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Abstract Several decades ago, inspired by other knowledge areas, simulation
was introduced as a research method to Software Engineering. Motivated by
potential benefits achieved in other areas, the software engineering community has
used simulation-based studies for planning, controlling, and improving software
development. However, unclear expectations from simulation-based studies, a lack
of methodological support, as well as dispersed knowledge to support model
building and calibration have hindered widespread adoption of simulation-based
investigations. In this chapter, we delineate the role of simulation in software
engineering research and compile processes and guidelines into a comprehensive
life cycle. This chapter aims to guide software engineering researchers to conduct
effective simulation-based studies in real-world settings.

1 Introduction

Computer simulation is used as a research tool in several areas, such as
Medicine (Burton et al. 2006), Engineering (Babuska and Oden 2004), Social
Sciences (Eck and Liu 2008), and others (Law and Kelton 2000). In Software
Engineering (SE), the community presented several initiatives on simulating
different kinds of phenomena, ranging from software products, processes to team
behavior.

Among these different areas, the use of the term simulation varies substantially.
To frame our perspective on simulation for this chapter, we have adopted the fol-
lowing definition from Banks (1999): “Simulation is the imitation of the operation
of a real-world process or system over time. Simulation involves the generation of
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an artificial history of the system, and the observation of that artificial history to
draw inferences concerning the operating characteristics of the real system that is
represented.”

In this chapter, empirical investigations of a system of interest are referred to
as simulation-based studies (SBS) if they use simulation to numerically evaluate a
mathematical model that imitates the real-world behavior of the system.

As a supporting tool for research in SE, SBS are not meant to replace other types
of empirical investigations such as controlled experiments or case studies (we refer
to chapter “Guidelines for Conducting Software Engineering Research” for a more
comprehensive view on research methods). Rather, it is useful to support knowledge
acquisition and decision-making during the research process. Simulation-based
studies also require previous empirical knowledge from in vivo1 or in vitro2

studies for modeling SE phenomena or behavior (Travassos and Barros 2003). Such
modeling fosters large-scale observations, using a controlled and computational
environment (in virtuo3 and in silico4), to understand better the phenomenon and
possibly explain it through simulation traces and diverse scenarios that could be
difficult to observe in an in vivo or in vitro environment. Therefore, simulations are
recommended for studies involving a combination of many factors (with possible
interactions) and alternatives, as well as long-term observations.

Besides modeling, SBS also require data for calibration, validation, and exper-
imentation. Usually, such data come from observations and, consequently, are
limited to their original context. When insufficient data and theories are available,
simulation can still be used. In such cases, the role of simulation is limited to a
tool that models our assumptions and approximations. The likely outcome of our
proposed solutions is then judged objectively under these assumptions. However,
we should be aware of the reliability of the results and take extreme care not to
overinterpret the results.

Building on lessons learned from the existing literature on simulation in SE, this
chapter proceeds in Sect. 2 with a discussion of the claimed benefits to motivate
the adoption of simulation in SE. Then, in Sect. 3, we present what we understand
are the actual benefits and describe the role of SBS in SE research. In Sect. 4, we
motivate the need for methodological support for conducting SBS. Later, in Sect. 5,
we present a comprehensive and consolidated life cycle for simulation-based studies
in SE. Section 6 presents two practical examples of SBS conducted based on several
of the recommendations presented in this chapter. Furthermore, additional readings
are suggested in Sect. 7. Finally, we conclude the chapter in Sect. 8.

1In vivo studies are the ones occurring in real-life environments.
2In vitro studies are the ones occurring in controlled environments with human participants.
3In virtuo studies are the ones occurring in computational environments driven by human
participants.
4In silico studies are the ones occurring completely in computational environments with no human
intervention.
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2 Motivation for Simulation-Based Studies

Software development is a dynamic activity that involves several people, work-
ing with various tools and technologies, guided by policies and processes to
develop solutions that fulfill user requirements. The interaction and interdependence
between human, technological, and organizational factors make it difficult to con-
fidently assess the potential impact of a proposed change in software development.
Furthermore, introducing a change in the development practice is a time and
resource-intensive undertaking. Therefore, we want to have high confidence in the
likely impact of a change before changing the actual process.

Figure 1 depicts several ways of studying the impact of introducing a change in a
system. Broadly, we can (1) manipulate the actual system and investigate the effect
of an intervention or (2) study the effects on a model of the system in controlled
settings. The main trade-off between the two choices is that of realism vs. control in
conducting the investigation. An additional concern is that of the cost of conducting
the investigation and the risk if the introduced change does not produce the expected
results or has unforeseen consequences.

Due to the cost of manipulating the actual system and the lack of control in
real-world settings, we tend to rely on developing and manipulating models of the
system. It is only after gaining more confidence in solution proposals that we begin
moving towards changing the actual practice. Even in that case, the investigations
in real-world settings (through case study or action research) often try to reduce
the cost of such studies by incorporating change on a smaller scale. For example,
investigating by introducing change in one of the teams or projects and observing
the effects before adopting a change throughout the organization.

Simulation is proposed as an inexpensive (Wu and Yan 2009; Melis et al. 2006;
Kellner et al. 1999; Madachy 2002) and proactive means to assess what will happen
before actually committing resources for a change (Kellner et al. 1999). McCall
et al. (1979) made the first suggestion for its use in SE in 1979. It has since been used
to study various aspects of software development, e.g., effort estimation, project
planning, risk assessment, and training. The simulation models developed over the

System

Manipulating the actual  system Manipulating a model of the system

Pilot studies in a reduced scope Physical modelsMathematical models

Analytical solution Simulation

Fig. 1 Ways of studying a system (adapted from Law 2007)
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years have varied in scope (from parts of the life cycle to long-term organizational
evolution), purpose (including planning and training), and approach (e.g., system
dynamics or discrete-event simulation) (Zhang et al. 2010).

3 Limitations of Simulation-Based Studies in SE

As discussed in the previous section, the range of claimed potential benefits coupled
with occasional claims of industrial application and impact (Zhang et al. 2011) gives
an impression that simulation is a panacea for problems in SE. However, in the
following sections, we discuss the limitations of SBS in SE. This discussion draws
on an analysis of the existing literature (Ali et al. 2014) and our experience of using
simulation in industrial settings (Ali and Petersen 2012; Ali et al. 2015). In the SE
literature, the use of simulation has two implied purposes, which are:

1. Simulation as a problem-solving tool for decision support for SE practition-
ers (Banks 1999).

2. Simulation as a means to conduct controlled experiments (Abdel-Hamid 1988)
and as an alternative to industrial case study research (Müller and Pfahl 2008).

To scrutinize the above two claims, it is useful to assess the following two aspects
of SBS: (a) the cost of conducting effective SBS and (b) the strength of evidence
generated in SBS. Other limitations of SBS in SE are further discussed by Pfahl
(2014).

3.1 Cost of Conducting SBS

SBS are certainly less risky than experimenting with a physical model of a system
or the actual system (Fig. 1). Physical models in software engineering are very
uncommon, so that is not considered as a feasible alternative unless embedded or
robotics systems are into play. Similarly, the limitations of generalizability when
experimenting with students as subjects and artifacts that are not representative
of industrial-scale are well-documented (Feldt et al. 2018). However, the cost of
conducting SBS for industrial cases should be accounted for, and will include,
e.g.: (1) the cost of developing and calibrating a simulation model, (2) design and
analysis of simulation-based investigations, (3) the cost of necessary data collection,
or (4) setting up a measurement program that can feed the simulation model with
sufficiently reliable data.

Pfahl and Lebsanft (2000) reported 18 months of calendar time for a simulation
study. They reported an effort of one person-year in consulting and 0.25 person-
years for the development part of the study. In another study, Pfahl et al. (2004)
report the calendar time of 3 months for knowledge elicitation and modeling and
four meetings with the client while conducting a simulation-based study. Shannon
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(1986) predicted a high cost for simulation as well, “a practitioner is required to have
about 720 h of formal classroom instruction plus 1440 h of outside study (more than
one man-year of effort).”

3.2 Quality of Evidence from SBS

The role of SBS as a decision-support tool and an empirical method requires
a consideration of the strength of evidence generated by SBS. Some limitations
discussed below are general limitations of simulation, but they get aggravated in
SBS because of the nature of software development.

Models Are Simplifications Simulation models are a simplification, abstraction,
and approximation of the system of interest (Christie 1999). SBS in SE often require
modeling the process or project dynamics. Fully capturing these complex dynamics
of a real-world process or project in a simulation model is not possible, which raises
questions about the validity of a simulation model.

Measurement Challenges SBS in SE deal with quantification of variables and
their relationships. Often strict cause–effect relations with determined magnitudes
of relations are not available in SE (Christie 1999). Therefore, the confidence in a
simulation model depends on the verification and validation of both the structure and
behavior of the model (Christie 1999). The lack of reliable measures and quantified
relations (Jørgensen and Kitchenham 2012; Kitchenham 2010) also adds another
degree of uncertainty in the simulation models used in SE.

Lack of Data Accurate data to use in an SBS is extremely important, as a model
without supporting data cannot deliver adequate predictions, and such a model is
essentially a visual metaphor (Olsen 1993). However, in SE, a lack of empirical data
is a common challenge faced by researchers conducting SBS (Kellner et al. 1999).
Launching a measurement program to feed a simulation model is often not feasible,
and often existing SBS rely on the use of industrial averages, expert estimates, or
values acquired from analytical models. The lack of accurate data also challenges
the reliability of SBS results.

3.3 Simulation as a Problem-Solving, Decision-Support Tool
for SE Practitioners

The vision to have practitioners using simulation as a decision-support tool in SE
practice suggests a transfer of technology from academia to industry. As we are
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proposing a new tool or practice to the industry, it is important to have the following
prerequisite information (Ali 2016):

• Cost of adoption.
• Effectiveness over the existing methods.

Apart from the cost of conducting an SBS, we should take into account the cost
of required tool support and training and the effort required for the development
and maintenance of a simulation model. Besides, frequent changes in technology,
software development process, environment, and customer requirements require
keeping the simulation model up to date. Given the high cost of simulation model
development and maintenance, it is unlikely that practitioners will invest the
required effort.

There is a need to identify the challenges when using simulation in a company.
This includes the integration of simulation models with the existing decision-
support systems used at the company (Balci 1990; Murphy and Perera 2001).

Contrary to the claims of impact on the software industry (Zhang et al. 2011), an
extensive literature review on the industrial applications of simulation in SE found
no evidence of adoption (Ali et al. 2014).

3.4 Simulation as an Alternative Empirical Method

In the past, some authors had suggested the use of simulation in SE research
as an alternative to case study research. For example, “the usual way to analyze
process behavior is to perform the actual process in a case study and observe the
results. This is a very costly way to perform process analysis, because it involves
the active participation of engineers. Furthermore, results from a particular case
study cannot necessarily be generalized to other contexts. Another way of analyzing
processes is to simulate them” (Müller and Pfahl 2008). Others have indicated its use
as an alternative to expensive controlled experiments, e.g., “Simulation modeling
provides a viable experimentation tool for such a task. In addition to permitting
less costly and less time-consuming experimentation, simulation-type models make
‘perfectly’ controlled experimentation possible” (Abdel-Hamid 1988).

Given the strength of evidence generated in SBS (as we briefly summarized
in Sect. 3.2), we do not see the use of simulation as an alternative to controlled
experiments or case study research. Rather, we suggest the use of simulation to
complement other empirical methods, which aligns with advice by Münch et al.
(2003) and by Pfahl and Ruhe (2002).

The cost of conducting an SBS and the lack of the inclusion of simulation
in CS/SE undergraduate or graduate curriculum are likely to prevent industry
practitioners from designing and conducting SBS anytime soon. However, there is
sufficient evidence (Ali et al. 2014) to show that researchers can use simulations to
support empirical research.
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Fig. 2 The technology transfer model (adapted from Gorschek et al. 2006)

In our opinion, the use of simulation is most suitable as a means to sanity test
solution proposals. Such SBS can be conducted both in academic and industrial
settings, as shown in Fig. 2. Example 2 in Sect. 6 reports the use of simulation for
supporting software process improvement decisions. Further use of simulation, with
empirical evidence supporting its use, is for training and educational purposes (Pfahl
2014; Ali and Unterkalmsteiner 2014). Example 1 in Sect. 6 reports the use of
simulation for training in an industrial setting.

Simulation Is Not a Silver Bullet
• Simulation is not free of cost, but there are contexts in which incurring this

cost is worthwhile.
• Simulation results come with a certain degree of confidence. It is up to the

experimenter to understand whether it has achieved the research goals.
• Simulation-based investigations do not mean to replace other empirical

methods, but they can complement them in situations where the in loco
observation is unfeasible.
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4 The Need for Guidance

The conduction of SBS in the context of software engineering has several chal-
lenges, and here we present evidence on the need for guidance when adopting
simulation to support research.

Two systematic literature reviews (De França and Travassos 2013; Ali et al.
2014) of SBS in software engineering found that these studies lack rigor. De França
and Travassos (2013) identified lack of planning (study definition), V&V (before
running simulation investigations) to assure minimal confidence in the simulation
results, and output analysis procedures. Mainly, such activities are performed ad
hoc, with particular studies using systematic procedures to perform one or another
activity, but studies presenting a full systematic process or method are scarce. Ali
et al. (2014) assessed the quality of software process simulation and modeling
(SPSM) studies concerning rigor and practical relevance. They did not find reported
cases of the successful transfer of SPSM to practitioners in the software industry.
Furthermore, no studies were found reporting a long-term use of SPSM in practice
and no evidence to back the claims of practical adoption and impact on industrial
practice (Zhang 2012; Zhang et al. 2011). Finally, both reviews agree on the lack of
information in simulation reports.

Regarding reporting of simulation studies in software engineering, De França
and Travassos (2012) present general guidelines, and specifically for SPSM
studies using continuous simulation, a good template is available in Madachy’s
book (Madachy 2008). Recently, Monks et al. (2019) proposed the STRESS
checklist for reporting simulation studies.

Simulation can provide actual benefits when supporting software engineering
research, and both simulation and SE literature have presented some guidance
on conducting SBS. However, it is not an obvious decision for practitioners or
researchers to select one process or a set of guidelines to follow, considering the little
background in the area. For that, Ali and Petersen (2012) proposed a consolidated
process for SPSM with supporting guidelines. Besides, De França and Travassos
(2016) propose simulation guidelines for experimenting with dynamic models in
SE. These contributions are the foundation for the life cycle presented in Sect. 5.

5 Simulation-Based Studies Life Cycle

When supporting a research process with simulations, researchers generally char-
acterize the life cycle (process) for simulation studies as a knowledge-intensive
and iterative process (Alexopoulos and Seila 1998; Balci 1990; Maria 1997;
Banks 1999; Sargent 1999), including the following activities: study definition
or phenomenon understanding (also called system observation); model design
and development; verification and validation (V&V); performing simulation-based
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Fig. 3 Simulation-based studies life cycle

investigations, including experimental design and output analysis; and finally
documentation and reporting.

The consolidated life cycle for SBS (Ali and Petersen 2012; Fig. 3) described in
this section is based on processes identified both in general computer simulation and
SE literature. For this, we adopt the following guiding principles:

• Start small and later on enhance the simulation model, looking for analogies
to solve the problem rather than starting the model building from scratch and
working over an extended period for developing the model in one go (Ahmed
et al. 2008). It reinforces the iterative nature of the process.

• Involve and keep frequent contact with all stakeholders throughout the
study (Murphy and Perera 2001; Ahmed and Robinson 2007; Ahmed et al.
2008). It is important to improve the utility and practical relevance for the
simulation.

• Models are abstractions, and that imposes a trade-off between complexity and
realism, so not pursuing a perfect model is recommended, but still critically
analyzing the results (Madachy 2008).

• All models are incomplete, bounded by the behavior under study as much as it
is required to answer the questions of interest (Madachy 2008). It highlights the
need to constantly revisit the simulation goals and raises a question about the
reuse of a model beyond its original intent.

• In industrial simulation studies, it is important to deliver results and recom-
mendations quickly as the modeled system and its environment are likely to
change (Ahmed and Robinson 2007; Murphy and Perera 2001).
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• It is possible to model a phenomenon of interest in several ways. The differences
may arise because of the perspective of stakeholders, level of detail, and the
modeler’s assumptions (Madachy 2008).

• Continually challenge the model to increase the credibility of the model through
further verification and validation (V&V) (Madachy 2008; Ahmed and Robinson
2007). That is why V&V activities are placed as continuous and parallel.

• To facilitate effective communication, use simple diagrams to communicate with
stakeholders until they seek more detail, such as equations, since it may not be
necessary to present those details (Madachy 2008).

Next sections provide detailed discussion for each major activity in the simula-
tion studies life cycle.

5.1 Study Definition

Simulation-based studies should present a definition including the research context,
problem, goals, and questions. For the context, model users and audience should be
taken into account, as well as organizational policies involved when conducting
simulation studies in industry. There are two suggestions (Petersen and Wohlin
2009; Dybå et al. 2012) on how to identify and describe contextual information for
software engineering research that we understand as useful for simulation studies.
The motivating problem frames the SBS in a proper scope and can be used to
define relevant usage scenarios. Ideally, simulation models answer questions based
on a purpose that can be assessed. Therefore, research goals and derived questions
should guide the whole life cycle so that the chances for practical acceptance are
increased. Goal-Question-Metric (GQM) (Basili and Rombach 1988) goal template
can support the study definition, also recommended in the IMMoS method (Pfahl
2001; Pfahl and Lebsanft 2000).

Kellner et al. (1999) mention common purposes for SPSM, such as strategic
management; planning, control, and operational management; process improvement
and technology adoption; understanding; and training and learning.

Before the simulation model development, technical feasibility should be
checked (Pfahl and Ruhe 2002; Ahmed et al. 2005) considering prerequisites
for model development and usages like adequacy of problem definition, availability
of data, and process maturity (Pfahl 2001). For that, Balci (1990) proposed the
following questions:

• Do the benefits of conducting a simulation-based study justify the cost?
• Is it possible to use simulation for the goal of the study?
• Is it possible to complete the study in the given time and resource constraints?
• Is the necessary information available, e.g., classified or not available?
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Furthermore, we recommend questions to support this decision focusing on addi-
tional constraints regarding the model development and experimentation (De França
and Travassos 2016):

• Are the risks of running the real system high, including loss or waste of money
or time, reaching an irreversible state, or compromised safety?

• What are the available instruments and procedures for data collection?
• Is there enough data to support model calibration and validation, as well as

statistical analysis?

5.2 Model Design

Simulation studies in SE span widely in terms of phenomena to simulate. Known
behaviors like Brooks’ law, process evaluation, and project estimation, as well as
architectural issues such as performance and scalability assessment, are examples of
objects of study. Mostly, software engineering simulations concentrate on software
process and project issues (De França and Travassos 2013). In the following
sections, we describe relevant aspects of simulation modeling and provide some
specifics on software process and projects.

5.2.1 Input Parameters and Response Variables

Input parameters represent the independent variables for which users of a simulation
model can define values that impact on the model state and, consequently, on the
response variables. Inputs can be calibration or variable parameters. To identify
these parameters, it is recommended to start designing the model early on (Kellner
et al. 1999). Also, consider that it in case of unavailability of data it may not be
practical to measure all relevant variables accurately.

In the case of stochastic simulation, select appropriate probability distributions
for input parameters (Balci 1990). Law (2007) provides a detailed discussion of
statistical methods to support this decision. Stochastic or not, the integrity of
simulation data must be ensured by maintaining constant communication with
stakeholders (Murphy and Perera 2001).

On the other side, to identify the response (output) response variables required
for the model (Park et al. 2008; Kellner et al. 1999; Rus et al. 2003), one needs
to address the problem statement by answering the key questions identified in the
study definition. For that, it is recommended to use GQM to identify the response
variables (metrics) that address the defined research goals (Madachy 2008; Rus
et al. 2003). Additionally, to specify problematic or desired behaviors (called the
reference behavior) (Müller and Pfahl 2008) can help to identify response variables.

Reference behaviors describe changes on variables by plotting their values over
time (Madachy 2008), preferably using historical data (Pfahl 2001). However, it is
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also possible to consider behavioral patterns based on experience when actual data
is not available (Madachy 2008; Pfahl 2001) and using relative measures instead of
striving for absolute ones (Madachy 2008).

5.2.2 Conceptual Modeling

This activity requires both explicit and tacit knowledge about the phenomenon to
be simulated. This way, modelers should identify constructs and behaviors (e.g.,
process elements, information flows, and decision rules) influencing the response
variables and relevant to the simulation goal. In addition, it is essential to consult
or interview domain experts as they have knowledge beyond the project or product
documentation and can judge the relevance of the information to the problem under
study (Müller and Pfahl 2008), avoiding missing important aspects and reducing the
threat of misunderstanding (Pfahl and Lebsanft 1999).

At this stage, the creation of influence diagrams to describe the positive or
negative influence of various parameters supports the identification of internal
variables (Rus et al. 2003). In this sense, the researchers need to motivate the
choice of cause–effect relationships with relevant data sources and evidence from
the literature (Pfahl 2001). Besides, individual cause–effect relationships should be
reviewed before introducing more combinations (Pfahl 2001).

In the case of SPSM, creating static process models helps to understand the flow
of information and the transformation of artifacts in various activities (Rus et al.
2003).

The conceptual model should not capture the whole phenomenon at once, i.e.,
researchers should include only the constructs and relations necessary to generate
the behaviors of interest, according to the goal and the scope of the model.
For that, a top-down iterative approach provides additional details only when
necessary (Madachy 2008).

As researchers gain more knowledge on model variables (explicitly described),
the simulation feasibility should be assessed again, as described in Sect. 5.1.

5.3 Model Implementation

To develop a simulation model, it is required to understand the selected simulation
approach, the conceptual model, including its variables, parameters, and associated
metrics, as well as the underlying assumptions and calibration procedures. The lack
of knowledge regarding any of these aspects may impose different types of threats
to validity (De França and Travassos 2015).

In addition, the simulation model should be developed with high modular-
ity (Ahmed et al. 2008), separating data from the model to support modification
and experimentation (Murphy and Perera 2001), and always kept in a state that it
could be simulated (or tested) (Madachy 2008).
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5.3.1 Simulation Approach

An executable model is implemented from the conceptual model using a simulation
language, which should be based on a simulation approach like system dynamics
(SD), discrete-event simulation (DES), or agent-based simulation (ABS). The
simulation approach abstracts the essential characteristics and behaviors the model
has to fit in.

The choice of a proper simulation approach depends on the particular goal of
the study (Madachy 2002; Kellner et al. 1999). One consequence of concentrating
on software process and project issues is the focus on continuous and discrete
simulation (De França and Travassos 2013). Madachy (2002) considers continuous
simulation (e.g., SD) more suitable for strategic analysis, high-level perspectives,
and long-term trends, while discrete simulations can make detailed process analysis,
resource utilization, and relatively short-term analysis more convenient.

5.3.2 Simulation Environment and Tools

The simulation environment consists of all instruments needed to perform the study,
encompassing the simulation model itself, data sets, data analysis tools (including
statistical packages), and simulation tools/packages. This way, planning and report-
ing studies considering those aspects are very important (see chapter “Open Science
in Software Engineering” for a broader discussion on making the experimental
package available). Simulation packages often differ in how they implement the
simulation engine mechanism. Therefore, it is possible to get different results
depending on the engine implementation.

Also, a simulation package should support not only the underlying simulation
approach, but also the experimental design and output data analysis. Several tools
are available to facilitate this analysis, providing a graphical interface to support
output visualization, walk-through, interactive simulation, sensitivity analysis, and
integration with third-party applications.

Raw input data requires extra effort to understand its properties (e.g., data
distribution and shape, trends, and descriptive stats) and perform the transformations
(e.g., scale transformations and derived metrics) needed to fit the model parameters
and variables. Similarly, the simulation output data needs specific analysis tech-
niques such as statistical tests and accuracy analysis.

Madachy (2008) and Ahmed and Robinson (2007) list the price, ease of use,
training, documentation and maintenance support, computer platform and user
familiarity, and performance requirements as the criteria for choosing an appropriate
simulation tool. This choice also depends on the fit of the research questions,
assumptions, and the theoretical logic of the conceptual model with those of the
simulation approach (Houston et al. 2001).

Another important perspective concerns the computational infrastructure. The
simulation needs to be settled up and reported so that one can understand the details
for replicating the study. This way, processor capacity, operating system, amount
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of data, and execution time interval are relevant characteristics to estimate schedule
and costs for the study.

Finally, simulations involving multiple trials/runs often need to summarize
information from each intermediate trial for the final output analysis. Mean and
standard deviation are common measures for this purpose and determine confidence
intervals, for instance. This way, the individual measures are stored in a database or
external files.

5.3.3 Model Calibration

It is recommended to use actual data for model calibration (Madachy 2008; Kellner
et al. 1999). Such data is used for the generation of equations and parameters and
to determine the distribution of random variables. However, the lack of data for
calibration and validation in real-world settings (Kellner et al. 1999) imposes some
threats as the desired data is often poorly defined, inaccurate or missing altogether,
considering it was not planned and collected to support a particular simulation-based
study.

An alternative is to work with synthetic data (Ören 1981). However, it requires
evidence on data validity, i.e., provide indications that the simulated data represents
the real phenomenon. For that, statistical tests can be applied to verify how close
both real and synthetic samples are. Additionally, modelers may consult domain
experts to deduce the accuracy and relevance of data (Murphy and Perera 2001;
Raffo and Kellner 2000).

Planning the data collection avoids measurement mistakes, promoting the collec-
tion of data as soon as they are made available for the target variables and tracking
contextual information (including qualitative data), which provides better and
accurate reasoning when performing output analysis by supporting the explanations.

After the collection, quality assurance procedures ought to take place to verify
their consistency and accuracy, avoiding the inclusion of outliers or incomplete data.
For instance, to avoid biased observations and exposure to risks (i.e., undetected
seasonal periods in time series), the data collection period should represent both
transient and steady states.

Data used for model calibration and setting model parameters in the investiga-
tions need to share the same context. Therefore, the values used for investigation
have to be consistent, avoiding attempts to generalize behaviors to different contexts
inappropriately. The use of cross-company data is an example of how it can impose
a threat to internal validity on the simulation results.

5.4 Verification and Validation

As the phenomenon under investigation is essentially observed through the execu-
tion of a simulation model, validity aspects concentrate on both model and data
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validity. Besides, model validity is a relative matter (Madachy 2008), depending
on the purpose of the study. This way, evidence regarding model (conceptual and
implemented) validity means the researcher should be aware of all the initiatives of
submitting the simulation model to V&V procedures and their results.

The list provided in Table 1 supports the identification of attempts to verify or
validate a simulation model in existing reports. These procedures were identified
both in the context of SE (De França and Travassos 2013) and general discrete
simulation (Sargent 1999). Barlas (1989) presents general procedures for validating
SD models. None of these V&V procedures can avoid all the potential threats
to validity alone. However, properly combining some of them can increase the
confidence in simulation results.

Face validity is a white-box procedure for reviewing both simulation model and
I/O matching from the perspective of experts and it is a relevant indication that,
in the face of the model representation and its generated behavior, it gives the
impression of being valid. It enables the review of internal properties and behaviors
of a simulation model like model variables, equations, and relationships, rather
than dealing with it as black box, i.e., observing just the I/O matching. This way,
domain experts may identify threats to construct validity in advance. Face validity
sessions may happen on workshops, group or individual interviews. The main idea
is to present the model by following a walk-through approach to show how the
input values generate outcomes, exemplifying with real scenarios so that experts
can realize the model behavior and validate the simulation results for a given set of
inputs.

To have the causal relationships and assumptions supported by empirical evi-
dence improves external validity (Davis et al. 2007). Besides, it reduces the
modeler’s bias, not relying exclusively on experts’ opinions or ad hoc observations.
This way, secondary studies may be performed to search for evidence. However,
models with many causal relationships may impose a great effort into using this
approach.

The verification of model assumptions increases the reliability of simulation
results. Face validity can be combined with other procedures to compare empirical
data/behavior (Sargent 1999) to assess explicit model assumptions. For instance,
to use comparison with reference behaviors, historical validation, or predictive
validation to understand if the model is capable of reproducing an empirical
behavior in terms of internal variables and outcomes. The modelers make, even
implicitly, some assumptions regarding the phenomenon. For instance, the increase
in a response variable directly caused by the presence of a given parameter. If these
assumptions are embedded in the model, it may represent a threat to internal validity,
since this behavior should not be coded directly in the model, rather it should be
treated as an effect of a chain of actions, events, and conditions generating such
behavior in the output variable.

When performing sensitivity analysis, it is important to consider constraints from
the real world to make sure that the model reflects real-world behavior (Madachy
2008).
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Table 1 Verification and validation procedures (De França and Travassos 2016)

Procedure Description

Face validity Consists of getting feedback from individuals knowledgeable about the
phenomenon of interest through reviews, interviews, or surveys, to
evaluate whether the (conceptual) simulation model and its results
(input–output relationships) are reasonable

Comparison with
reference behaviors

Compare the simulation output results against trends or expected
results captured from historical data or reported in the literature

Comparison with
other models

Compare the results (outputs) of the simulation model being validated
to the results of other valid (simulation or analytic) models. Controlled
experiments can be used to arrange such comparisons

Event validity Compare the events triggered during the simulation runs to those of the
real phenomenon to determine if they are similar. This technique is
applicable to event-driven models

Historical data
validation

If historical data exists, part of the data is used to build the model, and
the remaining data are used to compare the model behavior and the
actual phenomenon. Such testing is conducted by driving the
simulation model with either sample from distributions or traces, and it
is likely used for measuring model accuracy

Rationalism Use logic deductions from model assumptions to develop the correct
(valid) model, by assuming that everyone knows whether the stated
underlying assumptions are true

Predictive validation Use the model to forecast the phenomenon behavior, and then compare
this behavior to the model forecast to determine if they are similar (or
equal). The data may be obtained by observing the real phenomenon or
conducting experiments, e.g., field tests for provoking its occurrence.
Also, data from the literature may be used when there is no complete
data in hands

Internal validity It is likely used for measuring model accuracy. Several runs of a
stochastic model are made to determine the amount of (internal)
stochastic variation. A large amount of variation (lack of consistency)
may threat the model confidence, even if it is typical of the problem
under investigation

Sensitivity analysis Consists of systematically changing the values of the input and internal
parameters of a model to determine the effect upon the model output.
The same effects should occur in the model as in the real phenomenon.
This technique can be used semi-qualitatively—trends only—and
quantitatively—both directions and (precise) magnitudes of outputs

Testing model
structure and
behavior

Submit the simulation model to test cases, evaluating its responses and
traces. Both model structure and outputs should be reasonable for any
combination of values of model inputs, including extreme and unlikely
ones. Besides, the degeneracy of the model behavior can be tested by
appropriate selection of values of parameters

Based on empirical
evidence

Collect evidence from the literature (empirical studies reports) to
develop the model causal relationships (mechanisms)

Turing tests Individuals knowledgeable about the phenomenon are asked if they can
distinguish between real and model outputs
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Performance measures such as bias, accuracy, coverage, and confidence intervals
can be used as criteria to benchmark more accurate simulation models (Burton et al.
2006). For instance, if the outcomes have low accuracy or are in a wide confidence
interval, these results may be distant from reality. This information also brings
credibility to the simulation study.

Finally, modelers should avoid false expectations (e.g., perfect predictions on the
first model run) by reviewing patterns for qualitative similarity (Madachy 2008).

5.5 Simulation-Based Investigation

The experimental design defines a causal model establishing relationships between
parameters and response variables, based on research goals and questions. Balci
(1990) mentions that different parameters (input variables), behavioral relationships,
and auxiliary variables may represent model variants. Thus, during simulation
execution, the model variables may be held constant or allowed to vary according
to conditions established a priori.

To fully describe the experimental design, we suggest using a design matrix, in
which every row is a design point or scenario, which is a combination of different
alternatives for each factor (column). However, several designs can be generated for
the same set of factors. Kleijnen et al. (2005) claim that the design of experiments
for simulation is different since we are not limited by real-world constraints.

Factorial designs are the most common one for simulation as they include all
possible combinations (scenarios) for a set of factors. For instance, a full factorial
design for k factors using two alternatives per factor is denoted as 2k design,
meaning the number of scenarios required to determine effects from k factors
and their interactions. In addition, there are variants for situations in which the
simulation runs are time-consuming, as execution time grows exponentially with the
number of factors and alternatives. Therefore, it is possible to reduce the number of
scenarios by executing just a fraction of the scenarios (fractional factorial designs),
but still having an effective estimator. In the following, we list (not exhaustively)
important aspects to select an adequate design as suggested by De França and
Travassos (2016):

• Simulation goals: designs for understanding or characterization are not the same
for comparison or optimization;

• Experimental frame: whether the area of interest is local or global, and its impacts
in the range of levels;

• Number of factors and levels: they exponentially increase the number of scenar-
ios in full factorial designs;

• Domain of admissible scenarios: full factorial designs may generate inadmissible
(unrealistic) scenarios;
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• Deterministic and stochastic components of the model: they affect how to deal
with variation in the experimental design;

• Terminating conditions: if it is a steady-state or a terminating simulation, with an
event to specify the end of the experiment.

Sensitivity analysis is a useful technique to select interest factors and a range of
alternatives. Furthermore, such a systematic approach reduces the bias and avoids
the “fishing” for positive results. For characterization purposes, it is recommended
to keep a low number of levels per factor, but covering a high region of inter-
est (Montgomery 2017).

When designing a simulation-based investigation, researchers should consider
as factors (and levels) not only the input parameters, but also internal parameters,
different data sets and versions of the model, implementing alternative strategies
to be evaluated (De França and Travassos 2016). For instance, Garousi et al.
(2009) use a design with two distinct data sets as alternatives for calibration based
on data from the technical literature to derive the scenarios and the simulation
model remaining constant. This way, different calibrations representing the different
simulation scenarios can be compared.

Ad hoc designs explore the use of scenarios. In this case, the modeler plans
the scenarios of interest (Barros et al. 2000) and then derives the design. By
adopting this strategy, the relevance and adequacy of each chosen scenario should
be explained and tied to the study goals. Furthermore, the description of scenarios
needs to be as precise as possible, clarifying all the relevant contextual information,
as well as input parameters for them.

The main drawback of ad hoc designs is the possibility of introducing bias, with
no opportunity to investigate side effects such as interactions between factors.

Selected scenarios and the nature of the model (deterministic or stochastic)
drive the number of simulation runs. Each scenario consists of an arrangement of
experimental conditions where possible alternatives are assigned to specific factors.
The more scenarios involved, the more simulation runs are required.

Stochastic simulation models produce an inherent variation in the output due to
the pseudorandom number generation. Therefore, running each scenario only once
is not enough to reveal the amount of variation. On the other side, the higher the
number of runs (replications), the closer one gets of the desired accuracy level.
Replication is achieved by using different pseudorandom numbers to simulate the
same scenario. In this case, each output is derived from auto-correlated observa-
tions (Kleijnen et al. 2005) that cannot be aggregated as they are not independent.
Thus, given the required accuracy and a sample estimate from a few model runs, it
is possible to determine the number of required runs and avoid threats to conclusion
validity. Such a procedure for the calculation can be found in Law and Kelton
(2000).
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5.6 Threats to Simulation-Based Studies Validity

The SE community has discussed threats to validity, and most of the reported threats
concerned with in vitro experimentation are described by Wohlin et al. (2012) and
categorized under a positivist perspective as threats to construct, internal, external,
and conclusion validity (Petersen and Gencel 2013). We consider this perspective is
more suitable for considering and addressing threats to validity for SBS than other
world-views. Therefore, most of the known threats to controlled experiments have
to be considered when conducting simulation studies, especially considering in vitro
experiments, in which the human subjects drive the simulations, which introduces
additional risks to the validity of a study. Moreover, new situations emerge from
in silico experiments, in which common types of experimental validity are closely
related to the simulation model and data validity (De França and Travassos 2015).
A list of categorized threats to simulation studies validity can be found in De França
and Travassos (2015).

Garousi et al. (2009) and Raffo (2005), for instance, consider model validity
in several perspectives, such as model structure, supporting data, input parameters
and scenarios, and simulation output. We understand that these aspects are relevant,
but researchers should not be limited to them (De França and Travassos 2015),
also considering the simulation investigation design as well. This way, researchers
should consider checking for threats to the simulation study validity before running
the experiments and analyzing output data to avoid bias. Additionally, non-mitigated
threats, limitations, and non-verified assumptions must be reported (De França and
Travassos 2016).

The use of simulation promotes both the construct and internal validity as it
demands accurately specifying and measuring constructs (and their relationships)
and the theoretical logic that is enforced through the discipline of algorithmic
representation in software, respectively (Davis et al. 2007). However, De França
and Travassos (2015) identified threats to construct validity, such as inappropriate
cause–effect relationship definitions, inappropriate real-world representation by
model parameters and calibration data and procedure, hidden or invalid underlying
assumptions regarding model concepts, and the simulation model not capturing the
corresponding real-world building blocks and elements.

External and conclusion validity can be accomplished by reproducing empirical
behaviors and applying adequate statistical analysis over the model outputs, respec-
tively. However, conclusion validity also relates to design issues like sample size,
the number of simulation runs, model coverage, and the degree of representation of
scenarios for all possible situations.
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Simulation Life Cycle Considerations
• A simulation-based study is about gaining knowledge and dynamically

analyzing it. So, an iterative approach is fundamental to allow explication
and reflection about the phenomenon under study.

• Keeping involved stakeholders when modeling and analyzing simulation
results is as important as in software development.

• Verification and validation procedures play a fundamental role in the
validity of a study.

• Mostly, this consolidated process is based on solid simulation literature,
empirical evidence, and the authors’ experience. This way, some recom-
mendations may require a level of adaptation.

6 Practical Examples

To illustrate some potential uses of SBS, in the following sections, we briefly
describe two practical scenarios where we have conducted SBS in industrial settings.

6.1 Example 1: Use of Simulation to Encourage Behavioral
Change in a Company

We, together with the representatives from a case company, identified a need
to illustrate the benefits of early integration. The intention was to highlight the
consequences of missing a test iteration in the current way of working. Given the
scale and complexity of the test process, it was not possible to demonstrate this with
static process diagrams. The aim was to develop a simulation model that adequately
represents the test process at the case company so that it is relevant and realistic
for the developers. This realism made the results more relatable for them. Also, it
provided the ability to show the consequences of various what-if scenarios in terms
of the flow of requirements through the various stages of development, testing, and
release.

We used interviews, process documentation, and guided walk-through of the
testing process to develop a realistic process understanding. This understanding was
modeled in a simulation model using system dynamics. The model was calibrated
using data collected from various repositories in the company. For variables and
relations where data was not available, we relied on expert opinion to estimate the
missing values. For details, please see (Ali and Petersen 2012).
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6.2 Example 2: Use of Simulation to Sanity-Check Process
Improvement Ideas

We were supporting an organization in a process assessment and improvement
initiative. Two main alternatives being considered were (a) changing the sprint
length (particularly for testing) or (b) improving the flow. We conducted an SBS
to assess the likely impact of the two improvement proposals. The simulation model
represented both scenarios and was calibrated using the company data.

The use of a simulation model was received positively by the practitioners, and
the results of the simulation study influenced the choice of improvement actions
pursued by the company. For details, please see Ali et al. (2015).

7 Recommended Further Reading

7.1 Simulation Modeling and Approaches

The two most common approaches for simulation modeling are continuous and
discrete-event simulation. Madachy’s book (Madachy 2008) is an excellent resource
when using system dynamics for continuous simulation of SE phenomena. For
discrete-event simulation, Law and Kelton (2000) provide an excellent resource
covering all technical steps in developing a simulation model. However, their focus
is not on the modeling of SE phenomena.

7.2 Verification and Validation in SBS

For additional discussion on verification and validation in simulation-based studies,
readers are encouraged to refer to the software engineering (De França and
Travassos 2015) and general computer simulation literature (Sargent 1999; Babuska
and Oden 2004).

7.3 Simulation-Based Investigations

For detailed instructions on designing simulation-based investigations or experi-
ments using a simulation model, please see the works in De França and Travassos
(2016), Kleijnen et al. (2005), and Houston et al. (2001).
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7.4 Software Process and Project Simulation

For guidelines to investigate the software process and project using simulation,
please see the guidelines from Ali et al. (2014), as well as the ones presented by
Pfahl (2014).

8 Conclusion

This chapter summarizes a wide span of knowledge on computer simulations in the
context of SE. We discussed, under several perspectives, the role of SBS in software
engineering research and methodological aspects relevant for conducting this sort
of study to support SE research.

Although we do not intend to discuss in detail each potential application of
simulation, it is notable the need for systematic observation of the system or
phenomenon to be simulated before developing and performing investigations based
on simulation models. Moreover, the experimental basis is fundamental to benefit
from simulation studies. Therefore, SBS should be considered as part of a greater
research methodology, i.e., it should not be seen as an “end” or a sole research
method, but a tool to achieve complementary evidence and to reduce risk before
intervening on the target context or moving towards more focused observation.
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