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Abstract Software engineering research aims to help improve real-world practice.
With the adoption of empirical software engineering research methods, the under-
standing of real-world needs and validation of solution proposals have evolved.
However, the philosophical perspective on what constitutes theoretical knowl-
edge and research contributions in software engineering is less discussed in the
community. In this chapter, we use the design science paradigm as a frame
for articulating and communicating prescriptive software engineering research
contributions. Design science embraces problem conceptualization, solution (or
artifact) design, and validation of solution proposals, with recommendations for
practice phrased as technological rules. Design science is used in related research
areas, particularly information systems and management theory. We elaborate the
constructs of design science for software engineering, relate them to different
conceptualizations of design science, and provide examples of possible research
methods. We outline how the assessment of research contributions, industry–
academia communication, and theoretical knowledge building may be supported by
the design science paradigm. Finally, we provide examples of software engineering
research presented through a design science lens.

1 Introduction

Software engineering research aims to develop and validate practically useful
methods, technologies, and tools to help industry improve software engineering
practice. This practical aspect was discussed when the term “software engineering”
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was coined by Margaret Hamilton in the late 1960s,1 and later put in print in a NATO
conference report (Naur and Randell 1969, p. 13).

The phrase ‘software engineering’ [implied] the need for software manufacture to be based
on the types of theoretical foundations and practical disciplines that are traditional in the
established branches of engineering.

Numerous solutions to software engineering problems have been proposed
and published during the past few decades—these include development methods
and processes, tools, frameworks, taxonomies, or languages—but few involve
systematic investigations of real-world problem instances and validation by large-
scale software practice.

With the advent of empirical software engineering (Basili et al. 1986) and
evidence-based software engineering (Kitchenham et al. 2004), the research focus
has shifted towards an empirically informed understanding of practice and solu-
tion proposals. Empirical methods have been inherited and adapted from other
research fields, particularly medicine and the social sciences. Applying these meth-
ods, the software engineering knowledge base has been systematically extended
through families of experiments (Basili et al. 1999) and systematic literature
reviews (Kitchenham et al. 2015). However, the introduction of new research
methods is rarely framed in a research paradigm explicitly, and as a consequence
it is debated what constitutes a research contribution and how to assess it (Briand
et al. 2017).

A research paradigm refers to “the combination of types of research questions
asked, the research methodologies allowed to answer them, and the nature of
the pursued research products” (Van Aken 2004). The goal of this chapter is to
assist with the identification of theoretical research contributions, help assess these
contributions, and communicate them to researchers and practitioners. We propose
the design science paradigm as a frame to present and analyze software engineering
research, rather than a prescription of methods on how to conduct it. Design
science is elaborated by Hevner et al. (2004) for information systems, extended
by Wieringa (2014a) into software engineering, which sources we here merge with
perspectives from Van Aken (2004) in management theory. Software engineering
is a socio-technical field, which integrates technical and managerial perspectives.
As a consequence, this chapter is influenced from both perspectives, acknowledging
the interdisciplinary characteristics of software engineering (Méndez Fernández and
Passoth 2019).

The design science paradigm comprises problem conceptualization, solution
design, and validation. We demonstrate how this paradigm fits as a frame for
empirical software engineering research in order to provide theoretical knowledge
about practical solutions for real-world software engineering challenges. In par-
ticular, multiple case studies are proposed as the typical research methodology to

1https://publications.computer.org/software-magazine/2018/06/08/margaret-hamilton-software-
engineering-pioneer-apollo-11/.

https://publications.computer.org/software-magazine/2018/06/08/margaret-hamilton-software-engineering-pioneer-apollo-11/
https://publications.computer.org/software-magazine/2018/06/08/margaret-hamilton-software-engineering-pioneer-apollo-11/
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gain design knowledge under the design science paradigm (Van Aken 2004), which
aligns with the widespread use of case studies in software engineering (Garousi et al.
2019).

We provide an overview of the design science paradigm in Sect. 2, and a
more in-depth elaboration of design science concepts in Sect. 3. In Sect. 4, we
discuss how design science can be used to frame software engineering research
and present a visual abstract template to help identify and assess theoretical
contributions in software engineering. Section 5 explores some references to work
with complementary views on design science, and Sect. 6 concludes this chapter.

2 Design Science: An Overview

There are three major research paradigms, according to Van Aken (2004):

• formal sciences
• explanatory sciences
• design sciences

A research paradigm is a philosophical perspective on the knowledge produced
within a research field, using different research methodologies to answer research
questions (Van Aken 2004). The formal sciences (e.g., philosophy and mathematics)
focus on building internally consistent systems of knowledge. They are empirically
void as the systems are not related to any empirical observation or validation. The
explanatory sciences (e.g., the natural sciences and most of the social sciences) aim
to describe and explain phenomena that exist, without and before any intervention.
Design sciences (e.g., engineering sciences and medical sciences) aim to understand
and improve human-made designs in an area of practice. The boundary between
explanatory sciences and design sciences is not always clear as a research endeavor
may contain elements explaining a naturally occurring phenomenon for which a
proposed intervention is later designed and validated.

In this chapter, we view design science as a research paradigm that helps frame
research and aims to improve an area of practice. In our case, the engineering of
software is the practice area in focus. The software itself, the tools designed to
support the engineers, as well as the organizations developing it, are human-made
constructs. This speaks for design science being a feasible research paradigm for
software engineering. On the other hand, some of the human behavior of software
engineers and their stakeholders are related to intrinsic human capabilities and
characteristics, which would speak for the explanatory science research paradigm.
Still, we argue that many of the studied phenomena in software engineering are
designed artifacts, and thus the research would benefit from being framed as design
science.

The practice is not homogeneous over all kinds of software engineering research,
neither are the potential improvements the same for all instances of practice. Thus,
design science addresses general problems by studying specific problem instances
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in practice, which constitute the research contexts, and where the research activities
of problem conceptualization, solution design, and validation take place, see Fig. 1.
The cyclic process resembles basic engineering or quality improvement models like
the Deming cycle (Deming 1986) and the quality improvement paradigm by Basili
(1992).

The theoretical contributions of design science research, i.e., the prescriptions for
practice, are context dependent. The scientific knowledge emanating from design
science research consists of prescriptive recommendations typically captured in
technological rules, i.e., “field-tested and grounded” exemplars of how a problem
can be solved (Van Aken 2004). It is not claimed to be an optimal solution, but
since it is field-tested and grounded, it is a feasible solution. As a consequence,
the validation must be done in either a real-world context or an artificial context
resembling aspects of the real one (Wieringa 2014a).

Other than the relation to context, design science does not prescribe specific
method steps to be conducted in a research study. The above mentioned research
activities (visualized in Fig. 1) are constituents of a research process that may be
instantiated in different ways, using different research methods.

Further, a single study or research paper may or may not contain all the
constituents of the design science paradigm. For example, one study may focus
on problem conceptualization, whereas another may report the complete chain from
problem conceptualization to a validated solution. Studies that focus on one aspect
of design science may contain research contributions that build on, or constitute, the
basis for other research under the design science paradigm.

Design science research aims to address real practice problems, and thus problem
conceptualization is a core constituent of the research. This is typically, but not
necessarily, the first step in a design science research endeavor. Understanding a
general problem in terms of one or more concrete problem instances is a basis for
understanding how this general problem may be solved. During the exploration of
a specific problem instance, it may become clearer what the core of the problem is,
thus focusing the potential solution design to these areas.

While problem conceptualization is a basis for the research activity, it is not
a pure description of the problem. Under the design science paradigm, problems
need to be conceptualized in terms of an envisioned solution. Thus, problem

Fig. 1 A visualization of the
types of research activities
that take place in design
science research. These
activities may be instantiated
in different ways

D
e
s
ig

n
 

T
h

e
o

ry

P
ra

c
ti
c
e
 

C
o

n
te

x
t

Empirical 
validation

P
ro

bl
em

 
co

nc
ep

tu
al

i-
za

tio
n

Solution 
design



The Design Science Paradigm as a Frame for Empirical Software Engineering 131

conceptualization is often intertwined with the creative activity of solution design,
where alternative solutions and previous research are considered.

The primary goal of empirical validation is to assess whether the solution
proposal is feasible for the problem instance. The scope of the design knowledge
gained in a study can be extended by systematically extending the scope of the
validation in subsequent studies. Thereby, the knowledge base of the research area
is extended.

Design science is a paradigm used in many different research fields and it is
instantiated in many different variants. The above summary reflects what we have
found prevalent in software engineering. Some of our rationale and alternative
instantiations are discussed below.

3 A Model of Design Science Research

Design science spans two major dimensions: the problem–solution dimension and
the theory–practice dimension. To guide our in-depth elaboration of the design
science paradigm, we extend the research activities model (Fig. 1) with design
science contributions, see Fig. 2, where research activities under the design science
paradigm can be expressed as transitions across this two-dimensional space.

The practical contribution of the research (i.e., the actual problem solving)
is visualized by the boxes in the two bottom quadrants as instances of both the
problem and the solution. The theoretical contribution (i.e., generalization and scope
definition) is visualized in the two top quadrants in terms of the technological rule(s)
and the corresponding constructs. The arrows in Fig. 2 illustrate knowledge creating
activities that can be performed by both practitioners and researchers.

• Problem conceptualization refers to the activity of describing the problem;
• Solution design refers to the activity of mapping a problem to a general solution;
• Abstraction refers to the activity of identifying the key design decisions for a

defined scope of validity of a solution;
• Instantiation refers to the activity of implementing the solution in context; and
• Empirical validation refers to an evaluation of how well the implemented

solution addresses the problem.

These activities are performed iteratively across the theory–practice and
problem–solution dimensions. Below we explore the contributions and activities of
the design science model.

3.1 Technological Rules and Its Constructs

A technological rule captures generalized knowledge about mappings between
instances of problems and solutions (i.e., in-context validations), and thus is a
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Fig. 2 Model of design science contributions in software engineering (Engström et al. 2020). The
boxes represent theoretical and practical contributions of design science research, and the arrows
represent knowledge creating activities that can be performed by both practitioners and researchers

means to transfer knowledge between contexts. The technological rule spans both
a problem domain and a solution domain and is formulated based on constructs in
both domains.

The scope of validity of the solution is described in terms of a desired effect
of a proposed intervention in a particular context. Thereby, it frames the research
outcome in terms of effects of interventions, rather than in terms of a solution to a
problem. A technological rule can typically be expressed in the form:

To achieve <Effect > in <Context > apply <Intervention>.

The design knowledge within the technological rule aims to help software
engineering professionals design customized solutions to their specific problems.
Ideally it is a general recommendation based on current state of the art, including
new research contributions.

The notion of technological rules comes from Bunge (1998), while different
instantiations of design science name the theoretical contributions differently.
Gregor and Hevner (2013) discuss them in terms of design theory and Wieringa
(2009) defines them as “theories of artifacts in context.” A thorough reflection
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about the role, nature, and need for technological rules in design science research is
provided by Van Aken (2004).

In a technological rule, a class of software engineering problems is generalized
to a stakeholder’s desired effect of applying a potential intervention in a specified
context. Making this problem generalization explicit helps the researcher identify
and communicate the different value-creating aspects of a research study or
program.

How the intervention in a technological rule is formulated may vary. It could,
for example, refer to the use of a tool, articulate abstractions of the knowledge
embedded in the tool, or even advise not to use the tool. It could also refer to
the application of a practice, a technique, a framework, or a set of guidelines. We
extracted 38 examples of technological rules from a set of distinguished ICSE-
papers from 2014–2018 (Engström et al. 2020); these examples demonstrate the
breadth of knowledge that can be represented using technological rules. These
technological rules are available online in the visual abstracts for each distinguished
paper at http://dsse.org.

One single instance of a problem–solution pair can generate multiple technolog-
ical rules that are hierarchically related to each other. For example, an abstract rule
may recommend using a general type of technology, while several more detailed
rules may specify the use of technology, embedded in a specific tool. Similarly,
there are hierarchical relationships with prior related technological rules to which
a specific contribution is compared. However, technological rules expressed at
a very high abstraction level (e.g., “To produce software of high quality, apply
good software engineering practices”) tend to be either trivial or too bold (easy
to debunk), while rules at very low abstraction levels have a narrow scope, and thus
lack relevance for most software engineers.

Thus, it is important to explicitly formulate the technological rule when pre-
senting design science research and to be consistent with it, both when arguing
for its relevance and its novelty, as well as when presenting the empirical (or
analytical) support for the claims. A research contribution may refine any of the
three constituents of an existing technological rule, add empirical support for the
rule as a whole, or present a new rule.

Another type of theoretical knowledge produced in design science is the
constructs on which we build technological rules. That is, the conceptualization
of the problem domain and the solution domain, respectively. A construct can, for
example, be a taxonomy that is used to articulate a technological rule or classify
a set of technological rules in a research review. Taxonomies provide the means
to relate different technological rules to each other. The different constituents of a
technological rule may belong to different taxonomies. A construct can also be a
conceptual model or a conceptualization approach that helps describe a problem in
terms of an envisioned solution.

http://dsse.org
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3.2 Problem Conceptualization and Solution Design

In a mature research field, existing theory may help practitioners design solutions for
their specific problems. Problem conceptualization is then an act of the practitioner,
as is the instantiation of the solution in a specific context. In fields where the
theoretical foundation is less mature, such as software engineering, researchers and
practitioners may work together to advance and extend the scope of the theory.

Above, we described how design knowledge is first obtained and later matures
through observations of real-life instances of problem–solution pairs. For each
such instance, the problem needs to be formulated (understood) according to a
conceptual lens. Such problem conceptualization can take place in collaboration
between practitioners and researchers in, for example, action research or case study
research, or by researchers observing software engineering practice.

The outcome of the problem conceptualization is expressed in terms of problem
constructs, matching corresponding constructs of an envisioned solution. If, for
example, the proposed solution is to design a visualization system, the problem
should typically be described in terms of a group of target users, their questions and
tasks, and their measurements or data (Meyer et al. 2015). Thus, the problem con-
ceptualization is tightly connected to the solution design and cannot be performed
in isolation.

Depending on the type of solution, problem conceptualization may need to
be repeated at several abstraction levels, starting with the stakeholder’s problem
description and, in case of a tool, reaching to the level of implementation details
(such as choice of algorithm). If this is the case, different types of technological
rules are used and validated at different abstraction levels. It is important to be
aware of what these technological rules are, and to ensure that the validation of
a solution takes place at all these levels and that the validations are mapped to
the correct technological rules. Further, while solution design is a creative activity,
the design knowledge it produces can be made more accessible and trustworthy
if critical design decisions are clearly reported together with considerations about
alternative solutions.

Finally, problem conceptualization is, to a large extent, in the eye of the beholder.
A behavioral scientist would, for example, make a different problem conceptualiza-
tion of a software project, compared to a software engineering researcher. Similarly,
different software engineering researchers may be influenced by their background,
emphasizing how problem conceptualization is intertwined with solution design.

3.3 Validation, Instantiation, and Abstraction

To validate a technological rule it must be instantiated, preferably in multiple
cases of problem–solution pairs that instantiate the rule where each case adds to
the validity strength of the rule. Alternatively, a new technological rule may be
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abstracted from an observed implemented solution applied to a real-life problem.
The constituents of the technological rule implicitly specify the validation activities
if expressed in the form of: To achieve <Effect > in <Context > apply <Interven-
tion>.

The intervention is the object of the validation study, the context refers to where
the research is conducted, and the expected effect defines the validation criteria. This
points to real software engineering contexts as the ultimate validation context for
design science research. Consequently, multiple case studies are brought forward as
the natural research methodology in design science (Van Aken 2004). However, for
some design problems, the characteristics of the real context may be very similar
to the artificial context settings for the validation. For example, a tool which has
no human–tool interaction can be evaluated with real or realistic data in an offline
setting. In other cases, practical and economical limitations can prevent the research
endeavor from taking place in real operational environments, and thus scaled down
validation contexts may be used in the research.

The risks related to validating interventions in business critical contexts may be
high. If the intervention does not deliver the effect as expected, the outcome of the
software engineering activity as a whole may be endangered. Furthermore, the costs
related to implementing the intervention may also be high (e.g., changing a work
flow or adapting the information infrastructure to a new tool). Thus the validation
procedures should gradually extend the validation scope for the intervention to
manage these risks. However, reducing the scope and complexity of the validation
context too much may reduce the realism, which is essential for addressing a
relevant problem with a feasible solution. Studies in artificial contexts may be useful
to validate specific mechanisms, but they are not feasible for complex systems
studies.

Stol and Fitzgerald adapted Runkel and McGrath’s framework for research
strategies to guide balancing generalizability, precision, and realism in designing
validation studies, see chapter “Guidelines for Conducting Software Engineering
Research”. This framework may be useful in choosing research strategies in relation
to the goals of the research endeavor. The framework defines two dimensions:
(1) universality/specificity of context and systems and (2) level of obtrusiveness,
which have to be balanced, as discussed above.

The specific choice of methods for the validation depends on the research
question. Easterbrook et al. (2008) provide guidance to the selection of methods for
types of research question and conclude for the philosophical stance behind design
science: “Pragmatists use any available methods, and strongly prefer mixed methods
research, where several methods are used to shed light on the issue under study.”
This recommendation fits well with the design science paradigm and its pragmatist
viewpoint.

Furthermore, the choice of validation methods depend on the abstraction level of
the validation. Munzner (2009) illustrates this in a nested model for visualization
design and validation, see Fig. 3. This model shows how one design science project
must respond to validity questions at several levels of abstraction, and that it is
important to be consistent when selecting validation methods to avoid a mismatch
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Threat: Wrong problem

Validate: Observe and interview target users

Validate: Adoption rates

Threat: Bad data/operation abstraction

Validate: Test on target users, collect anecdotal evidence of utility

Validate: Field study, document human usage of deployed system

Threat: Ineffective encoding/interaction technique

Validate: Justify encoding/interaction design

Validate: Qualitative/quantitative result image analysis

Validate: Lab study, measure human time/errors for operation

Threat: Slow algorithm

Validate: Analyse computational complexity

Validate: Measure system time/memory

Implement system

Fig. 3 Nested model for visualization design and validation (Munzner 2009). At each level there is
a “black-box” to be tested. Above the box, validity threats are specified and examples of validation
strategies for the problem conceptualization are proposed for that abstraction level, while validation
strategies for the instantiation of the solution are proposed below the box

between levels. As discussed in Sect. 3.1, technological rules may be defined at
all these different levels, and the scope of validity of each technological rule is
defined by the context in terms of the conceptualization of the problem at the current
abstraction level.

The design science paradigm primarily builds on theoretical/analytical gener-
alizations, in contrast to explanatory sciences, which mostly rely on statistical
generalizations (Runeson et al. 2012). Extending the scope of validity for a
technological rule (i.e., creating a new, more general technological rule) is done
by applying the intervention to new contexts, or by reasoning about the validity to
another context by comparing key characteristics of the contexts. This is referred
to as case-based generalization (Wieringa and Daneva 2015). Technological rules
may also develop from the general to the specific. The research may start with a
general technological rule which is refined as new knowledge is gained through the
instantiation of the technological rule in multiple contexts.

3.4 Design Science Research in Practice

The design science paradigm may embrace the use of a multitude of research
methods. For problem conceptualization and validation of technological rules,
empirical research methods are used; however, methods supporting natural settings
are preferred as the problem in context is a focus for design science research.
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In a survey of 101 industry–academia collaboration projects, Garousi et al.
(2019) found 75 that were characterized as case studies. Further, they note that
“industrial case studies usually apply either the ‘exploratory’ or the ‘improving’
type, or both, rather than other case study types (descriptive, explanatory).” Methods
for data collection and analysis can be selected from the rich plethora of options
available for such studies, for example, interviews, focus groups, observational
studies, archival data analysis, and software metric analysis.

Action research is another way of producing and validating technological rules.
41 of the 101 industry–academia collaboration projects surveyed by Garousi et al.
(2019) were labeled as action research. However, action research does not explicitly
aim to develop knowledge that can be transferred to other contexts, but rather to
make a change in one specific local context. Nevertheless, both Wieringa and Moralı
(2012) and Johannesson and Perjons (2014) discuss action research as one of several
empirical methods that can be used to produce design knowledge.

Gorschek et al. (2006) define a “model for technology transfer in practice”
focusing on industry–academia collaboration, which has some elements of design
science. The model, which prescribes conceptual steps in solving a problem in an
industry–academia collaboration setting, has elements of problem identification and
conceptualization. The design of solutions involve studying the literature (state of
the art) and selection of a candidate solution. This solution is validated in three steps,
in academia, statically, and dynamically, before it is released into operations.

The elements of this model fit the design science frame, although it (by
intention) focuses primarily on the intervention in the specific context rather than
the generalized knowledge and technological rule, which are significant elements
of design science research. Further, when the generalization of knowledge and
iterative knowledge building is stressed, it becomes clear that industry–academia
collaboration is not a one-way transfer of technology, but a mutual interaction
between the two.

4 Using the Design Science Frame in Software Engineering

We designed a visual abstract template as a tool to analyze design science constructs
in software engineering research (Sect. 4.1). We suggest three direct uses of the
design science paradigm as a frame for software engineering research, which we
illustrate through an example (Sect. 4.2). First, it can help in assessing contributions
in research, both for the research community and during the planning and design of
a research project (Sect. 4.3). Second, design science, particularly the technological
rule, can be used in knowledge building, synthesizing and advancing the theoretical
knowledge in the software engineering field (Sect. 4.4). Third, the design science
frame may help in communicating research across the research community and with
industry (Sect. 4.5).
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4.1 A Template to Highlight Design Science Constructs

The design science perspective is rarely used explicitly to design and present
software engineering research (Engström et al. 2020). We therefore designed a
visual abstract template to help identify the design science constructs in software
engineering research (Storey et al. 2017), see Fig. 4. We further extended the
template with survey questions to help analyze software engineering literature
from a design science perspective (Engström et al. 2020). The template aims to
capture the key takeaway from a research study to help researchers assess the
research contribution, build knowledge iteratively, and communicate research to
practitioners.

Our design science template covers the main constructs of design science
research: the theoretical contribution in terms of a technological rule; its instan-
tiation in terms of a real problem–solution pair; the empirical or theoretical support
for problem conceptualization and the solution design. Further, the bottom three
boxes address the relevance of the research, the rigor of the research activities,
and a statement about what makes the technological rule novel in relation to the
underpinning research, be it with focus on a refined problem conceptualization, or a
new or improved solution design, or a validation of the technological rule in a new
context.

4.2 Design Science Example

To illustrate the use of the design science lens for software engineering research, we
present and discuss an example by Jonsson et al. (2016), introducing automated bug
assignment to handle a large inflow of bug reports. We have used the same example
to illustrate our visual abstract (Storey et al. 2017), see Fig. 5.

The automated bug assignment research was not originally presented within
the design science frame. However, like much software engineering research, it
is implicitly conducted as design science research (Engström et al. 2020). The
scientific knowledge gained from the work can be phrased as a technological rule:

To achieve more effective assignment of bugs to teams in large scale industrial contexts, use
ensemble-based machine learning to automate bug assignment.

The general problem of inefficient bug assignment is observed in the literature
as well as in the specific industrial contexts where this research was conducted.
With the solution in mind (to use machine learning techniques to assign bugs
to teams), the characteristics of the defect data and the organizational context
were explored, and thus identifying the characteristics of the problem instance.
Related work on bug classification as well as on machine learning techniques
was identified (Borg et al. 2014), which underpinned the design decisions for the
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Fig. 5 Visual abstract for the paper on automated bug assignment (Jonsson et al. 2016)

proposed solution. The machine learning solutions were implemented and trained
using the Weka framework (Hall et al. 2009). Several alternative solution instances
were validated on real data (50,000 bug reports) from five projects across two
companies/domains. For the specific companies, a design artifact was produced,
namely the bug assignment tool built on top of Weka.

4.3 Assessment of Contributions

Hevner (2007) presents three research cycles in the conceptual model of design
science, namely the relevance, the rigor, and the design cycles. We propose that
the contributions of design science research be assessed accordingly with respect
to relevance, rigor, and novelty. Assessment of research contributions can be
conducted proactively (when relevance may be a primary concern for consideration,
and before the research is executed), prospectively (as the research is ongoing and
when rigor should be carefully considered), or retrospectively (where novelty of
the design knowledge produced may become more evident). Below, we discuss
assessments of contributions and refer to the example we described above.
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4.3.1 Relevance

The relevance of a research contribution can be viewed from two perspectives:
(1) from other practitioners that may benefit from the design knowledge produced
and (2) from the research community.

From an individual practitioner’s point of view, the relevance of a research
contribution may be assessed by comparing its specific context with the study
context described in the research report. Practitioners may need to consider whether
the design knowledge can be applied to their specific context as is, or if it should
be customized in some way, or if the knowledge does not apply to their context
or problem at all. In the example by Jonsson et al. (see Fig. 5) a practitioner, that
faces the challenge of manually assigning bugs to teams, could benefit from using
ensemble-based machine learning to automate bug assignment (or not).

From the research community perspective, relevance is often considered in terms
of how common the studied problem is, and how generalizable the produced design
knowledge may be. Jonsson et al. (2016) report 20 previous studies on machine
learning-based bug assignment, with different models for various bug report sets.
To enable both types of assessments, relevant context factors need to be reported.
Not all context factors are helpful in making this assessment, but only those that
are critical for either the applicability of the solution or for the potential gain of
applying the solution (Petersen and Wohlin 2009).

4.3.2 Rigor

Rigor of a design science study refers to the strength of the added support for
the technological rule. It may be assessed in all of the three knowledge creating
activities (problem conceptualization, design, and validation). Rigor should be
considered when the research project is designed, as well as throughout and after the
project to reflect on possible threats to validity. It is worth noting that the solution
design activity is by nature a creative process and does not necessarily have to add
to the rigor of the overall research.

One aspect of rigor in the design activity could be the extent to which a solution
builds on prior design knowledge, or whether alternative solutions have been taken
into account. In the case by Jonsson et al., they choose alternative classifiers from the
Weka tool by reasoning about their properties and combined them into ensembles
of classifiers for evaluation.

Rigor with respect to problem conceptualization and validation is based on
common empirical methods that support relevant validity criteria, such as using
structured and transparent research methods and using realistic data. For example,
the study by Jonsson et al. can be considered high in rigor as the proposed solution
is validated by its application to five defect datasets from two large software
systems, comprising 50,000 bugs. Furthermore, they found that the precision in the
automated bug assignment was on par with manual industry processes, which makes
it scalable to practice.
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4.3.3 Novelty

Novelty of a design science study is expressed in terms of new or refined technolog-
ical rules. Technological rules may be expressed at several abstraction levels, thus
it is always possible to identify an abstraction level at which a research contribution
is novel, may it be at the cost of general relevance. In the research by Jonsson et al.,
novelty of the intervention proposed in the technological rule is not straightforward
to assess, as there already exist 20 studies on machine learning to automate bug
assignment. The novel contribution here is the systematic design and evaluation of
a machine learning approach, applied to a real-world context, as expressed in the
technological rule.

However, novelty may not always be a priority in a given research effort. To
optimize rigor, novelty, and relevance of reported research, one should strive to
express the technological rule at the highest possible abstraction level at which it
is novel, the provided evidence gives strong support, and the technological rule is
not debunked by previous studies (or common sense). However, adding empirical
support for existing, but under-validated, technological rules has a value of its
own (replication), which makes novelty less important than the rigor and relevance
criteria.

4.4 Knowledge Building

Articulating the knowledge produced by our research in a more uniform way
may help in building and synthesizing related knowledge in our community. The
technological rules that emerge can at best be considered as theory fragments that
prescribe and predict how a certain intervention for a particular context will lead
to a proposed change. Our hope is that linking technological rules that are related
(perhaps in hierarchical form) may help our community arrive at more general
theories that can be refined and improved over time.

For example, Jonsson et al.’s research on automated bug assignment is related
to previous bug assignment research, although it is hard to compare due to a
lack of detail and inconsistent (or lack of) phrasing of technological rules. If the
contributions were clearly expressed as technological rules with corresponding
validation, the outcomes together would be more generalizable.

4.5 Research Communication

As we discussed above, building design knowledge in software engineering requires
close partnership with practitioners. Practitioners may play a participatory role in
our research by confirming and eliciting the problems to be solved, as well as by
designing practical solutions using design knowledge and then validating them in
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context (on real problem instances). Consequently, how we communicate design
knowledge to practitioners is critical to this participatory research approach.

We feel that technological rules will be valuable in communicating our findings
to industry, and that the visual abstract may also appeal to those practitioners
wanting to quickly gain a bigger picture of the research behind the design knowledge
embodied by a technological rule. At the time of writing this chapter, we are in the
process of evaluating our visual abstracts and in the future hope to evaluate them
with practitioners.

Other initiatives for research communication include the SERP taxonomy archi-
tecture framework by Petersen and Engström (2014), which includes the constructs
of a technological rule to support the mapping of practical problems with research.
The SERP framework provides a taxonomy that establishes a common under-
standing between practitioners and researchers in software testing (Engström et al.
2017) and may support practitioners in their reviews of regression testing literature
from a relevance point of view (Ali et al. 2019), which may lead to generalized
recommendations in terms of technological rules.

Another attempt to make evidence available to practitioners is presented by
Cartaxo et al. (2016). They present the concept of “evidence briefings,” which
is a way to summarize systematic literature reviews in a one-page format. They
used accepted information design principles to design the structure of the one-page
briefing. The format and content were positively validated by both practitioners and
researchers. While evidence briefings may provide an effective way to synthesize
evidence from several studies, our visual abstract template provides a means to
effectively summarize the contribution of one study or research program from a
design science perspective.

5 Recommended Further Reading

Several fields of research have explicitly framed their work under the design science
paradigm. This chapter is based on critically appraising these fields and adopting
what we have found feasible for software engineering. We present the main literature
sources and recommend them for further reading to advance software engineering
under the design science paradigm.

Hevner et al. (2004) and Hevner and Chatterjee (2010) have conceptualized
design science for information systems research, combining behavioral science and
design science research. The philosophical stance behind design science is what
is characterized as pragmatism (Easterbrook et al. 2008), referring to a view that
all knowledge is approximate and valued by its usefulness for solving practical
problems. Hevner et al. (2004) express this in terms of utility:

That is the essence of design science. Contribution arises from utility. If the artifact does not
solve the problem (search, implementability), it has no utility. If utility is not demonstrated
(evaluation), then there is no basis upon which to accept the claims that it provides any
contribution.
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Gregor and Hevner (2013) also refer to design science as a paradigm. Johannes-
son and Perjons (2014) disagree with this view and argue that design science refers
to the objective of changing the world—in contrast to describing it—and that this
is done primarily by creating artifacts, not knowledge. Johannesson and Perjons’
view emphasizes design science as action research. Wohlin and Aurum (2015) also
present design science as a methodology. As a consequence, they focus on the
activities (how to conduct the research) rather than on the theoretical contributions
of the research (how to theorize from the research), which is the case when it is
considered a paradigm. However, there is a strong connection between the paradigm
and the methodologies used. Our stance is that design science is a paradigm for
software engineering research, and as researchers our primary goal is to create
knowledge to be applied by practitioners in the field. Furthermore, we consider
artifacts as embedding design knowledge.

Hevner (2007) adds three research cycles to the conceptual model of design
science, namely the relevance, the design, and the rigor cycles. The relevance cycle
connects the environment with the design science activities, the design cycle iterates
between designing and evaluating the interventions, while the rigor cycle connects
the research with the theoretical foundation of the research. We were inspired by
Hevner’s work when we added assessment criteria to the visual abstract template.

Van Aken (2005) explored the design science paradigm for management science,
with a focus on theoretical contributions captured as technological rules. In the field
of research with organizations as their study objects, Van Aken (2004) proposed
making a distinction between explanatory and design sciences by dividing the
research into two fields:

• Organization theory as description-driven research under the explanatory
research paradigm, observing how organizations behave “naturally”; and

• Management theory as prescription-driven research under the design sciences
paradigm, designing interventions to manage organizations.

We do not propose a corresponding distinction for software engineering, but
rather call researchers to awareness of the existence of these different paradigmatic
perspectives and their implications on the choice of research methodology and
knowledge building.

The Nobel Prize laureate in Economics, Herbert A. Simon, used other terms
for the distinction between explanatory and design sciences paradigms (Simon
1969). Design sciences are referred to as the “science of the artificial,” in contrast
to explanatory science as the “science of the natural.” The latter refers not only
to natural sciences in the narrow sense, but to other phenomena that seem to
appear “naturally.” In this broader sense, we may find both “natural” and “artificial”
phenomena in software engineering, and thus may frame the research in different
paradigms depending on the phenomenon under study.

Wierenga promoted design science for software engineering and information
systems research in the concept of technical action research, including an engi-
neering cycle and an empirical research cycle, which combine research with
real-world consultancy projects (Wieringa and Daneva 2015; Wieringa and Moralı
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2012; Wieringa 2014a). Further, to address the distinction between descriptive and
prescriptive research, he introduces two types of research questions: knowledge
questions and improvement questions (Wieringa 2009). He also discusses scaling
up research to practice (Wieringa 2014b).

Munzner (2009) reviewed design science research in the field of visualization
design and introduced a four-level nested model of design and validation, see
Fig. 3. She divides the design process into four distinct stages and emphasizes the
importance of distinguishing between these levels when claiming contributions at
more than one level. The nested model is a good example of a design construct in the
solution domain, i.e., visualization, providing a lens for problem conceptualization.
Although not all software engineering problems are solved with visualization
approaches, the model may inspire similar thinking in other design processes.

6 Conclusion

The design science paradigm is used in many fields of research that aim to
understand and improve some area of practice. Software engineering researchers
rarely use design science to frame their research explicitly, although our analysis
showed that it resonates well with the aims of and research practice in software
engineering (Engström et al. 2020).

There are many flavors of design science in related fields of research. In this
chapter, we propose an instantiation of design science that we find suitable for the
characteristics of software engineering research. We also present our visual abstract
template, derived to help assess and communicate design science research (Storey
et al. 2017).

We hope that the community will adopt the design science framework for
software engineering research to provide better tools for researchers to define and
assess relevance, rigor, and novelty of research, to assist communication between
researchers and with practitioners, and to support continuous theoretical knowledge
building in software engineering.
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