in [3]. Besides its lack of efficiency wrt. floating-
point numbers, it would not suffer from a potential untamable accumulation of
errors and would also open the way for a complete formal verification (including
tensorial structure and numerical aspects). This is left for future work.

8 Conclusion

With a renovated view on Taylor series, we provide an implementation of a
genuine full-fledged algebra of such series, in the multivariate case. Even if the
work is far from being completed, it has been proven useful already as we are
able to deal smoothly with partial differential equations in solved form, without
any input from domain expert. To the best of our knowledge, implementing
such an algebra of Taylor series with a concern on efficiency through carefully
crafted algorithmics but also on correctness through strong typing has not been
tried before. Indeed, although not presented here, our implementation puts an
emphasis on strong typing, through extensive use of advanced OCaml GADT
features. This proved really helpful in designing correct-by-construction code,
at least with respect to dimensions and derivation orders, while implementing
complex and error-prone numerical computations.

The next big challenges to take up are: first, the introduction of a better
composition scheme; second, error domains and computation schemes compatible
with every construction of our algebra. This would pave the way for applying our
library in the paradigm of guaranteed integration for instance, notwithstanding
other pervasive usages of Taylor series in various scientific fields.
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cate checkers for hardest-to-round computation. J. Autom. Reasoning 54(1), 1–29
(2015). https://doi.org/10.1007/s10817-014-9312-2

7. Martin-Dorel, É., Rideau, L., Théry, L., Mayero, M., Pasca, I.: Certified, efficient
and sharp univariate Taylor models in COQ. In: 15th International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC 2013,
Timisoara, 23–26 September 2013, pp. 193–200 (2013). https://doi.org/10.1109/
SYNASC.2013.33

8. Revol, N., Makino, K., Berz, M.: Taylor models and floating-point arithmetic: proof
that arithmetic operations are validated in COSY. J. Log. Algebraic Program. 64(1),
135–154 (2005). https://doi.org/10.1016/j.jlap.2004.07.008

9. Thirioux, X.: Verifying embedded systems. Habilitation thesis, Institut National
Polytechnique de Toulouse, France, September 2016

https://doi.org/10.1017/S0960129506005834
https://doi.org/10.1017/S0960129506005834
https://doi.org/10.1023/A:1011501232197
https://doi.org/10.1145/1577190.1577206
https://doi.org/10.1007/s10817-014-9312-2
https://doi.org/10.1109/SYNASC.2013.33
https://doi.org/10.1109/SYNASC.2013.33
https://doi.org/10.1016/j.jlap.2004.07.008


Solving the Expression Problem in C++,
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Abstract. We give a C++ solution to the Expression Problem that
takes a components-for-cases approach. Our solution is a C++ translit-
eration of how Lightweight Modular Staging solves the Expression Prob-
lem. It, furthermore, gives a C++ encoding to object algebras and object
algebra interfaces. We use our latter encoding by tying its recursive knot
as in Datatypes à la Carte.

1 Introduction

The Expression Problem (EP) [6,31,37] is a recurrent problem in Programming
Languages, for which a wide range of solutions have been proposed. Consider
those of Torgersen [35], Odersky and Zenger [20], Swierstra [34], Oliveira and
Cook [23], Bahr and Hvitved [2], Wang and Oliveira [38], Haeri and Schupp [16],
and Haeri and Keir [12], to name a few. EP is recurrent because it is repeatedly
faced over embedding DSLs – a task commonly taken in the PL community.
Embedding a DSL is often practised in phases, each having its own Algebraic
Datatype (ADT) and functions defined on it. For example, take the base and
extension to be the type checking and the type erasure phases, respectively. One
wants to avoid recompiling, manipulating, and duplicating one’s type checker if
type erasure adds more ADT cases or defines new functions on them.

Haeri [11] phrases EP as the challenge of implementing an ADT – defined by
its cases and the functions on it – that:

E1. is extensible in both dimensions: Both new cases and functions can be added.
E2. provides weak static type safety : Applying a function f on a statically1

constructed ADT term t should fail to compile when f does not cover all
the cases in t.

1 If the guarantee was for dynamically constructed terms too, we would have called it
strong static type safety.
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E3. upon extension, forces no manipulation or duplication to the existing code.
E4. accommodates the extension with separate compilation: Compiling the

extension imposes no requirement for repeating compilation or type check-
ing of existing ADTs and functions on them. Compilation and type checking
of the extension should not be deferred to the link or run time.

On the other hand, Rompf and Odersky [32] coin Lightweight Modular Stag-
ing (LMS) for Polymorphic Embedding [17] of DSLs in Scala. They employ a
fruitful combination of the Scala features detailed in [21] that, as a side-product,
offers a very simple yet effective solution to the EP. We call that side-product
the “Scala LMS-EPS.” In this paper, we offer a new C++ solution that is greatly
inspired by the Scala LMS-EPS. We call our own solution the “C++ LMS-EPS.”

Amongst the EP solutions, LMS is distinctive for its ease of extension: both
in adding new ADT cases and functions defined on them. We chose to imple-
ment LMS in C++ to show the independence of LMS from Scala’s combination
of following features: traits, abstract type members, and super calls. Instead,
the C++ LMS-EPS makes use of the following C++ features: curiously recur-
ring template pattern (Sect. 3.2), abbreviated function templates of C++202

(Sect. 3.3), user-defined deduction guides and variadic templates (Sect. 5.3),
and, most notably, std::variant (Sect. 3.1). (For the unfamiliar reader, an
introduction to those C++ features comes in Appendix A.) Unlike Scala, C++
is a mainstream language which is well-known for its efficiency. Similar to Scala,
C++ is a multi-paradigm language with a high level of abstraction (from C++17
onward).

Given its presentation in C++, the C++ LMS-EPS machinery may look as
an EP solution that is too specific to C++. In order to correct that impression,
we recall that it is typical for EP solutions to be presented with tactful uses of
a single language. Take Datatypes à la Carte [34], CDTs [1], PCDTs [2], and
MRM [25] in Haskell, Polymorphic Variants [9] in OCaml, and LMS [32] and
MVCs [22] in Scala. The C++ LMS-EPS is amongst the few EP solutions which
are presented in a mainstream programming language.

Here is a list of our contributions:
The C++ LMS-EPS takes a components-for-cases (C4C) [11] approach

(Sects. 2.1 and 3.1). It implements ADTs (Sect. 3.2) using an encoding of object
algebra interfaces [26] that is akin to Swierstra’s sum of functors [34]. We tie
the recursive knot using F-Bounding [4]. To implement functions on ADTs
(Sect. 3.3), the C++ LMS-EPS gets a simulation of Haskell’s Combinator Pat-
tern [28, Sect. 16] (Sect. 5.3) to first acquire an encoding of object algebras.
Our latter encoding, however, does not use self -references [27]. The C++ LMS-
EPS outperforms its Scala predecessor by ensuring strong static type safety
(Sect. 4.2). The way to distinguish between the C++ LMS-EPS and EP solu-
tions that use Generalised Algebraic Datatypes (GADTs) is in Sect. 6. Detailed
discussion on the related work comes in Sect. 7.

2 Although our codebase remains fully functional without that (using ordinary type
parametrisation), we retain its usage here for enhanced readability.
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2 Background

2.1 Formal Notation

In this paper, we use parts of the γΦC0 calculus developed for solving the
Expression Compatibility Problem [15]. γΦC0 was developed after observ-
ing that sharing ADT cases amongst ADTs is not limited to ADTs only
extending one another. For example, consider the ADTs α1, α2, and α3

defined as: α1 ::=Num(Z) | Add(α1), α2 ::=Num(Z) | Add(α2) | Mul(α2), and
α3 ::=Num(Z) | Add(α3) | Sub(α3). Both α2 and α3 extend α1. But, neither
of them is an extension to the other. In order to share the implementation
effort required for encoding α2 and α3, then γΦC0 promotes the ADT cases to
components (in their Component-Based Software Engineering [33, Sect. 17], [29,
Sect. 10] sense).

In γΦC0, ADT cases are independent of ADTs but still parameterised by
them. In the γΦC0 notation, one would write α1 = Num ⊕ Add , α2 = Num ⊕
Add ⊕ Mul , and α3 = Num ⊕ Add ⊕ Sub. In the γΦC0 ADT definitions, what
comes to the r.h.s. of the “=” is called the case list of the ADT on the l.h.s. of the
“=”. The connection between γΦC0 and C4C becomes more clear in Sect. 3.1.
Hereafter, we refer to α1 as NA (for Numbers and Addition) and to α2 as NAM
(for Numbers, Addition, and Multiplication).

2.2 The Scala LMS-EPS

Suppose one is interested in encoding NA and in evaluating its expressions. One
possible Scala implementation is:
1 trait NA {
2 trait Exp //Exp ::=
3 case class Num(n: Int) extends Exp // Num(n) |
4 case class Add(l: Exp, r: Exp) extends Exp // Add(Exp, Exp)
5 def eval: Exp => Int = {
6 case Num(n) => n
7 case Add(l, r) => eval(l) + eval(r) } }

Scala uses inheritance for definition of ADT cases. In lines 3 and 4 above,
for example, Num and Add inherit from their ADT type, i.e., Exp. Implementing
NAM without manipulation or duplication of NA can now be done as:
1 trait NAM extends NA { //Exp ::= ... |
2 case class Mul(l: Exp, r: Exp) extends Exp // Mul(Exp, Exp)
3 override def eval: Exp => Int = {
4 case Mul(l, r) => eval(l) * eval(r)
5 case e => super.eval(e)} }

Line 2 above adds the new case (Mul). Line 4 above handles its evaluation.
And, line 5 above makes a super call to employ the evaluation already defined
at NA. Note that NAM inherits Num and Add because it extends NA.

Addition of a function on NA whilst addressing E3 and E4 is similar. For
example, here is how to provide pretty printing:
1 trait NAPr extends NA {
2 def to_str: Exp => String = {
3 case Num(n) => n.toString
4 case Add(l, r) => to_str(l) + " + " + to_str(r)} }
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3 The C++ Version

C++ offers no built-in support for ADTs. Neither does it support mixin-composi-
tion for a super call to be possible. The C++ LMS-EPS mitigates those by
exercising a coding discipline that is explained in Sects. 3.1 to 3.3. Term creation
and application of functions on that comes in Sect. 3.4.

3.1 Cases

An EP solution takes a C4C approach when each ADT case is implemented
using a standalone component that is ADT-parameterised. In the C++ LMS-
EPS, the ADT-parametrisation translates into type-parametrisation by ADT.
For example, here are the C++ counterparts of Num and Add in Sect. 2.2:
1 template<typename ADT> struct Num {//Num α : Z → α
2 Num(int n): n_(n) {}
3 int n_;
4 };

Above comes a C4C equivalent of Num in Sect. 2.2. Verbosity aside, an impor-
tant difference to notice is that Num in Sect. 2.2 is a case for the ADT Exp of
Sect. 2.2, exclusively. On the contrary, the above Num is a case for the encoding
of every ADT α such that Num ∈ cases(α). The Add below is similar.
1 template<typename ADT> struct Add {//Add α : α × α → α
2 using CsVar = typename ADT::cases;
3 Add(const CsVar& l, const CsVar& r):
4 l_(std::make_shared<CsVar>(l)), r_(std::make_shared<CsVar>(r)) {}
5 const std::shared_ptr<CsVar> l_, r_;
6 };

Terms created using Add, however, are recursive w.r.t. their ADT. That is
reflected in line 5 with the l_ and r_ data members of Add being shared pointers
to the case list of ADT, albeit packed in a std::variant. (See line 2 in NATemp

below.) Line 2 is a type alias that will become more clear in Sect. 3.2. The need
for storing l_ and r_ in std::shared_ptrs is discussed in Sect. 5.1.

We follow the terminology of C++ IDPaM3 [12] in calling Num and Add of
this section and similar C4C encodings of ADT cases the case components.

3.2 ADTs

Defining ADTs in the C++ LMS-EPS is less straightforward:
1 template<typename ADT> struct NATemp
2 {using cases = std::variant<Num<ADT>, Add<ADT>>;};
3 struct NA: NATemp<NA> {};

In Swierstra’s terminology [34], lines 1 and 2 define a recursive knot that
line 3 ties. In the terminology of Oliveira et al. [26], NATemp is an object algebra
interface. That is because NATemp declares a set of algebraic signatures (namely,
that of Num and Add) but does not define (implement) them. In other words,
those signatures do not pertain to a fixed ADT.
3 Integration of a Decentralised Pattern Matching.
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What matters to the C++ LMS-EPS is that NATemp underpins every ADT,
for which instances of Num<ADT> or Add<ADT> are valid terms. (Using γΦC0, one
denotes that by ∀α. α � Num ⊕ App.) Given NATemp, in line 3, we introduce
NA as an instance of such ADTs. That introduction is done in a specific way
for F-Bounding [4] commonly referred to in C++ as the Curiously Recurring
Template Pattern (CRTP) [36, Sect. 21.2]. See Sect. 5.2 for why employing CRTP
is required here.

The nested type name cases at line 2 above is what we used in the definition
of CsVar at line 2 of Add in Sect. 3.1.

3.3 Functions

Just like that for ADTs, defining functions on ADTs takes two steps in the C++
LMS-EPS:

First, for a function f on an ADT A, one implements an auxiliary func-
tion that takes a continuation as an argument. Suppose that one chooses the
name a_plus_f_matches for the auxiliary function. (See below for the inten-
tion behind the naming of the auxiliary function.) Using the continuation,
a_plus_f_matches implements the raw pattern matching for f on every exten-
sion to A. Once called with f substituted for the continuation, a_plus_f_match-
es returns the pattern matching of f, now exclusively materialised for A.

Second, one implements f itself, which, by passing itself
to a_plus_f_matches, acquires the right pattern matching; and, then, visits
f’s parameter using the acquired pattern matching.

As an example for the above two steps, we implement below an evaluator for
NA expressions:
1 template<typename ADT> auto na_plus_ev_matches(auto eval)
2 {//na_plus_ev_matches<α � Num ⊕ Add>
3 return match {
4 [] (const Num<ADT>& n) {return n.n_;}, //λNum(n). n
5 //λAdd(l, r). eval(l) + eval(r)
6 [eval](const Add<ADT>& a) {return eval(*a.l_) + eval(*a.r_);}
7 };
8 }

Above is the first step: na_plus_ev_matches is the auxiliary function for
evaluation. eval in line 1 is the continuation. na_plus_ev_matches produces
the raw pattern matching for every ADT that extends NA. It does so by passing
match statements for Num<ADT> and Add<ADT> to the match combinator. In
line 4, a λ-abstraction is used for matching Num<ADT> instances. Line 6, on the
other hand, use a λ-abstraction to match Add<ADT> instances. The difference
is that the latter λ-abstraction is recursive and captures the variable eval (by
mentioning it between square brackets in line 6). Furthermore, rather than using
na_plus_ev_matches, it uses the continuation eval for recursion.

In short, the match combinator bundles a set of match statements together.
Such a match statement can be any callable C++ object. In this paper, we only
use λ-abstractions for our match statements. More on match in Sect. 5.3.
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1 int na_eval(const NA::cases& expr) {
2 auto pm = na_plus_ev_matches<NA>(na_eval);
3 return std::visit(pm, expr);
4 }

Above is the second step for provision of evaluation for NA expressions. In
line 2, it acquires the right pattern matching for NA by passing itself as the
continuation to na_plus_ev_matches. Then, in line 3, it visits the expression
to be evaluated using the acquired pattern matching.

We would like to end this subsection by emphasising on the following: In the
terminology of Oliveira et al. [26], na_plus_ev_matches is an object algebra.
In the latter work, compositionality of object algebras comes at the price of a
generalisation of self -references [27]. (In short, inside the body of an instance
of a given class, a self -references is a pointer/reference to the very instance
itself. Such a pointer/reference needs to also deal with virtual construction [8].)
Notably, however, we achieve that (Sect. 4.1) without resorting to self -references.

3.4 Tests

Using the following two pieces of syntactic sugar for literals and addition
1 auto operator"" _n (ulonglong n) {return Num<NA>(n);}
2 auto operator + (const NA::cases& l, const NA::cases& r) {return Add<NA>(l, r);}

na_eval(5_n + 5_n + 4_n) returns 14, as expected.

4 Addressing the EP Concerns

We now show how our technology is an EP solution.

4.1 E1 (Bidimensional Extensibility)

Extensibility in the dimension of ADTs is simple. Provided the Mul case com-
ponent below
1 template<typename ADT> struct Mul{ //Mul α :: α × α → α
2 using CsVar = typename ADT::cases;
3 Mul(const CsVar& l, const CsVar& r):
4 l_(std::make_shared<CsVar>(l)), r_(std::make_shared<CsVar>(r)) {}
5 const std::shared_ptr<CsVar> l_, r_;
6 };

encoding NAM using the C++ LMS-EPS can be done just like that for NA:
1 template<typename ADT> struct NAMTemp
2 {using cases = std::variant<Num<ADT>, Add<ADT>, Mul<ADT>>;};
3 struct NAM: NAMTemp<NAM> {};

But, one can also extend NA to get NAM:
1 template<typename ADT> struct NAMTemp
2 {using cases = ext_variant_by_t<NATemp<ADT>, Mul<ADT>>;};
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In the absence of a built-in extends for traits, that is the C++ LMS-EPS
counterpart for extending an ADT to another. See Sect. 5.4 for the definition of
ext_variant_by_t.

Extensibility in the dimension of functions is not particularly difficult. For
example, here is how one does pretty printing for NA:
1 template<typename ADT> auto na_plus_to_str_matches(auto to_string) {
2 return match {
3 [] (const Num<ADT>& n) {return std::to_string(n.n_);},
4 [to_string](const Add<ADT>& a) {return to_string(*a.l_) + " + " +
5 to_string(*a.r_);}
6 };
7 }
8 std::string na_to_string(const NA::cases& expr) {
9 auto pm = na_plus_to_str_matches<NA>(na_to_string);

10 return std::visit(pm, expr);
11 }

na_plus_to_str_matches is the auxiliary function with to_string being
the continuation. na_to_string is the pretty printing for NA.
1 template<typename ADT> auto nam_plus_to_str_matches(auto to_string) {
2 return match {
3 na_plus_to_str_matches<ADT>(to_string),
4 [to_string](const Mul<ADT>& m) {return to_string(*m.l_) + " * " +
5 to_string(*m.r_);}
6 };
7 }

On the other hand, the above auxiliary function called
nam_plus_to_str_matches reuses the match statements already developed by
na_plus_to_str_matches (line 3). It does so by including the latter function in
the list of match statements it includes in its match combinator. Note that the
former function, moreover, passes its own continuation (i.e., to_string) as an
argument to the latter function. Such a reuse is the C++ LMS-EPS counterpart
of the super call in line 5 of NAM in Sect. 2.2.

The similarity becomes more clear when one observes that both the Scala
LMS-EPS and the C++ LMS-EPS scope the match statements and have mecha-
nisms for reusing the existing ones. In the Scala LMS-EPS, the match statements
are scoped in a method of the base trait. That method, then, can be override

n at the extension and reused via a super call. On the other hand, in the C++
LMS-EPS, the match statements are scoped in the auxiliary functions. That aux-
iliary function, then, can be mentioned in the match of the extension’s auxiliary
function (just like the new match statements), enabling its reuse.

4.2 E2 (Static Type Safety)

Suppose that in the pretty printing for NAM, one mistakenly employs
na_plus_to_str_matches instead of nam_plus_to_str_matches. (Note that
the latter name starts with nam whilst the former only starts with na.) That situ-
ation is like when the programmer attempts pretty printing for a NAM expression
without having provided the pertaining match statement of Mul. Here is the
erroneous code:
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1 std::string nam_to_string(const NAM::cases& expr) {//WRONG!
2 auto pm = na_plus_to_str_matches<NAM>(nam_to_string);
3 return std::visit(pm, expr);
4 }

As expected, the above code fails to compile. As an example, GCC 7.1
produces three error messages. In summary, those error messages state that
na_plus_to_str_matches only has match statements for Num and Add (but not
Mul). Note that the code fails to compile even without passing a concrete argu-
ment into nam_to_string. That demonstrates our strong static type safety.
The C++ LMS-EPS can guarantee that because the compiler chooses the right
match statement using overload resolution, i.e., at compile-time. C.f. Sect. 5.3
for more.

4.3 E3 (No Manipulation/Duplication)

Notice how nothing in the evidence for our support for E1 and E2 requires manip-
ulation, duplication, or recompilation of the existing codebase. Our support for
E3 follows.

4.4 E4 (Separate Compilation)

Our support for E4, in fact, follows just like E3. It turns out, however, that
C++ templates enjoy two-phase translation [36, Sect. 14.3.1]: Their parts that
depend on the type parameters are type checked (and compiled) only when
they are instantiated, i.e., when concrete types are substituted for all their type
parameters. As a result, type checking (and compilation) will be redone for
every instantiation. That type-checking peculiarity might cause confusion w.r.t.
our support for E4.

In order to dispel that confusion, we need to recall that Add, for instance, is
a class template rather than a class. In other words, Add is not a type (because
it is of kind ∗ → ∗) but Add<NA> is. The interesting implication here is that
Add<NA> and Add<NAM> are in no way associated to one another. Consequently,
introduction of NAM in presence of NA, causes no repetition in type checking
(or compilation) of Add<NA>. (Add<NAM>, nonetheless, needs to be compiled in
presence of Add<NA>.) The same argument holds for every other case component
already instantiated with the existing ADTs.

More generally, consider a base ADT Φb = ⊕γ and its extension Φe = (⊕γ)⊕
(⊕γ′). Let #(γ) = n and #(γ′) = n′, where #(.) is the number of components in
the component combination. Suppose a C++ LMS-EPS codebase that contains
case components for γ1, . . . , γn and γ′

1, . . . , γ
′
n′ . Defining Φb in such a codebase

incurs compilation of n case components. Defining Φe on top incurs compilation
of n+n′ case components. Nevertheless, that does not disqualify our EP solution
because defining the latter component combination does not incur recompilation
of the former component combination. Note that individual components differ
from their combination. And, E4 requires the combinations not to be recompiled.
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Here is an example in terms of DSL embedding. Suppose availability of a
type checking phase in a codebase built using the C++ LMS-EPS. Adding a
type erasure phase to that codebase, does not incur recompilation of the type
checking phase. Such an addition will, however, incur recompilation of the case
components common between the two phases. Albeit, those case components will
be recompiled for the type erasure phase. That addition leaves the compilation
of the same case components for the type checking phase intact. Hence, our
support for E4.

A different understanding from separate compilation is also possible, in
which: an EP solution is expected to, upon extension, already be done with
the type checking and compilation of the “core part” of the new ADT. Consider
extending NA to NAM , for instance. With that understanding, Num and Add
are considered the “core part” of NAM . As such, the argument is that the type
checking and compilation of that “core part” should not be repeated upon the
extension.

However, before instantiating Num and Add for NAM, both Num<NAM> and Add<

NAM> are neither type checked nor compiled. That understanding, hence, refuses
to take our work for an EP solution. We find that understanding wrong because
the core of NAM is NA, i.e., the Num ⊕Add combination, as opposed to both
Num and Add but individually. Two quotations back our mindset up:

The definition Zenger and Odersky [20] give for separate compilation is as
follows: “Compiling datatype extensions or adding new processors should not
encompass re-type-checking the original datatype or existing processors [func-
tions].” The datatypes here are NA and NAM. Observe how compiling NAM does
not encompass repetition in the type checking and compilation of NA.

Wang and Oliveira [38] say an EP solution should support: “software evo-
lution in both dimensions in a modular way, without modifying the code that
has been written previously.” Then, they add: “Safety checks or compilation
steps must not be deferred until link or runtime.” Notice how neither definition
of new case components or ADTs, nor addition of case components to existing
ADTs to obtain new ADTs, implies modification of the previously written code.
Compilation or type checking of the extension is not deferred to link or runtime
either.

For more elaboration on the take of Wang and Oliveira on (bidimensional)
modularity, one may ask: If NA’s client becomes a client of NAM , will the
client’s code remain intact under E3 and E4? Let us first disregard code that is
exclusively written for NA for it is not meant for reuse by NAM :
void na_client_f(const NA&) {...}

If on the contrary, the code only counts on the availability of Num and Add :
1 template <
2 typename ADT, typename = std::enable_if_t<adt_contains_v<ADT, Num, Add>>
3 > void na_plus_client_f(const ADT& x) {...}

Then, it can expectedly be reused upon transition from NA to NAM . (We drop
the definition of adt_contains_v due to space restrictions.)
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5 Technicality

5.1 Why std::shared ptr?

Although not precisely what the C++ specification states, it is not uncommon
for the current C++ compilers to require the types participating in the formation
of a std::variant to be default-constructable. That requirement is, however,
not fulfilled by our case components. As a matter of fact, ADT cases, in general,
are unlikely to fulfil that requirement.

But, as shown in line 2 of NATemp, the C++ LMS-EPS needs the case com-
ponents to participate in a std::variant. Wrapping the case components in a
default-constructable type seems inevitable. We choose to wrap them inside a
std::shared_ptr because, then, we win sub-expression sharing as well.

5.2 Why CRTP?

The reader might have noticed that, in the C++ LMS-EPS, defining ADTs is
also possible without CRTP. For example, one might try the following for NA:
1 struct OtherNA { using cases = std::variant<Num<OtherNA>, Add<OtherNA>>; };

Then, extending OtherNA to an encoding for NAM will, however, not be
possible as we extended NATemp to NAMTemp in Sect. 4.1. In addition to employ-
ing a different extension metafunction than ext_variant_by_t in Sect. 5.4, we
would need some extra work in the case components. For example, here is how
to enrich Add:
1 template<typename ADT> struct Add
2 {/*... like before ... */ template<typename A> using case_component = Add<A>;};

Then, we can still extend NATemp to get NAM:
1 struct NAM { using cases = ext_variant_by_t<NATemp<NAM>, Mul<NAM>>; };

If one wishes to, it is even possible to completely abolish NATemp – and, in
fact, all the CRTP:
1 struct NAM { using cases = ext_to_by_t<NA, NAM, Mul<NAM>>; };

where ext_to_by_t is defined in Sect. 5.4.

5.3 The match Combinator

The definition of our match combinator is as follows4:
1 template<typename... Ts> struct match: Ts...
2 {using Ts::operator()...;};
3 template<typename... Ts> match(Ts...) -> match<Ts...>;

4 This is a paraphrase of the overloaded combinator taken from the std::
visit’s online specification at the C++ Reference: https://en.cppreference.com/w/
cpp/utility/variant/visit.

https://en.cppreference.com/w/cpp/utility/variant/visit
https://en.cppreference.com/w/cpp/utility/variant/visit
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As one can see above, match is, in fact, a type parameterised struct. In
lines 1 and 2 above, match derives from all its type arguments. At line 2, it also
makes all the operator()s of its type arguments accessible via itself. Accord-
ingly, match is callable in all ways its type arguments are.

Line 3 uses a C++ feature called user-defined deduction guides. Recall that
C++ only offers automatic type deduction for template functions. Without
line 3, thus, match is only a struct, missing the automatic type deduction. The
programmer would have then needed to list all the type arguments explicitly to
instantiate match. That would have been cumbersome and error-prone – espe-
cially, because those types can rapidly become human-unreadable. Line 3 helps
the compiler to deduce type arguments for the struct (i.e., the match to the
right of “->”) in the same way it would have done that for the function (i.e., the
match to the left of “->”).

One may wonder why we need all those Ts::operator ()s. The reason is
that, according to the C++ specification, the first argument of std::visit

needs to be a callable. The compiler tries the second std::visit argument
against all the call pieces of syntax that the first argument provides. The mech-
anism is that of C++’s overload resolution. In this paper, we use match only for
combining λ-abstractions. But, all other sorts of callable are equally acceptable
to match.

Finally, we choose to call match a combinator because, to us, its usage is
akin to Haskell’s Combinator Pattern [28, Sect. 16].

5.4 Definitions of ext variant by t and ext to by t

Implementation of ext_variant_by_t is done using routine template metapro-
gramming:
1 template<typename, typename...> struct evb_helper;
2 template<typename... OCs, typename... NCs>
3 struct evb_helper<std::variant<OCs...>, NCs...>
4 {using type = std::variant<OCs..., NCs...>;};
5 template<typename ADT, typename... Cs> struct ext_variant_by
6 {using type = typename evb_helper<typename ADT::cases, Cs...>::type;};
7 template<typename ADT, typename... Cs>
8 using ext_variant_by_t = typename ext_variant_by<ADT, Cs...>::type;

ext_variant_by_t (line 8) extends an ADT by the cases Cs.... To that
end, ext_variant_by_t is a syntactic shorthand for the type nested type of
ext_variant_by. ext_variant_by (line 5) works by delegating its duty to
evb_helper after acquiring the case list of ADT (line 6). Given a std::variant

of old cases (OCs...) and a series of new cases (NCs...), the metafunction
evb_helper type-evaluates to a std::variant of old and new cases (line 4).

Implementing ext_to_by_t is not particularly more complicated. So, we
drop explanation and only provide the code:
1 template<typename, typename> struct materialise_for_helper;

2 template<typename ADT, typename... Cs>

3 struct materialise_for_helper<ADT, std::variant<Cs...>>

4 {using type = std::variant<typename Cs::template case_component<ADT>...>;};

5

6 template<typename ADT1, typename ADT2> struct materialise_for {
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7 using type = typename materialise_for_helper<ADT2, typename ADT1::cases>::type;

8 };

9

10 template<typename ADT1, typename ADT2, typename... Cs> struct ext_to_by {

11 using type = typename evb_helper<typename materialise_for<ADT1, ADT2>::type,

12 Cs...>::type;

13 };

14

15 template<typename ADT1, typename ADT2, typename... Cs>

16 using ext_to_by_t = typename ext_to_by<ADT1, ADT2, Cs...>::type;

6 C4C versus GADTs

When embedding DSLs, it is often convenient to piggyback on the host lan-
guage’s type system. In such a practice, GADTs are a powerful means to guar-
antee the absence of certain type errors. For example, here is a Scala translit-
eration5 of the running example Kennedy and Russo [18] give for GADTs in
object-oriented languages:
1 sealed abstract class Exp[T]
2 case class Lit(i: Int) extends Exp[Int]
3 case class Plus(e1: Exp[Int], e2: Exp[Int]) extends Exp[Int]
4 case class Equals(e1: Exp[Int], e2: Exp[Int]) extends Exp[Boolean]
5 case class Cond(e1: Exp[Boolean], e2: Exp[Int], e3: Exp[Int]) extends Exp[Int]
6 /* ... more case classes ... */
7 def eval[T](exp: Exp[T]): T = exp match {...}

Notice first that Exp is type parameterised, where T is an arbitrary Scala
type. That is how Lit can derive from Exp[Int] whilst Equals derives from Exp

[Boolean]. Second, note that Plus takes two instances of Exp[Int]. Contrast
that with the familiar encodings of α = Plus(α, α) | . . . , for some ADT α. Unlike
the GADT one, the latter encoding cannot outlaw nonsensical expressions such
as Plus(Lit(5), Lit(true)). Third, note that eval is polymorphic in the
carrier type of Exp, i.e., T.

The similarity between the above case definitions and our case components
is that they are both type parameterised. Nevertheless, the former are parame-
terised by the type of the Scala expression they carry. Whereas, our case com-
ponents are parameterised by their ADT types. The impact is significant. Sup-
pose, for example, availability of a case component Bool with the corresponding
operator""_b syntactic sugar. In their current presentation, our case compo-
nents cannot statically outlaw type-erroneous expressions like 12_n + "true"

_b. On the other hand, the GADT Cond is exclusively available as an ADT case
of Exp and cannot be used for other ADTs.

Note that, so long as statically outlawing 12_n + "true"_b is the concern,
one can always add another layer in the Exp grammar so that the integral cases
and Boolean cases are no longer at the exact same ADT. That workaround,
however, will soon become unwieldy. That is because, it involves systematically
separating syntactic categories for every carrier type – resulting in the craft of
a new type system. GADTs employ the host language’s type system instead.
5 Posted online by James Iry on Wed, 22/10/2008 at http://lambda-the-ultimate.

org/node/1134.

http://lambda-the-ultimate.org/node/1134
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The bottom line is that GADTs and C4C encodings of ADTs are orthogonal.
One can always generalise our case components so they too are parameterised
by their carrier types and so they can guarantee similar type safety.

7 Related Work

The support of the Scala LMS-EPS for E2 can be easily broken using an incom-
plete pattern matching. Yet, given that Scala pattern matching is dynamic,
whether LMS really relaxes E2 is debatable. Note that the problem in the Scala
LMS-EPS is not an “Inheritance is not Subtyping” one [7]: The polymorphic
function of a deriving trait does specialise that of the base.

In comparison to the Scala LMS-EPS, we require one more step for defin-
ing ADTs: the CRTP. Nevertheless, given that the C++ LMS-EPS is C4C,
specifying the cases of an ADT is by only listing the right case components
in a std::variant. Defining functions on ADTs also requires one more step
in the C++ LMS-EPS: using the continuation. When extending a function for
new ADT cases, the C++ LMS-EPS, however, needs no explicit super call, as
required by the Scala LMS-EPS.

A note on the Expression Compatibility Problem is appropriate here. As
detailed earlier [11, Sect. 4.2], the Scala LMS-EPS cannot outlaw incompat-
ible extensions. Neither can the current presentation of the C++ LMS-EPS.
Nonetheless, due to its C4C nature, that failure is not inherent in the C++
LMS-EPS. One can easily constrain the ADT type parameter of the case com-
ponents in a similar fashion to the Scala IDPaM [16] to enforce compatibility
upon extension.

The first C4C solution to the EP is the Scala IDPaM [16]. ADT creation in
the Scala IDPaM too requires F-Bounding. But, the type annotation required
when defining an ADT using their case components is heavier.

In the Scala IDPaM, the number of type annotations required for a function
taking an argument of an ADT with n cases is O(n). That is O(1) in the C++
LMS-EPS. The reason is that, in C++, with programming purely at the type
level, types can be computed from one another. In particular, an ADT’s case list
can be computed programmatically from the ADT itself. That is not possible in
Scala without implicits, which are not always an option. In the Scala IDPaM
too, implementation of functions on ADTs is nominal : For every function on a
given ADT α, all the corresponding match components—i.e., match statements
also delivered as components—of α’s cases need to be manually mixed in to form
the full function implementation. The situation is similar for the C++ LMS-EPS
in that all the match statements are required to be manually listed in the match

combinator. However, instead of using a continuation, in the Scala IDPaM, one
mixes in a base case as the last match component. Other than F-Bounding, the
major language feature required for the Scala IDPaM is stackability of traits.
In the C++ LMS-EPS, that is variadic templates. The distinctive difference
between the C++ LMS-EPS and the Scala IDPaM is that the latter work
relaxes E2 in the absence of a default [39]. On the contrary, the C++ LMS-
EPS guarantees strong static type safety.
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The second C4C solution to the EP is the C++ IDPaM [12]. There are
two reasons to prefer the C++ IDPaM over the C++ LMS-EPS: Firstly, in
the C++ IDPaM, definition of a function f on ADTs amounts to provision of
simple (C++) function overloads, albeit plus a one-off macro instantiation for f .
(Those function overloads are called match components of the C++ IDPaM.)
Secondly, in the C++ IDPaM, function definition is structural : Suppose the
availability of all the corresponding match components of α’s case list and the
macro instantiation for f . Then, unlike the C++ LMS-EPS, to define f on α, the
programmer need not specify which match statements to include in the pattern
matching. The compiler deductively obtains the right pattern matching using
α’s structure, i.e. α’s case list.

There are two reasons to prefer the C++ LMS-EPS over the C++ IDPaM.
Firstly, implementing ADTs and functions on them is only possible in the C++
IDPaM using a metaprogramming facility shipped as a library. That library was
so rich in its concepts that it was natural to extend [13] for multiple dispatch.
Behind the scenes, the library performs iterative pointer introspection to choose
the right match statements. In the C++ LMS-EPS, that pointer introspection
is done using the compiler’s built-in support for std::variant. That saves
the user from having to navigate the metaprogramming library upon mistakes
(or bugs). Furthermore, when it comes to orchestrating the pattern matching,
the compiler is likely to have more optimisation opportunities than the library.
Secondly, unlike their C++ IDPaM equivalents, case components of the C++
LMS-EPS do not inherit from their ADT. This entails weaker coupling between
case components and ADT definitions.

Instead of std::variant, one can use boost::variant6 to craft a similar
solution to the C++ LMS-EPS. Yet, the solution would have not been as clean
with its auxiliary functions as here. In essence, for a function f , one would have
needed to manually implement each match statement as a properly-typed over-
load of F::operator (). Extending f to handle new ADT cases, nevertheless,
would have been more akin to the Scala LMS-EPS. That is because, then, pro-
viding the new match statements would have amounted to implementing the
corresponding FExtended::operator () overloads, for some FExtended that
derives from F. (Compare with Sect. 2.2.) Moreover, boost::variant requires
special settings for working with recursive types (such as ADTs) that damage
readability.

Using object algebras [10] to solve EP has become popular over recent years.
Oliveira and Cook [23] pioneered that. Oliveira et al. [26] address some awkward-
ness issues faced upon composition of object algebras. Rendel, Brachthäuser and
Ostermann [30] add ideas from attribute grammars to get reusable tree traver-
sals. As also pointed out by Black [3], an often neglected factor about solutions to
EP is the complexity of term creation. That complexity increases from one work
to the next in the above literature. The symptom develops to the extent that it
takes Rendel, Brachthäuser and Ostermann 12 non-trivial lines of code to create
a term representing “3 + 5”. Of course, those 12 lines are not for the latter task

6 https://www.boost.org/doc/libs/1 67 0/doc/html/variant.html.

https://www.boost.org/doc/libs/1_67_0/doc/html/variant.html
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exclusively and enable far more reuse. Yet, those 12 lines are inevitable for term
creation for “3+5”, making that so heavyweight. The latter work uses automatic
code generation for term creation. So, the ADT user has a considerably more
involved job using the previous object algebras technologies for EP than that
of ours. Additionally, our object algebras themselves suffer from much less syn-
tactic noise. Defining functions on ADTs is slightly more involved in the C++
LMS-EPS than object algebras for the EP. For example, pretty-printing for NA
takes 12 (concise) Scala lines in the latter work, whereas that is 14 (syntactically
noisy) C++ lines in ours.

Garrigue [9] solves EP using global case definitions that, at their point of
definition, become available to every ADT defined afterwards. Per se, a func-
tion that pattern matches on a group of these global cases can serve any ADT
containing the selected group. OCaml’s built-in support for Polymorphic Vari-
ants [9] makes definition of both ADTs and functions on them easier. However,
we minimise the drawbacks [3] of ADT cases being global by promoting them to
components.

Swierstra’s Datatypes à la Carte [34] uses Haskell’s type classes to solve EP.
In his solution too, ADT cases are ADT-independent but ADT-parameterised.
He uses Haskell Functors to that end. Defining functions on ADTs amounts
to defining a type class, instances of which materialising match statements for
their corresponding ADT cases. Without syntactic sugaring, term creation can
become much more involved than that for ordinary ADTs of Haskell. Defining
the syntactic sugar takes many more steps than us, but, makes term creation
straightforward. Interestingly enough, using the Scala type classes [24] can lead
to simpler syntactic sugar definition but needs extra work for the lack of direct
support in Scala for type classes. In his machinery, Swierstra offers a match that
is used for monadically inspecting term structures.

Bahr and Hvitved extend Swierstra’s work by offering Compositional
Datatypes (CDTs) [1]. They aim at higher modularity and reusability. CDTs
support more recursion schemes, and, extend to mutually recursive data types
and GADTs. Besides, syntactic sugaring is much easier using CDTs because
smart constructors can be automatically deduced for terms.

Later on, they offer Parametric CDTs (PCDTs) [2] for automatic α-equivale-
nce and capture-avoiding variable bindings. PCDTs achieve that using Difun-
tors [19] (instead of functors) and a CDT encoding of Parametric Higher-Order
Abstract Syntax [5]. Case definitions take two phases: First an equivalent of
our case components need to be defined. Then, their case components need to
be materialised for each ADT, similar to but different from that of Haeri and
Schupp [11,14].

The distinctive difference between C4C and the works of Swierstra, Bahr,
and Hvitved is the former’s inspiration by CBSE. Components, in their CBSE
sense, ship with their ‘requires’ and ‘provides’ interfaces. Whereas, even though
the latter works too parametrise cases by ADTs, the interface that CDTs, for
instance, define do not go beyond algebraic signatures. Although we do not
present those for C++ LMS-EPS here, C4C goes well beyond that, enabling easy
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solutions to the Expression Families Problem [23] and Expression Compatibility
Problem [16] as well as GADTs. The respective article is in submission.

8 Conclusion

In this paper we show how a new C4C encoding of ADTs in C++ can solve EP
in a way that is reminiscent to the Scala LMS-EPS. On its way, our solution
gives rise to simple encodings for object algebras and object algebra interfaces
and relates to Datatypes à la Carte ADT encodings.

Given the simplicity of our encoding for object algebras and object alge-
bra interfaces in the absence of heavy notation for term creation, an interesting
future work is mimicking the earlier research on object algebra encodings for
EP. We need to investigate whether our technology still remains simple when we
take all the challenges those works take. Another possible future work is exten-
sion of our (single dispatch) mechanism for implementing functions on ADTs
to multiple dispatch. Of course, C++ LMS-EPS needs far more experimenta-
tion with real-size test cases to study its scalability. Finally, we are working on
a C++ LMS-EPS variation that, unlike our current presentation, structurally
implements functions on ADTs. The latter variation has thus far presented itself
as a promising vehicle for also delivering multiple dispatch.

A C++ Features Used

A C++ struct (or class) can be type parameterised. The struct S below,
for example, takes two type parameters T1 and T2:

template<typename T1, typename T2> struct S {...};

Likewise, C++ functions can take type parameters:
template<typename T1, typename T2> void f(T1 t1, T2 t2) {...}

From C++20 onward, certain type parameters need not to be mentioned
explicitly. For example, the above function f can be abbreviated as:

void f(auto t1, auto t2) {...}

A (template or non-template) struct can define nested type members. For
example, the struct T below defines T::type to be int:

struct T {using type = int;};

Nested types can themselves be type parameterised, like Y::template type:
struct Y {template<typename> using type = int;};

C++17 added std::variant as a type-safe representation for unions. An
instance of std::variant, at any given time, holds a value of one of its alter-
native types. That is, the static type of such an instance is that of the std::

variant it is defined with; whilst, the dynamic type is one and only one of those
alternative types. As such, a function that is to be applied on a std::variant

needs to be applicable to its alternative types. Technically, a visitor is required
for the alternative types. The function std::visit, takes a visitor in addition
to a pack of arguments to be visited.
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auto twice = [](int n){return n * 2;}

The variable twice above is bound to a λ-abstraction that, given an int,
returns its value times two. λ-abstractions can also capture unbound names. In
such a case, the captured name needs to be mentioned in the opening square
brackets before the list of parameters. For example, the λ-abstraction times

below captures the name m:
auto times = [m](int n){return n * m;}
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Abstract. One of the numerous applications of monads in func-
tional programming is error handling. This paper proposes several new
axiomatics for equational reasoning about monadic computations with
error handling and studies their relationships with each other and with
axiomatics considered earlier. The primary intended application area is
deterministic top-down parsing.

Keywords: Monads · Error handling · Parsing · Equational reasoning

1 Introduction

Monads provide a uniform language for elegant specification of computations in
many different application areas, including top-down parsing and error handling
[10,16,17]. The pure functional programming language Haskell [7] has the fol-
lowing general interface for monadic computations (some minor details omitted):

class Applicative m ⇒ Monad m where
return :: a → m a
(>>=) ::m a → (a → m b) → m b

Here, m denotes the monad instance, meaning a specific kind of computational
structures. A type of the form m a consists of computations that return values of
type a. As intended, the method return creates a trivial computation that returns
its argument value, whereas the operator >>= sequentially invokes a computation
and its continuation that depends on the result value of the computation.

The module Control .Monad .Except of the library of GHC [8] defines the
following uniform extended interface for monads with error handling capabilities:

class Monad m ⇒ MonadError e m | m → e where
throwError :: e → m a
catchError ::m a → (e → m a) → m a

Here, e is the error type associated to the monad. By intention, throwError cre-
ates a computation that throws the specified error, whereas catchError combines
a computation and an error handler to a new computation that tries the given
computation and, if it halts with an error, passes this error to the handler.

Functional programming is often advocated because of its close relation-
ship with equational reasoning. Popular Haskell type classes such as Monad ,
c© Springer Nature Switzerland AG 2019
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MonadPlus, Applicative and Alternative have standard axiomatics that all
instances are expected (though not forced) to meet. Surprisingly, the error monad
class has no standard axiomatics. This paper aims at filling this gap. It develops
several new axiomatics for monads with error handling and studies the rela-
tionships of the axiomatics with each other and with those proposed earlier.
The design of the axiomatics is primarily guided by semantic patterns arising in
deterministic top-down parsing which seem to be universal enough.

A key observation (which is not new) is that the intentional meaning of the
error monad operations mimics that of return and >>= with errors taking over
the role of result values. Hence an axiomatics we are looking for would naturally
incorporate two copies of monad axioms, one dealing with normal values and the
other with errors. However, the types of the methods of MonadError are less
general than needed for a perfect correspondence. Indeed, while >>= can switch
from one result type to another, catch cannot change the error type because the
monad is parametric in the result type but not in the error type.

Error handling in its more general form has attracted some interest recently.
For example, Malakhovski [13] proposes conjoined monads that can be specified
by the following Haskell type class (ignoring the fact that in this form the code
would be rejected as it reuses existing method names):

class ConjoinedMonads m where
return :: a → m e a
(>>=) ::m e a → (a → m e a ′) → m e a ′

throw :: e → m e a
catch ::m e a → (e → m e ′ a) → m e ′ a

Here, m is a type constructor with two arguments, out of which the second
denotes the type of expected normal results and the first denotes the possi-
ble error type. As catch consumes an error handler that can change the error
type, the expected generality and symmetry between the two type arguments
is achieved. In [15], we studied bifunctors equipped with operations that obey
monad laws in both arguments of the bifunctor and some additional axioms.
Handlers that can change error types were introduced for controlling the numer-
ous error types involved when smart error handling is used within the expressive
power similar to that of the Applicative-Alternative interface.

Following the spirit of [15], we assume error handlers being able to change
the error type. While achieving more generality along with beauty of symmetry,
the approach still applies to Haskell error monads as a special case.

Despite the full symmetry in the types, the axioms need not be symmetric.
Parsing normally keeps track of the part of input already processed; semantic
asymmetry between normal values and errors may arise if failures disrupt the
coherent processing of the input even if the errors are caught. The standard
monad transformers of Haskell enable one to construct both parsers where suc-
cesses and failures behave symmetrically and parsers for which this is not the
case. Unlike in [15], here we consider both symmetric and asymmetric versions,
whereby in the asymmetric case, we obtain axiomatics that capture the common
semantic properties of error handling more precisely than that in [15].
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The structure of the paper is as follows: Sect. 2 introduces the mathematical
machinery used. Section 3 introduces, in mathematical terms, the operations on
computations considered in this paper. Section 4 briefly studies the case where
failures and successes behave symmetrically. Sections 5 and 6 study axiomatics
for the asymmetric case, Sect. 7 discusses models of the axiomatics. Section 8
addresses the difference between the symmetric and asymmetric axiomatics.
Section 9 compares the results of this paper to previous work, in particular sum-
marizing the contributions that are new w.r.t. [15].

2 Preliminaries

Throughout the paper, we use notation from category theory for brevity. If E
and A are arbitrary data types then E + A denotes the corresponding sum
type (obtained by type constructor Either in Haskell). Functions inl and inr are
the canonical injections of types E and A, respectively, into E + A. Whenever
h : E → X and f : A → X, the “case study” h�f is the unique function of type
E+A → X that satisfies both (h�f)◦ inl = h and (h�f)◦ inr = f ; in particular,
inl� inr = id. (Equivalently, h� f maps inputs of the form inl e to h e and inputs
of the form inr a to f a. In Haskell, the meaning of operation � is implemented by
function either .) Moreover, + is defined on functions h : E → E′ and f : A → A′

by h+f = inl◦h� inr◦f : E+A → E′+A′. (We treat the composition operator ◦
as having higher priority in expressions than the operators � and +.)

Using concepts of category theory does not mean an ambition for being appli-
cable in many categories, neither is our aim to reckon with partiality. Everything
is to be interpreted in category SetSetSet. A “moral” justification for reasoning about
Haskell programs without considering partiality is given by Danielsson et al. [4].

We will use the following notations for some special functions:

assocr = (id + inl) � inr ◦ inr : (E + E′) + A → E + (E′ + A)

assocl = inl ◦ inl � (inr + id) : E + (E′ + A) → (E + E′) + A

swap = inr � inl : E + A → A + E

swasr = assocl ◦ (id + swap) ◦ assocr : (E + A) + A′ → (E + A′) + A

swasl = assocr ◦ (swap + id) ◦ assocl : E + (E′ + A) → E′ + (E + A)

In addition, absurd : H → X is the unique function from the empty set to set X.
Whereas data types are objects and functions are morphisms, type con-

structors play the role of functors. In particular, binary type constructors give
rise to bifunctors (which technically are just functors whose domain is the
Cartesian product of two categories). The corresponding morphism mappings
are implemented by specific polymorphic functions that satisfy the functor laws.
For example, the operation + as defined above on both sets and functions is
a bifunctor. Indeed, + on functions preserves types, as well as identities (i.e.,
id + id = id) and composition (i.e., (h′ + f ′) ◦ (h + f) = h′ ◦ h + f ′ ◦ f).

If F is a bifunctor then fixing one of its arguments to a given object A (on
objects) and its identity (on morphisms) while allowing the other argument vary
results in a unary functor; we call such functors sections of F .
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Fig. 1. Definitions of the error, reader, writer, state and update monad transformers

If F is an endofunctor then a family of morphisms return : A → F A, one for
each object A, satisfying the naturality law F f ◦return = return◦f , is called unit
of F . A monad is an endofunctor M equipped with unit return : A → M A and a
mapping ( )∗ of morphisms of type A → M B to morphisms of type M A → M B
for every pair of objects (A,B), such that the monad laws k∗ ◦ return = k,
return∗ = id and l∗ ◦ k∗ = (l∗ ◦ k)∗ are fulfilled and M on morphisms satisfies
M f = (return◦f)∗. The mapping ( )∗ is called bind of the monad. In the Haskell
monad class referred to in Sect. 1, bind is denoted by >>=. Note that here and
in the rest of the paper, we use the order of arguments of monad bind common
in category theory, which is the opposite to their order in Haskell. We preferred
this choice because of the concise form of laws it results in.

Recall from the folk knowledge of the community of functional programming
the concepts of error, reader, writer and state monad transformer; we include also
the update monad transformer. They map monads to new monads. In practice,
they provide a means for building up complex monads with many-sided function-
ality from simple monads each dealing with a specific kind of effects [9,11,14]. In
particular, successful parsing and parse error handling, as well as other smaller
tasks typically involved in parsing, can be combined in a modular way.

Figure 1 presents the precise definitions. For each transformer, the functor
application on objects and morphisms, as well as the monad operations, are
specified. Here E, R, W and S stand for arbitrary fixed sets, whereby W is
equipped with monoid unit 1 and multiplication · . In the definition of update
transformers, we additionally assume an action • of the monoid (W ; ·, 1) on S,
i.e., a function S×W → S satisfying the laws s•1 = s and (s•w)•w′ = s•(w·w′).
For simplicity, monad unit and bind are used without explicit reference to the
particular monad they represent; in the l.h.s. of the equality sign they are from
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the monad being defined and in the r.h.s. they are from the underlying monad
(i.e., M). The Haskell-like section notation (w·) means �w′ � w · w′.

Update transformers are defined in the lines of update monads introduced
by Ahman and Uustalu [1]. Like update monads capturing the functionality of
reader, writer and state monads as shown in [1], update transformers incorporate
all reader, writer and state transformers in similar sense: The result of applying
any reader, writer or state transformer to some monad M can be obtained as a
homomorphic image of the result of applying an update transformer to M . This
observation helps us to reuse proofs of common properties of these transformers.

The order of transformer applications matters in general. For example, apply-
ing an error transformer after a state transformer to monad M gives the monad
EE (SS M)A = S → M ((E + A) × S) that associates states to both normal
values and errors. Applying the same transformers in the opposite order leads
to the monad SS (EE M)A = S → M (E+A×S) where states are associated to
normal values only; the state is forgotten upon failure. Hence an error catching
operation fully symmetric to monad bind is impossible in the second case.

3 Setting the Scene

In the rest of this paper, types of the form F (E,A) denote computations that
either succeed with a result of type A or fail with an error of type E. Technically,
F is a suitably fixed bifunctor, meaning that for any two functions h : E → E′

and f : A → A′, there also exists a function F (h, f) : F (E,A) → F (E′, A′), and
the family of these functions meets functor laws. In all axiomatics we develop,
functor laws (as well as sum laws) are assumed implicitly. Functions of the form
F (h, f) will be called functor maps (after the Haskell method fmap). We will
see examples of F in Sects. 4 and 7.

Assume that there are two (polymorphic) operations return : A → F (E,A)
and throw : E → F (E,A) for creating trivial computations that succeed and
fail, respectively, with the value consumed as parameter. Both these operations
are units of functors: return for any left section and throw for any right section
of F . Like in our prior work [15], we put these operations together to obtain a
joint unit

η : E + A → F (E,A).

Then return = η ◦ inr and throw = η ◦ inl. On the other hand, η = throw� return.
Assume F also being equipped with bind and catch operations, both of the

type of monad bind but with different sections of F in the role of the monad. Like
in [15], we denote the bind operation by ( )Y and the catch operation by ( )X:

( )Y : (A → F (E,A′)) → (F (E,A) → F (E,A′))
( )X : (E → F (E′, A)) → (F (E,A) → F (E′, A))

The argument function of type A → F (E,A′) of bind specifies how to proceed
if the computation of type F (E,A) succeeds with a result value of type A; simi-
larly the argument of type E → F (E′, A) of catch specifies how to proceed if the
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computation of type F (E,A) fails with an error of type E. As in the unit case,
functionalities of bind and catch can be packed together into a joint handle

( )ˇ : (E + A → F (E′, A′)) → (F (E,A) → F (E′, A′)).

Here, the argument of type E +A → F (E′, A′) specifies the continuation of the
computation for all cases. The initial operations can be expressed as follows:

kY = (η ◦ inl � k)ˇ (Bnd-Hdl)
xX = (x � η ◦ inr)ˇ (Cch-Hdl)

Indeed, if kY for some k is applied to a failing computation then, by intention,
the same error is rethrown. In the r.h.s. of the Equ.Bnd-Hdl, this is achieved by
giving η ◦ inl as the first argument of �. The second argument of � specifies the
main case, i.e., that normal values are handled by k. Similarly, if xX for some x
is applied to a computation that succeeds then no catching takes place, i.e., the
same normal value is returned. This justifies the Equ.Cch-Hdl.

Pure function applications that only modify the result of a given computation
constitute an important subset of all monadic actions; we specify

φ : (E + A → E′ + A′) → (F (E,A) → F (E′, A′)).

Intuitively, φ(g) reinterprets the result of a computation according to the given
pure function g, whereby both the previous and the modified result can be either
a normal value or an error. Such functions φ(g) were called mixmaps in [15]. We
continue using this term. Here we can define φ via the joint unit and handle:

φ(g) = (η ◦ g)ˇ (Mixmap-Hdl)

As errors may be mapped to normal values and vice versa, failures may become
successes and successes may become failures. For this reason, asymmetry of
semantics (if defined so) appears even in the case of pure function applications.

We will pay attention to the following special cases of mixmap later:

turnr = φ(assocr) : F (E + E′, A) → F (E,E′ + A) (TurnR-Mixmap)
turnl = φ(assocl) : F (E,E′ + A) → F (E + E′, A) (TurnL-Mixmap)
fuser = φ(id � inr) : F (E + A,A) → F (E,A) (FuseR-Mixmap)
fusel = φ(inl � id) : F (E,E + A) → F (E,A) (FuseL-Mixmap)
! = φ(swap) : F (E,A) → F (A,E) (Neg-Mixmap)

The operation turnr enables partial requalification of errors as normal values;
similarly turnl requalifies some normal values as errors. These operations are
important because all such requalifications can be expressed in terms of turnr,
turnl and functor maps. The operations fuser and fusel are similar but forget
the origin of values on the side where they are moved to. They deserve spe-
cial attention apart from turnr, turnl because they in some sense represent bind
and catch in the world of pure function applications (more details in Sect. 6).
The operation ! is called negation, after the negation operator of parsing expres-
sion grammars (PEG) [5] that also turns around the result status of (parsing)
computation.
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4 An Abstract View of the Symmetric Case

Our previous work [15] requires throw and catch to satisfy monad laws. The
following are analogous equations about the joint unit and joint handle:

kˇ ◦ η = k (Hdl-LUnit)
(η ◦ (h + f))ˇ = F (h, f) (Hdl-RUnit)
lˇ ◦ kˇ = (lˇ ◦ k)ˇ (Hdl-Assoc)

The identity law

ηˇ = id (Hdl-Id)

can be obtained as a special case of Hdl-RUnit. Monad laws of all section
functors of F , with return, ( )Y, throw and ( )X defined in Sect. 3 as monad
operations, easily follow from these equations. Although Hdl-LUnit, Hdl-Id
and Hdl-Assoc look like monad laws, they do not make F a monad because
F is not an endofunctor. Instead, they make F a relative monad on the sum
functor +. Relative monads introduced by Altenkirch et al. [2,3] generalize the
notion of monad to non-endofunctors. The generalization adapts monad laws
without change but requires the unit to have type J A → F A for a fixed under-
lying functor J and the bind operation to map morphisms of type J A → F B
to morphisms of type F A → F B. Our laws match the definition with J = +.

The set of laws Hdl-LUnit, Hdl-RUnit, Hdl-Assoc is symmetric w.r.t.
the first and second argument of F . Hence it is a suitable candidate for axioma-
tization of monadic computations with error handling where successes and fail-
ures behave symmetrically. Applications of the error monad transformer form a
family of bifunctors matching the axiomatics. Indeed for any monad M , define
FM (E,A) = EE M A = M (E + A) along with η = return and kˇ = k∗, where
return and ( )∗ are those of M . One can recognize FM equipped with η and ( )ˇ

being the restriction of the monad M to a relative monad on + (in the sense
of [2,3]). Hence all functors of the form FM satisfy the symmetric axiomatics.

Let now F be a functor satisfying the symmetric axiomatics.1 Define monad
M X = F (H,X) and consider FM (E,A) = M (E + A) = F (H, E + A). Then
φ(inr) : F (E,A) → FM (E,A) and fusel ◦ F (absurd, id) : FM (E,A) → F (E,A)
are natural transformations that are inverses of each other and preserve the
operations η and ( )ˇ. Hence every functor satisfying the symmetric axiomatics
is of the form FM for some monad M (up to isomorphism).

For mixmaps, this axiomatics enables us to derive commutation with unit,
definition of functor maps, and preservation of composition and identity:

φ(g) ◦ η = η ◦ g (Mixmap-UnitNat)
φ(h + f) = F (h, f) (Mixmap-Fun)
φ(g′) ◦ φ(g) = φ(g′ ◦ g) (Mixmap-Comp)
φ(id) = id (Mixmap-Id)

1 The observations in this paragraph were suggested by an anonymous reviewer of an
earlier version of this paper.
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These laws can be proven using the axioms and language of relative monads
at the most abstract level. Indeed, assume the definition Mixmap-Hdl and
substitute a general base functor J for + in the laws. Then Mixmap-UnitNat
is proven by φ(g) ◦ η = (η ◦ g)ˇ ◦ η = η ◦ g, Mixmap-Fun in its general form
is proven by φ(J f) = (η ◦ J f)ˇ = F f , whereas Mixmap-Comp is proven by
φ(g′) ◦ φ(g) = (η ◦ g′)ˇ ◦ (η ◦ g)ˇ = ((η ◦ g′)ˇ ◦ η ◦ g)ˇ = (η ◦ g′ ◦ g)ˇ = φ(g′ ◦ g).
The identity law now follows from φ(id) = φ(J id) = F id = id.

The laws Mixmap-Comp and Mixmap-Id look exactly like functor laws,
but φ is not a functor (or the morphism mapping of a functor) since its type is
(J A → J B) → (F A → F B) rather than (A → B) → (F A → F B). Following
the notion of relative monad, φ might be called relative functor. Continuing
the analogy with functor, the law Mixmap-UnitNat states the corresponding
naturality property of the unit. Naturality of η in the usual sense is

F (h, f) ◦ η = η ◦ (h + f) (Unit-Nat)

In the abstract language, it follows from the above by F f◦η = φ(J f)◦η = η◦J f .

5 Axiomatics for Asymmetric Mixmap

If handling of successes and failures is asymmetric then the axiomatics devel-
oped in Sect. 4 does not apply since Hdl-Assoc need not hold; in fact, even
Mixmap-Comp may be invalid. For example, if g′ = g = swap then φ(g′ ◦ g) =
φ(id) = id, whereas φ(g′) ◦ φ(g) = ! ◦ ! �= id since negation forgets the consumed
input.

Next we seek for weaker replacements of Hdl-Assoc and Mixmap-Comp
that would be suitable for reasoning in the asymmetric case. We also find equiv-
alent axiomatics expressed in terms of other operations. We start with mixmap
in this section and proceed with the general handle operation in the next section.

We use the term state for anything that, besides the result values, can affect
the later computation (in parsing, state is or contains the consumed input). The
intuition of pure asymmetric mixmaps is expressed by the following conventions:

– A mixmap application resulting in a success keeps the state unchanged;
– A mixmap application resulting in a failure loses the state;
– The state has no impact on the result value of a mixmap application;
– All violations of symmetry are caused by treating the state differently.

The conventions allow us to abstract from the state and observe just its
binary status (kept vs lost), as the input of a mixmap application where the
state is replaced with its status determines the output whose state is similarly
abstracted. We use functor ‡ defined by E ‡ A = (E + A) + A for representing
values with abstracted state: Normal values whose computation history has kept
the state are encoded in the form inr a and normal values whose computation
history has lost the state in the past are of the form inl(inr a).
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Fig. 2. The schema of evaluation of sep g

The dependency of the abstract output of a mixmap application on its
abstract input is captured by function sep : (E+A → E′+A′) → (E‡A → E′‡A′)
defined by

sep g = inl ◦ g � (inl + id) ◦ g ◦ inr (Sep)

The function is illustrated in Fig. 2. (The diagrams show computation tracks as
right-to-left paths, following the way function compositions are written. Data
with tag inl occur below data with tag inr of the same level.)

Hence the following implication could be a suitable replacement to
Mixmap-Comp for the asymmetric case: φ(gm) ◦ . . . ◦ φ(g1) = φ(g′

n) ◦ . . . ◦ φ(g′
1)

whenever sep gm◦. . .◦sep g1 = sep g′
n◦. . .◦sep g′

1. However, we can find equivalent
finite sets of laws in the equational form. Note that, to violate preservation of a
composition g′ ◦g by sep, an input value inr a must be mapped by g to inl e which
in turn must be mapped by g′ to inr a′, because then sep(g′ ◦ g) and sep g′ ◦ sep g
map the input to different copies of the type of normal values. Relying on this
observation, we can establish three important cases of sep actually preserving
composition:

sep g′ ◦ sep(h � inr ◦ f) = sep(g′ ◦ (h � inr ◦ f)) (Sep-Comp-RPres)
sep(inl ◦ h � f) ◦ sep g = sep((inl ◦ h � f) ◦ g) (Sep-Comp-LPres)
sep(id � inr) ◦ sep(h � (inl + id) ◦ f) = sep((id � inr) ◦ (h � (inl + id) ◦ f))

(Sep-Comp-Cross)

Consequently, the following special cases of Mixmap-Comp must hold:

φ(g′) ◦ φ(h � inr ◦ f) = φ(g′ ◦ (h � inr ◦ f)) (Mixmap-Comp-RPres)
φ(inl ◦ h � f) ◦ φ(g) = φ((inl ◦ h � f) ◦ g) (Mixmap-Comp-LPres)
φ(id � inr) ◦ φ(h � (inl + id) ◦ f) = φ((id � inr) ◦ (h � (inl + id) ◦ f))

(Mixmap-Comp-Cross)

The schemata in Fig. 3 depict the data flow in these three cases. Indeed in
the l.h.s. of Sep-Comp-RPres, the rightmost sep is applied to a function
that preserves inr, so inr cannot switch to inl at the first step. Dually in
Sep-Comp-LPres, sep in the left is applied to a function that preserves inl,
meaning that inl cannot switch to inr at the second step. In Sep-Comp-Cross,
both steps can do the risky switch; nevertheless, inl that is obtained from inr
at the first step is marked with an extra tag inl causing the second step to pre-
serve inl. Hence the opposite switches apply to different data, the computation
tracks cross safely.
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Fig. 3. Data flow of composition of two underlying functions in the case of: (a)
Sep-Comp-RPres; (b) Sep-Comp-LPres; (c) Sep-Comp-Cross

In our work, we proved that, if Mixmap-Fun is assumed, the conjunction
of Mixmap-Comp-RPres, Mixmap-Comp-LPres and Mixmap-Comp-Cross
is equivalent to the general implication of φ(gm) ◦ . . . ◦ φ(g1) = φ(g′

n) ◦ . . . ◦
φ(g′

1) by sep gm ◦ . . . ◦ sep g1 = sep g′
n ◦ . . . ◦ sep g′

1. Hence the set of equa-
tions consisting of Mixmap-UnitNat, Mixmap-Fun, Mixmap-Comp-RPres,
Mixmap-Comp-LPres and Mixmap-Comp-Cross is a suitable axiomatics of
mixmap for asymmetric semantics. We denote this set of axioms as Ax {φ} for
brevity.

In Sect. 3, operations turnr, turnl, fuser, fusel were defined as special cases of
mixmap. We can express fuser, fusel in terms of turnr, turnl and vice versa:

fuser = F (id, id � id) ◦ turnr (FuseR-TurnR)
fusel = F (id � id, id) ◦ turnl (FuseL-TurnL)
turnr = fuser ◦ F (id + inl, inr) (TurnR-FuseR)
turnl = fusel ◦ F (inl, inr + id) (TurnL-FuseL)

On the other hand, φ can be defined via turnr and turnl by

φ(g) = F (id � id, id)◦turnl◦F (id, g)◦turnr◦F (inr, id) (Mixmap-TurnLR)

In Mixmap-TurnLR, the application of g is performed via functor map after
shifting everything to the right by turnr ◦ F (inr, id). After applying g, the true
roles of data are restored by F (id� id, id) ◦ turnl. This way of computing φ(g) is
correct as no data flow from the right to the left and back occurs. A dual com-
putation shifting everything to the left rather than to the right is not equivalent.
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Finally, we get two ways of expressing φ via fuser, fusel useful in different cases:

φ(g) = fusel ◦ F (id, g) ◦ fuser ◦ F (inr ◦ inl, inr) (Mixmap-FuseLR)
φ(g) = fuser ◦ fusel ◦ F (g ◦ inl, (inl + id) ◦ g ◦ inr) (Mixmap-FuseRL)

All seven equations can be proven from the definitions of turnr, turnl, fuser
and fusel in Ax {φ}.

Next, we switch to a different view: We treat each of {φ}, {turnr, turnl},
{fuser, fusel} as an independent set of operators that can be converted to each
other via the equations above and establish axiomatics for both {turnr, turnl} and
{fuser, fusel} that could be proven equivalent to Ax {φ} under these conversions.
Consider the following equations for {turnr, turnl}:

turnr ◦ η = η ◦ assocr (TurnR-UnitNat)
turnl ◦ η = η ◦ assocl (TurnL-UnitNat)
F (h, h′ + f) ◦ turnr = turnr ◦ F (h + h′, f) (TurnR-Nat)
F (h + h′, f) ◦ turnl = turnl ◦ F (h, h′ + f) (TurnL-Nat)
turnr ◦ turnr = F (id,assocr)◦turnr◦F (assocr,id) (TurnR-TurnR)
turnl ◦ turnl = F (assocl,id)◦turnl◦F (id,assocl) (TurnL-TurnL)
turnr◦F (swasr,id)◦turnl = turnl◦F (id,swasl)◦turnr (TurnRL-TurnLR)
turnl ◦ turnr = id (TurnLR-Id)

For {fuser, fusel}, we can use the following set of laws:

fuser ◦ η = η ◦ (id � inr) (FuseR-UnitNat)
fusel ◦ η = η ◦ (inl � id) (FuseL-UnitNat)
F (h, f) ◦ fuser = fuser ◦ F (h + f, f) (FuseR-Nat)
F (h, f) ◦ fusel = fusel ◦ F (h, h + f) (FuseL-Nat)
fuser ◦ fuser = fuser ◦ F (id � inr, id) (FuseR-FuseR)
fusel ◦ fusel = fusel ◦ F (id, inl � id) (FuseL-FuseL)
fusel ◦ fuser = fuser ◦ fusel ◦ F (inl � id, inl + id) (FuseL-FuseR)
fuser ◦ F (inl, id) = id (FuseR-Id)
fusel ◦ F (id, inr) = id (FuseL-Id)

Denote these sets of axioms by Ax {turnr, turnl} and Ax {fuser, fusel}, respectively.
Denote by Ax {η} the set consisting of one law Unit-Nat. In our work, we have
proven the following result:

Theorem 1. Let F be a bifunctor equipped with operations η, φ, turnr, turnl,
fuser, fusel. Under the mutually defining equations given above, Ax {φ} is equiv-
alent to Ax {turnr, turnl}YAx {η}, as well as to Ax {fuser, fusel}YAx {η}. More-
over, defining two of the operation sets {φ}, {turnr, turnl}, {fuser, fusel} in terms
of the third one makes all mutually defining equations valid; in particular,
Mixmap-FuseLR and Mixmap-FuseRL are equivalent. ��



Laws of Monadic Error Handling 383

One can encounter an evident correspondence between single axioms or seg-
ments of consecutive axioms of {φ}, {turnr, turnl} and {fuser, fusel} based on
means they involve and roles they play. Still the correspondence is not per-
fect. Indeed, asymmetry is introduced into Ax {turnr, turnl} by the identity law
TurnLR-Id (the dual equation cannot be proven), whereas the interchange
law FuseL-FuseR introduces asymmetry into Ax {fuser, fusel} (the rest of both
Ax {turnr, turnl} and Ax {fuser, fusel} is symmetric). Also, Ax {φ} contains no
identity axiom since Mixmap-Id is implied by Mixmap-Fun, whereas the iden-
tity laws of both {turnr, turnl} and {fuser, fusel} have independent significance.

Other equivalent axiomatics exist of course. The principles according to which
the choice in favour of these sets of laws was made are simplicity of the equations,
systematic build-up of the sets and symmetry as much as possible. In addition,
Ax {fuser, fusel} constitutes rewrite rules for transforming every expression in the
form of the composition of a finite number of fuser, fusel and functor maps to
the canonical form fuser ◦ fusel ◦ F (h, f). The canonical form can be proven
unique: If an expression is provably equal to both fuser ◦ fusel ◦ F (h, f) and
fuser ◦ fusel ◦ F (h′, f ′) then fuser ◦ fusel ◦ F (h, f) = fuser ◦ fusel ◦ F (h′, f ′) is
derivable from the axioms and must therefore be valid for all models of the
axioms. As Ax {φ} is satisfied for F = ‡ by defining η = inl, φ = sep, the equality
sep(id� inr) ◦ sep(inl� id) ◦ sep(h+ f) = sep(id� inr) ◦ sep(inl� id) ◦ sep(h′ + f ′)
must be valid. Calculation shows that this implies both f = f ′ and h = h′.

Note that Ax {φ} is complete w.r.t. the model used in the previous paragraph
due to the injectivity of inl and the fact that φ(gm)◦. . .◦φ(g1) = φ(g′

n)◦. . .◦φ(g′
1)

is provable in Ax {φ} whenever sep gm ◦ . . . ◦ sep g1 = sep g′
n ◦ . . . ◦ sep g′

1.

6 Axiomatics for Asymmetric Handle, Bind and Catch

In Sect. 5, we saw that for mixmap it is enough to assume preservation
of composition in three cases captured by axioms Mixmap-Comp-RPres,
Mixmap-Comp-LPres and Mixmap-Comp-Cross. The cases correspond to
specific data flow patterns depicted in Fig. 3. Guided by this, we replace
Hdl-Assoc with its three special cases that represent similar data flow pat-
terns:

lˇ ◦ (x � η ◦ inr ◦ f)ˇ = (lˇ ◦ (x � η ◦ inr ◦ f))ˇ (Hdl-Assoc-RPres)
(η ◦ inl ◦ h � l)ˇ ◦ kˇ = ((η ◦ inl ◦ h � l)ˇ ◦ k)ˇ (Hdl-Assoc-LPres)
(η◦(id�inr))ˇ ◦ (x�F (inl, id)◦k)ˇ = ((η◦(id�inr))ˇ ◦ (x�F (inl, id)◦k))ˇ

(Hdl-Assoc-Cross)

As a result, we obtain an axiomatics Ax {( )ˇ} that consists of five
laws Hdl-LUnit, Hdl-RUnit, Hdl-Assoc-RPres, Hdl-Assoc-LPres and
Hdl-Assoc-Cross (Hdl-Id is a theorem). Assuming that φ is given by
Mixmap-Hdl, deriving the axioms of Ax {φ} from Ax {( )ˇ} is straightforward.

The bind operation ( )Y and the catch operation ( )X were specified via ( )ˇ

by Bnd-Hdl and Cch-Hdl in Sect. 3. Interestingly, analogies exist between
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( )Y and fusel, similarly between ( )X and fuser. Firstly, both ( )Y and fusel keep
errors unchanged, whereas both ( )X and fuser keep normal values unchanged.
But there is more behind: Assuming the definitions Mixmap-Hdl, Bnd-Hdl
and Cch-Hdl, it is easy to see that the defining equations FuseR-Mixmap and
FuseL-Mixmap are equivalent to fuser = ηX and fusel = ηY, respectively. The
axiom set we next propose for {( )Y, ( )X} also has characteristics in common
with Ax {fuser, fusel}, most notably providing means for rewriting all successive
compositions of binds and catches except those of the form xX ◦ kY.

We require bind to satisfy the monad laws with η ◦ inr playing the role of
unit. In addition, η ◦ inl followed by a bind should act as zero and functor maps
on error values should act as homomorphisms, i.e., preserve bind:

kY ◦ η ◦ inr = k (Bnd-LUnit)
(η ◦ inr ◦ f)Y = F (id, f) (Bnd-RUnit)
lY ◦ kY = (lY ◦ k)Y (Bnd-Assoc)
kY ◦ η ◦ inl = η ◦ inl (Bnd-LZero)
F (h, id) ◦ kY = (F (h, id) ◦ k)Y ◦ F (h, id) (Bnd-FunHom)

Catch is expected to meet the corresponding dual laws:

xX ◦ η ◦ inl = x (Cch-LUnit)
(η ◦ inl ◦ h)X = F (h, id) (Cch-RUnit)
yX ◦ xX = (yX ◦ x)X (Cch-Assoc)
xX ◦ η ◦ inr = η ◦ inr (Cch-LZero)
F (id, f) ◦ xX = (F (id, f) ◦ x)X ◦ F (id, f) (Cch-FunHom)

Asymmetry comes in via an additional law allowing us to change the order
between bind and catch. Two axiom candidates are both deserving this role:

kY ◦ ηX = (η ◦ inl � k)X ◦ (F (inl, id) ◦ k)Y (Bnd-UnitCch)
kY ◦ xX = (η ◦ inl � kY ◦ x)X ◦ (F (inl, id) ◦ k)Y ◦ F (inr, id) (Bnd-Cch)

In Bnd-Cch, we have x : E → F (E′, A) and k : A → F (E′, A′), whence
xX : F (E,A) → F (E′, A) and kY : F (E′, A) → F (E′, A′). Figure 4 depicts
the data flows of both sides of the equation. Intuitively, applying kY after xX in
the l.h.s. means first catching errors by x and then applying k to normal values
(which can be either having existed in the beginning or introduced by x). To
obtain the same result after applying k to normal values first, errors that exist
in the beginning must be distinguished from errors introduced by k in order
to catch by x the errors of the first kind only. Distinguishing of errors of two
different kinds can be achieved by tagging them with inl and inr, respectively,
which is done by F (inl, id) and F (inr, id) in the r.h.s. of Bnd-Cch.
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One can interpret Bnd-UnitCch in a similar manner (here E = E′ + A).
Although Bnd-Cch applies more generally, it is actually implied by

Bnd-UnitCch and the other axioms. Hence let Ax {( )Y, ( )X} denote the set of
all equations of ( )Y and ( )X introduced above except Bnd-Cch.

As the only role of F (inl, id) and F (inr, id) in Bnd-Cch is to separate errors
of different origin, one can easily find equivalent corollaries of Ax {( )Y, ( )X} that
achieve the same aim. For example, one can interchange F (inl, id) and F (inr, id)
and also the sides of �. This can be proven by inserting F (swap, id)◦F (swap, id)
(which equals identity) between the two leftmost computations in the r.h.s. of
Bnd-Cch, applying Cch-RUnit and Cch-Assoc to join the two leftmost terms
and rewriting the rest by Bnd-FunHom.

It turns out that Ax {( )ˇ} and Ax {( )Y, ( )X} restrict the class of bifunctors
with joint unit equivalently. To establish this, we need a definition of handle in
terms of bind and catch. Both following equations are good:

kˇ = kY ◦ ηX ◦ F (inr ◦ inl, inr) (Hdl-BndCch)
kˇ = (η ◦ inl � k ◦ inl)X ◦ (F (inl, id) ◦ k ◦ inr)Y ◦ F (inr, id) (Hdl-CchBnd)

The idea behind Hdl-BndCch is easy: Note that ηX ◦ F (inr ◦ inl, inr) is equal
to φ(inr) (provable after rewriting ηX = fuser = φ(id� inr)) which means shifting
everything to the right. Hence the r.h.s. of Hdl-BndCch mimics the function-
ality of kˇ by applying k to the input after requalifying it as a surely normal
value. The equation Hdl-CchBnd can be understood similarly to Bnd-Cch.

We have proven the following theorem:

Theorem 2. Let F be a bifunctor equipped with operations η, ( )ˇ, ( )Y, ( )X.
Under the mutually defining equations given above, Ax {( )ˇ} is equivalent to
Ax {( )Y, ( )X} Y Ax {η}; the same holds even if Cch-FunHom and either
Bnd-LZero orCch-LZero are excluded. Moreover, defining one of the operation
sets {( )ˇ}, {( )Y, ( )X} in terms of the other makes all mutually defining equations
valid; in particular, Hdl-BndCch and Hdl-CchBnd are equivalent. ��

Equivalence of the axiomatics of {( )ˇ} and {( )Y, ( )X} implies that any com-
position of a finite number of functions of the form kˇ is equal to the composition

Fig. 4. Equivalent data flows of: (a) The l.h.s. of Bnd-Cch; (b) The r.h.s. of Bnd-Cch
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of two functions of this form. Indeed, each function of this form can be rewritten
in the form xX ◦tY ◦F (h, id) by Hdl-CchBnd. Marking catches, binds and func-
tor maps of errors by letters C, B, F , respectively, we obtain a word consisting
of CBF repeated finitely many times. We can rewrite BB → B (Bnd-Assoc),
CC → C (Cch-Assoc), FF → F (functor), BC → CBF (Bnd-Cch),
FB → BF (Bnd-FunHom) and F → C (Cch-RUnit). Thus the chain
CBFCBF → CBCCBF → CBCBF → CCBFBF → CCBBFF →3 CBF of
rewrites eliminates one repetition, implying that the whole composition equals
an expression of the form xX ◦ tY ◦F (h, id). Here, all three functions are express-
ible in the form kˇ, among which the two rightmost functions can be joined.

The axiomatics of {( )Y, ( )X} considered in our earlier work [15] does not
contain interchange laws like Bnd-UnitCch or Bnd-Cch. Instead, it assumes
an extra homomorphism law and two De Morgan laws:

turnr ◦ turnl ◦ xX = (turnr ◦ turnl ◦ x)X ◦ turnr ◦ turnl (Cch-TurnRLHom)
! ◦ kY ◦ ! = (! ◦ k)X ◦ ! ◦ ! (Bnd-Cch-DeM)
! ◦ hX = (! ◦ h)Y ◦ ! (Cch-Bnd-DeM)

All three are provable in Ax {( )Y, ( )X}YAx {η}. The fact that they only impose
properties of a single bind or catch in connection with special cases of mixmap
suggests that replacing the cited laws of [15] with the interchange law makes the
axiomatics strictly stronger.

7 Models of the Axiomatics

Our prior work [15] constructs a hierarchy of bifunctors F that fulfill all laws
considered there. Figure 5 revisits the construction using notational conventions
of Sect. 2. Unlike in [15], we define ( )ˇ here instead of ( )Y and ( )X. The con-
struction generalizes the reader, writer, state and update monad transformers to
bifunctors equipped with joint unit and handle. The accent ·̂ is used in denota-
tions of bifunctor transformations for clarity. The well-known monad transform-
ers can be obtained from them via fixing the error type E.

We can formalize the relationship between monad and bifunctor transformers
more precisely. Let M be a monad with operations return and ( )∗, let F be a
bifunctor equipped with joint unit η and handle ( )ˇ, and let E be a fixed type;
we write M ăE F if M A = F (E,A), M f = F (id, f), return = η ◦ inr and
k∗ = kY. The definitions in Figs. 1 and 5 ensure that M ăE F always implies
RR M ăE R̂R F , WW M ăE ŴW F , SS M ăE ŜS F and US,W M ăE ÛS,W F .

Moreover, let M be any monad and define F (E,A) = EE M A along with
η = return and kˇ = k∗ where return and ( )∗ are from M (revisiting the example
from Sect. 4). It is easy to see that EE M ăE F . Therefore if each of T1, . . . , Tm

is one of RR, WW , SS , US,W then (Tm ◦ . . . ◦ T1 ◦ EE)M ăE (T̂m ◦ . . . ◦ T̂1)F .
Theorem 3 below states that the transformers R̂R, ŴW , ŜS and ÛS,W pre-

serve conformity to the axioms of the asymmetric setting. This gives rise to
infinite hierarchies of models of these axioms. As the symmetric axiomatics sub-
sumes the asymmetric axiomatics, every bifunctor of the family shown in Sect. 4
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Fig. 5. Definitions of the reader, writer, state and update bifunctor transformers

to fulfill the symmetric axiomatics is a suitable base case. Hence the hierarchy
constructed in [15] also satisfies the asymmetric axiomatics of this paper.

Theorem 3. Let F be a bifunctor equipped with operations η and ( )ˇ. If F
fulfills Ax {( )ˇ} then each of R̂R F , ŴW F , ŜS F , ÛS,W F fulfills Ax {( )ˇ}. ��

Section 5 was concluded by showing that taking F = ‡, φ = sep, η = inl
provides a model of Ax {φ} w.r.t. which Ax {φ} is complete. One can extend this
example to models of Ax {( )ˇ} by defining either kˇ = k�(inl+id)◦(id�inr)◦k◦inr
or kˇ = k�swasr◦k◦ inr. However, Ax {( )ˇ} is not complete w.r.t. these models.
For example, the equation

((η ◦ inl ◦ f)Y ◦ x � l)ˇ ◦ kˇ = (((η ◦ inl ◦ f)Y ◦ x � l)ˇ ◦ k)ˇ

is valid in both obtained models but invalid in the model ŜS (+) of the axioms
(where S is an arbitrary set containing at least two elements).

8 Laws that Distinguish the Two Settings

Above, we have defined axiomatics of mixmap and handle for both symmetric
and asymmetric behaviour of successes and failures. In the asymmetric setting,
we have found equivalent axiomatics for other operation sets. We now do the
same in the symmetric setting. We show that, for each of the other operation sets
({turnr, turnl} and {fuser, fusel} in the case of mixmap and {( )Y, ( )X} in the case
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of handle), adding the law dual to the only axiom that introduces asymmetry
makes the reasoning power equal to the axiomatics for symmetric setting.

We start from mixmap as above. For {turnr, turnl} and {fuser, fusel}, the dual
identity and dual interchange laws, respectively, are to be added:

turnr ◦ turnl = id (TurnRL-Id)
fuser ◦ fusel = fusel ◦ fuser ◦ F (id + inr, id � inr) (FuseR-FuseL)

Obviously TurnRL-Id is implied by Mixmap-Fun and Mixmap-Comp. As
adding TurnRL-Id makes the axiomatics of {turnr, turnl} symmetric and the
defining equations FuseR-TurnR and FuseL-TurnL are symmetric, too, dual-
izing everything in a proof of FuseL-FuseR establishes FuseR-FuseL. The
proof of Mixmap-Comp relying on the extended axiomatics of {fuser, fusel} is
straightforward by transforming both sides of Mixmap-Comp to the canonical
form, applying FuseR-FuseL on both sides and calculating.

Altogether, we have established the following:

Theorem 4. Let F be a bifunctor equipped with operations η, φ, turnr, turnl,
fuser, fusel meeting their asymmetric axiomatics and mutually defining equations.
Then Mixmap-Comp, TurnRL-Id and FuseR-FuseL are equivalent. ��

In the case of bind and catch, the dual interchange law to be added is:

xX ◦ ηY = (x � η ◦ inr)Y ◦ (F (id, inr) ◦ x)X (Cch-UnitBnd)

Proving that Cch-UnitBnd holds if Hdl-Assoc is available is straightforward.
For the other direction, one can first establish the dual of Bnd-Cch by dualizing
everything in a derivation of Bnd-Cch in Ax {( )Y, ( )X}YAx {η}. Now transform
both sides of Hdl-Assoc to the form xX ◦ kY ◦ F (inr, id) and apply the dual of
Bnd-Cch on each side. The results convert to equal expressions.

Hence the following holds:

Theorem 5. Let F be a bifunctor equipped with operators η, ( )ˇ, ( )Y, ( )X

fulfilling their asymmetric axiomatics and mutually defining equations. Then the
laws Hdl-Assoc and Cch-UnitBnd are equivalent. ��

9 Related Work

The class MonadPlus extends the Haskell monad interface with additional meth-
ods, one of which is mzero ::m a where m is the monad. Several different classic
axiomatics for MonadPlus occur in the literature that all require mzero to be the
left zero of >>=. Our laws Bnd-LZero and Cch-LZero are analogous require-
ments lifted to the function level.

Equational reasoning about monadic computations with additional axioms
specific to different effects has been discussed by Gibbons and Hinze [6]. For
error handling, that paper uses operations of monad with zero and addition, the
latter being less powerful than our operation ( )X.
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Our previous work [15] considered bifunctors equipped with monadic bind
and catch with symmetric types and made the first attempt to axiomatize their
asymmetric semantics in parsing. It also introduced φ and its special cases (turnr,
turnl, fuser, fusel, negation). Studying monad-level operations was not the pri-
mary goal. They were introduced as an intermediate step towards smart error
handling operations with usage and expressive power resembling those of the
Applicative and Alternative class methods. A few laws (like distributivity) con-
sidered there are omitted in this paper as not universally valid in parsing.

Naming of the laws here mostly follows that of [15], except for
Mixmap-Comp that denotes an asymmetric law in that paper. The main
achievements of this work compared to [15] are the following:

– Axiomatics equivalent to the axiomatics of asymmetric mixmap for both
operation sets {turnr, turnl} and {fuser, fusel} (in particular, the law
FuseL-FuseR is absent in [15] and axioms for {turnr, turnl} are not con-
sidered);

– Noting fuser ◦ fusel ◦ F (h, f) as a unique canonical form that any sequence of
compositions of asymmetric mixmap applications can be converted to;

– Introduction of the joint handle along with its axiomatics in both symmetric
and asymmetric setting;

– Introduction of Bnd-UnitCch and giving better grounds for this choice of
axioms by proving the axiomatics equivalent to that of handle;

– Contrasting the symmetric and asymmetric case with each other (the earlier
paper only considers asymmetric semantics).

Bind and catch operations with generalized type of catch were advocated
by Malakhovski [13]. That work also proposes an axiomatics that is a strict
subset of ours (it consists of the standard laws of monad and the left zero law
for both bind and catch). Recently, yet another proposal to axiomatize Haskell
MonadError class (and also other classes in the monad transformer library) was
discussed in the Haskell Libraries mailing list [12].

10 Conclusion

In this work, we proposed some axiomatics, expressed in terms of different opera-
tions, for equational reasoning about monadic computations with error handling
and studied relationships between them. We considered both the case where suc-
cesses and failures behave symmetrically and the case where failures erase the
program state. We found that the laws of relative monad on the sum functor are
appropriate for describing the symmetric setting. Axiomatics of the asymmetric
setting was obtained by suitably weakening that of the symmetric setting.

The axiomatics for the asymmetric setting was chosen in two stages. Axiom-
atization of pure function application (mixmap) was based on truth in a simple
abstract model (F = ‡, φ = sep, η = inl). The obtained axiomatics was then
generalized to impure computations by analogy. For the general axiomatics, we
have not managed to prove completeness w.r.t. any particular model.
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In well-known libraries of functional languages, error handler functions do
not allow changing the error type. We ignored this restriction as an unnecessary
incumbrance in theory. Despite this, our asymmetric axiomatics of {( )Y, ( )X}
can be applied to Haskell MonadError type class (although proofs may have to
use more general types than those in Haskell, just like solving cubic equations
in real numbers sometimes can be done only with help of complex numbers).
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Abstract. Solving of regular equations via Arden’s Lemma is folklore
knowledge. We first give a concise algorithmic specification of all ele-
mentary solving steps. We then discuss a computational interpretation
of solving in terms of coercions that transform parse trees of regular
equations into parse trees of solutions. Thus, we can identify some con-
ditions on the shape of regular equations under which resulting solutions
are unambiguous. We apply our result to convert a DFA to an unam-
biguous regular expression. In addition, we show that operations such as
subtraction and shuffling can be expressed via some appropriate set of
regular equations. Thus, we obtain direct (algebraic) methods without
having to convert to and from finite automaton.

Keywords: Regular equations and expressions · Parse trees ·
Ambiguity · Subtraction · Shuffling

1 Introduction

The conversion of a regular expression (RE) into a deterministic finite automaton
(DFA) is a well-studied topic. Various methods and optimized implementations
exist. The opposite direction has received less attention. In the literature, there
are two well-known methods to translate DFAs to REs, namely, state elimina-
tion [5] and solving of equations via Arden’s Lemma [2].

The solving method works by algebraic manipulation of equations. Identity
laws are applied to change the syntactic form of an equation’s right-hand side
such that Arden’s Lemma is applicable. Thus, the set of equations is reduced
and in a finite number of steps a solution can be obtained. State elimination has
a more operational flavor and reduces states by introducing transitions labeled
with regular expressions. The state elimination method appears to be better
studied in the literature. For example, see the works [1,10,13] that discuss heuris-
tics to obtain short regular expressions.

In this paper, we revisit solving of regular equations via Arden’s Lemma.
Specifically, we make the following contributions:

– We give a concise algorithmic description of solving of regular equations where
we give a precise specification of all algebraic laws applied (Sect. 3).
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– We give a computational interpretation of solving by means of coercions that
transform parses tree of regular equations into parse trees of solutions. We
can identify simple criteria on the shape of regular equations under which
resulting solutions are unambiguous (Sect. 4).

– We apply our results to the following scenarios:
• We show that regular expressions obtained from DFAs via Brzozowski’s

algebraic method are always unambiguous (Sect. 5).
• We provide direct, algebraic methods to obtain the subtraction and shuffle

among two regular expressions (Sect. 6). Correctness follows via some
simple coalgebraic reasoning.

We conclude in Sect. 7 where we also discuss related works.
The online version of this paper contains an appendix with further details

such as proofs and a parser for regular equations. We also report on an imple-
mentation for solving of regular equations in Haskell [12] including benchmark
results.1

2 Preliminaries

Let Σ be a finite set of symbols (literals) with x, y, and z ranging over Σ. We
write Σ∗ for the set of finite words over Σ, ε for the empty word, and v · w for
the concatenation of words v and w. A language is a subset of Σ∗.

Definition 1 (Regular Languages). The set R of regular languages is defined
inductively over some alphabet Σ by

R,S ::= ∅ | {ε} | {x} | (R + S) | (R · S) | (R∗) where x ∈ Σ.

Each regular language is a subset of Σ∗ where we assume that R · S denotes
{v · w | v ∈ R ∧ w ∈ S}, R + S denotes R ∪ S and R∗ denotes {w1 · · · · · wn | n ≥
0 ∧ ∀i ∈ {1, . . . , n}. wi ∈ R}.

We write R ≡ S if R and S denote the same set of words.

We often omit parentheses by assuming that ∗ binds tighter than · and · binds
tighter than +. As it is common, we assume that + and · are right-associative.
That is, R + S + T stands for (R + (S + T )) and R + S + R · S · T stands for
R + (S + (R · (S · T ))).

Definition 2 (Regular Expressions). The set RE of regular expressions is
defined inductively over some alphabet Σ by

r, s ::= φ | ε | x | (r + s) | (r · s) | (r∗) where x ∈ Σ.

Definition 3 (From Regular Expressions to Languages). The meaning
function L maps a regular expression to a language. It is defined inductively as
follows:
L(φ) = {}. L(ε) = {ε}. L(x) = {x}. L(r + s) = (L(r) + L(s)). L(r · s) =
(L(r) · L(s)). L(r∗) = (L(r)∗).
1 http://arxiv.org/abs/1908.03710.

http://arxiv.org/abs/1908.03710
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We say that regular expressions r and s are equivalent, r ≡ s, if L(r) = L(s).

Definition 4 (Nullability). A regular expression r is nullable if ε ∈ L(r).

Lemma 5 (Arden’s Lemma [2]). Let R, S, T be regular languages where
ε 	∈ S. Then, we have that R ≡ S · R + T iff R ≡ S∗ · T .

The direction from right to left holds in general. For the direction from left
to right, pre-condition ε 	∈ S is required. For our purposes, we only require the
direction from right to left.

3 Solving Regular Equations

Definition 6 (Regular Equations). We write E to denote a regular equation
of the form R ≈ α where the form of the right-hand side α is as follows.

α ::= r · R | r | α + α

In addition to α, we will sometimes use β to denote right-hand sides.
We will treat regular language symbols R like variables. We write r, s, t to

denote expressions that do not refer to symbols R.
We write R ∈ α to denote that R appears in α. Otherwise, we write R 	∈ α.
We write E to denote a set {R1 ≈ α1, . . . , Rn ≈ αn} of regular equations. We

assume that (1) left-hand sides are distinct by requiring that Ri 	= Rj for i 	= j,
and (2) regular language symbols on right-hand sides appear on some left-hand
side by requiring that for any R ∈ αj for some j there exists i such that R = Ri.
We define dom(E) = {R1, . . . , Rn}.

Regular languages are closed under union and concatenation, hence, we can
guarantee the existence of solutions of these variables in terms of regular expres-
sions.

Definition 7 (Solutions). We write {R1 �→ γ1, . . . , Rn �→ γn} to denote an
idempotent substitution mapping Ri to γi where γi denote expressions that may
consist of a mix of regular expressions and regular language symbols R.

Let ψ = {R1 �→ γ1, . . . , Rn �→ γn} be a substitution and γ some expression.
Then, ψ(γ) is derived from γ by replacing each occurrence of Ri by γi.

Let E = {R1 ≈ α1, . . . , Rn ≈ αn}. Then, we say that ψ is a solution for E if
ψ(Ri), ψ(αi) are regular expressions where ψ(Ri) ≡ ψ(αi) for i = 1, . . . , n.

We solve equations as follows. We apply Arden’s Lemma on equations that
are of a certain (normal) form R ≈ s ·R+α where R 	∈ α. Thus, we can eliminate
this equation by substituting R with s∗ · α on all right-hand sides. In case of
R ≈ α where R 	∈ α we can substitute directly. We repeat this process until all
equations are solved. Below, we formalize the technical details.

Definition 8 (Normal Form). We say that R ≈ α is in normal form iff either
(1) R 	∈ α, or (2) α = s1 · R1 + · · · + sn · Rn + t such that R = R1 and Ri 	= Rj

for i 	= j.
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Recall that t does not refer to symbols R. Every equation can be brought into
normal form by applying the following algebraic equivalence laws.

Definition 9 (Equivalence). We say two expressions γ1 and γ2 are equiva-
lent, written γ1  γ2, if one can be transformed into the other by application of
the following rules.

(E1) γ1 · (γ2 + γ3)  γ1 · γ2 + γ1 · γ3 (E2) γ1 · (γ2 · γ3)  (γ1 · γ2) · γ3

(E3) γ1 + (γ2 + γ3)  (γ1 + γ2) + γ3 (E4) γ2 · γ1 + γ3 · γ1  (γ2 + γ3) · γ1

(E5) γ1 + γ2  γ2 + γ1 (E6)
γ1  γ2

β[γ1]  β[γ2]
(E7)

γ1  γ2 γ2  γ3

γ1  γ3

Rule (E6) assumes expressions with a hole.

β[] ::= [] | β[] + β | β + β[]

We write β[γ] to denote the expression where the hole [] is replaced by γ.

We formulate solving of equations in terms of a rewrite system among a con-
figuration 〈ψ, E〉 where substitution ψ represents the so far accumulated solution
and E the yet to be solved set of equations.

Definition 10 (Solving). Let E = {R1 ≈ α1, . . . , Rn ≈ αn}. Then, we write
R ≈ α�E ′ to denote the set that equals to E where R ≈ α refers to some equation
in E and E ′ refers to the set of remaining equations.

(Arden)
R 	∈ α

〈ψ,R ≈ s · R + α � E〉 ⇒ 〈ψ,R ≈ s∗ · α � E〉

(Subst)

R 	∈ α

ψ′ = {R �→ α} ∪ {S �→ {R �→ α}(γ) | S �→ γ ∈ ψ}
E ′ = {R′ ≈ α′′ | R′ ≈ α′ ∈ E ∧ {R �→ α}(α′)  α′′}

〈ψ,R ≈ α � E〉 ⇒ 〈ψ′, E ′〉

We write ⇒∗ to denote the transitive and reflexive closure of solving steps ⇒.

Initially, all equations are in normal form. Rule (Arden) applies Arden’s
Lemma on some equation in normal form. Rule (Subst) removes an equation
R ≈ α where R 	∈ α. The substitution {R �→ α} implied by the equation is
applied on all remaining right-hand sides. To retain the normal form property of
equations, we normalize right-hand sides by applying rules (E1-7). The details
of normalization are described in the proof of the upcoming statement. We then
extend the solution accumulated so far by adding {R �→ α}. As we assume
substitutions are idempotent, {R �→ α} is applied on all expressions in the
codomain of ψ.



396 M. Sulzmann and K. Z. M. Lu

Theorem 11 (Regular Equation Solutions). Let E be a set of regular equa-
tions in normal form. Then, 〈{}, E〉 ⇒∗ 〈ψ, {}〉 for some substitution ψ where ψ
is a solution for E.

Proof. We first observe that rule (Arden) and (Subst) maintain the normal form
property for equations. This immediately applies to rule (Arden).

Consider rule (Subst). Consider R′ ≈ α′. We need to show that {R �→ α}(α′)
can be transformed to some form α′′ such that R′ ≈ α′′ is in normal form.

If R 	∈ α′ nothing needs to be done as we assume that equations are initially
in normal form.

Otherwise, we consider the possible shapes of α and α′. W.l.o.g. α′ is of the
form t1 ·R1+· · ·+r·R+· · ·+tn ·Rn+t′ and α is of the form s1 ·T1+· · ·+sk ·Tk+t′′.
We rely here on rule (E3) that allows us to drop parentheses among summands.

R is replaced by α in α′. This generates the subterm r·(s1·T1+· · ·+sk·Tk+t′′).
On this subterm, we exhaustively apply rules (E1-2). This yields the subterm
(r · s1) · T1 + · · · + (r · sk) · Tk + t′′.

This subterm is one of the sums in the term obtained from {R �→ α}(α′). Via
rules (E6-7) the above transformation steps can be applied on the entire term
{R �→ α}(α′). Hence, this term can be brought into the form r1 · S1 + · · · + rm ·
Sm + t. Subterm t equals t′ + t′′ and subterms ri ·Si refer to one of the subterms
tj · Rj or (r · sl) · Tl.

We are not done yet because subterms ri ·Si may contain duplicate symbols.
That is, Si = Sj for i 	= j. We apply rule (E4) in combination with rule (E3)
and (E4) to combine subterms with the same symbol. Thus, we reach the form
r′
1 · R′

1 + · · · + r′
o · R′

o + t such that Ri 	= Rj for i 	= j.
If R′ 	= R′

i for i = 1, . . . , o we are done. Otherwise, R = R′
i for some i. We

apply again (E3) and (E5) to ensure that the component si · Ri appears first in
the sum.

Next, we show that within a finite number of (Arden) and (Subst) rule appli-
cations we reach the configuration 〈ψ, {}〉. For this purpose, we define an ordering
relation among configurations 〈ψ, E〉.

For E = {R1 ≈ α1, . . . , Rn ≈ αn} we define

vars(E) = ({R1, . . . , Rn}, {{S1, . . . , Sm}})

where {{. . . }} denotes a multi-set and Sj are the distinct occurrences of
symbols appearing on some right-hand side αi. Recall that by construction
{S1, . . . , Sm} ⊆ {R1, . . . , Rn}. See (2) in Definition 6. We define 〈ψ, E〉 < 〈ψ′, E ′〉
iff either (a) M � M ′ or (b) M = M ′ and the number of symbols in N is
strictly smaller than the number of symbols in N ′ where vars(E) = (M,N) and
vars(E ′) = (M ′, N ′).

For sets E of regular equations as defined in Definition 6 this is a well-
founded order. Each of the rules (Subst) and (Arden) yield a smaller configura-
tion w.r.t this order. For rule (Subst) case (a) applies whereas for rule (Arden)
case (b) applies. Configuration 〈ψ, {}〉 for some ψ is the minimal element. Hence,
in a finite number of rule applications we reach 〈ψ, {}〉.
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Substitution ψ must be a solution because (1) normalization steps are equiv-
alence preserving and (2) based on Arden’s Lemma we have that every solution
for R ≈ s∗ · α is also a solution for R ≈ s · R + α. ��
Example 1. Consider E = {R1 ≈ x · R1 + y · R2 + ε,R2 ≈ y · R1 + x · R2 + ε}.
For convenience, we additionally make use of associativity of concatenation (·).

〈{}, {R1 ≈ x · R1 + y · R2 + ε,R2 ≈ y · R1 + x · R2 + ε}〉
(Arden)⇒ 〈{}, {R1 ≈ x∗ · (y · R2 + ε), R2 ≈ y · R1 + x · R2 + ε}〉
(Subst)⇒ (y · (x∗ · (y · R2 + ε)) + x · R2 + ε  (y · x∗ · y + x) · R2 + y · x∗ · ε + ε)

〈{R1 �→ x∗ · (y · R2 + ε)}, {R2 ≈ (y · x∗ · y + x) · R2 + y · x∗ · ε + ε}〉
(Arden)⇒ 〈{R1 �→ x∗ · (y · R2 + ε)}, {R2 ≈ (y · x∗ · y + x)∗ · (y · x∗ · ε + ε)}〉
(Subst)⇒ 〈{R1 �→ x∗ · (y · (y · x∗ · y + x)∗ · (y · x∗ · ε + ε) + ε),

R2 �→ (y · x∗ · y + x)∗ · (y · x∗ · ε + ε)}, {}〉
The formulation in Definition 10 leaves the exact order in which equations

are solved unspecified. Semantically, this form of non-determinism has no impact
on the solution obtained. However, the syntactic shape of solutions is sensitive
to the order in which equations are solved.

Suppose we favor the second equation which then yields the following.

〈{}, {R1 ≈ x · R1 + y · R2 + ε,R2 ≈ y · R1 + x · R2 + ε}〉
⇒∗ 〈{R1 �→ (x + y · x∗ · y)∗ + y · x∗ + ε,

R2 �→ x∗ · (y · ((x + y · x∗ · y)∗ + y · x∗ + ε) + ε)}, {}〉
where for convenience, we exploit the law r · ε ≡ r.

4 Computational Interpretation

We characterize under which conditions solutions to regular equations are unam-
biguous. By unambiguous solutions we mean that the resulting expressions are
unambiguous. An expression is ambiguous if there exists a word which can be
matched in more than one way. That is, there must be two distinct parse trees
which share the same underlying word [3].

We proceed by establishing the notion of a parse tree. Parse trees capture
the word that has been matched and also record which parts of the regular
expression have been matched. We follow [7] and view expressions as types and
parse trees as values.

Definition 12 (Parse Trees)

u, v ::= Eps | Sym x | Seq v v | Inl v | Inr v | vs | Fold v vs ::= [] | v : vs
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The valid relations among parse trees and regular expressions are defined via a
natural deduction style proof system.

E � [] : r∗ E � Eps : ε
x ∈ Σ

E � Sym x : x

E � v : r E � vs : r∗

E � (v : vs) : r∗
E � v1 : r1 E � v2 : r2

E � Seq v1 v2 : r1 · r2

E � v1 : r1

E � Inl v1 : r1 + r2

E � v2 : r2

E � Inr v2 : r1 + r2

E � v : α R ≈ α ∈ E
E � Fold v : R

For expressions not referring to variables we write � v : r as a shorthand for
{} � v : r.

Parse tree values are built using data constructors. The constant constructor
Eps represents the value belonging to the empty word regular expression. For
letters, we use the unary constructor Sym to record the symbol. In case of choice
(+), we use unary constructors Inl and Inr to indicate if either the left or right
expression is part of the match. For repetition (Kleene star) we use Haskell style
lists where we write [v1, ..., vn] as a short-hand for the list v1 : ... : vn : []. In
addition to the earlier work [7], we introduce a Fold constructor and a proof
rule to (un)fold a regular equation.

Example 2. Consider E = {R ≈ x · R + y}. Then, we find that

E � Fold (Inl (Seq (Sym x) (Fold (Inr (Sym y))))) : R

The equation is unfolded twice where we first match against the left part x · R
and then against the right part y.

The relation established in Definition 12 among parse trees, expressions and
equations is correct in the sense that (1) flattening of the parse tree yields a
word in the language and (2) for each word there exists a parse tree.

Definition 13 (Flattening). We can flatten a parse tree to a word as follows:

|Eps| = ε |Sym x| = x |Inl v| = |v| |v : vs| = |v| · |vs|
|[]| = ε |Seq v1 v2| = |v1| · |v2| |Inr v| = |v| |Fold v| = |v|
Proposition 14. Let E be a set of regular equations and ψ a solution. Let R ∈
dom(E). (1) If w ∈ L(ψ(R)) then E � v : R for some parse tree v such that
|v| = w. (2) If E � v : R then |v| ∈ L(ψ(R)).

The above result follows by providing a parser for regular equations. For (1)
it suffices to compute a parse tree if one exists. For (2) we need to enumerate all
possible parse trees. This is possible by extending our prior work [18,19] to the
regular equation setting. Details are given in the online version of this paper.

Parse trees may not be unique because some equations/expressions may be
ambiguous in the sense that a word can be matched in more than one way. This
means that there are two distinct parse trees representing the same word. We
extend the notion of ambiguous expressions [3] to the setting of regular equations.
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Definition 15 (Ambiguity). Let E be a set of regular equations and r be an
expression. We say r is ambiguous w.r.t. E iff there exist two distinct parse trees
v1 and v2 such that E � v1 : r and E � v2 : r where |v1| = |v2|.
Example 3. [Inl (Seq (Sym x) (Sym y))] and [Inr (Inl (Sym x)),
Inr (Inr (Sym y))] are two distinct parse trees for expression (x · y + x + y)∗

(where E = {}) and word x · y.

On the other hand, the equation from Example 2 is unambiguous due to the
following result.

Definition 16 (Non-Overlapping Equations). We say an equation E is
non-overlapping if E is of the following form R ≈ x1 · R1 + · · · + xn · Rn + t
where xi 	= xj for i 	= j and either t = ε or t = φ.

Equation R ≈ x ·R+y does not exactly match the above definition. However,
we can transform E = {R ≈ x · R + y} into the equivalent set E ′ = {R ≈
x · R + y · S, S ≈ ε} that satisfies the non-overlapping condition.

Proposition 17 (Unambiguous Regular Equations). Let E be a set of
non-overlapping equations where R ∈ dom(E). Then, we have that R is unam-
biguous.

Ultimately, we are interested in obtaining a parse tree for the resulting solu-
tions rather than the original set of equations. For instance, the solution for
Example 2 is x∗ · y. Hence, we wish to transform the parse tree

Fold (Inl (Seq (Sym x) (Fold (Inr (Sym y)))))

into a parse tree for x∗ · y. Furthermore, we wish to guarantee that if equations
are unambiguous so are solutions. We achieve both results by explaining each
solving step among regular equations in terms of a (bijective) transformation
among the associated parse trees.

We refer to these transformations as coercions as they operate on parse trees.
We assume the following term language to represent coercions.

Definition 18 (Coercion Terms). Coercion terms c and patterns pat are
inductively defined by

c ::= v | k | λv.c | c c | rec x.c | case c of [pat1 ⇒ c1, . . . , patn ⇒ cn]
pat ::= y | k pat1 ...patarity(k)

where pattern variables y range overs a denumerable set of variables disjoint from
Σ and constructors k are taken from the set K = {Eps,Seq, Inl, Inr,Fold}.
The function arity(k) defines the arity of constructor k. Patterns are linear
(i.e., all pattern variables are distinct) and we write λpat.c as a shorthand for
λv.case v of [pat ⇒ c].
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We give meaning to coercions in terms of a standard big-step operational
semantics. Given a coercion (function) f and some (parse tree) value u, we write
f u ⇓ v to denote the evaluation of f for input u with resulting (parse tree) value
v. We often write f(u) as a shorthand for v. We say a coercion f is bijective if
there exists a coercion g such that for every u, v where f u ⇓ v we have that
g v ⇓ u. We refer to g as the inverse of f .

We examine the three elementary solving steps, Arden, normalization and
substitution. For each solving step we introduce an appropriate (bijective) coer-
cion to carry out the transformation among parse trees.

Lemma 19 (Arden Coercion). Let E be a set of regular equations where
R ≈ s · R + α ∈ E such that R 	∈ α and E � Fold v : R for some parse tree
v. Then, there exists a bijective coercion fA such that E � fA(v) : s∗ · α where
|v| = |fA(v)|.
Proof. By assumption E � v : s · R + α. The following function fA satisfies
E � fA(v) : s∗ · α where |v| = |fA(v)|. For convenience we use symbols v and u
as pattern variables.

fA = rec f.λx. case x of
[Inr u ⇒ Seq [] u,
Inl (Seq u (Fold v) ⇒ case f(v) of

[Seq us u2 ⇒ Seq (u : us) u2]]

Function fA is bijective. Here is the inverse function.

f−1
A = rec g.λx. case x of

[Seq [] u ⇒ Fold (Inr u),
Seq (v : vs) u ⇒ Fold (Inl (Seq v (g (Seq vs u))))]

��
Lemma 20 (Normalization Coercion). Let γ1, γ2 be two expressions such
that γ1  γ2 and E � v : γ1 for some set E and parse tree v. Then, there exists
a bijective coercion f such that E � f(v) : γ2 where |v| = |f(v)|.
Proof. For each of the equivalence proof rules, we introduce an appropriate
(bijective) coercion. For rule (E1) we employ

fE1 = λv. case v of
[Seq u (Inl v) ⇒ Inl (Seq u v),
Seq u (Inr v) ⇒ Inr (Seq u v)]

where the inverse function is as follows.

f−1
E1

= λv. case v of
[Inl (Seq u v) ⇒ Seq (Inl u) v,
Inr (Seq u v) ⇒ Seq (Inr u) v]
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Coercions for rules (E2-5) can be defined similarly. Rule (E7) corresponds to
function composition and rule (E6) requires to navigate to the respective hole
position. Details are omitted for brevity. ��

We will write γ1
f γ2 to denote the coercion f to carry out the transformation

of γ1’s parse tree into γ2’s parse tree.
What remains is to define coercions to carry out substitution where we replace

subterms.

Definition 21 (Substitution Context). We define expressions with multiple
holes to characterize substitution of a subterm by another.

δ〈〉 ::= r · 〈〉 | δ〈〉 + δ〈〉 | δ〈〉 + α | α + δ〈〉

We refer to δ〈〉 as a substitution context.
We define a set of functions indexed by the shape of a substitution context. For

δ〈〉 we transform α〈R〉’s parse tree into α〈α〉’s parse tree assuming the equation
R ≈ α.

fr·〈〉 =
λu. case u of

[Seq u (Fold v) ⇒ Seq u v]

fδ〈〉+δ〈〉 =
λu. case u of

[Inl v ⇒ Inl (fδ〈〉(v)),
Inr v ⇒ Inr (fδ〈〉(v))]

fδ〈〉+α =
λu. case u of

[Inl v ⇒ Inl (fδ〈〉(v)),
Inr v ⇒ Inr v]

fα+δ〈〉 =
λu. case u of

[Inl v ⇒ Inl v,
Inr v ⇒ Inr (fδ〈〉(v))]

Functions fδ〈〉 navigate to the to-be-replaced subterm and drop the Fold con-
structor if necessary. There are inverse functions which we omit for brevity.

Lemma 22 (Substitution Coercion). Let E be a set of equations, R ≈ α ∈ E
such that E � v : δ〈R〉 for some parse tree v and substitution context δ〈〉. Then,
we find that E � fδ〈〉(v) : δ〈α〉 where |v| = |fδ〈〉(v)|.
Proof. Follows by induction over the structure of δ〈〉. ��

We integrate the elementary coercions into the solving process. For this pur-
pose, we assume that regular equations and substitutions are annotated with
parse trees. For example, we write {v1 : R1 ≈ α1, . . . , vn : Rn ≈ αn} to denote a
set of regular equations E where for each i we have that E � vi : Ri. Similarly,
we write {v1 : R1 �→ γ1, . . . , vn : Rn �→ γn} for substitutions.
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Definition 23 (Coercive Solver)

(C-Arden)
R �∈ α

〈ψ,Fold v : R ≈ s · R + α � E〉 ⇒ 〈ψ,Fold fA(v) : R ≈ s∗ · α � E〉

(C-Subst)

R �∈ α

ψ′ = {v : R 	→ α}
∪ {v : R′ 	→ α′ | v : R′ 	→ α′ ∈ ψ ∧ R �∈ α′}
∪ {Fold f(fδ〈〉(v)) : R′ 	→ α′′ | Fold v : R′ 	→ δ′〈R〉 ∈ ψ∧

R �∈ δ′〈α〉∧
δ′〈α〉 f α′′}

E ′ = {v : R′ ≈ α′ | v : R′ ≈ α′ ∈ E ∧ R �∈ α′}
∪ {Fold f(fδ〈〉(v)) : R′ ≈ α′′ | Fold v : R′ ≈ δ′〈R〉 ∈ E∧

R �∈ δ′〈α〉∧
δ′〈α〉 f α′′}

〈ψ,Fold v : R ≈ α � E〉 ⇒ 〈ψ′, E ′〉

In the coercive Arden rule, we apply the Arden coercion introduced in
Lemma 19. During substitution we uniformly normalize right-hand sides of equa-
tions and the codomains of substitutions. Side condition R 	∈ δ′〈α〉 guarantees
that all occurrences of R are replaced. Parse trees are transformed by first apply-
ing the substitution coercion followed by the normalization coercion. Thus, we
can transform parse trees of regular equations into parse trees of solutions.

Proposition 24 (Coercive Solving). Let E = {v1 : R1 ≈ α1, . . . , vn : Rn ≈
αn} be a parse tree annotated set of regular equations in normal form where
E � vi : Ri for i = 1, . . . , n. Then, 〈{}, E〉 ⇒∗ 〈ψ, {}〉 for some substitution ψ
where ψ = {u1 : R1 �→ s1, . . . , un : Rn �→ sn} such that � ui : si and |ui| = |vi|
for i = 1, . . . , n.

Proof. Follows immediately from Lemmas 19, 20 and 22. ��
Theorem 25 (Unambiguous Solutions). Let E be a set of non-overlapping
equations where 〈{}, E〉 ⇒∗ 〈ψ, {}〉 for some substitution ψ. Then, for each R ∈
dom(E) we find that ψ(R) is unambiguous.

Proof. Follows from Propositions 17 and 24 and the fact that coercions are
bijective. ��

5 Brzozowski’s Algebraic Method

We revisit Brzozowski’s algebraic method [4] to transform an automaton into
a regular expression. Based on our results we can show that resulting regular
expressions are always unambiguous.
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Definition 26 (Deterministic Finite Automata (DFA)). A deterministic
finite automaton (DFA) is a 5-tuple M = (Q,Σ, δ, q0, F ) consisting of a finite
set Q of states, a finite set Σ of symbols, a transition function δ : Q × Σ → Q,
an initial state q0 ∈ Q, and a set F of accepting states. We say M accepts
word w = x1 . . . xn if there exists a sequence of states p1, . . . , pn+1 such that
pi+1 = δ(pi, xn) for i = 1, . . . , n, p1 = q0 and pn+1 ∈ F .

Brzozowski turns a DFA into an equivalent set of (characteristic) regular
equations.

Definition 27 (Characteristic Equations). Let M = (Q,Σ, δ, q0, F ) be a
DFA. We define EM = {Rq ≈ ∑

x∈Σ x · Rδ(q,x) + f(q) | q ∈ Q} where f(q) = ε
if q ∈ F . Otherwise, f(q) = φ. We refer to EM as the characteristic equations
obtained from M .

He suggests solving these equations via Arden’s Lemma but the exact details
(e.g. normalization) are not specified. Assuming we use the solving method spec-
ified in Definition 10 we can conclude the following. By construction, characteris-
tic equations are non-overlapping. From Theorem 25 we can derive the following
result.

Corollary 1. Solutions obtained from characteristic equations are unambiguous.

Instead of a DFA we can also turn a non-deterministic automaton (NFA)
into an equivalent regular expression. Each ε transitions is represented by the
component ε · R. For two non-deterministic transitions via symbol x to follow
states R1 and R2, we generate the component x ·R1+x ·R2. Resulting character-
istic equations will be overlapping in general. Hence, we can no longer guarantee
unambiguity.

6 Subtraction and Shuffle

We introduce direct methods to subtract and shuffle regular expressions. Instead
of turning the regular expressions into a DFA and carrying out the operation
at the level of DFAs, we generate an appropriate set of equations by employing
Brzozowski derivatives. Solving the equations yields then the desired result. In
essence, our method based on solutions resulting from derivative-based equations
is isomorphic to building a derivative-based DFA from expressions, applying the
product automaton construction among DFAs and then turn the resulting DFA
into an expression via Brzozowski’s algebraic method.

For subtraction, equations generated are non-overlapping. Hence, resulting
expressions are also unambiguous. First, we recall the essential of derivatives
before discussing each operation including some optimizations.
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6.1 Brzozowski’s Derivatives

The derivative of a regular expression r with respect to some symbol x, written
dx(r), is a regular expression for the left quotient of L(r) with respect to x. That
is, L(dx(r)) = {w ∈ Σ∗ | x · w ∈ L(r)}. A derivative dx(r) can be computed by
recursion over the structure of the regular expression r.

Definition 28 (Brzozowski Derivatives [4])

dx(φ) = φ dx(ε) = φ

dx(y) =
{

ε if x = y
φ otherwise dx(r + s) = dx(r) + dx(s)

dx(r · s) =
{

dx(r) · s if ε 	∈ L(r)
dx(r) · s + dx(s) otherwise dx(r∗) = dx(r) · r∗

Example 4. The derivative of (x+y)∗ with respect to symbol x is (ε+φ)·(x+y)∗.
The calculation steps are as follows:

dx((x+ y)∗) = dx(x+ y) · (x+ y)∗ = (dx(x)+dx(y)) · (x+ y)∗ = (ε+φ) · (x+ y)∗

Theorem 29 (Expansion [4]). Every regular expression r can be represented
as the sum of its derivatives with respect to all symbols. If Σ = {x1, . . . , xn},
then

r ≡ x1 · dx1(r) + · · · + xn · dxn
(r) (+ε if r nullable)

Definition 30 (Descendants and Similarity). A descendant of r is either
r itself or the derivative of a descendant. We say r and s are similar, written
r ∼ s, if one can be transformed into the other by finitely many applications
of the rewrite rules (Idempotency) r + r ∼ r, (Commutativity) r + s ∼ s + r,
(Associativity) r + (s + t) ∼ (r + s) + t, (Elim1) ε · r ∼ r, (Elim2) φ · r ∼ φ,
(Elim3) φ + r ∼ r, and (Elim4) r + φ ∼ r.

Lemma 31. Similarity is an equivalence relation that respects regular expres-
sion equivalence: r ∼ s implies r ≡ s.

Theorem 32 (Finiteness [4]). The elements of the set of descendants of a
regular expression belong to finitely many similarity equivalence classes.

Similarity rules (Idempotency), (Commutativity), and (Associativity) suffice to
achieve finiteness. Elimination rules are added to obtain a compact canon-
ical representative for equivalence class of similar regular expressions. The
canonical form is obtained by systematic application of the similarity rules in
Definition 30. We enforce right-associativity of concatenated expressions, sort
alternative expressions according to their size and their first symbol, and con-
catenations lexicographically, assuming an arbitrary total order on Σ. We fur-
ther remove duplicates and apply elimination rules exhaustively (the details are
standard [8]).
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Definition 33 (Canonical Representatives). For a regular expression r, we
write cnf (r) to denote the canonical representative among all expressions similar
to r. We write D(r) for the set of canonical representatives of the finitely many
dissimilar descendants of r.

Example 5. We find that cnf ((ε + φ) · (x + y)∗) = (x + y)∗ where x < y.

6.2 Subtraction

Definition 34 (Equations for Subtraction). Let r, s be two regular expres-
sions. For each pair (r′, s′) ∈ D(r) × D(s) we introduce a variable Rr′,s′ . For
each such Rr′,s′ we define an equation of the following form. If L(r′) = ∅, we set
Rr′,s′ ≈ φ. Otherwise, Rr′,s′ ≈ ∑

x∈Σ x · Rcnf (dx(r′)),cnf (dx(s′)) + t where t = ε if
ε ∈ L(r′), ε 	∈ L(s′), otherwise t = φ. All equations are collected in a set Sr,s.

Let ψ = solve(Sr,s). Then, we define r − s = ψ(Rr,s).

As the set of canonical derivatives is finite, the set solve(Sr,s) is finite as well.
Hence, a solution must exist. Hence, r − s is well-defined.

Lemma 35. Let r, s be two regular expressions. Then, we find that

L(r) − L(s) ≡ ∑
x∈Σ x · (L(cnf (dx(r))) − L(cnf (dx(s)))) + T

where T = {ε} if ε ∈ L(r), ε 	∈ L(s), otherwise T = ∅.
Proof. By the Expansion Theorem 29 and Lemma 31, we find that r ≡ ∑

x∈Σ x ·
cnf (dx(r)) + t and s ≡ ∑

x∈Σ x · cnf (dx(s)) + t′ where t = ε if r is nullable.
Otherwise, t = φ. For t′ we find t′ = ε if s is nullable. Otherwise, t′ = φ.

By associativity, commutativity of + and some standard algebraic laws

(x · R) − (x · S) ≡ x · (R − S)
(x · R) − (y · S) ≡ x · R where x 	= y

R − φ ≡ R
(R + S) − T ≡ (R − T ) + (S − T )

R − (S + T ) ≡ (R − S) − T

the result follows immediately. ��
Theorem 36 (Subtraction). Let r, s be two regular expressions. Then, we
find that r − s is unambiguous and L(r − s) ≡ L(r) − L(s).

Proof. By construction, equations are non-overlapping. Unambiguity follows
from Theorem 25.

We prove the equivalence claim via a coalgebraic proof method [15]. We
show that the relation {(L(ψ(Rr′,s′)),L(r′)−L(s′)) | (r′, s′) ∈ D(r)×D(s)} is a
bisimulation where ψ = solve(Sr,s). For that to hold two elements are in relation
if either (1) they are both nullable, or (2) their derivatives, i.e. taking away the
same leading literal, are again in relation.
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Consider a pair (L(ψ(Rr′,s′)),L(r′) − L(s′)). For L(r′) = ∅ we have that
Rr′,s′ ≈ φ. The conditions imposed on a bisimulation follow immediately.

Otherwise, Rr′,s′ is defined by the equation

Rr′,s′ ≈ ∑
x∈Σ x · Rcnf (dx(r′)),cnf (dx(s′)) + t (E1)

where t = ε if ε ∈ L(r′), ε 	∈ L(s′), otherwise t = φ. From Lemma 35 we can
conclude that

L(r) − L(s) ≡ ∑
x∈Σ x · (L(cnf (dx(r))) − L(cnf (dx(s)))) + T (E2)

where T = {ε} if ε ∈ L(r), ε 	∈ L(s), otherwise T = ∅. Immediately, we find that
if one component of the pair is nullable, the other one must be nullable as well.

We build the derivative for each component w.r.t. some literal x. Given that
ψ is a solution and via (E1) and (E2) the resulting derivatives are equal to
L(ψ(Rcnf (dx(r′)),cnf (dx(s′)))) and L(cnf (dx(r))) − L(cnf (dx(s))). Hence, deriva-
tives are again in relation. This concludes the proof. ��
Example 6. We consider r1 = (x + y)∗ and r2 = (x · x)∗. Let us consider first
the canonical descendants of both expressions.

C(dx((x + y)∗)) = (x + y)∗

C(dy((x + y)∗)) = (x + y)∗

C(dx((x · x)∗)) = x · (x · x)∗ = r3
C(dy((x · x)∗)) = φ = r4
dx(x · (x · x)∗) = (x · x)∗

dy(x · (x · x)∗) = φ

The resulting equations are as follows.

R1,2 = x · R1,3 + y · R1,4 + φ
R1,3 = x · R1,2 + y · R1,4 + ε
R1,4 = r1

Solving of the above proceeds as follows. We first apply R1,4 = r1.

R1,2 = x · R1,3 + y · r1 + φ
R1,3 = x · R1,2 + y · r1 + ε

Next, we remove the equation for R1,3 and apply some simplifications.

R1,2 = x · x · R1,2 + x · y · r1 + x + y · r1

Via Arden’s Lemma we find that R1,2 = (x · x)∗ · (x · y · r1 + x + y · r1) and we
are done.



Solving of Regular Equations Revisited 407

6.3 Shuffle

Definition 37 (Shuffle). The shuffle operator ‖ :: Σ∗×Σ∗ → ℘(Σ∗) is defined
inductively as follows:

ε‖w = {w}
w‖ε = {w}
x · v‖y · w = {x · u | u ∈ v‖y · w} ∪ {y · u | u ∈ x · v‖w}

We lift shuffling to languages by

L1‖L2 = {u | u ∈ v‖w ∧ v ∈ L1 ∧ w ∈ L2}
For example, we find that x · y‖z = {x · y · z, x · z · y, z · x · y}.

Definition 38 (Equations for Shuffling). Let r, s be two regular expressions.
For each pair (r′, s′) ∈ D(r)×D(s) we introduce a variable Rr′,s′ . For each such
Rr′,s′ we define an equation of the following form. If L(r′) = ∅, we set Rr′,s′ ≈ φ.
Otherwise, Rr′,s′ ≈ ∑

x∈Σ(x·Rcnf (dx(r′)),s′+x·Rr′,cnf (dx(s′)))+t where t = t1+t2.
Expression t1 = s′ if ε ∈ L(r′), otherwise t1 = φ. Expression t2 = r′ if ε ∈ L(s′),
otherwise t2 = φ. All equations are collected in a set Hr,s.

Let ψ = solve(Hr,s). Then, we define r‖s = ψ(Rr,s).

Lemma 39. Let r, s be two regular expressions. Then, we find that

L(r)‖L(s) ≡ ∑
x∈Σ(x · (L(cnf (dx(r)))‖L(s)) + x · (L(r)‖L(cnf (dx(s))))) + T

where T = T1 + T2. T1 = s if ε ∈ L(r), otherwise T1 = φ. T2 = r if ε ∈ L(s),
otherwise T2 = φ.

Theorem 40 (Shuffling). Let r, s be two regular expressions. Then, we find
that L(r‖s) ≡ L(r)‖L(s).

7 Related Works and Conclusion

Our work gives a precise description of solving of regular equations including a
computational interpretation by means of parse tree transformations. Thus, we
can characterize conditions under which regular equations and resulting regular
expressions are unambiguous.

Earlier work by Gruber and Holzer [9] gives a comprehensive overview on the
conversion of finite automaton to regular expressions and vice versa. Like many
other works [4,14], the algorithmic details of solving regular equations based on
Arden’s Lemma are not specified in detail.

Brzozowski’s and McCluskey’s [5] state elimination method appears to be
the more popular and more widespread method. For example, consider work by
Han [10] and in collaboration with Ahn [1], as well as work by Moreira, Nabais
and Reis [13] that discuss state elimination heuristics to achieve short regular
expressions.
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Sakarovitch [16,17] shows that the state elimination and solving via regular
equation methods are isomorphic and produce effectively the same result. Hence,
our (unambiguity) results are transferable to the state elimination setting. The
other way around, state elimination heuristics are applicable as demonstrated
by our implementation.

It is well understood how to build the subtraction and intersection among
DFAs via the product automaton construction [11]. If we wish to apply these
operations among regular expressions we need to convert expressions back and
forth to DFAs. For example, we can convert a regular expression into a DFA
using Brzozowski’s derivatives [4] and then use Brzozowski’s algebraic method
to convert back the product automaton to a regular expression.

To build the shuffle among two regular expressions, the standard method
is to (1) build the shuffle derivative-based DFA, (2) turn this DFA into some
regular equations and then (3) solve these regular equations. Step (1) relies on
the property that the canonical derivatives for shuffle expressions are finite.

In our own work [20], we establish finiteness for several variations of the shuf-
fle operator. Caron, Champarnaud and Mignot [6] and Thiemann [21] establish
finiteness of derivatives for an even larger class of regular expression operators.

We propose direct methods to build the intersection and the shuffle among
two regular expressions. For each operation we generate an appropriate set of
equations by employing Brzozowski derivatives. We only rely on finiteness of
canonical derivatives for standard regular expressions. Solving of these equa-
tions then yields the desired expression. Correctness follows via some simple
(co)algebraic reasoning and we can guarantee that resulting expressions are
unambiguous.

Acknowledgments. We thank referees for CIAA’18, ICTAC’18 and ICTAC’19 for
their helpful comments on previous versions of this paper.
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