
Contemporary
Empirical Methods
in Software
Engineering

Michael Felderer
Guilherme Horta Travassos Editors

Contemporary Empirical Methods in Software
Engineering

Michael Felderer • Guilherme Horta Travassos
Editors

Contemporary
Empirical Methods in
Software Engineering

Editors
Michael Felderer
Department of Computer Science
University of Innsbruck
Innsbruck, Austria

Guilherme Horta Travassos
Department of Systems Engineering and
Computer Science, COPPE
Federal University of Rio de Janeiro
Rio de Janeiro, Brazil

ISBN 978-3-030-32488-9 ISBN 978-3-030-32489-6 (eBook)
https://doi.org/10.1007/978-3-030-32489-6

© Springer Nature Switzerland AG 2020
Chapter 17 is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/). For further details see licence information in the chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-32489-6
http://creativecommons.org/licenses/by/4.0/

Foreword

As the name of the field suggests, software engineering is expected to be an engi-
neering discipline. However, it is not governed, to the same extent, by underlying
mathematical models as many other engineering disciplines, in particular, those
addressing physical artifacts as in electrical engineering or mechanical engineering.
Thus, mathematics is insufficient to conduct research and improve in software
engineering, although it is vital for some sub-areas within software engineering.
There are several reasons for this insufficiency.

First of all, the software is invisible (Brooks 1987). We can read the code, but
we cannot see it in use. We can only observe the effect of the software being
executed. Furthermore, software engineering is intrinsically complex since it is,
to a considerable extent, dependent on the knowledge and capability of humans
developing the software. Moreover, the ability of the individuals to work in a
team contributing to the same software system is essential. The development is
supported by different processes, methods, techniques, languages, and tools, which,
in one way or another, are used by the organization developing the software. Thus,
software engineering is an interplay between human knowledge, social networks
of the individuals, and available assets in the organization developing the software
(Wohlin et al. 2015).

To be able to study and improve the way software is engineered, many
researchers have embraced and promoted software engineering as an empirical
engineering discipline. Empirical studies were conducted early in the discipline,
but they were quite rare. In 1986, an article describing experimentation in software
engineering was published (Basili et al. 1986) outlining software engineering as
an experimental science. The establishment of empirical software engineering was
done to a large extent in the 1990s. At the beginning of the twenty-first century,
two books on experimentation in software engineering were published (Wohlin et
al. 2012; Juristo and Moreno 2001). The former book came in a second edition in
2012 (Wohlin et al. 2012), and it was published in Chinese in 2015.

In 2004, the concept of evidence-based software engineering was established
in software engineering (Kitchenham et al. 2004). The evidence is most often
generated from empirical studies, and hence, it was a natural continuation of the

v

vi Foreword

previous work on empirical software engineering. As the area of empirical software
engineering became well established, the need for advances in our conduct of
empirical studies grew (Shull et al. 2008). Given the applied nature of software
engineering, the need to conduct empirical studies in a real-life context was
strengthened by the publication of guidelines for conducting case studies (Runeson
et al. 2012).

As a continuation concerning the focus on evidence in software engineering, a
book on evidence-based software engineering was published in 2015 (Kitchenham
et al. 2015). Furthermore, empirical software engineering has gone from being a
sub-area of software engineering to be an integral part of software engineering.
Nowadays, it is expected that research is evaluated and assessed using empirical
methods. Thus, it is, in most cases, insufficient to present an idea or a solution
without empirical evidence. In summary, software engineering has moved into truly
being an engineering discipline.

The book Contemporary Empirical Methods in Software Engineering, edited
by Prof. Michael Felderer and Prof. Guilherme Horta Travassos, takes the next
step by including chapters on essential and timely topics in empirical software
engineering. The chapters are written by some of the world’s leading experts on
empirical methods in software engineering. The editors have done an excellent job
of attracting experts in the field who contribute with essential topics concerning the
empirical software engineering of today.

The book follows up on the previous books and articles on empirical and
evidence-based software engineering. As the title of the book suggests, the book
takes a timely step in including a set of chapters addressing emerging areas in
empirical software engineering. It provides an excellent combination of chapters
addressing contemporary areas of interest for anyone conducting research in
software engineering and in particular for those with a strong focus on empirical
software engineering. The book is a highly recommended read for, in particular,
Ph.D. students and researchers interested in conducting high-quality software
engineering research aspiring to apply empirical research methods for today and
the future.

Blekinge Institute of Technology Claes Wohlin
Karlskrona, Sweden

References

Basili VR, Selby RW, Hutchens DH (1986) Experimentation in software engineer-
ing. IEEE Trans Softw Eng SE-12(7):733–743

Brooks FP Jr (1987) No silver bullet – essence and accidents of software engineer-
ing. IEEE Comput 20(4):10–19

Juristo N, Moreno AM (2001) Basics of software engineering experimentation.
Springer, New York

Foreword vii

Kitchenham BA, Dybå T, Jørgensen M (2004) Evidence-based software engineer-
ing. In: Proceedings of 26th international conference on software engineering,
Edinburgh, pp 273–281

Kitchenham BA, Budgen D, Brereton P (2015) Evidence-based software engineer-
ing and systematic reviews. Chapman and Hall/CRC, Boca Raton

Runeson P, Höst M, Rainer A, Regnell B (2012) Case study research in software
engineering – guidelines and examples. Wiley, Hoboken

Shull F, Singer J, Sjøberg DIK (eds) (2008) Guide to advanced empirical software
engineering. Springer, London

Wohlin C, Runeson P, Höst M, Regnell B, Ohlsson MC, Wesslén A (2012)
Experimentation in software engineering. Springer, Berlin

Wohlin C, Šmite D, Moe NB (2015) A general theory of software engineering:
balancing human, social and organizational capitals. J Syst Softw 109:229–242

Contents

The Evolution of Empirical Methods in Software Engineering 1
Michael Felderer and Guilherme Horta Travassos

Part I Study Strategies

Guidelines for Conducting Software Engineering Research 27
Klaas-Jan Stol and Brian Fitzgerald

Guidelines for Case Survey Research in Software Engineering 63
Kai Petersen

Challenges in Survey Research . 93
Stefan Wagner, Daniel Mendez, Michael Felderer, Daniel Graziotin,
and Marcos Kalinowski

The Design Science Paradigm as a Frame for Empirical Software
Engineering . 127
Per Runeson, Emelie Engström, and Margaret-Anne Storey

Part II Data Collection, Production, and Analysis

Biometric Measurement in Software Engineering . 151
Fabian Fagerholm and Thomas Fritz

Empirical Software Engineering Experimentation with Human
Computation . 173
Marta Sabou, Dietmar Winkler, and Stefan Biffl

Data Science and Empirical Software Engineering . 217
Ezequiel Scott, Fredrik Milani, and Dietmar Pfahl

Optimization in Software Engineering: A Pragmatic Approach 235
Günther Ruhe

ix

x Contents

The Role of Simulation-Based Studies in Software Engineering
Research . 263
Breno Bernard Nicolau de França and Nauman Bin Ali

Bayesian Data Analysis in Empirical Software Engineering:
The Case of Missing Data . 289
Richard Torkar, Robert Feldt, and Carlo A. Furia

Part III Knowledge Acquisition and Aggregation

Automating Systematic Literature Review . 327
Katia R. Felizardo and Jeffrey C. Carver

Rapid Reviews in Software Engineering. 357
Bruno Cartaxo, Gustavo Pinto, and Sergio Soares

Benefitting from the Grey Literature in Software Engineering
Research . 385
Vahid Garousi, Michael Felderer, Mika V. Mäntylä, and Austen Rainer

Guidelines for Managing Threats to Validity of Secondary Studies
in Software Engineering . 415
Apostolos Ampatzoglou, Stamatia Bibi, Paris Avgeriou,
and Alexander Chatzigeorgiou

Research Synthesis in Software Engineering . 443
Paulo Sérgio Medeiros dos Santos and Guilherme Horta Travassos

Part IV Knowledge Transfer

Open Science in Software Engineering . 477
Daniel Mendez, Daniel Graziotin, Stefan Wagner, and Heidi Seibold

Third Generation Industrial Co-production in Software Engineering. 503
Tony Gorschek and Krzysztof Wnuk

The Evolution of Empirical Methods
in Software Engineering

Michael Felderer and Guilherme Horta Travassos

Abstract Empirical methods like experimentation have become a powerful means
to drive the field of software engineering by creating scientific evidence on software
development, operation, and maintenance, but also by supporting practitioners in
their decision-making and learning. Today empirical methods are fully applied in
software engineering. However, they have developed in several iterations since the
1960s. In this chapter we tell the history of empirical software engineering and
present the evolution of empirical methods in software engineering in five iterations,
i.e., (1) mid-1960s to mid-1970s, (2) mid-1970s to mid-1980s, (3) mid-1980s to end
of the 1990s, (4) the 2000s, and (5) the 2010s. We present the five iterations of
the development of empirical software engineering mainly from a methodological
perspective and additionally take key papers, venues, and books, which are covered
in chronological order in a separate section on recommended further readings, into
account. We complement our presentation of the evolution of empirical software
engineering by presenting the current situation and an outlook in Sect. 4 and the
available books on empirical software engineering. Furthermore, based on the
chapters covered in this book we discuss trends on contemporary empirical methods
in software engineering related to the plurality of research methods, human factors,
data collection and processing, aggregation and synthesis of evidence, and impact
of software engineering research.

Guilherme Horta Travassos is a CNPq Researcher.

M. Felderer (�)
Department of Computer Science, University of Innsbruck, Innsbruck, Austria

Department of Software Engineering, Blekinge Institute of Technology, Karlskrona, Sweden
e-mail: michael.felderer@uibk.ac.at

G. H. Travassos
Department of Systems Engineering and Computer Science, COPPE, Federal University of Rio
de Janeiro, Rio de Janeiro, Brazil
e-mail: ght@cos.ufrj.br

© Springer Nature Switzerland AG 2020
M. Felderer, G. H. Travassos (eds.), Contemporary Empirical Methods in Software
Engineering, https://doi.org/10.1007/978-3-030-32489-6_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32489-6_1&domain=pdf
http://orcid.org/0000-0003-3818-4442
http://orcid.org/0000-0002-4258-0424
mailto:michael.felderer@uibk.ac.at
mailto:ght@cos.ufrj.br
https://doi.org/10.1007/978-3-030-32489-6_1

2 M. Felderer and G. H. Travassos

1 Introduction

The term software engineering originated in the early 1960s (Hey et al. 2014).
During the NATO Software Engineering Conferences held in 1968 and 1969,
participants made explicit that engineering software requires dedicated approaches
that are separate from those for the underlying hardware systems. Until that
“software crisis,” software-related research mostly focused on theoretical aspects,
e.g., algorithms and data structures used to write software systems, or practical
aspects, e.g., an efficient compilation of software for particular hardware sys-
tems (Guéhéneuc and Khomh 2019). Since then, these topics are investigated in
computer science, which pertains to understanding and proposing theories and
methods related to the efficient computation of algorithms, and differs from software
engineering (research), which has become a very dynamic discipline on its own
since its foundation in the 1960s. IEEE (1990, 2010) defines software engineering
(SE) as: (1) The application of a systematic, disciplined, quantifiable approach to
the development, operation, and maintenance of software, that is, the application
of engineering to software, and (2) The study of approaches as in (1). Software
engineering also differs from other engineering disciplines due to the immaterial
nature of software not obeying physical laws and the importance of human factors
as software is written by people for people. Software engineering is fundamentally
an empirical discipline, where knowledge is gained applying direct and indirect
observation or experience. Approaches to software development, operation, and
maintenance must be investigated by empirical means to be understood, evaluated,
and deployed in proper contexts. Empirical methods like experimentation are
therefore essential in software engineering to gain scientific evidence on software
development, operation, and maintenance, but also to support practitioners in their
decision-making and learning (Travassos et al. 2008). The application of empirical
methods makes software engineering more objective and less imprecise, facilitating
the transfer of software technologies to the industry (Shull et al. 2001). Software
engineers learn by observing, exploring, and experimenting. The level of learning
depends on the degree of observation or intervention (Thomke 2003) promoted by
the experiences and studies performed.

Traditionally, empirical software engineering (ESE) is the area of research that
emphasizes the use of empirical methods in the field of software engineering.
According to Harrison and Basili (1996), “Empirical software engineering is the
study of software-related artifacts for the characterization, understanding, eval-
uation, prediction, control, management, or improvement through qualitative or
quantitative analysis. The quantitative studies may range from controlled experi-
mentation to case studies. Qualitative studies should be well-defined and rigorous.”
The role and importance of the different types of empirical methods in software
engineering have evolved since the foundation of software engineering. In this
chapter, we discuss the evolution of empirical methods in software engineering and
especially also take key venues and books into account as they reflect that evolution.

The Evolution of Empirical Methods in Software Engineering 3

The chapter is organized as follows: In Sect. 2, we provide background on
empirical research methods in software engineering. In Sect. 3, we present the
evolution of empirical software engineering by describing five iterations of its devel-
opment. Based on that “historical” perspective on empirical software engineering,
in Sect. 4 we describe current trends in empirical software engineering based on the
chapters on contemporary empirical methods in software engineering covered in this
book. In Sect. 5, we present the available books on empirical methods in software
engineering in chronological order as recommended further reading. Finally, in
Sect. 6, we conclude this chapter.

2 Empirical Research Methods in Software Engineering

The scientific approach typically consists of observation, measurement, and exper-
imentation. Observation helps researchers to formulate essential questions about
a phenomenon under study to build models and to derive hypotheses that can
be tested through experimentation. Measurement is essential for both observation
and experimentation. A scientific hypothesis must be refutable to be meaningfully
tested. Tested hypotheses are compiled and communicated in the form of laws or
theories. At the heart of the scientific approach are research methods in general and
the empirical method in particular. Empirical methods leverage evidence obtained
through observation, measurement, or experimentation to address a scientific
problem. Evidence should be based on qualitative and quantitative research. In this
section, we provide an overview of research methods in software engineering in
general and empirical methods in particular.

2.1 Research Methods

To perform scientific research in software engineering, one has to understand
the available research methods and their limitations. For the field of software
engineering, Basili (1993) and Glass (1994) summarized four research methods:
scientific, engineering, empirical, and analytical.

The so-called scientific method observes the world and builds a model based on
the observations, e.g., a simulation model of the software process or product. The
scientific method is inductive and tries to extract from the world some model that
can explain a phenomenon and to evaluate whether the model is representative for
the phenomenon under observation. It is a model-building approach.

The engineering method studies current solutions, proposes changes, and then
evaluates them. It suggests the most appropriate solutions, develops, measures and
analyzes, and repeats until no further improvement is possible. It is an evolutionary
improvement-oriented approach that assumes the existence of some model of the
software process or product. It modifies this model to improve the objects of study.

4 M. Felderer and G. H. Travassos

The empirical method proposes a model and evaluates it through empirical
studies like case studies or experiments. The empirical method normally follows
an iterative and incremental approach that can begin with an exploratory survey,
followed by case studies in an industrial context to better understand specific
phenomena and controlled experiments to investigate cause–effect relationships.

The analytical method proposes a formal theory, develops the theory, derives the
results, and, if possible, compares it with empirical observations. It is deductive and
provides an analytical basis for developing a model.

Traditionally, the analytical method is used in the more formal areas of electrical
engineering and computer science, but is important for software engineering as
well, e.g., when building mathematical models for software reliability growth (Lyu
et al. 1996). The scientific method, inspired by natural science, is traditionally
used in applied areas, such as the simulation of a sensors network to evaluate
its performance. However, simulations are used as a means for conducting an
experiment as well (Baros et al. 2004). The engineering method is dominating
in industry (Wohlin et al. 2012). The empirical method, mainly using empirical
strategies, has traditionally been used in social sciences and psychology, where
one is unable to state any laws of nature but concerned with human behavior. The
engineering and the empirical method can be seen as variations of the scientific
method (Basili 1993). This overlap and an integrated view of the scientific, engineer-
ing, and empirical methods is also an underlying design principle of this book on
empirical methods. It considers not only chapters on traditional empirical strategies
like surveys (see chapter “Challenges in Survey Research”), but for instance, also a
chapter on simulation-based studies (see chapter “The Role of Simulation-Based
Studies in Software Engineering Research”), which are closer to the scientific
method as defined above, or a chapter on design science (see chapter “The Design
Science Paradigm as a Frame for Empirical Software Engineering”), which can
tightly be linked to the engineering method. All of these investigation strategies
refer to empirical methods.

2.2 Empirical Methods

Empirical methods rely on the collected data. Data collection methods may involve
qualitative or quantitative data. Some widely used qualitative data collection
methods in software engineering are interviews and participant observation (Seaman
1999). Some commonly used quantitative data collection methods are archival data,
surveys, experiments, and simulation (Wohlin et al. 2012). Once data are collected,
the researcher needs to analyze the data by using qualitative analysis methods,
e.g., grounded theory, thematic analysis, or hermeneutics, and quantitative analysis
methods, e.g., statistical analysis and mathematical modeling approaches.

In general, there are three widely recognized research processes called quanti-
tative research, qualitative research, and semiquantitative research. An alternative
option is the combination of both qualitative and quantitative research, denoted as

The Evolution of Empirical Methods in Software Engineering 5

mixed research (Creswell and Creswell 2018). The distinction between qualitative
and quantitative research comes not only from the type of data collected, but also
the objectives, types of research questions posed, analysis methods, and the degree
of flexibility built into the research design as well (Wohlin and Aurum 2015).
Qualitative research aims to understand the reason (i.e., “why”) and mechanisms
(i.e., “how”) explaining a phenomenon. A popular method of qualitative research
is case study research, which examines a set of selected samples in detail to
understand the phenomenon illustrated by the samples. For instance, a qualitative
study can be conducted to understand the impediments of automating system
tests. Quantitative research is a data-driven approach used to gain insights about
an observable phenomenon. Data collected from observations are analyzed using
mathematical and statistical models to derive quantitative relationships between
different variables capturing different aspects of the phenomenon under study. A
popular method of quantitative research are controlled experiments to examine
cause–effect relationships between different variables characterizing a phenomenon
in a controlled environment. For instance, different review techniques could be
compared via a controlled experiment. Mixed research collects quantitative and
qualitative data. It is a particular form of multi-method research, which combines
different research methods to answer some hypotheses, and is often used in empir-
ical software engineering due to the lack of theories in software engineering with
which we interpret quantitative data and due to the need to discuss qualitatively the
impact of the human factor on any experiments in software engineering (Guéhéneuc
and Khomh 2019). Semiquantitative research deals with approximate measurements
to data rather than exact measurements (Bertin 1978). It looks for understanding the
behavior of a system based on causal relations between the variables describing
the system. Semiquantitative models allow one to express what is known without
making inappropriate assumptions, simulating ranges of behavior rather than values
of point (Widman 1989). It has many applications in both the natural and social
sciences. Semiquantitative research supports cases where direct measurements are
not possible, but where it is possible to estimate an approximated behavior. In other
words, this type of study is applied in scenarios where the numerical values in the
mathematical relations governing the changes of a system are not known. In this
context, the direction of change is known, but not the size of its effect (Ogborn and
Miller 1994). Simulation-based studies in software engineering can benefit from
using semiquantitative research (Araújo et al. 2012).

The three major and well-established empirical methods in software engineering
are: survey, case study, and experiment (Wohlin et al. 2012). Primary studies using
such methods can be performed in vivo, in vitro, in virtuo, and in silico (Travas-
sos and Barros 2003). In vivo studies involve participants and projects in their
natural environments and contexts. Such studies are usually executed in software
development organizations throughout the software development process under real
working conditions. In vitro studies are performed in controlled environments, such
as laboratories or controlled communities, under configured working conditions. In
virtuo studies have the subjects interacting with a computerized model of reality.
The behavior of the environment with which subjects interact is described as a

6 M. Felderer and G. H. Travassos

model and represented by a computer program. In silico studies represent both
subjects and real world as computer models. The environment is fully composed
of computer models to which human interaction is reduced to a minimum.

A survey is a system for collecting information from or about subjects (people,
projects, among others) to describe, compare, or explain their knowledge, attitudes,
and behavior (Fink 2003). A survey is often an investigation performed in retrospect,
when, for instance, a tool or technique has been in use for a while (Pfleeger 1995).
The primary means of gathering qualitative or quantitative data are interviews or
questionnaires. These are done through taking a sample that is representative of the
population to which is generalized.

A case study in software engineering is an empirical inquiry that draws on
multiple sources of evidence to investigate one or a small number of instances
of a contemporary software engineering phenomenon within its real-life context,
especially when the boundary between phenomenon and context cannot be clearly
specified (Runeson et al. 2012).

An experiment is used to examine cause–effect relationships between different
variables characterizing a phenomenon (Guéhéneuc and Khomh 2019). Experi-
ments allow researchers to verify, refute, or validate hypotheses formulated about
the phenomenon under study. In a controlled experiment, one variable of the study
setting is manipulated, and based on randomization, different treatments are applied
to or by different subjects while keeping other variables constant, and measuring
the effects on outcome variables (Wohlin et al. 2012). A quasi-experiment is similar
to a controlled experiment, where the assignment of treatments to subjects cannot
be based on randomization, but emerges from the characteristics of the subjects
or objects themselves (Wohlin et al. 2012). Replication experiments reproduce
or quasi-reproduce previous experiments with the objectives to confirm or infirm
the results from previous experiments or to contrast previous results in different
contexts (Guéhéneuc and Khomh 2019).

Regardless of the applied empirical method, to acquire scientific evidence about
the investigated software engineering phenomena involves observation, measure-
ment, and experimentation of the world and existing solutions. It demands the
proposition of models and theories describing the observed behavior, collecting
and analyzing data, putting the hypotheses under proof, and repeating the overall
process over time to strengthen the evidence on the observed phenomena. Based on
several primary studies, in which direct observations and measurements about the
objects of interest are made, whether by surveys, experiments, or case studies, which
are there also called empirical strategies, one can perform secondary studies. A
secondary study does not generate any data from direct observation or measurement,
instead, it analyzes a set of primary studies and usually seeks to aggregate the
results from these to provide stronger forms of evidence about a particular phe-
nomenon (Kitchenham et al. 2015). Secondary studies typically appear as systematic
(literature) reviews, which aim to provide an objective and unbiased approach to
finding relevant primary studies, and for extracting, aggregating, and synthesizing
the data from these (Kitchenham et al. 2015). A particular type of a systematic
review is a systematic mapping study (Petersen et al. 2015), which classifies studies

The Evolution of Empirical Methods in Software Engineering 7

to identify clusters of studies (that could form the basis of a fuller review with more
synthesis) and gaps indicating the need for more primary studies.

The scientific or industrial significance of empirical studies depends on their
validity, i.e., the degree to which one can trust the outcomes of an empirical
study (Kitchenham et al. 2015). Validity is usually assessed in terms of four
commonly encountered forms of threats to validity: internal, external, construct,
and conclusion validity (Shadish et al. 2002). Internal validity refers to inferences
that the observed relationship between treatment and outcome reflects a cause–
effect relationship. External validity refers to whether a cause–effect relationship
holds over other conditions, including persons, settings, treatment variables, and
measurement variables. Construct validity refers to how concepts are operational-
ized as experimental measures. Conclusion validity refers to inferences about the
relationship between treatment and outcome variables.

The accomplishment of empirical studies relies on performing well-defined and
evolutionary activities. The classical empirical study process consists of five phases:
definition, planning, operation, analysis, and interpretation, as well as reporting and
packaging (Juristo and Moreno 2001; Malhotra 2016). The definition phase makes
the investigated problem and overall objectives of the study explicit. The planning
phase covers the study design and includes the definition of research questions and
hypotheses as well as the definition of data collection, data analysis, and validity
procedures. In the operation phase, the study is actually conducted. In the analysis
and interpretation phase, the collected data is analyzed, assessed, and discussed.
Finally, in the reporting and packaging phase, the results of the study are reported
(e.g., in a journal article, a conference paper, or a technical report) and suitably
packaged to provide study material and data. The latter has become more critical
recently due to the open science movement (see chapter “Open Science in Software
Engineering”).

3 Evolution of Empirical Software Engineering

The application of empirical methods in general and empirical software engineering
in particular is well-established in software engineering research. Almost all papers
published in major software engineering venues these days include an empirical
study (Theisen et al. 2017). Furthermore, since 2000, research methodology has
received considerable attention in the software engineering research community
resulting in many available publications on empirical research methodology in
software engineering. In a recent mapping study, Molléri et al. (2019) identified
341 methodological papers on empirical research in software engineering.

The application of empirical methods and the underlying research methodology
has developed iteratively since the foundation of software engineering in the 1960s.
Guéhéneuc and Khomh (2019) discuss landmark articles, books, and venues in
empirical software engineering that indicate the iterative development of the field.
Bird et al. (2015) distinguish four “generations” of analyzing software data, i.e.,

8 M. Felderer and G. H. Travassos

preliminary work, academic experiments, industrial experiments, and “data science
everywhere.” In this section, we present five iterations of the development of
empirical software engineering from a methodological perspective. We additionally
take articles and venues into account, which is needed for a holistic understanding
of the field’s development. We complement our presentation of the evolution of
empirical software engineering by presenting the current situation and an outlook in
Sect. 4 and the available books on empirical software engineering in chronological
order in Sect. 5 on recommended further reading.

3.1 First Iteration: Mid-1960s to Mid-1970s

In the early years of software engineering, empirical studies were rare, and the
only research model commonly in use was the analytical method, where different
formal theories were advocated devoid of any empirical evaluation (Glass 1994).
According to a systematic literature review of empirical studies performed by
Zendler (2001), Grant and Sackman (1967) published the first empirical study in
software engineering in 1967. The authors conducted an experiment that compared
the performance of two groups of developers, one working with online access to
a computer through a terminal and the other with offline access in batch mode.
Another empirical study published early in the history of software engineering was
an article by Knuth (1971), in which the author studied a set of Fortran programs
to understand what developers do in Fortran programs. Akiyama (1971) describes
the first known “size law” (Bird et al. 2015), stating that the number of defects is a
function of the number of lines of code. The authors in these and other early studies
defined the goal of the study, the questions to research, and the measures to answer
these questions in an ad hoc fashion (Guéhéneuc and Khomh 2019). However, they
were pioneers in the application of empirical methods in software engineering.

3.2 Second Iteration: Mid-1970s to Mid-1980s

In the second iteration, already more empirical studies, mainly in vitro experiments,
were conducted. Prominent examples are experiments on structured program-
ming (Lucas et al. 1976), flowcharting (Shneiderman et al. 1977), and software
testing (Myers 1978). The second iteration is characterized by first attempts to pro-
vide a systematic methodology to define empirical studies in software engineering in
general and experiments in particular. These attempts culminated in the definition of
the Goal/Question/Metrics (GQM) approach by Basili and Weiss (1984). The GQM
approach helped practitioners and researchers to define measurement programs
based on goals related to products, processes, and resources that can be achieved
by answering questions that characterize the objects of measurement using metrics.

The Evolution of Empirical Methods in Software Engineering 9

The methodology has been used to define experiments in software engineering
systematically.

In that iteration, empirical software engineering was also institutionalized for
the first time. In 1976, the NASA Goddard Software Engineering Laboratory
(NASA/SEL) was established at the University of Maryland, College Park (USA),
aiming to support the observation and understanding of software projects (Basili
and Zelkowitz 2007). The establishment of NASA/SEL provided the means to
strengthen the importance of using basic scientific and engineering concepts in
the context of software engineering (McGarry et al. 1994). The paradigm change
provided by using GQM (Basili and Weiss 1984), including the ability of packaging
knowledge on how to better build a software system, improved the way experiences
could be organized and shared. The building and evolution of models at NASA/SEL
pave the road for organizing the Experience Factory model (Basili et al. 1994) and
the dissemination of initial good practices on empirical software engineering.

3.3 Third Iteration: Mid-1980s to End of the 1990s

In the third iteration, not only experiments but also surveys (for instance,
by Burkhard and Jenster (1989) on the application of computer-aided software
engineering tools) and case studies (for instance, by Curtis et al. (1988) on the
software design process for large systems) were performed to some extent. Also,
the explicit discussion of threats to validity appeared in that iteration. One of the first
studies explicitly discussing its threats to validity was an article by Swanson and
Beath (1988) on the use of case study data in software management research. From
the late 1980s, researchers also started to analyze software data using algorithms
taken from artificial intelligence research (Bird et al. 2015). For instance, decision
trees and neural networks were applied to predict error-proneness (Porter and
Selby 1990), to estimate software effort (Srinivasan and Fisher 1995) and to model
reliability growth (Tian 1995).

In the third iteration, empirical studies began to attract the attention of several
research groups all over the world, who realized the importance of providing empir-
ical evidence about the developed and investigated software products and processes.
The experiences shared by NASA/SEL and the participation of several researchers
in conducting experiments together with NASA/SEL helped to strengthen the use
of different experimental strategies and the application of surveys.

The interest in the application of the scientific method by different researchers,
the identification of the need to evolve the experimentation process through sharing
of experimental knowledge among peers as well as the transfer of knowledge to
industry, among other reasons, led to the establishment of the International Software
Engineering Research Network (ISERN) in 1992. ISERN held its first annual
meeting in Japan in 1993 sponsored by the Graduate School of Information Science
at the Nara Institute of Science and Technology.

10 M. Felderer and G. H. Travassos

The need to share the ever increasing number of studies and their results and the
growing number of researchers applying empirical methods in software engineering
lead to the foundation of suitable forums. In 1993 the IEEE International Software
Metrics Symposium, in 1996, the Empirical Software Engineering International
Journal, and in 1997, the Empirical Assessments in Software Engineering (EASE)
event at Keele University were founded.

By the end of this iteration, several institutes dedicated to empirical software
engineering were established. In 1996, the Fraunhofer Institute for Experimental
Software Engineering (IESE) associated with the University of Kaiserslautern
(Germany) was established. In 1998, the Fraunhofer Center for Experimental
Software Engineering (CESE) associated with the University of Maryland, College
Park (USA) began operations. Also, other institutions and laboratories, such as
National ICT Australia as well as the Simula Research Laboratory and SINTEF
(both located in Norway), among others, started to promote empirical studies in
software engineering in the industry.

Finally, by the end of the 1990s, the publication of methodological papers on
empirical methods in software engineering started. Zelkowitz and Wallace (1998)
provided an overview of experimental techniques to validate new technologies,
Seaman (1999) provided guidelines for qualitative data collection and analysis, and
Basili et al. (1999) discussed families of experiments.

3.4 Fourth Iteration: The 2000s

Since 2000 research methodology has received considerable attention, and therefore
the publication of methodological papers further increased. For instance, Höst et al.
(2000) discuss the usage of students as subjects in experiments, Shull et al. (2001)
describe a methodology to introduce software processes based on experimentation,
Pfleeger and Kitchenham (2001) provide guidelines on surveys in software engi-
neering, Lethbridge et al. (2005) provide a classification of data collection methods,
Kitchenham and Charters (2007) provide guidelines for performing systematic
literature reviews in software engineering, Shull et al. (2008) discuss the role
of replication in empirical software engineering, and Runeson and Höst (2009)
provide guidelines for case study research. In connection to the increased interest
in research methodology, also the first books on empirical research methods in
software engineering with a focus on experimentation written by Wohlin et al.
(2000) and Juristo and Moreno (2001) appeared around 2000 (see Sect. 5 for
a comprehensive overview of books on empirical software engineering). Also,
combining research methods and performing multi-method research became more
popular in the period. One of the first papers following a multi-method research
methodology was published by Espinosa et al. (2002) on shared mental models,
familiarity, and coordination in distributed software teams.

With the growing number of empirical studies, knowledge aggregation based
on these primary studies became more crucial to understand software engineering

The Evolution of Empirical Methods in Software Engineering 11

phenomena better. No single empirical study on a software engineering phe-
nomenon can be considered definitive (Shull et al. 2004) and generalized to any
context. Therefore, the replication of studies in different contexts is of paramount
importance to strengthen its findings. However, the existence of conclusive, no
conclusive, contradictory, and confirmatory results about a particular software
engineering phenomenon should be combined to strengthen the evidence on the
software phenomena or to reveal the need for more primary studies on phenomenon
of interest. In consequence, there arose a need for secondary studies that aim
to organize, aggregate, and synthesize all relevant results from primary studies
regarding a particular phenomenon under research. Kitchenham (2004) was the
first who recommended the use of systematic literature reviews (SLRs) in software
engineering and adapted respective guidelines, mainly from medical research, to
software engineering. With the guidelines of Kitchenham (2004) and Biolchini
(2005), the empirical software engineering community had a tool to systemat-
ically synthesize knowledge available in primary studies, which spread rapidly
and enabled evidence-based software engineering (Kitchenham et al. 2004). In
a systematic review of SLRs in software engineering, Kitchenham and Brereton
(2013) identified 68 papers reporting 63 unique SLRs published in SE conferences
and journals between 2005 and mid-2012. Petersen et al. (2008) clarify and expand
upon the differences between SLRs and systematic mapping studies and provide
guidelines for the latter. In their seminal paper on the future of empirical methods
in software engineering research, Sjøberg et al. (2007) present the important role
of synthesis of empirical evidence in their vision of software engineering research.
The vision is that for all fields of software engineering, empirical research methods
should enable the development of scientific knowledge about how useful different
SE technologies are for different kinds of actors, performing different kinds of
activities, on different kinds of systems to guide the development of new SE
technology and important SE decisions in industry. Major challenges to the pursuit
of this vision are more and better synthesis of empirical evidence, and connected
to that building and testing more theories as well as increasing quality, including
relevance, of studies.

One of the problems faced by the software engineering community has often
been the scarcity of software data for conducting empirical studies (Malhotra 2016).
The availability of (open) source code repositories and software process data due
to automated or even continuous software engineering enabled new data mining
approaches in software engineering in that period. In a seminal paper, Zimmermann
et al. (2005) used association rule learning to find patterns of defects in a large
set of open-source projects. Furthermore, also, software data from companies were
analyzed. For instance, at AT&T, Ostrand et al. (2004) used code metrics to
predict defects, and at Microsoft—which even founded an own Empirical Software
Engineering (ESE) group in Microsoft Research (Bird et al. 2011)—Nagappan and
Ball (2005) showed that data from that organization could predict software quality.
In consequence, also repositories—like the PROMISE repository—that collect
software data and make them publicly available were founded. The PROMISE
repository was founded in 2005 and seeded with NASA data (Menzies et al. 2014).

12 M. Felderer and G. H. Travassos

The empirical evidence gathered through analyzing the data collected from the
software repositories is considered to be an important support for the (empirical)
software engineering community these days. There are even venues that focus on
analysis of software data such as Mining Software Repositories (MSR), which was
organized for the first time in 2004 in Edinburgh (UK) and Predictive Models and
Data Analytics in Software Engineering (PROMISE), which was organized for the
first time in 2005 in St. Louis (USA).

In general, the growing interest in empirical software engineering in that period
resulted in projects such as the Experimental Software Engineering Research
Network (ESERNET) in Europe from 2001 to 2003 and the foundation of several
venues. In 2007, the first ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM) was held in Madrid (Spain).
ESEM is the result of the merger between the ACM/IEEE International Symposium
on Empirical Software Engineering, which ran from 2002 to 2006, and the IEEE
International Software Metrics Symposium, which ran from 1993 to 2005. In 2003,
Experimental Software Engineering Latin American Workshop (ESELAW) was
organized for the first time. Also, in 2003, the International Advanced School
on Empirical Software Engineering (IASESE) performed its first set of classes in
Rome (Italy). In 2006, the International Doctoral Symposium on Empirical Software
Engineering (IDoESE) was founded. Today, the ISERN annual meeting, IASESE,
IDoESE, and ESEM form the Empirical Software Engineering International Week
(ESEIW), which is held annually.

3.5 Fifth Iteration: The 2010s

Since 2010 empirical studies are “everywhere” in software engineering. Almost
all papers in major software engineering conferences like ICSE contain empirical
studies. Also, more and more books dedicated to empirical research methodology
in software engineering are published (see Sect. 5), and papers on empirical research
methodology are published at a constant pace. For instance, Ivarsson and Gorschek
(2011) present a model for evaluating the rigor and relevance of technology
evaluations in industry, Arcuri and Briand (2014) provide a guide to statistical tests
for assessing randomized algorithms in software engineering, Wieringa (2014a)
discusses scaling up of empirical methods for technology validation in practice,
Wohlin and Aurum (2015) provide a decision-making structure for selecting a
research design, de Mello et al. (2015) provide probabilistic sampling approaches
for large-scale surveys, Sharp et al. (2016) discuss the use and value of ethnographic
studies in software engineering research, Stol et al. (2016) discuss the use of
grounded theory and their reporting, Briand et al. (2017) discuss the importance
of context and the overrating of generalizability in software engineering, and
Stol and Fitzgerald (2018) provide a holistic framework for software engineering
research. Furthermore, Harman et al. (2010) provide a comprehensive overview and
guidance on the application of search-based optimization in software engineering.

The Evolution of Empirical Methods in Software Engineering 13

Especially, in this period many papers presenting results on search-based software
engineering, that generally (though not exclusively) fall in the category of empirical
software engineering papers were published. Due to the potentially high compu-
tational complexity of optimization algorithms, some researchers have started to
use high performance computing environments to support the execution of their
studies (Farzat et al. 2019).

In this iteration, one can observe a growing interest in the role of theory within
software engineering research to develop the field further as a scientific discipline. In
December 2009, the Software Engineering Method and Theory (SEMAT) initiative
was launched that aims towards the development of a general theory of software
engineering. SEMAT organized several events, among others, a workshop series
on a General Theory of Software Engineering (GTSE) between 2012 and 2015.
Stol and Fitzgerald (2015) even argue for a theory-oriented software engineering
research perspective, which can complement the recent focus on evidence-based
software engineering. Also, several concrete theories have been developed in that
iteration. For instance, Johnson and Ekstedt (2016) present a general theory of
software engineering called Tarpit, Bjarnason et al. (2016) a theory of distances
in software engineering, and Wagner et al. (2019) a theory on requirements
engineering.

Today not only almost all papers in major software engineering conferences
contain empirical studies, but also most software engineering conferences have
explicitly integrated empirical software engineering into their program, e.g., as
dedicated sessions or tracks. In addition, there are several workshops on conducting
empirical studies in specific areas. For instance, at ICSE, there has been a collocated
International Workshop on Conducting Empirical Studies in Industry (CESI) and at
RE the International Workshop on Empirical Requirements Engineering (EmpiRE).
The Experimental Software Engineering Latin American Workshop (ESELAW)
joined the Ibero-American Conference on Software Engineering (CIbSE) in 2011
as a colocated workshop and became a dedicated track in 2013 due to the increased
number of submissions.

ESEIW, including ESEM, and EASE are established as the two leading annual
events to discuss methodological issues on empirical research in software engi-
neering. Empirical methods have been an explicit topic in several summer schools
including the annual LASER summer school (which hosted the topic empirical
software engineering in 2010), PASED—Canadian Summer School on Practical
Analyses of Software Engineering Data in 2011, the Empirical Research Meth-
ods in Software Engineering and Informatics (ERMSEI) in 2016 and 2017, the
International Summer School on Software Engineering (SIESTA) in 2018 and 2019
as well as the 2019 Summer School in Empirical Software Engineering at Brunel
(UK). In the context of ESEIW, the International Advanced School on Empirical
Software Engineering (IASESE) has been organized annually since 2003 and helped
to spread knowledge on current empirical methods in software engineering among
junior and senior researchers. Figure 1 presents the IASESE timeline and its topics
along the places and years. The topics taught over the years also reflect the evolution
of empirical software engineering, as discussed in this section.

14 M. Felderer and G. H. Travassos

20
03

 –
Ro

m
e,

 It
al

y
Ev

al
ua

tin
g

th
e

m
at

ur
in

g
of

 a
 te

ch
no

lo
gy

 fo
r u

se
U

sin
g

Em
pi

ric
al

 st
ud

y
to

 d
o

te
ch

no
lo

gy
 tr

an
sf

er
U

sin
g

qu
al

ita
tiv

e
an

al
ys

is
in

 so
ft

w
ar

e
en

gi
ne

er
in

g
Bu

ild
in

g
pa

ra
m

et
ric

 m
od

el
s

20
06

 –
Ri

o
de

 Ja
ne

iro
, B

ra
zi

l
Te

ch
no

lo
gy

 E
va

lu
at

io
n

Ho
w

 to
 ru

n
em

pi
ric

al
 st

ud
ie

s u
sin

g
pr

oj
ec

t
re

po
sit

or
ie

s (
an

d
av

oi
d

co
m

m
on

 p
itf

al
ls)

Th
e

ro
le

 o
f r

ep
lic

at
io

n
in

 S
of

tw
ar

e
En

gi
ne

er
in

g
So

ft
w

ar
e

en
gi

ne
er

in
g

pr
oc

es
s s

im
ul

at
io

n

20
07

 –
M

ad
rid

, S
pa

in
Ca

se
 S

tu
dy

 R
es

ea
rc

h

20
08

 –
Ka

is
er

sl
au

te
rn

, G
er

m
an

y
Re

pl
ic

at
io

n
an

d
Ag

gr
eg

at
io

n
of

 S
of

tw
ar

e
En

gi
ne

er
in

g
Ex

pe
rim

en
ts

20
09

 –
O

rla
nd

o,
 U

SA
Se

le
ct

in
g

Re
se

ar
ch

 M
et

ho
ds

 fo
r E

m
pi

ric
al

So

ft
w

ar
e

En
gi

ne
er

in
g

20
10

 –
Bo

lz
an

o-
Bo

ze
n,

 It
al

y
U

sin
g

Et
hn

og
ra

ph
ic

 M
et

ho
ds

 in
 E

m
pi

ric
al

So

ft
w

ar
e

En
gi

ne
er

in
g

Re
se

ar
ch

20
11

 –
Ba

nf
f,

Ca
na

da
Ev

id
en

ce
-b

as
ed

 D
ec

isi
on

-S
up

po
rt

 in

So
ft

w
ar

e
En

gi
ne

er
in

g

20
12

 –
Lu

nd
, S

w
ed

en
Ev

id
en

ce
 S

yn
th

es
is

of
 Q

ua
lit

at
iv

e
Re

se
ar

ch

20
14

 –
To

rin
o,

 It
al

y
In

 V
iv

o
Ex

pe
rim

en
ta

tio
n

in
 S

of
tw

ar
e

En
gi

ne
er

in
g

20
16

 –
Ci

ud
ad

 R
ea

l,
Sp

ai
n

Su
rv

ey
s i

n
So

ft
w

ar
e

En
gi

ne
er

in
g

20
17

 –
To

ro
nt

o,
 C

an
ad

a
Pr

od
uc

t D
ev

el
op

m
en

t a
nd

 In
no

va
tio

n
w

ith

Co
nt

in
uo

us
 E

xp
er

im
en

ta
tio

n

20
18

 –
O

ul
o,

 F
in

la
nd

Em
pi

ric
al

 S
of

tw
ar

e
En

gi
ne

er
in

g
an

d
Da

ta

Sc
ie

nc
e:

 O
ld

 W
in

e
in

 a
 N

ew
 B

ot
tle

20
19

 –
Po

rt
o

de
 G

al
in

ha
s,

 B
ra

zi
l

O
bs

er
va

tio
n

as
 a

 D
at

a
Co

lle
ct

io
n

Te
ch

ni
qu

e
fo

r S
of

tw
ar

e
En

gi
ne

er
in

g
Re

se
ar

ch

20
13

 –
Ba

lti
m

or
e,

 U
SA

Ac
tio

n
Re

se
ar

ch

20
15

 –
Be

iji
ng

, C
hi

na
Th

eo
rie

s i
n

Em
pi

ric
al

 S
of

tw
ar

e
En

gi
ne

er
in

g

20
05

 –
N

oo
sa

 H
ea

ds
, A

us
tr

al
ia

Re
se

ar
ch

 P
ro

to
co

ls
an

d
Sy

st
em

at
ic

Li

te
ra

tu
re

 R
ev

ie
w

s

20
04

 –
Lo

s A
ng

el
es

, U
SA

Ho
w

 to
 d

o
Em

pi
ric

al
 R

es
ea

rc
h

IA
SE

SE
In

te
rn

at
io

na
l A

dv
an

ce
d

Sc
ho

ol
 o

n
Em

pi
ric

al
 S

of
tw

ar
e

En
gi

ne
er

in
g

Lo
ca

tio
ns

 a
nd

 T
op

ic
s

20
03

 -
20

19

F
ig

.1
In

te
rn

at
io

na
l

A
dv

an
ce

d
Sc

ho
ol

on
E

m
pi

ri
ca

lS
of

tw
ar

e
E

ng
in

ee
ri

ng
(I

A
SE

SE
)

ti
m

el
in

e
an

d
to

pi
cs

fr
om

20
03

to
20

19

The Evolution of Empirical Methods in Software Engineering 15

4 Current Situation and Outlook

Since the first empirical studies in the 1960s, the field of empirical software
engineering has considerably matured in several iterations. However, the empirical
methods resulting from the five iterations presented in the previous section are
not the end of the story, and as in any scientific discipline, research methods
develop further. The chapters of this book discuss contemporary empirical methods
that impact the current evolution of empirical software engineering and form the
backbone of its next iteration. For sure, the description of the current situation
and future trends is never complete and always subjective to some extent. But
we think that the chapters covered in this book show several interesting trends
in contemporary empirical methods in software engineering, which we want to
summarize here.

The evolution of empirical software engineering leads to the continuous adoption
of empirical methods from other fields and the refinement of existing empirical
methods in software engineering. The resulting plurality of research methods
requires guidance in knowledge-seeking and solution-seeking (i.e., design science)
research. The chapter “Guidelines for Conducting Software Engineering Research”
presents guidelines for conducting software engineering research based on the
ABC framework, where ABC represents the three desirable aspects of research
generalizability over actors (A), precise control of behavior (B), and realism of
context (C). Each empirical method has its strengths and weaknesses. It is beneficial
to utilize a mix of methods depending on the research goal or even to combine
methods. Case survey research combines case study and survey research, which rely
primarily on qualitative and quantitative data, respectively. The chapter “Guidelines
for Case Survey Research in Software Engineering” provides an overview of the
case survey method. While being an important and often used empirical method,
survey research has been less discussed on a methodological level than other types
of empirical methods. The chapter “Challenges in Survey Research” discusses
methodological issues in survey research for software engineering concerning
theory building, sampling, invitation and follow-up, statistical analysis, qualitative
analysis, and assessment of psychological constructs. Although software engineer-
ing is an engineering discipline, the design science paradigm has been explicitly
adapted to software engineering relatively late by Wieringa (2014b), and the full
potential of the design science paradigm has not been exploited so far in software
engineering. The chapter “The Design Science Paradigm as a Frame for Empirical
Software Engineering” uses the design science paradigm as a frame for empirical
software engineering and uses it to support the assessment of research contributions,
industry-academia communication, and theoretical knowledge building.

It is generally acknowledged that software development is a human-intensive
activity as software is built by humans for humans. However, traditionally SE
research has focused on artifacts and processes without explicitly taking human
factors in general and the developer perspective in particular into account. If the
perspective on how developers work was considered, then it was mostly measured

16 M. Felderer and G. H. Travassos

from a subjective perspective, e.g., by interviews or opinion surveys, or a “black
box” perspective by mining repository data or measuring the created development
artifacts. The chapter “Biometric Measurement in Software Engineering” introduces
biometric sensors and measure that provide new opportunities to more objectively
measure physiological changes in the human body that can be linked to various
psychological processes. These biometric measurements can be used to gain insights
on fundamental cognitive and emotional processes of software developers while
they are working, but also to provide better and more prompt tool support for
developers. Another human-related issue is the involvement of humans in empirical
studies, especially in experiments. On the one hand, it is normally difficult to recruit
a significant number of professionals for an empirical study, and on the other
hand, measurements are invasive. The chapter “Empirical Software Engineering
Experimentation with Human Computation” explores the potential of human com-
putation methods, such as crowdsourcing, for experimentation in empirical software
engineering.

Empirical methods rely on the collected data. However, the volume, velocity,
and variety of data in software products and processes have exploded during the last
years. Therefore, the new scientific paradigm of data science has gained much atten-
tion, also within software engineering. The chapter “Data Science and Empirical
Software Engineering” relates to traditional ESE and data science. It shows that both
paradigms have many characteristics in common and can benefit from each other.
Given large data sets, optimization is an important form of data analytics support of
human decision-making. Empirical studies serve both as a model and as data input
for optimization. The chapter “Optimization in Software Engineering: A Pragmatic
Approach” provides an overview of optimization in software engineering in general
and its value and applicability in ESE in particular. With increased automation,
uncertainty (due to the application of statistical models), and monitoring capabilities
in data-driven software engineering, also the role of simulation techniques becomes
more important. The chapter “The Role of Simulation-Based Studies in Software
Engineering Research” provides a guide to simulation-based studies in software
engineering. Bayesian data analysis is a means to embrace uncertainty by using
multilevel statistical models and making use of all available information at hand.
The chapter “Bayesian Data Analysis in Empirical Software Engineering: The
Case of Missing Data” provides an introduction to Bayesian data analysis and an
application example to empirical software engineering dealing with common issues
in ESE like missing data.

Extracting, aggregating, and synthesizing evidence from empirical studies is
essential for the development of scientific knowledge and the field of software engi-
neering. However, conducting secondary studies like systematic literature reviews
and aggregating evidence is still challenging. Conducting systematic literature
reviews (SLRs) is largely a manual and, therefore, time-consuming and error-
prone process. The chapter “Automating Systematic Literature Review” provides
strategies to automate the SLR process. Secondary studies often lack connection
to software engineering practice, which is essential to software engineering. The
chapter “Rapid Reviews in Software Engineering” presents the concept of rapid

The Evolution of Empirical Methods in Software Engineering 17

reviews, which are lightweight secondary studies focused on delivering evidence to
practitioners on time. Another approach to link to practice is to take grey literature
into account in empirical studies. The chapter “Benefitting from the Grey Literature
in Software Engineering Research” discusses the concept of grey literature in
software engineering and ways how to consider it in primary and secondary studies.
Considering that secondary studies are often used to support the evidence-based
paradigm, it is crucial to managing their threats properly. The chapter “Guidelines
for Managing Threats to Validity of Secondary Studies in Software Engineering”
provides guidelines for managing threats to validity of secondary studies in software
engineering. Evidence in software engineering is often rare and produced in both
quantitative and qualitative forms. It makes the synthesis of evidence, which is
an essential element in scientific knowledge creation, a challenging task. The
chapter “Research Synthesis in Software Engineering” provides an overview of
research synthesis methods in software engineering.

Society in general and funding agencies in particular put a stronger focus on
the impact of (software engineering) research. Therefore, open science and research
transfer are becoming essential topics in (empirical) software engineering. Open
science describes the movement of making any research artifact available to the
public and includes open access, open data, and open source. The topic is natural and
especially important in empirical software engineering to guarantee the replicability
of empirical studies. The chapter “Open Science in Software Engineering” reflects
upon the essentials in open science for software engineering to help to establish
a common ground and to make open science a norm in SE. Industry-academia
collaboration is one of the cornerstones of empirical software engineering. However,
close and sustainable collaboration with industry are key issues in the field.
The chapter “Third Generation Industrial Co-production in Software Engineering”
presents a seven-step industrial coproduction approach that enables deep and long-
term industry-academia collaboration.

5 Recommended Further Reading

Since 2000 research methodology has received considerable attention in the soft-
ware engineering research community. Therefore, plenty of literature is available
on empirical research methodology in software engineering. Molléri et al. (2019)
identified in a recent systematic mapping study 341 methodological papers on
empirical research in software engineering—and therefore, a complete overview
would exceed the scope of this book chapter. However, following the style of this
book chapter, we provide an overview of the available English text and special
issue books explicitly dedicated to empirical research methodology in software
engineering in chronological order of their publication.

Wohlin et al. (2000) published a book entitled “Experimentation in Software
Engineering,” which provides an overview of the core empirical strategies in
software engineering, i.e., surveys, experimentation, and case studies and as its

18 M. Felderer and G. H. Travassos

main content all steps in the experimentation process, i.e., scoping, planning,
operation, analysis and interpretation as well as presentation and package. The
book is complemented by exercises and examples, e.g., an experiment comparing
different programming languages. Consequently, the book targets students, teachers,
researchers, and practitioners in software engineering. In 2012 a revision of this
popular book had been published with Springer (Wohlin et al. 2012).

Juristo and Moreno (2001) published a book entitled “Basics of Software Engi-
neering Experimentation,” which presents the basics of designing and analyzing
experiments both to software engineering researchers and practitioners based on
SE examples like comparing the effectiveness of defect detection techniques. The
book presents the underlying statistical methods, including the computation of test
statistics in detail.

Endres and Rombach (2003) published “A Handbook of Software and Systems
Engineering. Empirical Observations, Laws, and Theories.” The book presents rules,
laws, and their underlying theories from all phases of the software development
lifecycle. The book provides the reader with clear statements of software and system
engineering laws and their applicability as well as related empirical evidence. The
consideration of empirical evidence distinguishes the book from other available
handbooks and textbooks on software engineering.

Juristo and Moreno (2003) edited “Lecture Notes on Empirical Software Engi-
neering,” which aims to spread the idea of the importance of empirical knowledge
in software development from a highly practical viewpoint. It defines the body of
empirically validated knowledge in software development to advise practitioners on
what methods or techniques have been empirically analyzed and what the results
were. Furthermore, it promotes “empirical tests,” which have traditionally been
carried out by universities or research centers, for application in industry to validate
software development technologies used in practice.

Shull et al. (2007) published the “Guide to Advanced Empirical Software Engi-
neering.” It is an edited book written by experts in empirical software engineering. It
covers advanced research methods and techniques, practical foundations, as well as
knowledge creation, approaches. The book at hand provides a continuation of that
seminal book covering recent developments in empirical software engineering.

Runeson et al. (2012) published a book entitled “Case Study Research in
Software Engineering: Guidelines and Examples,” which covers guidelines for
all steps of case study research, i.e., design, data collection, data analysis and
interpretation, as well as reporting and dissemination. The book is complemented
with examples from extreme programming, project management, quality monitoring
as well as requirements engineering and additionally also provides checklists.

Wieringa (2014b) published a book entitled “Design Science Methodology for
Information Systems and Software Engineering,” which provides guidelines for
practicing design science in software engineering research. A design process usually
iterates over two activities, i.e., first designing an artifact that improves something
for stakeholders, and subsequently empirically validating the performance of that
artifact in its context. This “validation in context” is a key feature of the book.

The Evolution of Empirical Methods in Software Engineering 19

Menzies et al. (2014) published a book entitled “Sharing Data and Models in
Software Engineering.” The central theme of the book is how to share what has been
learned by data science from software projects. The book is driven by the PROMISE
(Predictive Models and Data Analytics in Software Engineering) community. It is
the first book dedicated to data science in software and mining software repositories.
Closely related to this book, Bird et al. (2015) published a book entitled “The Art
and Science of Analyzing Software Data,” which is driven by the MSR (Mining
Software Repositories) community and focuses mainly on data analysis based on
statistics and machine learning. Another related book published by Menzies et al.
(2016) covers perspectives on data science for software engineering by various
authors.

Kitchenham et al. (2015) published a book entitled “Evidence-based Software
Engineering and Systematic Reviews,” which provides practical guidance on how
to conduct secondary studies in software engineering. The book also discusses the
nature of evidence and explains the types of primary studies that provide inputs to a
secondary study.

Malhotra (2016) published a book entitled “Empirical Research in Software
Engineering: Concepts, Analysis, and Applications,” which shows how to imple-
ment empirical research processes, procedures, and practices in software engineer-
ing. The book covers many accompanying exercises and examples. The author
especially also discusses the process of developing predictive models, such as defect
prediction and change prediction, on data collected from source code repositories,
and, more generally the application of machine learning techniques in empirical
software engineering.

ben Othmane et al. (2017) published a book entitled “Empirical Research
for Software Security: Foundations and Experience,” which discusses empirical
methods with a special focus on software security.

Staron (2019) published a book entitled “Action Research in Software Engineer-
ing: Theory and Applications,” which offers a comprehensive discussion on the use
of action research as an instrument to evolve software technologies and promote
synergy between researchers and practitioners.

In addition to these textbooks, there are also edited books available that are
related to special events in empirical software engineering and cover valuable
methodological contributions.

Rombach et al. (1993) edited proceedings from a Dagstuhl seminar in 1992
on empirical software engineering entitled “Experimental Software Engineering
Issues: Critical Assessment and Future Directions.” The goal was to discuss the state
of the art of empirical software engineering by assessing past accomplishments,
raising open questions, and proposing a future research agenda at that time.
However, many contributions of that book are still relevant today.

Conradi and Wang (2003) edited a book entitled “Empirical Methods and Studies
in Software Engineering: Experiences from ESERNET,” which covers experiences
from the Experimental Software Engineering Research NETwork (ESERNET), a
thematic network funded by the European Union between 2001 and 2003.

20 M. Felderer and G. H. Travassos

Boehm et al. (2005) edited a book entitled “Foundations of Empirical Software
Engineering: The Legacy of Victor R. Basili” on the occasion of V. R. Basili’s 65th
birthday, which covers reprints of 20 papers that defined much of his work.

Basili et al. (2007) edited proceedings from another Dagstuhl seminar in 2006
on empirical software engineering entitled “Empirical Software Engineering Issues.
Critical Assessment and Future Directions.”

Münch and Schmid (2013) edited a book entitled “Perspectives on the Future
of Software Engineering: Essays in Honor of Dieter Rombach” on the occasion
of Dieter Rombach’s 60th birthday, which covers contributions by renowned
researchers and colleagues of him.

6 Conclusion

In this chapter we presented the evolution of empirical software engineering in
five iterations, i.e., (1) mid-1960s to mid-1970s, (2) mid-1970s to mid-1980s, (3)
mid-1980s to end of the 1990s, (4) the 2000s, and (5) the 2010s. We presented
the five iterations of the development of empirical software engineering mainly
from a methodological perspective and additionally took key papers, venues, and
books into account. Available books explicitly dedicated to empirical research
methodology in software engineering were covered in chronological order in a
separate section on recommended further readings. Furthermore, we discuss—
based on the chapters in this book—trends on contemporary empirical methods in
software engineering related to the plurality of research methods, human factors,
data collection and processing, aggregation and synthesis of evidence, and impact
of software engineering research.

Acknowledgements We thank all the authors and reviewers of this book on contemporary
empirical methods in software engineering for their valuable contribution.

References

Akiyama F (1971) An example of software system debugging. In: IFIP congress (1), vol 71. North-
Holland, Amsterdam, pp 353–359

Araújo MAP, Monteiro VF, Travassos GH (2012) Towards a model to support studies of software
evolution. In: Proceedings of the ACM-IEEE international symposium on empirical software
engineering and measurement (ESEM ’12). ACM, New York, pp 281–290

Arcuri A, Briand L (2014) A hitchhiker’s guide to statistical tests for assessing randomized
algorithms in software engineering. Softw Test Verification Reliab 24(3):219–250

Baros MO, Werner CML, Travassos GH (2004) Supporting risks in software project management.
J Syst Softw 70(1):21–35

Basili VR (1993) The experimental paradigm in software engineering. In: Experimental software
engineering issues: critical assessment and future directions. Springer, Berlin, pp 1–12

The Evolution of Empirical Methods in Software Engineering 21

Basili VR, Weiss DM (1984) A methodology for collecting valid software engineering data. IEEE
Trans Softw Eng SE-10(6):728–738

Basili VR, Zelkowitz MV (2007) Empirical studies to build a science of computer science.
Commun Assoc Comput Mach 50(11):33–37

Basili VR, Caldiera G, Rombach HD (1994) Experience factory. Encycl Softw Eng 1:469–476
Basili VR, Shull F, Lanubile F (1999) Building knowledge through families of experiments. IEEE

Trans Softw Eng 25(4):456–473
Basili V, Rombach D, Schneider K, Kitchenham B, Pfahl D, Selby R (2007) Empirical software

engineering issues. In: Critical assessment and future directions: international workshop,
Dagstuhl Castle, June 26–30, 2006, Revised Papers, vol 4336. Springer, Berlin

ben Othmane L, Jaatun MG, Weippl E (2017) Empirical research for software security: foundations
and experience. CRC Press, Boca Raton

Bertin E (1978) Qualitative and semiquantitative analysis. Springer, Berlin, pp 435–457
Biolchini MPNATG J (2005) Systematic review in software engineering: relevance and utility.

Technical report
Bird C, Murphy B, Nagappan N, Zimmermann T (2011) Empirical software engineering at

Microsoft research. In: Proceedings of the ACM 2011 conference on computer supported
cooperative work. ACM, New York, pp 143–150

Bird C, Menzies T, Zimmermann T (2015) The art and science of analyzing software data. Elsevier,
Amsterdam

Bjarnason E, Smolander K, Engström E, Runeson P (2016) A theory of distances in software
engineering. Inf Softw Technol 70:204–219

Boehm B, Rombach HD, Zelkowitz MV (2005) Foundations of empirical software engineering:
the legacy of Victor R. Basili. Springer, Berlin

Briand L, Bianculli D, Nejati S, Pastore F, Sabetzadeh M (2017) The case for context-driven
software engineering research: generalizability is overrated. IEEE Softw 34(5):72–75

Burkhard DL, Jenster PV (1989) Applications of computer-aided software engineering tools:
survey of current and prospective users. ACM SIGMIS Database Database Adv Inf Syst
20(3):28–37

Conradi R, Wang AI (2003) Empirical methods and studies in software engineering: experiences
from ESERNET, vol 2765. Springer, Berlin

Creswell JW, Creswell JD (2018) Research design: qualitative, quantitative, and mixed methods
approaches. SAGE, Los Angeles

Curtis B, Krasner H, Iscoe N (1988) A field study of the software design process for large systems.
Commun Assoc Comput Mach 31(11):1268–1287

de Mello RM, Da Silva PC, Travassos GH (2015) Investigating probabilistic sampling approaches
for large-scale surveys in software engineering. J Softw Eng Res Dev 3(1):8

Endres A, Rombach HD (2003) A handbook of software and systems engineering: empirical
observations, laws, and theories. Pearson Education, Old Tappan

Espinosa A, Kraut R, Slaughter S, Lerch J, Herbsleb J, Mockus A (2002) Shared mental
models, familiarity, and coordination: a multi-method study of distributed software teams. In:
Proceedings of ICIS 2002, p 39

Farzat F, Barros MO, Travassos GH (2019) Evolving JavaScript code to reduce load time. IEEE
Trans Softw Eng

Fink A (2003) The survey handbook. SAGE, Los Angeles
Glass RL (1994) The software-research crisis. IEEE Softw 11(6):42–47
Grant EE, Sackman H (1967) An exploratory investigation of programmer performance under on-

line and off-line conditions. IEEE Trans Hum Factors Electron 1:33–48
Guéhéneuc YG, Khomh F (2019) Empirical software engineering. In: Cha S, Taylor RN, Kang KC

(eds) Handbook of software engineering. Springer, Berlin, pp 285–320
Harman M, McMinn P, De Souza JT, Yoo S (2010) Search based software engineering: techniques,

taxonomy, tutorial. In: Empirical software engineering and verification. Springer, Berlin,
pp 1–59

Harrison W, Basili VR (1996) Editorial. Empir Softw Eng 1:5–10

22 M. Felderer and G. H. Travassos

Hey AJ, Hey T, Pápay G (2014) The computing universe: a journey through a revolution.
Cambridge University Press, Cambridge

Höst M, Regnell B, Wohlin C (2000) Using students as subjects—a comparative study of students
and professionals in lead-time impact assessment. Empir Softw Eng 5(3):201–214

IEEE (1990) 610.12-19919—IEEE standard glossary of software engineering terminology. IEEE,
New York

IEEE (2010) ISO/IEC/IEEE 24765:2010 systems and software engineering—vocabulary. IEEE,
Geneva

Ivarsson M, Gorschek T (2011) A method for evaluating rigor and industrial relevance of
technology evaluations. Empir Softw Eng 16(3):365–395

Johnson P, Ekstedt M (2016) The Tarpit–a general theory of software engineering. Inf Softw
Technol 70:181–203

Juristo N, Moreno AM (2001) Basics of software engineering experimentation. Springer, Berlin
Juristo N, Moreno AM (2003) Lecture notes on empirical software engineering, vol 12. World

Scientific, New Jersey
Kitchenham B (2004) Procedures for performing systematic reviews. Technical report
Kitchenham B, Brereton P (2013) A systematic review of systematic review process research in

software engineering. Inf Softw Technol 55(12):2049–2075
Kitchenham B, Charters S (2007) Guidelines for performing systematic literature reviews in

software engineering. Technical report
Kitchenham BA, Dybå T, Jorgensen M (2004) Evidence-based software engineering. In: Proceed-

ings of the 26th international conference on software engineering. IEEE Computer Society,
Silver Spring, pp 273–281

Kitchenham BA, Budgen D, Brereton P (2015) Evidence-based software engineering and system-
atic reviews, vol 4. CRC Press, Boca Raton

Knuth DE (1971) An empirical study of Fortran programs. Softw Pract Exp 1(2):105–133
Lethbridge TC, Sim SE, Singer J (2005) Studying software engineers: data collection techniques

for software field studies. Empir Softw Eng 10(3):311–341
Lucas J, Henry C, Kaplan RB (1976) A structured programming experiment. Comput J 19(2):136–

138
Lyu MR, et al (1996) Handbook of software reliability engineering, vol 222. IEEE Computer

Society Press, Los Alamitos
Malhotra R (2016) Empirical research in software engineering: concepts, analysis, and applica-

tions. Chapman and Hall/CRC, London
McGarry F, Pajerski R, Page G, Waligora S, Basili V, Zelkowitz M (1994) Software process

improvement in the NASA software engineering laboratory. Technical report, CMU/SEI-
94-TR-022. Software Engineering Institute/Carnegie Mellon University, Pittsburgh. http://
resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12241

Menzies T, Kocaguneli E, Turhan B, Minku L, Peters F (2014) Sharing data and models in software
engineering. Morgan Kaufmann, Amsterdam

Menzies T, Williams L, Zimmermann T (2016) Perspectives on data science for software
engineering. Morgan Kaufmann, Amsterdam

Molléri JS, Petersen K, Mendes E (2019) Cerse-catalog for empirical research in software
engineering: a systematic mapping study. Inf Softw Technol 105:117–149

Münch J, Schmid K (2013) Perspectives on the future of software engineering: essays in honor of
Dieter Rombach. Springer, Berlin

Myers GJ (1978) A controlled experiment in program testing and code walkthroughs/inspections.
Commun Assoc Comput Mach 21(9):760–768

Nagappan N, Ball T (2005) Use of relative code churn measures to predict system defect density.
In: Proceedings of the 27th international conference on software engineering. ACM, New York,
pp 284–292

Ogborn J, Miller R (1994) Computational issues in modelling. The Falmer Press, Basingstoke
Ostrand TJ, Weyuker EJ, Bell RM (2004) Where the bugs are. In: ACM SIGSOFT software

engineering notes, vol 29. ACM, New York, pp 86–96

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12241
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12241

The Evolution of Empirical Methods in Software Engineering 23

Petersen K, Feldt R, Mujtaba S, Mattsson M (2008) Systematic mapping studies in software
engineering. In: Ease, vol 8, pp 68–77

Petersen K, Vakkalanka S, Kuzniarz L (2015) Guidelines for conducting systematic mapping
studies in software engineering: an update. Inf Softw Technol 64:1–18

Pfleeger SL (1995) Experimental design and analysis in software engineering. Ann Softw Eng
1(1):219–253

Pfleeger SL, Kitchenham BA (2001) Principles of survey research: part 1: turning lemons into
lemonade. ACM SIGSOFT Softw Eng Notes 26(6):16–18

Porter AA, Selby RW (1990) Empirically guided software development using metric-based
classification trees. IEEE Softw 7(2):46–54

Rombach HD, Basili VR, Selby RW (1993) Experimental software engineering issues: critical
assessment and future directions. In: Proceedings of international workshop, Dagstuhl Castle,
September 14–18, 1992, vol 706. Springer, Berlin

Runeson P, Höst M (2009) Guidelines for conducting and reporting case study research in software
engineering. Empir Softw Eng 14(2):131

Runeson P, Höst M, Rainer A, Regnell B (2012) Case study research in software engineering. In:
Guidelines and examples. Wiley, London

Seaman CB (1999) Qualitative methods in empirical studies of software engineering. IEEE Trans
Softw Eng 25(4):557–572

Shadish WR, Cook TD, Campbell DT (2002) Experimental and quasi-experimental designs for
generalized causal inference. Mifflin and Company, Boston, MA

Sharp H, Dittrich Y, De Souza CR (2016) The role of ethnographic studies in empirical software
engineering. IEEE Trans Softw Eng 42(8):786–804

Shneiderman B, Mayer R, McKay D, Heller P (1977) Experimental investigations of the utility of
detailed flowcharts in programming. Commun Assoc Comput Mach 20(6):373–381

Shull F, Carver J, Travassos GH (2001) An empirical methodology for introducing software
processes. In: ACM SIGSOFT software engineering notes, vol 26. ACM, New York, pp 288–
296

Shull F, Mendoncça MG, Basili V, Carver J, Maldonado JC, Fabbri S, Travassos GH, Ferreira
MC (2004) Knowledge-sharing issues in experimental software engineering. Empir Softw Eng
9(1–2):111–137

Shull F, Singer J, Sjøberg DI (2007) Guide to advanced empirical software engineering. Springer,
Berlin

Shull FJ, Carver JC, Vegas S, Juristo N (2008) The role of replications in empirical software
engineering. Empir Softw Eng 13(2):211–218

Sjøberg DI, Dybå T, Jorgensen M (2007) The future of empirical methods in software engineering
research. In: 2007 Future of software engineering. IEEE Computer Society, Silver Spring, pp
358–378

Srinivasan K, Fisher D (1995) Machine learning approaches to estimating software development
effort. IEEE Trans Softw Eng 21(2):126–137

Staron M (2019) Action research in software engineering: theory and applications. Springer, Berlin
Stol KJ, Fitzgerald B (2015) Theory-oriented software engineering. Sci Comput Program 101:79–

98
Stol KJ, Fitzgerald B (2018) The ABC of software engineering research. ACM Trans Softw Eng

Methodol 27(3):11
Stol KJ, Ralph P, Fitzgerald B (2016) Grounded theory in software engineering research: a

critical review and guidelines. In: 2016 IEEE/ACM 38th international conference on software
engineering (ICSE). IEEE, Piscataway, pp 120–131

Swanson EB, Beath CM (1988) The use of case study data in software management research. J
Syst Softw 8(1):63–71

Theisen C, Dunaiski M, Williams L, Visser W (2017) Writing good software engineering research
papers: revisited. In: Proceedings of the 39th international conference on software engineering
companion. IEEE, Piscataway, pp 402–402

24 M. Felderer and G. H. Travassos

Thomke SH (2003) Experimentation matters: unlocking the potential of new technologies for
innovation. Harvard Business Press, Boston

Tian J (1995) Integrating time domain and input domain analyses of software reliability using
tree-based models. IEEE Trans Softw Eng 21(12):945–958

Travassos GH, Barros MO (2003) Contributions of in virtuo and in silico experiments for the
future of empirical studies in software engineering. In: 2nd workshop on empirical software
engineering the future of empirical studies in software engineering, pp 117–130

Travassos GH, dos Santos PSM, Mian PG, Neto ACD, Biolchini J (2008) An environment
to support large scale experimentation in software engineering. In: 13th IEEE international
conference on engineering of complex computer systems (ICECCS 2008). IEEE, Piscataway,
pp 193–202

Wagner S, Fernández DM, Felderer M, Vetrò A, Kalinowski M, Wieringa R, Pfahl D, Conte T,
Christiansson MT, Greer D, et al (2019) Status quo in requirements engineering: a theory and
a global family of surveys. ACM Trans Softw Eng Methodol 28(2):9

Widman L (1989) Expert system reasoning about dynamic systems by semi-quantitative simula-
tion. Comput Methods Prog Biomed Artif Intell Med 6(3):229–247

Wieringa R (2014a) Empirical research methods for technology validation: scaling up to practice.
J Syst Softw 95:19–31

Wieringa RJ (2014b) Design science methodology for information systems and software engineer-
ing. Springer, Berlin

Wohlin C, Aurum A (2015) Towards a decision-making structure for selecting a research design in
empirical software engineering. Empir Softw Eng 20(6):1427–1455

Wohlin C, Runeson P, Höst M, Ohlsson M, Regnell B, Wesslén A (2000) Experimentation in
software engineering: an introduction. Kluwer Academic Publishers, Norwell, MA

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2012) Experimentation in
software engineering. Springer, Berlin

Zelkowitz MV, Wallace DR (1998) Experimental models for validating technology. Computer
31(5):23–31

Zendler A (2001) A preliminary software engineering theory as investigated by published
experiments. Empir Softw Eng 6(2):161–180

Zimmermann T, Zeller A, Weissgerber P, Diehl S (2005) Mining version histories to guide software
changes. IEEE Trans Softw Eng 31(6):429–445

Part I
Study Strategies

Guidelines for Conducting Software
Engineering Research

Klaas-Jan Stol and Brian Fitzgerald

Abstract This chapter presents a holistic overview of software engineering
research strategies. It identifies the two main modes of research within the
software engineering research field, namely knowledge-seeking and solution-
seeking research—the Design Science model corresponding well with the latter.
We present the ABC framework for research strategies as a model to structure
knowledge-seeking research. The ABC represents three desirable aspects of
research—generalizability over actors (A), precise control of behavior (B), and
realism of context (C). Unfortunately, as our framework illustrates, these three
aspects cannot be simultaneously maximized. We describe the two dimensions
that provide the foundation of the ABC framework—generalizability and control,
explain the four different types of settings in which software engineering research
is conducted, and position eight archetypal research strategies within the ABC
framework. We illustrate each strategy with examples, identify appropriate
metaphors, and present an example of how the ABC framework can be used to
design a research program.

1 Introduction

Research methodology—the study of research methods—is receiving increasing
attention from software engineering (SE) researchers. Numerous books and papers
have been written on the topic (Easterbrook et al. 2008; Glass et al. 2002; Seaman
1999; Singer et al. 2000; Stol et al. 2016b; Wohlin et al. 2012). While these are very

K.-J. Stol (�)
Lero—The Irish Software Research Centre and School of Computer Science and Information
Technology, University College Cork, Cork, Ireland
e-mail: klaas-jan.stol@lero.ie

B. Fitzgerald
Lero—The Irish Software Research Centre and Department of Computer Science and
Information Systems, University of Limerick, Limerick, Ireland
e-mail: bf@lero.ie

© Springer Nature Switzerland AG 2020
M. Felderer, G. H. Travassos (eds.), Contemporary Empirical Methods in Software
Engineering, https://doi.org/10.1007/978-3-030-32489-6_2

27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32489-6_2&domain=pdf
http://orcid.org/0000-0002-1038-5050
http://orcid.org/0000-0001-9193-2863
mailto:klaas-jan.stol@lero.ie
mailto:bf@lero.ie
https://doi.org/10.1007/978-3-030-32489-6_2

28 K.-J. Stol and B. Fitzgerald

useful reference works, there are several issues with the current state of literature on
methodology. First, there is a strong emphasis on a limited set of specific methods,
in particular experimentation, case studies, and survey studies. Although these are
the three most used empirical methods (Stol and Fitzgerald 2018), many other
methods exist that have not received the same level of attention. A second issue
is that the field has no agreement on an overall taxonomy of methods, which is
somewhat problematic as methods vary in terms of granularity and scope. This
makes a systematic comparison of methods very challenging. Furthermore, new
methods are being adopted from other fields. Grounded theory, for example, has
gained widespread adoption within the SE literature in the last 15 years or so
(Stol et al. 2016b). (We note that, like many other methods used in SE, grounded
theory is not a “new” method, as it was developed in the 1960s by social scientists
Glaser and Strauss—however, its application is relatively new to the SE domain.)
Other techniques and methods that are relatively new to the software engineering
field include the repertory grid technique (Edwards et al. 2009) and ethnography
(Sharp et al. 2016). With new methods and techniques being adopted regularly, it
becomes challenging to understand how these new methods compare to established
approaches. Further, numerous sources present a range of research methods, but
these presentations are limited to “shopping lists” of methods: definitions without
a systematic comparison. Rather than maintaining a list of definitions of research
methods, a more systematic approach is needed that allows us to reason and position
existing methods, and new methods as they emerge. Hence, in this chapter we
present a taxonomy of research strategies.

There is an additional challenge within the software engineering research
community. Different methods have varying strengths and drawbacks, but it is
quite common to see unreasonable critiques of studies due to the research methods
employed. For example, a common complaint in reviews of case studies is that they
do not allow statistical generalizability. Similarly, experiments are often critiqued
on the basis that they involved computer science students solving “toy” problems,
thus rendering them unrealistic, and therefore not worthy of publication. Not
unreasonably, researchers may wonder which method, then, is the silver bullet that
can address all of these limitations?

The answer is none.
Instead of discussing research methods, we raise the level of abstraction and

have adopted the term research strategy. A research strategy can be considered a
category of research methods that have similar trade-offs in terms of generalizability
and the level of obtrusiveness or control of the research context—we return to these
two dimensions in a later section in this chapter. Previously, we outlined what we
have termed the ABC framework of research strategies and demonstrated how this
taxonomy is suitable for software engineering research (Stol and Fitzgerald 2018).
In this chapter we draw on this earlier work, elaborate on how the ABC framework
is related to Design Science, and provide general guidance for researchers to select
appropriate research strategies.

The remainder of this chapter is organized as follows. Section 2 starts with a
discussion of research goals, dimensions, and settings. This section presents the

Guidelines for Conducting Software Engineering Research 29

two modes of research, namely knowledge-seeking and solution-seeking research.
It outlines the ABC framework and positions it in relation to Design Science.
Section 3 discusses the eight archetypal research strategies that are represented
within the ABC framework. For each strategy, we discuss the essence of the strategy,
identify a metaphor for the strategy, and provide high-level guidelines. Because
research studies are never conducted in isolation, we discuss in Sect. 4 how the
ABC framework can be used to design research programs. Section 5 offers a list
of recommended readings. Finally, Sect. 6 concludes the chapter.

2 Foundations

This section introduces a number of concepts that together form the foundation
for the ABC framework. We first introduce the two modes of research in software
engineering: knowledge-seeking and solution-seeking research. These are two dis-
tinct modes representing different types of activities. This chapter focuses primarily
on one mode, namely knowledge-seeking research, but contrasts it with solution-
seeking research. In so doing, we draw a link to Design Science. Much has been
written on Design Science, which is why we do not discuss it in this chapter. Instead,
we refer interested readers to chapter “The Design Science Paradigm as a Frame for
Empirical Software Engineering” of this book.

We then return our attention to knowledge-seeking research and introduce
two key dimensions that are present in all knowledge-seeking studies: the level
of obtrusiveness and generalizability. Each research strategy represents a unique
combination along these two dimensions. This section ends with a discussion
of research settings, which refers to the environment in which the research is
conducted.

2.1 Knowledge-Seeking vs. Solution-Seeking Research

There are two modes of software engineering research: knowledge-seeking and
solution-seeking research. These two modes address different types of questions;
Wieringa (2009) has referred to these as knowledge questions and practical prob-
lems, respectively. Figure 1 presents how these two modes of research are positioned
within the wider context of SE research, the real world, and the SE knowledge base.

Knowledge-seeking studies aim to learn something about the world around us by
making observations in some type of environment—this includes the technologies,
organizations, and people in natural, contrived, or simulated (virtual) settings.
Knowledge-seeking research studies lead to new knowledge, which is typically
reported in research papers and books, thereby contributing to the software engi-
neering knowledge base, from which researchers may draw when designing new
studies.

30 K.-J. Stol and B. Fitzgerald

In solution-seeking studies, researchers design, create, or develop solutions for
a given software engineering challenge. The outcome of these studies includes
algorithms, models, and tools. Such solution-seeking studies may draw applicable
knowledge from the SE knowledge base, which might have originated in either
knowledge-seeking or solution-seeking research. Much research within the SE
domain is solution-seeking with resulting design artifacts. These artifacts represent
“design knowledge,” in that they embody knowledge on how a particular engineer-
ing problem can be solved—and this knowledge is added to the SE knowledge base
as well. Solution-seeking studies fit very well within a Design Science framework
(March and Smith 1995; Simon 1996), as discussed in more detail in chapter “The
Design Science Paradigm as a Frame for Empirical Software Engineering” of
this book. Implemented solutions can be deployed into the real world and their
effectiveness or utility can be studied using knowledge-seeking research. We note
that the research process for Design Science as proposed by Hevner et al. (2004)
does not align perfectly with solution-seeking research but claims a wider scope that
includes evaluation studies—we categorize the latter firmly as knowledge-seeking
studies.

As Wieringa (2009) has pointed out, knowledge-seeking and solution-seeking
research can be interlinked—nested, even—because knowledge is needed to design
solutions, and once designed, a researcher is interested in learning whether the solu-
tion works or how well it compares to other solutions. This linkage is represented
by the two white arrows in Fig. 1. In this chapter we are primarily concerned with
strategies to conduct knowledge-seeking research and refer readers interested in

Knowledge-
seeking research

ABC Framework

Solution-seeking
research

Design Science

Environment
Technology, Organizations, People

Observations

Design
knowledge

Deployment of
Solutions

Software Engineering Knowledge base

New
knowledge

Software
Engineering
Research

Theoretical
knowledge

Applicable
knowledge

Fig. 1 Knowledge-seeking and solution-seeking research: positioning the ABC framework and
Design Science

Guidelines for Conducting Software Engineering Research 31

Design Science to chapter “The Design Science Paradigm as a Frame for Empirical
Software Engineering”.

2.2 Two Dimensions of Research: Obtrusiveness
and Generalizability

In the remainder of this chapter we focus primarily on knowledge-seeking research.
Numerous methods can be used to “seek knowledge,” and as mentioned above, there
are numerous sources in the software engineering literature that provide lists of
methods. However, a systematic framework to position these methods in relation
to one another has been lacking. To address this, we draw on McGrath (1981,
1984, 1995), who organized the most common methods in the social sciences
into a methodological “circumplex” that positions eight research strategies. We
operationalized the circumplex for a software engineering context and have labeled
the result the “ABC framework” for reasons that will become clear. Below we
explain the key concepts of this framework.

The framework is organized along two dimensions: obtrusiveness and generaliz-
ability (see Fig. 2). The first dimension is concerned with how obtrusive the research

Less obtrusive research

More obtrusive research

Increasingly
more
universal
contexts and
systems

Increasingly
more specific
contexts and

systems

Fig. 2 Two dimensions in knowledge-seeking research

32 K.-J. Stol and B. Fitzgerald

is: to what extent does a researcher “intrude” on the research setting, or simply make
observations in an unobtrusive way. Research methods can vary considerably in the
level of intrusion and resulting level of “control” over the research setting. Clearly, a
study that seeks to evaluate the efficiency or performance of a tool requires a careful
study set-up, whereas a case study that seeks to describe how agile methods are
tailored at one specific company does not (Fitzgerald et al. 2013).

The second dimension is the level of generalizability of research findings. This
is a recurring concern in software engineering research, in particular in the context
of case studies. Indeed, exploratory case studies, and other types of field studies, are
limited in that the researcher cannot draw any statistically generalizable conclusions
from such studies. However, generalization of findings is not the goal of such
studies—instead, exploratory case studies and other types of field studies aim to
develop an understanding rather than generalization of findings across different
settings. Exploratory case studies can be used to theorize and propose hypotheses
about other similar contexts.

It is worth noting that a broader view of generalizability beyond that of the
statistical sample-based one has also been identified (e.g., Yin 2014; Lee and
Baskerville 2003). Yin identifies Level 1 inference generalizability which has two
forms. The first is the widely known statistical generalizability from a representative
sample to a population. He also identifies another Level 1 inference, namely from
experimental subjects to experimental findings, which is also quite relevant to
our research strategies. However, Yin also suggests a further Level 2 inference
category of analytic generalizability which involves generalizing to theory. This
could involve generalizing from a sample to a population, or, indeed, generalizing
from field study findings or experimental findings.

2.3 Research Settings

Research takes place in different settings, that is, the environment or context within
a researcher conducts research. McGrath (1984) identified four different types of
settings to conduct research. Building on the two dimensions described above, these
settings are positioned as four quadrants at a 45◦ angle with the main axes that
represent the two dimensions described above (see Fig. 3).

The first type of settings is natural settings, represented as Quadrant I. Natural
settings are those that naturally occur in the “field” and that exist independently from
the researcher conducting research; that is, settings that are host to the phenomenon
that a researcher wishes to study. For example, the “field” for a study on software
process improvement is likely to be a software development organization, whereas
the “field” can also be the online communication channels when the topic of study is
a particular open source software development project (Mockus et al. 2000)—after
all, for open source developers, these online channels are the (virtual) place where
they communicate and do work. Natural settings are always specific and concrete,
rather than abstract and general; hence, the quadrant representing natural settings is

Guidelines for Conducting Software Engineering Research 33

Less obtrusive research

More obtrusive research

Increasingly
more
universal
contexts and
systems

Increasingly
more specific
contexts and

systems

Q
u

ad
ran

t I
N

atu
ral S

ettin
g

s

Quadrant II
Contrived Settings

Q
u

ad
ra

n
t I

V

N
eu

tr
al

 S
et

ti
n

g
s

Quadrant IV
Non-empirical Settings

Fig. 3 Research settings in knowledge-seeking research

positioned on the right-hand side of Fig. 3. Researchers may still exert some level
of control over a natural setting (Quadrant I, above the x axis) or may simply make
empirical observations without manipulating the research setting (below the x axis).

In contrast to natural settings, contrived settings (represented as Quadrant II) are
created by a researcher for the study. In a software engineering research context,
contrived settings include laboratories with specific and dedicated equipment to
conduct an experiment on some algorithm or software tool. Contrived settings are
characterized by a significant degree of control by the researcher. This manifests as
the set-up of specialized equipment and measurement instruments that facilitate the
execution of a study. Many experimental studies within software engineering are
conducted in such contrived settings, whereby algorithms and tools are evaluated
for performance and precision. Contrived settings are created by a researcher to
either mimic some specific or concrete class of systems (the right-hand side of
Quadrant II), or a more abstract and generic class of systems (the left-hand side
of Quadrant II). Either way, a contrived setting is always specifically set up by a
researcher, implying the researcher has a high degree of control over the research—
hence, Quadrant II is positioned at the upper half of the x axis. A contrived setting is
essential to conduct the research—without measurement instruments and other tools

34 K.-J. Stol and B. Fitzgerald

such as the design of scenarios or tasks for human participants, the study could not
be performed.

There are, however, also studies that do not rely on a specific setting. Some
types of studies can take place in any setting, and so the setting is neutral—this
is represented in Fig. 3 as Quadrant III. Researchers may or may not manipulate the
research setting; in any case, because the research setting is neutral and not specific
to any concrete or specific instance, Quadrant III is positioned at the left-hand side
of the x axis.

Finally, the fourth type of setting is non-empirical, represented by Quadrant IV
in Fig. 3. That is, this type of research does not lead to any empirical observations.
Within software engineering, non-empirical research includes the development of
conceptualizations or theoretical frameworks, and computer simulations. While
software engineering as a field of study has not traditionally been strongly focused
on the development of theory, several initiatives have emerged in recent years to
address this (Stol and Fitzgerald 2015; Ralph 2015; Wohlin et al. 2015). Quadrant IV
is positioned at the bottom of Fig. 3 because the researcher does not “intrude” on any
empirical setting. Non-empirical research is typically conducted at the researcher’s
desk or in his or her computer, through the development of symbolic models and
computer programs that mimic real settings.

2.4 The ABC of Software Engineering Research

Having laid the foundations for the ABC framework, we now populate the grid
in Fig. 3 with eight archetypal research strategies. The result is what we have
termed the ABC framework (see Fig. 4). Several of the research strategies will sound
familiar; for example, field study, laboratory experiment, and sample study, which
includes survey studies. Other terms such as experimental simulation may be less
known within the SE field. Section 3 presents each of these eight strategies in detail.
We now turn our attention to the last aspect of the framework, which are the markers
A, B, and C.

The term “ABC” seeks to convey the fact that knowledge-seeking research
generally involves actors (A) engaging in behavior (B) in a particular context (C).
Within software engineering, actors include software developers, users, managers,
and when seeking to generalize over a “population,” can also include non-human
artifacts such as software systems, tools, and prototypes. Behavior can relate to
that of software engineers, such as coordination, productivity, motivation, and
also system behavior (typically involving quality attributes such as reliability and
performance). Context can involve industrial settings within organizations, open
source communities, or even classroom or laboratory settings.

In the context of our discussion on obtrusiveness and generalizability above,
researchers will want to maximize the generalizability of the evidence across
actor populations (A), while also exercising precise measurement and control over
behavior (B) being studied, in as realistic a context (C) as possible. However,

Guidelines for Conducting Software Engineering Research 35

Experimental
Simulations

Laboratory
Experiments

Judgment
Studies

Sample
Studies

Formal
Theory

Computer
Simulations

Field
Experiments

Field
Studies

Less
obtrusive
research

More
obtrusive
research

Increasingly more universal
contexts and systems

Increasingly more specific
contexts and systems

Quadrant II
Contrived research settings

Q
uadrant I

N
a

tu
ra

l re
se

a
rch

se
ttin

g
s

Quadrant IV
Non-empirical research settings

Q
ua

dr
an

t
III

N
e

u
tr

a
l r

e
se

a
rc

h
 s

e
tti

n
g

s

Maximum potential for
generalizability over Actors

Maximum potential for
realism of Context

Maximum
potential for
precision of

measurement of

A

C

B

Fig. 4 The ABC framework positions eight archetypal research strategies along two dimensions:
generalizability of findings and obtrusiveness of the research (adapted from McGrath 1984)

as McGrath (1981) pointed out, it is impossible to maximize all three goals
simultaneously. Increasing precision of measurement and control of behavior (B),
for example, inevitably intrudes on and reduces the naturalness and thus the realism
of the context (C). Conversely, if one seeks to preserve the realism of context
(C), this will reduce both the precision of measurement of behavior (B) and also
the degree of generalizability over actors (A). This is reflected in Fig. 4 which
identifies the research strategies that are best positioned to deliver for each of the
A, B, and C. Sample studies can achieve high generalizability (A) but they sacrifice
realism of context (C) and precision of behavior (B). Laboratory experiments allow
precise measurement and control of behavior (B) but this comes at the expense
of the realism of context (C) and generalizability (A). Field studies maximize the
realism of context (C) but this is at the expense of control of behavior (B) and
generalizability (A). Clearly, the full range of research strategies is required to
deliver across all three research goals and these need to be planned and managed.
The above also highlights the fact that certain strategies have inherent and intrinsic
weaknesses which cannot be overcome—thus field studies can never provide
generalizability, but that is neither their purpose nor strength, and this is not a

36 K.-J. Stol and B. Fitzgerald

limitation which can be overcome when using this research strategy. Therefore,
research studies adopting that strategy should not be criticized on that basis.

3 Strategies for Software Engineering Research

In this section we outline the eight archetypal research strategies that are positioned
in the ABC framework in Fig. 4. We discuss the research strategies as organized by
the quadrants discussed in Sect. 2.3, starting in Quadrant I. Table 1 summarizes
the discussion for each strategy, including a metaphor that might help in better
understanding the nature and essence of the research strategy, how that setting
manifests in software engineering research, and general suggestions as to when to
use that strategy.

3.1 Field Studies

Field studies are conducted in natural settings; that is, settings that pre-exist the
design of the research study. Field studies are best suited for studying specific
instances of phenomena, events, people or teams, and systems. This type of
research helps researchers to understand “what is going on,” “how things work,”
and tends to lead to descriptive and exploratory insights. Such descriptions are
useful because they provide empirical evidence of phenomena that are relevant
to software engineering practitioners, students, and researchers. The findings may
provide the basis for hypotheses, which can then be further studied using other
strategies. Typical examples in software engineering research are the case studies of
the Apache web-server (Mockus et al. 2000) and agile method tailoring (Fitzgerald
et al. 2013).

Field studies are relatively unobtrusive with respect to the research setting. The
setting for field studies is akin to a jungle, a natural setting that contains unexplained
phenomena, unknown tribes, and secrets that the researcher seeks to discover and
understand (see Fig. 5). Within a software engineering context, the researcher does
not manipulate the research setting, but merely collects data to describe and develop
an understanding of a phenomenon, a specific system, or a specific development
team. This is why field studies are best suited to offer a high degree of realism of
context as the researcher studies a phenomenon within its natural setting, and not
one that the researcher manipulated.

Typical research methods include the descriptive or exploratory case study, and
ethnography (Sharp et al. 2016), but archival studies of legacy systems also fall
within the category of field studies, for example, Spinellis and Avgeriou’s study
of the evolution of Unix’s system architecture (Spinellis and Avgeriou 2019). An
alternative metaphor for such archival studies is an archaeological site rather than
a jungle. Data collection methods for field studies include (but are not limited to)

Guidelines for Conducting Software Engineering Research 37

T
ab

le
1

R
es

ea
rc

h
st

ra
te

gi
es

in
so

ft
w

ar
e

en
gi

ne
er

in
g

St
ra

te
gy

M
et

ap
ho

r
Se

tti
ng

in
SE

W
he

n
to

us
e

Fi
el

d
st

ud
y

Ju
ng

le
:a

na
tu

ra
ls

et
tin

g
th

at
is

id
ea

lly
le

ft
un

to
uc

he
d,

w
he

re
cr

ea
tu

re
s

an
d

pl
an

ts
ca

n
be

ob
se

rv
ed

in
th

e
w

ild
w

ith
a

gr
ea

tl
ev

el
of

de
ta

il

So
ft

w
ar

e
en

gi
ne

er
in

g
ph

en
om

en
a

in
a

na
tu

ra
l

co
nt

ex
t,

su
ch

as
pa

ir
pr

og
ra

m
m

in
g

in
in

du
st

ry
,o

pe
n

so
ur

ce
so

ft
w

ar
e

pr
oj

ec
ts

,e
tc

.

To
un

de
rs

ta
nd

ph
en

om
en

a:
H

ow
do

es
it

w
or

k?
ho

w
an

d
w

hy
do

pr
oj

ec
tt

ea
m

s
do

w
ha

tt
he

y
do

?
w

ha
ta

re
ch

ar
ac

te
ri

st
ic

s
of

a
ph

en
om

en
on

?
M

ax
im

um
po

te
nt

ia
l

to
ca

pt
ur

e
a

re
al

is
tic

co
nt

ex
t

Fi
el

d
ex

pe
ri

m
en

t
N

at
ur

e
re

se
rv

e:
a

na
tu

ra
ls

et
tin

g
th

at
ha

s
so

m
e

le
ve

l
of

m
an

ip
ul

at
io

n,
e.

g.
,f

en
ce

s,
ba

rr
ie

rs
,c

lo
se

d-
of

f
se

ct
io

ns
,s

ec
tio

ns
tr

ea
te

d
w

ith
so

m
e

in
te

rv
en

tio
n

In
du

st
ry

or
op

en
so

ur
ce

so
ft

w
ar

e
pr

oj
ec

ts
or

te
am

s
w

ith
so

m
e

le
ve

lo
f

re
se

ar
ch

er
in

te
rv

en
tio

n;
in

te
rv

en
tio

ns
co

ul
d

in
cl

ud
e

di
ff

er
en

t
w

or
kfl

ow
s,

to
ol

s

To
m

ea
su

re
“e

ff
ec

ts
”

of
so

m
e

in
te

rv
en

tio
n

in
a

na
tu

ra
l

se
tti

ng
,a

ck
no

w
le

dg
in

g
la

ck
of

pr
ec

is
io

n
du

e
to

co
nf

ou
nd

in
g

fa
ct

or
s

th
at

ca
nn

ot
be

co
nt

ro
lle

d
fo

r
E

xp
er

im
en

ta
l

si
m

ul
at

io
n

Fl
ig

ht
si

m
ul

at
or

:a
co

nt
ri

ve
d

en
vi

ro
nm

en
t

to
le

t
pi

lo
ts

tr
ai

n
sp

ec
ifi

ca
lly

pr
og

ra
m

m
ed

sc
en

ar
io

s
to

ev
al

ua
te

th
ei

r
be

ha
vi

or
an

d
de

ci
si

on
s.

R
ea

lis
m

va
ri

es
de

pe
nd

in
g

on
re

so
ur

ce
s

R
ea

lis
m

va
ri

es
fr

om
cl

as
sr

oo
m

to
in

du
st

ry
se

tti
ng

s
de

si
gn

ed
by

re
se

ar
ch

er
s

w
ith

a
sp

ec
ifi

c
se

to
f

ta
sk

s
or

sc
en

ar
io

s
w

hi
ch

re
cr

ui
te

d
pa

rt
ic

ip
an

ts
ar

e
as

ke
d

to
pr

oc
es

s

To
ev

al
ua

te
/m

ea
su

re
be

ha
vi

or
of

pa
rt

ic
ip

an
ts

on
a

se
to

f
ta

sk
s

in
a

se
tti

ng
th

at
se

ek
s

to
re

se
m

bl
e

a
re

al
-w

or
ld

se
tti

ng

L
ab

or
at

or
y

ex
pe

ri
m

en
t

C
le

an
ro

om
/te

st
tu

be
:h

ig
hl

y
co

nt
ro

lle
d

se
tti

ng
al

lo
w

in
g

a
re

se
ar

ch
er

to
m

ak
e

m
ea

su
re

m
en

ts
w

ith
hi

gh
de

gr
ee

of
pr

ec
is

io
n

C
la

ss
ro

om
or

re
se

ar
ch

la
bo

ra
to

ry
se

tti
ng

s
w

ith
a

sp
ec

ifi
c

se
t-

up
an

d
in

st
ru

m
en

ta
tio

n
to

m
ea

su
re

,e
.g

.,
pe

rf
or

m
an

ce
of

al
go

ri
th

m
s

or
to

ol
s

To
m

ak
e

hi
gh

-p
re

ci
si

on
m

ea
su

re
m

en
ts

,e
.g

.,
fo

r
co

m
pa

ri
ng

di
ff

er
en

t
al

go
ri

th
m

s
an

d
to

ol
s.

M
ax

im
um

po
te

nt
ia

l
fo

r
pr

ec
is

io
n

of
m

ea
su

re
m

en
t

Ju
dg

m
en

t
st

ud
y

C
ou

rt
ro

om
:n

eu
tr

al
se

tti
ng

to
pr

es
en

t
ev

id
en

ce
/e

xh
ib

its
to

a
ca

re
fu

lly
se

le
ct

ed
pa

ne
l,

as
ki

ng
th

em
fo

r
a

re
sp

on
se

(e
.g

.,
gu

ilt
y)

O
nl

in
e

or
of

fli
ne

se
tti

ng
to

so
lic

it
in

pu
tf

ro
m

ca
re

fu
lly

se
le

ct
ed

ex
pe

rt
s

af
te

r
pr

es
en

tin
g

th
em

w
ith

a
qu

es
tio

n
on

a
to

pi
c

or
an

ex
hi

bi
t(

e.
g.

,a
ne

w
to

ol
)

To
ge

ti
np

ut
(“

ju
dg

m
en

t”
)

fr
om

ex
pe

rt
s

on
a

gi
ve

n
to

pi
c,

w
hi

ch
re

qu
ir

es
in

te
ns

e
st

im
ul

us
/r

es
po

ns
e

co
m

m
un

ic
at

io
n

Sa
m

pl
e

st
ud

y
R

ef
er

en
du

m
:a

pr
oc

es
s

to
co

lle
ct

a
sa

m
pl

e
of

da
ta

to
se

ek
ge

ne
ra

liz
ab

ili
ty

ov
er

th
e

po
pu

la
tio

n.
U

nu
sa

bl
e

(i
nv

al
id

)
da

ta
m

us
tb

e
fil

te
re

d
ou

tb
ef

or
e

an
al

ys
is

O
nl

in
e

su
rv

ey
s

co
nd

uc
te

d
am

on
g

a
po

pu
la

tio
n

of
(t

yp
ic

al
ly

)
de

ve
lo

pe
rs

,o
r

da
ta

co
lle

ct
ed

fr
om

a
so

ft
w

ar
e

re
po

si
to

ry
.D

at
a

m
us

tb
e

ch
ec

ke
d

be
fo

re
an

al
ys

is

To
an

sw
er

ge
ne

ra
liz

ab
ili

ty
qu

es
tio

ns
,i

nc
l.

ch
ar

ac
te

ri
za

tio
n

of
a

da
ta

se
t,

co
rr

el
at

io
n

st
ud

ie
s.

M
ax

im
um

po
te

nt
ia

l
fo

r
ge

ne
ra

liz
ab

ili
ty

ov
er

fin
di

ng
s

Fo
rm

al
th

eo
ry

Ji
gs

aw
pu

zz
le

:
at

te
m

pt
to

m
ak

e
se

ns
e

of
,i

nt
eg

ra
te

,
or

fit
in

di
ff

er
en

t
pi

ec
es

in
to

a
co

he
re

nt
“p

ic
tu

re
”

G
iv

en
a

se
to

f
re

la
te

d
ob

se
rv

at
io

ns
an

d
ev

id
en

ce
re

ga
rd

in
g

a
to

pi
c

of
in

te
re

st
,a

im
to

fin
d

co
m

m
on

pa
tte

rn
s

an
d

co
di

fy
th

es
e

as
a

th
eo

ry

To
pr

ov
id

e
a

fr
am

ew
or

k
th

at
ca

n
de

sc
ri

be
,

ex
pl

ai
n,

or
pr

ed
ic

tp
he

no
m

en
a

or
ev

en
ts

of
in

te
re

st
,w

hi
le

re
m

ai
ni

ng
co

ns
is

te
nt

(g
en

er
al

iz
ab

le
)

ac
ro

ss
di

ff
er

en
t

ev
en

ts
w

ith
in

so
m

e
bo

un
da

ry
C

om
pu

te
r

si
m

ul
at

io
n

W
ea

th
er

fo
re

ca
st

in
g

sy
st

em
:m

od
el

of
th

e
re

al
w

or
ld

is
pr

og
ra

m
m

ed
,c

ap
tu

ri
ng

as
m

an
y

pa
ra

m
et

er
s

as
po

ss
ib

le
.S

ce
na

ri
os

ar
e

ru
n

to
m

ak
e

in
fo

rm
ed

pr
ed

ic
tio

ns
,b

ut
ca

nn
ot

an
tic

ip
at

e
ev

en
ts

no
tp

ro
gr

am
m

ed
in

th
e

si
m

ul
at

io
n

A
co

m
pu

te
r

pr
og

ra
m

th
at

si
m

ul
at

es
a

re
al

-w
or

ld
ph

en
om

en
on

,c
ap

tu
ri

ng
as

m
an

y
im

po
rt

an
t

pa
ra

m
et

er
s

as
po

ss
ib

le
.P

ro
gr

am
di

ff
er

en
t

sc
en

ar
io

s
to

“r
un

”
to

ex
pl

or
e

ra
ng

es
of

,a
nd

in
te

ra
ct

io
ns

be
tw

ee
n,

pa
ra

m
et

er
s

of
in

te
re

st

To
de

ve
lo

p
an

un
de

rs
ta

nd
in

g
of

ph
en

om
en

a
an

d
se

tti
ng

s
th

at
ar

e
to

o
co

m
pl

ex
or

ex
pe

ns
iv

e
to

cr
ea

te
in

th
e

re
al

w
or

ld

38 K.-J. Stol and B. Fitzgerald

Fig. 5 Field studies are conducted in pre-existing settings that are not manipulated by a researcher,
to study and observe natural phenomena and actors. Image credits: Public domain. Source:
maxpixel.net (no date)

interviews, document and archival study, or mining repositories—Lethbridge et al.
(2005) have discussed a variety of data collection methods and their trade-offs for
field studies.

Guidelines for Field Studies
• Use the field study strategy to study phenomena in their natural setting, to

understand “what is going on,” or “how things work.” They provide good
opportunities to develop substantive theory. Typical methods include the
exploratory case study, ethnography, and archival study.

• Field studies require a high level of attention and engagement with the
subject and setting. Audio and video recording may help to capture details
for later analysis, but these media may affect the behavior of human actors.

• Success of field studies depends on good access to the relevant people and
artifacts, which can be particularly challenging within corporate settings.
An internal “champion” or maintaining good relationships is key.

• To generalize findings from field studies, use complementary strategies
such as formal theory and sample studies.

Guidelines for Conducting Software Engineering Research 39

3.2 Field Experiments

Field experiments are also conducted in natural settings, but unlike field studies,
this type of study involves some type of manipulation, thus imposing a greater
degree of control. That is, the researcher introduces some form of experimental
set-up by making changes to some variables of interest. After making such changes,
the researcher may observe some effect. If field studies are conducted in a “jungle,”
then the setting for a field experiment is more like a nature reserve: a dedicated
area that may be very similar to a jungle, but the researcher can introduce specific
changes to study different aspects within the reserve. Figure 6 shows a jungle with
specific patches of trees cut down; the purpose of this study was to study the effects
of different types of forest fragmentation on wind dynamics and seed dispersal
(Damschen et al. 2014).

It is important to remember that field experiments take place in natural settings,
which should be clearly distinguished from contrived settings that provide the
setting for experimental simulations and laboratory experiments, discussed later.

A range of methods are available to conduct field experiments. These are not
limited to the traditional controlled experiment that separates a population of actors
into two or more different groups so as to make comparisons. Experimentation also
occurs when a researcher adopts the action research method; with action research, a
researcher follows a recurring cycle of making changes and evaluating the results of
those changes. While not a randomized controlled experiment, action research can
still be considered a form of experimentation.

Ebert et al. (2001) conducted a field experiment to investigate three factors that
might impact the cost of rework in distributed software development: (1) the effect

Fig. 6 Field experiments
involve the manipulation of
an otherwise pre-existing
natural setting to facilitate
observation and measurement
in order to collect data. Image
source: Damschen et al.
(2014), used with permission Connected

patch

Unconnected
rectangle patch

Unconnected
winged patch

Unconnected
winged patch

Corridor
90°270°

Wing

40 K.-J. Stol and B. Fitzgerald

of co-location on the efficiency and effectiveness of defect detection; (2) the effect
of coaching on software quality, and (3) the effect of changes to the development
process on teamwork, and continuous build on management of distributed project.
To evaluate these effects, Ebert et al. used project data that the company had
gathered for several years.

Despite careful measurement of a range of parameters, certain factors are hard
to measure, such as “culture.” Ebert et al. divided the projects into different sets,
e.g., “within one culture (i.e., Europe).” While we can certainly generalize that
there are common attributes across different European cultures, there is no single
Europe culture—each European culture is quite distinct, with significant changes
even between neighboring countries such as Ireland and the UK, or the Netherlands
and Germany. Furthermore, each of the projects in the data set used by Ebert et
al. will undoubtedly have had specific obstacles, such as particularly challenging
technology or changing requirements, and strengths such as particularly talented
staff. These factors are very hard, if not impossible to capture, reducing the precision
of measurement.

Guidelines for Field Experiments
• Use the field experiment strategy to evaluate the effects of manipulations

within realistic settings.
• Field experiments require a high degree of prior investment in design and

execution of data collection, typically in corporate settings.
• Contextual factors must be recorded carefully, so that they can be consid-

ered in the analysis.
• Use formal theory or sample studies to seek a higher degree of generaliz-

ability. Computer simulations can be used to model a complex real-world
system to explore key parameters and their interactions when a field
experiment would be too costly.

3.3 Experimental Simulations

Experimental simulations combine some elements of the field experiment strategy
and laboratory experiments (discussed below). A key difference with field experi-
ments is that experimental simulations take place in contrived settings. That is, the
research environment is artificial and is purposely designed to conduct the study—
before and beyond the study, it does not exist. While this makes the experimental
simulation less realistic, it also gives the researcher opportunities to make more
precise measurements and observations, because participants can be asked to do
specifically designed tasks that may not be part of their daily routine. This increases
the level of control even further with respect to field experiments. While we
compared the field experiment to a nature reserve, the experimental simulation is

Guidelines for Conducting Software Engineering Research 41

Fig. 7 Flight simulators are experimental simulations that facilitate training and study of the
behavior of pilots in pre-programmed scenarios. Image credits: SuperJet International, distributed
under CC BY-SA 2.0. Source: SuperJet International (2011)

more akin to a greenhouse, which mimics a warmer climate. The researcher is still
interested in natural processes (e.g., how do flora flourish), but the setting in which
that process is observed is artificially created for that purpose.

The greenhouse metaphor links well to the jungle and nature reserve metaphors,
but another useful metaphor for the experimental simulation is a flight simulator (see
Fig. 7). Within the flight simulator, specific events can be introduced, such as heavy
storms and rainfall. Pilots in training would be asked to perform as they would in a
real aircraft, but the research setting is considerably easier and cheaper to plan.

The level of realism that is achieved in experimental simulations can vary
considerably, just like flight simulators. The latter can vary from low-cost set-ups
consisting of a standard PC, a budget flight yoke, and rudder pedals to high-
end, full motion flight simulators used by professional pilots that might cost
millions of dollars. The tasks that participants are asked to perform in experimental
simulation may also vary in realism. While such tasks are part of normal daily life
of the participants in field experiments, in experimental simulations participants
are recruited and invited to perform certain tasks designed by the researcher. The
process that the researcher wishes to study is simulated, facilitating systematic
measurement and comparison. The level of realism of the task can be very high,
such as debugging a program within a professional setting (Jiang et al. 2017), or it
can be as contrived as producing and trading colored shapes, such as blue squares
and red circles (Bos et al. 2004).

42 K.-J. Stol and B. Fitzgerald

Jiang et al. (2017) conducted an experimental simulation to investigate whether
developers conduct impact analysis during debugging. Their contrived setting
consisted of a specifically set-up work station, equipped with the SimpleScreen-
Recorder recording software. Videos were captured of nine professional developers
who had been given two bug reports. The bug reports had been identified by the
researchers in two specific applications (PdfSam and Raptor) and were selected
because these bugs had already been fixed at the time of the study. While the task at
hand and the study setting were contrived (designed by the researchers), both were
quite realistic. However, the realism of the study was reduced as the researchers set
a time limit for some of the participants and offered a suggested fix to the defects.

In contrast, Bos et al. (2004) focused on collaboration between co-located and
distributed individuals, and the task at hand was simply a mechanism to engage
participants. The focus of the study was therefore on the emergent behavior of the
participants, rather than how a specific task was performed as was the case for
the Jiang et al. study described above. Therefore, to ensure that the participants
understood the task at hand, and to minimize any distraction that might ensue from
introducing complex tasks, the researchers chose to design trivial tasks.

Guidelines for Experimental Simulations
• Use experimental simulations to find an appropriate balance between

measuring emergent behavior and achieving realism.
• Choose an appropriate level of realism of the research setting, balancing

between cost and effort of setting up the research setting and the need for
realism.

• If the research focus is on participant behavior that is not dependent on a
specific type of task, then minimize the complexity of the task.

• If the research focus is on the behavior in relation to a specific type of task,
then the task should exhibit a high level of realism.

3.4 Laboratory Experiments

The laboratory experiment is a strategy that offers maximum opportunity to control
the research setting. Like experimental simulations, laboratory experiments take
place in contrived settings that are created by the researcher. Laboratory experiments
involve a careful manipulation or initialization of variables and settings that give
the researcher the maximum opportunity to take precise measurements of actors’
behavior, whether these are human participants or software systems.

If the experimental simulation is akin to a greenhouse, then we can compare the
laboratory experiment to a test tube or cleanroom (see Fig. 8). Both a greenhouse
and a test tube provide a contrived setting, but the difference lies in the compromise

Guidelines for Conducting Software Engineering Research 43

Fig. 8 Laboratory experiments are conducted in settings contrived by the researcher to allow for
a maximum level of precision of measurement. Image credits: Public domain. Source: Tyndall
(1896)

that the researcher makes between the level of control over the setting, on the one
hand, and, the level of realism, on the other hand.

Laboratory experiments can be conducted with human participants or with
programmed “actors”: algorithms, prototype tools, etc. A laboratory experiment
with human participants usually involves a treatment and a control group, and
the researcher aims to measure with a high degree of precision to observe any
differences. A good example of this is a study by Niknafs and Berry (2017), who
investigated the impact of domain knowledge on the effectiveness of requirements
engineering activities. Niknafs and Berry conducted two controlled experiments
involving a total of 40 teams of three members each. The participants were all
technological students (computer science, software engineering, and other technical
areas). Their article offers a detailed presentation of the experimental set-up,
procedures, and variables that they measured.

Programmed actors are systems running specific algorithms or other software
applications that are experimentally evaluated. This approach is extremely common
in software engineering research studies, because a significant portion of SE studies

44 K.-J. Stol and B. Fitzgerald

offer new solutions in the form of new algorithms and tools which are subsequently
evaluated (Stol and Fitzgerald 2018).

It is worth noting that many software engineering papers characterize the
laboratory experiments they report as “real-world case studies,” but this is a
misrepresentation. The mere fact that a realistic system or operational data is used
does not mean that such studies exhibit a higher degree of realism—such studies
are still laboratory experiments, not field experiments or field studies. While there is
clearly value in engaging with industry partners to access their data or source code
for an experimental study, we observe that such studies are often misrepresented,
presumably to convince the reader of the relevance and rigor of the work.

An example of a laboratory experiment using programmed actors is Li et al.
(2017)’s evaluation of search algorithms. Li et al. proposed a new fitness function
to address an optimization problem and evaluated the newly proposed algorithm
with commonly used search algorithms. Li et al. offer a detailed description of
the experimental set-up and the statistical analyses that were conducted on the
collected data. This study clearly took place in a setting specifically contrived,
aiming to maximize the precision of measurement so as to be able to conclude which
algorithm performed best. Such comparative studies are very common in software
engineering and are sometimes referred as benchmarking studies (Sim et al. 2003).

Guidelines for Laboratory Experiments
• Use laboratory experiments to achieve a high level of precision in measur-

ing variables.
• Laboratory experiments may involve either students or professionals; the

use of professionals does not make a study a field experiment per se.
• Laboratory experiments may involve the use of data or systems that come

from natural settings, but this does not make such studies field experiments.
• To address the limitation of a lack of realism, laboratory experiments can

be complemented with experimental simulations and field experiments.

3.5 Judgment Studies

Judgment studies are positioned next to the laboratory experiment. The latter allow
maximum precision of measurement in a research setting that is fully under the
control of the researcher, who plans and introduces stimuli into the research setting.
Judgment studies also involve stimuli introduced by the researcher, but rather than
observing or measuring behavior, the researcher is interested in the responses of
the participants. Judgment studies take place in neutralized settings—the researcher
does not need a contrived setting, but can conduct the study in any setting that
is available. The primary consideration is that participants are not distracted. For
example, if a judgment study takes place in settings that make the participants

Guidelines for Conducting Software Engineering Research 45

Fig. 9 Judgment studies are usually conducted in neutral settings so that participants can focus
on the study—much like how a case is presented in a courtroom. Image credits: Fayerollinson CC
BY-SA 3.0. Source: Fayerollinson (2010)

uncomfortable due to factors such as temperature or noise, then this may inhibit
completion of the study. Hence, the researcher may actively seek to neutralize the
setting—much like a courtroom (see Fig. 9). Rather than manipulating the study
setting, the researcher conducts the study by carefully and systematically selecting
appropriate participants (or “judges”).

Judgment studies commonly include Delphi studies and focus group studies.
These methods involve systematic and purposively selected experts whom the
researcher deems to be suitable for the study. These studies usually do not involve
a large number of participants—that is, judgment studies do not seek statistical
generalizability over the population of which the experts are representatives, but
rather generalizability over the experts’ responses (McGrath 1984).

One example of a judgment study is Krafft’s (2016) Delphi study that inves-
tigated how open source developers pick their tools when they contribute to a
large project and thus where tools must be compatible. Krafft’s study involved a
systematic selection of 24 experts within the Debian open source community, which
were asked for their input in three different rounds. Each round, the data were
analyzed, aggregated, and sent back to the panel to solicit further input. The setting
of this study was not important; in fact, the study was conducted mostly via email
interaction, and so the experts were simply based in the comfort of their own home
or office space. Rather than generalizing over the population of OSS developers,
Krafft sought to develop a generalizable answer to his question, namely how do
Debian developers select their tools.

There are of course studies that seek generalizability over a population. These
are sample studies, and we discuss them next.

46 K.-J. Stol and B. Fitzgerald

Guidelines for Judgment Studies
• Judgment studies represent a compromise between a sample study (gen-

eralizability) and a laboratory experiment (precision of measurement): use
judgment studies to seek generalizability over participants’ responses, not
the participants themselves.

• Judgment studies rely on a systematic sampling rather than representative
sampling; careful selection of experts is essential.

• Findings from a judgment study can be evaluated through large-scale
sample studies, or categories of observed behavior or responses can be
further studied in realistic settings through field studies.

3.6 Sample Studies

Sample studies involve the collection of data from a population, whether that
population consists of human actors or of system artifacts. Surveys are useful to
seek generalizability over a population by studying a sample of that population. For
example, researchers who wish to learn more about open source software developers
could conduct a sample study among developers active on public GitHub projects.
Sample studies are also discussed in chapter “Challenges in Survey Research” of
this book.

Like judgment studies, sample studies do not depend on a specific research
setting that is set up by a researcher. The setting plays no role in the research; no
specific setting is required to conduct sample studies.

We compare a sample study to a referendum or election (see Fig. 10), with the
goal of collecting a relatively small number of data points from a large number
of actors. We use the abstract term “actor” here, because actors may be human
participants (as in a referendum), but sample studies are also widely used in SE
research by collecting data from software repositories. In sample studies that collect
data from human respondents, a critical issue is whether or not a sufficiently large
sample can be collected, because response rates tend to be limited. Rates of less
than 30% are not unusual and this can make survey research quite challenging. (We
note that it is not possible to calculate a response rate if the size of the target group
is unknown).

Sample studies have high potential to achieve generalizability of findings to a
larger population of actors, whether they be software developers or software system
artifacts such as bug reports. However, sample studies are inherently limited in
that they offer limited precision in measuring behavior, either human or system
behavior. The reason for this limitation is that the researcher collects whatever
data he or she can get. For example, even a carefully designed survey instrument
aimed at collecting data from software professionals may still be misinterpreted
by respondents, or respondents may accidentally or deliberately skip questions.

Guidelines for Conducting Software Engineering Research 47

Fig. 10 Sample studies with human participants are like referendums or elections; the amount
of information gathered per participant is limited, and achieving a good response rate can be
challenging if the population has low interest. Image credits: Australian Electoral Commission,
distributed under CC BY 3.0. Source: Australian Electoral Commission (2016)

The researcher’s control over this is limited. When collecting data from a software
repository, the researcher can only gather the data that is stored, which is not always
what the researcher would like to have. Furthermore, data in software repositories
may not be consistent or correct. Indeed, many studies have investigated events
on the popular GitHub.com development platform, but mining that repository is
not free from perils (Kalliamvakou et al. 2016). In some cases, database tables and
fields may be ambiguously named and labeled, leading to misinterpretations by the
researcher relying on the data for analysis.

Sample studies are among the most common studies in software engineering
(Stol and Fitzgerald 2018), though the type of data analysis can vary widely.
Quantitative data analysis types vary from descriptive to inferential (Russo and
Stol 2019). Storey et al. (2017)’s sample study of GitHub developers sought to
understand developers’ use of communication channels and used a descriptive
analysis. An example of a sample study using inferential analysis is Sharma and Stol
(2019)’s study of onboarding of software professionals that sought to understand
what makes for a successful onboarding experience of new hires.

An example of a sample study of software development artifacts is Stol et al.
(2017)’s analysis of crowdsourcing contests. This study investigated the potential
influence of a number of factors on the interest and participation of members of the
crowd in contests, based on a sample of over 13,000 crowdsourcing contests on the
Topcoder platform.

48 K.-J. Stol and B. Fitzgerald

Guidelines for Sample Studies
• Use sample studies to achieve maximum generalizability over a population,

whether that is a population of human actors (e.g., software developers,
managers) or software actors or artifacts (e.g., bugs and bug fixes, apps,
projects).

• The number of data points per subject is usually limited, and so the
questions must be carefully selected.

• As there is often no direct contact between the researcher and human
respondents, questions must be unambiguous.

• When relying on archival data from software repositories, the data comes
“as-is”; sanity checks must be conducted to ensure consistency.

• Generalizability is limited by the sample that is studied.

3.7 Formal Theory

Formal theory is a strategy that aims to seek generalizability, not through empir-
ical methods, but rather through the specification of symbolic representations of
variables and constructs (Runkel and McGrath 1972). Therefore, formal theory
takes place in a non-empirical setting. Formal theory development typically involves
extensive reviews of prior research in order to identify, distill, and codify recurring
patterns. Thinking in terms of abstractions and aiming to identify theoretical
relationships is one of the most important activities in research. However, the
amount of prior research may be quite scarce, and indeed, theories can be proposed
on little more than a rich imagination and mental models that develop over time.
The importance of theory development is illustrated by Nisbett (2005, p. 4),
who described how the early Mesopotamian and Egyptian civilizations made
systematic (empirical) observations, but only the Greeks made significant progress
by explaining their observations in terms of the principles underpinning them—that
is, by reasoning what might link or cause those observations.

A major role of theory is to inform future research, as it motivates further studies
to evaluate hypothesized relationships—this is true both for the periodic table of
elements and for Einstein’s theory of relativity. Both theories allowed predictions to
be made which could only be empirically verified many decades later.

The process of formal theory is like making a jigsaw puzzle (see Fig. 11).
When you first open up the box, there may be many pieces and it may not be
readily clear as to how they all fit together.1 This is the case in many areas of
software engineering: much empirical research exists, but the field lacks theories

1This is also the point where the jigsaw puzzle metaphor breaks down, as jigsaw puzzles tend to
come in a box with the solution printed on the cover—researchers do not have such luxury.

Guidelines for Conducting Software Engineering Research 49

Fig. 11 Formal theory can be similar to making a jigsaw puzzle: lots of pieces, and a challenge to
put it all together in a coherent way. Image credits: Public domain

that can explain and integrate these individual studies. Of course, theories may also
be developed without much initial empirical evidence. Einstein’s proposed theory
of relativity was not grounded in any empirical observations, but rather through
“sheer genius, fully formed from the mind of the theorist” (Hassan 2015). Empirical
evidence for Einstein’s theory has been gathered since.

Both the theory of relativity and the periodic table of elements are “general” or
“grand” theories, as they are “all embracing, unified theories” that are relatively
unbounded (Hassan 2015). Formal theory may refer to grand theory, but may also
refer to middle range theories—those that are more limited in scope and context
(Bourgeois 1979).

It is worth clarifying how grounded theory (GT) relates to formal theory as
a research strategy. GT is an approach by which the researcher makes empirical
observations, typically through field studies, and in parallel generates theory that
is grounded in those observations. Barney Glaser, one of the two creators of GT
together with Anselm Strauss (Glaser and Strauss 1967), explicitly refers to such
theory as “substantive theory” distinguishing it from “formal grounded theory”
(Glaser 1978). Glaser (1978, p. 52) describes the difference between substantive
and formal grounded theory as:

The former is about a specific area, e.g., route milkmen, the latter about a concept in its full
generality: e.g., cultivating.

Thus, the distinction that Glaser draws here is that substantive theory explains
some specific phenomenon (e.g., a milkman cultivating relationships with his
customers), while formal theory is at a higher level of abstraction (e.g., the act of
cultivating relationships in any type of setting).

50 K.-J. Stol and B. Fitzgerald

Formal theory is positioned on the left-hand side of the ABC framework, because
it refers to those theories that have a sufficient degree of generalizability and are
not intrinsically linked to any substantive domain. Using the example above, a
substantive theory of a milkman cultivating relationships with his customers would
not exhibit sufficient generalizability, while a formal grounded theory explaining the
general act of cultivating relationships would do so.

In software engineering, much “theory” is what we have termed “micro-theories”
(Stol et al. 2016a)—and what Merton would call “the minor but necessary working
hypotheses that evolve in abundance during day-to-day research (Merton 1968, p.
39). Other forms of theory can also be observed, such as theoretical frameworks,
models, or other types of conceptualizations (Stol and Fitzgerald 2015). The
traditional forms of theories found in the social sciences (variance, process theory)
are less common in software engineering research, though this has started to change
in recent years. While “formal theory” (i.e., general theory) by Glaser’s description
is not common in software engineering, we believe generalizable conceptualizations
should still be an ambition of the community.

One example of what we would classify as formal theory is Ralph’s theory of
Sensemaking, Coevolution, and Implementation (SCI) (Ralph 2015). SCI seeks to
“replace lifecycle depictions of the development process” because the latter suggest
software design as a linear sequence of phases and label these phases as mutually
exclusive activities. SCI offers a new perspective that researchers and educators may
adopt to study and teach software development processes.

Arguably another form of substantive theory is design artifacts that are the result
of the Design Science paradigm. Such products are also “vehicles” of knowledge.
Runeson et al. discuss the Design Science paradigm in software engineering
research in chapter “The Design Science Paradigm as a Frame for Empirical
Software Engineering” of this book.

Guidelines for Formal Theory
• Develop formal theory when an area of interest attracts a high number of

empirical studies without an overall framework to integrate the findings.
• Formal theory is also a useful starting point before conducting any empiri-

cal studies as it helps to focus and identify important research questions or
hypotheses, or to predict observations (e.g., the periodic table of elements).

• Formal theory can be developed based on previous empirical observations
(for example, through field studies), substantive theory (identified through,
for example, literature reviews), and computer simulations.

Guidelines for Conducting Software Engineering Research 51

3.8 Computer Simulations

A computer simulation is a fully closed system that implements a concrete
theoretical model. One type of computer simulation that people living in rainy
climates can appreciate is weather forecasting systems (see Fig. 12). Predicting the
weather is done by means of highly complex computer models that are carefully
configured and calibrated using a wide range of parameters. By considering a series
of scenarios, the most likely scenario will then be the basis for any forecasts.
These weather forecasting systems are completely closed, in that all parameters
and equations are fully programmed. The values of these parameters may be based
on values empirically observed through a range of sensors throughout the country,
but once these are entered into the simulation, there is no further interaction with the
outside world—computer simulations do not make any new empirical observations.
Or, as McGrath stated succinctly: “no new behavior transpires during the run of
the simulation” (McGrath 1995, p. 159). This is one key characteristic that sets
computer simulations apart from experimental simulations.

Fig. 12 Computer simulations are like weather forecasting systems. Computer models take
empirical observations and a set of complex mathematical models to run scenarios. The result
is a forecast: information, but not empirically gained, and may be imprecise. Image credits: Public
domain

52 K.-J. Stol and B. Fitzgerald

Because computer simulations do not make any empirical observations, the
results from a simulation should be treated with care. Any predictions or results
coming from a computer simulation might be wrong—while weather forecasting
computers can make impressively precise predictions, occasionally they are still
wrong. This is because computer simulations are based on models of reality, not
reality itself.

A good example of the use of computer simulations is a study to evaluate
task allocation strategies in distributed software development (Setamanit 2007;
Setamanit et al. 2007). Software development tasks in distributed settings can
be allocated following three strategies: Follow-the-Sun (FTS), phase-based, and
module-based. Using FTS, one team may finish the workday, as another team
located elsewhere may start the workday. The work continues potentially 24/7,
depending on the number of teams and the time differences between them. Phase-
based development means that each team takes responsibility for a particular
phase of the development lifecycle. Module-based development implies that each
development team has end-to-end responsibility for a given software module. By
running a number of scenarios with computer simulations, Setamanit et al. found
that by neutralizing any communication and cultural barriers, the FTS strategy
led to a development cycle that was 70% shorter than a single-site development
scenario. However, when these communication and cultural factors were introduced
into the model, the FTS strategy performed considerably worse than single-site
development.

It is important to realize that the scenarios are modeled based on formulas
and assumptions, and that the outcome of these computer simulations may not
correspond to reality. The chapter “The Role of Simulation-Based Studies in
Software Engineering Research” discusses computer simulations in more detail.

Guidelines for Computer Simulations
• Use computer simulations to create a model of real-world systems or

phenomena that cannot be easily or affordably set up in real life.
• Identify and model all parameters of interest, and which have relevance as

suggested by prior literature.
• Be cautious in interpreting the results of computer simulations as they are

necessarily simplified models of reality. It is important to remember that
computer simulations do not generate empirical observations.

• Conduct empirical studies to confirm or disconfirm the results of computer
simulations.

Guidelines for Conducting Software Engineering Research 53

4 Applying the ABC Framework

Research studies are rarely conducted in isolation, but usually as part of a research
program that seeks to investigate a phenomenon. This is true for PhD dissertations,
but also for funded research programs, such as those funded by the US National
Science Foundation (NSF), the European Committee’s funding programmes such
as Horizon 2020 and its follow-up Horizon Europe, or other funding programs. In
order to study a phenomenon, it is useful to employ different research strategies—
each strategy has potential strengths and inherent limitations, and by using different
strategies to study the same topic, researchers can address such inherent limitations,
and ultimately learn more about the topic of study. In our previous work, we
discussed two scenarios (Stol and Fitzgerald 2018). To complement those, we
discuss a recent research program that we were both involved in.

In Fig. 13 we present the positioning of strategies used by Dr. Ann Barcomb
in her PhD dissertation, whom we co-supervised (together with Prof. Dirk Riehle
at the Friedrich–Alexander University Erlangen–Nürnberg) (Barcomb 2019). Ann’s
dissertation, entitled “Retaining and Managing Episodic Contributors in Free/Li-
bre/Open Source Software Communities” (Barcomb et al. 2019a), focused on
episodic volunteers: those volunteers that may contribute intermittently.

The dissertation was designed as a set of three empirical studies. The first study
was a qualitative survey that sought to document what episodic volunteering looks
like in an open source software setting (Barcomb et al. 2019a). The study involved
interviews with members of 13 different open source communities. The choice
of an exploratory survey is interesting. While the field study strategy seems a

A
C

B

Sample Study (quant.)
Barcomb et al. 2019b

Judgment Study
Barcomb et al. 2020

Sample Study (qual.)
Barcomb et al. 2019a

Fig. 13 Three studies of Ann Barcomb’s PhD dissertation: two sample studies and one judgment
study

54 K.-J. Stol and B. Fitzgerald

straightforward choice for topics that have not been studied in great detail, this
study sought a higher degree of generalizability to achieve the research goal. If
only a single OSS project had been studied, for example, by means of a case
study or ethnographic study, the findings would have been rather limited: we would
have learned in great detail and enriched with great contextual detail how episodic
volunteers behave or operate in one project, but this would not have answered the
question “what does episodic volunteering look like in OSS projects?” Thus, a
qualitative survey was deemed a more useful approach.

The second study drew on the general literature on volunteering and episodic
volunteers (Barcomb et al. 2019b). Specifically, other researchers had developed
a theoretical model that sought to explain reasons why episodic volunteers might
return. Ann’s second study, therefore, sought to test this theoretical model in the
context of OSS episodic volunteers. This study consisted of a survey instrument
implemented with SurveyMonkey; 101 usable responses analyzed using PLS
structural equation modeling.

Having established (1) what episodic volunteering looks like in an OSS setting,
(2) what reasons might help to retain episodic volunteers in OSS communities,
Ann’s next focus was on managing those episodic volunteers. Hence, the third study
sought to identify practices that OSS community managers believe are useful to
do so (Barcomb et al. 2020). Through a Delphi study, Ann carefully selected 24
community managers from a variety of communities and engaged them in three
rounds of interaction (through email). The Delphi study is categorized as a judgment
study: each of the panel members was asked to provide detailed responses to a set
of carefully crafted questions. In each of the three rounds, responses were analyzed,
anonymized, and collated. At the end of the three rounds, the analysis resulted
in a set of practices, based on community experts’ input, for managing episodic
volunteers.

Together, these three studies add considerable insight to this nascent area within
the larger OSS literature. The selected research strategies are all positioned on
the left-hand side of the ABC framework (see Fig. 13), but still vary in certain
aspects. While Ann conducted two sample studies, one was of qualitative nature,
whereas the other was quantitative. The third study is a judgment study, which
provides a higher degree of control of the conversation—indeed, the Delphi method
facilitates interaction in several rounds, providing researchers an opportunity to
clarify answers when needed; such flexibility was not available in the quantitative
sample study.

It is interesting to reflect on the design of this research program (Table 2). The
program did not involve any experimentation, nor did it involve any field studies.
While one of the studies involved face-to-face interviews, the setting in which
these took place was of no importance—the goal was not to focus on the context
of a specific volunteer in a specific project. Arguably this is one limitation of the
research program, which could be addressed in the future by conducting a case
study or ethnographic study of episodic volunteers in a specific project. This could
potentially lead to rich insights as to the reasoning process on a day-to-day basis of

Guidelines for Conducting Software Engineering Research 55

Table 2 Summary of the three studies in Barcomb’s dissertation

Study Strategy Description Limitations

1 Sample study Qualitative survey involving
interviews with 20 informants
from 13 OSS communities
selected based on variety across
two dimensions

Captures a range of perspectives
on episodic volunteering in OSS
communities, but does not
establish any causal relationships
or any specific context

2 Sample study Cross-sectional, quantitative
survey with 101 responses to
evaluate a theoretical model

Seeks generalizability, but does
not capture any causal
relationships or any specific
context

3 Judgment study Delphi study involving a panel
of 24 experts; documents a set
of practices to manage episodic
volunteers

Offers a trade-off between
generalizability and precision of
measurement; does not capture
any specific context

episodic volunteers whether or not to contribute or return to the project they have
been involved in before.

5 Recommended Further Reading

This chapter provides a high-level framework to help researchers in their selection
of an appropriate knowledge-seeking research strategy. What this chapter does not
offer is detailed guidance for each and every specific method and technique that
can be positioned within the framework. References to a wide range of excellent
resources are provided in a previous article (Stol and Fitzgerald 2018). In this section
we list a number of recommended sources organized by theme or research strategy.

5.1 Empirical Studies in Software Engineering

Numerous sources discuss general matters regarding empirical studies which we
cannot list all. We suggest the following as a starting point.

Glass et al. (2002) were among the first to reflect on the research methods
used within the software engineering research community through an extensive
literature review, and observed little variation in research approaches and methods.
Much has changed in the two decades that have passed. Kitchenham has written
extensively on empirical software engineering since the late nineties. She and
her co-authors have primarily focused on quantitative methods, including survey
research (Kitchenham and Pfleeger 2002) and experimentation (Kitchenham et al.
2002). In 2004, Kitchenham et al. (2004) published a seminal paper arguing for
evidence-based software engineering, which borrows from the concept of evidence-
based medicine, arguing that software engineering practice should be informed by

56 K.-J. Stol and B. Fitzgerald

evidence. A key source for many has been Easterbrook et al. (2008)’s guidelines
for selecting empirical methods, which provides an overview of several widely used
methods as well as a brief discussion of epistemology within software engineering.
In the decade since, several other works have discussed the maturity of empirical
software engineering—a recent article by Méndez Fernández and Passoth (2019)
discusses the increasing focus on human-centric challenges and the need to establish
interdisciplinary collaborations.

5.2 Field Studies

Numerous research methods fall within the scope of the field study strategy. Most
common among those is the descriptive or exploratory case study. A widely cited
resource is Yin (2014)’s book. Runeson et al. (2012) have tailored guidance for case
studies to the software engineering domain. Lethbridge et al. (2005) have presented
a taxonomy of data collection techniques for field studies, whereas Seaman (1999)
presented a seminal paper on the use of qualitative methods, which are typically
used in field studies. Besides the case study method, two other methods warrant
brief discussion. The first is grounded theory, a method originally proposed by
Glaser and Strauss (1967), and which has since seen more specific interpretations
(Stol et al. 2016b). Grounded theory studies have become common in software
engineering, though in many cases the term has been misused (Stol et al. 2016b).
We note that grounded theory studies do not always focus on one specific research
setting, but could also be used, for example, to investigate a range of different
companies (cf. Hoda et al. 2013). Another method within the strategy of field studies
is the ethnography; Sharp et al. (2016) have discussed its role within the software
engineering domain.

5.3 Experimental Studies

There are numerous sources that provide advice for experimental studies. Besides
Kitchenham et al. (2002)’s preliminary guidelines, we suggest interested readers
consult Wohlin et al. (2012)’s discussion of experimentation in software engineering
as well as Juristo and Moreno (2001)’s book on the same topic.

5.4 Judgment Studies and Sample Studies

Judgment studies, sometimes referred to as user studies, can be a useful way to
evaluate a tool or get insights from a carefully selected set of experts. Focus group
studies and Delphi studies are also methods that fit clearly within this strategy.

Guidelines for Conducting Software Engineering Research 57

The Delphi method has been well documented by Dalkey and Helmer (1963) and
Linstone and Turoff (2002). Kontio et al. (2008) offer guidance for focus group
studies. Another method that fits well within this strategy is the repertory grid
technique; Edwards et al. (2009) discuss its role within software engineering.

Sample studies are among the most common in software engineering (Stol and
Fitzgerald 2018). Kitchenham and Pfleeger (2002) have published a six-part series
of guidelines in ACM Software Engineering Notes. The chapter “Challenges in
Survey Research” in this book also discusses sample studies. Studies that use
samples of development artifacts from software repositories such as GitHub are
extremely common as well. Kalliamvakou et al. (2016) offer useful guidance to
address the many pitfalls in such studies.

5.5 Formal Theory and Computer Simulations

An important category of research that is often overlooked due to the strong focus on
empirical methods is non-empirical research. The two strategies defined in the ABC
framework, formal theory and computer simulations, are both useful approaches
that can complement empirical methods in a variety of ways. In earlier work,
we coined the concept of theory-oriented software engineering, emphasizing that
research studies consist of elements from three different “domains”: the substantive
domain, representing some phenomenon of interest, the methodological domain,
representing the variety of methods to study that phenomenon, and the conceptual
domain, which represents any theoretical construct or framework to design a study
or make sense of its findings. While most researchers are familiar with the so-called
variance theories, which seek to link different measurable constructs, Ralph (2018)
provides methodological guidelines for the so-called process theories. It is worth
noting that grounded theory is often associated with theory development (as the
name suggests), but as we pointed out earlier, grounded theory studies tend to result
in substantive theories, rather than formal theories—the latter exhibiting a higher
degree of generalizability (Glaser 1978). Several useful resources on computer
simulation research are available. Müller and Pfahl (2008) provide a good starting
point, and chapter “The Role of Simulation-Based Studies in Software Engineering
Research” in this book provides additional details.

5.6 Solution-Seeking Research

The recommended sources listed above focus on knowledge-seeking research. For
those researchers who seek to conduct solution-seeking research, we suggest the
following sources as a good starting point.

Much of the research published in the flagship conference of our field, the
International Conference on Software Engineering (ICSE) tends to present solution-

58 K.-J. Stol and B. Fitzgerald

seeking research, by means of a new tool, technique, algorithm, or process. Such
papers also include an evaluation of the proposed solution using a knowledge-
seeking strategy. Shaw (2003) presented an analysis of all submitted research
papers to ICSE 2002 and sought to distill “patterns” of what constitutes good
research in software engineering. Wieringa and Heerkens (2006) has discussed
methodological soundness of papers within the requirements engineering domain
and has offered a paper classification and evaluation criteria (Wieringa et al. 2006)
to help researchers distinguish between different types of research. In later work,
Wieringa (2009) linked this more explicitly to Design Science. Hevner et al. (2004)
have discussed Design Science in Information Systems research, a field of research
that has considerable overlap with software engineering closely. Design Science is
also the topic of chapter “The Design Science Paradigm as a Frame for Empirical
Software Engineering.”

6 Conclusion

Issues to do with research methodology are receiving increased attention in SE
research. However, the field suffers from inconsistent use of terminology and the
lack of an integrated and holistic framework within which to categorize research
strategies. We seek to provide both consistent terminology and a holistic and
integrated framework—the ABC framework. While consistency in labeling research
methods may remain challenging to achieve, the ABC framework (with origins in
the social sciences (McGrath 1984)) offers useful terminology for what we have
labeled research strategies.

In this chapter, we describe the two modes of software engineering research
and position them within the wider context of conducting software engineering
research (Fig. 1): knowledge-seeking and solution-seeking research. Whereas the
ABC framework positions eight archetypal research strategies that can be used to
conduct knowledge-seeking research, we link Design Science to solution-seeking
research. Design Science is discussed in detail in chapter “The Design Science
Paradigm as a Frame for Empirical Software Engineering” of this book, which
is why we do not discuss this further. Design Science complements the ABC
framework, as suggested in Fig. 1; hence, we suggest that the “ABC” is followed
by a “D,” with D for Design Science.

In addition to providing descriptions, metaphors, and references for each research
strategy, we offer practical guidelines to help SE researchers select an appropriate
research strategy.

The ABC framework is useful in several ways. First, it offers a systematic
approach to explore the landscape of knowledge-seeking research, and as such it
serves the purpose of a tutorial. Second, the ABC framework can be used to design
a research program as illustrated in this chapter. Third, the ABC framework can
also be used in a reflective manner, for example, by categorizing studies as part of
a systematic literature review—most systematic reviews organize studies by their

Guidelines for Conducting Software Engineering Research 59

research method as claimed by the studies’ authors. However, due to the confusion
that exists within the software engineering field (we elaborate on this point
elsewhere (Stol and Fitzgerald 2018)), in many cases studies are mischaracterized,
which leads to a misrepresentation of a research area when presented in a systematic
review. We hope the re-discovery of McGrath’s circumplex and its introduction to
the software engineering field help to address this issue.

Acknowledgements This work was supported, in part, by Science Foundation Ireland grant
15/SIRG/3293 and 13/RC/2094 and co-funded under the European Regional Development Fund
through the Southern & Eastern Regional Operational Programme to Lero—the Irish Software
Research Centre (http://www.lero.ie).

References

Australian Electoral Commission (2016) Australian Electoral Commission image library, 2016
federal election. Opening the house of representatives ballot papers (election night). https://
upload.wikimedia.org/wikipedia/commons/9/93/AEC-Senate-election-night-opening.jpg, dis-
tributed under Creative Commons CC BY 3.0, https://creativecommons.org/licenses/by/3.0

Barcomb A (2019) Retaining and managing episodic contributors in free/libre/open source
software communities. PhD thesis, University of Limerick

Barcomb A, Kaufmann A, Riehle D, Stol KJ, Fitzgerald B (2019a) Uncovering the periphery: a
qualitative survey of episodic volunteering in free/libre and open source software communities.
IEEE Trans Softw Eng (in press)

Barcomb A, Stol KJ, Riehle D, Fitzgerald B (2019b) Why do episodic volunteers stay in FLOSS
communities? In: Proceedings of the 41st international conference on software engineering.
ACM, New York, pp 948–954

Barcomb A, Stol KJ, Fitzgerald B, Riehle D (2020) Managing episodic volunteers in free/li-
bre/open source software communities. IEEE Trans Softw Eng (in press)

Bos N, Sadat Shami N, Olson J, Cheshin A, Nan N (2004) In-group/out-group effects in
distributed teams: an experimental simulation. In: Proceedings of the international conference
on computer-supported cooperative work and social computing, CSCW’04. ACM, New York,
pp 429–436

Bourgeois L (1979) Toward a method of middle-range theorizing. Acad Manag Rev 4(3):443–447
Dalkey N, Helmer O (1963) An experimental application of the Delphi method to the use of

experts. Manag Sci 9(3):458–467
Damschen E, Baker D, Bohrer G, Nathan R, Orrock J, Turner JR, Brudvig L, Haddad N, Levey D,

Tewksbury J (2014) How fragmentation and corridors affect wind dynamics and seed dispersal
in open habitats. Proc Natl Acad Sci USA 111(9):3484–3489. https://doi.org/10.1073/pnas.
1308968111

Easterbrook S, Singer J, Storey MA, Damian D (2008) Selecting empirical methods for software
engineering research. In: Shull F, Singer J, Sjøberg DI (eds) Guide to advanced software
engineering. Springer, Berlin

Ebert C, Parro C, Suttels R, Kolarczyk H (2001) Better validation in a world-wide development
environment. In: Proceedings of the 7th international software metrics symposium (METRICS)

Edwards H, McDonald S, Young M (2009) The repertory grid technique: its place in empirical
software engineering research. Inform Softw Tech 51(4):785–798

Fayerollinson (2010) The Victorian Civil Courtroom at the National Justice Museum.
https://commons.wikimedia.org/wiki/File:Victorian_Civil_Courtroom_National_Justice_Mus
eum_June_2010.jpg, distributed under Creative Commons BY-SA 3.0, https://
creativecommons.org/licenses/by-sa/3.0)

http://www.lero.ie
https://upload.wikimedia.org/wikipedia/commons/9/93/AEC-Senate-election-night-opening.jpg
https://upload.wikimedia.org/wikipedia/commons/9/93/AEC-Senate-election-night-opening.jpg
https://creativecommons.org/licenses/by/3.0
https://doi.org/10.1073/pnas.1308968111
https://doi.org/10.1073/pnas.1308968111
https://commons.wikimedia.org/wiki/File:Victorian_Civil_Courtroom_National_Justice_Museum_June_2010.jpg
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0

60 K.-J. Stol and B. Fitzgerald

Fitzgerald B, Stol KJ, O’Sullivan R, O’Brien D (2013) Scaling agile methods to regulated
environments: an industry case study. In: Proceedings of the 2013 international conference
on software engineering. IEEE Press, New York, pp 863–872

Glaser B (1978) Theoretical sensitivity. The Sociology Press, Mill Valley
Glaser B, Strauss A (1967) The discovery of grounded theory. AldineTransaction, Piscataway
Glass RL, Vessey I, Ramesh V (2002) Research in software engineering: an analysis of the

literature. Inform Softw Tech 44(8):491–506
Hassan NR (2015) Seeking middle-range theories in information systems research. In: Proceedings

of the 36th international conference on information systems, Fort Worth
Hevner A, March S, Park J, Ram S (2004) Design science in information systems research. MIS Q

28(1):75–105
Hoda R, Noble J, Marshall S (2013) Self-organizing roles on agile software development teams.

IEEE Trans Softw Eng 39(3):422–444
Jiang S, McMillan C, Santelices R (2017) Do programmers do change impact analysis in

debugging? Empir Softw Eng 22(2):631–669
Juristo N, Moreno A (2001) Basics of software engineering experimentation. Springer, Berlin
Kalliamvakou E, Gousios G, Blincoe K, Singer L, German D, Damian D (2016) An in-depth study

of the promises and perils of mining GitHub. Empir Softw Eng 21(5):2035–2071
Kitchenham B, Pfleeger S (2002) Principles of survey research part 2: designing a survey. ACM

Softw Eng Notes 27(1):18–20
Kitchenham B, Pfleeger S, Pickard L, Jones P, Hoaglin D, Emam KE, Rosenberg J (2002)

Preliminary guidelines for empirical research in software engineering. IEEE Trans Softw Eng
28(8):721–734

Kitchenham B, Dybå T, Jørgensen M (2004) Evidence-based software engineering. In: Proceedings
of the 26th international conference on software engineering. IEEE, Piscataway, pp 273–281

Kontio J, Bragge J, Lehtola L (2008) The focus group method as an empirical tool in software
engineering. In: Guide to advanced empirical software engineering. Springer, Berlin

Krafft M, Stol K, Fitgerald B (2016) How do free/open source developers pick their tools? A Delphi
study of the Debian project. In: Proceedings of the 38th ACM/IEEE international conference
on software engineering (SEIP), pp 232–241

Lee A, Baskerville R (2003) Generalizing generalizability in information systems research. Inform
Syst Res 14:221–243

Lethbridge T, Sim S, Singer J (2005) Studying software engineers: data collection techniques for
software field studies. Empir Softw Eng 10:311–341

Li Y, Yue T, Ali S, Zhang L (2017) Zen-ReqOptimizer: a search-based approach for requirements
assignment optimization. Empir Softw Eng 22(1):175–234

Linstone H, Turoff M (eds) (2002) The Delphi method techniques and applications. Addison-
Wesley, Reading

March ST, Smith G (1995) Design and natural science research on information technology. Decis
Support Syst 15(4):251–266

maxpixel.net (no date) Creative Commons CC0 1.0 Universal. https://www.maxpixel.net/Nature-
Green-Jungle-Animals-Fauna-Forest-3828424

McGrath JE (1981) Dilemmatics: the study of research choices and dilemmas. Am Behav Sci
25(2):179–210

McGrath JE (1984) Groups: interaction and performance. Prentice Hall, Englewood
McGrath JE (1995) Methodology matters: doing research in the behavioral sciences. In: Baecker

R, Grudin J, Buxton W, Greenberg S (eds) Readings in human computer interaction: toward
the year 2000, 2nd edn. Morgan Kaufmann, Los Altos, pp 152–169

Méndez Fernández D, Passoth JH (2019) Empirical software engineering: from discipline to
interdiscipline. J Syst Softw 148:170–179

Merton RK (1968) Social theory and social structure. Free Press
Mockus A, Fielding R, Herbsleb J (2000) A case study of open source software development: the

Apache server. In: Proceedings of the international conference on software engineering. IEEE,
Piscataway

https://www.maxpixel.net/Nature-Green-Jungle-Animals-Fauna-Forest-3828424
https://www.maxpixel.net/Nature-Green-Jungle-Animals-Fauna-Forest-3828424

Guidelines for Conducting Software Engineering Research 61

Müller M, Pfahl D (2008) Simulation methods. In: Shull F, Singer J, Sjøberg DI (eds) Guide to
advanced software engineering. Springer, Berlin

Niknafs A, Berry D (2017) The impact of domain knowledge on the effectiveness of requirements
engineering activities. Empir Softw Eng 22(1):80–133

Nisbett R (2005) The geography of thought: how Asians and Westerners think differently and why.
Nicholas Brealey Publishing, Boston

Ralph P (2015) The sensemaking-coevolution-implementation theory of software design. Sci
Comput Program 101:21–41

Ralph P (2018) Toward methodological guidelines for process theories and taxonomies in software
engineering. IEEE Trans Softw Eng 45(7):712–735

Runeson P, Höst M, Rainer A, Regnell B (2012) Case study research in software engineering:
guidelines and examples. Wiley, London

Runkel PJ, McGrath JE (1972) Research on human behavior: a systematic guide to method. Holt,
Rinehart and Winston, New York

Russo D, Stol K (2019) Soft theory: a pragmatic alternative to conduct quantitative empirical
studies. In: Proceedings of the joint 7th international workshop on conducting empirical studies
in industry and 6th international workshop on software engineering research and industrial
practice, CESSER-IP@ICSE 2019, Montreal, pp 30–33

Seaman CB (1999) Qualitative methods in empirical studies of software engineering. IEEE Trans
Softw Eng 24(4):557–572

Setamanit SO (2007) A software process simulation model of global software development (GSD)
projects. PhD thesis, Portland State University

Setamanit SO, Wakeland W, Raffo D (2007) Using simulation to evaluate global software
development task allocation strategies. Softw Process Improve Pract 12:491–503

Sharma G, Stol KJ (2019) Exploring onboarding success, organizational fit, and turnover intention
of software professionals. J Syst Softw 159:110442

Sharp H, Dittrich Y, de Souza C (2016) The role of ethnographic studies in empirical software
engineering. IEEE Trans Softw Eng 42(8):786–804

Shaw M (2003) Writing good software engineering research papers. In: Proceedings of the 25th
international conference on software engineering, pp 726–736

Sim S, Easterbrook S, Holt R (2003) Using benchmarking to advance research: a challenge
to software engineering. In: Proceedings of the 25th international conference on software
engineering. IEEE Computer Society, Silver Spring

Simon H (1996) The sciences of the artificial, 3rd edn. MIT Press, Cambridge,
Singer J, Storey MA, Sim SE (2000) Beg, borrow, or steal: using multidisciplinary approaches

in empirical software engineering research. In: Proceedings of the international conference on
software engineering

Spinellis D, Avgeriou P (2019) Evolution of the Unix system architecture: an exploratory case
study. IEEE Trans Softw Eng (in press)

Stol K, Fitzgerald B (2015) Theory-oriented software engineering. Sci Comput Program 101:79–
98

Stol K, Fitzgerald B (2018) The ABC of software engineering research. ACM Trans Softw Eng
Methodol 27(3):51

Stol K, Goedicke M, Jacobson I (2016a) Introduction to the special section—general theories of
software engineering: new advances and implications for research. Inform Softw Tech 70:176–
180

Stol K, Ralph P, Fitzgerald B (2016b) Grounded theory in software engineering research: a critical
review and guidelines. In: Proceedings of the 38th International Conference on Software
Engineering. ACM, New York, pp 120–131

Stol K, Caglayan B, Fitzgerald B (2017) Competition-based crowdsourcing software development:
a multi-method study from a customer perspective. IEEE Trans Softw Eng 45(3):237–260

Storey MD, Zagalsky A, Filho FMF, Singer L, Germán DM (2017) How social and communication
channels shape and challenge a participatory culture in software development. IEEE Trans
Softw Eng 43(2):185–204

62 K.-J. Stol and B. Fitzgerald

SuperJet International (2011) Full flight simulator. https://www.flickr.com/photos/
superjetinternational/5573438825, distributed under Creative Commons CC BY 2.0, https://
creativecommons.org/licenses/by-sa/2.0/legalcode

Tyndall J (1896) Fragment of science, volume one. Taken from an electronic copy of the book at
Archive.Org (1896 edition of the book) and subsequently annotated in colored typeface. Public
Domain, https://commons.wikimedia.org/w/index.php?curid=57653822

Wieringa R (2009) Design science as nested problem solving. In: Proceedings of the 4th
international conference on design science research in information systems and technology,
DESRIST ’09. ACM, New York

Wieringa R, Heerkens M (2006) The methodological soundness of requirements engineering
papers: a conceptual framework and two case studies. Requir Eng 11:295–307

Wieringa R, Maiden N, Mead N, Rolland C (2006) Requirements engineering paper classification
and evaluation criteria: a proposal and a discussion. Requir Eng 11:102–107

Wohlin C, Runeson P, Höst M, Ohlsson M, Regnell B, Wesslén A (2012) Experimentation in
software engineering, 2nd edn. Springer, Berlin

Wohlin C, Smite D, Moe NB (2015) A general theory of software engineering: balancing human,
social and organizational capitals. J Syst Soft 109:229–242

Yin R (2014) Case study research design and methods, 5th edn. Sage Publications, Thousand Oaks

https://www.flickr.com/photos/superjetinternational/5573438825
https://www.flickr.com/photos/superjetinternational/5573438825
https://creativecommons.org/licenses/by-sa/2.0/legalcode
https://creativecommons.org/licenses/by-sa/2.0/legalcode
Archive.Org
https://commons.wikimedia.org/w/index.php?curid=57653822

Guidelines for Case Survey Research in
Software Engineering

Kai Petersen

Abstract This chapter presents guidelines for case survey research. The chapter
includes a description of the research process and provides examples for each step
of the process. The process comprises the following steps: (1) define research scope,
(2) case identification and selection, (3) case extraction, (4) case analysis, and (5)
reporting. In addition, we also present a checklist for the quality assessment of case
surveys.

1 Introduction

The case survey method suggests a process describing how to identify, select,
extract, and analyze a set of cases. Case surveys are review (i.e., secondary) studies.
Case surveys emphasize analysis methods to synthesize the evidence provided by
several cases. The research process of case surveys uses steps from case studies
(Runeson and Höst 2009), surveys (Molléri et al. 2016; Linaaker et al. 2015), and
also systematic literature reviews (Kitchenham and Charters 2007), however, only
considering secondary data.

The purpose and also the strength of case study research is to gain an in-depth
understanding of phenomena in software engineering (SE). Case studies rely primar-
ily on qualitative data to gain understanding. They utilize triangulation considering
multiple sources, observers, and types of data (qualitative and quantitative). Case
studies are effort intensive. Therefore, only a limited number of cases may be
obtained, which limits generalizability to a larger population.

K. Petersen (�)
University of Applied Sciences, Flensburg, Germany

Blekinge Institute of Technology, Karlskrona, Sweden
e-mail: kai.petersen@hs-flensburg.de

© Springer Nature Switzerland AG 2020
M. Felderer, G. H. Travassos (eds.), Contemporary Empirical Methods in Software
Engineering, https://doi.org/10.1007/978-3-030-32489-6_3

63

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32489-6_3&domain=pdf
mailto:kai.petersen@hs-flensburg.de
https://doi.org/10.1007/978-3-030-32489-6_3

64 K. Petersen

Surveys, on the other hand, aim for a large number of data points to generalize
to a larger population. They are primarily quantitative. More responses can be
obtained, but the detail and hence depth of information is less compared to case
studies. Surveys are commonly analyzed using descriptive and inferential statistics.

No one research method is generally superior to others. The comparison of case
studies and surveys is a good illustration. Instead, different methods have their
strengths and weaknesses. It is beneficial for the research community to utilize
a mix of methods depending on the goals of the research, or combine and find a
compromise between methods.

One such effort is the case survey. Larsson (1993) highlights case surveys as a
promising method that may help to

overcome the problem of generalizing from a single case study and at the same time provide
more in-depth analysis of complex organizational phenomena than questionnaire surveys.

With similar intentions Gable (1994) proposes to combine case study and survey
research, i.e. conducting a case survey as a primary study, thus benefiting of the
strengths of both methods and addressing their specific weaknesses.

In this chapter, we provide an overview of the case survey method (Sect. 2).
Based on the guidelines and our own experience of using the case survey method we
propose guidelines for case survey research in SE (Sect. 3). We propose to modify
the original case survey method now considering primary and secondary data, while
the traditional case survey only considered secondary data. We provide examples of
the case survey method based on a recent case survey study focusing on the selection
of sources for software assets (e.g., open source versus in-house) (Petersen et al.
2018). The example also considered primary as well as secondary data.

2 Related Work

In this section, first position case survey research relative to other methods. After
that, we present and compare the existing guidelines for case survey research and
summarize software engineering studies using the case survey method.

Jurisch et al. (2013) propose to classify methods according to the type of
data (quantitative or qualitative) from two perspectives: input data and result.
The classification as previously illustrated by Jurisch et al. is shown in Fig. 1.
For example, the methods that are purely qualitative for input data and results
(qualitative content analysis and narrative analysis) are placed in Quadrant 1 in the
figure. Case surveys typically take qualitative data from cases as input. The analysis
of case survey data typically results in quantitative data.

Further details regarding the methods related to case survey research (see Fig. 1)
are provided by Jurisch et al. (2013), Cruzes et al. (2015), and Cruzes and Dybå
(2011).

Guidelines for Case Survey Research in Software Engineering 65

Input data

Results

Q
ua

lit
at

iv
e

Q
ua

nt
ita

tiv
e

QuantitativeQualitative

Vote
Counting

Stylized
Facts

Meta-
Analysis

Case
Survey

Narrative
Analysis

Qualitative
Content Analysis

1 2

3 4

Descriptive
Content analysis

Case Study

Surveys

Fig. 1 Comparison of methods (adapted from Jurisch et al. 2013)

2.1 Case Survey Method

Lucas (1974) outlines a process for conducting case survey research. First, the
research aims and questions are defined. These are used as inputs to drive the
selection of cases. To analyze the cases a coding scheme is defined. Based on the
coding scheme, the cases are coded. That is, qualitative information is transformed
into quantitative information through coding. The quantitative information is then
statistically analyzed. Overall, the processes of the various applications of the case
survey method are similar (Larsson 1993). On the detailed level, some variations in
the processes exist, which are discussed in the following.

Defining the Research Questions (RQs) The research questions may be of
exploratory or confirmatory nature. In a first case survey Yin and Heald
(1975) highlighted that case surveys are specifically suitable to test hypotheses
(confirmatory RQs); however, as Larsson (1993) points out, previous case surveys
have demonstrated that more complex processes may be understood and hence
exploratory research questions may be answered (exploratory RQs). The research
aims and questions are essential as they are the drivers for the identification of
relevant cases (Yin and Heald 1975).

Case Identification and Selection The case selection requires criteria for the
selection and an actual process of how to select the cases. Yin and Heald (1975)
propose to define explicit inclusion as well as exclusion criteria. Having defined
the criteria, the cases published in the literature need to be identified, e.g. through

66 K. Petersen

searches. After that, the identified literature has to be screened. Recent guidelines
describe how to search (Zhang et al. 2011; Ali and Usman 2018) and screen relevant
literature and to conduct the inclusion and exclusion process (Ali and Petersen
2014). Ali and Petersen (2014) demonstrate the importance of multiple researchers
during the inclusion and exclusion. Wohlin et al. (2013) raised the concern that it
may not be possible to identify all relevant studies (or cases), but instead one should
aim for a good sample of existing studies. Defining a good sample is challenging
as the population of studies is unknown, while some strategies are proposed by
Badampudi et al. (2015).

Coding The coding scheme is used to code the qualitative data into quantitative
variables (coding items)—the variables may be of different types (Larsson 1993),
such as nominal (categorization) (Yin and Heald 1975), ordinal (Golembiewski et al.
1981), or Likert-type questions (Miller and Friesen 1977). As outlined earlier (see
Fig. 1), the focus is only on quantitative results. Coding schemes may also be of
varying complexity. For the case surveys reviewed by Larsson (1993) the number
of coded variables ranged from 2 (Golembiewski et al. 1981) to 118 (Yin and
Yates 1974). Larsson (1993) suggests using multiple reviewers when coding the
cases. In order to assess the reliability of the coding, we assess interrater reliability.
Discrepancies are then discussed and resolved among the coders.

Systematic reviews similarly conduct data extraction. A data extraction form is
designed, encoding information into quantitative variables as well as qualitative
results. Here, it is also recommended to involve multiple researchers and resolve
conflicts among them systematically.

Statistical Analysis The statistical analysis serves multiple purposes in the context
of case surveys.

First, it allows assessing the validity of the coding. The validity is important as
complex coding schemes are prone to mistakes, as experienced by Yin and Yates
(1974). One may correlate the coded data (secondary) with the data collected by the
researchers conducting the case study (primary) to identify deviations. A sample of
the cases may be used to check the consistency. Additionally, other studies not being
part of the case survey and their findings are compared to those of the case survey.
In order to assess the reliability of the coding, interrater reliability (e.g., Kappa
statistics (Cohen 1960)) should be assessed. Discrepancies are then discussed and
resolved among the coders. Systematic reviews and maps similarly conduct data
extraction. A data extraction form is designed (Kitchenham and Charters 2007),
encoding information into quantitative variables as well as qualitative results. Here,
it is also recommended to involve multiple researchers and resolve conflicts among
them systematically.

Second, the data of the case survey is statistically analyzed to answer the research
questions. Bivariate statistics (associating one variable with another) or multivariate
statistics (associating multiple variables with another) is possible to use. Examples
are measures of association (correlation) and regression analysis (Bullock and Tubbs
1990). Furthermore, one may identify patterns in the case variables, e.g. using
cluster analysis.

Guidelines for Case Survey Research in Software Engineering 67

2.2 Case Surveys in Software Engineering

Software engineering research uses case studies widely, and the software engineer-
ing research community has a keen interest in case studies, which is evident by the
impact of the guidelines proposed by Runeson and Höst (2009).

While looking at individual cases is intriguing, drawing more general conclu-
sions by combining the information from multiple cases may lead to stronger
conclusions in terms of generalizability. Cruzes et al. (2015) illustrate the applica-
tion of different approaches to synthesize the findings for multiple case studies. The
synthesis methods compared were cross-case analysis, thematic analysis, and nar-
rative synthesis (see also chapter “Research Synthesis in Software Engineering”).
The researchers found that similar overall conclusions were reached for cross-case
analysis and thematic synthesis. At the same time, they highlight that the process
of synthesis is affected by factors such as context and the research goal itself. Also,
we have to take the experience of the researchers in using different methods into
account. Finally, to increase reliability the use of multiple methods is suggested.

Recently the case survey method has been used in software engineering. For
example, Petersen et al. (2018) investigated the choice of origins for software assets
(such as components and systems). Klotins (2017) presented a research design on
conducting a case survey to understand practices in software startups.

As mentioned earlier, the case survey method is using secondary data and thus
can also be referred to as a case meta-analysis.

The studies differ in some steps from the above definition of the case survey
method. Both studies (Petersen et al. and Klotins) elicited cases from primary
data sources through interviews and questionnaires who have practical experiences
and participated in relevant cases. Petersen et al. also used qualitative as well as
quantitative data for both inputs and results, which contradicts the classification of
case surveys presented in Fig. 1. Overall, the study by Petersen et al. follows the
idea proposed by Gable (1994) to combine case studies and surveys as a series of
subsequent studies.

3 Case Survey Guideline for Software Engineering
Considering Primary and Secondary Data During Data
Collection

The process proposed for case survey research in software engineering mainly took
inspiration from various sources, namely:

• Our own experience of conducting a case survey (see Petersen et al. 2018).
• Guidelines and examples for conducting case surveys as presented in Sect. 2.1.

68 K. Petersen

• Guidelines for methods strongly associated with case surveys, namely survey
(Linaaker et al. 2015; Kitchenham and Charters 2007), case study (Runeson
and Höst 2009), and review guidelines (Kitchenham and Charters (2007) for
systematic reviews and Petersen et al. (2015) for systematic mapping studies).

In our proposed process we add a new mode of data collection to the case
survey method. Originally, the method focused only on secondary data. We expand
the method also taking primary data into account. We believe that primary data
collection in the context of a case survey is highly valuable as the cases can be
obtained using a shared data collection instrument based on the same research
question. The shared instrument helps in obtaining a comprehensive coverage of
the coding scheme. Besides, secondary studies or gray literature shall be considered
as well.

The data obtained in our process is of both qualitative and quantitative nature,
which is also true for the results. That is, our proposal for the case survey method
would be located in the upper right corner of Fig. 1. We argue that using both
quantitative and qualitative data representations during collection and in the results
consistently over a broad set of cases enables us to strike a balance between survey
and case study research, leveraging on the benefits of both methods and at the
same time addressing their limitations. At the same time the analysis becomes more
complex, which poses a challenge for the researchers.

The research process consists of five main activities. Each activity has several
steps. Table 1 shows an overview of the process. The following section describes
the activities and steps. We provide pointers to different ways of conducting the
steps. Each activity is complemented with a description of how it was implemented
in the case survey study by Petersen et al. (2018).

Table 1 Case survey: activities and steps

Activities Steps

A1: Define research scope S1: Define aim and objectives → S2: Define research
questions → S3: Define propositions/ hypotheses

A2: Case identification and
selection

S4: Define population and sample → S5: Identify case
sources → S6: Define and pilot case selection criteria
→ S7: Identify cases → S8: Select cases → S9: Assess
case selection quality

A3: Case extraction S10: Define extraction form → S11: Pilot extraction
form → S12: Elicit cases → S13: Assess elicitation
quality

A4: Case analysis S14: Data coding → S15: Synthesis → S16: Data
partitioning → S17: Assess analysis quality

A5: Reporting S18: Write report → S19: Assess report quality

Guidelines for Case Survey Research in Software Engineering 69

3.1 A1: Define Research Scope

S1: Define Aim and Objectives The process starts with the definition of the research
scope and is a step always needed in research studies. We need to determine the aim
of the research and from that derive the research questions.

S2: Define Research Question The literature provides an input to the identification
of relevant questions, though also problem descriptions from collaborating compa-
nies in research projects may be a driver. Different types of research questions are
distinguished. Easterbrook et al. (2008) provides a good overview of the types of
research questions we may ask.

S3: Define Propositions/Hypotheses In case the research aims to test a theory or
proposition; these need to be explicitly formulated as well.

We also would like to highlight that it is important to contextualize the research
when defining the scope: Are we focusing on answering a research question
generally for all of software engineering, or for a specific context? Examples are
specific life-cycle models, product types, etc. Various publications highlight the
importance of contextualizing the research, such as Briand et al. (2017), Dybå
(2013), and Petersen and Wohlin (2009).

Example (Petersen et al.) The study aimed at understanding how decision-
making took place in practice when deciding among component sourcing
options (CSOs), such as open source versus in-house. The research was
exploratory. Hence, we formulated no propositions. Two main research
questions were phrased:

(RQ1) How are CSOs chosen? The sub-questions were concerned with the
CSO options considered (e.g., in-house, open source, or commercial
off the shelf products); the stakeholders involved in the decision
process; the decision criteria; the approach or model used for the
decision.

(RQ2) What was the decision outcome? The sub-questions were concerned
with the effort invested in making the decision and the actual choice
and evaluation of choice.

3.2 A2: Case Identification and Selection

S4: Define Population and Sample First we define the population and sample
(Linaaker et al. 2015). In the context of surveys, it is essential to understand
the target audience, based on which the population, sampling frame, and sample
are defined. The target audience describes for whom the result of the survey is

70 K. Petersen

of interest. The description provides input to our selection criteria, as when we
characterize the target audience we find the characteristics that our cases should
have. A subset of the target audience is the population. The sampling frame is a
subset of the population and comprises subjects that we could reach out to and that
are accessible. The sample is a subset of the sampling frame. At this stage, we define
the target audience and the population.

S5: Identify Case Sources After that, we identify the case sources. In the previous
guidelines for case survey research (see Sect. 2.1) case surveys are considered
a secondary research method. As argued earlier, a common coding scheme for
primary data collection may allow for higher coverage of the questions to be
answered in the coding scheme. Hence, we propose to utilize various sources in a
case survey. Table 2 provides examples of possible sources. A similar question arises
for systematic reviews and mapping studies. A classification of possible sources for
literature is presented in Petersen et al. (2015).

S6: Define and Pilot Selection Criteria We define inclusion and exclusion criteria.
The definition of the target audience drives the criteria and population and in the
end, should guide the researcher during the sampling activity. If a case does not
fit the target audience and population, it should not be included. However, as
recommended by Larsson (1993), quality should not be considered at this stage
as an exclusion criterion. Instead, we should account for different levels of quality
during the analysis. After the selection criteria are defined, we propose to pilot them,
similar to the procedure proposed for systematic reviews. There, we choose a sample
of papers, and we apply the criteria. Two or more researchers conduct the paper
selection based on the criteria and compare their findings to determine interrater
reliability. If the reliability is low, then it may be needed to clarify and refine the
criteria.

When applying the principle to experts, we may ask an expert to review the
criteria in order to identify a case based on their own experience. They may ask
clarification questions in order to identify the case, which enables us to improve the
criteria. It is also helpful to provide examples for the criteria.

Table 2 Sources for cases

Source Description and examples

Gray literature Non-peer-reviewed results (blogs, white papers)

Peer-reviewed studies Journal articles, conferences, workshops

Archival data Data generated as part of software development activities
in companies (such as documentation or datasets, e.g.
ISBSG (see https://www.isbsg.org), as well as gray
literature

Experts People with insights and actual experience in the studied
case

https://www.isbsg.org

Guidelines for Case Survey Research in Software Engineering 71

S7: Identify Cases The case identification requires to access the sources and from
there to identify the potentially relevant cases. These are then filtered using the
criteria (selection).

We first discuss the identification. Different strategies apply for literature (gray
and peer-reviewed) and archival data as well as experts. In the case of literature the
strategies from guidelines for gray literature (Garousi et al. 2019) and systematic
reviews (Kitchenham and Charters 2007; Petersen et al. 2015) apply. In order to
access documentation in a company, we may need experts that may guide and
obtain the relevant documentation for us based on the criteria. When identifying the
experts, we use our definition of the target audience, population, sampling frame,
and sample to identify the experts. Depending on the sampling strategy (such as
convenience sampling versus random sampling) the way we work with identification
of the actual sample changes. In the case of random sampling, we need a well-
defined sampling frame from which we randomly select the sample. When using
convenience sampling, the frame would comprise the subjects we have easier access
to (e.g., through personal networks, collaborations in joint research projects, etc.).
Convenience sampling may be complemented with snowball sampling as subjects
able to provide case information could point us to other subjects with relevant cases.

Additionally, we have to decide whether we consult one or more subjects
(persons) per case. In order to increase the validity of the study, source triangulation
is encouraged (e.g., at least two persons per case). However, with the inclusion of
many cases, a trade-off has to be made, and not too many persons per case could be
considered, as the data has to be collected.

S8: Select Cases For literature, a study (Ali and Petersen 2014) described and
evaluated how to select cases using multiple researchers and alternative strategies of
when to resolve conflicts. Kuhrmann et al. (2017) further elaborate on the process of
selection. One of the challenges with literature will likely be that the data collection
instrument (coding scheme) may be poorly covered by studies reported in the
literature as each study had its research design and research questions. The same
may be true also for documentation.

When selecting cases consulting experts with information about important cases,
we propose to conduct the following steps:

1. Present the research questions and selection criteria to the expert.
2. Obtain a short narrative description of the cases the expert considers relevant.
3. Determine the degree of involvement of the expert in the case.

The last point is particularly important. If the experts were strongly involved, they
are likely able to provide high coverage of the extraction scheme. If they were not
strongly involved, they are still an excellent source to obtain the relevant persons.

S9: Assess Case Selection Quality In case of the literature various measures of
quality are possible, such as assessing interrater reliability, checking the selected
papers against a reference set of papers, or consulting experts to identify additional
studies. In the case of experts, it is essential to be aware of the degree of involvement

72 K. Petersen

of the expert, and to strengthen the validity of the study it is desirable to check
whether source triangulation has been utilized.

We propose to store the information regarding the cases in a spreadsheet or
database, keeping track of the source as well as a narrative description of the case,
and the rationale for including the case (e.g., describing why it fits the criteria).

Example (Petersen et al.) As mentioned earlier the study aimed to under-
stand how decision-making for CSO options takes place in practice. We
defined three criteria for selection. We focused the study on software-
intensive system development. We were, for example, not interested in CSOs
for tools used in the actual software development. In the study, we only stated
inclusion criteria (e.g., initial criteria formulated as exclusion criteria were
reformulated to inclusion criteria—such as cases should focus on software-
intensive systems). We formulated the criteria (quotes from the study) as
follows:

1. The case provides information on how the decision-making between at least
two CSOs has been taking place where the component should become part of
a software-intensive system. For example, a database component becomes part
of the system, while the development environment does not.

2. The system for which the CSO decision is made is industrial (can involve
academics if they are supporting the industry).

3. Cases should at least be explicit about the CSOs considered, the persons involved
in the decision-making process, the CSO choice, the methods used in decision-
making, and the criteria used when preparing and making the decision.

4. The source (person) reports the case based on his or her own experiences (e.g.,
as a consultant, participant in the decision-making process, etc.), or the case has
been elicited from an industry representative through an interview.

The source itself was described as a criterion. In this study, it was an
expert. To define what experts we are looking for we characterized the
target audience and the sample. The target audience and populations were
described as:

practitioners supporting or making the decision for CSOs for software-intensive
systems.

The sampling strategy was convenience sampling. More specifically, the
researchers of the ORION project (http://orion-research.se) either contributed
cases where they took part in CSO decision processes or they interviewed
practitioners in their contact network who were closely involved. In order
to identify the subjects, the selection criteria were presented in the research
project group and to the practitioners in the contact network. The contacts
provided a brief description of the decision scenario and process, which
allowed to the authors of the study to judge the relevance of the case. As
an example, the following description was provided for one of the cases:

(continued)

http://orion-research.se

Guidelines for Case Survey Research in Software Engineering 73

The company needed to find a tool to be used when doing complex calibrations of
embedded systems. It was a stand-alone tool, but many of the aspects were similar
to what would have been the case for a component for similar use. The decision
process was quite rigorous. I was in charge of preparing the decision material and
spent considerable time first interviewing stakeholders about their concerns, and then
transforming this to a list of decision criteria, expressed similarly as a requirements
specification. There were two alternatives: one developed in-house in one decision,
and one from a local company. The aim was to find a tool that could be used
across several divisions of the company. Data was collected on both alternatives,
by interviewing people from the organizations responsible for it. A Pugh analysis
(decision matrix) was used, and it was quite clear that the in-house alternative was
superior. The whole decision process was documented in a report.

The statement describes the asset, the context (industrial), considered the
relevant decision options for CSOs, and the subject was closely involved.
Hence, the case was clearly to be included.

3.3 A3: Case Extraction

S10: Define Extraction Form In order to extract the cases a data extraction form is
needed, similar to what would be used to extract information from primary studies in
systematic reviews (Kitchenham and Charters 2007). The extraction form comprises
all the characteristics of the case that are relevant and needed to answer the research
questions. We recommend to divide the form into the parts suggested in Table 3.

The data used as input may be either quantitative or qualitative. Various types
of data are possible for each piece of information collected. Textual descriptions
represent qualitative data. Measurement data may take the forms of typical data

Table 3 Main elements of the data extraction form

Characteristics Description

Case metadata Includes a case ID (unique identifier), the researcher working with the
case, the name of the case (e.g., company name, project name), and the
source (e.g., expert, blog)

Case abstract Short narrative description of the case

Unit of analysis Describe what the unit of analysis is (e.g., the case is the company and
the unit of analysis is a project, process, etc., at that company)

Case context Information related to the context, such as product information, market,
methods and tools used, people involved, and organizational
information (Petersen and Wohlin 2009)

Study data Main data directly connected to answering the research questions.
Information may be organized in groups (e.g., in a tree structure). For
each characteristic, we should also record whether the characteristic
represents a dependent or independent variable

74 K. Petersen

types, such as nominal, ordinal, interval, and ratio data. We also distinguish between
independent and dependent variables, representing the different characteristics.
As an example, we may gather information on development practices as the
independent variables and performance data related to flexibility, quality, etc.,
as dependent variables. Thereby, it is important that the variables represent the
theoretical constructs. As an example, when we intend to capture the theoretical
construct size of the software as Lines of Code, the theoretical construct may be not
well represented due to various issues with the Lines of Code measure.

S11: Pilot Extraction Form When consulting literature at least two researchers
should independently extract data and compare as well as discuss the extraction.
In case of deviations, the conflicts need to be resolved and the extraction form
should be improved to be more explicit. It is important to define the information
that should be extracted and to provide a sufficiently detailed description, preferably
with examples. When using the extraction form with experts, it should be piloted
similarly as for surveys. Ways of piloting are focus groups discussing the form and
the usage and discussion involving a small set of real subjects.

S12: Elicit Cases The extraction form is then used to extract the cases identified
earlier. Literature and documentation are read and coded according to the extraction
form. The cases provided by experts are elicited through interviews, questionnaires,
or focus groups.

S13: Assess Elicitation Quality Finally, we assess the quality of the elicitation.
Interrater reliability is a measure used to assess the consistency of the extraction
of information from the literature. When gathering data from experts, interrater
reliability may also be used to check the consistency of extraction when more
than one person (source triangulation) provided the data for a single case and unit
of analysis. In case of deviations, a meeting is needed to discuss and resolve the
deviations. It is also essential to review the data set for missing data. Missing data
may lead to the exclusion of cases if the number of missing data is too high, or the
fact of having missing data has to be accounted for when discussing the validity and
interpreting the findings.

Example (Petersen et al.) The extraction form was divided into the
categories of meta information, case abstract, and context information. The
main focus was on CSO decision-making. For this we identified the following
high-level categories:

• Stakeholders: Roles with interest in the decision. We distinguished here
between decision initiator and people involved in preparing the decision.

• Decision criteria: The criteria used for decision-making.
• Decision method: The method used for decision-making (e.g., expert

based, type of models used for decision-making).

(continued)

Guidelines for Case Survey Research in Software Engineering 75

• Decision result: The decision outcome in terms of CSOs chosen, the effort
invested in making the decision, and an evaluation of the decision.

• Other information: The possibility to provide additional comments.

Table 4 shows an excerpt of the extraction form. Each characteristic was
mapped to a research question. We also indicated for which variables coding
was needed (e.g., item 32 in Table 4), as those variables were presented in the
form of textual descriptions. A total of 33 variables were coded.

Please note that the case abstract is not shown in this table but was collected
for every case. The unit of analysis for all cases was CSO decision.

The piloting of the form took place taking the input of the members of
the research project providing their cases. A document for commenting was
shared among the researchers, where each could enter their comments. In
total 21 comments were given. For each comment, a response and an action
proposal were formulated and reviewed within the group. The group agreed
on the changes and they were implemented in the extraction form.

The cases were elicited through a Google form. Researchers entered their
cases directly. In the instances where practitioners from the researchers’ con-
tact networks were involved, the Google form was used as the interview guide,
and the researcher provided the information they collect in the interviews
through the form. A total of 22 cases were obtained.

The quality of the elicitation was assessed through a review of the filled in
extraction form and the coding done for textual descriptions. Two researchers
reviewed the extraction form.

3.4 A4: Case Analysis

S14: Data Coding and S15: Synthesis We combine the discussion of the steps of
coding and synthesis as they are both strongly tied. In the extraction form some
data could be directly encoded into variables, on various measurement levels, such
as nominal, ordinal, interval, and ratio. Here, the input data and the results are
represented as quantitative data. Qualitative data needs to be coded, e.g. using open
and axial coding used in grounded theory, or using a thematic analysis. Hence, the
input data is qualitative and the output may be either qualitative or quantitative (e.g.,
when counting occurrences in themes across cases). Table 5 provides an overview of
data types used for inputs and results for quantitative (QN) and qualitative (QL) data
and presents ways of representing the data. Also, examples of key statistics (e.g.,
measures of central tendency) are stated. The table shows that, according to our use
of the case survey method, the inputs, as well as results, can be both quantitative and
qualitative in a single case survey. A comprehensive overview is presented in Cruzes
and Dybå (2011). Additionally, in another study Cruzes et al. (2015) provided a

76 K. Petersen

T
ab

le
4

E
xt

ra
ct

io
n

sc
he

m
e

fo
r

th
e

ca
se

el
ic

it
at

io
n

It
em

ID
C

at
eg

or
y

It
em

D
es

cr
ip

ti
on

Ty
pe

R
Q

C
om

m
en

ts

1
M

et
a

C
od

e
U

ni
qu

e
id

en
ti

fie
r

fo
r

ca
se

In
te

ge
r

X
X

2
M

et
a

A
ut

ho
r

O
R

IO
N

re
se

ar
ch

pa
rt

ic
ip

an
t

pr
ov

id
in

g
th

e
ca

se
St

ri
ng

X
X

3
M

et
a

C
om

pa
ny

C
as

e
co

m
pa

ny
St

ri
ng

X
X

. . .
. . .

. . .
. . .

. . .
. . .

. . .

6
C

on
te

xt
D

om
ai

n
D

om
ai

n
in

w
hi

ch
th

e
de

ci
si

on
w

as
ta

ke
n

(e
.g

.,
au

to
m

ot
iv

e,
av

io
ni

cs
)

St
ri

ng
X

X

7
C

on
te

xt
A

pp
li

ca
ti

on
ty

pe
Ty

pe
of

th
e

ap
pl

ic
at

io
n

de
ve

lo
pe

d
(e

.g
.,

em
be

dd
ed

,i
nf

or
m

at
io

n
sy

st
em

)

St
ri

ng
X

X

. . .
. . .

. . .
. . .

. . .
. . .

. . .

11
C

SO
s

C
SO

s
co

ns
id

er
ed

in
th

e
de

ci
si

on
C

SO
s
=

In
-h

ou
se

,C
O

T
S,

O
SS

,
O

ut
so

ur
ce

,S
er

vi
ce

s
E

nu
m

er
at

io
n

R
Q

1.
1

X

12
St

ak
eh

ol
de

rs
D

ec
is

io
n

in
it

ia
to

r
St

ak
eh

ol
de

rs
in

vo
lv

ed
in

th
e

in
it

ia
ti

on
of

th
e

de
ci

si
on

(i
de

nt
ifi

ca
ti

on
of

th
e

ne
ed

to
m

ak
e

a
de

ci
si

on
an

d
fo

rm
ul

at
io

n
of

th
e

de
ci

si
on

pr
ob

le
m

)

St
ri

ng
R

Q
1.

2
R

eq
ui

re
s

co
di

ng

. . .
. . .

. . .
. . .

. . .
. . .

. . .

15
C

ri
te

ri
a

Pe
rf

or
m

an
ce

R
es

po
ns

e
ti

m
e,

ti
m

in
g

be
ha

vi
or

of
th

e
sy

st
em

B
oo

le
an

R
Q

1.
3

X

16
C

ri
te

ri
a

M
ai

nt
ai

na
bi

li
ty

E
as

e
of

up
da

ti
ng

th
e

sy
st

em
(c

or
re

ct
iv

e,
en

ha
nc

em
en

ts
)

B
oo

le
an

R
Q

1.
3

X

. . .
. . .

. . .
. . .

. . .
. . .

. . .

Guidelines for Case Survey Research in Software Engineering 77

27
M

et
ho

d
D

ec
is

io
n

m
od

el
M

et
ho

d
us

ed
to

m
ak

e
th

e
de

ci
si

on
St

ri
ng

R
Q

1.
4

R
eq

ui
re

s
co

di
ng

28
M

et
ho

d
Pr

op
er

ty
m

od
el

M
et

ho
d

us
ed

to
es

ti
m

at
e

th
e

im
pa

ct
of

th
e

de
ci

si
on

St
ri

ng
R

Q
1.

4
R

eq
ui

re
s

co
di

ng

. . .
. . .

. . .
. . .

. . .
. . .

. . .

32
E

va
lu

at
io

n
E

va
lu

at
io

n
of

th
e

de
ci

si
on

an
d

th
e

de
ci

si
on

im
pa

ct

Im
po

rt
an

tc
ri

te
ri

a
of

th
e

de
ci

si
on

an
d

re
fle

ct
io

ns
on

th
e

su
cc

es
s/

fa
il

ur
e

St
ri

ng
R

Q
2.

3/
R

Q
2.

4
R

eq
ui

re
s

co
di

ng

33
O

th
er

in
fo

rm
at

io
n

N
ot

ew
or

th
y

co
m

m
en

ts
R

em
ar

ks
co

ns
id

er
ed

im
po

rt
an

tb
y

th
e

pe
rs

on
ex

tr
ac

ti
ng

th
e

ca
se

St
ri

ng
X

R
eq

ui
re

s
co

di
ng

78 K. Petersen

T
ab

le
5

R
ep

re
se

nt
at

io
n

an
d

an
al

ys
is

(e
xa

m
pl

es
)

In
pu

t→
re

su
lt

R
el

ev
an

td
at

a
ty

pe
s

R
ep

re
se

nt
at

io
n

A
na

ly
si

s
an

d
sy

nt
he

si
s

m
et

ho
ds

Q
N

→
Q

N
N

om
in

al
,o

rd
in

al
,i

nt
er

va
l,

ra
ti

o
Se

gm
en

ta
ti

on
an

d
cr

os
s-

ta
bu

la
ti

on
,

hi
st

og
ra

m
s,

bo
x-

pl
ot

s,
sc

at
te

r
pl

ot
s,

de
nd

ro
gr

am
s

M
ed

ia
n

(o
rd

in
al

),
m

ea
n

an
d

st
an

da
rd

de
vi

at
io

n
(i

nt
er

va
l,

ra
ti

o)
,s

ta
nd

ar
d

de
vi

at
io

n
(i

nt
er

va
l,

ra
ti

o)
,m

ea
su

re
s

of
as

so
ci

at
io

n
(r

eg
re

ss
io

n,
co

rr
el

at
io

n)
,i

de
nt

ifi
ca

ti
on

of
pa

tt
er

ns
an

d
gr

ou
ps

(c
lu

st
er

an
al

ys
is

),
m

et
a-

an
al

ys
is

Q
L

→
Q

N
Te

xt
ua

l(
in

pu
t)

,n
om

in
al

in
th

e
fo

rm
of

th
em

es
an

d
ca

te
go

ri
za

ti
on

s
(o

ut
pu

t)
Ta

bu
la

ti
on

an
d

na
rr

at
iv

e
ex

pl
an

at
io

ns
D

es
cr

ip
tiv

e
co

nt
en

ta
na

ly
si

s

Q
L

→
Q

N
Te

xt
ua

l(
in

pu
t)

,t
ex

tu
al

,t
ab

ul
ar

,a
nd

th
em

e
co

un
ti

ng
(o

ut
pu

t)
Ta

bu
la

ti
on

an
d

na
rr

at
iv

e
ex

pl
an

at
io

ns
,

co
un

ti
ng

of
fr

eq
ue

nc
ie

s
in

th
em

es
D

es
cr

ip
tiv

e
co

nt
en

ta
na

ly
si

s,
th

em
at

ic
an

al
ys

is

Q
L

→
Q

L
Te

xt
ua

l(
in

pu
t)

,t
ex

tu
al

(o
ut

pu
t)

N
ar

ra
tiv

e
su

m
m

ar
y

an
d

su
pp

or
ti

ng
ta

bu
la

ti
on

N
ar

ra
tiv

e
an

al
ys

is
,q

ua
li

ta
tiv

e
co

nt
en

ta
na

ly
si

s

Guidelines for Case Survey Research in Software Engineering 79

detailed example of using alternative analysis methods when qualitative data is used
as input.

S16: Data Partitioning With several cases, sub-groups may be analyzed and
compared as is a common practice in surveys. For example, we compare the findings
for companies of different sizes with each other. Hence, we code and synthesize for
our sample as a whole and subsets of our sample. Contextual information plays an
important role during data partitioning. Hence, during the design of the extraction
form (Sect. 2) context needs to be considered. Another way of segmentation is to
group the cases by quality. If a case is obtained from a high-quality study and the
extraction form is covered, this study should be, for example, valued as high rigor.
In an earlier study, we found that partitioning studies according to quality lead to
different findings in the categories (Munir et al. 2014).

S17: Assess Analysis Quality The analysis of data is prone to bias and mistakes,
especially when considering a high number of variables. As an example, the process
of identifying codes and categorizing them into themes is influenced by experiences
and preferences of the coders. To increase the reliability it is recommended to
involve multiple researchers in the analysis (observer triangulation). Interrater
reliability has been used to assess the reliability of the selection of cases but is
also useful when assessing the reliability of coding. Care also has to be taken when
analyzing quantitative data, only applying statistics suitable for the data type.

Example (Petersen et al.) To recall, the case survey aimed at answering two
research questions, namely (1) How are CSOs chosen? and (2) What was the
decision outcome? In the following, we present examples of the analyses done
for each of the research questions. Before presenting the research questions,
we first provided an overview of the case context, documenting company
size, size of the development unit, domain, application type, and development
methodology (see Table 6).

Thereafter, we answered the research questions and associated sub-
questions.

(1) How Are CSOs Chosen? The first research question was concerned
with understanding how the decision was made. All information collected in
relation to RQ1 are considered as independent variables.

(2) What Were the Decision Outcomes? The second research question was
looking into effort invested, the actual decision taken, and its evaluation. All
information collected about RQ2 is considered dependent variables.

In the following, we provide examples for coding and synthesis of how
the data of the case survey has been presented and analyzed, covering the
alternatives presented in Table 5.

(continued)

80 K. Petersen

Example (QN (Nominal) → QN (Ratio)) For the first research question
(RQ1) we investigated how many criteria were considered when making a
decision. The input was the nominal data, and we counted how many criteria
were considered in each decision case. The data was presented in a tabular
way and as a histogram. The table showed the criteria, the number of cases,
and the % of cases (see Table 7). Additionally, the distribution of the number
of criteria used in the cases was presented as a histogram.

Example (QL (Textual) → QL (Textual, Ordinal)) The evaluation of the
outcome (RQ2) of the decision was described in a narrative form. From
the narrative description, the outcome was categorized as positive (

√
),

negative (†), and indifferent (o). The decisions (independent variable) were
summarized in a tabular form together with independent variables, such as
the choice made and the criteria considered. Table 8 shows three examples,
one positive, one negative, and one indifferent.

Associating Variables As we had both independent and dependent variables,
it was interesting to analyze whether specific criteria were associated with
the decision for a specific CSO, both variables are representing nominal data.
For example, when reliability was considered, were people more likely to
go for a specific option (such as in-house). Odds ratio is a measure that
checks whether the presence or absence of one variable is associated with
the presence or absence of another variable and has earlier been applied in
software engineering (Badampudi and Wohlin 2016). The higher the odds
ratio, the higher the association. As an example, we saw that the use of the
criterion certification was more strongly associated with the choice for in-
house (odds ratio of 6.86) compared to open source (odds ratio of 1.25),
components off the shelf (odds ratio of 0.18), services and outsourcing (odds
ratio of 0.78).

Clustering As we had 22 cases it was interesting whether we find patterns
concerning the cases (e.g., groups with similar traits). In order to do so, we
used hierarchical cluster analysis. The clusters were presented in the form of
a dendrogram. We, for example, found that the cases were quite diverse and
no clear pattern emerged to group them. Only four cases were identified as
being similar based on the cluster analysis. Those four cases were presented
in a table, naming the contextual variables, decision-making characteristics,
and the outcome.

The segmentation of data to present subsets of cases has been used various
times in the study. Two examples where segmentation was used were:

• The grouping of the evaluations of the decision (see Table 8) made by the
decision options. For example, four cases were in the group “in-house,”

(continued)

Guidelines for Case Survey Research in Software Engineering 81

four in the group “commercial off the shelf,” three in “open source,” and
five in “outsource.” Additionally, a segment for combinations of options
was created.

• The cross-tabulation of roles involved in the decision and the different
decision activity including the roles.

In order to assess the quality of the analysis, observer triangulation was
used. The interpretation and findings were reviewed by the researchers.

3.5 Reporting

We propose that researchers use the following guidelines when reporting their case
surveys.

1. Introduction
Describe the background and position of the research. Identify the research
problem and the gap. Describe the main contributions and how they relate to
the problem and the gap. Explicitly state that a case survey has been conducted
and briefly explain how the process has been applied. Also, state whether the
case survey is of exploratory or confirmatory nature.

2. Related work
Present related studies. Derive theories and propositions from these studies,
which may be tested when the case survey is confirmatory.

Table 6 Overview of the cases (excerpt from Petersen et al.)

Case ID Company size Size dev. unit Domain Appl. type
Development
methodology

Case 1 100,000 5000 Automotive Embedded
systems

Iterative
development,
lean manufacturing

Case 2 1200 350 Utilities Embedded +
Software + Apps

Agile SCRUM
variant

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Case 17 100,000 30 Automotive Embedded
control system

Each of the
department uses its
own development
methodology but
there is a global
process (V model).
The components
used SCRUM

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

82 K. Petersen

Table 7 Criteria for decision-making considered (frequency)—excerpt from Petersen et al.

Group Criterion Cases %

Product Performance 17 77.27

Reliability 13 59.09

Maintainability 13 59.09
.
.
.

.

.

.
.
.
.

Financial Cost—general (time, effort, resources) 17 86.36

Cost—buy/rent 3 1.62

Cost—acquisition 1 4.55

Cost—adaptation 1 4.55
.
.
.

.

.

.
.
.
.

Project Level of support 5 22.73

Familiarity with technology 1 4.55

Business Ecosystems 1 4.55

Market trend 1 4.55

time to market 1 4.55

Total 158

Table 8 Evaluation of decisions made

Case

Outcome
of the
decision

Attributes
considered in
preparation

Attributes
considered
important in
decision-making
(subset of
preparation)

Attributes
considered
important in
decision-
making
(new)

Evaluation of
the final
decision√ = positive,
o =
indifferent,
† = negative)

In-house

Case 21 In-house
over
outsource

Performance,
reliability, and
certification

Performance,
reliability

√
: reliability

was improved

Case 16 COTS
over
in-house

Maintainability,
cost, fitness for
purpose

Cost, fitness for
purpose

o

Case 12 Outsource
over
in-house

Performance,
maintainability,
reliability, cost,
functionality,
compatibility,
certification

Performance,
cost,
maintainability,
functionality,
compatibility,
reliability

†: underesti-
mated
computing
resources
needed
(performance)
of the chosen
solution

Guidelines for Case Survey Research in Software Engineering 83

3. Case survey design
For the reporting we suggest to follow the process presented in Table 1
to describe the method, namely defining the research scope, describing case
identification and selection, case extraction, and the approach of analysis. In
each of the sections, the steps presented in the figure should be described.
Additionally, validity threats are described. Here it is important to focus on
those threats that are open or only partially reduced by actions through the study
design.

4. Results
The results present the analyzed data. We propose to structure this section along
with the research questions.

5. Discussion
The discussion should contain three parts. First, the implications for practice are
described. Describing the implications means to discuss how practitioners should
act based on the findings. Second, the implications for research present which
future directions the investigations should take, or whether the way we approach
a research problem should change. As case surveys are not widely adopted yet, it
is also of interest to present reflections on the research process using case surveys.
Third, the findings should be compared with the findings of the related work, e.g.
reflecting on theories and propositions of previous studies.

6. Conclusion
In conclusion briefly summarize what has been done in the study (background,
objectives, and case survey method). After that, answer each research question.
Suggestions for future work are also presented.

Example (Petersen et al.) The study was having the following outline,
which closely followed the suggestions stated above. Minor deviations exist
in the wording, and the discussion included the validity threats instead of
the method. As the case survey method is not widely known, we have also
provided a comprehensive introduction to the method in Sect. 3.

1. Introduction
2. Related work

(a) Choosing among CSOs
(b) Choosing vendors and suppliers
(c) Choosing components

3. Method

(a) Research questions
(b) The case survey method

(continued)

84 K. Petersen

(i) Select the cases of interest
(ii) Design data extraction scheme for data elicitation

(iii) Conduct the coding
(iv) Analysis

4. Results

(a) Overview of cases and context
(b) RQ1: How are CSOs chosen?

(i) RQ1.1: Which CSOs (a) were considered and (b) which CSOs
among those considered were chosen?

(ii) RQ1.2: Which stakeholders were involved in the decision pro-
cess?

(iii) RQ1.3: Which criteria (a) were considered for making the deci-
sion and (b) which criteria initially considered ended up as
significant for the final decision?

(iv) RQ1.4: Which decision-making approach/model was used?

(c) RQ2: What was the result of the decision-making process?

(i) RQ2.1: What was the effort invested in the decision-making
process?

(ii) RQ2.2: Were the chosen CSOs considered the “right” choice
retrospectively?

5. Discussion

(a) Reflections with respect to the research questions
(b) Characterization of decisions
(c) Comparison with the general traits of decision-making from related

work
(d) Validity threats

6. Conclusion

3.6 Validity Threats

There exist different views of how to categorize validity threats, for example,
focusing on positivist research (Campbell and Cook 1979), interpretivist (Guba and
Lincoln 1982), and participatory (Greenwood and Levin 2006). Maxwell (1992)
provides a comprehensive framework for validity that does, for example, not
clearly distinguish between quantitative and qualitative approaches, but aims to
find a typical frame of reference for them. Petersen and Gencel (2013) propose

Guidelines for Case Survey Research in Software Engineering 85

to use the categories proposed by Maxwell (1992) in software engineering research
and chapter “Guidelines for Managing Threats to Validity of Secondary Studies
in Software Engineering” discusses validity threats of secondary studies. The
categories are descriptive validity (factual accuracy), theoretical validity (ability
to capture what we intend to capture), generalizability (degree to which we can
generalize findings to other contexts), and interpretive validity (objectiveness of
the researcher when drawing conclusions), and evaluative validity (evaluating and
assigned a value to the objects of study). Maxwell acknowledges that all five types
are relevant for qualitative research. We discuss four of the validity threats to
illustrate that case surveys, case studies, surveys, and experiments have different
levels of difficulty mitigating the four types of threats.

Having used different research methods such as surveys, experiments, case
studies as well as case surveys, we positioned these methods concerning the
difficulty to control the threats mentioned above (see Fig. 2). The positioning of
the studies is an approximation based on own experiences and may change based on
the specific study context (e.g., number of subjects, size of the company, online vs.
offline experiment).

Below we briefly discuss the main differences between the methods and the
specific difficulties when mitigating the threats.

Experiments are based on well-defined constructs and measures (for example, in
controlled experiments the number of defects detected is measured). They are also
conducted in a controlled environment and deviations from the experimental process
can be controlled for. This contributes positively to descriptive validity. However, it
has been acknowledged that it is difficult to reproduce a realistic environment for
various reasons (Siegmund et al. 2015), as subjects, instrumentation, and context are
often not all industrial at the same time. Theoretical validity is also mitigated more
easily compared to other methods due to the controlled environment, we can, for
example, account more easily for contextual factors. The interpretation of the data
to draw conclusions is also difficult with quantitative data, though less compared to
qualitative data as previous experiences and biases may strongly influence coding
and categorization.

In contrast, case studies provide mechanisms for achieving in-depth insights
based on qualitative and quantitative data and data triangulation. Using data trian-
gulation from various perspectives (e.g., using multiple data sources and observers)
helps in achieving descriptive validity. Generalizability, however, is difficult to

Descriptive validity Generalizability Theoretical validity Interpretive validity

D
iffi

cu
lty

 o
f c

on
tr

ol
in

g
th

e
th

re
at

s

Low

Medium

High Experiment

Survey (questonnaire)

Case study

Case survey

Fig. 2 Validity threats and how difficult they are to mitigate for different methods

86 K. Petersen

achieve as case studies require a high degree of effort and are often conducted
investigating a single or small set of cases. Theoretical validity is difficult to achieve
as we may not control for confounding factors easily and measures collected in
the industry may be sparse representations of the constructs investigated. As case
studies to a large degree rely on qualitative data, interpretive validity is an issue.

In surveys, specifically questionnaires, descriptive validity is difficult to achieve.
This is due to the reason that today the research community does not share a
common vocabulary, and the industry does not either (see, e.g., Runeson 2006),
which is not only a challenge specific to surveys. However, it is more critical here
compared to case studies as in an online questionnaire targeting a large number of
persons, we may not have the opportunity to ask follow-up questions. We also may
not be able to provide detailed explanations of concepts used in the survey (e.g.,
the definition of a development practice) due to extensive questionnaire lengths.
Surveys provide mechanisms to systematically derive a sampling strategy given
a target audience and population. Surveys also allow gathering a high number
of data points. We face challenges concerning theoretical validity when defining
measures to be specified. It is furthermore difficult to account for confounding
factors in a survey. The survey, similar to an experiment, relies to a large degree
on quantitative analysis, which in comparison to qualitative methods reduces the
threat to interpretive validity.

When positioning the case survey to the other methods, we can say that in com-
parison to the case study the generalizability is accounted for as we systematically
analyze target audience and population and devise a sampling strategy. It is also
more challenging to achieve a high degree of descriptive validity as we cannot go
as in-depth compared to a full case study. Otherwise, a large number of cases is
infeasible to collect.

Overall the above analysis shows that the case survey is a trade-off between
case studies and surveys. When discussing validity in ones papers, it is however
important to also consider validity threats associated with quantitative research
(e.g., internal validity); see Petersen and Gencel (2013) for an overview of threat
categories. The reason is that the case survey method proposed in this chapter
utilizes both quantitative and qualitative data.

Example (Petersen et al.) The study used the classification by Maxwell as
proposed by Petersen and Gencel (2013). We briefly present the main threats
reported for the study.

Descriptive Validity The main threat here was missing data, as not all
subjects could answer the questions related to all items in the extraction form.
Specifically, effort data was missing for six cases.

Generalizability The main threat to generalizability was the bias in the data
set as convenience sampling was used.

(continued)

Guidelines for Case Survey Research in Software Engineering 87

Theoretical Validity When relating independent and dependent variables
(decision-making approaches to decision outcomes) the main threat was
confounding factors. Context also played an important part, and only a limited
set of a potentially very large set of contextual variables could be collected.

Interpretive Validity The conclusions drawn from the data were not drawn
by an individual researcher. Hence, during the study, we focused on observer
triangulation to reduce this threat.

3.7 Quality Assessment

Checklists are used to assess the quality of different studies. Runeson and Höst
(2009) included checklists for case study research. Molléri et al. (2019) proposed a
checklist to support the design of surveys. In this section, we propose one checklist
used to support the design of case surveys. The questions list the reflections to be
made during the research design. These reflections also should then be reported to be
able to assess the quality of the case survey. Each item evaluates to “yes,” “partially,”
and “no.” When reviewing, it is important to state a rationale for the assessment.

1. Research scope

(a) Was the study positioned relative to other studies?
(b) Were the research objective and research questions stated?
(c) Was the type of case survey (exploratory or confirmatory) defined? If

confirmatory, were propositions or hypotheses stated?
(d) Was the study motivated by practical or research relevance?

2. Research set-up

(a) Were guidelines followed when designing the case survey?
(b) Was a risk analysis performed on whether the research team is able to (a)

obtain a sufficient number of cases and (b) analyze and process the data
collected?

3. Population and sampling plan

(a) Were inclusion and exclusion criteria for the cases defined?
(b) Were the criteria clearly linked to the research objective and questions?
(c) Was the target audience of the research determined?
(d) Was the population defined?
(e) Was the sampling frame and the sample defined?
(f) Was the sampling strategy (e.g., convenience vs. random sampling)

described?
(g) Was the case selection quality assessed?

88 K. Petersen

4. Case extraction

(a) Did the design of the extraction form consider case metadata, case abstract,
units of analysis, case context, and study data?

(b) Was the mode of data collection (primary versus secondary source and data
collection method) for each case specified?

(c) Was the feasibility of data collection considered in relation to the number of
variables to be extracted?

(d) Did the variables represent the theoretical constructs?
(e) Were multiple sources considered (literature, experts, documentation, or a

combination)?
(f) Was data triangulation (e.g., two interviews per case) practiced?
(g) Was the data extraction form piloted and the pilot assessed (e.g., member

checking with expert, interrater reliability when using literature or documen-
tation)?

(h) Was an instrument defined to reliably record the data (e.g., online form, audio
recording) determined?

(i) Was the quality of the extracted data verified (completeness, rigorously
collected)?

(j) Was the elicited data assessed with respect to its reliability (interrater
reliability, member checking)?

5. Analysis

(a) Was the method for data analysis identified?
(b) Was the analysis suitable to answer the research questions?
(c) Was the method capable of providing reliable results for the given data (type,

distribution, etc.)?
(d) Was qualitative synthesis across cases performed using multiple observers?
(e) Was the reliability of the qualitative synthesis evaluated?

6. Discussion and conclusion

(a) Did the discussion provide practical implications to answers of the research
questions?

(b) Did the discussion provide research implications to answers of the research
questions?

(c) Were the implications and conclusions valid given the data?
(d) Were the results compared against propositions, hypotheses, and findings in

the related work?

7. Assessment of research validity

(a) Did the study discuss validity threats?
(b) Did a self-evaluation take place (e.g., using a checklist)? Was the outcome

reported?

Guidelines for Case Survey Research in Software Engineering 89

Example (Petersen et al.) We applied the checklist to our study to determine
the possibilities of how the study could have been improved.

Research Scope Concerning research scope we found that all questions could
be answered with “yes.” As an example, related literature supported us in
the view that it is vital to understand the industrial processes of selecting
components and highlighted limited evidence (yes). Also, it was explicitly
stated that the study is exploratory (yes).

Research Set-up The guideline has been specified (Larsson 1993). Also, the
research team was quite large (10 authors) in order to achieve the goals of
the research. Though, this has not been explicitly motivated in the paper (i.e.,
partially fulfilled).

Population and Sampling Plan The criteria have been explicitly defined and
motivated. The population has been presented, though no distinction between
the target audience and population has been made (partially). No sampling
frame has been explicitly stated, though a sample was defined. The sampling
strategy was named as convenience sampling. The quality of elicitation was
ensured through peer review.

Case Extraction The extraction form missed units of analysis (partially).
The mode of data collection was specified (project members, experts was
defined). An explicit thought and motivation in relation to feasibility were not
discussed (no). We only covered specific aspects of the decision, e.g. details
of the decision process steps were not considered. Hence, the constructs
may not be fully represented (partially). We decided a-priori to base the
findings on primary data, the consideration of additional sources (literature,
documentation, blogs) could have further improved the study (partially). No
triangulation through multiple interviews was done (no). The extraction form
has been piloted (yes). Google forms were used that allow to quickly grasp
whether the desired information has been captured (yes). Member checking
has not been conducted (no).

Analysis The data analysis methods have been described (yes) and were
suitable for answering the questions (yes). We used methods that were suitable
for the types of data (e.g., odds ratio, i.e., yes). Multiple researchers were
involved in the interpretation of the data (yes) and evaluated its quality
through the review (yes).

Discussion and Conclusions The discussion focused on the research ques-
tions, though it mainly focused on practical implications (yes) and research
implications were only represented in future work (partially). The conclu-
sions, having the limitations raised in the validity threats in mind, follow a
red threat from research questions to conclusions and are traceable, i.e. they

(continued)

90 K. Petersen

are considered valid (yes). The results have been systematically compared to
related work (yes).

Quality Assessment The study discusses validity threats (yes), a self-
evaluation (i.e., internal review) was conducted, though not based on a
checklist to systematically determine flaws (partially).

4 Recommended Further Reading

To gain an in-depth understanding of case study research we recommend to read the
guidelines by Runeson et al., including the guideline paper (Runeson 2006) as well
as the book (Runeson et al. 2012).

Larsson (1993) provides a detailed account of how to conduct case surveys using
secondary data. This includes a description of the process steps and a reflection on
how to conduct them.

Molléri et al. (2016) aggregated guidelines for survey research and summarized
the main steps for conducting surveys. The chapter “Challenges in Survey Research”
discusses challenges of survey research.

5 Conclusion

In this chapter, we presented guidelines for case survey research. Originally the
guidelines for case survey research classified the method as secondary research.
The aim was to find a trade-off between case studies and surveys. In the guideline
presented in this paper, the case survey research is modified to also incorporate
primary data.

We believe that the case survey research method may be useful for both
developing generalizable results while also supporting the study of individual cases.
We believe that a prerequisite is to assemble a research team that uses its networks
to collect the cases. This way we will have comparable cases based on the same
research question and data collection instruments.

The chapter presents the initial version of the guidelines. In future work, the
guidelines need to be applied and evaluated. This will hopefully lead to mature and
beneficial ways of conducting large-scale case surveys within the empirical research
community.

Guidelines for Case Survey Research in Software Engineering 91

References

Ali NB, Petersen K (2014) Evaluating strategies for study selection in systematic literature
studies. In: 2014 ACM-IEEE international symposium on empirical software engineering and
measurement, ESEM ’14, Torino, pp 45:1–45:4

Ali NB, Usman M (2018) Reliability of search in systematic reviews: towards a quality assessment
framework for the automated-search strategy. Inform Softw Tech 99:133–147. https://doi.org/
10.1016/j.infsof.2018.02.002

Badampudi D, Wohlin C (2016) Bayesian synthesis for knowledge translation in software engi-
neering: method and illustration. In: 2016 42th Euromicro conference on software engineering
and advanced applications (SEAA). IEEE, Piscataway, pp 148–156

Badampudi D, Wohlin C, Petersen K (2015) Experiences from using snowballing and database
searches in systematic literature studies. In: Proceedings of the 19th international conference
on evaluation and assessment in software engineering, EASE 2015. Nanjing, pp 17:1–17:10

Briand LC, Bianculli D, Nejati S, Pastore F, Sabetzadeh M (2017) The case for context-driven
software engineering research: generalizability is overrated. IEEE Softw 34(5):72–75

Bullock R, Tubbs ME (1990) A case meta-analysis of gainsharing plans as organization develop-
ment interventions. J Appl Behav Sci 26(3):383–404

Campbell DT, Cook TD (1979) Quasi-experimentation: design and analysis issues for field
settings. Rand McNally College Publishing, Chicago

Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20(1):37–46
Cruzes D, Dybå T (2011) Research synthesis in software engineering: a tertiary study. Inform

Softw Tech 53(5):440–455
Cruzes DS, Dybå T, Runeson P, Höst M (2015) Case studies synthesis: a thematic, cross-case, and

narrative synthesis worked example. Empir Softw Eng 20(6):1634–1665
Dybå T (2013) Contextualizing empirical evidence. IEEE Softw 30(1):81–83
Easterbrook S, Singer J, Storey MA, Damian D (2008) Selecting empirical methods for software

engineering research. In: Guide to advanced empirical software engineering. Springer, Berlin,
pp 285–311

Gable GG (1994) Integrating case study and survey research methods: an example in information
systems. Euro J Inform Syst 3(2):112–126

Garousi V, Felderer M, Mäntylä MV (2019) Guidelines for including grey literature and conducting
multivocal literature reviews in software engineering. Inform Softw Tech 106:101–121

Golembiewski RT, Proehl CW, Sink D (1981) Success of od applications in the public sector: toting
up the score for a decade, more or less. Public Adm Rev 41(6):679–682

Greenwood DJ, Levin M (2006) Introduction to action research: social research for social change.
SAGE, Thousand Oaks

Guba EG, Lincoln YS (1982) Epistemological and methodological bases of naturalistic inquiry.
ECTJ 30(4):233–252

Jurisch M, Wolf P, Krcmar H (2013) Using the case survey method for synthesizing case study
evidence in information systems research. In: 19th Americas conference on information
systems, AMCIS 2013. Chicago

Kitchenham B, Charters S (2007) Guidelines for performing systematic literature reviews in
software engineering. Ver. 2.3 EBSE Technical report. EBSE

Klotins E (2017) Using the case survey method to explore engineering practices in software start-
ups. In: 2017 IEEE/ACM 1st international workshop on software engineering for startups
(SoftStart). IEEE, Piscataway, pp 24–26

Kuhrmann M, Fernández DM, Daneva M (2017) On the pragmatic design of literature studies in
software engineering: an experience-based guideline. Empir Softw Eng 22(6):2852–2891

Larsson R (1993) Case survey methodology: quantitative analysis of patterns across case studies.
Acad Manag J 36(6):1515–1546

https://doi.org/10.1016/j.infsof.2018.02.002
https://doi.org/10.1016/j.infsof.2018.02.002

92 K. Petersen

Linaaker J, Sulaman SM, Höst M, de Mello RM (2015) Guidelines for conducting surveys
in software engineering v. 1.1. Technical report, Department of Computer Science, Lund
University

Lucas WA (1974) The case survey method. Tech. rep., Rand Corporation, report R-1515-RC
Maxwell J (1992) Understanding and validity in qualitative research. Harv Educ Rev 62(3):279–

301
Miller D, Friesen PH (1977) Strategy-making in context: ten empirical archetypes. J Manag Stud

14(3):253–280
Molléri JS, Petersen K, Mendes E (2016) Survey guidelines in software engineering: an annotated

review. In: Proceedings of the 10th ACM/IEEE international symposium on empirical software
engineering and measurement. ACM, New York, pp 58:1–58:6

Molléri JS, Petersen K, Mendes E (2019) An empirically evaluated checklist for surveys in
software engineering. http://arxiv.org/abs/1901.09850

Munir H, Moayyed M, Petersen K (2014) Considering rigor and relevance when evaluating test
driven development: a systematic review. Inform Softw Tech 56(4):375–394

Petersen K, Gencel Ç (2013) Worldviews, research methods, and their relationship to validity in
empirical software engineering research. In: 2013 joint conference of the 23rd international
workshop on software measurement and the 8th international conference on software process
and product measurement. Ankara, pp 81–89

Petersen K, Wohlin C (2009) Context in industrial software engineering research. In: Proceedings
of the third international symposium on empirical software engineering and measurement,
ESEM 2009. Lake Buena Vista, pp 401–404

Petersen K, Vakkalanka S, Kuzniarz L (2015) Guidelines for conducting systematic mapping
studies in software engineering: an update. Inform Softw Tech 64:1–18

Petersen K, Badampudi D, Shah SMA, Wnuk K, Gorschek T, Papatheocharous E, Axelsson J,
Sentilles S, Crnkovic I, Cicchetti A (2018) Choosing component origins for software intensive
systems: in-house, cots, OSS or outsourcing? A case survey. IEEE Trans Softw Eng 44(3):237–
261

Runeson P (2006) A survey of unit testing practices. IEEE Softw 23(4):22–29
Runeson P, Höst M (2009) Guidelines for conducting and reporting case study research in software

engineering. Empir Softw Eng 14(2):131–164
Runeson P, Höst M, Rainer A, Regnell B (2012) Case study research in software engineering—

guidelines and examples. Wiley, London
Siegmund J, Siegmund N, Apel S (2015) Views on internal and external validity in empirical

software engineering. In: Proceedings of the 37th international conference on software
engineering, vol 1. IEEE Press, New York, pp 9–19

Wohlin C, Runeson P, da Mota Silveira Neto PA, Engström E, do Carmo Machado I, de Almeida ES
(2013) On the reliability of mapping studies in software engineering. J Syst Soft 86(10):2594–
2610

Yin RK, Heald KA (1975) Using the case survey method to analyze policy studies. Adm Sci Q
1:371–381

Yin RK, Yates D (1974) Street-level governments: assessing decentralization and urban services
(an evaluation of policy related research)

Zhang H, Babar MA, Tell P (2011) Identifying relevant studies in software engineering. Inform
Softw Tech 53(6):625–637. https://doi.org/10.1016/j.infsof.2010.12.010

http://arxiv.org/abs/1901.09850
https://doi.org/10.1016/j.infsof.2010.12.010

Challenges in Survey Research

Stefan Wagner , Daniel Mendez , Michael Felderer , Daniel Graziotin,
and Marcos Kalinowski

Abstract While being an important and often used research method, survey
research has been less often discussed on a methodological level in empirical
software engineering than other types of research. This chapter compiles a set
of important and challenging issues in survey research based on experiences
with several large-scale international surveys. The chapter covers theory building,
sampling, invitation and follow-up, statistical as well as qualitative analysis of
survey data and the usage of psychometrics in software engineering surveys.

1 Introduction

Empirical software engineering started with a strong focus on controlled experi-
ments. It widened only later to case studies and similar research methods. Both
methodologies have been discussed extensively for software engineering (Wohlin
et al. 2012; Runeson et al. 2012). While survey research has been used to capture

S. Wagner (�) · D. Graziotin
University of Stuttgart, Stuttgart, Germany
e-mail: stefan.wagner@iste.uni-stuttgart.de; daniel.graziotin@iste.uni-stuttgart.de

D. Mendez
Technical University of Munich, Munich, Germany

Blekinge Institute of Technology, Karlskrona, Sweden

fortiss GmbH, Munich, Germany
e-mail: mendezfe@acm.org

M. Felderer
Department of Computer Science, University of Innsbruck, Innsbruck, Austria

Blekinge Institute of Technology, Karlskrona, Sweden
e-mail: michael.felderer@uibk.ac.at

M. Kalinowski
Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
e-mail: kalinowski@inf.puc-rio.br

© Springer Nature Switzerland AG 2020
M. Felderer, G. H. Travassos (eds.), Contemporary Empirical Methods in Software
Engineering, https://doi.org/10.1007/978-3-030-32489-6_4

93

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32489-6_4&domain=pdf
http://orcid.org/0000-0002-5256-8429
http://orcid.org/0000-0003-0619-6027
http://orcid.org/0000-0003-3818-4442
mailto:stefan.wagner@iste.uni-stuttgart.de
mailto:daniel.graziotin@iste.uni-stuttgart.de
mailto:mendezfe@acm.org
mailto:michael.felderer@uibk.ac.at
mailto:kalinowski@inf.puc-rio.br
https://doi.org/10.1007/978-3-030-32489-6_4

94 S. Wagner et al.

a broader sample for mostly cross-sectional studies, the methodological issues have
rarely been discussed.

The aim of this chapter is to complement existing more general literature
on survey research and questionnaire design as well as the existing software-
engineering-specific literature. Therefore, this is not a tutorial to survey research,
but it provides a compact description of important issues and lessons learned that
any empirical software engineering research can make use of in their next surveys.

To not only discuss pure methodology and theory, we provide concrete examples
of our experiences with the methodologies based on two lines of survey research:
First, the project Naming the Pain in requirements engineering1 (NaPiRE) has
the goal to provide an empirical basis for requirements engineering research by
capturing the state of the practice and current problems and challenges with
requirements engineering. We have already made three rounds of surveys in this
project over seven years and over ten countries. In these, we developed a theory as
basis for the questionnaire, several variations on questions for similar concepts, and
also experimented with different methodological options (Méndez Fernández and
Wagner 2015; Wagner et al. 2019; Méndez Fernández et al. 2017). We will discuss
these variations and experiences in the following.

We complement the NaPiRE experiences with a study that aimed to assess
the happiness of software developers and targeted GitHub developers with a
psychometrically validated test (Graziotin and Fagerholm 2019; Graziotin et al.
2018, 2017). This example described in Sect. 7.3 is different in the target population
and how the questionnaire was created. Hence, it gives us even more possibilities to
discuss.

The chapter is organized so that we discuss different areas that we consider
interesting and challenging. We start with a discussion on how survey research
can be integrated with theory building, then explain what we need to consider
when using psychometric tests in our questionnaires and why we need to consider
psychometric properties. We then discuss the limited possibilities in evaluating
the sample of a survey study including a short discussion of ethics. We continue
with the closely related issue of how and whom to invite to a survey and how to
manage follow-ups. The last two sections discuss issues in quantitative statistical
and qualitative analysis of the data from a survey.

2 Survey Research and Theory Building

The ultimate goal of empirical software engineering is, in one way or another, to
build and evaluate scientific theories by applying empirical research methods (Mén-
dez Fernández and Passoth 2018). Survey research is one such means to contribute
to theory development (Malhotra and Grover 1998) as the main objective for

1http://napire.org.

http://napire.org

Challenges in Survey Research 95

conducting a survey is either of the following (Wohlin et al. 2012; Pinsonneault
and Kraemer 1993): explorative, descriptive, or explanatory. Explorative surveys
are used as a pre-study to a more thorough investigation to assure that important
issues like constructs in a theory like requirements elicitation techniques are not
foreseen. Descriptive surveys can be conducted to enable assertions about some
population like the distribution of certain attributes (e.g., usage of requirements
elicitation techniques). The concern is not why the observed distribution exists,
but instead what that distribution is. Finally, explanatory surveys aim at making
explanatory claims about the population (e.g., why specific requirements elicitation
techniques are used in specific contexts).

A theory provides explanations and understanding in terms of basic constructs
and underlying mechanisms, which constitute an important counterpart to knowl-
edge of passing trends and their manifestation (Hannay et al. 2007). The main aim
of a theory is to describe, explain, or even predict phenomena, depending on the
purpose of the theory (Gregor 2006). A theory can be defined as a statement of
relationship between units observed or approximated in the empirical world (Mal-
hotra and Grover 1998), i.e., we capture a pattern in real world phenomena. Theories
may have further quality criteria, such as the level of support or practical and/or a
scientific utility (Stol and Fitzgerald 2015).

From the practical perspective, theories should be useful and explain or predict
phenomena that occur in software engineering. From a scientific perspective,
theories should guide and support further research in software engineering. The
main building blocks of a theory according to Sjøberg et al. (2008) are constructs,
relationships, explanations, and a scope. Constructs describe what the basic ele-
ments are, propositions how the constructs interact with each other, explanations
why the propositions are as specified, and the scope elaborates what the universe of
discourse is in which the theory is applicable.

The five steps of theory building of Sjøberg et al. (2008) are:

1. defining the constructs,
2. defining the propositions,
3. providing explanations to justify the theory,
4. determining the scope, and
5. testing the theory (or, more precisely, to test its consequences via hypotheses,

i.e., testable propositions) through empirical research

For the last steps, mainly controlled experimentation is typically considered.
In general, the relationship of theory building and experiments has been well
investigated in software engineering (Hannay et al. 2007), whereas the relationship
to survey research has not. Theory building and evaluation can guide the design
and analysis of surveys, and surveys can also be applied to test theories. In the
following, we discuss the interplay between theory building and survey research
based on examples taken from NaPiRE.

In the early stages of studying a phenomenon, concepts of interest need
to be explored and described in a conceptual framework or theory defining
basic constructs and relationships, which also corresponds to the initial steps of

96 S. Wagner et al.

theory building, i.e., definition of constructs and propositions. In later phases,
a phenomenon can be explained and finally predictions based on cause–effect
relationships can be drawn. Survey research can support all these phases of
theory building. Both activities, survey research and theory building, are strongly
interrelated. The concrete relationship between survey research and theory building
depends on whether the theory is descriptive, explanatory, or predictive.

Initial theories, that is to say theories for which the level of evidence is yet
weak, can be drawn from observations and available literature. An initial theory
can be a taxonomy of constructs (Usman et al. 2017) or a set of statements
relating constructs. Inayat et al. (2015) provide, for instance, an initial taxonomy
on practices adopted in agile RE according to published empirical studies. Also
common terminology as, for instance, provided by the Software Engineering Body
of Knowledge (SWEBoK) by Bourque et al. (2014), which covers a taxonomy
of requirements elicitation techniques, can be considered as an initial descriptive
theory. For NaPiRE, we followed a similar strategy where we elaborated a set of
constructs and propositions based on available literature and expert knowledge,
thus, unifying isolated studies to a more holistic but initial (descriptive) theory on
contemporary practices in RE (Méndez Fernández and Wagner 2015). One such
example was how practitioners tend to elicit requirements. Exemplary statements
for the requirements elicitation were Requirements are elicited via workshops or
Requirements are elicited via change requests. These two statements relate the
concept requirements elicitation to the concepts workshops and change requests,
respectively. The survey is designed to test the theory and find next statements to
extend the theory. The statements on requirements elicitation resulted in the closed
multiple-choice survey question “If you elicit requirements in your regular projects,
how do you elicit them?” with the additional option “Other.” The responses were
that 80% use workshops and discussions with the stakeholders, 58% use change
requests, 44% use prototyping, 48% refer to agile approaches at the customer’s
site, and 7% use other approaches. The two statements from the theory about
requirements elicitation via workshops and change requests, respectively, were
supported by respective null-hypothesis tests (see Sect. 5.2).

Subsequent survey runs were then designed to test that initial theory and make
further observations to further extend, refine, and improve the initial theory to an
explanatory theory.

In principle, the more advanced theories are, the better explanations for the
propositions they provide. The core issue of this is to provide explicit assumptions
and logical justifications for the constructs and propositions of the theory. Table 1
shows propositions and explanations for requirements elicitation as formulated in
the theory presented by Wagner et al. (2019). The presentation follows the tabular
schema for presenting explanatory theories as suggested by Sjøberg et al. (2008).

The first run, however, showed that other elicitation techniques are also widely
in use. This resulted in the propositions stated in Table 1. P 1, P 2, P 3, and
P 5 are new. P 4 was already supported in the first run and included in the
initial theory. The used terminology in the propositions was also aligned with
elicitation techniques as described in the SWEBoK. The answer possibilities in

Challenges in Survey Research 97

Table 1 Propositions about elicitation with explanations after the survey (Wagner et al. 2019)

No. Propositions

P 1 Requirements are elicited via interviews

P 2 Requirements are elicited via scenarios

P 3 Requirements are elicited via prototyping

P 4 Requirements are elicited via facilitated meetings (including workshops)

P 5 Requirements are elicited via observation

No. Explanations Propositions

E 1 Interviews, scenarios, prototyping, facilitated meetings, and
observations allow the requirements engineers to include many different
viewpoints including those from nontechnical stakeholders

P1–P5

E 2 Prototypes and scenarios promote a shared understanding of the
requirements among stakeholders

P2, P3

Prototyping

Interviews

Scenarios

Observat ion

Facilitated meetings
(including workshops)

0.73

0.67

0.58

0.41

0.29

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Fig. 1 Proportions with confidence intervals for the question “How do you elicit requirements?”
(Wagner et al. 2019)

the questionnaire correspond directly to the propositions and resulted in the closed
multiple-choice survey question “If you elicit requirements in your regular projects,
how do you elicit them?” with the choices “Interviews,” “Scenarios,” “Prototyping,”
“Facilitated meetings (including workshops),” “Observation,” and “Other.” The
answers of the respondents together with an error bar that represents the 95%
confidence interval (CI) are shown in Fig. 1. The confidence intervals of all response
types, even from the least frequently used elicitation technique Observations with
P = 0.29[0.23, 0.35] are still larger than the threshold of 0.2. We therefore
have support for all corresponding propositions P 1–P 5. Additional answers for
“others” included “Created personas and presented them to our stakeholders,”
“Questionnaires”/“Surveys,” “Analysis of existing system,” and “It depends on

98 S. Wagner et al.

the client.” Especially some kinds of surveys/questionnaires are mentioned several
times. This could be a candidate for an additional proposition for the refined theory
of the next iteration.

The explanations E 1 and E 2 are for the five propositions P 1–P 5. The difference
between a proposition and an explanation is that the former is a relationship among
constructs, and the latter is a relationship among constructs and other categories,
which are not central enough to become constructs (Sjøberg et al. 2008). For
explanations of the propositions, we do not have any additional insights from the
open answers, which would be of value. However, explanations can be backed up
by literature. For instance, Sommerville et al. (1998) state that it is important to
include different viewpoints during requirements elicitation, which supports E 1.
Mannio and Nikula (2001) developed an iterative requirements elicitation method
combining prototypes and scenarios, which supports E 2.

Predictive theories are geared towards predicting what will happen. The key
underlying principle is finding cause–effect relationships among variables. This is
typically performed via quantitative statistical models like correlation and regres-
sion. Correlation quantifies the degree to which variables are related. Regression
quantifies the relationship between independent and dependent variables. In any
case, causal quantitative relationships should always be backed up by theory-
based expectations on how and why variables should be related. Gregor (2006)
even considers integrated explanatory and predictive theories as a separate type of
theory. Therefore, qualitative methods also play an important role even in predictive
theories.

Based on the survey results of the second NaPiRE run, we developed cause–
effect relationships with different degrees of quantification to support predictive
theories.

Méndez Fernández et al. (2017) developed initial cause–effect relationships
between top ten causes, top ten RE problems as well as the project impact, i.e.,
whether projects failed or were completed. The resulting relationships are shown via
an Alluvial diagram in Fig. 2. This diagram enables initial predictions of the project
impact based on available causes like lack of time or missing direct communication
to customer and problems like incomplete and/or hidden requirements.

The predictive model was created based on the survey in the following way. After
selecting the five most critical RE problems in the survey, we asked our respondents
to provide what they believe to be the main causes and effects for each of the
problems. They provided the causes and effects in an open question format, with
one open question for the cause and another for the effect for each of the previously
selected RE problems. For analyzing the answers given to the open questions on
what causes and effects the RE problems have, we applied qualitative data analysis
techniques as recommended in the context of Grounded Theory (see Sect. 6). For
each answer given by a participant, we applied open and axial coding until reaching
a saturation in the codes and relationships, and we allocate the codes to previously
defined subcategories, i.e., Customer, Design/Implementation, Product, Project,
and Verification/Validation for the effect. The procedure finally delivers triples of
causes, problems, and effects that are visualized in the Alluvial diagram shown

Challenges in Survey Research 99

C
om

m
un

ic
at

io
n

fla
w

s
be

tw
ee

n
pr

oj
ec

t t
ea

m
 a

nd
 th

e
cu

st
om

er

C
us

to
m

er
 d

oe
s

no
t k

no
w

 w
ha

t h
e

w
an

ts

La
ck

 o
f a

 w
el

l-d
ef

in
ed

 R
E

pr
oc

es
s

La
ck

 o
f e

xp
er

ie
nc

e
of

 R
E

te
am

 m
em

be
rs

La
ck

 o
f t

im
e

M
is

si
ng

 d
ire

ct
 c

om
m

un
ic

at
io

n
to

 c
us

to
m

er

R
eq

ui
re

m
en

ts
 re

m
ai

n
to

o
ab

st
ra

ct

To
o

hi
gh

 te
am

 d
is

tri
bu

tio
n

U
nc

le
ar

 ro
le

s
an

d
re

sp
on

so
ns

ib
ilit

ie
s

at
 c

us
to

m
er

 s
id

e

W
ea

k
qu

al
ifi

ca
tio

n
of

 R
E

te
am

 m
em

be
rs

C
om

m
un

ic
at

io
n

fla
w

s
be

tw
ee

n
pr

oj
ec

t t
ea

m
 a

nd
 th

e
cu

st
om

er

C
om

m
un

ic
at

io
n

fla
w

s
w

ith
in

 th
e

pr
oj

ec
t t

ea
m

In
co

m
pl

et
e

an
d

/ o
r h

id
de

n
re

qu
ire

m
en

ts

In
co

ns
is

te
nt

 re
qu

ire
m

en
ts

In
su

ffi
ci

en
t s

up
po

rt
by

 c
us

to
m

er

M
ov

in
g

ta
rg

et
s

(c
ha

ng
in

g
go

al
s,

 b
us

in
es

s
pr

oc
es

se
s

an
d

/ o
r r

eq
ui

re
m

en
ts

)

St
ak

eh
ol

de
rs

 w
ith

 d
iff

ic
ul

tie
s

in
 s

ep
ar

at
in

g
re

qu
ire

m
en

ts
 fr

om
 p

re
vi

ou
sl

y
kn

ow
n

so
lu

tio
n

de
si

gn
s

Ti
m

e
bo

xi
ng

 /
N

ot
 e

no
ug

h
tim

e
in

 g
en

er
al

U
nd

er
sp

ec
ifi

ed
 re

qu
ire

m
en

ts
 th

at
 a

re
 to

o
ab

st
ra

ct
 a

nd
 a

llo
w

 fo
r v

ar
io

us
 in

te
rp

re
ta

tio
ns

W
ea

k
ac

ce
ss

 to
 c

us
to

m
er

 n
ee

ds
 a

nd
 /

or
 (i

nt
er

na
l)

bu
si

ne
ss

 in
fo

rm
at

io
n

Pr
oj

ec
t C

om
pl

et
ed

Pr
oj

ec
t F

ai
le

d

F
ig

.2
C

au
se

–e
ff

ec
t

re
la

ti
on

sh
ip

be
tw

ee
n

to
p

te
n

ca
us

es
,t

op
te

n
R

E
pr

ob
le

m
s,

an
d

ef
fe

ct
s

in
te

rm
s

of
pr

oj
ec

ti
m

pa
ct

(M
én

de
z

Fe
rn

án
de

z
et

al
.2

01
7)

100 S. Wagner et al.

in Fig. 2. Dynamically implemented Alluvial diagrams, which support highlighting
and hiding elements, provide additional support for predictive analysis.

Méndez Fernández et al. (2018) implemented the available cause–effect rela-
tionships in dependency of two context factors such as company size or software
process model used as Bayesian networks (see Sect. 5.4 for Bayesian analysis).
We did so based on similar work done also for defect causal analyses (Kalinowski
et al. 2017). Our implementation allowed us to quantify the conditional probabilistic
distributions of all phenomena involved. More precisely, it allows us to, based
on the NaPiRE data used as learning set, use the Bayesian network inference
to obtain the posterior probabilities of certain phenomena to occur when specific
causes are known. This supports evidence-based risk management in requirements
engineering.

So in the Bayesian approach, we performed a cross-sectional analysis of the
NaPiRE data from one run (i.e., the second run), by blocking the data based on
specific information from the survey like company size or the software development
process used. Blocking can also help to refine the scope of a theory. In future, if
NaPiRE will have been replicated several times, even a longitudinal analysis will be
possible to develop predictive theories by analyzing time series.

Takeaways
• Survey research and theory building are strongly interrelated. The exact

relationship depends on whether the theory is descriptive, explanatory, or
predictive.

• Survey data supports the definition or refinement of constructs, relation-
ships, explanations, and the scope of a theory as well as testing of a theory.

• Theories are of high value to guide the design of surveys.

3 Issues in Sampling

At the beginning of any design of survey research, we should clarify what the target
population is that we try to characterize and generalize to. Statistical analysis (see
Sect. 5), which we apply to survey data, relies on systematic sampling from this
target population. In software engineering surveys, the unit of analysis that defines
the granularity of the target population is often (de Mello et al. 2015)

• an organization,
• a software team or project, or
• an individual.

For common research questions, we are typically interested in producing results
related to all organizations that develop software in the world or all software
developers in the world. Sometimes, this is reduced to certain regions of the world

Challenges in Survey Research 101

such as all requirements engineers in Europe or Brazil. The reason for this large aim
in the target population is that we want to find theories that have a scope as wide as
possible.

This brings us, however, to the problem that in most cases, we have no solid
understanding about the target population. How many software developers are
there in the world? Which companies are developing software? What are the
demographics of software engineers in the world? This is a hard question that
nobody has a certain answer to. Yet, without answering this question precisely, we
face enormous difficulties to discuss representativeness of a sample, the needed size
of the sample and, therefore, to what degree we can generalize our results. We will
first introduce a way for investigating representativeness; second, discuss the issue
of sample size estimation for contexts where we can estimate the size of the target
population; and, third, providing a note on the ethics in sampling.

3.1 Representativeness

For other types of survey research, scientists often rely on demographic information
published by governmental or other public bodies such as statistical offices of
countries, the EU, or the United Nations. These bodies are, so far, rather unhelpful
for our task, because they do not provide a good idea about software-developing
companies. These bodies scatter software engineering over various categories. For
example, the EU’s Statistical classification of economic activities in the European
Community (NACE REv. 2) has different categories for software publishing, devel-
oping software for games or application hosting. More difficult, however, is that
software development occurs in many other companies as well. For example, data
from the German statistical office2 on the usage of information and communication
technologies shows that in 2018, 13% of all German companies stated that they
develop business information systems internally. For web-based software solutions,
even 17% stated that they build them internally. Put together, this means that we do
not have a good estimate for the number and properties of organizations that develop
some kind of software.

There are possibilities to approach the demographics of software engineers in
the world. There are commercial providers of data from large surveys such as
Evans Data Corporation.3 Evans Data Corporation estimated for 2018 the number
of developers worldwide to be 23 million. They include information on different
roles, genders, used development processes and technologies. An open alternative
is the Stack Overflow Annual Developer Survey.4 They have the bias that only
people registered at Stack Overflow can be sampled. Yet, this could be tolerated

2Table 52911-0001 in https://www-genesis.destatis.de.
3https://evansdata.com/.
4https://insights.stackoverflow.com/survey/.

https://www-genesis.destatis.de
https://evansdata.com/
https://insights.stackoverflow.com/survey/

102 S. Wagner et al.

in light of the popularity of the platform among software developers. They provide
demographic information, for example, on whether developers are professionals,
their roles, experiences, and education.

With this demographic information, we can design our survey in a way that we
collect comparable data as is available in the distributions for the total population.
Then, we can compare the distributions in our survey and the larger surveys
to estimate representativeness. This comparison should primarily be part of the
interpretation and discussion of the results. This comparison prevents us from
overclaiming but at the same time gives more credibility in case we cover the
population well.

3.2 Sample Size Estimation

Having the estimate of the total number of developers worldwide, we can now ask,
what would be a good size for our sample? In other contexts, we might even have
better information on the population size, for example, when we want to survey
GitHub developers. This is an information we can extract from GitHub itself.

There is a large body of existing work that discusses sampling techniques and
suitable sample sizes. A simple way, for example, is to follow Yamane (1973). He
proposed to use this equation to calculate a suitable sample size n:

n = N

1 + Ne2 (1)

In the equation, N is the population size and e is the level of precision. This level
of precision is often set to 0.05 or 0.01. For the estimate of 23 million developers
worldwide, how large would our sample need to be?

n = 23,000,000

1 + 23,000,000 · 0.052
= 400 (2)

So, for most intents and purposes, with a sample size of more than 400, we could
claim a strong generalizability given that we also checked the representativeness as
described above. Of course, most survey will fall short of this. Yet, a clear discussion
comparing the sample size and representativeness with these figures makes it easy
to evaluate the strength and weaknesses of a particular survey study.

For the happiness study we described in Sect. 7.3, we assessed how happy
are software developers that have GitHub accounts. We needed to contact these
developers; therefore, we queried the GitHub Archive for public events providing e-
mail addresses. We obtained almost 456,283 unique e-mail addresses. We needed to
find a way to sample these addresses properly. First, we conducted three pilot studies
with N = 100 randomly sampled e-mail addresses. From the studies we could
estimate that roughly 98% of the e-mails were delivered, and that the response rate

Challenges in Survey Research 103

was rather low, between 2% and 4%. After deducting the 300 entries from the three
pilot samples, our new population size was 455,983. With Yamane’s formula, with
e = 0.05, we found out that we required N = 400 complete responses. On the other
hand, the formula by Cochran (1977), which uses a desired value α for significance,
suggested us to aim for N = 664 responses with a significance level of α = 0.01.
We opted for the more conservative value of N = 664 for our desired sample. That
meant that we needed to send out 33,200 e-mails assuming a 2% response rate.5

3.3 Ethics

Sampling in survey research today almost always means soliciting answers via e-
mail or social media. In a recent paper, Baltes and Diehl (2016) discuss that the
common practice of sending unsolicited e-mails to GitHub developers could be
ethically problematic. In software engineering, there is yet no established standard
or guidelines on how to conduct surveys ethically. They report that in their own
surveys, the received feedback from developers on GitHub being “spammed” with
research-related e-mails. They conclude that researchers in software engineering
should discuss this issue further and create their own guidelines.

For happiness study of Sect. 7.3, as described in the previous subsection, we
had to contact more than 30,000 software developers via e-mail. Even though the
developers provided a publicly listed e-mail address, we were aware that our e-
mails were unsolicited and might have disturbed their daily activities. There were
no available guidelines for the situation or even portals to gather volunteers for
software engineering research. All we could do was to design a short and cordial
invitation e-mail that, besides acting as informed consent form including ethical
and privacy considerations, was of opt-in nature. We believe that the consideration
worked to a certain extent, but we also add to the experience of Baltes and Diehl
(2016) of receiving feedback from potential participants who were annoyed by this.
While the number of complaints was not excessive, a very annoyed participant asked
GitHub to check on us. After inquiring with us on the nature of the study and after
inspecting our invitation e-mail, GitHub concluded that our study did not break
any of their terms of services and kindly asked us to be advised before starting
research activities, in the future, as they might want to check on the research design,
invitation, and compliance with their terms. This last information might help future
research in our field.

The Insight Association provides ethical guidelines that consider unethical
sampling, among other practices: “Collection of respondent emails from Web
sites, portals, Usenet or other bulletin board postings without specifically notifying

5More information on the sampling methodology can be found in our paper Graziotin et al. (2017).

104 S. Wagner et al.

individuals that they are being ‘recruited’ for research purposes.”6 Hence, using
GitHub or Stack Overflow information of users would not be an ethical way to
contact potential survey participants.

There is no easy way out of this. We agree with Baltes and Diehl that we will
probably need flexible rules and guidelines to keep developers in social media from
being spammed by study requests while still allowing research to take place. In any
case, we should all consider thoughtfully how and whom we contact for a survey
study.

Takeaways
• There is no suitable official data on the number and properties of software-

developing companies in the world.
• For individual software engineers, existing demographic studies can be

used to assess a survey’s representativeness.
• For the estimate of 23 million developers worldwide, a good sample size

would be 400 respondents.
• Ethics needs to be considered before contacting potential survey partici-

pants.

4 Invitation and Follow-Up

Depending on the target population, there are essentially two strategies to approach
this population having both very distinct implications on the survey design and the
recruitment approaches:

1. Closed invitations follows the strategy of approaching known groups or individ-
uals to participate in a survey per invitation-only and restrict the survey access
only to those being invited.

2. Open invitations follows the strategy of approaching a broader, often anonymous
audience via open survey access; i.e., anyone with a link to the survey can
participate.

The first strategy allows to accurately choose the respondents based on prede-
fined characteristics and the suitability to provide the required information, and it
also allows to accurately calculate the response rate and control the participation
along the data collection, e.g., by targeting those who did not respond yet via specific
requests. This increase of control by inviting subjects individually typically comes
at the cost of a lower number of total responses.

6https://www.insightsassociation.org/issues-policies/best-practice/imro-guidelines-best-
practices-online-sample-and-panel-management.

https://www.insightsassociation.org/issues-policies/best-practice/imro-guidelines-best-practices-online-sample-and-panel-management
https://www.insightsassociation.org/issues-policies/best-practice/imro-guidelines-best-practices-online-sample-and-panel-management

Challenges in Survey Research 105

The second strategy allows to spread the invitation broader, e.g., via public
forums, mailing lists, social media, or at venues of conferences and workshops. This
strategy is often preferred as it does not require to carefully select lists of subject
candidates and to approach them individually, but it also comes at the cost of control
in who provides the responses, thus, causing further threats that need to be carefully
addressed in the survey design already. In that strategy, we need to define proper
demographic questions that allow us to analyze the extent to which the respondents
are eventually suitable to provide the required information (see also Sect. 3).

In the NaPiRE project, for example, we started our initial runs with closed
invitations. To this end, we drafted a list of subject candidates based on contacts
from industry collaborations. Criteria for their inclusion were their roles and
responsibilities in their respective project settings and their knowledge about not
only requirements engineering, but also about how their processes were contin-
uously improved. That is to say, we were particularly interested in surveying
experienced requirements engineers which dramatically narrowed down the list of
suitable candidates. The survey was then password protected and the invitation was
individualized with a clear explanation of the scope of the survey and the contained
questions. When inviting our candidates, we asked them also to report to us in case
they had passed the invitation to a colleague allowing us to calculate the response
rates. We repeated this strategy during the first two NaPiRE runs, the second one
being conducted in ten countries in parallel and via independent invitation lists
administrated individually by the respective researchers in those countries.

For the follow-up runs, we changed our instrument to focus more on current
practices and problems in requirements engineering at project level taking also into
account a broader spectrum of project roles (e.g., developers and architects). We
further decided to open the survey and added more demographic questions that
allowed us to better understand the respondents’ roles and backgrounds in their
projects. The distribution was then done using software engineering-related mailing
lists, distribution channels of associations, such as the International Requirements
Engineering Board (IREB), social media, such as Twitter, but also, again, personal
contacts. We further published an IEEE Software blog post. The idea was to
increase the visibility of the survey project. At the same time, we were not able
to calculate the response rate and also noticed a significant drop-out rate (i.e.,
participants entering the survey out of curiosity and dropping out on the first survey
page already). Above all, it further required an analysis of making sure that the
responding population is the one of the target population and, respectively, to
remove those answers from the data set clearly unrelated to the target population
(e.g., respondents with no insights into the projects’ requirements engineering).

Regardless of the strategy followed, it is often the case that invitees cannot
participate in the survey the moment they receive an invitation despite being
otherwise willing to participate. In both surveys, we therefore implemented a
follow-up invitation roughly 2 weeks before closing the survey. To this end, we
formulated, regardless of the strategy, a reminder message thanking all participants
and reminding them that there is still the possibility of engaging in case they did not
already.

106 S. Wagner et al.

For the happiness study (Sect. 7.3) we decided to not adopt any follow-up. Ethical
reasons (see the previous section) made us decide for an opt-in mechanism. We
contacted possible participants only once, at invitation time.

Takeaways
• Both strategies to approach the target population (closed and open invita-

tions) can be applied, but have distinct implications on the survey design
and the recruitment approaches.

• Closed invitations are suitable in situations in which it is possible to pre-
cisely identify and approach a well-defined sample of the target population.
They may also be required in situations where filtering out participants that
are not part of the target population would be difficult, harming the sample
representativeness.

• Open invitations allow reaching out for larger samples. However, they typ-
ically require more carefully considering context factors when designing
the survey instruments. These context factors can then be used during the
analyses to filter out participants that are not representative (e.g., applying
the blocking principle to specific context factors).

5 Alternative Approaches for Statistical Analysis

Although surveys can be qualitative (see Sect. 6 for more details on that analysis),
most often a majority of the questionnaires are composed of closed questions that
have quantitative results. Even for yes/no questions, we can count and calculate pro-
portions of the answers. Therefore, and with the often large number of participants
in surveys, we usually aim at a statistical analysis of the survey results. So, which
kind of statistical analysis is reasonable for surveys?

Before we go into the different options we have for the statistical analysis,
we want to discuss another important issue that is sometimes neglected: To know
what we can analyze, we need to be clear what we asked for. In a survey, we can
either ask for the opinions of the participants on topics (“Automated tests are more
effective than manual tests.”) or for specific facts that they experienced (“In my last
project, I found more defects in the software using automated tests than manual
tests.”) (Torchiano et al. 2017). In the former case, we can only make an analysis of
the opinion that, for example, most people hold. Only in the latter case, we can try
to analyze about facts. But even then, we need to discuss in the threats to validity
that the participants’ answers might be biased.

With that out of the way, we can start with the first option of statistical analysis
that is always reasonable: descriptive statistics. Afterwards, we will discuss three
alternative approaches to do inference statistics which will help us to interpret the

Challenges in Survey Research 107

sample results for the whole population. We will cover null-hypothesis significance
testing, bootstrapping confidence intervals, and Bayesian analysis.

5.1 Descriptive Statistics

The goal of descriptive statistics is to characterize the answers to one or more
questions of our specific sample. We do not yet talk about generalizing to the
population.

Which descriptive statistic is suitable depends now on what we are interested in
most and the scale of the data. Most often, we come across nominal, ordinal, and
interval scales in survey data. Nominal data are names or categories that have no
order and can simply be counted. Ordinal data is what we often have in surveys
where we can order the data but cannot clearly say if each point on the scale has the
same distance to the next point.

An example are the famous Likert items that range from “I fully agree” to “I fully
disagree.” If we have clearly defined distances, we have interval data. Only for the
latter, we can employ the full range of statistical tests.

For dichotomous variables, where the participants can check an answer option or
not, we can calculate the proportion of the participants that checked a particular
answer option. A proportion can be stated as a number between 0 and 1 or in
percentages. A useful addition to giving the number is a visualization as bar chart
that allows us to quickly compare many answer options. An example from the
NaPiRE survey is shown in Fig. 3.

Quite common are also answers in an ordinal scale such as Likert items (“I
fully agree,” “I somewhat agree”. . .) or frequencies (“Always,” “Often,” “Some-
times”. . .). There are various descriptive statistics that we can calculate for this
data. For the central tendency, we can safely use the mode, which is simply the most
frequent answer, as well as the median, which is the middle answer when sorting
all answers (Freedman et al. 2007). To give a better understanding of the spread and
dispersion of the data, we usually add the minimum and maximum as well as the

Fig. 3 The proportion of respondents giving a particular answer to the question “If you elicit
requirements in your regular projects, how do you elicit them?” Visualized as bar chart (Mén-
dez Fernández and Wagner 2015)

108 S. Wagner et al.

Table 2 Descriptive statistics for ordinal data coded as 1–5 (Méndez Fernández and Wagner
2015)

Statement Mode Med. MAD Min. Max.

The standardization of requirements engineering
improves the overall process quality

5 4 1 1 5

Offering standardized document templates and tool
support benefits the communication

5 4 1 1 5

22%

21%

28%

33%

49%

63%

61%

45%

35%

20%

15%

18%

26%

32%

32%

Higher process complexity

Higher demand for communication

Lower efficiency

Missing willingness for changes

Missing possibilities of standardisation

100 50 0 50 100

Percentage

Response I disagree I somewhat disagree Neutral I somewhat agree I agree

Fig. 4 Stacked bar chart showing all answers to a Likert item about barriers to requirements
engineering standards (Wagner et al. 2019)

median absolute deviation (MAD) or the interquartile range (IQR). In Table 2, we
see a table from (Méndez Fernández and Wagner 2015) that used these statistics to
describe answers to Likert items about various aspects of requirements engineering.
The answers were coded from 1: I disagree to 5: I agree. In addition or alternatively,
it is also quite easy to show the whole distribution of ordinal data in a stacked bar
chart as shown in Fig. 4. This particular chart was created using the Likert package7

in R.
It is rather rare that we get data in interval scales or higher. We may get data on

an interval scale when we ask for specific numbers such as the length of the last
project of the participants in months. Those data can be analyzed with all available
descriptive statistics such as the mean for central tendency and variance or standard
deviation for dispersion in addition to the ones we already have for ordinal data.
A very useful visualization for such data is a boxplot, because it visualizes the
distribution and allows us to identify outliers.

7https://CRAN.R-project.org/package=likert.

https://CRAN.R-project.org/package=likert

Challenges in Survey Research 109

5.2 Null-Hypothesis Significance Testing

Now that we have a good understanding of our sample—and possibly are able to
answer our research questions specifically about the sample—we want to analyze
whether and what we can say about the population we are actually interested in.
This is the area of inference statistics. To be able to analyze something about the
population, we first need hypotheses to evaluate. In our experience, unless we are
conducting an exploratory study, the survey should be guided by a theory (see
Sect. 2). The theory should provide propositions that can be operationalized into
hypotheses to be tested with the survey data.

The classical way to do that is to use null-hypothesis significance testing (NHST).
This is the usual way one is taught in statistics classes and has been used for
numerous experiments and surveys. In surveys, we most often have two types of
hypotheses:

• Point estimate hypotheses for answers to single questions
• Hypotheses on correlations between answers to two questions

For an example, we look again at Méndez Fernández and Wagner (2015). There,
we tested several hypotheses on the experience of the participants with requirements
engineering in their projects. Let us look at the hypothesis H 76: Communication
flaws between project team and customer are a problem. The question in the
questionnaire was “Considering your personal experiences, how do the following
problems in requirements engineering apply to your projects?” The corresponding
statement was “Communication flaws between us and the customer” with five
answer options from “I disagree” to “I agree.” As above, we coded these answers as
numbers from 1 to 5.

We operationalized the hypothesis so that the median of the data needs to be
larger than 3 (the neutral answer) so that we see the hypothesis as true. The
corresponding null hypothesis is than that the median is smaller or equal to 3.
To then test this, we employed the Wilcoxon signed rank test implemented in R.
We used the rank test as we have ordinal data which breaks the assumptions of,
for example, a t-test. The result of the test is a p-value that we need to compare
with our previously specified significance level (usually 0.05). This then gives us a
dichotomous answer whether we have to reject the null hypotheses and, therefore,
have support for our alternative hypothesis or not. Similarly, there are statistical
tests to give us p-values for which we can consider a correlation to hold true in the
population.

In both cases, point estimates and correlation analysis, it is also informative and
important to look at the effect sizes. A NHST only tells us whether the observed data
is unlikely given the null hypothesis not how large the effect is. Especially in survey
research, it is rather easy to achieve large sample sizes. The larger the sample, the
more likely we get significant effects. Then the effect sizes can help us interpret
the results. For correlation analysis, the correlation coefficient is already a useful
effect size. For point estimates, we need an effect size that fits to the data and the

110 S. Wagner et al.

used statistical test. For the Wilcoxon signed rank test above, it is often suggested to
divide the test statistic z by the square root of the sample size N to the standardized
effect size r:

r = z√
N

(3)

This can then be interpreted as 0.1 being a small effect up to 0.5 and larger as being
a large effect.

There are various problems with NHST in general such as the dichotomous
nature of its result (Levine et al. 2008; Amrhein et al. 2019). Yet, in our survey
context, there is even one more: As discussed in Sect. 3, it is in most cases very
difficult to obtain a sample that is representative of the population, we want to
generalize to. In such cases, it is unclear what the result of a NHST actually means.
How can we generalize from nonrepresentative data? Therefore, we need to look at
alternatives.

5.3 Alternative 1: Bootstrapping Confidence Intervals

An approach that has seen considerable attention as an alternative to null-hypothesis
significance testing is to use confidence intervals. The basic idea is instead of a
point estimate of a p-value and a fixed threshold in the form of a significance
level, we rather estimate a confidence interval around a metric we are interested
in. We then rather interpret what the confidence interval means in terms of, for
example, how large it is or how strongly confidence intervals of methods to compare
overlap. Hence, the interpretation is not as easy as comparing the p-value with the
significance level but it allows us to avoid a too simplistic dichotomous result.

To address the problem of the unclear representativeness of the sample because
the population is unknown, we can further support the estimation of confidence
intervals by using a resampling method. In particular, bootstrapping is helpful
as it gives us asymptotically more accurate results than intervals estimated with
the standard assumption of normality (DiCiccio and Efron 1996). The idea of
bootstrapping is that we repeatedly take samples with replacement and calculate the
statistic we are interested in. This is repeated a large number of times and, thereby,
provides us with an understanding of the distribution of the sample.

Wagner et al. (2019) applied this approach to evaluate our theory without the use
of null-hypothesis significance testing. For that, we ran 1000 times resampling for
bootstrapping confidence intervals for proportions and means of the answers to the
survey questions. This works particularly well for proportions. It is problematic for
questions that have answers on an ordinal scale. We discussed above that for those,
we should use the median instead of the mean. As, so far, there are no established
methods for bootstrapping confidence intervals for medians, we decided to work
with the confidence intervals of the means but report the medians alongside of them.

Challenges in Survey Research 111

In Fig. 1, we see the visualization of answers to a survey question as bar chart.
Each bar shows the mean proportion of answers with additional black bars showing
the confidence interval both derived from bootstrapping. We had a proposition for
each of the answer possibilities in our theory. As we wanted to characterize what
techniques are commonly used in practice, we decided that common use should
imply a proportion above 20%. Hence, only when the confidence interval is above
20%, we consider it as support for a positive proposition.

If we wanted a dichotomous decision on the propositions in the example, we
would see that all confidence intervals are above 20% and, hence, we have support
for all propositions. Yet, we can also clearly see and discuss that interviews
and facilitated meetings are much more common in practice than scenarios or
observation.

An alternative use of bootstrapping is for the estimation of true population
means when the obtained data is not normally distributed. In the happiness study
we obtained 1318 questionnaire responses contributing to the SPANE-B happiness
score (explained in Sect. 7.3). Our example showed strong evidence of non-
normality in its distribution. Therefore, we used bootstrapping to estimate the
population true mean and its confidence interval (or, how confident we are on how
much developers are happy).

Bootstrapping confidence intervals has, however, also disadvantages. One prob-
lem is that it can easily be interpreted as dichotomous and would bring us back to
null-hypothesis significance testing. Another problem is that it is less clear what
a confidence interval means for hypotheses. When should we see support for the
hypothesis, when should we not? Furthermore, there is no clear way how to integrate
different sets of data, for example, from different survey runs or independent
surveys.

Finally, one might argue that a disadvantage is that it is a frequentist statistical
technique that interprets probabilities as relative frequencies. This brings along
various assumptions (Kass 2011) that have been criticized and could, for example,
be overcome by a Bayesian analysis as discussed in the following.

5.4 Alternative 2: Bayesian Analysis

In Bayesian statistics, probability is understood as a representation of the state of
knowledge or belief. It acknowledges the uncertainty in our knowledge by assigning
a probability to a hypothesis instead of an accept/reject decision. Furthermore, it
allows us to easily integrate existing evidence and accumulate knowledge. It does so
by defining a prior distribution. This is the distribution that describes our certainty
of a hypothesis before we collected new data. The Bayes theorem allows us then to
describe the probability of a hypothesis given the prior and new evidence. This is
called the posterior distribution.

A major difficulty with employing Bayesian data analysis instead of classical
null-hypothesis significance testing or classical confidence intervals is that there
is not just one Bayesian technique. It is a completely different way of thinking

112 S. Wagner et al.

and, thereby, there is a plethora of techniques that can resemble what we did in the
frequentists methods. The most general way would be, as stated above, to calculate
a probability for a hypothesis. Yet, there are many alternatives: For example, there
is the concept of the Bayes factor that can be calculated and there are standard
interpretations on how strong the support for a hypothesis is. This is close to the
way we approach the evaluation of hypothesis in NHST. Moreover, and that is
the method we will describe in an example in more detail, we can also calculate
confidence intervals using Bayesian methods.

For Bayesian confidence intervals, we only need three inputs: a prior distribution,
data, and the level of confidence we want to have for the confidence intervals. Data
we should have from the survey. The confidence level is commonly set to 0.95 but
could be different if you have specific needs. The problem is usually the prior. This
is one aspect of Bayesian analysis that draws a lot of criticism, because there is no
mechanical way to get to it unless you have prior data. If you have prior data, for
example from a previous survey, you can calculate the prior from that data. In all
other cases, you have to decide on a prior. In case there is no reasonable argument for
something else, the uniform distribution should be used. If another argument from
theoretical considerations can be made, however, it is legitimate and useful to put
in another prior. Given all inputs, there are many ways to calculate the confidence
intervals. One way is, for example, to use the binom.bayes function of the binom R
package.

When we go to the NaPiRE example, we have not yet published a Bayesian data
analysis. Yet, there is data from a third run, where we apply the Bayesian confidence
interval approach at the moment of writing this chapter. Here, it comes in very handy
to be able to combine the data of more than one run. We do have many similarities
between the second and third run. Using Bayesian analysis, we do not throw away
the second run but build on it. We will look at the proposition again that workshops
are commonly used in practice for eliciting requirements.

We use the data from the second run from this question to calculate a posterior
distribution given a uniform prior distribution. Commonly, beta distributions are
used for that. Our R analysis gives us a posterior of beta(154, 76). Now, we can use
this posterior distribution from the second run as prior for the third. Figure 5 shows
graphically how this turned out. From the second run, we had an estimation used as
prior between 60 and 80% for the proportion of practitioners using workshops. The
data from the third run gives us an estimate more between 40 and 60% (Likelihood).
From that, we calculate the posterior that lies in between and is somewhat narrower
with an estimate roughly between 50 and 60%.

With the binom.bayes package, we can make this more precise. When we
calculate 95% confidence intervals, it gives us a mean of 0.54 with a lower estimate
of 0.51 and an upper estimate of 0.58. For interpreting this according to the
hypothesis, we can again use the 20% threshold and confidently state that we are
closer but still far away from it. We have support for the hypothesis. By using
Bayesian analysis, we strengthened the evaluation of the hypothesis by including
the data from two surveys and probably corrected the estimate to a range not as low
as the data from the third run would suggest.

Challenges in Survey Research 113

Fig. 5 Graphical summary of the distribution of the used statistics in the Bayesian analysis

There are also disadvantages in the Bayesian approach. As for confidence
intervals, we do not have a standard way of interpreting the results of the analysis.
Furthermore, the tool support is not as mature as it is for the frequentist methods and,
thereby, sometimes rather confusing. Furthermore, reviewers in scientific venues
often know Bayesian methods less and that brings the risk of misinterpretations on
their side.

The more general issues in using Bayesian data analysis in empirical software
engineering are discussed in the chapter “Bayesian Data Analysis in Empirical
Software Engineering: The Case of Missing Data.”

Takeaways
• Always make clear whether you aim at analyzing opinions or facts.
• Descriptive statistics are always helpful.
• Bootstrapping confidence intervals helps to deal with uncertain sampling.
• Bayesian analysis allows us to directly integrate prior knowledge.

114 S. Wagner et al.

6 Qualitative Analysis

Besides the common focus on statistical analyses, surveys can also be qualitative and
contain open questions. Open questions do not impose restrictions on respondents
and allow them to more precisely describe the phenomena of interest according
to their perspective and perceptions. However, they can lead to a large amount of
qualitative data to analyze, which is not easy and may require a significant amount
of resources.

The answers to such open questions can help researchers to further understand
a phenomenon eventually including causal relations among theory constructs and
theoretical explanations. Hence, open questions can help generating new theories.
A research method commonly employed to support such qualitative analyses is
Grounded Theory (Glaser 1992; Strauss and Corbin 1990; Charmaz 2014). This
method involves inductively generating theory from data (Glaser and Strauss 1967).
While specific considerations for conducting and reporting grounded theory can be
found from Stol et al. (2016), we hereafter describe the experience and challenges of
conducting the qualitative analysis in the context of the NaPiRE initiative. NaPiRE
involved open questions and a large amount of data from respondents of different
countries around the globe.

The first issue faced in this context was the need to translate the questionnaires
into the respondents’ native languages to assure that they would precisely under-
stand the meaning of each survey question. The translations were conducted by
native speakers that were part of the NaPiRE team. All translations were validated
by piloting the survey with independent team members that were also native
speakers. Moreover, respondents also answered in their native language. We believe
that this decision allowed avoiding any confounding factor related to difficulties
with the language. On the other hand, it required us a significant team coordination
effort to conduct the analyses appropriately. We had to translate all the answers to
English and validate the translations before starting with the analysis. The strategy
that we employed was exporting all answers into a spreadsheet, creating a separate
column for each answer with an automatic Google translation, and then having the
team validating and adjusting all translations as needed.

The main open questions concerned causes and effects of RE problems. We asked
our respondents to provide what they believe to be the main causes and effects for
each of the previously selected RE problems, with one open question for the cause
and another for the effect. We applied the following Grounded Theory steps on this
data:

1. Open coding to analyze the data by adding codes (representing key character-
istics) to small coherent units in the answers, and categorizing the developed
concepts in a hierarchy of categories as an abstraction of a set of codes—
all repeatedly performed until reaching a state of saturation. We define the
(theoretical) saturation as the point where no new codes (or categories) are
identified and the results are convincing to all participating researchers (Birks
and Mills 2011).

Challenges in Survey Research 115

2. Axial coding to define relationships between the concepts, e.g., “causal condi-
tions” or “consequences.”

3. Internal validation as a form of internal quality assurance of the obtained results.

Please note that we deviated from the Grounded Theory approach as introduced
by Glaser and Strauss (1967) in two ways. First, given that we analyzed data from an
anonymously conducted survey after the fact, we were not able to follow a constant
comparison approach where we iterate between the data collection and the analysis.
This also means that we were not able to validate our results with the participants,
but had to rely on internal validation procedures. Second, we did not inductively
build a theory from bottom-up, as we started with a predefined conceptual model
(i.e., the problems) whereby we did not apply selective coding to infer a central
category. In our instrument, we already had a predefined set of RE problem codes
for which we wanted to know how the participants see their causes and effects. For
this reason, we rely on a mix of bottom-up and top-down approach. That is, we
started with our predefined core category, namely RE problems and a set of codes
each representing one key RE problem, and subcategories regarding the causes and
effects, which then group the codes emerging from the free text answers provided
by the participants. We believe that similar decisions could be taken in the context
of other anonymously conducted surveys relying on a predefined conceptual model.
Most importantly, we highlight the importance of precisely describing the approach
that has been followed and the deviations from it.

Within the causes and effects, we again predefined the subcategories. These
subcategories were as follows:

• For the causes, we used the subcategories Input, Method, Organization, People,
Tools suggested in our previous work on defect causal analysis (Kalinowski
et al. 2012) as we wanted to know from where in the socioeconomic context
the problems stem.

• For the implications, we use the subcategories Customer, Design or Implementa-
tion, Product, Project or Organization, and Verification or Validation as done in
our previous work (Méndez Fernández et al. 2015) as we wanted to know where
in the software project ecosystem the problems manifest themselves.

For each answer given by the participants, we then applied open coding and axial
coding until reaching a saturation in the codes and relationships and allocated
the codes to the previously defined subcategories. For coding our results, we first
coded in a team of two coders the first 250 statements to get a first impression of
the resulting codes, the way of formulating them, and the level of abstraction for
capturing the codes. After having this overview, we organized a team of five coders
within Germany and Brazil. Each of the coders then coded approx. 200 statements
for causes and additional 200 statements for effects while getting the initial codes
from the pilot phase as orientation. In case the coder was not sure how to code given
statements, she marked the code accordingly for the validation phase. During that
validation phase, we formed an additional team of three independent coders who
then reviewed those codes marked as “needs validation” as well as an additional

116 S. Wagner et al.

sample, comprising 20% of the statements assigned to each coder, selected on
their own. After the validation phase, we initiated a call where we discussed last
open issues regarding codes which still needed further validation, before closing the
coding phase. The overall coding process took in total 3 months. Despite of this huge
effort, we emphasize the importance of validating qualitative analysis procedures to
enhance the reliability of the results.

As a result we had information on how often a certain cause was mentioned as
mechanism triggering a specific RE problem. Similarly, on how often a consequence
was mentioned as a result of an RE problem. This allowed us to analyze the
occurrence of certain RE problem cause and effect patterns, which are reported in
further detail by Méndez Fernández et al. (2017).

Takeaways
• When preparing your survey, always invest effort in avoiding confounding

factors that may interfere in having respondents focusing mainly on the
survey question when providing their answers (e.g., language issues). A
good strategy that helps to check if this goal is properly achieved involves
piloting the survey and discussing it afterwards with the pilot participants
to assure that questions were easily and correctly understood.

• Applying coding and analysis techniques from Grounded Theory can help
to understand qualitative data gathered through open questions.

• When reporting the qualitative analysis of your survey, explicitly state your
research method, providing details on eventual deviations.

• To avoid researcher bias and improve the reliability of the results, qualita-
tive analyses should be conducted in teams and make use of independent
validations. Also, ideally the raw and analyzed data should be open to
enable other researchers to replicate the analysis procedures.

7 Issues When Assessing Psychological Constructs

Often, we are interested in assessing psychological constructs of survey participants.
Psychological constructs are theoretical concepts to model and understand human
behavior, cognition, affect, and knowledge (Binning 2016). Examples include hap-
piness, job satisfaction, motivation, commitment, personality, intelligence, skills,
and performance. These constructs can only be assessed indirectly. We cannot take
out a ruler to measure the motivation of people. Yet, we need ways to proxy our
measurement of a construct in robust, valid, and reliable ways.

This is why, whenever we wish to investigate psychological constructs and their
variables, we need to either develop or adopt measurement instruments that are
psychometrically validated. Researchers in the behavioral and social sciences refer
to these validated measurements instruments as psychometrically validated psycho-

Challenges in Survey Research 117

logical tests (Cohen et al. 1995). Scientists have investigated issues of validity,
reliability, bias, and fairness of psychological tests. These aspects are reflected by
the word psychometrics, which is both the act of constructing valid and reliable
psychological tests as well as the branch of psychology and statistics devoted to the
construction of these tests (Rust 2009). Psychometrics is an established field, but
software engineering has, most of the times, ignored it so far.

In this last section, we build the case for software engineering research to favor
psychometric validation of tests, we introduce the very basic concepts of validity
and reliability as seen by psychometric theory, which is different to how we see
reliability and validity in software engineering research, and we finally describe the
happiness study that we often refer as an example in the previous sections.

7.1 Software Engineering Questionnaires for Human
Participants Should Focus on Psychometrics

Lenberg et al. (2015) have conducted a systematic literature review of behavioral
software engineering studies. They found that software engineering research still
has several knowledge gaps when conducting behavioral studies, and that there
have been very few collaboration between software engineering and social science
researchers. This missed collaboration has likely resulted in the issue that software
engineering research lacks maturity when adopting or developing questionnaires to
assess psychological constructs.

Graziotin et al. (2015) have echoed a previous call by Feldt et al. (2008)
to adopt measurement instruments that come from psychology, but they argued
that much research in software engineering has adopted wrong or non-validated
psychological tests, and when the right test is adopted, most of the times the
test items are modified towards the destruction of the test reliability and validity.
Research in software engineering also fails to report on thorough evaluations of the
psychometric properties of the chosen instruments. An instance of such misconduct
was found by Cruz et al. (2015) in their systematic literature review of 40 years of
research in personality in software engineering. Although not directly mentioned by
the authors, the results showed that almost half of personality studies in software
engineering use the Myers–Briggs type indicator (MBTI), which has low to none
validity and reliability properties (Pittenger 1993) up to being called as “little more
than an elaborate Chinese fortune cookie” (Hogan 2017).

As argued by Gren (2018), there is a need for a culture change in software
engineering research to shift from “seeing tool-constructing as the holy grail of
research and instead value validation studies higher.” We agree with his stance
and add that the culture shift should also be from developing ad hoc measurement
instruments or tinkering with established ones to properly develop or adopt them. It
is our hope, with this section, to provide motivation and background information to
start this shift.

118 S. Wagner et al.

We will now provide a short overview of psychometric reliability and validity so
that it becomes clearer that researchers in software engineering, when designing
questionnaires that assess psychological constructs, should pay extra care when
selecting tests and also when modifying existing ones. For a deeper understanding
of these issues, we direct the reader to the work of Gren (2018), who has offered a
psychological test theory lens for characterizing validity and reliability in behavioral
software engineering research, our seminar works on qualitative and quantitative
methodologies for behavioral software engineering, and the major textbooks and
standards on this topic (e.g., AERA et al. 2014; Cohen et al. 1995; Rust 2009; Kline
2015; Coaley 2014).

7.2 Reliability and Validity in Psychometrics

Reliability can be seen either as the consistency of a questionnaire score in repeated
instances of it (also known as reliability/precision; for example, does a questionnaire
that reveals I am extrovert tell the same if I take the same questionnaire 1 week
from now?) or as a coefficient between scores on two equivalent forms of the
same test (also known as reliability/coefficients; for example, do two different tests
on personality reveal that I am extrovert to the same or very similar degree?)
(AERA et al. 2014). The reliability/coefficients can be further divided into three
categories, namely alternate-form (derived by administering alternative forms of
test), test–retest (derived by administering the same test on different times), and
internal-consistency (derived by computing the relationship between scores derived
from individual test items during a single session).

Both forms of reliability are interesting and should be kept high when developing
and validating a measurement instrument. The Standards for Educational and
Psychological Testing (AERA et al. 2014) reports that several factors influence
the reliability of a measurement instrument, especially adding or removing items,
changing test items, causing variations in the constructs to be measured (for
example, using a test for mood to assess motivation of software developers), and
administering a test to a different population than the one originally planned.

Validity in psychometrics is seen a little bit differently to what we usually mean
with validity in software engineering research (see, for example, the work of Wohlin
et al. (2012)). Validity in psychometrics is “the degree to which evidence and theory
support the interpretation of test scores for proposed uses of tests” (AERA et al.
2014). What that means is that we need to ensure that any meaning we provide to
the values obtained by a measurement instrument needs to be validated. Rust (2009)
has summarized six facets of validity in the context of psychometric tests, which
we now summarize. Gren (2018) has offered an alternative lens on validity and
reliability of software engineering studies, also based on psychology, that we advise
to read.

Face validity concerns how the items of a measurement instrument are accepted
by respondents. This is mostly about wording and meaning of the test questions and

Challenges in Survey Research 119

how they are perceived by participants. If you promise a questionnaire on software
reliability but then deliver one about software testing, participants will likely feel
confused or offended. Face validity is usually assessed qualitatively.

Content validity (also known as criterion validity or domain-referenced validity)
reflects how a test fits the purposes for which it was developed. If you develop a test
on job satisfaction of software developers and assessed their mood instead, you have
issues of content validity. Content validity is also evaluated qualitatively, because the
form of deviation matters more than the degree of deviation.

Predictive validity is assessed with the correlation between the score of a
measurement instrument and a score of the degree of success in the real world.
For example, a high number of years in experience in software testing is expected
to have a positive correlation with ability in writing unit tests. If the correlation
between these two items is higher than 0.5, the criterion for predictive validity is
met and the item for years of software testing experience is retained in the test.

Concurrent validity is defined as the correlation of a new measurement instru-
ment and already existing measurement instruments for the same construct. If we
develop a test for assessing how developers feel motivated when at their job, we
should compare the results of our test with established tests for motivation on the
job. Concurrent validity assessment is very common in psychometric studies; its
importance, however, is relatively secondary as the old, established measurement
instruments might have low overall validity. Assessing it is, on the other hand,
important for detecting issues of low validity.

Construct validity is a major validity criterion. Constructs are not directly
measurable; therefore, one way to assess how valid a measurement instrument is
is to observe the relationship between the test and the phenomena that the test
attempts to represent. For example, a questionnaire to assess high motivation and
commitment of software developers should correlate with instances of observable
high motivation and commitment of developers. It is quite difficult to assess
construct validity in psychometrics, and its nature is that it is cumulative over the
number of available studies.

Differential validity assesses how scores of a test correlate with measures they
should be related to, and how scores of a test do not correlate with measures they
should not be related to. Campbell and Fiske (1959) have differentiated between
two aspects of differential validity, called convergent and discriminant (also called
divergent) validity. Convergent validity is about correlations between constructs that
are supposed to exist. A test assessing logical reasoning is supposed to correlate
positively with a test assessing algorithm development. Discriminant ability is on the
opposite side. A test assessing reading comprehension abilities is not supposed to
strongly correlate positively with a test on algorithm development, because the two
constructs are not the same. Differential validity is overall empirically demonstrated
by a discrepancy between convergent validity and discriminant validity.

We have so far reported how measurement instruments implemented with
questionnaires, when they are about human behavior, cognition, affect, and knowl-
edge, face several issues of reliability and validity. Researchers in the social and
behavioral sciences and statistics have spent considerable effort on developing

120 S. Wagner et al.

strong methodologies and theory for implementing valid and reliable tests. Software
engineering needs a cultural shift to observe and respects these issues, both when
adopting and when implementing a measurement instrument. As a running example,
we will now briefly summarize an experience report on adopting a psychometrically
validated measurement instrument.

7.3 An Experience Report on Adopting a Psychometrically
Validated Instrument

For a project on the happiness of software developers (Graziotin and Fagerholm
2019; Graziotin et al. 2018, 2017) one of our goals was to estimate the distribution
of happiness among software developers or, in other words, find out how happy
developers are. We had a further requirement: the related questionnaire had to be as
short as possible.

The first step in finding a psychometrically validated instrument to assess
happiness was to find out what happiness is. We discovered two main definitions of
happiness in the literature, one of which sees happiness as a sequence of experiential
episodes. If we face frequent positive experiences, we are led to experiencing
positive emotions and moods and appraise our existence to be a happy one. The
reverse happens with negative experiences, which lead to negative affect and
unhappiness. Happiness overall is the difference, or balance, between positive and
negative experiences.

Once agreed on a definition, we searched for happiness and related words in
academic search engines. Reading more papers led to finding new keywords and
enriching our sample of candidates, which was not small at all. We then inspected
all possible candidates to retain those that were short to be completed. The sample
of candidates was further reduced.

We then searched all candidate names in academic search engines to look for
validation studied (particular keywords here are validation, reliability, and psy-
chometric properties). Some measurement instruments did not have any validation
study beyond the one which introduced the instrument itself.

We eventually decided to adopt the Scale of Positive and Negative Experience
(SPANE), which we explain in Graziotin et al. (2017), as it is a short scale, 12
Likert items in total, on how frequently participants experience affect in the last 4
weeks. The introductory paper explained very carefully why and how the scale was
implemented, as well as the choice of limiting the recall of experiences in the last
4 weeks (in short, accuracy of human memory recalling and ambiguity of people’s
understanding of the items themselves).

We found out that SPANE has been validated to provide high validity and
reliability coefficients in (at the time) nine very large-scale psychometric studies
with samples coming from different nations and cultures. Furthermore, the scale
converges to other similar measurements (concurrent validity). Finally, the scale

Challenges in Survey Research 121

was found to be consistent across full-time workers and students. These aspects
were important because the target population was sampled on GitHub, which hosts
projects of developers from all around the world (indeed, we had responses from
88 different countries) and having different backgrounds and job experiences (75%
were professionals ranging from freelancing to large industries, and 15% were
students).

There was enough evidence for us to be confident in including SPANE in our
studies. As we respect the hard work of those who developed and validated the
scale, we included the scale verbatim in our studies. We introduced the scale using
the recommended instructions, we presented the items in the same order, and we
used the same Likert items as recommended.

There are several advantages of adopting a psychometrically validated scale. One
of them is that we can be confident about the reliability and validity of the way we
interpret the scores. In our research endeavor, we found out that software engineers
have a SPANE-B (the overall SPANE score, or “the happiness score”) centered
around the values of 9–10 over a range of −24 and +24. The interpretation of this
scoring is that developers are, on average, a slightly happy population. Moreover,
relying on validated scales also means that often we can compare our scores with
norm scores, which are standardized scores of several groups or populations. As
many other research projects have used SPANE, we can add to our interpretation that
software developers even are (just a little bit) happier than other groups of people.

A big disadvantage in adopting psychometrically validated scales lies in the
complete lack of flexibility of the items, as it follows an “all or nothing” approach.
We either include a validated scale or we do not, as changing any aspect of the
items will likely invalidate the scale. SPANE has got 12 items related to emotional
and affective experiences, 6 of which are positive and 6 negative. We can provide a
granularity of analysis of these 12 items but nothing more than that.

Takeaways
• Representing and assessing constructs on human behavior, cognition,

affect, and knowledge is a difficult problem that requires psychometrically
validated measurement instruments.

• Software engineering research should either adopt or develop psychomet-
rically validated questionnaires.

• Adoption or development of psychometrically validated questionnaires
should consider psychometric reliability and validity issues, which are
diverse and very different from the usual and common validity issues we
see in “Threats to Validity” sections.

• Software engineering research should introduce studies on the develop-
ment and validation of questionnaires.

122 S. Wagner et al.

8 Recommended Further Reading

We recommend several further book chapters and articles to complement this chap-
ter: Fowler (2013) provides a solid general discussion on survey research in general
including sampling, questions, and instruments and ethics. Kitchenham and Pfleeger
(2008) provided an earlier book chapter that focuses on collecting opinions by sur-
veys but provided also more general issues relevant for survey research in software
engineering. They provided more details in an older series of publications (Pfleeger
and Kitchenham 2001; Kitchenham and Pfleeger 2002a,b,c,d). Ciolkowski et al.
(2003) provide a more comprehensive process for planning and analyzing a survey
in software engineering. Ghazi et al. (2019) conducted a systematic literature review
and interviews to identify common problems in software engineering surveys and
also provide mitigation strategies. For more details and methodological support on
sampling, de Mello et al. (2015) are a good source. General guidelines for designing
an effective survey are available from the SEI (Kasunic 2005). Molléri et al. (2019)
found 39 papers with methodological aspects of surveys in software engineering
that can be used as a starting point for issues not discussed (in enough depth) in this
chapter. Furthermore, the chapter “Guidelines for Case Survey Research in Software
Engineering” provided specific guidelines for case surveys.

9 Conclusion

Survey research is becoming more and more an elementary tool in empirical
software engineering as it allows to capture cross-sectional snapshots of current
states of practice, i.e., they allow to describe and explain contemporary phenomena
in practice (e.g., opinions, beliefs, or experiences). Survey research is indeed a
powerful method and its wide adoption in the software engineering community is
also steered, we believe, by the prejudice of that it is easy to employ while there
exist, in fact, many nontrivial pitfalls that render survey research cumbersome.
In response to this problem, the community has started to contribute hands-on
experiences and lessons learnt contributions, such as by Torchiano et al. (2017).

In this chapter, we have complemented existing literature on challenges in survey
research by discussing more advanced topics. Those topics range from how to
use survey research to build and evaluate scientific theories over sampling and
subject invitation strategies to data analysis topics considering both quantitative and
qualitative data, and we complemented it with specialized use cases such as using
surveys for psychometric studies. To this end, we drew from our experiences in
running a globally distributed and biyearly replicated family of large-scale surveys
in requirements engineering. While we are certainly aware of that our own journey
in learning from own mistakes and slips is not done yet. We hope that by reporting
and discussing these lessons we learnt over the past years, we already support other
members of our research community in further improving their own survey projects.

Challenges in Survey Research 123

Acknowledgement We are grateful to all collaborating researchers in the NaPiRE initiative.

References

AERA, APA, NCME (2014) Standards for educational and psychological testing. American
Educational Research Association, Washington

Amrhein V, Greenland S, McShane B (2019) Retire statistical significance. Nature 567:305–307
Baltes S, Diehl S (2016) Worse than spam: issues in sampling software developers. In: Proceedings

of the 10th ACM/IEEE international symposium on empirical software engineering and mea-
surement, ESEM ’16. ACM, New York, pp 52:1–52:6. http://doi.acm.org/10.1145/2961111.
2962628

Binning JF (2016) Construct. https://www.britannica.com/science/construct
Birks M, Mills J (2011) Grounded theory: a practical guide. Sage, Thousand Oaks
Bourque P, Fairley RE et al (2014) Guide to the software engineering body of knowledge

(SWEBOK): version 3.0. IEEE Computer Society Press, Washington
Campbell DT, Fiske DW (1959) Convergent and discriminant validation by the multitrait-

multimethod matrix. Psychol Bull 56(2):81–105
Charmaz K (2014) Constructing grounded theory. Sage, Thousand Oaks
Ciolkowski M, Laitenberger O, Vegas S, Biffl S (2003) Practical experiences in the design and

conduct of surveys in empirical software engineering. In: Conradi R, Wang AI (eds) Empirical
methods and studies in software engineering, experiences from ESERNET, vol 2765. Lecture
notes in computer science. Springer, Berlin, pp 104–128. https://doi.org/10.1007/978-3-540-
45143-3_7

Coaley K (2014) An introduction to psychological assessment and psychometrics. Sage, Thousand
Oaks

Cochran WG (1977) Sampling techniques. Wiley, New York
Cohen RJ, Swerdlik ME, Phillips SM (1995) Psychological testing and assessment: an introduction

to tests and measurement. Mayfield Publishing, California
Cruz S, da Silva FQ, Capretz LF (2015) Forty years of research on personality in software

engineering: a mapping study. Comput Hum Behav 46:94–113
de Mello RM, da Silva PC, Travassos GH (2015) Investigating probabilistic sampling approaches

for large-scale surveys in software engineering. J Softw Eng Res Dev 3(1):8. https://doi.org/10.
1186/s40411-015-0023-0

DiCiccio TJ, Efron B (1996) Bootstrap confidence intervals. Stat Sci 11(3):189–228
Feldt R, Torkar R, Angelis L, Samuelsson M (2008) Towards individualized software engineering:

empirical studies should collect psychometrics. In: Cheng L, Sillito J, Storey MD, Tessem B,
Venolia G, de Souza CRB, Dittrich Y, John M, Hazzan O, Maurer F, Sharp H, Singer, J, Sim
SE (eds) Proceedings of the 2008 international workshop on cooperative and human aspects of
software engineering, CHASE 2008, Leipzig. ACM, New York, pp 49–52. https://doi.org/10.
1145/1370114.1370127

Fowler FJ (2013) Survey research methods. Sage, Thousand Oaks
Freedman D, Pisani R, Purves R (2007). Statistics. Norton, New York
Ghazi AN, Petersen K, Reddy SS, Nekkanti H (2019) Survey research in software engineering:

problems and mitigation strategies. IEEE Access 7:24703–24718
Glaser BG (1992) Basics of grounded theory analysis: emergence vs. forcing. Sociology Press,

Mill Valley
Glaser BG, Strauss AL (1967) Discovery of grounded theory: strategies for qualitative research.

Aldine de Gruyter, New York
Graziotin D, Fagerholm F (2019) Happiness and the productivity of software engineers. In:

Rethinking productivity in software engineering. Apress, Berkeley, pp 109–124

http://doi.acm.org/10.1145/2961111.2962628
http://doi.acm.org/10.1145/2961111.2962628
https://www.britannica.com/science/construct
https://doi.org/10.1007/978-3-540-45143-3_7
https://doi.org/10.1007/978-3-540-45143-3_7
https://doi.org/10.1186/s40411-015-0023-0
https://doi.org/10.1186/s40411-015-0023-0
https://doi.org/10.1145/1370114.1370127
https://doi.org/10.1145/1370114.1370127

124 S. Wagner et al.

Graziotin D, Wang X, Abrahamsson P (2015) Understanding the affect of developers: theoretical
background and guidelines for psychoempirical software engineering. In: Proceedings of the
7th international workshop on social software engineering, SSE 2015. ACM, New York, pp 25–
32. http://doi.acm.org/10.1145/2804381.2804386

Graziotin D, Fagerholm F, Wang X, Abrahamsson P (2017) On the unhappiness of software
developers. In: Mendes E, Counsell S, Petersen K (eds) Proceedings of the 21st international
conference on evaluation and assessment in software engineering. ACM Press, New York,
pp 324–333

Graziotin D, Fagerholm F, Wang, Abrahamsson P (2018) What happens when software developers
are (un)happy. J Syst Softw 140:32–47

Gregor S (2006) The nature of theory in information systems. MIS Q 30(3):611–642. http://misq.
org/the-nature-of-theory-in-information-systems.html

Gren L (2018) Standards of validity and the validity of standards in behavioral software
engineering research. In: Standards of validity and the validity of standards in behavioral
software engineering research. ACM Press, New York

Hannay JE, Sjøberg DI, Dybå T (2007) A systematic review of theory use in software engineering
experiments. IEEE Trans Softw Eng 33(2):87–107

Hogan R (2017) Personality and the fate of organizations. Erlbaum, Mahwah
Inayat I, Salim SS, Marczak S, Daneva M, Shamshirband S (2015) A systematic literature review

on agile requirements engineering practices and challenges. Comput Hum Behav 51:915–929
Kalinowski M, Card DN, Travassos GH (2012) Evidence-based guidelines to defect causal

analysis. IEEE Softw 29(4):16–18
Kalinowski M, Curty P, Paes A, Ferreira A, Spínola RO, Fernández DM, Felderer M, Wagner

S (2017) Supporting defect causal analysis in practice with cross-company data on causes
of requirements engineering problems. In: Proceedings of the 39th IEEE/ACM international
conference on software engineering: software engineering in practice track, ICSE-SEIP 2017,
Buenos Aires. IEEE Computer Society, Silver Spring, pp 223–232. https://doi.org/10.1109/
ICSE-SEIP.2017.14

Kass RE (2011) Statistical inference: the big picture. Stat Sci Rev J Inst Math Stat 26(1):1
Kasunic M (2005) Designing an effective survey. Technical report, Carnegie-Mellon University,

Pittsburgh, PA and Software Engineering Institute
Kitchenham BA, Pfleeger SL (2002a) Principles of survey research part 2: designing a survey.

ACM SIGSOFT Softw Eng Notes 27(1):18–20. https://doi.org/10.1145/566493.566495
Kitchenham BA, Pfleeger SL (2002b) Principles of survey research: part 3: constructing a survey

instrument. ACM SIGSOFT Softw Eng Notes 27(2):20–24. https://doi.org/10.1145/511152.
511155

Kitchenham, BA, Pfleeger SL (2002c) Principles of survey research part 4: questionnaire evalua-
tion. ACM SIGSOFT Softw Eng Notes 27(3):20–23. https://doi.org/10.1145/638574.638580

Kitchenham BA, Pfleeger SL (2002d) Principles of survey research: part 5: populations and
samples. ACM SIGSOFT Softw Eng Notes 27(5):17–20. https://doi.org/10.1145/571681.
571686

Kitchenham BA, Pfleeger SL (2008) Personal opinion surveys. In: Guide to advanced empirical
software engineering. Springer, Berlin, pp 63–92

Kline P (2015) A handbook of test construction (psychology revivals): introduction to psychomet-
ric design. Routledge, London

Lenberg P, Feldt R, Wallgren LG (2015) Behavioral software engineering: a definition and
systematic literature review. J Syst Softw 107:15–37

Levine TR, Weber R, Hullett C, Park HS, Massi Lindsey LL (2008) A critical assessment of null
hypothesis significance testing in quantitative communication research. Hum Commun Res
34:171–187

Malhotra MK, Grover V (1998) An assessment of survey research in POM: from constructs to
theory. J Oper Manag 16(4):407–425

Mannio M, Nikula U (2001) Requirements elicitation using a combination of prototypes and
scenarios. Technical report, Telecom Business Research Center Lappeenranta

http://doi.acm.org/10.1145/2804381.2804386
http://misq.org/the-nature-of-theory-in-information-systems.html
http://misq.org/the-nature-of-theory-in-information-systems.html
https://doi.org/10.1109/ICSE-SEIP.2017.14
https://doi.org/10.1109/ICSE-SEIP.2017.14
https://doi.org/10.1145/566493.566495
https://doi.org/10.1145/511152.511155
https://doi.org/10.1145/511152.511155
https://doi.org/10.1145/638574.638580
https://doi.org/10.1145/571681.571686
https://doi.org/10.1145/571681.571686

Challenges in Survey Research 125

Méndez Fernández D, Passoth J-H (2018) Empirical software engineering: from discipline to
interdiscipline. J Syst Softw 148:170–179

Méndez Fernández D, Wagner S (2015) Naming the pain in requirements engineering: a design for
a global family of surveys and first results from Germany. Inform Softw Tech 57:616–643

Méndez Fernández D, Wagner S, Kalinowski M, Schekelmann A, Tuzcu A, Conte T, Spinola R,
Prikladnicki R (2015) Naming the pain in requirements engineering: comparing practices in
Brazil and Germany. IEEE Softw 32(5):16–23

Méndez Fernández D, Wagner S, Kalinowski M, Felderer M, Mafra P, Vetrò A, Conte T,
Christiansson M-T, Greer D, Lassenius C et al. (2017) Naming the pain in requirements
engineering—contemporary problems, causes, and effects in practice. Empir Softw Eng
22(5):2298–2338

Méndez Fernández D, Tießler M, Kalinowski M, Felderer M, Kuhrmann M (2018) On evidence-
based risk management in requirements engineering. In: International conference on software
quality. Springer, Berlin, pp 39–59

Molléri JS, Petersen K, Mendes E (2019) CERSE-catalog for empirical research in software
engineering: a systematic mapping study. Inform Softw Tech 105:117–149

Pfleeger SL, Kitchenham BA (2001) Principles of survey research: part 1: turning lemons into
lemonade. ACM SIGSOFT Softw Eng Notes 26(6):16–18. https://doi.org/10.1145/505532.
505535

Pinsonneault A, Kraemer K (1993) Survey research methodology in management information
systems: an assessment. J Manag Inform Syst 10(2):75–105

Pittenger DJ (1993) Measuring the MBTI. . . and coming up short. J Career Plan Employ 54(1):48–
52

Runeson P, Höst M, Rainer A, Regnell B (2012) Case study research in software engineering.
Wiley, London

Rust J (2009) Modern psychometrics: the science of psychological assessment. Routledge, Hove,
East Sussex New York

Sjøberg DI, Dybå T, Anda BC, Hannay JE (2008) Building theories in software engineering. In:
Guide to advanced empirical software engineering. Springer, Berlin, pp 312–336

Sommerville I, Sawyer P, Viller S (1998) Viewpoints for requirements elicitation: a practical
approach. In: Proceedings of the 3rd international conference on requirements engineering
(ICRE ’98), Putting requirements engineering to practice, Colorado Springs. IEEE Computer
Society, Silver Spring, pp 74–81. https://doi.org/10.1109/ICRE.1998.667811

Stol K-J, Fitzgerald B (2015) Theory-oriented software engineering. Sci Comput Program 101:79–
98

Stol K, Ralph P, Fitzgerald B (2016) Grounded theory in software engineering research: a critical
review and guidelines. In: Dillon LK, Visser W, Williams L (eds) Proceedings of the 38th
international conference on software engineering, ICSE 2016, Austin. ACM, New York,
pp 120–131. https://doi.org/10.1145/2884781.2884833

Strauss A, Corbin J (1990) Basics of qualitative research. Sage, Thousand Oaks
Torchiano M, Fernández DM, Travassos GH, de Mello RM (2017) Lessons learnt in conducting

survey research. In: Proceedings of the 5th IEEE/ACM international workshop on conducting
empirical studies in industry, CESI@ICSE 2017, Buenos Aires. IEEE, Piscataway, pp 33–39.
https://doi.org/10.1109/CESI.2017.5

Usman M, Britto R, Börstler J, Mendes E (2017) Taxonomies in software engineering: a systematic
mapping study and a revised taxonomy development method. Inform Softw Tech 85:43–59

Wagner S, Méndez Fernández D, Felderer M, Vetrò A, Kalinowski M, Wieringa R, Pfahl D, Conte
T, Christiansson M-T, Greer D, Lassenius C, Männistö T, Nayebi M, Oivo M, Penzenstadler B,
Prikladnicki R, Ruhe G, Schekelmann A, Sen S, Spínola R, Tuzcu A, De La Vara JL, Winkler D
(2019) Status quo in requirements engineering: a theory and a global family of surveys. ACM
Trans Softw Eng Methodol. 28(2):9:1–9:48

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2012) Experimentation in
software engineering. Springer, Berlin

Yamane T (1973) Statistics: an introductory analysis. Longman, New York

https://doi.org/10.1145/505532.505535
https://doi.org/10.1145/505532.505535
https://doi.org/10.1109/ICRE.1998.667811
https://doi.org/10.1145/2884781.2884833
https://doi.org/10.1109/CESI.2017.5

The Design Science Paradigm as a Frame
for Empirical Software Engineering

Per Runeson, Emelie Engström, and Margaret-Anne Storey

Abstract Software engineering research aims to help improve real-world practice.
With the adoption of empirical software engineering research methods, the under-
standing of real-world needs and validation of solution proposals have evolved.
However, the philosophical perspective on what constitutes theoretical knowl-
edge and research contributions in software engineering is less discussed in the
community. In this chapter, we use the design science paradigm as a frame
for articulating and communicating prescriptive software engineering research
contributions. Design science embraces problem conceptualization, solution (or
artifact) design, and validation of solution proposals, with recommendations for
practice phrased as technological rules. Design science is used in related research
areas, particularly information systems and management theory. We elaborate the
constructs of design science for software engineering, relate them to different
conceptualizations of design science, and provide examples of possible research
methods. We outline how the assessment of research contributions, industry–
academia communication, and theoretical knowledge building may be supported by
the design science paradigm. Finally, we provide examples of software engineering
research presented through a design science lens.

1 Introduction

Software engineering research aims to develop and validate practically useful
methods, technologies, and tools to help industry improve software engineering
practice. This practical aspect was discussed when the term “software engineering”

P. Runeson (�) · E. Engström
Lund University, Lund, Sweden
e-mail: per.runeson@cs.lth.se; emelie.engstrom@cs.lth.se

M.-A. Storey
University of Victoria, Victoria, BC, Canada
e-mail: mstorey@uvic.ca

© Springer Nature Switzerland AG 2020
M. Felderer, G. H. Travassos (eds.), Contemporary Empirical Methods in Software
Engineering, https://doi.org/10.1007/978-3-030-32489-6_5

127

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32489-6_5&domain=pdf
mailto:per.runeson@cs.lth.se
mailto:emelie.engstrom@cs.lth.se
mailto:mstorey@uvic.ca
https://doi.org/10.1007/978-3-030-32489-6_5

128 P. Runeson et al.

was coined by Margaret Hamilton in the late 1960s,1 and later put in print in a NATO
conference report (Naur and Randell 1969, p. 13).

The phrase ‘software engineering’ [implied] the need for software manufacture to be based
on the types of theoretical foundations and practical disciplines that are traditional in the
established branches of engineering.

Numerous solutions to software engineering problems have been proposed
and published during the past few decades—these include development methods
and processes, tools, frameworks, taxonomies, or languages—but few involve
systematic investigations of real-world problem instances and validation by large-
scale software practice.

With the advent of empirical software engineering (Basili et al. 1986) and
evidence-based software engineering (Kitchenham et al. 2004), the research focus
has shifted towards an empirically informed understanding of practice and solu-
tion proposals. Empirical methods have been inherited and adapted from other
research fields, particularly medicine and the social sciences. Applying these meth-
ods, the software engineering knowledge base has been systematically extended
through families of experiments (Basili et al. 1999) and systematic literature
reviews (Kitchenham et al. 2015). However, the introduction of new research
methods is rarely framed in a research paradigm explicitly, and as a consequence
it is debated what constitutes a research contribution and how to assess it (Briand
et al. 2017).

A research paradigm refers to “the combination of types of research questions
asked, the research methodologies allowed to answer them, and the nature of
the pursued research products” (Van Aken 2004). The goal of this chapter is to
assist with the identification of theoretical research contributions, help assess these
contributions, and communicate them to researchers and practitioners. We propose
the design science paradigm as a frame to present and analyze software engineering
research, rather than a prescription of methods on how to conduct it. Design
science is elaborated by Hevner et al. (2004) for information systems, extended
by Wieringa (2014a) into software engineering, which sources we here merge with
perspectives from Van Aken (2004) in management theory. Software engineering
is a socio-technical field, which integrates technical and managerial perspectives.
As a consequence, this chapter is influenced from both perspectives, acknowledging
the interdisciplinary characteristics of software engineering (Méndez Fernández and
Passoth 2019).

The design science paradigm comprises problem conceptualization, solution
design, and validation. We demonstrate how this paradigm fits as a frame for
empirical software engineering research in order to provide theoretical knowledge
about practical solutions for real-world software engineering challenges. In par-
ticular, multiple case studies are proposed as the typical research methodology to

1https://publications.computer.org/software-magazine/2018/06/08/margaret-hamilton-software-
engineering-pioneer-apollo-11/.

https://publications.computer.org/software-magazine/2018/06/08/margaret-hamilton-software-engineering-pioneer-apollo-11/
https://publications.computer.org/software-magazine/2018/06/08/margaret-hamilton-software-engineering-pioneer-apollo-11/

The Design Science Paradigm as a Frame for Empirical Software Engineering 129

gain design knowledge under the design science paradigm (Van Aken 2004), which
aligns with the widespread use of case studies in software engineering (Garousi et al.
2019).

We provide an overview of the design science paradigm in Sect. 2, and a
more in-depth elaboration of design science concepts in Sect. 3. In Sect. 4, we
discuss how design science can be used to frame software engineering research
and present a visual abstract template to help identify and assess theoretical
contributions in software engineering. Section 5 explores some references to work
with complementary views on design science, and Sect. 6 concludes this chapter.

2 Design Science: An Overview

There are three major research paradigms, according to Van Aken (2004):

• formal sciences
• explanatory sciences
• design sciences

A research paradigm is a philosophical perspective on the knowledge produced
within a research field, using different research methodologies to answer research
questions (Van Aken 2004). The formal sciences (e.g., philosophy and mathematics)
focus on building internally consistent systems of knowledge. They are empirically
void as the systems are not related to any empirical observation or validation. The
explanatory sciences (e.g., the natural sciences and most of the social sciences) aim
to describe and explain phenomena that exist, without and before any intervention.
Design sciences (e.g., engineering sciences and medical sciences) aim to understand
and improve human-made designs in an area of practice. The boundary between
explanatory sciences and design sciences is not always clear as a research endeavor
may contain elements explaining a naturally occurring phenomenon for which a
proposed intervention is later designed and validated.

In this chapter, we view design science as a research paradigm that helps frame
research and aims to improve an area of practice. In our case, the engineering of
software is the practice area in focus. The software itself, the tools designed to
support the engineers, as well as the organizations developing it, are human-made
constructs. This speaks for design science being a feasible research paradigm for
software engineering. On the other hand, some of the human behavior of software
engineers and their stakeholders are related to intrinsic human capabilities and
characteristics, which would speak for the explanatory science research paradigm.
Still, we argue that many of the studied phenomena in software engineering are
designed artifacts, and thus the research would benefit from being framed as design
science.

The practice is not homogeneous over all kinds of software engineering research,
neither are the potential improvements the same for all instances of practice. Thus,
design science addresses general problems by studying specific problem instances

130 P. Runeson et al.

in practice, which constitute the research contexts, and where the research activities
of problem conceptualization, solution design, and validation take place, see Fig. 1.
The cyclic process resembles basic engineering or quality improvement models like
the Deming cycle (Deming 1986) and the quality improvement paradigm by Basili
(1992).

The theoretical contributions of design science research, i.e., the prescriptions for
practice, are context dependent. The scientific knowledge emanating from design
science research consists of prescriptive recommendations typically captured in
technological rules, i.e., “field-tested and grounded” exemplars of how a problem
can be solved (Van Aken 2004). It is not claimed to be an optimal solution, but
since it is field-tested and grounded, it is a feasible solution. As a consequence,
the validation must be done in either a real-world context or an artificial context
resembling aspects of the real one (Wieringa 2014a).

Other than the relation to context, design science does not prescribe specific
method steps to be conducted in a research study. The above mentioned research
activities (visualized in Fig. 1) are constituents of a research process that may be
instantiated in different ways, using different research methods.

Further, a single study or research paper may or may not contain all the
constituents of the design science paradigm. For example, one study may focus
on problem conceptualization, whereas another may report the complete chain from
problem conceptualization to a validated solution. Studies that focus on one aspect
of design science may contain research contributions that build on, or constitute, the
basis for other research under the design science paradigm.

Design science research aims to address real practice problems, and thus problem
conceptualization is a core constituent of the research. This is typically, but not
necessarily, the first step in a design science research endeavor. Understanding a
general problem in terms of one or more concrete problem instances is a basis for
understanding how this general problem may be solved. During the exploration of
a specific problem instance, it may become clearer what the core of the problem is,
thus focusing the potential solution design to these areas.

While problem conceptualization is a basis for the research activity, it is not
a pure description of the problem. Under the design science paradigm, problems
need to be conceptualized in terms of an envisioned solution. Thus, problem

Fig. 1 A visualization of the
types of research activities
that take place in design
science research. These
activities may be instantiated
in different ways

D
e
s
ig

n

T
h

e
o

ry

P
ra

c
ti
c
e

C
o

n
te

x
t

Empirical
validation

P
ro

bl
em

co

nc
ep

tu
al

i-
za

tio
n

Solution
design

The Design Science Paradigm as a Frame for Empirical Software Engineering 131

conceptualization is often intertwined with the creative activity of solution design,
where alternative solutions and previous research are considered.

The primary goal of empirical validation is to assess whether the solution
proposal is feasible for the problem instance. The scope of the design knowledge
gained in a study can be extended by systematically extending the scope of the
validation in subsequent studies. Thereby, the knowledge base of the research area
is extended.

Design science is a paradigm used in many different research fields and it is
instantiated in many different variants. The above summary reflects what we have
found prevalent in software engineering. Some of our rationale and alternative
instantiations are discussed below.

3 A Model of Design Science Research

Design science spans two major dimensions: the problem–solution dimension and
the theory–practice dimension. To guide our in-depth elaboration of the design
science paradigm, we extend the research activities model (Fig. 1) with design
science contributions, see Fig. 2, where research activities under the design science
paradigm can be expressed as transitions across this two-dimensional space.

The practical contribution of the research (i.e., the actual problem solving)
is visualized by the boxes in the two bottom quadrants as instances of both the
problem and the solution. The theoretical contribution (i.e., generalization and scope
definition) is visualized in the two top quadrants in terms of the technological rule(s)
and the corresponding constructs. The arrows in Fig. 2 illustrate knowledge creating
activities that can be performed by both practitioners and researchers.

• Problem conceptualization refers to the activity of describing the problem;
• Solution design refers to the activity of mapping a problem to a general solution;
• Abstraction refers to the activity of identifying the key design decisions for a

defined scope of validity of a solution;
• Instantiation refers to the activity of implementing the solution in context; and
• Empirical validation refers to an evaluation of how well the implemented

solution addresses the problem.

These activities are performed iteratively across the theory–practice and
problem–solution dimensions. Below we explore the contributions and activities of
the design science model.

3.1 Technological Rules and Its Constructs

A technological rule captures generalized knowledge about mappings between
instances of problems and solutions (i.e., in-context validations), and thus is a

132 P. Runeson et al.

T
h

e
o

ry
P

ra
c
ti
c
e

Problem
construct(s)

Solution domain

Technological rule(s)

Solution
instance(s)

Problem
instance(s)

Empirical
validation

noitcartsb
A

P
ro

bl
em

co

nc
ep

tu
al

i-
za

tio
n

Problem domain

Instantiation
Design

construct(s)

Solution
design

Fig. 2 Model of design science contributions in software engineering (Engström et al. 2020). The
boxes represent theoretical and practical contributions of design science research, and the arrows
represent knowledge creating activities that can be performed by both practitioners and researchers

means to transfer knowledge between contexts. The technological rule spans both
a problem domain and a solution domain and is formulated based on constructs in
both domains.

The scope of validity of the solution is described in terms of a desired effect
of a proposed intervention in a particular context. Thereby, it frames the research
outcome in terms of effects of interventions, rather than in terms of a solution to a
problem. A technological rule can typically be expressed in the form:

To achieve <Effect > in <Context > apply <Intervention>.

The design knowledge within the technological rule aims to help software
engineering professionals design customized solutions to their specific problems.
Ideally it is a general recommendation based on current state of the art, including
new research contributions.

The notion of technological rules comes from Bunge (1998), while different
instantiations of design science name the theoretical contributions differently.
Gregor and Hevner (2013) discuss them in terms of design theory and Wieringa
(2009) defines them as “theories of artifacts in context.” A thorough reflection

The Design Science Paradigm as a Frame for Empirical Software Engineering 133

about the role, nature, and need for technological rules in design science research is
provided by Van Aken (2004).

In a technological rule, a class of software engineering problems is generalized
to a stakeholder’s desired effect of applying a potential intervention in a specified
context. Making this problem generalization explicit helps the researcher identify
and communicate the different value-creating aspects of a research study or
program.

How the intervention in a technological rule is formulated may vary. It could,
for example, refer to the use of a tool, articulate abstractions of the knowledge
embedded in the tool, or even advise not to use the tool. It could also refer to
the application of a practice, a technique, a framework, or a set of guidelines. We
extracted 38 examples of technological rules from a set of distinguished ICSE-
papers from 2014–2018 (Engström et al. 2020); these examples demonstrate the
breadth of knowledge that can be represented using technological rules. These
technological rules are available online in the visual abstracts for each distinguished
paper at http://dsse.org.

One single instance of a problem–solution pair can generate multiple technolog-
ical rules that are hierarchically related to each other. For example, an abstract rule
may recommend using a general type of technology, while several more detailed
rules may specify the use of technology, embedded in a specific tool. Similarly,
there are hierarchical relationships with prior related technological rules to which
a specific contribution is compared. However, technological rules expressed at
a very high abstraction level (e.g., “To produce software of high quality, apply
good software engineering practices”) tend to be either trivial or too bold (easy
to debunk), while rules at very low abstraction levels have a narrow scope, and thus
lack relevance for most software engineers.

Thus, it is important to explicitly formulate the technological rule when pre-
senting design science research and to be consistent with it, both when arguing
for its relevance and its novelty, as well as when presenting the empirical (or
analytical) support for the claims. A research contribution may refine any of the
three constituents of an existing technological rule, add empirical support for the
rule as a whole, or present a new rule.

Another type of theoretical knowledge produced in design science is the
constructs on which we build technological rules. That is, the conceptualization
of the problem domain and the solution domain, respectively. A construct can, for
example, be a taxonomy that is used to articulate a technological rule or classify
a set of technological rules in a research review. Taxonomies provide the means
to relate different technological rules to each other. The different constituents of a
technological rule may belong to different taxonomies. A construct can also be a
conceptual model or a conceptualization approach that helps describe a problem in
terms of an envisioned solution.

http://dsse.org

134 P. Runeson et al.

3.2 Problem Conceptualization and Solution Design

In a mature research field, existing theory may help practitioners design solutions for
their specific problems. Problem conceptualization is then an act of the practitioner,
as is the instantiation of the solution in a specific context. In fields where the
theoretical foundation is less mature, such as software engineering, researchers and
practitioners may work together to advance and extend the scope of the theory.

Above, we described how design knowledge is first obtained and later matures
through observations of real-life instances of problem–solution pairs. For each
such instance, the problem needs to be formulated (understood) according to a
conceptual lens. Such problem conceptualization can take place in collaboration
between practitioners and researchers in, for example, action research or case study
research, or by researchers observing software engineering practice.

The outcome of the problem conceptualization is expressed in terms of problem
constructs, matching corresponding constructs of an envisioned solution. If, for
example, the proposed solution is to design a visualization system, the problem
should typically be described in terms of a group of target users, their questions and
tasks, and their measurements or data (Meyer et al. 2015). Thus, the problem con-
ceptualization is tightly connected to the solution design and cannot be performed
in isolation.

Depending on the type of solution, problem conceptualization may need to
be repeated at several abstraction levels, starting with the stakeholder’s problem
description and, in case of a tool, reaching to the level of implementation details
(such as choice of algorithm). If this is the case, different types of technological
rules are used and validated at different abstraction levels. It is important to be
aware of what these technological rules are, and to ensure that the validation of
a solution takes place at all these levels and that the validations are mapped to
the correct technological rules. Further, while solution design is a creative activity,
the design knowledge it produces can be made more accessible and trustworthy
if critical design decisions are clearly reported together with considerations about
alternative solutions.

Finally, problem conceptualization is, to a large extent, in the eye of the beholder.
A behavioral scientist would, for example, make a different problem conceptualiza-
tion of a software project, compared to a software engineering researcher. Similarly,
different software engineering researchers may be influenced by their background,
emphasizing how problem conceptualization is intertwined with solution design.

3.3 Validation, Instantiation, and Abstraction

To validate a technological rule it must be instantiated, preferably in multiple
cases of problem–solution pairs that instantiate the rule where each case adds to
the validity strength of the rule. Alternatively, a new technological rule may be

The Design Science Paradigm as a Frame for Empirical Software Engineering 135

abstracted from an observed implemented solution applied to a real-life problem.
The constituents of the technological rule implicitly specify the validation activities
if expressed in the form of: To achieve <Effect > in <Context > apply <Interven-
tion>.

The intervention is the object of the validation study, the context refers to where
the research is conducted, and the expected effect defines the validation criteria. This
points to real software engineering contexts as the ultimate validation context for
design science research. Consequently, multiple case studies are brought forward as
the natural research methodology in design science (Van Aken 2004). However, for
some design problems, the characteristics of the real context may be very similar
to the artificial context settings for the validation. For example, a tool which has
no human–tool interaction can be evaluated with real or realistic data in an offline
setting. In other cases, practical and economical limitations can prevent the research
endeavor from taking place in real operational environments, and thus scaled down
validation contexts may be used in the research.

The risks related to validating interventions in business critical contexts may be
high. If the intervention does not deliver the effect as expected, the outcome of the
software engineering activity as a whole may be endangered. Furthermore, the costs
related to implementing the intervention may also be high (e.g., changing a work
flow or adapting the information infrastructure to a new tool). Thus the validation
procedures should gradually extend the validation scope for the intervention to
manage these risks. However, reducing the scope and complexity of the validation
context too much may reduce the realism, which is essential for addressing a
relevant problem with a feasible solution. Studies in artificial contexts may be useful
to validate specific mechanisms, but they are not feasible for complex systems
studies.

Stol and Fitzgerald adapted Runkel and McGrath’s framework for research
strategies to guide balancing generalizability, precision, and realism in designing
validation studies, see chapter “Guidelines for Conducting Software Engineering
Research”. This framework may be useful in choosing research strategies in relation
to the goals of the research endeavor. The framework defines two dimensions:
(1) universality/specificity of context and systems and (2) level of obtrusiveness,
which have to be balanced, as discussed above.

The specific choice of methods for the validation depends on the research
question. Easterbrook et al. (2008) provide guidance to the selection of methods for
types of research question and conclude for the philosophical stance behind design
science: “Pragmatists use any available methods, and strongly prefer mixed methods
research, where several methods are used to shed light on the issue under study.”
This recommendation fits well with the design science paradigm and its pragmatist
viewpoint.

Furthermore, the choice of validation methods depend on the abstraction level of
the validation. Munzner (2009) illustrates this in a nested model for visualization
design and validation, see Fig. 3. This model shows how one design science project
must respond to validity questions at several levels of abstraction, and that it is
important to be consistent when selecting validation methods to avoid a mismatch

136 P. Runeson et al.

Threat: Wrong problem

Validate: Observe and interview target users

Validate: Adoption rates

Threat: Bad data/operation abstraction

Validate: Test on target users, collect anecdotal evidence of utility

Validate: Field study, document human usage of deployed system

Threat: Ineffective encoding/interaction technique

Validate: Justify encoding/interaction design

Validate: Qualitative/quantitative result image analysis

Validate: Lab study, measure human time/errors for operation

Threat: Slow algorithm

Validate: Analyse computational complexity

Validate: Measure system time/memory

Implement system

Fig. 3 Nested model for visualization design and validation (Munzner 2009). At each level there is
a “black-box” to be tested. Above the box, validity threats are specified and examples of validation
strategies for the problem conceptualization are proposed for that abstraction level, while validation
strategies for the instantiation of the solution are proposed below the box

between levels. As discussed in Sect. 3.1, technological rules may be defined at
all these different levels, and the scope of validity of each technological rule is
defined by the context in terms of the conceptualization of the problem at the current
abstraction level.

The design science paradigm primarily builds on theoretical/analytical gener-
alizations, in contrast to explanatory sciences, which mostly rely on statistical
generalizations (Runeson et al. 2012). Extending the scope of validity for a
technological rule (i.e., creating a new, more general technological rule) is done
by applying the intervention to new contexts, or by reasoning about the validity to
another context by comparing key characteristics of the contexts. This is referred
to as case-based generalization (Wieringa and Daneva 2015). Technological rules
may also develop from the general to the specific. The research may start with a
general technological rule which is refined as new knowledge is gained through the
instantiation of the technological rule in multiple contexts.

3.4 Design Science Research in Practice

The design science paradigm may embrace the use of a multitude of research
methods. For problem conceptualization and validation of technological rules,
empirical research methods are used; however, methods supporting natural settings
are preferred as the problem in context is a focus for design science research.

The Design Science Paradigm as a Frame for Empirical Software Engineering 137

In a survey of 101 industry–academia collaboration projects, Garousi et al.
(2019) found 75 that were characterized as case studies. Further, they note that
“industrial case studies usually apply either the ‘exploratory’ or the ‘improving’
type, or both, rather than other case study types (descriptive, explanatory).” Methods
for data collection and analysis can be selected from the rich plethora of options
available for such studies, for example, interviews, focus groups, observational
studies, archival data analysis, and software metric analysis.

Action research is another way of producing and validating technological rules.
41 of the 101 industry–academia collaboration projects surveyed by Garousi et al.
(2019) were labeled as action research. However, action research does not explicitly
aim to develop knowledge that can be transferred to other contexts, but rather to
make a change in one specific local context. Nevertheless, both Wieringa and Moralı
(2012) and Johannesson and Perjons (2014) discuss action research as one of several
empirical methods that can be used to produce design knowledge.

Gorschek et al. (2006) define a “model for technology transfer in practice”
focusing on industry–academia collaboration, which has some elements of design
science. The model, which prescribes conceptual steps in solving a problem in an
industry–academia collaboration setting, has elements of problem identification and
conceptualization. The design of solutions involve studying the literature (state of
the art) and selection of a candidate solution. This solution is validated in three steps,
in academia, statically, and dynamically, before it is released into operations.

The elements of this model fit the design science frame, although it (by
intention) focuses primarily on the intervention in the specific context rather than
the generalized knowledge and technological rule, which are significant elements
of design science research. Further, when the generalization of knowledge and
iterative knowledge building is stressed, it becomes clear that industry–academia
collaboration is not a one-way transfer of technology, but a mutual interaction
between the two.

4 Using the Design Science Frame in Software Engineering

We designed a visual abstract template as a tool to analyze design science constructs
in software engineering research (Sect. 4.1). We suggest three direct uses of the
design science paradigm as a frame for software engineering research, which we
illustrate through an example (Sect. 4.2). First, it can help in assessing contributions
in research, both for the research community and during the planning and design of
a research project (Sect. 4.3). Second, design science, particularly the technological
rule, can be used in knowledge building, synthesizing and advancing the theoretical
knowledge in the software engineering field (Sect. 4.4). Third, the design science
frame may help in communicating research across the research community and with
industry (Sect. 4.5).

138 P. Runeson et al.

4.1 A Template to Highlight Design Science Constructs

The design science perspective is rarely used explicitly to design and present
software engineering research (Engström et al. 2020). We therefore designed a
visual abstract template to help identify the design science constructs in software
engineering research (Storey et al. 2017), see Fig. 4. We further extended the
template with survey questions to help analyze software engineering literature
from a design science perspective (Engström et al. 2020). The template aims to
capture the key takeaway from a research study to help researchers assess the
research contribution, build knowledge iteratively, and communicate research to
practitioners.

Our design science template covers the main constructs of design science
research: the theoretical contribution in terms of a technological rule; its instan-
tiation in terms of a real problem–solution pair; the empirical or theoretical support
for problem conceptualization and the solution design. Further, the bottom three
boxes address the relevance of the research, the rigor of the research activities,
and a statement about what makes the technological rule novel in relation to the
underpinning research, be it with focus on a refined problem conceptualization, or a
new or improved solution design, or a validation of the technological rule in a new
context.

4.2 Design Science Example

To illustrate the use of the design science lens for software engineering research, we
present and discuss an example by Jonsson et al. (2016), introducing automated bug
assignment to handle a large inflow of bug reports. We have used the same example
to illustrate our visual abstract (Storey et al. 2017), see Fig. 5.

The automated bug assignment research was not originally presented within
the design science frame. However, like much software engineering research, it
is implicitly conducted as design science research (Engström et al. 2020). The
scientific knowledge gained from the work can be phrased as a technological rule:

To achieve more effective assignment of bugs to teams in large scale industrial contexts, use
ensemble-based machine learning to automate bug assignment.

The general problem of inefficient bug assignment is observed in the literature
as well as in the specific industrial contexts where this research was conducted.
With the solution in mind (to use machine learning techniques to assign bugs
to teams), the characteristics of the defect data and the organizational context
were explored, and thus identifying the characteristics of the problem instance.
Related work on bug classification as well as on machine learning techniques
was identified (Borg et al. 2014), which underpinned the design decisions for the

The Design Science Paradigm as a Frame for Empirical Software Engineering 139

F
ig

.4
V

is
ua

la
bs

tr
ac

tt
em

pl
at

e
in

cl
ud

in
g

th
e

co
re

co
ns

tr
uc

ts
in

th
e

de
si

gn
sc

ie
nc

e
pa

ra
di

gm

140 P. Runeson et al.

Fig. 5 Visual abstract for the paper on automated bug assignment (Jonsson et al. 2016)

proposed solution. The machine learning solutions were implemented and trained
using the Weka framework (Hall et al. 2009). Several alternative solution instances
were validated on real data (50,000 bug reports) from five projects across two
companies/domains. For the specific companies, a design artifact was produced,
namely the bug assignment tool built on top of Weka.

4.3 Assessment of Contributions

Hevner (2007) presents three research cycles in the conceptual model of design
science, namely the relevance, the rigor, and the design cycles. We propose that
the contributions of design science research be assessed accordingly with respect
to relevance, rigor, and novelty. Assessment of research contributions can be
conducted proactively (when relevance may be a primary concern for consideration,
and before the research is executed), prospectively (as the research is ongoing and
when rigor should be carefully considered), or retrospectively (where novelty of
the design knowledge produced may become more evident). Below, we discuss
assessments of contributions and refer to the example we described above.

The Design Science Paradigm as a Frame for Empirical Software Engineering 141

4.3.1 Relevance

The relevance of a research contribution can be viewed from two perspectives:
(1) from other practitioners that may benefit from the design knowledge produced
and (2) from the research community.

From an individual practitioner’s point of view, the relevance of a research
contribution may be assessed by comparing its specific context with the study
context described in the research report. Practitioners may need to consider whether
the design knowledge can be applied to their specific context as is, or if it should
be customized in some way, or if the knowledge does not apply to their context
or problem at all. In the example by Jonsson et al. (see Fig. 5) a practitioner, that
faces the challenge of manually assigning bugs to teams, could benefit from using
ensemble-based machine learning to automate bug assignment (or not).

From the research community perspective, relevance is often considered in terms
of how common the studied problem is, and how generalizable the produced design
knowledge may be. Jonsson et al. (2016) report 20 previous studies on machine
learning-based bug assignment, with different models for various bug report sets.
To enable both types of assessments, relevant context factors need to be reported.
Not all context factors are helpful in making this assessment, but only those that
are critical for either the applicability of the solution or for the potential gain of
applying the solution (Petersen and Wohlin 2009).

4.3.2 Rigor

Rigor of a design science study refers to the strength of the added support for
the technological rule. It may be assessed in all of the three knowledge creating
activities (problem conceptualization, design, and validation). Rigor should be
considered when the research project is designed, as well as throughout and after the
project to reflect on possible threats to validity. It is worth noting that the solution
design activity is by nature a creative process and does not necessarily have to add
to the rigor of the overall research.

One aspect of rigor in the design activity could be the extent to which a solution
builds on prior design knowledge, or whether alternative solutions have been taken
into account. In the case by Jonsson et al., they choose alternative classifiers from the
Weka tool by reasoning about their properties and combined them into ensembles
of classifiers for evaluation.

Rigor with respect to problem conceptualization and validation is based on
common empirical methods that support relevant validity criteria, such as using
structured and transparent research methods and using realistic data. For example,
the study by Jonsson et al. can be considered high in rigor as the proposed solution
is validated by its application to five defect datasets from two large software
systems, comprising 50,000 bugs. Furthermore, they found that the precision in the
automated bug assignment was on par with manual industry processes, which makes
it scalable to practice.

142 P. Runeson et al.

4.3.3 Novelty

Novelty of a design science study is expressed in terms of new or refined technolog-
ical rules. Technological rules may be expressed at several abstraction levels, thus
it is always possible to identify an abstraction level at which a research contribution
is novel, may it be at the cost of general relevance. In the research by Jonsson et al.,
novelty of the intervention proposed in the technological rule is not straightforward
to assess, as there already exist 20 studies on machine learning to automate bug
assignment. The novel contribution here is the systematic design and evaluation of
a machine learning approach, applied to a real-world context, as expressed in the
technological rule.

However, novelty may not always be a priority in a given research effort. To
optimize rigor, novelty, and relevance of reported research, one should strive to
express the technological rule at the highest possible abstraction level at which it
is novel, the provided evidence gives strong support, and the technological rule is
not debunked by previous studies (or common sense). However, adding empirical
support for existing, but under-validated, technological rules has a value of its
own (replication), which makes novelty less important than the rigor and relevance
criteria.

4.4 Knowledge Building

Articulating the knowledge produced by our research in a more uniform way
may help in building and synthesizing related knowledge in our community. The
technological rules that emerge can at best be considered as theory fragments that
prescribe and predict how a certain intervention for a particular context will lead
to a proposed change. Our hope is that linking technological rules that are related
(perhaps in hierarchical form) may help our community arrive at more general
theories that can be refined and improved over time.

For example, Jonsson et al.’s research on automated bug assignment is related
to previous bug assignment research, although it is hard to compare due to a
lack of detail and inconsistent (or lack of) phrasing of technological rules. If the
contributions were clearly expressed as technological rules with corresponding
validation, the outcomes together would be more generalizable.

4.5 Research Communication

As we discussed above, building design knowledge in software engineering requires
close partnership with practitioners. Practitioners may play a participatory role in
our research by confirming and eliciting the problems to be solved, as well as by
designing practical solutions using design knowledge and then validating them in

The Design Science Paradigm as a Frame for Empirical Software Engineering 143

context (on real problem instances). Consequently, how we communicate design
knowledge to practitioners is critical to this participatory research approach.

We feel that technological rules will be valuable in communicating our findings
to industry, and that the visual abstract may also appeal to those practitioners
wanting to quickly gain a bigger picture of the research behind the design knowledge
embodied by a technological rule. At the time of writing this chapter, we are in the
process of evaluating our visual abstracts and in the future hope to evaluate them
with practitioners.

Other initiatives for research communication include the SERP taxonomy archi-
tecture framework by Petersen and Engström (2014), which includes the constructs
of a technological rule to support the mapping of practical problems with research.
The SERP framework provides a taxonomy that establishes a common under-
standing between practitioners and researchers in software testing (Engström et al.
2017) and may support practitioners in their reviews of regression testing literature
from a relevance point of view (Ali et al. 2019), which may lead to generalized
recommendations in terms of technological rules.

Another attempt to make evidence available to practitioners is presented by
Cartaxo et al. (2016). They present the concept of “evidence briefings,” which
is a way to summarize systematic literature reviews in a one-page format. They
used accepted information design principles to design the structure of the one-page
briefing. The format and content were positively validated by both practitioners and
researchers. While evidence briefings may provide an effective way to synthesize
evidence from several studies, our visual abstract template provides a means to
effectively summarize the contribution of one study or research program from a
design science perspective.

5 Recommended Further Reading

Several fields of research have explicitly framed their work under the design science
paradigm. This chapter is based on critically appraising these fields and adopting
what we have found feasible for software engineering. We present the main literature
sources and recommend them for further reading to advance software engineering
under the design science paradigm.

Hevner et al. (2004) and Hevner and Chatterjee (2010) have conceptualized
design science for information systems research, combining behavioral science and
design science research. The philosophical stance behind design science is what
is characterized as pragmatism (Easterbrook et al. 2008), referring to a view that
all knowledge is approximate and valued by its usefulness for solving practical
problems. Hevner et al. (2004) express this in terms of utility:

That is the essence of design science. Contribution arises from utility. If the artifact does not
solve the problem (search, implementability), it has no utility. If utility is not demonstrated
(evaluation), then there is no basis upon which to accept the claims that it provides any
contribution.

144 P. Runeson et al.

Gregor and Hevner (2013) also refer to design science as a paradigm. Johannes-
son and Perjons (2014) disagree with this view and argue that design science refers
to the objective of changing the world—in contrast to describing it—and that this
is done primarily by creating artifacts, not knowledge. Johannesson and Perjons’
view emphasizes design science as action research. Wohlin and Aurum (2015) also
present design science as a methodology. As a consequence, they focus on the
activities (how to conduct the research) rather than on the theoretical contributions
of the research (how to theorize from the research), which is the case when it is
considered a paradigm. However, there is a strong connection between the paradigm
and the methodologies used. Our stance is that design science is a paradigm for
software engineering research, and as researchers our primary goal is to create
knowledge to be applied by practitioners in the field. Furthermore, we consider
artifacts as embedding design knowledge.

Hevner (2007) adds three research cycles to the conceptual model of design
science, namely the relevance, the design, and the rigor cycles. The relevance cycle
connects the environment with the design science activities, the design cycle iterates
between designing and evaluating the interventions, while the rigor cycle connects
the research with the theoretical foundation of the research. We were inspired by
Hevner’s work when we added assessment criteria to the visual abstract template.

Van Aken (2005) explored the design science paradigm for management science,
with a focus on theoretical contributions captured as technological rules. In the field
of research with organizations as their study objects, Van Aken (2004) proposed
making a distinction between explanatory and design sciences by dividing the
research into two fields:

• Organization theory as description-driven research under the explanatory
research paradigm, observing how organizations behave “naturally”; and

• Management theory as prescription-driven research under the design sciences
paradigm, designing interventions to manage organizations.

We do not propose a corresponding distinction for software engineering, but
rather call researchers to awareness of the existence of these different paradigmatic
perspectives and their implications on the choice of research methodology and
knowledge building.

The Nobel Prize laureate in Economics, Herbert A. Simon, used other terms
for the distinction between explanatory and design sciences paradigms (Simon
1969). Design sciences are referred to as the “science of the artificial,” in contrast
to explanatory science as the “science of the natural.” The latter refers not only
to natural sciences in the narrow sense, but to other phenomena that seem to
appear “naturally.” In this broader sense, we may find both “natural” and “artificial”
phenomena in software engineering, and thus may frame the research in different
paradigms depending on the phenomenon under study.

Wierenga promoted design science for software engineering and information
systems research in the concept of technical action research, including an engi-
neering cycle and an empirical research cycle, which combine research with
real-world consultancy projects (Wieringa and Daneva 2015; Wieringa and Moralı

The Design Science Paradigm as a Frame for Empirical Software Engineering 145

2012; Wieringa 2014a). Further, to address the distinction between descriptive and
prescriptive research, he introduces two types of research questions: knowledge
questions and improvement questions (Wieringa 2009). He also discusses scaling
up research to practice (Wieringa 2014b).

Munzner (2009) reviewed design science research in the field of visualization
design and introduced a four-level nested model of design and validation, see
Fig. 3. She divides the design process into four distinct stages and emphasizes the
importance of distinguishing between these levels when claiming contributions at
more than one level. The nested model is a good example of a design construct in the
solution domain, i.e., visualization, providing a lens for problem conceptualization.
Although not all software engineering problems are solved with visualization
approaches, the model may inspire similar thinking in other design processes.

6 Conclusion

The design science paradigm is used in many fields of research that aim to
understand and improve some area of practice. Software engineering researchers
rarely use design science to frame their research explicitly, although our analysis
showed that it resonates well with the aims of and research practice in software
engineering (Engström et al. 2020).

There are many flavors of design science in related fields of research. In this
chapter, we propose an instantiation of design science that we find suitable for the
characteristics of software engineering research. We also present our visual abstract
template, derived to help assess and communicate design science research (Storey
et al. 2017).

We hope that the community will adopt the design science framework for
software engineering research to provide better tools for researchers to define and
assess relevance, rigor, and novelty of research, to assist communication between
researchers and with practitioners, and to support continuous theoretical knowledge
building in software engineering.

References

Ali NB, Engström E, Taromirad M, Mousavi MR, Minhas NM, Helgesson D, Kunze S, Varshosaz
M (2019) On the search for industry-relevant regression testing research. Empir Softw Eng
24(4):2020–2055

Basili VR (1992) The experimental paradigm in software engineering. In: Rombach HD, Basili
VR, Selby RW (eds) Proceedings of experimental software engineering issues: critical assess-
ment and future directions, international workshop, Dagstuhl Castle, September 14–18, 1992.
Lecture notes in computer science, vol 706. Springer, Berlin, pp 3–12

Basili VR, Selby RW, Hutchens DH (1986) Experimentation in software engineering. IEEE Trans
Softw Eng 12(7):733–743

146 P. Runeson et al.

Basili VR, Shull F, Lanubile F (1999) Building knowledge through families of experiments. IEEE
Trans Softw Eng 25(4):456–473

Borg M, Runeson P, Ardö A (2014) Recovering from a decade: a systematic map of information
retrieval approaches to software traceability. Empir Softw Eng 19(6):1565–1616

Briand LC, Bianculli D, Nejati S, Pastore F, Sabetzadeh M (2017) The case for context-driven
software engineering research: generalizability is overrated. IEEE Softw 34(5):72–75

Bunge M (1998) Philosophy of science: volume 2, from explanation to justification, 1st edn.
Routledge, New Brunswick

Cartaxo B, Pinto G, Vieira E, Soares S (2016) Evidence briefings: towards a medium to transfer
knowledge from systematic reviews to practitioners. In: Proceedings of the 10th ACM/IEEE
international symposium on empirical software engineering and measurement, pp 57:1–57:10

Deming WE (1986) Out of the crisis. Massachusetts Institute of Technology, Center for Advanced
Engineering Study, Cambridge

Easterbrook S, Singer J, Storey M-A, Damian D (2008) Selecting empirical methods for software
engineering research. In: Shull F, Singer J, Sjøberg DIK (eds) Guide to advanced empirical
software engineering. Springer, London, pp 285–311

Engström E, Petersen K, Ali NB, Bjarnason E, (2017) SERP-test: a taxonomy for supporting
industry–academia communication. Softw Qual J 25(4):1269–1305

Engström E, Storey M-A, Runeson P, Höst M, Baldassarre M (2020) How software engineering
research aligns with design science: a review. Empir Softw Eng. http://dx.doi.org/10.1007/
s10664-020-09818-7

Garousi V, Pfahl D, Fernandes JM, Felderer M, Mäntylä MV, Shepherd D, Arcuri A, Coşkunçay
A, Tekinerdogan B (2019) Characterizing industry-academia collaborations in software engi-
neering: evidence from 101 projects. Empir Softw Eng 24(4):2540–2602

Gorschek T, Garre P, Larsson S, Wohlin C (2006) A model for technology transfer in practice.
IEEE Softw 23(6):88–95

Gregor S, Hevner AR (2013) Positioning and presenting design science research for maximum
impact. MIS Q 37(2):337–356

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data mining
software: an update. ACM SIGKDD Explor Newsl 11(1):10–18

Hevner AR (2007) A three cycle view of design science research. Scand J Inf Syst 19(2):87–92
Hevner AR, Chatterjee S (2010) Design research in information systems: theory and practice.

Springer, New York
Hevner AR, March ST, Park J, Ram S (2004) Design science in information systems research. MIS

Q 28(1):75–105
Johannesson P, Perjons E (2014) An introduction to design science. Springer, Berlin
Jonsson L, Borg M, Broman D, Sandahl K, Eldh S, Runeson P (2016) Automated bug assign-

ment: ensemble-based machine learning in large scale industrial contexts. Empir Softw Eng
21(4):1579–1585

Kitchenham BA, Dybå T, Jørgensen M (2004) Evidence-based software engineering. In: Finkel-
stein A, Estublier J, Rosenblum DS (eds) 26th international conference on software engineering
(ICSE). IEEE Computer Society, Edinburgh, pp 273–281

Kitchenham BA, Budgen D, Brereton P (2015) Evidence-based software engineering and system-
atic reviews. Chapman and Hall/CRC, London

Méndez Fernández D, Passoth J-H (2019) Empirical software engineering: from discipline to
interdiscipline. J Syst Softw 148:170–179

Meyer M, Sedlmair M, Quinan PS, Munzner T (2015) The nested blocks and guidelines model.
Inf Vis 14(3):234–249

Munzner T (2009) A nested model for visualization design and validation. IEEE Trans Vis Comput
Graph 15(6):921–928

Naur P, Randell B (1969) Software engineering: report on a conference sponsored by the NATO
science committee. Technical report, Scientific Affairs Division, NATO, Brussels

http://dx.doi.org/10.1007/s10664-020-09818-7
http://dx.doi.org/10.1007/s10664-020-09818-7

The Design Science Paradigm as a Frame for Empirical Software Engineering 147

Petersen K, Engström E (2014) Finding relevant research solutions for practical problems: the
SERP taxonomy architecture. In: Proceedings of the 2014 international workshop on long-term
industrial collaboration on software engineering. ACM, New York, pp 13–20

Petersen K, Wohlin C (2009) Context in industrial software engineering research. In: Proceedings
of the third international symposium on empirical software engineering and measurement,
ESEM 2009, October 15–16, 2009, Lake Buena Vista. IEEE Computer Society, Silver Spring,
pp 401–404

Runeson P, Höst M, Rainer A, Regnell B (2012) Case study research in software engineering—
guidelines and examples. Wiley, New York

Simon HA (1969) The sciences of the artificial. MIT Press, Cambridge
Storey M-A, Engström E, Höst M, Runeson P, Bjarnason E (2017) Using a visual abstract as

a lens for communicating and promoting design science research in software engineering.
In: ACM/IEEE international symposium on empirical software engineering and measurement
(ESEM), pp 181–186

Van Aken JE (2004) Management research based on the paradigm of the design sciences: the quest
for field-tested and grounded technological rules. J Manag Stud 41(2):219–246

Van Aken JE (2005) Management research as a design science: articulating the research products
of mode 2 knowledge production in management. Br J Manag 16(1):19–36

Wieringa RJ (2009) Design science as nested problem solving. In: Proceedings of the 4th
international conference on design science research in information systems and technology.
ACM, New York, pp 8:1–8:12

Wieringa RJ (2014a) Design science methodology for information systems and software engineer-
ing. Springer, Berlin

Wieringa RJ (2014b) Empirical research methods for technology validation: scaling up to practice.
J Syst Softw 95:19–31

Wieringa RJ, Daneva M (2015) Six strategies for generalizing software engineering theories. Sci
Comput Program 101:136–152

Wieringa RJ, Moralı A (2012) Technical action research as a validation method in information
systems design science. In: Peffers K, Rothenberger M, Kuechler B (eds) Design science
research in information systems. Advances in theory and practice. Springer, Berlin, pp 220–
238

Wohlin C, Aurum A (2015) Towards a decision-making structure for selecting a research design in
empirical software engineering. Empir Softw Eng 20(6):1427–1455

Part II
Data Collection, Production, and Analysis

Biometric Measurement in Software
Engineering

Fabian Fagerholm and Thomas Fritz

Abstract Biometric sensor technology provides new opportunities to measure
physiological changes in the human body that can be linked to various psychological
processes. In software engineering, these biometric measurements can be used
to gain insights on fundamental cognitive and emotional processes of software
developers while they are working. In addition, biometric measures may be used
to provide better and more instantaneous tool support for developers, for instance,
by preventing defects from being introduced in the code or supporting focused work.
In this chapter, we motivate the use of biometric measurements, introduce common
types of biometric sensors and measures, discuss how to choose the right set of them
and considerations for analyzing the collected data. We also discuss work in the area
of software engineering and recommend further reading.

1 Introduction

Software is built by humans. Software developers are the ones who develop and
evolve code, who elicit requirements, test the software, and talk to their teammates
to coordinate. Yet, traditionally, research has focused to a large extent on normative
approaches to creating processes and artefacts–how developers ought to develop
software–and on measuring output variables that are visible in the process and
the development tools. While this focus on ideal work processes and developers’
output can provide interesting and relevant insights, it falls short when the goal is
to better understand the humans in the process, such as the cognitive demands and

F. Fagerholm (�)
Aalto University, Espoo, Finland

Blekinge Institute of Technology, Karlskrona, Sweden
e-mail: fabian.fagerholm@aalto.fi

T. Fritz
Department of Informatics, University of Zürich, Zürich, Switzerland
e-mail: fritz@ifi.uzh.ch

© Springer Nature Switzerland AG 2020
M. Felderer, G. H. Travassos (eds.), Contemporary Empirical Methods in Software
Engineering, https://doi.org/10.1007/978-3-030-32489-6_6

151

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32489-6_6&domain=pdf
mailto:fabian.fagerholm@aalto.fi
mailto:fritz@ifi.uzh.ch
https://doi.org/10.1007/978-3-030-32489-6_6

152 F. Fagerholm and T. Fritz

emotions they experience, and the individual differences between developers while
they create and evolve the output data. Especially since these human aspects can
have a significant effect on the output and its quality, such as a higher cognitive load
leading to a higher error rate (Sweller 1988; Ayres 2001), the better we understand
the human in the process, the better we can support the software development
endeavour, and the better software quality we can achieve.

There are many ways we can measure the cognitive and emotional processes that
are active while humans develop software. Some of these provide indirect means to
gain more understanding, such as self-report measurements of happiness (Graziotin
et al. 2018) or objective performance on cognitively demanding tasks. Recent
advances in biometric (aka. psycho-physiological) sensor technology offer new
opportunities to collect and examine a wide variety of direct, detailed data on a
human and her cognitive and emotional states while she is working and developing
software. The underlying idea is that a human’s psychological states are linked to
her physiological processes and that these physiological processes can be measured
using biometric sensors. Research in psychology and other fields has already
investigated and correlated certain biometric measures, including skin-, heart-, eye-,
and brain-related metrics, with a human’s cognitive and emotional states. For
instance, researchers have found that pupil size and electrodermal activity (EDA)
can be linked to cognitive load (Wilson 1992; Richter et al. 1998; Setz et al. 2010;
Haapalainen et al. 2010; Iqbal et al. 2004).

Research in software engineering is also starting to take advantage of biometric
measurements using a variety of sensor technology to examine cognitive processes
among software developers. These studies range from the use of an eye tracker to
capture a developer’s eye fixations when reading or navigating code (Crosby and
Stelovsky 1990; Bednarik and Tukiainen 2006; Sharif et al. 2012; Kevic et al. 2015),
EDA wristbands, EEG sensors, or chest straps to capture skin conductivity as well as
brain- and heart-related metrics to assess mental load and the experienced difficulty
of the code (Nakagawa et al. 2014; Fritz et al. 2014; Müller and Fritz 2016), all
the way to the use of functional magnetic resonance imaging (fMRI) and near-
infrared spectroscopy (NIRS) to examine brain activation patterns during program
comprehension (Siegmund et al. 2014; Ikutani and Uwano 2014).

As biometric sensor technology becomes less invasive, easier to integrate into
the developer’s work, cheaper, and more accurate, we are now able to capture
more fine-grained biometric data of software developers in real-time and in real-
life environments. These advances will not only allow us to better understand
a developer while working, but also to develop and provide more instantaneous
support to developers. For instance, by monitoring when a developer is experiencing
a high cognitive load, we might be able to reduce interruptions by other co-workers
at inopportune moments, or be able to intervene before a developer introduces a
defect. Moreover, we will be able to gain a more fundamental understanding of
software development that could lead to advances that we cannot imagine today.

Overall, the research results on the use of biometric measurements in software
engineering already demonstrate the potential of this data. At the same time, there
are still a lot of challenges to address before the use of biometric data can become

Biometric Measurement in Software Engineering 153

widely accepted. These challenges range from the exact interpretation of the data, its
noisiness, sensor limitations and invasiveness, to privacy concerns of the developers.
For instance, low heart rate variability can generally be linked to a person’s stress
and high cognitive load, yet, when a low heart rate variability is detected, it is not
straightforward to differentiate whether this is due to stress, a high cognitive load,
or both. Another example is the limitation and noisiness of current low-invasive
heart rate sensors that use optical sensing. Since an optical sensor is affected by
movements or changes in the environmental lighting, it is difficult to accurately and
reliably capture heart rate variability data with such sensors, especially when they
are integrated into wristbands and users move around a lot.

This chapter introduces some common types of biometric sensors and measures
that have been used in software engineering research, discusses some of the
challenges involved in such research, and gives examples of research in the
area. Throughout the chapter, we use a motivating example to illustrate how the
information in the chapter could be applied in real-life software development.

2 Motivating Example

To illustrate the potential value of biometric data, we will sketch out and highlight
a few scenarios of a team developing software. This team, which is part of a
larger software development organisation, has three developers: Mary, a senior
developer with 10 years of professional experience in Java backend development;
Joe, an experienced developer with 5 years of professional experience on full stack
development including JavaScript and Java amongst others; and Sam, a new hire
fresh out of school with some experience in Java and JavaScript development. All
three developers are working together to finish the next version of their software
application within a month. While the first 2 weeks were pretty much free of any
time pressure, now that they are a week away from the milestone, the time pressure
is slowly picking up a bit. This may influence some important psychological
processes:

Stress. Joe’s eighth-month-old son has had a fever for the past week and has not
been sleeping well. Since Joe and his wife alternate nights to take care of their
son, Joe has been getting a lot less sleep at home than usual and therefore is
feeling more and more stressed about the approaching milestone at work and
getting everything done. As studies in psychology have shown, increased stress
often leads to an increased error rate, and the lack of sleep additionally makes it
harder for Joe to concentrate and work for extended periods of time.
Stress generally evokes a physiological response, such as higher blood pressure,
an increase in perspiration (also known as sweating), or a decrease in the
variability of the heart rate. Biometric sensor technology can be used to capture
these physiological responses, such as a wristband to measure electrodermal
activity or a chest strap to measure heart rate variability. By using such sensors,

154 F. Fagerholm and T. Fritz

one might be able to continuously monitor the stress level of a person and
then use this information to support them in their work. Some possible ways
of supporting could be to suggest taking more breaks, reassigning tasks, or
recommending additional code reviews to lower the chances of errors being
committed to the project.

Cognitive Load. Due to the time pressure in the current iteration cycle, each
developer is supposed to help with any open tasks. Therefore, it happened that
Sam picked up a task that requires changes to the Java backend. While Sam is
working on the task, he experiences a high cognitive load due to the lack of
expertise in Java development and the backend as well as the complexity of the
existing code that he has to change.
As studies in psychology have shown, a high cognitive load is often linked to
certain physiological responses, such as a higher pupil dilation, less eye blinks,
and a lower heart rate variability (HRV). By using an eye tracking sensor or a
HRV sensor, we might be able to track the cognitive load and determine when
the developer is experiencing difficulties and intervene before he introduces a
defect. At the same time, by measuring the difficulty that all developers on the
team have when they are working on specific parts of the code, we might be able
to determine which parts of the code base are more or less challenging, hinting
at where the technical debt is higher and where refactoring might provide the
biggest benefits.

Availability for Interruptions. As in all office environments, the developers of
this team are often interrupted by their co-workers from both their own team and
teams from other parts of the organisation. When these interruptions happen at
inopportune moments, such as a developer being very focused on the task and
memorising a lot of relevant context for the task in her head, or the developer
being very engaged in the task, the interruptions can lead to a steep increase in
the time needed to complete the tasks, heightened frustration for the developer,
and an increased error rate, as studies have shown (Bailey et al. 2001; Czerwinski
et al. 2000; Mark et al. 2008).
Similarly to cognitive load and stress, this focus on and engagement in the task
might express itself in physiological responses that can then be measured using
biometric sensor technology. By continuously monitoring the relevant biometric
measure, we might be able to indicate to co-workers the developer’s availability
for interruptions (aka. interruptibility) and thereby help to shift the interruptions
to more opportune moments.

Common to all of these scenarios is that there are individual differences between
the developers that influence the process of developing software and the end
result of it. These range from individual characteristics—such as temperament and
personality, how the individual is affected by time pressure, and their level of
expertise—to social characteristics—such as the overall stress level at work and at
home, the amount of support received by co-workers and the organisation at large,
and the consequences of success and failure. By only focusing on the output, it is
difficult to detect these individual differences that influence both the developers’

Biometric Measurement in Software Engineering 155

experience and the outcomes of the development endeavour. By using biometric
measurements that can be captured in real-time, we might be able to intervene earlier
and better support the human in the process.

3 Biometrics or Psychophysiology

Biometric data generally denotes measurements made on some part of the human
body. These measurements could, for example, be used to identify and authenticate
an individual, such as a fingerprint, a voice, or a DNA sample. In this chapter, we
focus more specifically on measurements made on some part of the human body
that are linked to various psychological processes, such as performing cognitive
tasks or experiencing emotions. This type of biometric data is also often referred to
as psycho-physiological data. In the following, we will use the term biometric data
and psycho-physiological data interchangeable to denote this kind of data.

Biometric data is usually structured as time-series data and is analysed for
changes in response to a stimuli, such as a task, a piece of code, a diagram, an
emotion inducing picture, or something else that has relevance for what is being
studied.

3.1 Examples of Biometric Sensors and Measures

Many different physiological measurements are used in research today due to
their ability to reveal more about what goes on in a person’s mind. In software
engineering research, such measures have commonly been used to determine what
a person is paying attention to in a cognitively demanding task, how much the task
occupies their mental capacity, or to what extent the task triggers an emotional
response. Physiological measurements can roughly be categorised by the origin of
the measurement: eye-, skin-, brain-, heart-, and breathing-related measurements.
Table 1 presents an overview of some of these measures and the psychological
states and processes they have been linked to in previous research, predominantly
in psychology. In the following we briefly discuss how a few selected physiological
measurements and sensors work in principle.

3.1.1 Eye-Related Measurements

The inner workings of the mind can be probed by measuring how various eye
muscles contract. By taking advantage of this psycho-physiological fact, eye
tracking hardware and software have developed to a level where accurate and fine-
grained measurements of the eye can be made in a minimally invasive way.

156 F. Fagerholm and T. Fritz

Table 1 Overview of several physiological measures and previously linked states and processes
(see also Fritz and Müller 2016)

Measure Previously linked to

Eye-related

Eye gaze Cognitive load (Ikehara and Crosby 2005); valence (Carniglia
et al. 2012)

Pupillary response Cognitive and mental load (Haapalainen et al. 2010; Iqbal et al.
2004); excitement (Muldner et al. 2010)

Eye-blink rate Mental workload (Brookings et al. 1996); frustration, stress,
anxiety (Kapoor et al. 2007; Doehring 1957)

Skin-related

Electrodermal activity (EDA) Valence, arousal, engagement (Haag et al. 2004; McDuff et al.
2012); frustration (Freeman 1940; Kapoor et al. 2007); stress
and cognitive load (Setz et al. 2010)

Skin temperature Task difficulty (Anthony et al. 2011); valence, arousal (Haag
et al. 2004); boredom, engagement, anxiety (Chanel et al. 2008)

Brain-related

EEG frequency bands Mental workload (Brookings et al. 1996); valence,
arousal (Sammler et al. 2007; Reuderink et al. 2013; Lin et al.
2010); happiness and sadness (Li and Lu 2009); task
engagement (Kramer 1991)

Heart-related

Heart rate (HR) Mental load and effort (Richter et al. 1998; Veltman and
Gaillard 1998); valence, arousal (Haag et al. 2004; Sammler
et al. 2007); positive/negative affect (Drachen et al. 2010);
happiness (Steptoe et al. 2005)

Heart rate variability (HRV) Mental effort (Veltman and Gaillard 1998); task
difficulty (Walter and Porges 1976); anxiety (Rani et al. 2004);
various emotional states (McCraty and Tomasino 2006)

Blood volume pulse (BVP) Cognitive load (Peper et al. 2007); various emotions (Picard
et al. 2001); valence, arousal (Haag et al. 2004)

Breathing-related

Respiratory rate Mental effort (Veltman and Gaillard 1998); task
difficulty (Kuznetsov et al. 2011)

Eye tracking can be divided into three common measurements: eye gaze,
pupillary responses, and eye-blink rate. Each of these provides information on
what the human mind is doing, and when combined with specific tasks in carefully
designed study set-ups, they can be used to gain understanding of where the person
is focusing their attention and how their mind is processing the information that the
eye sees.

Eye gaze contains information on what a person is looking at. Many studies
corroborate the fact that a person’s eyes are generally directed towards the object
that their attention is directed to. This means that to some extent, knowing what a
person is looking at gives hints about what they are thinking about.

Biometric Measurement in Software Engineering 157

Eye gaze is commonly measured by an infrared camera that detects reflections
on the outermost surface of the eye—the so-called corneal reflections. Automatic
analysis of the reflection allows the eye tracking device to determine which direction
the eye is looking in, to calculate the angle of the eye, and, with the correct
calibration, to determine what the eye is looking at.

Eye gaze may be used to calculate gaze points, which are the individual samples
of what the eye looks at, and which form the base unit of eye gaze measures. If
the gaze is held for a long enough duration, this can be interpreted as a fixation
where the eyes are locked on towards a specific object—giving indications of things
like attention and the time required to process what is seen. While fixations are the
periods of time when the eye is fixated on a specific object, saccades refer to the
quick moving of the eye gaze between fixations. Gaze point data may be combined
to yield information on the eye gaze sequences used when performing a task. A
correctly designed study protocol can use such sequences to infer how properties of
the task influence what visual information the study participant focuses on and how
she processes it—for example, in terms of how long the person looks at different
parts of the visual stimuli.

Pupillary responses or changes in pupil size are caused by two muscles in the
eye. One of these, the contracting muscle, receives input from brain systems that
respond to light. However, both muscles also receive inputs from areas that are
involved in cognitive and autonomic functions. This means that cognitive and
autonomic activities influence pupil diameter, and it is possible to gain information
on these processes by measuring the pupil. In simple terms, mental exertion leads
to dilatation of the pupil, and so the pupil response can be used to infer the level of
mental effort.

Pupillary response is commonly measured by an infrared camera that takes into
account the distance to the person’s eyes. Pupil tracking is already necessary to
obtain eye gaze information, and the same algorithms that detect and track the pupil
in the overall image are used here.

Eye-blink rate, meaning the frequency at which the eyelids spontaneously open
and close, is an indirect measure of dopamine activity in the central nervous system.
Dopamine is an important neurotransmitter that is involved in many cognitive and
affective functions, such as learning, working memory, and goal-oriented behaviour.
The eye-blink rate thus provides clues on what is going on in a person’s mind in
terms of controlling impulses, maintaining long-term goals, and flexibly adapting to
changing rules in the environment.

When the eye is closed, an eye tracker cannot determine the eye gaze or pupillary
response. Modern eye trackers include functionality that allows to distinguish eye
blinks from other kinds of data loss—such as head movements that prevent the
tracker from detecting the eyes.

Eye tracking has several advantages as a research instrument. Sampling rates of
commercially available eye tracking devices range from 25 to 2000 measurements
per second, meaning that very accurate timing information is available. Eye tracking
devices can be completely non-invasive, being attached to a computer monitor, or

158 F. Fagerholm and T. Fritz

minimally invasive, in the form of special eye glasses worn by study participants.
This means that participants can be observed in quite natural environments and
can freely move around. The portability of the devices also means that they can
be brought to participants in their own environment rather than having participants
visit a lab. Although eye tracking devices have become much more sophisticated in
recent years, eye tracking data must always be carefully examined to rule out errors
due to changing light conditions, miscalibration, and other sources of errors.

3.1.2 Skin-Related Measurements

Commonly used skin-related measurements are skin temperature and electrodermal
activity (EDA). We will focus on EDA in the following.

Electrodermal activity (EDA) is a property of the human skin that causes a
continuous variation in its electrical characteristics. More specifically, the ability
of the skin to conduct electricity varies and is linked to the level of psychological
or physiological arousal of a person. By measuring electrical properties such as
resistance, it is possible to infer, e.g., the level of stress experienced by a person.
Since EDA is not under voluntary control, it offers a degree of direct insight into the
autonomous regulation of emotions. However, measuring EDA at different locations
of the body yields different results, and EDA responses are delayed 1–3 s, meaning
that it is not straightforward to determine mental activity from an EDA signal.
The EDA signal can generally be split into two parts: the slowly changing, low
frequency, tonic part and the fast adapting, high frequency, phasic part (Schmidth
and Walach 2000). Commonly used metrics for the tonic part are the mean value or
the area under the curve (AUC), while commonly used features for the phasic part
are related to the peaks in the signal.

3.1.3 Brain-Related Measurements

Measuring activity of the brain can be done in various ways and the measurements
that can be captured depend heavily on the device that is being used. These devices
vary in the kind, accuracy, and granularity of the data they capture, but also in their
invasiveness which limits the kinds of studies that can be performed.

Electroencephalography (EEG) is a method to record electrical activity in the
brain. Electrodes placed on the scalp of a participant measure voltage fluctuations
that reflect neural activity. When the electrodes are placed correctly, the multiple
signals from the many electrodes can be analysed to provide information on
activity in different brain regions. This information may be used to investigate
cognitive processes. Commonly used measures retrieved from an EEG are brain
wave frequency bands that are called alpha (α), beta (β), gamma (γ), delta (δ),
and theta (θ). Each of these brain wave frequency bands has a specific frequency
range and amplitude and exhibits more or less activity under different stimuli. For

Biometric Measurement in Software Engineering 159

example, alpha waves can typically be observed when an individual is in a relaxed
state, but the alpha waves either disappear or their amplitude decreases significantly
as soon as the physical or mental activity increases (Andreassi 2007).

EEG has a low spatial resolution, meaning that it can only provide rough
information on activations in different brain regions. However, it has high temporal
resolution, is less invasive than other sensor technologies, and can be quite mobile
and therefore used in situations where participants are moving.

Functional magnetic resonance imaging (fMRI) provides information on the
brain activity by measuring changes in blood flow in the brain. When an area of the
brain is in active use, blood flow in that area increases. Using fMRI, it is possible
to investigate which areas are activated by a stimulus. This may be used to gain
knowledge of how participants process the stimulus.

fMRI requires sophisticated equipment and fMRI devices are large and not
portable, meaning that participants must visit a research lab to take part in studies.
In addition, fMRI generally requires the person to lay still without moving much,
and the display that study participants in an fMRI study can look at is also quite
small, which limits the kinds of tasks that can be studied with an fMRI significantly.

Functional near-infrared spectroscopy (fNIRS) uses electrical signals close to
the infrared wavelengths to detect the composition of materials. As a biosensor,
fNIRS works by detecting oxygen saturation in brain tissue. As with fMRI, when a
brain region is in active use, blood flow in that region increases, and fNIRS detects
this as increased oxygen saturation. A fNIRS device provides more mobility than
an fMRI device, but while fMRI can monitor activity in the entire brain, fNIRS is
limited to the cortical areas.

3.1.4 Heart-Related Measurements

Commonly used heart-related measurements are the heart rate (HR), the heart
rate variability (HRV), and the blood volume pulse (BVP). The heart rate refers
to the number of contractions of the heart each minute and the heart rate variability
represents the variation in the time interval between two consecutive heart beats. The
blood volume pulse measures the blood flow through specific parts of the body and
may change when the sympathetic nervous system increases its activity, for instance,
because of stress (Andreassi 2007). Common features of these measurements are the
mean heart rate, the mean and the standard deviation of the time between two heart
beats, and features that capture the peaks of the BVP signal.

Today, there are various ways to capture heart-related measurements that again
vary in the kind, granularity, and accuracy of the data captured. The devices
range from commonly used wrist watches, such as the Apple Watch,1 that capture
heart rate using an optical sensor, to chest straps or arm bands, all the way to

1https://www.apple.com/watch/.

https://www.apple.com/watch/

160 F. Fagerholm and T. Fritz

electrocardiograms that use specific electrodes. Especially the kind of sensor used
and the location of the sensor(s) affect the accuracy of the measurements. For
instance, capturing accurate HRV data with a wrist watch using an optical sensor
is difficult at best: first the wrist is generally used and moved a lot and second, wrist
watches are often not tightly fixated to the wrist such that the optical sensor moves
around a lot.

Electrocardiography An electrocardiogram (EKG) is a recording of the electrical
activity of the heart over time. Electrodes placed on the skin measure small electrical
changes that occur when the heart is beating. EKG data may be used to measure
physiological arousal connected to a stimulus. If the stimulus increases heart rate,
it may be inferred that they are experiencing an emotion—but to determine which
emotion, more information is needed, such as a self-report instrument.

3.2 Biometric Sensing

Physiological measurements captured by biometric sensors have the potential to tell
us more about the human in the process of developing software and to do so in
real-time. Yet, there are several points to be considered before using biometrics for
studying or supporting software developers. Some of the most prominent of these
points are the choice of the biometric sensor or the physiological measurement, the
individual differences in the measurements, the processing of the data, and how to
best use them for a study or in the field.

3.2.1 Choosing the Right Measurement and Sensor

Gaining insight into the minds of software developers requires careful selection of
research instruments. However, picking a biometric sensor will not automatically
result in new insights or practically applicable methods. Everything begins with
the formulation of research questions or hypotheses informed by existing research
and theory, as with any other kind of empirical research (see, for example, chap-
ters “The Evolution of Empirical Methods in Software Engineering”, “Guidelines
for Conducting Software Engineering Research”, and “Data Science and Empirical
Software Engineering”). Without these, the collected data cannot answer any
specific questions and is likely to be useless.

The right measurement must thus be informed by an understanding of psy-
chophysiology. In our example, we can observe that Joe is experiencing a state of
heightened stress and sleep deprivation, which likely decreases his performance at
work. His body will show physiological signs of stress, which can be measured, e.g.,
by heart sensors or EDA. This could be the basis of a study that tries to associate
physiological measures of stress with software development outcomes such as error
rate or problem-solving ability.

Biometric Measurement in Software Engineering 161

There are other factors weighing in on the selection of biometric sensors, includ-
ing the environment and scenario the sensors should be used for, the invasiveness
and comfort of the sensor, privacy concerns with the collected data, the required
accuracy and granularity of the measurements, and the accessibility of the data
and sensor. First, the environment and scenario that the sensors should be used in
limits the choices of sensors. For example, if the study set-up requires an authentic
workplace environment the mobility of the sensors plays an important role. So while
an fMRI sensor is perfectly reasonable for running precise lab studies and provides
very fine-granular data, it is not possible to be used in a realistic setting within open
office of a software development company. An eye tracker attached to a computer
monitor, on the other hand, can be easily installed even in the workplace without
restricting the developer’s work, but will also only capture when the developer looks
at the screen and not when she might be sketching out some design ideas on a sheet
of paper.

Second, and closely related to the first is the invasiveness and comfort of the
sensor. Sensors placed on the fingers might disturb the normal use of a keyboard
and mouse, and may be unsuitable for many software development study tasks. EEG
sensors will not disturb the normal use of a keyboard and mouse, but usually require
time to set up, be properly placed, might require the user to not walk around too
much, and can also cause discomfort to the participants, which is a problem both
from an ethical perspective and in terms of potentially biasing the study results.

Third, privacy concerns should be taken into account—biometric data is consid-
ered to be among the most sensitive types of data about a person, and steps should
be taken to carefully protect study participants. Responsible researchers should
think ahead about whether their research leads to greater insights and beneficial
applications, or if there is a possibility of misusing the data or results for purposes
that put humans at risk.

Fourth, the accuracy and granularity of the measurements plays an important
role. While there is already a large number of sensors to capture a variety of
physiological measurements, many of them might not provide the accuracy and
granularity that is required for the specific research question under investigation and
that was linked to cognitive states and processes in previous research. For instance,
there was and is a number of wristbands to capture heart-related measures that use
an optical sensor. However, due to the often loose placement of the wristband and
the sensor, the captured data can be very noisy and while that might be sufficient for
measuring heart rate, it is often not accurate enough to measure heart rate variability.

Finally, accessibility of the data provided by the sensor technology also affects
the choice of the sensor. For instance, while some biometric sensors might capture
the data with the required granularity and sampling rate, the data that researchers
have access to can be more limited in terms of the granularity or also the timeliness.
Some of the reasons for this limited data access are the goal to reduce the data
that needs to be stored and transferred from the often wireless sensor to another
device, or the original purpose for the design of the sensor and the limitations in
the provided API. An additional factor to keep in mind when choosing a sensor is
the continuous support for these sensors. While the market for these technologies is

162 F. Fagerholm and T. Fritz

increasing, we are still in the earlier stages of biometric sensing technologies and
not all sensor technologies survive, such as the Microsoft Band, to take a prominent
example.

3.2.2 Dealing with Noisy Data and Individual Differences

Biometric sensors are by nature noisy and prone to data loss. Most devices do some
basic filtering of the raw physical signals, but the digital data collected is not ready
for analysis as such. Every sensor is susceptible to calibration errors, missing data,
noise, or even the weather (Cacioppo et al. 2007). As far as possible, it makes sense
to try to minimise error sources already while collecting data. This might mean
placing some restrictions on how the participant can move or reducing the amount
of disturbances in the environment.

Having the raw digital data potentially poses a need for noise reduction. Often,
the biometric sensor manufacturer has instructions and recommendations for how to
obtain a cleaner signal. This may include a correction factor that is provided with the
digital output of the device itself, or there may be averaging or algorithmic filtering
approaches that should be used.

Physiological measures are also inherently individual. While this characteristic
of physiological measures allows us to measure and focus on the individual, we
also have to pay more attention when comparing data across individuals since the
physiological response to certain stimuli can vary significantly across individuals.
Let us take heart rate as an example: an individual that is athletic and does sports
several times a week most likely has a lower base heart rate than an individual who
is sedentary most of the week and additionally the range of the heart rate values will
be different. In this case, we cannot directly compare the heart rate with each other.
Instead, we have to independently capture a baseline for each individual’s heart rate,
and then for the periods of interest calculate the difference between the individual’s
heart rate and her baseline. However, even that is not enough since the range of the
heart rate values can vary a lot and we often have to capture the range of individual’s
heart rate (at least for the states of interest) and then use this to normalise the data
to better compare it between individuals. Also, when we measure individuals on a
controlled and short task, we might have to take into account and control for certain
characteristics, such as their daily rhythm and the participant being a morning or
evening person (Levandovski et al. 2013), that can have an impact on the captured
measures. Finally, for certain individuals it might not be possible to capture certain
physiological measures.

3.3 Analyzing Biometric Data

Since a lot of biometric data comes in the form of time-series data, appropriate
time-series analysis methods should be used. Here, the study design will inform

Biometric Measurement in Software Engineering 163

the selection and application of analysis methods. In the following, we will discuss
some of the usual steps; however, the concrete steps and order depends on the usage
scenario of the biometric data.

One step performed frequently in addition to the cleaning of the data is data
segmentation and labelling. In case of an explicit stimuli in the study design, one
often requires an external timing source, such as a video or screen recording or an
automatic signal, that can be used to determine when the stimuli has been displayed,
changed, or appeared during the study. This way, there is an objective anchor point
in time that can be used to segment and label the data, and that allows to compare
the biometric data with and without (or with a different) stimuli. If the study design
does not rely on synchronised presentation of a stimuli, other means of analysis are
necessary. One approach that is often used is to collect self-reports from individuals
for certain points in time or time periods that can then be used for segmentation and
data labelling. Another approach is to use objective task data and have participants
perform multiple tasks, in which case the task periods can be used for segmentation
and the objective measures can be used for labelling.

A further step in the analysis is feature extraction. Generally, we are only
interested in specific features of the physiological data. For instance, for heart rate
data, we might be interested in the mean and the standard deviation, for EDA data
one might be more interested in features related to the peaks in the signal. Previous
literature, especially in psychology, can help to determine which feature might be
best for a specific use case. In addition, we have to choose specific time windows for
extracting and calculating features. The time window choice depends on the kind of
physiological measure, the stimuli, and other factors and can be quite challenging,
especially since the optimal time window for extracting a feature might even vary
across participants.

In many cases, biometric data is used to build a machine learning model that
can be used to determine which biometric features are best to classify or predict
certain states. For this step, the data has to be split into training and test data
and depending on the evaluation, e.g., cross-validation or leave-one-out, different
methods for splitting have to be considered. It is thereby important to ensure that the
training and test data, and in general the individual data points, do not overlap and
are independent of each other. For biometric data, we have to pay special attention
to this independence since physiological features of an individual can be affected
for a long time by a certain stimuli. Therefore, we might have to consider adding
periods of rest or longer breaks in between tasks or time segments to ensure that the
effect of the stimuli has worn off. As with non-biometric data, another challenge in
training a machine learning classifier for a specific use case is the selection of the
features to be used. Depending on the machine learning method applied, different
feature selection methods can be chosen. Given the often large number of possible
biometric features (also based on the various time windows that can be used to
extract the features), it can be challenging to determine an optimal set of features.

Ultimately, using biometric measurements in software engineering requires
an understanding of phycho-physiology, operational knowledge of the biometric

164 F. Fagerholm and T. Fritz

devices, data analysis skills, skills in study design, and an understanding of the real-
life tasks that software developers carry out in their work.

4 Work in the Area

Biometric sensor data has been used in software engineering research for various
purposes. Some of this research addresses questions that contribute to an improved
understanding of the individual in the process of developing software, while other
research explores how biometric sensor data could be used to build new tools
and support the developer. Yet other research explores the sensor data itself and
tries to understand what type of sensor data or combination thereof works best for
detecting certain states of a developer or for studying specific types of tasks. In the
following, we will focus on three areas of research: using eye tracking to understand
developer’s code comprehension, examining developers’ brains with fMRI or EEG,
and more general sensing of specific aspects of developers, such as experienced task
difficulty or their emotions.

Overall, the research in this area is increasing and is helping to better understand
software developers in their activities which can then be used to improve tool
design. Furthermore, the real-time measurement and prediction of aspects such as
a developer’s cognitive load when reading code can be used to build novel tool
support, for instance, to predict code difficulty and which code to refactor, to avoid
bugs from being committed, and to signal the interruptibility to co-workers and
avoid expensive interruptions.

4.1 Tracking Developers’ Eyes in the Code

Some long-standing questions in software engineering research have to do with
source code and how developers read and comprehend source code. Since develop-
ers spend significant amounts of time on reading and writing source code, various
methods have been used to study developers during these activities, and more
recently with the help of eye tracking.

Several studies have used eye tracking to examine how developers read algo-
rithms and source code, what they focus on most when reading code snippets, and
how the reading of code compares to reading natural text, e.g., Crosby and Stelovsky
(1990), Busjahn et al. (2015), Rodeghero et al. (2014), Uwano et al. (2006). One
of the interesting findings is that reading natural text happens largely linearly, in
western languages, left-to-right and top-to-bottom. For source code, eye tracking
has revealed that the reading is different and that experts read source code in a less
linear manner than novices (Busjahn et al. 2015). Another finding is that initial code
segments (e.g., in a function) are read more times and receive more focus, while
later parts may only be skimmed (Jbara and Feitelson 2017).

Biometric Measurement in Software Engineering 165

Eye tracking has also been used to investigate how developers perform change
tasks (Kevic et al. 2015), code reviews (Chandrika et al. 2017; Begel and Vrzakova
2018), and to trace requirements through the software life cycle (Sharif et al. 2017).
These examples show the great diversity of research topics that may be addressed
with eye tracking.

4.2 Examining Developers’ Brains

Recently, researchers have started to look deeper into the brain using fMRI
to investigate program comprehension. For example, in a study using fMRI,
researchers found that that program comprehension was associated with a specific
activation pattern in five brain regions related to working memory, attention, and
language processing (Siegmund et al. 2014; Peitek et al. 2018). In another fMRI
study, Siegmund et al. found evidence of semantic chunking during bottom-up
code comprehension—when a developer has to interpret every individual program
statement to form an understanding of the program—and found that semantic cues,
such as method signatures and common programming idioms, ease comprehen-
sion (Siegmund et al. 2017). Floyd et al. further used fMRI to examine the difference
between reviewing code and English prose and found that the neural representations
of programming and natural language are distinct and that they are affected by
expertise (Floyd et al. 2017).

The high spatial resolution of fMRI allows researchers to pinpoint precise areas
that are activated in the brain. In contrast, EEG measurements are less invasive
to collect and have lower spatial resolution but much higher temporal resolution,
allowing studies to be more precise in terms of timing. In one EEG study, it was
shown that brain measures of cognitive load could quantify programming experi-
ence among students—in terms of the state of progression through an undergraduate
computer science program—and self-reported experience level (Crk et al. 2015).
Code comprehension has also been investigated using EEG. A study identified EEG
signatures specific to code comprehension and found neural correlates of subjective
difficulty during code comprehension by using study participants’ ratings of the
tasks they had to perform in the study (Kosti et al. 2018).

4.3 Sensing Developers

One of the earliest approaches in the software engineering domain mentioning
biometric sensing is the Ginger2 environment by Torii and colleagues that talked
about the use of an eye tracking and a skin resistance level sensor to empirically
study developers (Torii et al. 1999). Since then, there is an increasing amount
of studies that examine further aspects of developers and/or combine various
physiological measures and sensors. Several studies focused on the difficulty of the

166 F. Fagerholm and T. Fritz

task or the cognitive load that developers experience during a change task or when
reviewing or comprehending small code snippets. One study, for instance, examined
the use of various physiological measurements to predict difficulty of small code
snippets (Fritz et al. 2014). In another study on short code comprehension and bug
localisation tasks, the researchers used a combination of fNIRS and eye tracking and
found that linguistic antipatterns—poor practices in naming, documentation, and
choice of identifiers—in the source code significantly increased the developers’ cog-
nitive load (Fakhoury et al. 2018). In a longer term study conducted over the course
of a week, a combination of heart-, breathing-, and skin-related measurements from
two different sensors was captured in combination with computer interaction data to
predict the difficulty of code elements and the quality of the code produced. Using a
machine learning approach, the different biometric readings were used to construct
a prediction model that was able to outperform a model based only on traditional
(non-biometric) measurements (Müller and Fritz 2016).

Research has also looked into the use of biometric sensors to investigate
developers’ emotions. These studies can also benefit from using multiple sensors,
since emotions manifest in several physiological responses. A study combining non-
invasive, low-cost EEG, EMG, and GSR (EDA) sensors found that it was possible
to obtain accurate classification of emotional valence and arousal using machine
learning classifiers on the sensor data (Girardi et al. 2017). A study using a variety
of biosensor data (EEG, EDA, skin temperature, heart rate, blood volume pulse, eye
tracking) to build a machine learning model found that it was possible to distinguish
between positive and negative emotions and low and high progress during software
change tasks (Müller and Fritz 2015). In general though, predicting arousal—
the amount of activation associated with an emotion—is easier than predicting
valence—the positive or negative character of an emotion—as several studies in
other fields have also shown.

Finally, studies have also investigated other aspects, such as interruptibility—the
availability of a developer for an interruption. One study, for instance, investigated
how biometric and interaction data could be used to predict interruptibility in an
office setting (Züger et al. 2018). Computer interaction data was shown to be more
accurate than biometric data alone, but a combination of both yielded the best
results.

5 Recommended Further Reading

The literature on using biometric measurements in software engineering is growing,
and a few years from now, we expect there to be a large body of research on
the subject. However, there is already a larger body of literature in areas such
as psychology or human–computer interaction, in which physiological measures
have been explored in a variety of settings and tasks, such as car driving, physical
exercise, specific cognitive skills tasks, and more.

Biometric Measurement in Software Engineering 167

In the previous sections, we have already listed quite a few of the relevant articles
and books that can help you to gain a better understanding on the different types of
physiological measures and which cognitive and emotional states they have been
linked to especially based on previous work in psychology (see Sect. 3), but also
on the types of studies that have been conducted in software engineering using
biometrics (see Sect. 4). Many of the referenced literature as well as the research on
biometrics in human–computer interaction and psychology can be a valuable source
for understanding which measures best to use for which scenario, the challenges
involved in the use of certain biometric sensors, how to analyse the data and how to
design studies, and sometimes even provide the code for the analysis.

There is a range of further readings that, depending on the type of study and the
biometric sensor(s) to be used, can be of relevance. For instance, for eye tracking
there are several articles by Sharif et al. on the use of eye tracking metrics and the
mapping of eye gazes to areas of interest in the code, as well as a tool that can help
with the mapping (Sharif and Shaffer 2015; Sharif et al. 2016). Other papers look
at and compare the use of low-cost EEG devices (e.g., Das et al. 2014), discuss
the invasiveness of various sensors to detect emotions (e.g., Wrobel 2018), or also
summarise some of the work in the area of using biometrics to increase developer
productivity (Fritz and Müller 2016).

Due to the cross-disciplinary nature of this type of research, literature relevant
for research in the area is not confined to the software engineering domain. There
are various other domains that are relevant, such as psychology, human–computer
interaction, but also conference proceedings or journals about sensor technology and
more. We therefore strongly recommend that in addition to the software engineering
literature, you also look outside the field, since there is much to be learnt from
previous studies. Finally, sensor technology is rapidly changing and the companies
that provide these technologies as well, so it is worthwhile to regularly explore what
kind of sensors are available to measure certain physiological features.

6 Conclusion

Biometric or psycho-physiological measurement is an emerging and promising
source of information that can help researchers and practitioners to better understand
and support developers in their work. Biometric sensors provide a direct way
of measuring physiological correlates of psychological processes that are active
as developers conduct their work. When used correctly, biometric data can yield
information that is not possible to obtain using other means and that allows us to
capture more about an individual in real-time.

So far, research using biometric sensor data in the software engineering domain
is in its early stages, yet there is a huge potential as previous work has already
shown. Research in the area ranges from the use of eye tracking to examine code
comprehension, to the use of fMRIs to detect brain activation patterns for code
reviewing tasks, all the way to the use of less invasive heart-related sensors in the

168 F. Fagerholm and T. Fritz

field to detect code difficulty and the likelihood of a developer to create a bug.
Initial results in the area already demonstrate the potential that biometric data has
for measuring a developer’s cognitive and emotional states in real-time; however,
there are also still several challenges to be addressed in the future.

By leveraging biometric data in the software engineering domain and by having
real-time measures of a developer’s cognitive and emotional processes during work,
there are many new opportunities that open up to better understand a developer in
the process and to train and support developers for and in their work. The possible
developer support ranges from preventing developers from creating or committing
a bug, to detecting difficult areas in a code base (areas with high technical debt), to
helping software developers to stay focused and take breaks, regulating the amount
of information available to the developer at a given point in time and avoiding
stress, to actually assisting the developer in their decision-making tasks as well
as in signalling to co-workers when a developer is available for an interruption
or not. Future software development tools could be collaborative agents that are
informed not only by models of the system being developed, but also by information
on the developers and potentially other stakeholders and thus provide better and
more tailored support. Especially with the fast advances in sensor and data analysis
technology, we might soon all be wearing smart wearable devices with biometric
sensors integrated that will already be accurate enough to provide some of this
support.

To understand software development, you must understand software developers.
Biometric measurements have the potential to significantly help us a lot in this
regard and thereby not just change our understanding but also our way of developing
software.

References

Andreassi JL (2007) Psychophysiology: human behavior and physiological response. Lawrence
Erlbaum Associates, Mahwah

Anthony L, Carrington P, Chu P, Kidd C, Lai J, Sears A (2011) Gesture dynamics: features sensitive
to task difficulty and correlated with physiological sensors. Stress 1418(360):312–316

Ayres P (2001) Systematic mathematical errors and cognitive load. Contemp Educ Psychol
26(2):227–248

Bailey BP, Konstan JA, Carlis JV (2001) The effects of interruptions on task performance,
annoyance, and anxiety in the user interface. In: Proceedings of interact, vol 1, pp 593–601

Bednarik R, Tukiainen M (2006) An eye-tracking methodology for characterizing program
comprehension processes. In: Proceedings of the symposium on eye tracking research and
applications, pp 125–132

Begel A, Vrzakova H (2018) Eye movements in code review. In: Proceedings of the workshop on
eye movements in programming (EMIP ’18). ACM, New York, pp 5:1–5:5. https://doi.org/10.
1145/3216723.3216727

Brookings JB, Wilson GF, Swain CR (1996) Psychophysiological responses to changes in
workload during simulated air traffic control. Biol Psychol Psychophysiol Workload 42(3):361–
377

https://doi.org/10.1145/3216723.3216727
https://doi.org/10.1145/3216723.3216727

Biometric Measurement in Software Engineering 169

Busjahn T, Bednarik R, Begel A, Crosby M, Paterson JH, Schulte C, Sharif B, Tamm S (2015)
Eye movements in code reading: relaxing the linear order. In: 2015 IEEE 23rd international
conference on program comprehension, pp 255–265. https://doi.org/10.1109/ICPC.2015.36

Cacioppo J, Tassinary LG, Berntson GG (2007) The handbook of psychophysiology. Cambridge
University, Cambridge

Carniglia E, Caputi M, Manfredi V, Zambarbieri D, Pessa E (2012) The influence of emotional
picture thematic content on exploratory eye movements. J Eye Mov Res 5(4):1–9

Chandrika KR, Amudha J, Sudarsan SD (2017) Recognizing eye tracking traits for source code
review. In: 2017 22nd IEEE international conference on emerging technologies and factory
automation (ETFA), pp 1–8. https://doi.org/10.1109/ETFA.2017.8247637

Chanel G, Rebetez C, Bétrancourt M, Pun T (2008) Boredom, engagement and anxiety as
indicators for adaptation to difficulty in games. In: Proceedings of the 12th international
conference on entertainment and media in the Ubiquitous Era, pp 13–17. https://doi.org/10.
1145/1457199.1457203. http://doi.acm.org/10.1145/1457199.1457203

Crk I, Kluthe T, Stefik A (2015) Understanding programming expertise: an empirical study of
phasic brain wave changes. ACM Trans Comput-Hum Interact 23(1):2:1–2:29. https://doi.org/
10.1145/2829945

Crosby ME, Stelovsky J (1990) How do we read algorithms? A case study. Computer 23(1):25–35.
https://doi.org/10.1109/2.48797

Czerwinski M, Cutrell E, Horvitz E (2000) Instant messaging: effects of relevance and timing. In:
People and computers XIV: proceedings of HCI, British Computer Society, vol 2, pp 71–76

Das R, Chatterjee D, Das D, Sinharay A, Sinha A (2014) Cognitive load measurement—a
methodology to compare low cost commercial EEG devices. In: 2014 International conference
on advances in computing, communications and informatics (ICACCI), pp 1188–1194. https://
doi.org/10.1109/ICACCI.2014.6968528

Doehring DG (1957) The relation between manifest anxiety and rate of eyeblink in a stress
situation. Technical report, Central Institute for the Deaf, St Louis

Drachen A, Nacke LE, Yannakakis G, Pedersen AL (2010) Correlation between heart rate,
electrodermal activity and player experience in first-person shooter games. In: Proceedings
of the 5th symposium on video games, pp 49–54

Fakhoury S, Ma Y, Arnaoudova V, Adesope O (2018) The effect of poor source code lexicon and
readability on developers’ cognitive load. In: Proceedings of the 26th conference on program
comprehension (ICPC ’18). ACM, New York, pp 286–296. https://doi.org/10.1145/3196321.
3196347

Floyd B, Santander T, Weimer W (2017) Decoding the representation of code in the brain: an
fMRI study of code review and expertise. In: 2017 IEEE/ACM 39th international conference
on software engineering (ICSE), pp 175–186. https://doi.org/10.1109/ICSE.2017.24

Freeman GL (1940) A method of inducing frustration in human subjects and its influence upon
palmar skin resistance. Am J Psychol 53(1):117–120

Fritz T, Müller SC (2016) Leveraging biometric data to boost software developer productivity. In:
2016 IEEE 23rd international conference on software analysis, evolution, and reengineering
(SANER), vol 5, pp 66–77

Fritz T, Begel A, Müller SC, Yigit-Elliott S, Züger M (2014) Using psycho-physiological measures
to assess task difficulty in software development. In: Proceedings of the 36th international
conference on software engineering (ACM, ICSE 2014), pp 402–413. https://doi.org/10.1145/
2568225.2568266

Girardi D, Lanubile F, Novielli N (2017) Emotion detection using noninvasive low cost sensors.
In: 2017 Seventh international conference on affective computing and intelligent interaction
(ACII), pp 125–130. https://doi.org/10.1109/ACII.2017.8273589

Graziotin D, Fagerholm F, Wang X, Abrahamsson P (2018) What happens when software
developers are (un)happy. J Syst Softw 140:32–47. https://doi.org/10.1016/j.jss.2018.02.041

Haag A, Goronzy S, Schaich P, Williams J (2004) Emotion recognition using bio-sensors: first
steps towards an automatic system. Affect Dialogue Syst Lect Notes Comput Sci 3068:36–48

https://doi.org/10.1109/ICPC.2015.36
https://doi.org/10.1109/ETFA.2017.8247637
https://doi.org/10.1145/1457199.1457203
https://doi.org/10.1145/1457199.1457203
http://doi.acm.org/10.1145/1457199.1457203
https://doi.org/10.1145/2829945
https://doi.org/10.1145/2829945
https://doi.org/10.1109/2.48797
https://doi.org/10.1109/ICACCI.2014.6968528
https://doi.org/10.1109/ICACCI.2014.6968528
https://doi.org/10.1145/3196321.3196347
https://doi.org/10.1145/3196321.3196347
https://doi.org/10.1109/ICSE.2017.24
https://doi.org/10.1145/2568225.2568266
https://doi.org/10.1145/2568225.2568266
https://doi.org/10.1109/ACII.2017.8273589
https://doi.org/10.1016/j.jss.2018.02.041

170 F. Fagerholm and T. Fritz

Haapalainen E, Kim S, Forlizzi JF, Dey AK (2010) Psycho-physiological measures for assessing
cognitive load. In: Proceedings of the 12th international conference on ubiquitous computing,
pp 301–310

Ikehara CS, Crosby ME (2005) Assessing cognitive load with physiological sensors. In: Proceed-
ings of the 38th Hawaii international conference on system sciences, p 295a

Ikutani Y, Uwano H (2014) Brain activity measurement during program comprehension with
NIRS. In: Proceedings of the international conference on software engineering, artificial
intelligence, networking and parallel/distributed computing, pp 1–6

Iqbal ST, Zheng XS, Bailey BP (2004) Task-evoked pupillary response to mental workload in
human-computer interaction. In: CHI ’04 extended abstracts on human factors in computing
systems, pp 1477–1480

Jbara A, Feitelson DG (2017) How programmers read regular code: a controlled experiment using
eye tracking. Empir Softw Eng 22(3):1440–1477. https://doi.org/10.1007/s10664-016-9477-x

Kapoor A, Burleson W, Picard RW (2007) Automatic prediction of frustration. Int J Hum Comput
Stud 65(8):724–736

Kevic K, Walters BM, Shaffer TR, Sharif B, Shepherd DC, Fritz T (2015) Tracing software
developers’ eyes and interactions for change tasks. In: Proceedings of the 2015 10th joint
meeting on foundations of software engineering (ESEC/FSE 2015). ACM, New York, pp 202–
213. https://doi.org/10.1145/2786805.2786864

Kosti MV, Georgiadis K, Adamos DA, Laskaris N, Spinellis D, Angelis L (2018) Towards an
affordable brain computer interface for the assessment of programmers’ mental workload. Int
J Hum Comput Stud 115:52–66. https://doi.org/10.1016/j.ijhcs.2018.03.002

Kramer AF (1991) Physiological metrics of mental workload: a review of recent progress. In:
Multiple-task performance, pp 279–328

Kuznetsov NA, Shockley KD, Richardson MJ, Riley MA (2011) Effect of precision aiming on
respiration and postural-respiratory synergy. Neurosci Lett 502(1):13–17

Levandovski R, Sasso E, Hidalgo MP (2013) Chronotype: a review of the advances, limits and
applicability of the main instruments used in the literature to assess human phenotype. Trends
Psychiatry Psychother 35(1):3–11

Li M, Lu BL (2009) Emotion classification based on gamma-band EEG. In: Conference proceed-
ings of the annual international conference of the IEEE engineering in medicine and biology
society, pp 1323–1326

Lin YP, Wang CH, Jung TP, Wu TL, Jeng SK, Duann JR, Chen JH (2010) EEG-based emotion
recognition in music listening. IEEE Trans Biomed Eng 57(7):1798–1806. https://doi.org/10.
1109/TBME.2010.2048568

Mark G, Gudith D, Klocke U (2008) The cost of interrupted work: more speed and stress. In:
Proceedings of the SIGCHI conference on human factors in computing systems. ACM, New
York, pp 107–110

McCraty R, Tomasino D (2006) Stress in health and diseases. In: Chap emotional stress, positive
emotions, and psychophysiological coherence. Wiley-VCH, New York

McDuff D, Karlson A, Kapoor A, Roseway A, Czerwinski M (2012) AffectAura: an intelligent
system for emotional memory. In: Proceedings of the 2012 ACM annual conference on human
factors in computing systems, pp 849–858

Muldner K, Burleson W, VanLehn K (2010) “Yes!”: using tutor and sensor data to predict moments
of delight during instructional activities. In: Proceedings of the 18th international conference
on user modeling, adaptation, and personalization, pp 159–170

Müller SC, Fritz T (2015) Stuck and frustrated or in flow and happy: sensing developers’
emotions and progress. In: 2015 IEEE/ACM 37th IEEE international conference on software
engineering, vol 1, pp 688–699. https://doi.org/10.1109/ICSE.2015.334

Müller SC, Fritz T (2016) Using (bio)metrics to predict code quality online. In: 2016 IEEE/ACM
38th international conference on software engineering (ICSE), pp 452–463. https://doi.org/10.
1145/2884781.2884803

Nakagawa T, Kamei Y, Uwano H, Monden A, Matsumoto K, German DM (2014) Quantifying
programmers’ mental workload during program comprehension based on cerebral blood flow

https://doi.org/10.1007/s10664-016-9477-x
https://doi.org/10.1145/2786805.2786864
https://doi.org/10.1016/j.ijhcs.2018.03.002
https://doi.org/10.1109/TBME.2010.2048568
https://doi.org/10.1109/TBME.2010.2048568
https://doi.org/10.1109/ICSE.2015.334
https://doi.org/10.1145/2884781.2884803
https://doi.org/10.1145/2884781.2884803

Biometric Measurement in Software Engineering 171

measurement: a controlled experiment. In: Companion proceedings of international conference
on software engineering

Peitek N, Siegmund J, Apel S, Kästner C, Parnin C, Bethmann A, Leich T, Saake G, Brechmann A
(2018) A look into programmers’ heads. IEEE Trans Softw Eng. https://doi.org/10.1109/TSE.
2018.2863303

Peper E, Harvey R, Lin IM, Tylova H, Moss D (2007) Is there more to blood volume pulse
than heart rate variability, respiratory sinus arrhythmia, and cardiorespiratory synchrony?
Biofeedback 35(2):54–61

Picard RW, Vyzas E, Healey J (2001) Toward machine emotional intelligence: analysis of affective
physiological state. IEEE Trans Pattern Anal Mach Intell 23(10):1175–1191

Rani P, Sarkar N, Smith CA, Kirby LD (2004) Anxiety detecting robotic system—towards implicit
human-robot collaboration. Robotica 22(1):85–95

Reuderink B, Mühl C, Poel M (2013) Valence, arousal and dominance in the EEG during game
play. Int J Autom Adaptive Commun Syst 6(1):45–62

Richter P, Wagner T, Heger R, Weise G (1998) Psychophysiological analysis of mental load during
driving on rural roads—a quasi-experimental field study. Ergonomics 41(5):593:609

Rodeghero P, McMillan C, McBurney PW, Bosch N, D’Mello S (2014) Improving automated
source code summarization via an eye-tracking study of programmers. In: Proceedings of the
36th international conference on software engineering (ICSE 2014), pp 390–401. https://doi.
org/10.1145/2568225.2568247

Sammler D, Grigutsch M, Fritz T, Koelsch S (2007) Music and emotion: electrophysiological
correlates of the processing of pleasant and unpleasant music. Psychophysiology 44:293–304.
https://doi.org/10.1111/j.1469-8986.2007.00497.x

Schmidth S, Walach H (2000) Electrodermal activity (EDA)—state-of-the-art measurements and
techniques for parapsychological purposes. J Parapsychol 64(2):139:163

Setz C, Arnrich B, Schumm J, Marca RL, Tröster G, Ehlert U (2010) Discriminating stress from
cognitive load using a wearable EDA device. IEEE Trans Inf Technol Biomed 14(2):410–417

Sharif B, Shaffer T (2015) The use of eye tracking in software development. In: Schmorrow DD,
Fidopiastis CM (eds) Foundations of augmented cognition. Springer, Cham, pp 807–816

Sharif B, Falcone M, Maletic JI (2012) An eye-tracking study on the role of scan time in
finding source code defects. In: Proceedings of the symposium on eye tracking research and
applications (ETRA ’12). ACM, New York, pp 381–384. https://doi.org/10.1145/2168556.
2168642

Sharif B, Clark B, Maletic JI (2016) Studying developer gaze to empower software engineering
research and practice. In: Proceedings of the 2016 24th ACM SIGSOFT international sympo-
sium on foundations of software engineering. ACM, New York, pp 940–943. https://doi.org/10.
1145/2950290.2983988

Sharif B, Meinken J, Shaffer T, Kagdi H (2017) Eye movements in software traceability link
recovery. Empir Softw Eng 22(3):1063–1102. https://doi.org/10.1007/s10664-016-9486-9

Siegmund J, Kästner C, Apel S, Parnin C, Bethmann A, Leich T, Saake G, Brechmann A (2014)
Understanding understanding source code with functional magnetic resonance imaging. In:
Proceedings of the 36th international conference on software engineering, pp 378–389

Siegmund J, Peitek N, Parnin C, Apel S, Hofmeister J, Kästner C, Begel A, Bethmann A,
Brechmann A (2017) Measuring neural efficiency of program comprehension. In: Proceedings
of the 2017 11th joint meeting on foundations of software engineering (ESEC/FSE 2017).
ACM, New York, pp 140–150. https://doi.org/10.1145/3106237.3106268

Steptoe A, Wardle J, Marmot M (2005) Positive affect and health-related neuroendocrine,
cardiovascular, and inflammatory processes. Proc Natl Acad Sci 102(18):6508–6512

Sweller J (1988) Cognitive load during problem solving: effects on learning. Cogn Sci 12(2):257–
285

Torii K, Matsumoto Ki, Nakakoji K, Takada Y, Takada S, Shima K (1999) Ginger2: an environment
for computer-aided empirical software engineering. IEEE Trans Softw Eng 25(4):474–492

https://doi.org/10.1109/TSE.2018.2863303
https://doi.org/10.1109/TSE.2018.2863303
https://doi.org/10.1145/2568225.2568247
https://doi.org/10.1145/2568225.2568247
https://doi.org/10.1111/j.1469-8986.2007.00497.x
https://doi.org/10.1145/2168556.2168642
https://doi.org/10.1145/2168556.2168642
https://doi.org/10.1145/2950290.2983988
https://doi.org/10.1145/2950290.2983988
https://doi.org/10.1007/s10664-016-9486-9
https://doi.org/10.1145/3106237.3106268

172 F. Fagerholm and T. Fritz

Uwano H, Nakamura M, Monden A, Matsumoto Ki (2006) Analyzing individual performance of
source code review using reviewers’ eye movement. In: Proceedings of the symposium on eye
tracking research and applications. ACM, San Diego, pp 133–140

Veltman J, Gaillard AW (1998) Physiological workload reactions to increasing levels of task
difficulty. Ergonomics 41(5):656–669

Walter GF, Porges SW (1976) Heart rate and respiratory responses as a function of task difficulty:
the use of discriminant analysis in the selection of psychologically sensitive physiological
responses. Psychophysiology 13(6):563–571

Wilson GF (1992) Applied use of cardiac and respiration measures: practical considerations and
precautions. Biol Psychol 34(2–3):163–178

Wrobel MR (2018) Applicability of emotion recognition and induction methods to study the
behavior of programmers. Appl Sci 8(3):323. https://doi.org/10.3390/app8030323

Züger M, Müller SC, Meyer AN, Fritz T (2018) Sensing interruptibility in the office: a field study
on the use of biometric and computer interaction sensors. In: Proceedings of the 2018 CHI
conference on human factors in computing systems (CHI ’18). ACM, New York, pp 591:1–
591:14. https://doi.org/10.1145/3173574.3174165

https://doi.org/10.3390/app8030323
https://doi.org/10.1145/3173574.3174165

Empirical Software Engineering
Experimentation with Human
Computation

Marta Sabou , Dietmar Winkler , and Stefan Biffl

Abstract Empirical software engineering (ESE) focuses on gathering evidence
through measurements and experiments involving humans and software systems
(software products, processes, and resources). While empirical studies often include
considerable human effort for study planning, execution, and data analysis, human
computation (HC) methods, such as crowdsourcing, are increasingly used to address
human input intensive tasks in software engineering and beyond. Therefore, in this
chapter, we explore the use of HC techniques to support ESE experiments. We
address researchers from both research communities and provide (1) introductory
notions into both fields, (2) an analysis of ESE experiment requirements and
HC capabilities that could match those, and (3) a concrete example of an ESE
experiment that compares the effects of using HC in software inspection with respect
to a traditional inspection process preformed using pen and paper. Our focus is on
software inspection for detecting defects in software engineering models (namely,
extended entity relationship models). This chapter will enable ESE researchers to
apply HC in their work and HC researchers to explore ESE as a new application
area to further improve their methods and tools.

1 Introduction

Ever since the notion of the wisdom of crowds was coined in 2004 by Surowiecki,
research has intensified on solving complex problems by involving large numbers
of contributors (Surowiecki 2004). A concrete example is the field of human

M. Sabou (�) · S. Biffl
Institute for Information Systems Engineering, Technische Universität Wien, Vienna, Austria
e-mail: marta.sabou@ifs.tuwien.ac.at; stefan.biffl@tuwien.ac.at

D. Winkler
Institute for Information Systems Engineering, Technische Universität Wien, Vienna, Austria

Christian Doppler Research Laboratory for Security and Quality Improvement in the Production
System Life-cycle (CDL-SQI), Vienna, Austria
e-mail: dietmar.winkler@tuwien.ac.at

© Springer Nature Switzerland AG 2020
M. Felderer, G. H. Travassos (eds.), Contemporary Empirical Methods in Software
Engineering, https://doi.org/10.1007/978-3-030-32489-6_7

173

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32489-6_7&domain=pdf
https://orcid.org/0000-0001-9301-8418
https://orcid.org/0000-0002-4743-3124
https://orcid.org/0000-0002-3413-7780
mailto:marta.sabou@ifs.tuwien.ac.at
mailto:stefan.biffl@tuwien.ac.at
mailto:dietmar.winkler@tuwien.ac.at
https://doi.org/10.1007/978-3-030-32489-6_7

174 M. Sabou et al.

computation and crowdsourcing (HC), which relies on collective intelligence
methods to harvest human intelligence at scale for solving problems that cannot
yet be reliably solved by computers. HC methods found their successful application
in a wide range of domains ranging from natural language processing to database
systems.

One of the fields, where this paradigm shift had an impact, is software engi-
neering (SE). As pointed out by LaToza and van der Hoek (2016), the approach
of collaboratively solving complex problems goes back to peer production in
collaborative open-source software creation in software projects, such as Linux or
Apache. However, the most recent paradigm of microtasking enabled by crowd-
sourcing platforms, such as Amazon Mechanical Turk (www.mturk.com/), has seen
an intensification of distributed software engineering, which has been applied to
address tasks in many stages of the SE life-cycle (Mao et al. 2017) to solve
these tasks more cheaply, faster, and at similar quality compared to traditional SE
approaches. Microtasking focuses on splitting larger tasks into smaller pieces of
work, executing them by a group of workers, and aggregating individual results into
the results of the overall larger task.

This increased popularity of HC methods in software engineering opens inter-
esting research avenues both for empirical software engineering (ESE) and human
computation. On the one hand, for ESE, two important challenges emerge. Firstly,
ESE researchers might be interested to study the effects of using HC methods on
SE tasks, for example, in terms of effectiveness and efficiency, with respect to
traditional approaches to achieve the same task. We illustrate such an endeavor
by reporting on setting up an ESE experiment for comparing traditional (pen and
paper) software inspection with inspection supported through HC. Secondly, ESE
researchers might use HC methods to support certain stages of the ESE study
process itself, in particular related to data collection and cleaning. On the other hand,
HC researchers can benefit from the results of empirical research to further develop
HC concepts, methods, and tools and to increase the awareness of HC application
in the software quality assurance domain for which there is still limited support
compared to other stages in the software life-cycle (Mao et al. 2017).

Therefore, this chapter aims to provide an introductory material about the
research at the intersection of ESE and HC that is interesting to both communities.
To that end, the chapter is structured into three increasingly detailed thematic areas
that build on each other as follows.

Introductory and preparatory notions are covered for the benefit of
researchers from both communities. In particular, we:

1. Provide an introduction to the field of HC, including the typical HC process and
the involved stakeholders in Sect. 2.

2. Clarify which stages of the ESE experiment process can benefit the most from
HC, based on a generic ESE process, as well as their concrete requirements that
could be satisfied by HC (Sect. 3).

http://www.mturk.com/

Empirical Software Engineering Experimentation with Human Computation 175

Requirements and Capabilities Analysis Building on the introductory notions,
we deepen our analysis by providing an overview of ESE requirements for HC on
the one hand and available HC capabilities on the other. Concretely, we:

1. Elicit ESE requirements for HC, with a dual focus (Sect. 4). First, we discuss
requirements for HC support for ESE experiment steps. While several SE
methods have been solved with HC (Mao et al. 2017), these traditional SE
methods required adaptation to benefit from HC capabilities. Therefore, ESE
experiments may compare the characteristics of HC-enabled and of traditional
SE methods to better understand the impact of HC on SE method performance,
e.g., task effectiveness and efficiency. We focus on requirements for the HC
support of such ESE experiments as derived from the ESE experiment steps.
Accordingly, we derive (a) tasks that may require HC support (Table 1) and
(b) requirements for HC support (Sect. 4, requirements R1 to R5). Second,
we identify typical challenges in ESE experiments for which HC methods and
technology could provide support. Independently of the SE method investigated,
some ESE experiment tasks, such as data cleaning and aggregation, typically take
considerable effort for the research team to conduct as they are hard to automate.
These tasks could be supported with HC contributors, who bring in the required
skills and motivation through expert sourcing. We analyzed the tasks in the ESE
experiment steps with standard HC capabilities to derive ESE tasks that are likely
to benefit from HC support.

2. Discuss HC capabilities relevant to address ESE requirements grouped along the
ESE experiment steps detailed in Sect. 4. For that, we rely on lessons learned
from the literature and from our experience with HC-enabled model quality
assurance (Sabou et al. 2018b) (Sect. 5).

Concrete Example of Using HC for ESE In Sect. 6, we report on a case study
that illustrates how we adapted a generic ESE experiment process to the concrete
context of an experiment on HC-enabled software inspection.

Concretely, we describe recent empirical work on using HC concepts to support
software inspection (Fagan 1986) for detecting defects in software engineering
models (Winkler et al. 2017a, b). In software inspection, the main goal is to identify
defects in inspection artifacts, such as software engineering models, often in the
context of reference documents, such as requirements specifications and use cases.
Main steps may include the identification of model building blocks, such as expected
model elements in the reference document, identifying candidate defects in the
inspection artifact, such as the model, and analyzing and aggregating candidate
defects. As these steps typically include considerable human effort of inspection
teams, HC could help to overcome limitations of traditional (pen-and-paper-based)
inspections. These limitations typically include the size of inspection artifacts,
available effort for inspection execution, and inspection control.

We report on setting up an ESE experiment for comparing traditional (pen-
and-paper) inspection with inspection supported through HC. We discuss how the
experiment setup was affected by the use of HC both at a conceptual level (e.g.,

176 M. Sabou et al.

T
ab

le
1

E
xp

er
im

en
tp

ro
ce

ss
st

ep
s

w
it

h
H

C
ro

le
s

R
ol

e/
St

ud
y

st
ag

e
E

xp
er

im
en

tp
la

nn
in

g
(E

2)
E

xp
er

im
en

to
pe

ra
ti

on
(E

3)
E

xp
er

im
en

ta
na

ly
si

s
(E

4)

E
SE

re
se

ar
ch

er
(H

C
re

qu
es

te
r)

D
efi

ne
ex

pe
ri

m
en

tt
re

at
m

en
t

D
es

ig
n

ex
pe

ri
m

en
t

D
efi

ne
st

ud
y

gr
ou

ps
(e

.g
.,

si
ze

)
D

efi
ne

SE
ta

sk
s

D
efi

ne
ta

sk
da

ta
in

pu
ta

nd
ou

tp
ut

D
efi

ne
m

ea
su

re
m

en
t

in
ex

pe
ri

m
en

t

E
xe

cu
te

ex
pe

ri
m

en
tp

la
n

A
ud

it
ex

pe
ri

m
en

te
xe

cu
ti

on
C

ol
le

ct
ex

pe
ri

m
en

td
at

a
V

al
id

at
e

ex
pe

ri
m

en
td

at
a

V
al

id
at

e
ex

pe
ri

m
en

td
at

a
A

gg
re

ga
te

ex
pe

ri
m

en
td

at
a

H
C

te
ch

ni
ca

le
xp

er
t(

H
C

ta
sk

de
si

gn
er

;
H

C
pl

at
fo

rm
co

nfi
gu

ra
to

r
an

d
op

er
at

or
)

C
on

fig
ur

e
H

C
pl

at
fo

rm
D

efi
ne

co
nt

ri
bu

to
r

gr
ou

ps
D

es
ig

n
an

d
im

pl
em

en
tH

C
ta

sk
s

D
efi

ne
H

C
da

ta
in

pu
ta

nd
ou

tp
ut

O
pe

ra
te

an
d

m
on

it
or

pl
at

fo
rm

C
on

fig
ur

e
H

C
pl

at
fo

rm
Sc

he
du

le
an

d
m

on
it

or
H

C
ta

sk
s

C
ol

le
ct

H
C

/e
xp

er
im

en
td

at
a

V
al

id
at

e
H

C
/e

xp
er

im
en

td
at

a
A

gg
re

ga
te

H
C

/e
xp

er
im

en
td

at
a

V
al

id
at

e
H

C
/e

xp
er

im
en

td
at

a
A

gg
re

ga
te

H
C

/e
xp

er
im

en
td

at
a

St
ud

y
pa

rt
ic

ip
an

t(
H

C
co

nt
ri

bu
to

r)
Pi

lo
tw

it
h

se
le

ct
ed

H
C

co
nt

ri
bu

to
rs

Ta
ke

pa
rt

in
ex

pe
ri

m
en

t
Pe

rf
or

m
qu

al
ifi

ca
ti

on
te

st
s

So
lv

e
H

C
ta

sk
s

Pr
ov

id
e

fe
ed

ba
ck

So
lv

e
ta

sk
s

(v
al

id
at

io
n,

ag
gr

eg
at

io
n)

Empirical Software Engineering Experimentation with Human Computation 177

inclusion or modification of experiment steps) and on a technical level (e.g., use of
the HC platform Figure Eight1). We discuss (1) the evaluation of an HC-enabled
SE method in comparison to a traditional pen-and-paper approach and (2) the HC
support for the ESE research team.

Section 7 discusses benefits and limitations regarding HC capabilities in ESE
research. This chapter concludes with Sect. 8 providing recommended further
reading and Sect. 9 which summarizes the chapter.

The chapter is aimed to and will benefit both ESE and HC researchers. ESE
researchers will firstly benefit from an introduction and overview on HC methods
and technology (e.g., the use of the Figure Eight HC platform to replicate an ESE
experiment) as well as a discussion of their capabilities and their limitations in the
context of an ESE experiment. Secondly, they will acquire an understanding of what
topics to consider for planning and conducting an ESE experiment with HC method
and technology support, based on an illustrative example experiment. Thirdly, the
example implementation of a controlled experiment for model quality assurance
with inspection can be seen as blueprint for the study process with HC support. It
provides valuable insights into topics to be considered due to the use of HC as well
as lessons learned on the benefits and limitations of the HC approach in general, and
a concrete platform used for experimentation, in particular.

HC researchers will firstly get a better understanding of what ESE researchers
require from HC methods and technology support for ESE experimentation. They
will be introduced to relevant ESE notions that allow them to derive requirements
to improve HC concepts, methods, and tools. Secondly, they will gain insight into
lessons learned on what worked (or did not work) for HC with a specific, but typical,
HC platform, Figure Eight, thus leading to ideas for new research in the HC field.
Furthermore, HC researcher can use this example implementation as foundation for
evaluating HC concepts, methods, and mechanisms.

2 Human Computation and Crowdsourcing (HC)

This section introduces basic notions related to human computation including its
definition (Sect. 2.1), the typical HC process and stakeholders (Sect. 2.2), various
HC genres (Sect. 2.3), as well as application areas (Sect. 2.4).

2.1 Definition

Human computation (HC) is a computational paradigm where human participation
is directed by a computational system in order to (mostly) solve problems that

1Figure Eight: www.figure-eight.com

https://www.figure-eight.com/

178 M. Sabou et al.

Provide Tasks

Requester HC
Platform

Contributors

Post Tasks

Submit
SolutionsCollect &

Aggregate
Results GWAP

Fig. 1 A blueprint of the HC process (adapted from Mao et al. 2017)

cannot yet be solved by computer programs or which are still challenging to (fully)
automate (Quinn and Bederson 2011; Barowy et al. 2016). HC is often achieved
through crowdsourcing approaches, which leverage the wisdom of the crowd by
engaging large numbers of online contributors (Howe 2006) to accomplish tasks,
which cannot be easily automated, faster, at larger scale, and by benefiting from
the diversity of a distributed online workforce (Snow et al. 2008). Therefore, in
this chapter, we use the abbreviation HC to refer to HC tasks addressed with
collaborative approaches such as crowdsourcing. Furthermore, we cover a range
of topics related to HC, namely (1) the HC method, which refers to the conceptual
process steps for conducting HC projects; (2) HC technology as available in terms
of the Figure Eight crowdsourcing platform, and (3) HC capabilities, which refer to
the functionalities provided by the concrete crowdsourcing platform.

2.2 Stakeholders and Process

HC projects typically involve the following stakeholders (see Fig. 1). On the one
hand, the HC requester is a problem owner that seeks to solve a (complex) problem,
for example, the translation of a document corpus or the annotation of an image
collection. On the other hand, HC contributors have the capability to jointly solve
the problem at hand. An HC platform mediates between requesters and contributors.
Typically, this includes crowdsourcing marketplaces, such as Amazon Mechanical
Turk (AMT) or Figure Eight, as well as problem-specific platforms and interfaces
such as the Zooniverse2 citizen science platform and Games With A Purpose
(GWAP) (von Ahn and Dabbish 2008). A commercial crowdsourcing platform is
maintained by a platform operator company, which charges a percentage of the
transaction costs between requesters and contributors.

2Zooniverse: https://www.zooniverse.org/

https://www.zooniverse.org/

Empirical Software Engineering Experimentation with Human Computation 179

In this setting, an HC process typically consists of the following steps: A
requester defines the problem to be solved (e.g., she selects the data to be annotated,
she decides on the annotation tags to be assigned) and subsequently splits the
complex problem into small tasks that can be solved in parallel by contributors (e.g.,
the problem of translating a document is split into the smaller task of translating a
sentence of a document). These tasks are then posted to an HC platform, which
typically manages a large base of contributors with capability profiles, takes over
the advertisement of tasks to contributors, and assigns the tasks to contributors.
Contributors then solve and submit individual small task results (e.g., the translation
of a sentence to a target language). These results are collected by the HC platform,
which often offers dashboards and management interfaces, where requesters can
follow the completion rate of their tasks. To benefit from the wisdom of the crowds,
each task is solved by multiple contributors. Their responses are then aggregated
in order to reflect the majority’s opinion (e.g., the most often provided translation
of a sentence is considered as correct translation). The aggregation of individual
solutions to solve the original problem is performed either by the HC platform or by
the requester.

Depending on the complexity of the problem that is solved, a requester might
need the support of an HC designer, i.e., an HC platform expert, who performs the
technical implementation and configuration of the tasks on the HC platform.

Simple tasks include the transcription of text from images or the classification of
images in predefined categories. Such tasks require limited context or instructions,
make use of the existing knowledge and capabilities of contributors, and lead to
an unambiguous result such as a short text, a selection from a given set of items,
or a number. For a family of such tasks, most HC platforms already offer task
templates that can be easily reused and configured to create tasks populated with
the requester’s data, even without technical expertise.

A requester might also need to solve more complex problems, where it is unclear
how to best split these into HC tasks. In such cases, the requester typically requires
support by an HC designer to iteratively explore the possible types of HC tasks.
A good example of a complex problem is the verification of model elements in an
EER diagram with respect to a textual specification. This problem requires elaborate
explanation of complex context (e.g., scenarios and models) to the contributor.
One alternative would be that contributors are asked to verify one element in
the EER diagram based on the entire system specification. This would result in
cognitively complex HC tasks, as contributors would be faced with reading the
entire specification over and over again. The number of tasks would however be
low, that is, equal to the number of (M) elements in the EER model (M refers to the
number of model elements). As an alternative, the requester could split the problem
along (N) paragraphs within the specification text, asking contributors to focus on
one paragraph at a time (N is the number of paragraphs to be inspected). This would
result in HC tasks that could be performed much faster and with lower cognitive
effort, but would result in NxM tasks to be crowdsourced. An HC designer can help
the requestor to decide on a suitable splitting approach based on project priorities.

180 M. Sabou et al.

Complex problems are often split into nonstandard HC task types where no
predefined templates are available and new interfaces need to be implemented on
the HC platform (e.g., to allow an annotation directly on a picture representing a
model). Another challenge is a tool chain with HC tasks, i.e., when the HC platform
is part of a tool chain and support is needed to transform inputs from other tools into
HC tasks, and to transform results from the HC platform into output for other tools.
Programmatic support from the HC designer might be required for establishing such
a tool chain.

An HC platform offers interfaces (both visual and programmatic) to requesters,
contributors, and the HC designer. This platform typically offers the following
functionalities: configuration of contributor groups, definition of HC tasks including
instructions, input data (often text or pictures), questions to ask, and data to
collect. During HC execution, the platform configures tasks with input data sets
for contributor groups, schedules tasks, and monitors their completion (including
start/end time, effort, completion, and results). The HC platform keeps records on
(1) tasks and their results, including the quality of the results, and (2) contributors,
their qualifications, work (open, done), quality of work, and performance level.

2.3 HC Genre

Figure 1 illustrates a blueprint of HC process steps that are at the core of a variety
of HC genres, which primarily differ by the incentive mechanisms used to entice
contributors to perform work. The key crowdsourcing genres according to Quinn
and Bederson (2011) and de Boer et al. (2012) are:

Mechanized labor (MLab), a.k.a., microtasking is a type of paid-for HC genre,
where contributors choose to carry out small tasks (known also as microtasks)
and are paid a small amount of money in return (referred to as micro-payments).
Therefore, this genre is characterized by extrinsic, economic incentives. Popular
platforms for mechanized labor include Amazon’s Mechanical Turk (AMT) and
Figure Eight, which allow a requester to post microtasks—also known as human
intelligence tasks (HITs, or units)—to a large population of micro-workers.

Games with a purpose (GWAPs) (von Ahn and Dabbish 2008) enable human
contributors to carry out computation tasks as a side effect of playing online
games. The main motivational factor for GWAPs is intrinsic, namely allowing
participants to have fun while playing games. GWAPs are the results of a
gamification process which is a way of designing tasks and exercises (e.g.,
learning a language) in a way that they have elements of a game and hence result
more engaging. An example from the area of computational biology is the Phylo
game3 that disguises the problem of multiple sequence alignment as a puzzle-

3Phylo Game: phylo.cs.mcgill.ca/

http://phylo.cs.mcgill.ca

Empirical Software Engineering Experimentation with Human Computation 181

like game thus “intentionally decoupling the scientific problem from the game
itself ” (Kawrykow et al. 2012). The challenges in using GWAPs are designing
appealing gaming interfaces and attracting a critical mass of players.

Altruistic crowdsourcing refers to cases, where a task is carried out by a large
number of volunteer contributors, typically motivated by altruistic reasons, such
as the willingness to contribute to the advancement of science or a worthwhile
cause. To reduce the incentive to cheat (e.g., for money or glory), altruistic
crowdsourcing approaches leverage the intrinsic motivation of a community
interested in a domain. The Galaxy Zoo4 project, for example, seeks volunteers
with a latent desire to help with scientific research for classifying Hubble Space
Telescope galaxy images. The project has attracted more than 250 K volunteers
which provided over 150 M galaxy classifications. The resounding success of this
project prompted the generalization of the infrastructure created for Galaxy Zoo
into a platform, named Zooniverse, where similar citizen science projects can be
deployed. To date the platform offers a range of astronomy-related projects and
boasts a base of over 430 K volunteers.

Expert sourcing (also known as niche sourcing) refers to the enrolling of a
population of “amateur experts rather than the “faceless” crowd [...] gathered
from either distributed experts on a specific topic or from an existing network
centered around the same culture, location, or topic” (de Boer et al. 2012) in
order to solve problems, where specialized knowledge is required that is typically
not widespread among a generic crowd. Another motivation for expert sourcing
is the case of organizations/companies that are reluctant to share data with crowds
outside their boundaries. Examples of expert sourcing projects include acquiring
high-quality image annotation on the cultural heritage domain by addressing
a group of hobbyists; annotating rainfall images from Africa by members of
the African diaspora (de Boer et al. 2012); technology forecasting by a group
of experts (Fye et al. 2013); and public health surveillance (Berrang-Ford and
Garton 2013).

2.4 Application Areas

HC techniques have greatly reduced the duration and cost of tasks that cannot be
reliably automated in domains ranging from databases (Franklin et al. 2011) to
image analysis (Quinn and Bederson 2011). Behrend et al. (2011) investigate the
use of HC platforms to support collecting data for surveys in behavioral research. In
the area of Semantic Web research, HC has been adopted for solving human-centric
tasks (Sabou et al. 2018a; Sarasua et al. 2015), especially related to knowledge
acquisition and evaluation (Acosta et al. 2018; Mortensen et al. 2015; Wohlgenannt
et al. 2016). Another field that benefited from HC is natural language processing,
e.g., Snow et al. (2008), Poesio et al. (2013), and Sabou et al. (2014).

4Galaxy Zoo: www.zooniverse.org/projects/zookeeper/galaxy-zoo/

http://www.zooniverse.org/projects/zookeeper/galaxy-zoo/

182 M. Sabou et al.

In software engineering, crowdsourcing techniques are widespread and support
many stages of the software engineering life-cycle (LaToza and van der Hoek
2016; Mao et al. 2017), including also tasks that are typical for empirical software
engineering. Stolee and Elbaum (2010) report on lessons learned when adapting a
study on the effect on code smells to be performed by using crowdsourcing through
Amazon Mechanical Turk. Several authors also attempt to use crowdsourcing as
support during Systematic Literature Reviews, a core ESE technique, both during
the paper screening phase (Brown and Allison 2014; Mortensen et al. 2016) and
during the data extraction step (Sun et al. 2016). Finally, in our earlier work (Sabou
et al. 2018a; Biffl et al. 2018; Neto et al. 2019a), we conducted an experiment family
with HC methods and tool support, to study the effects of expert sourcing on model
quality assurance, in which participants verified EER diagrams with respect to a
systems specification.

Therefore, HC concepts, methods, and tool support are relevant for improving
tasks that are hard to automate (a) in SE methods or (b) in ESE studies. As HC
approaches are increasingly used for enabling SE methods (Mao et al. 2017),
ESE researchers should study the characteristics of HC-enabled SE methods. ESE
researchers should be aware of typical HC characteristics when investigating HC-
supported SE tasks in ESE studies. In addition to serving as an ESE study object,
HC methods and technologies could also support aspects of ESE studies. In this
chapter, we focus on using HC in ESE experiments in particular.

3 ESE Experiment Steps Related to HC

Major ESE study types, see also the evolution of ESE methods in chapter “The
Evolution of Empirical Methods in Software Engineering,” include surveys (see
Ciolkowski et al. (2003); Molléri et al. (2016), and chapter “Challenges in Survey
Research,” in this book) case studies (see Runeson and Höst (2009); Runeson
et al. (2012), and chapter “Guidelines for Case Survey Research in Software
Engineering,” in this book) and experiments (see Wohlin et al. (2012); Juristo and
Moreno (2013); Ko et al. (2015)). While ESE study types may be investigating HC-
enabled SE methods or consider using HC methods and technologies, we will focus
in this chapter, due to space limitations, on the considerations of HC capabilities
regarding ESE experiments.

In this section, we build on the background of HC stakeholders and process
steps introduced in Sect. 2 and aim to identify (a) where the study of HC-enabled
SE methods may make a difference for an ESE experiment step and (b) which
typical ESE experiment steps are likely to benefit from HC method support. To
emphasize the impact of considering HC methods and technology, we use a concrete
non-HC experiment example and discuss HC issues to consider as foundation for
the discussion of investigating ESE requirements for HC in Sect. 4, HC methods
capabilities for experimentation in Sect. 5, and the concrete example of an ESE

Empirical Software Engineering Experimentation with Human Computation 183

experiment using HC methods and technology in Sect. 6. Accordingly, in this
section, we

• Summarize the main stages of the ESE experiment process based on Wohlin et
al. (2012).

• Exemplify these stages for an example experiment on software inspection with
different reading techniques in teams (Biffl and Halling 2003). That experiment
used pen and paper5 (P&P) to distribute and process the experiment materials
and to collect data from the participants.

• Discuss, for each stage, issues that could be relevant for planning and conducting
an experiment on or with HC methods and technologies.

Figure 2 shows the experiment process steps (E1 to E5) with their input, outputs,
and main roles for each step, as discussed next. For each step, we describe (1) the
general ESE experiment step, (2) a specific pen-and-paper example to exemplify
typical experiment considerations without HC, and (3) HC considerations for ESE
and HC experts, such as additional skills, tasks, and effort required, as background
for the case study in Sect. 6.

E1. Experiment Scoping Based on an experiment idea, researchers define the
experiment goal, scope, and hypotheses.

P&P Experiment. In their pen-and-paper experiment, Biffl and Halling (2003)
studied the effectiveness and efficiency of inspectors, who used a reading technique,
a checklist, or a scenario-based viewpoint, to detect defects in a requirements
document and in design models. In this experiment, the participants received all
materials, e.g., the experiment information, requirements and models to inspect, and
data collection forms, on paper.

Experiment with HC. For scoping an experiment that investigates an SE method
enabled with HC, such as inspection using HC methods and technology, researchers
have to be aware of the impact of the HC methods and technology, as a phenomenon
to be investigated or as a factor that may influence the experiment outcome, in the
definition of the goal, scope, and hypotheses of the experiment.

E2. Experiment Planning Based on the experiment goal and hypotheses, the
researchers determine the context of the experiment, including the personnel and
the environment, and formalize the experiment hypothesis and variables, and the
experiment design, considering the validity of the results. Based on the experiment
design, the researchers have to prepare experiment materials and the instrumentation
for data collection.

P&P Experiment. In Biffl and Halling (2003), the materials included experiment
information, requirements, and models to inspect. The instrumentation for data
collection included forms to fill in by the research staff and by the participating
subjects. The preparation of the experiment materials may take considerable effort,
e.g., for running pilot studies to ensure validity of data collection, and supporting

5Paper is used synonymous to pdf; easy to share and present, hard to analyze.

184 M. Sabou et al.

R
es

ea
rc

he
r

Ex
pe

rim
en

t
de

si
gn

Ex
pe

rim
en

t
da

ta

C
on

cl
us

io
ns

G
oa

l
de

fin
iti

on

Ex
pe

rim
en

t
re

po
rt

E1

Ex
pe

rim
en

t
sc

op
in

g

E5

Pr
es

en
ta

tio
n

an
d

pa
ck

ag
e

E2

Ex
pe

rim
en

t
pl

an
ni

ng

E3

Ex
pe

rim
en

t
op

er
at

io
n

E4

An
al

ys
is

 a
nd

in

te
rp

re
ta

tio
n

G
oa

l
de

fin
iti

on
Ex

pe
rim

en
t

id
ea

R
es

ea
rc

he
r

Te
ch

.
D

es
.

R
es

ea
rc

he
r

R
es

ea
rc

he
r

R
es

ea
rc

he
rTe

ch
.

O
p.

Pa
rti

ci
pa

nt
s

D
at

a
An

al
yz

er

F
ig

.2
E

xp
er

im
en

tp
ro

ce
ss

st
ep

s
w

it
h

ro
le

s
(a

da
pt

ed
fr

om
W

oh
li

n
et

al
.2

01
2)

Empirical Software Engineering Experimentation with Human Computation 185

research staff. For an experiment with a high number of participants, researchers
have to consider how to organize the experiment to ensure the valid collection of
data and of context factors that may influence the experiment results, e.g., if data
are collected in different settings.

Experiment with HC. For planning an experiment that uses HC methods and
technology, the researchers have to be aware of the strengths and limitations of the
HC methods in general and of the specific HC technology used. A relevant issue
may be scale, which is often much larger in experiments with HC than in traditional
experiments. Therefore, different trade-offs may be leveraged in this case than in the
case of more traditional controlled experiments involving human subjects. Further,
a technical HC designer on the research staff may be required for designing and
implementing the experiment materials for the specific HC technology, taking extra
effort for communication and exploration of implementation options.

E3. Experiment Operation Based on the experiment design and materials, the
researchers prepare the participating subjects and materials, execute the experiment
according to the plan, and validate the collected data.

P&P Experiment. In Biffl and Halling (2003), the experiment subjects received
training and conducted an individual inspection and a team meeting, from which
defect data were collected on paper and in a web-based tool. Research staff
supervised the participants, validated the collected data, and classified reported
defects according to a list of true defects. For the more than 150 participants, it took
considerable effort to recruit and train the research staff to ensure the supervision
and documentation for valid data collection.

Experiment with HC. For conducting an experiment that uses HC methods,
a technical operator on the research staff may be required for configuring and
monitoring the specific HC technology to ensure valid data collection.

E4. Analysis and Interpretation Based on the collected data, the researchers analyze
the data using descriptive statistics, data reduction, and hypothesis testing, and
interpret the results regarding acceptance or rejection of the hypothesis. This step is
similar for experiments that collect data using pen and paper or HC.

E5. Presentation and Package Based on the conclusions reached from interpreting
the experiment data, the researchers document and report the results (Jedlitschka et
al. 2008), often as a research paper, as a lab package for replication, or as knowledge
in an experience base. This step is similar for both experiment types.

Building on the introduction to HC (Sect. 2) and to the main steps of the ESE
process (Sect. 3), we continue with a more detailed analysis of ESE requirements
for HC capabilities (Sect. 4) and sum up HC capabilities (Sect. 5).

4 Requirements in ESE Experiments for HC Capabilities

This section defines requirements in ESE experiment steps for HC capabilities. To
that end, we analyzed the ESE experiment steps (Sect. 3), for experiment tasks,
which are likely to require understanding HC capabilities, with HC roles, introduced

186 M. Sabou et al.

in Sect. 2, to derive (a) tasks that may require HC support (see Table 1), and (b)
requirements for HC support (see requirements R1 to R5). The experiment steps
(E1) scoping and (E5) presentation and package are not likely to depend on HC
support. Therefore, we focus on the experiment steps (E2) planning, (E3) operation,
and (E4) analysis.

Experiment Roles and Process Steps Table 1 identifies the following roles from
the perspectives experiment process and HC support: ESE researcher, HC technical
expert, and study participant. These roles provide candidate requirements for HC
support in the experiment process and may require HC expertise.

• ESE researcher. Regarding the experiment process, the ESE researcher defines
the research method that the HC methods and tools should support and analyzes
the data coming from the HC platform. Regarding the HC process, the ESE
researcher is the HC requester.

• HC technical expert. In the experiment process, the HC technical expert is part
of the research team to support the ESE researcher with technical expertise
and resources. In the HC process, he designs the HC tasks, and configures and
operates the HC platform.

• Study participant takes part in the experiment as an HC contributor.

Table 1 shows the experiment steps planning, operation, and analysis, in which
researchers may take the role of an HC requester to support experimentation tasks
with HC methods that are executed on an HC platform, with study participants in
the role HC contributors qualified for the respective HC tasks. Table 1 describes
for each HC role selected contributions to an experiment step. These contributions
typically require the iterative interaction (a) between the HC requester and HC
technical expert to design and configure the HC platform and (b) between the HC
technical expert via the HC platform with the HC contributor to test or run the HC
tasks.

E2. Experiment Planning Based on the goal for an experiment, the ESE researchers
design the experiment, the hypotheses, and the detailed experiment tasks to collect
valid data for analysis. Therefore, the ESE researcher needs to understand in
sufficient detail the capabilities of the HC methods and platform to define the HC
tasks and the HC data to be collected.

Interaction of ESE researcher as HC requester with HC technical expert. The
researcher and the HC expert discuss iteratively research idea candidates and HC
platform capabilities to explore the opportunities and risks of research design
options, e.g., the number of participants required, and the estimated duration of
HC tasks, and calculate the approximate cost of experiment options. Further, they
translate the experiment design into an HC design, including data model, process
model, and user interface for splitting SE tasks into HC tasks and aggregating HC
results into SE results (see the case study example in Sect. 6). The HC design
allows us to assess the complexity of HC tasks and the number of HC task types
and contributions required as foundation for assessing the feasibility and cost of the
experiment. An important part of the experiment design is to understand threats to

Empirical Software Engineering Experimentation with Human Computation 187

validity coming from the HC method and technology, if basic assumptions of the
experiment design and the HC method do not fit together, e.g., regarding the control
of the experiment setting or regarding the traceability and validity of collected data.

Interaction of HC technical expert via HC platform with HC contributor. Based
on the HC task design, the HC technical expert configures the platform and pilots
the tasks with selected contributors to assess issues for a contributor, e.g., missing
or too much information, or high task complexity.

E3. Experiment Operation The HC platform enables monitoring the experiment
operation much better than a paper-based experiment environment.

Interaction of ESE researcher as HC requester with HC technical expert. The
HC expert can provide the ESE researcher with information from the experiment
operation, including the validation and aggregation of HC results, to enable the
researcher spotting issues that have to be addressed during the experiment operation.
During experiment operation, the platform allows monitoring the work on tasks and
the HC results for assessing their quality.

Interaction of HC technical expert via HC platform with HC contributor. Via the
HC platform, the HC expert can interact with contributors to address technical or
procedural issues in the training, qualification, or experiment task phases.

E.4 Experiment Analysis The HC platform provides capabilities for validating and
aggregating HC and experiment data.

Interaction of ESE researcher as HC requester with HC technical expert.
In addition to HC-enabled SE tasks, the researcher can define and run HC tasks

for validating and aggregating HC results and experiment data that may be hard to
validate and aggregate automatically (see the case study example in Sect. 6).

Interaction of HC technical expert via HC platform with HC contributor. Via
the HC platform, the HC expert can schedule a sufficient number of HC tasks
for validating and aggregating HC data until a defined level of data quality or the
resource limit is reached.

ESE Requirements From the experiment and HC tasks identified in Table 1, we
derive the following ESE requirement toward the HC method and platform regarding
support for basic experiment principles, e.g., valid measurement.

R1 Definition of experiment plan. The architecture of the HC tasks and platform,
e.g., regarding splitting of large tasks and aggregating small results in a chain of
tasks, has to be compatible with the experiment goal and tasks. The HC method
and platform have to support the definition of participant groups and tasks with
context information, instructions, input data, and output data as required for
fulfilling experimental requirements.

R2 Control during experiment operation. The HC platform has to provide capabil-
ities for implementing the experiment plan and for monitoring experiment tasks
during operation. It should provide capabilities for in-process control to enable
dynamic scheduling of tasks and input data for participants according to the HC
task result quality level achieved, e.g., sufficient agreement on whether a defect
report is a true defect or a false positive.

188 M. Sabou et al.

R3 Measurement during experiment operation. The HC platform has to provide
capabilities for collecting experiment data as defined in the experiment plan and
for auditing the execution of the experiment operation process.

R4 Validation of data. The HC platform has to provide capabilities for validating
the quality of measured and aggregated experiment data.

R5 Aggregation of data. The HC platform has to provide capabilities for aggre-
gating HC task results, such as decisions taken or text entered, to experiment plan
results, such as defects found per task, per scenario, or per defect class.

Experiment Challenges For which typical challenges in ESE experiments may
HC methods and technology provide support? ESE experiments require valid data
collection and classification, which may take considerable effort. Independent of
the SE method investigated, some ESE experiment tasks, such as data cleaning and
aggregation, typically take considerable effort for the research team to conduct as
they are hard to automate but could be supported with HC contributors, who bring
in the required skills and motivation.

Experiment challenges, which HC methods and technology could help auto-
mate, include (a) the qualification of experiment participants by assessing which
participants are sufficiently motivated and capable of conducting the necessary HC
tasks; (b) the monitoring of HC task execution during experiment operation; (c) the
auditing of experiment operation; (d) validating and aggregating experiment data
(as input to experiment data analysis); and (e) in-process control of experiment runs
(if planned in the experiment plan).

5 HC Method Capabilities for ESE Experiments

We build on the requirements derived in the previous section to identify relevant
HC capabilities that can address these requirements. We rely on lessons learned
from the literature as well as from our experience with expert sourcing for model
quality assurance (Sabou et al. 2018b).

As discussed in Sect. 2, HC methods follow a general pattern of problem
decomposition into smaller tasks and of parallel execution of these tasks by a
group of participants. Yet, the implementations of this problem-solving pattern
are so diverse that it is challenging to agree on one particular HC methodology.
Such methodologies (or guidelines) can emerge, however, but only in well-scoped
application domains and problem types, for example, for the annotation of corpora
in natural language processing (NLP) (Sabou et al. 2014). Nevertheless, general
tooling to implement HC tasks is available, widely used, and a natural choice for
newcomers to the use of HC techniques. Therefore, in this section we discuss
capabilities offered by typical HC platforms (in particular, the example platform
Figure Eight).

Empirical Software Engineering Experimentation with Human Computation 189

We discuss typical capabilities of HC platforms grouped by the experiment
process steps depicted in Fig. 2. We synthesize these capabilities primarily based
on our experience with HC platforms in previous work (Sabou et al. 2018b) for
solving problems in the areas of NLP, Semantic Web, and software engineering. In
addition, we refer to studies that highlight the same capabilities. Experiment steps
E1 and E5 are not substantially supported by HC capabilities and not discussed.

E2. Experiment Planning The following capabilities support requirement R1
related to the definition of the experiment plan:

Support for task interface design. Visual task design interfaces make the creation
of task interfaces fast. Simple interfaces, which collect choices, texts, and numbers,
do not require programming knowledge. Task templates optimized for task types,
such as annotating text or rating websites, facilitate efficient reuse.

Participant recruitment. Stolee and Elbaum (2010) point out the major ESE
challenge of obtaining a large number of adequate subjects to participate in an
experiment. To that end, a highly valued capability of HC platforms is assisting in
subject recruitment, by making it possible to reach out to a large, diverse, and 24/7
available pool of study participant candidates, depending on the required participant
qualifications. Behrend et al. (2011) observe that the participant population recruited
via crowdsourcing tools is more diverse than a study pool recruitment from
university students in terms of age, ethnicity, and work experience, thus being better
suited to support organizational studies. HC platforms can advertise available tasks
to their large participant pool, thus significantly reducing the effort for participant
recruitment in a general crowd. In addition, should a study require the participation
of a predefined pool of participants, as in expert sourcing, there is the possibility
to make tasks available only to these participants through direct invitation and hide
these tasks from the general crowd.

Participant screening. Most platforms offer built-in mechanisms for screening
participants based on generic characteristics such as their geographic location
and the quality level of their contributions (deduced from requester feedback). In
addition, screening based on custom criteria (e.g., familiarity with the topic of
the task) can be easily implemented with a qualification questionnaire, i.e., only
workers that successfully answer questionnaire questions are given access to the
tasks.

Participant training. A major difference, with respect to traditional studies, is the
difficulty to incorporate training for performing the task at hand. Instructions are
typically provided with all tasks, but reading these instructions cannot be enforced.
Alternative testing mechanisms use on-the-job training, where workers are given
feedback on their work as they complete it. This is possible in HC by injecting
known answers into the data set, so-called gold units. When workers answer one of
these units, the platform will offer the known answer as feedback and allow training
the workers. Workers, who consistently give wrong answers, can be denied access
to the rest of the tasks after a predefined number of failures.

190 M. Sabou et al.

Ensuring participant privacy. The platform acts as an intermediator, preventing
requesters to access or record personal details of the participants, thus ensuring the
privacy of the workers (Stolee and Elbaum 2010).

E3. Experiment Operation Requirements R2 (control during the experiment pro-
cess) and R3 (measurement of experiment data) are enabled by these capabilities.

Dynamic task assignment. Once tasks are defined, the HC platform automates the
dynamic distribution of these tasks to participants, making sure that each participant
receives the same task only once. The platform optimizes assigning individual tasks
to collect the required number of contributions quickly.

Collection of task results. The HC platform collects inputs from the participants
in a table (csv) containing a wealth of details including the input data, participant
data (e.g., the city of residence based on IP address), and the duration of performing
each task.

Job completion monitoring. For management purposes, tasks are often grouped
into jobs. The HC platform offers management interfaces to monitor the completion
rate of the jobs and the expected time till their finalization, and to monitor the
participants (e.g., their number, how many were excluded due to poor performance
on test tasks). Job monitoring is useful for the requester to identify early potential
issues. For example, if a high number of workers fail the competency test, this
could be an indication that the task is not sufficiently clearly formulated and should
be revised. High disagreement between responses (i.e., if workers provide very
different responses to tasks thus making majority voting difficult) might be caused
by unclear task design or because the data presented in the tasks are of poor quality
(e.g., images that need to be annotated are blurred). Such in-process control of
experiments is often not possible in traditional studies but a valuable benefit in case
of HC-supported studies.

Participant feedback collection. When workers decide to finish working on the
tasks of a job, they are asked to provide feedback about the ease of the task, the
clarity of the instructions, and the fairness of the payment. Aggregated values of
these ratings are available in real time, allowing requesters to identify exceptionally
low ratings and act on those by stopping the experiment in order to refine it as
needed. Such feedback is also useful for piloting studies during experiment design.

Payment distribution to participants can also be handled by the platform, which
further lowers the associated management effort (Stolee and Elbaum 2010).

E4. Data Analysis and Interpretation Requirements R4 and R5 are addressed by
the following capabilities.

(Semi-)Automatic data aggregation. A core element of the HC paradigm, espe-
cially of crowdsourcing, is benefiting from the wisdom of the crowd (Surowiecki
2004). Hence, for most problems solved with an HC method, the aggregated value
of individual judgments is of key interest, as opposed to individual judgments.
Therefore, an HC platform provides as an output of the HC task both the detailed
data collected from individual workers and an aggregated version of this data.
Aggregation depends on the type of data: averages are used for numeric data,
while majority voting helps select the most frequent category in categorical data.

Empirical Software Engineering Experimentation with Human Computation 191

Some data, such as open-ended comments collected with a text-input box, cannot be
aggregated and are simply collected. Generally, an HC platform tends to aggregate
data in ways that identify the most agreed answer. Nevertheless, an experiment
owner can implement custom aggregation functions based on their access to all the
data. For example, some aggregation methods such as CrowdTruth (crowdtruth.org/)
focus on computing disagreement rather than agreement in order to identify low-
performing workers, and data items that lead to most disagreement (probably due to
low-quality data rather than spammers).

We built on these HC capabilities to plan and conduct a line of experiments on
HC-enabled software inspection methods. The following section illustrates the ESE
experiment steps with a report on issues to consider when using HC methods and
technologies in an ESE experiment context.

6 Case Study on Applying HC to a Line of Experiments

This section reports on an illustrative case study on applying HC to a line of
experiments regarding Software Model Inspection with HC. In the case study, we
describe individual aspects for planning and conducting the experiment (labeled
with Experiment Description) and provide some reflections on the use of HC
concepts, methods, and mechanisms in the ESE case study (labeled with HC
Reflection). We introduce the case study in Sect. 6.1, discuss its stages E1–E5
(Sects. 6.2–6.6), and conclude with considerations about scaling up from a single
experiment to a line of experiments in Sect. 6.7.

6.1 Illustrative Use Case: Software Model Inspection with HC

Experiment context and motivation. Models play an important role in software and
systems engineering as they represent the foundation for engineering activities that
depend on the correctness of these models in follow-up phases in the software
engineering life-cycle (e.g., implementation phases that build on design models) or
for more detailed planning activities (e.g., different levels of detail for architecture
diagrams). Thus, there is the need for carefully evaluating these underlying models
to minimize risks of defects and avoidable repair effort in later development phases.
Software Design Inspections (Fagan 1986) are established approaches for effective
and efficient defect detection. However, design inspections are often based on
human expert effort and include limitations, such as the number of available human
experts and resources as well as the size and complexity of inspection artifacts.
Therefore, concepts from HC can help overcome these limitations by opening up
new options regarding method and tool support for distributed and scalable model
inspections with expert sourcing (Winkler et al. 2018).

http://crowdtruth.org

192 M. Sabou et al.

In the following, we report on our experiences when applying and adapting
HC methods and technology in an experiment process. We focus both on (a) the
experiment setting (Experiment Description) and (b) experiment implementation
with reflections on HC application in the study context (HC Reflection).

Experiment Description The study goal was to evaluate an adapted defect detection
(inspection) process approach for structural models, such as the extended entity
relationship (EER) diagrams, with concepts, methods, and technology from HC
to facilitate distributed and scalable inspection processes for model inspection
with expert sourcing. The EER diagrams extend the basic entity relationship (ER)
diagram by providing more detailed concepts for database design, e.g., including
aggregation and specialization (Gogolla 2008). Main investigated task was to check
the correctness of the representation of concepts coming from a scenario, i.e., a
textual requirements description as a reference document, in a structural model,
such as an EER diagram. Figure 3 illustrates the concept for model analysis with (a)
Traditional Software Inspection and (b) HC-Supported Software Model Inspection
aligned with basic ESE study process steps.

For evaluation purposes, we followed the process steps of a controlled experi-
ment (Wohlin et al. 2012) to investigate requirements for and capabilities of HC
approaches for planning, execution, and data analysis of a controlled experiment.
Building on Sect. 3, we follow the steps of the experiment process (see Fig. 3)
with focus on (a) a traditional, pen-and-paper-based, approach and (b) an adapted
inspection approach with HC concepts. Note that we focus on the methodological
approach for experiment planning, execution, and data analysis to show potential
support of HC concepts. Results of individual experiment runs have been reported,
e.g., in Biffl et al. (2018), Sabou et al. (2018b), and Winkler et al. (2017a, b, 2018).
First study results showed the feasibility of the HC-supported inspection process
with a comparable defect detection effectiveness (i.e., share of reported defects)
but increased defect detection efficiency (i.e., defects found per time interval). Note
that first reported results did not consider scoping of the inspection material. More
recent study reports showed increased effectiveness and efficiency when considering
inspection material scoping (Neto et al. 2019b).

HC Reflection We report how the experiment setup was affected by the use of HC,
both on a conceptual level (e.g., modification of experiment steps) and on a technical
level (e.g., using a concrete HC platform, such as Figure Eight). ESE researchers,
who consider using HC methods in their empirical studies, can benefit from lessons
learned on the benefits and limitations of HC methods and technologies in the
case study context. HC researchers can also benefit from lessons learned to further
improve HC concepts, methods, and mechanisms to support (a) quality assurance in
the SE life-cycle and (b) ESE research by providing improved platforms and support
for HC application in the empirical study stages.

Empirical Software Engineering Experimentation with Human Computation 193

M
od

el
 A

na
ly

sis
 w

ith

So
ft

w
ar

e
In

sp
ec

tio
n

Re
fe

re
nc

e
Do

cu
m

en
t

St
ru

ct
ur

al
 m

od
el

(w
ith

 d
ef

ec
ts

)

Te
am

 o
f I

ns
pe

ct
or

s
Ca

nd
id

at
e

De
fe

ct
s

Ex
pe

rt
 S

ou
rc

in
g

In
pu

t:

In
sp

ec
tio

n
Ar

tif
ac

ts
De

fe
ct

 D
et

ec
tio

n
Ap

pr
oa

ch
es

O
ut

pu
t:

Li

st
 o

f C
an

di
da

te
 D

ef
ec

ts

(a
)

(b
) M

od
el

 A
na

ly
sis

 w
ith

HC

 S
up

po
rt

ed

In
sp

ec
tio

n

Pr
ep

ar
at

io
n

&
 S

co
pi

ng

Pr
ep

ar
at

io
n

&
Pl

an
ni

ng

Ex
pe

rim
en

t P
la

nn
in

g
&

 S
co

pi
ng

(E

1,
 E

2)
Ex

pe
rim

en
t O

pe
ra

tio
n

(E
3)

An
al

ys
is

&
 In

te
rp

re
ta

tio
n

(E
4)

Pr
es

en
ta

tio
n

&
 P

ac
ka

gi
ng

 (E
5)

Ex
pe

rim
en

t
Pr

oc
es

s S
te

ps

F
ig

.3
C

on
ce

pt
fo

r
m

od
el

an
al

ys
is

w
it

h
(a

)
(t

ra
di

ti
on

al
)

so
ft

w
ar

e
in

sp
ec

ti
on

an
d

(b
)

H
C

-s
up

po
rt

ed
in

sp
ec

ti
on

al
ig

ne
d

w
it

h
E

SE
st

ud
y

st
ep

s

194 M. Sabou et al.

Table 2 Experiment goal definition, based on the GQM approach (van Solingen et al. 2002)

Analyze
Defect detection performance of structural models (such as an
EER diagram) using traditional and HC-supported inspection

For the purpose of Comparison
With respect to Defect detection effectiveness and efficiency
From the point of view of ESE researchers
In the context of Traditional design inspection based on a valid requirements

specification when compared to an HC-supported inspection
approach

6.2 Experiment Scoping (E1)

Experiment Description The process step Experiment Scoping (E1) (see Fig. 3)
takes as input the experiment idea (see Sect. 6.1) and defines the experiment
goal, scope, and hypothesis as process output. The Goal Question Metric (GQM)
approach (van Solingen et al. 2002) can help researchers in defining the goals, scope,
and hypotheses. In the illustrating experiment, we define the goal in Table 2.

We use a well-known application domain, typical restaurant processes, which
cover important and easy-to-follow steps for reservation, order, kitchen handling,
and payment. We use a requirements specification, which is considered to be
correct and an EER data model of the database structure. The EER data model was
seeded with a set of common defects that typically occur in software engineering
practice. The study treatment is the HC-supported inspection process; the control
group applies a traditional (pen-and-paper-based) software inspection approach. The
initial hypotheses focuses on defect detection performance, i.e., defect detection
effectiveness and efficiency (Winkler et al. 2018).

HC Reflection For the illustrating example, researchers need to be aware of effort
required in the experiment preparation and planning phase for setting up the
experiment with HC support. There was no explicit HC support applicable for
the initial experiment definition phase, i.e., Experiment Scoping (E1), because this
phase is similar for experiments with and without HC support. However, researchers
should be aware of technological aspects (and related expertise and efforts) needed
for implementing and conducting the experiment with and without HC support.

6.3 Experiment Planning (E2)

Experiment Description According to Table 1 in Sect. 4, three main roles are
required in the experiment process with focus on the experiment planning step (E2):
(a) ESE researcher (HC requester), (b) technical expert for HC supporting activities
approaches (HC expert), and (c) study participant (HC contributor). The first author
of this chapter acted as technical expert for HC support (HC expert), while the other

Empirical Software Engineering Experimentation with Human Computation 195

two authors represent ESE researchers (and HC requestors). In the context of the
example experiment, students represent HC contributors.

For the ESE researcher, the experiment planning step included (1) experiment
treatment definition (e.g., HC-supported inspection), (2) experiment design (e.g.,
cross-over design of treatment and control groups, material preparation, study group
definition, definition of measurement and data, and threats to validity considera-
tions), and (3) definition of the study process (e.g., scheduling and sequence of study
tasks). HC technical experts focused on (1) the configuration of the HC platform
(e.g., setting up individual tasks, contributor groups, and data input/output) and
(2) operation and monitoring of the platform. Study participants (HC contributors)
mainly took part in pilot runs to ensure the correctness and completeness of the
study design and the feasibility of the study operation in terms of scheduling.

ESE researchers defined the experiment treatment (see Fig. 4). Inputs were the
Inspection Artifacts, i.e., the reference document and the Structural Model, i.e., the
EER diagram (label 1, Fig. 4). Furthermore, the research team used the concept of
expected model elements (EMEs) that represent building blocks of the model (label
2, Fig. 4), coming from the reference scenarios for checking their representation in
the structural model. In case of an EER diagram, EMEs include entities, attributes,
relations, and relation attributes (Winkler et al. 2018). ESE researchers derived
these EMEs from the inspection artifacts. The HC management (label 3, Fig. 4)
prepared the HC platform, in our case Figure Eight, by designing small-scale tasks
for model inspection, for collecting defect reports from study participants, and for
aggregating these reports for further analysis, i.e., defect validation, which was
conducted manually by ESE researchers (label 5, Fig. 4). In the model analysis task
(label 4, Fig. 4), individual study participants received small tasks, provided by the
HC platform, checked the model for correctness, and reported defects or declared
that they found no defect. These reports represent the input for the defect validation
tasks (label 5, Fig. 4), executed by ESE researchers.

Study Process To compare HC-supported inspection and traditional inspection, the
research team designed the basic study process in three groups (Fig. 5). Groups
A and B represented HC treatment groups with a cross-over design and group C
represented the control group applying traditional software inspection using the
pen-and-paper (P&P) approach. Groups A and B received a tutorial (30 min) that
presented the approach, introduced to the HC platform, including an experience
questionnaire followed by an HC qualification process step. P&P participants (group
C) received a tutorial that introduced a traditional software inspection process and
included an experience questionnaire to capture background knowledge and skills.
The experiment phase was structured into two sessions (60 min each): For HC
participants, each session focused on two different main tasks: (a) identification
of EMEs (HC Task 1) and (b) defect detection (HC Task 2). Group A started
with EME identification followed by defect detection; group B executed similar
tasks but in reverse order. Assigned tasks for individual groups included half of
the application (controlled by the HC platform) to minimize bias and learning
effects. The research team collected feedback on each task after task completion.

196 M. Sabou et al.

M
od

el
 A

na
ly

si
s

w
ith

H

C
Su

pp
or

te
d

In
sp

ec
tio

n

H
C

Ex
pe

rt

St
ud

y
Pa

rt
ic

ip
an

ts

(C
ro

w
d

W
or

ke
rs

)

Re
fe

re
nc

e
D

oc
um

en
t

St
ru

ct
ur

al
 m

od
el

In
sp

ec
tio

n
Ar

tif
ac

ts
H

C
M

an
ag

em
en

t

+
In

sp
ec

tio
n

Ar
tif

ac
ts

EM
E

Li
st

+
H

C
Se

tu
p

Ex
pe

ct
ed

 M
od

el
El

em
en

t
El

ic
ita

tio
n

En
tit

y
At

tr
ib

ut
e

1
At

tr
ib

ut
e

2
At

tr
ib

ut
e

3

ES
E

Re
se

ar
ch

er

H
C

Pl
at

fo
rm

 a
nd

Ta

sk
 C

on
fig

ur
at

io
n

D
ef

ec
t A

gg
re

ga
tio

n
&

 E
xp

or
t

D
ef

ec
t

Re
po

rt
s

D
ef

ec
t

Va
lid

at
io

n

ES
E

Re
se

ar
ch

er

4

1 2

3

5

F
ig

.4
H

C
-s

up
po

rt
ed

in
sp

ec
ti

on
pr

oc
es

s

Empirical Software Engineering Experimentation with Human Computation 197

Group A Group B

Tutorial

Tutorial (Group A/B)

Experience
Questionnaire

HC
Qualification

Tu
to

ria
l (

30
m

in
)

HC Task 1

HC Task 2 HC Task 1

HC Task 2

Feedback
Quest. Task 2

Feedback
Quest. Task 1

Feedback
Quest. Task 1

Feedback
Quest. Task 2

Experiment Closure

Group A Group B

Se
ss

io
n

1
(6

0
m

in
)

Se
ss

io
n

2
(6

0
m

in
)

Tutorial

Tutorial (Group C)

Experience
Questionnaire

Defect Detection
(first half of scenarios)

Submission of
Intermediate Results

Experiment Closure

Defect Detection
(second half of scenarios)

Submission of
Final Results

Fig. 5 Study process

The control group (group C) executed traditional inspection by focusing on the first
half of the application in the first session and on the second half of the application
in the second session. Experiment Closure included the submission of the material
and a check if all tasks had been completed.

Materials included an experience questionnaire to capture background and skills
of study participants. Although the HC platform supported questionnaires, the
research team used Google.forms to keep questionnaires separated from the platform
in the first step for simplicity reasons. Furthermore, the researchers captured
participant feedback (feedback questionnaire) to gain experience on how the HC
platform (and the P&P approach) was perceived by participants and to collect
additional feedback, such as estimated numbers of remaining defects. For this

198 M. Sabou et al.

step, the researchers applied Google.forms. Although it is possible to incorporate
questionnaires in the HC platform, we decided to keep them separated to enable
usage of similar questionnaires for all study groups (i.e., P&P and HC participants).
Other materials included the reference document, i.e., a requirements specification
(including four pages in English language, consisting of seven scenarios), the model
under inspection, i.e., the EER diagram (consisting of 9 entities, 13 relationships,
and 32 attributes) including 33 seeded defects. These defects were introduced by
the experiment team, i.e., the authors, based on defects that typically occurred
during software development processes such as missing, incomplete, ambiguous,
superfluous, or wrong entities, relations, or attributes. The P&P group did not
receive a list of expected model elements (EMEs) because they had to identify these
elements in the first step of the inspection process.

P&P participants received the guideline, one-half of the requirements specifica-
tion and scenarios, and the defective EER model for the first session and the second
half of the scenarios for the second session. HC participants received microtasks
via the platform and related scenarios for each task. Depending on the HC tasks, the
participants received (a) a sentence (as a microtask) to elicit EMEs (HC Task 1) or
(b) a sentence and the model for identifying whether or not the EME exists in the
model and whether or not it is represented correctly in the model (HC Task 2).

Study Participants and Group Assignment The study was embedded within a
course on Software Quality Assurance at TU Wien, where participants already had
some experience on software development and quality assurance, especially on soft-
ware inspection. In addition, the research team provided a tutorial as introduction to
the study. For HC participants, a small task was implemented to measure participant
qualification. Prior to the study, we used a sort-card algorithm for group assignment
to ensure a balanced and randomized distribution of participants.

Data and Measurement We defined independent and dependent variables. Inde-
pendent variables included seeded defects, defect types, tool configuration, and
study treatments. Dependent variables were effort for task execution, reported and
true defects, effectiveness (i.e., share of seeded defects and identified true defects)
and efficiency (i.e., defects found per hour), and false positives (reported candidate
defects that do not match a true defect). Data collection was organized via an
Experiment Management System (EMS)6 (P&P participants had to upload their
results to the EMS), via the HC platform (for HC participants), and via Google.forms
(all study groups). We transferred questionnaire data as well as data from P&P and
HC (after some cleanup activities to exclude data management overhead) into an
SQL database for analysis and interpretation.

Threats to Validity Based on the study design, several limitations needed to be
considered. In the example experiment, we introduced a set of seeded defects based
on typical defects in software engineering. Additional true defects, which came up

6TUWeL (tuwel.tuwien.ac.at.) is a learning platform for course organization/administration.

http://tuwel.tuwien.ac.at

Empirical Software Engineering Experimentation with Human Computation 199

during the experiment, were added to the list of true defects. Issues regarding the
application domain were addressed by using an application domain that was familiar
to the prospective participants, scenarios in a restaurant. The experiment material
had been reviewed and improved by experts. Furthermore, we conducted several
pilot runs in small groups to ensure the feasibility and quality of the experiment
materials and plan. The experiment was conducted in a classroom setting to avoid
the unplanned communication of participants. Breaks were allowed and recorded.
The experiment was carried out in university courses; the authors are aware of
limitations of student experiments (Runeson 2003).

Tooling We used an Experiment Management System (EMS) to provide the relevant
information to the participants: For P&P participants, we provided the guideline,
links to the questionnaires, defect collection sheets, requirements specifications and
scenarios in two parts, and the defective model. This material was available in
electronic form via the EMS and as hardcopy. After experiment completion, P&P
participants had to upload their results to the EMS and hand over all materials to
the experiment team. For HC participants, we used the EMS for providing relevant
information (similar to P&P participants) and links to the HC platform for individual
HC-related tasks. The HC platform manages all related HC tasks.

HC Reflection HC Experts are responsible for the configuration of the HC platform
and for setting up the administrative environment. HC tasks were managed via the
Figure Eight platform. For HC qualification (in the context of the tutorial), EME
identification (HC Task 1), and defect detection (HC Task 2), the participants were
guided by the HC platform. In collaboration with the ESE researcher, the HC expert
built on the inspection material to design and prepare the HC tasks. In the context
of the HC qualification process step (within the tutorial), the researchers used a
different simple application domain, typical scenarios of a parking garage use case,
to measure the basic capabilities of participant candidates on working with the
HC platform and on reporting defects. For the experiment, the researchers focused
on processes of a restaurant. Main tasks of the HC expert included (a) analyzing
and identifying small and manageable tasks, such as sentences of a requirements
specification, (b) selecting related scenarios, (c) and preparing the related scope of
the model (applicable for the defect detection task).

For the EME identification task (HC Task 1), the HC expert used the requirements
specification to split this specification into sentences as foundation for a set of
microtasks. Based on these microtasks, the HC expert prepared batches of tasks to
be completed by study participants; see a sample task design in (Sabou et al. 2018b).
For the model defect detection task (HC Task 2), HC experts used the set of EMEs
as guidance for task design, i.e., defect detection. We used a predefined set of EMEs,
prepared by the authors, as a stable baseline for defect detection. Furthermore, HC
experts prepared the scenario (as reference document), the EER model (inspection
artifacts), and guidance to enable participants to classify defect candidates. Figure 6
presents a set of screenshots from an experiment run, including:

200 M. Sabou et al.

G
iv

en
 M

od
el

 E
nt

ity

R
el

ev
an

ce
 o

f M
od

el
 E

nt
iti

es
(F

oc
us

 o
n

th
e

gi
ve

n
M

od
el

 E
nt

iti
y)

D
ef

ec
t A

ss
es

sm
en

t

G
ui

de
d

D
ef

ec
t C

la
ss

ifc
ia

tio
n

de
pe

nd
in

g
on

 th
e

se
le

ct
io

n

1 2

3

4

F
ig

.6
Sa

m
pl

e
sc

re
en

sh
ot

s
of

a
m

ic
ro

ta
sk

fo
r

m
od

el
an

al
ys

is

Empirical Software Engineering Experimentation with Human Computation 201

1. Scenario descriptions based on the analysis of the requirements specification.
Note that this scenario was considered to be correct (i.e., represents a snapshot
of a part of the reference document).

2. EER Model. We presented the EER model that included 33 defects. This model
could also be subset of the inspection artifact to be inspected, as input to tasks
for scoping and selecting relevant model elements.

3. Expected Model Element (EME). Based on the task description, a selected model
element guided the HC participant to identify defects. This is comparable to P&P
where the participants had to identify EMEs in the first inspection step. Note that
the first HC task also focused on the identification of EMEs, which were not
directly used for defect detection in the same experiment but as input to a follow-
up experiment in a family of experiments.

4. The Defect Assessment part guided HC participants in classifying a defect
candidate. In an initial task pilot, we had not provided any guidance, but captured
candidate defects in textual form. As the free form of measured data led to high
effort for analyzing these reports, we changed toward a more guided approach,
which makes it more efficient to aggregate and analyze candidate defects. This
approach also facilitated immediate feedback to the participants.

To enable this structured defect detection approach, considerable effort was
needed for the configuration of the HC platform, aggregating small tasks to related
task groups and assigning these task groups to contributor groups, i.e., study
participant groups. Furthermore, HC experts had to define input data, to provide
mechanisms for data transformation (as input for the HC platform), and to provide
data transformation approaches for data (defect) analysis and aggregation. These
tasks strongly depend on the applied platform, e.g., Figure Eight. During the
experiment run, the HC expert was responsible for operating and monitoring the
platform, e.g., if participants were close to running out of tasks, the HC expert was
able to assign further tasks to individual participants.

Based on the example experiment, identified ESE requirements, and HC capabil-
ities for the experiment planning phase (E1), we see HC promising for supporting
ESE research. Main benefits are (a) participant recruitment (e.g., by using qual-
ification tasks, designing HC tasks, and supporting cognitive human tasks by
providing guidance within the defect detection task); (b) experiment organization
(e.g., generation, organization, distribution of tasks and inputs, and the collection
of task results); (c) experiment execution (e.g., by distributing tasks to a group of
experts); and (d) the analysis and aggregation of task results.

6.4 Experiment Operation (E3)

Experiment Description The experiment operation concerns the execution of the
experiment run according to the experiment plan. While for the P&P experiment
research staff supervised the participants, validated the collected data, and classified

202 M. Sabou et al.

reported defects according to a list of true defects, for HC-supported experiments,
an HC expert is required for configuring, monitoring, and managing the specific HC
technology to ensure valid data collection. In this section, we focus on main process
steps with HC roles.

Main tasks of ESE researcher focus on the execution of the experiment according
to the experiment plan. In the example experiment, the ESE researcher provided the
tutorial and supervised the P&P participants (due to the nature of pen-and-paper
experiments), while the HC participants were efficiently guided by the HC platform
without the need for supervision by ESE researchers. However, some supervision
was provided to ensure that participants followed the experiment guidance, to
provide answers to questions related to the inspection artifacts, and to observe
the experiment environment (e.g., to avoid communication between participants).
In collaboration with the HC expert, an ESE researcher observed the experiment
execution (audit experiment execution) in terms of checking samples of incoming
data from the experiment run in the HC platform. In our context, we provided
questionnaires via Google.forms, and hard copy handouts. Thus, a task of the ESE
researcher was to collect the experimental material and data that was not available
via the HC platform. Although HC platforms can handle questionnaires and collect
data, they may be more complex to set up for simple cases in comparison to
specific survey tools. In addition, the ESE researcher conducted basic experiment
data validation tasks in cooperation with the HC expert such as the availability and
correctness of submitted data from individual microtask assignments.

The HC technical expert is responsible for the configuring and operating the HC
platform, such as maintaining the platform in case of technical problems during
operation and for configuring HC tasks for upcoming experiment process steps.
In the context of the example experiment, the HC technical expert could execute
consistency checks and aggregation tasks after the EME identification step (HC
Task 1) as preparation for the defect detection task, i.e., model analysis. In the
example experiment, researchers applied a predefined set of EMEs for the defect
detection tasks to avoid issues from carrying over data between experiment sessions.
Furthermore, one version of the implementation of HC tasks required considerable
time for the manual setup of the defect detection task, which could be risky in the
context of given time constraints. Therefore, tool support for the configuration was
an issue with high priority (see Sect. 6.7).

HC contributors, i.e., study participants, (a) participate in the study by executing
assigned HC tasks and (b) provide feedback on the tasks to be solved via the HC
platform. After the HC experiment, researchers added a section to collect feedback
on the task and the HC platform to enable participants to report observations and
issues and to suggest improvements. Therefore, this feedback cycle can be used for
HC technical experts to adjust HC platform capabilities as required.

HC Reflection An important benefit of applying HC technologies includes the
opportunity for in-process control based on monitoring ongoing activities or based
on results of previous experiment steps. Examples include monitoring participant
activities to see whether or not they follow the experiment process correctly (and

Empirical Software Engineering Experimentation with Human Computation 203

act accordingly), the re-assignment of tasks in case of deviations (e.g., contradicting
results, incomplete or missing results), automated feedback to study participants
(an important aspect for the motivation of participants), in-process data validity
checks, or the re-assignment and/or extension of selected task assignments, e.g.,
if an HC participant might run out of tasks during experiment operation. Therefore,
important tasks of HC technical experts include the scheduling and monitoring of
the HC tasks (during experiment operation) and the monitoring, validation, and
initial aggregation of data collection (in-process control). This initial validation
focuses on monitoring incoming results for completeness and correctness from
the HC platform perspective. Data aggregation addresses the issue of immediate
feedback to participants on the task performance, i.e., defect detection performance.

6.5 Analysis and Interpretation (E4)

Beyond in-process control of the experiment during operation, analysis, and
interpretation processes are conducted after the operation phase. These tasks
represent the main responsibilities of ESE researchers who focus on the validation,
aggregation, analysis, and interpretation of experiment data by following guidelines
for reporting empirical study results, such as Jedlitschka et al. (2008).

Experiment Description While for P&P the data evaluation, especially the assign-
ment of reported defects to true defects, was executed manually, the HC platform
supported the automated classification of defect reports based on majority voting
from several participants, typically 3 to 7, depending on the level of (dis)agreement.
In the experiment context, the EMEs represented building blocks of the model and
were used to locate defect candidates. Therefore, the analysis feature of the HC
platform was able to support the classification of candidate defects reported for an
EME and to aggregate defect reports. Thus, the effort of assessing and classifying
defect reports was reduced for ESE researchers, who could focus on resolving
contradicting results from several participants. We used this basic functionality as
foundation for further analysis.

In the example experiment, experimental data was collected on various plat-
forms, such as Google.forms (e.g., questionnaires), paper-based or as spreadsheet
solutions (for P&P participants), and via the HC platform (for HC participants).
Although the HC platform enables the collection, initial validation, analysis, and
aggregation of data, heterogeneous sets of data needed to be organized and managed
with considerable care and effort. Thus, researchers used SQL-based data storage to
collect the materials for the analysis phase. The database represented the foundation
for the analysis process using descriptive statistics, data reduction, and hypothesis
testing for data validation and analysis and for the interpretation of the results
regarding the acceptance or rejection of stated hypotheses. This database held
all information, both from the traditional inspection process and from the HC-
supported inspection including questionnaire results.

204 M. Sabou et al.

HC Reflection The HC platform provides some basic aggregation mechanisms as
foundation for data analysis and aggregation. However, additional information, such
as personal data and organizational information for managing HC tasks, is of limited
interest for ESE researcher and, thus, should be removed before further analysis.
The SQL database focused on experimental data that were relevant for analysis and
interpretation. ESE researchers had to define beforehand which data were required
for analysis as input for data preparation, a main task of the HC technical expert.

The HC technical expert has to (a) execute some basic consistency checks
within the HC platform to ensure the correctness and completeness of experimental
data based on assigned tasks and (b) maintain experimental raw data. This data
maintenance step includes the removal of irrelevant data sets (such as organizational
data needed for HC task execution, but not relevant to the experiment) and the
removal of data from participants, who did not follow the experiment process
properly or did not complete the experiment. After the maintenance step, the HC
platform holds valid data usable for further analysis, such as initial aggregation
of results for grouping defect reports as foundation for assigning them to true
defects. In the last step of data maintenance, the HC technical expert needed to
extract data (as required by ESE researcher) as input for the SQL database. This
step required interfaces for data transformation from the HC platform to the SQL
database. Finally, the HC expert provided interfaces to include external sources,
such as Google.forms data and experimental data, captured in spreadsheet solutions
(P&P participants), and made the data from external sources available in the SQL
database.

In empirical studies, the feedback to participants is important for the acceptance
of usefulness of the study for participants. Often this feedback is hard to provide
or can be provided only later, after manual analysis steps. HC capabilities enable
immediate feedback to participants and thus help increase the acceptance and
the motivation of study participants. Therefore, during the experiment analysis
phase, the HC contributor (i.e., study participant) receives feedback on their defect
detection performance for improving their inspection skills. In the context of the
example experiment, the participants received feedback on their performance within
a couple of hours after the study, which was received well by many participants.

6.6 Presentation and Package (E5)

Based on the conclusions reached from analyzing and interpreting the experiment
data, the researchers document and report the results (Jedlitschka et al. 2008). This
step is similar for experiments that collect data using pen-and-paper (P&P) or HC
technology.

Experiment Description In the context of the example experiment, we planned a
family of experiments with variations that benefited from a high degree of reusing

Empirical Software Engineering Experimentation with Human Computation 205

the material on and configurations of the HC platform in various experiment runs
(Winkler et al. 2017a, b; Sabou et al. 2018b).

HC Reflection While experiments without HC allow reusing the material by
manually assessing and adapting experiment settings and materials (e.g., in the
context of replications), HC-supported experiments can go beyond this basic level
of reuse by also reusing task organizations, strategies for the distribution of tasks
and inputs, mechanisms for data collection, analysis, and aggregation.

6.7 Toward a Family of Experiments

Experiment Description The example experiment represents a snapshot of an
experiment with HC-supported inspection with focus on defect detection. However,
HC capabilities can enable a longer tool chain that supports individual experimental
steps, which are usually done manually or with limited tool support. Biffl et al.
(2018) presented a concept of a family of experiments for HC-supported inspection
enabling the application of HC on various steps of the inspection process.

HC Reflection Figure 7 illustrates extensions of HC-supported inspection processes
including (a) Expected Model Element (EME) identification, (b) Model Analysis
and Defect Detection (as illustrated by the example experiment), and (c) Defect
Validation (Biffl et al. 2018).

• Inspection Artifacts (label 1, Fig. 7). Similar to the illustrating example, inspec-
tion artifacts, such as reference documents and the model under inspection,
represent the starting point for inspection scoping and for experiment scoping.

• Expected Model Element (EME) Identification (label 2, Fig. 7). The first step
of the inspection process focuses on EME identification. This process step has
been introduced in the example experiment (HC Task 1) without considering
these results in the following steps, i.e., defect detection, of the experiment
(we used a predefined set of EMEs for defect detection). However, inputs for
EME identification were the requirements specification and the model. The HC
platform (label 3a in Fig. 7) provided sentences to identify building blocks of
the model (for an EER diagram: entities, relations, and attributes) and collects,
analyzes, and aggregates expected model elements as input for defect detection.

• Model Analysis and Defect Detection (label 3b and 4, Fig. 7). The defect
detection process step (managed by the HC platform) takes as input a set of
EMEs, scenarios, and the model under inspection. Note that we used a predefined
set of EMEs instead of an EME list created in the previous step. However, the
HC platform (label 3c, Fig. 7) collects all reported candidate defects, provided
by the participants, and executes some initial evaluation (see Sect. 6.4). After
this process step, the HC platform holds an aggregated list of EMEs and a list of
reported defects.

206 M. Sabou et al.

M
od

el
 A

na
ly

sis
 w

ith

HC
 S

up
po

rt
ed

In

sp
ec

tio
n

De
fe

ct
 V

al
id

at
io

n

St
ud

y
Pa

rt
ic

ip
an

ts

HC
 E

xp
er

t

Ex
pe

ct
ed

 M
od

el
 E

le
m

en
t

(E
M

E)
 Id

en
tif

ic
at

io
n

St
ud

y
Pa

rt
ic

ip
an

ts

St
ud

y
Pa

rt
ic

ip
an

ts

HC
 P

la
tf

or
m

&

 T
as

k
Co

nf
ig

ur
at

io
n

Re
fe

re
nc

e
Do

cu
m

en
t

St
ru

ct
ur

al
 m

od
el

(w
ith

 d
ef

ec
ts

)

Id
en

tif
ie

d
EM

Es

In
sp

ec
tio

n
Ar

tif
ac

ts
HC

 M
an

ag
em

en
t

De
fe

ct

Re
po

rt
s

+
HC

 S
et

up
+

In
sp

ec
tio

n
Ar

tif
ac

ts
+

In
sp

ec
tio

n
Ar

tif
ac

ts
+

Ag
gr

eg
at

ed
 E

M
E

Li
st

+
HC

 S
et

up

+
In

sp
ec

tio
n

Ar
tif

ac
ts

+
Ag

gr
eg

at
ed

 E
M

E
Li

st
+

De
fe

ct
 R

ep
or

ts
+

HC
 S

et
up

Ju
st

ifi
ed

De

fe
ct

 L
ist

Ag
gr

eg
at

ed

De
fe

ct
 R

ep
or

t

In
sp

ec
tio

n
Re

su
lt

1

2

3

4
2

5

3a

6

3b
3c

3d
Ag

gr
eg

at
io

n
of

Id

en
tif

ie
d

EM
Es

&
 H

C
Co

nf
ig

ur
at

io
n

HC
 P

la
tf

or
m

co

nf
ig

ur
at

io
n

fo
r

de
fe

ct
 v

al
id

at
io

n

Ag
gr

eg
at

io
n

of

Ju
st

ifi
ed

 D
ef

ec
t

Re
po

rt
s

Ad
ap

te
d

In
sp

ec
tio

n
Pr

oc
es

s

F
ig

.7
E

xt
en

si
on

s
of

th
e

H
C

-s
up

po
rt

ed
in

sp
ec

ti
on

pr
oc

es
s

w
it

h
E

M
E

id
en

ti
fic

at
io

n
an

d
de

fe
ct

va
li

da
ti

on
st

ep
s

Empirical Software Engineering Experimentation with Human Computation 207

Table 3 Experiment variants in the context of an experiment family (TA Text analysis for EME
identification, MA model analysis for defect detection, DV defect validation)

Different usage of HC in a family of experiment TA MA DV

Focus on eliciting EMEs X
Focus on model analysis/defect detection (i.e., our example experiment) X
Focus on EME identification and model analysis X X
Focus on model analysis and defect validation X X
Complete HC-supported inspection process X X X

• Defect Validation (label 5, Fig. 7). The third step focuses on the validation
of defects based on EMEs, scenarios, and defect reports. The HC platform
(label 3d in Fig. 7) provides microtasks for defect classification and assessment
for participants and collects individual assessments of defect reports. Result
is a set of classified defect reports (including voting and an initial mapping
to seeded defects). We provided several options via the HC platform that
supported participants in defect assessment (one of the options is the true defect if
applicable). This process step is typically executed manually by ESE researchers
after experiment completion. With HC support, HC contributors can contribute
to solving these ESE tasks.

• Defect Report (label 6, Fig. 7). The final result after the defect validation process
step includes a set of classified defects with voting as input for data analysis and
interpretation. The set of defects can include agreements if several participants
assessed the defect report in a similar way and some defect reports may include
contradicting results. Contradicting results represent the input for ESE researcher
for a more detailed manual analysis. However, the amount of these unclear
assessments is limited.

Introducing all HC-supported inspection steps into an experiment at once might
incur considerable risk because of several confounding factors. Therefore, we
planned a family of experiments with variation points that focus on a defined set
of HC capabilities in the context of the overall HC-supported inspection process
(Biffl et al. 2018). Table 3 presents an overview of candidate combinations of HC-
supported inspection tasks in the context of an experiment line. Furthermore, we
highlight the core contributions of HC in the context of an experiment line. Note
that other tasks are still needed but remain to be considered by the ESE researchers
who execute these manually.

There are several published reports on the results of controlled experiments with
focus on model analysis/defect detection (such as Biffl et al. 2018; Sabou et al.
2018b; Winkler et al. 2017a, b, 2018), with promising results regarding scalable
defect detection performance, i.e., defect detection efficiency, and effectiveness, for
inspector groups in the context of a defined model scope.

208 M. Sabou et al.

7 Benefits and Limitations

We hereby discuss a number of benefits and limitations of HC as emerged from
other studies in the literature and our own work.

Benefits The typical benefits of using HC in general (Snow et al. 2008; Behrend
et al. 2011), and in software engineering in particular, relate to:

• Cost reductions by obtaining free (in the case of games) or cheap input
from contributors (on average, the completion of one task on crowdsourcing
marketplaces is in the range of US$0.3–0.5)

• Time reductions by benefiting for a larger workforce that is typically available
24/7

• While typically obtaining results with high-quality rivaling what can be obtained
from a small number of experts (provided using a proper setup of the HC task
and appropriate quality assurance methods)

In addition, when used in scientific or teaching contexts, HC has the potential to
promote learning and science among participants. Learning and self-improvement
through participation in crowdsourcing projects are major opportunities and pow-
erful incentive mechanisms. For example, the Duolingo (duolingo.com) game both
trains contributors in a new language and helps with translation tasks. Participants
in open-source software projects reportedly are motivated by learning new skills
(LaToza and van der Hoek 2016). Within our experiment families (Winkler et al.
2017a, b; Sabou et al. 2018b), participating students benefited from an assessment
of their model analysis skills: they received detailed feedback on each of their
contributions (whether they were correct or not based on a comparison to a gold
standard, that is, a set of model defects identified by the experiment team), as well
as general statistics on how their performance compared to that of their peers in the
group, both in terms of the quantity and the quality of their contributions.

Limitations Although the use of HC reduces the overall duration needed to
perform experiments, typically HC requires an effort from the experiment team to
learn the approach and the intricacies of the HC platform used. We discuss further
limitations grouped by the experiment steps that the limitations affect most.

E2. Experiment Planning
Splitting study tasks into small, individual tasks can be a challenge. A key char-
acteristic of the HC method is splitting an overall problem into several independent
tasks that can be (easily) performed in parallel by the participant pool. Yet, given the
very nature of software as a highly complex and interconnected set of artifacts, such
a task composition is challenging in general (LaToza and van der Hoek 2016; Mao
et al. 2017), and in ESE experiments in particular (Stolee and Elbaum 2010). For
the model analysis task we reported (Sabou et al. 2018b), decomposition was also
a challenge and addressed by decomposing the EER model into individual model
elements, and collecting defects at model element level.

http://duolingo.com

Empirical Software Engineering Experimentation with Human Computation 209

The (demographic) composition of the study population is hard to predetermine.
Although there are several methods to screen and select the study participants, the
composition of the final population cannot be controlled prior to running the study.
This is a drawback for studies where the balanced representation of certain groups is
important (Stolee and Elbaum 2010). The population composition can, however, be
determined by administering a post-study questionnaire to participants. In expert
sourcing settings, this limitation is circumvented as the participant pool can be
selected prior to the study.

Task interface design is limited by crowdsourcing platform capabilities. While
crowdsourcing platforms allow easily building task interfaces, their capabilities are
limited to a set of interface elements that are used by the majority of problems solved
on these platforms, i.e., typical form-based questionnaires. Creating specialized
interfaces that go beyond question answering is challenging and can often be
realized only outside the platform with additional programming effort. In our case,
for example, we aim at creating a task interface within the Figure Eight platform
which allows workers to directly annotate (a picture of) an EER model.

Legal and ethical aspects need to be observed. An increasing number of
institutions have introduced ethics boards to approve studies involving human
participants, for example through HC. Therefore, ESE experiment teams may need
to consider issues of ethical and legal nature, as discussed next. Acknowledging the
participating crowd’s contributions, i.e., listing the Crowd as an author. While there
are no clear guidelines about this issue, some volunteer projects (e.g., Foldit, Phylo)
already include contributors in the authors’ list (Kawrykow et al. 2012). Ensuring
contributor privacy and well-being by implementing appropriate safeguards and
warnings to ensure that no personal data is stored or transmitted and that prolonged,
potentially health-damaging engagement, addiction, or unethical exploitation of
users is prevented. In some cases, the unknown age of the volunteers/gamers could
also be of concern (many teenagers and younger children are avid gamers). Another
issue is licensing and consent, i.e., making it clear to contributors that by carrying
out some tasks they are contributing knowledge for scientific purposes and agree
to a well-defined license for sharing and using their work. We also recommend
that crowdsourcing projects adopt an open license, clearly stated and used as a
motivating factor in recruiting contributors.

E3. Experiment Operation
Difficult to enforce task execution order. Although the dynamic and randomized
assignment of tasks to participants is a key capability of crowdsourcing platforms,
this aspect can be seen as a limitation for studies that need to control the order in
which the tasks should be performed (Stolee and Elbaum 2010).

Difficult to guarantee that each participant performs all tasks. As participants
join and leave the HC project at different times, it is very hard to ensure that a
participant performs all tasks: some may leave without having seen all tasks, while
others might join late, when all required inputs already have been collected for some
tasks (Stolee and Elbaum 2010).

210 M. Sabou et al.

Difficult to assess and ensure similar experiment contexts and setups. If partic-
ipants perform tasks in their own context with their own setup, it is challenging
for the experiment team to ensure that these context/setups are similar (Stolee and
Elbaum 2010). Diversity of user setups is, however, beneficial for crowdsourced
testing (e.g., of apps) where this diversity ensures the reliability of results. In
our expert sourcing experiment (Winkler et al. 2017a, b; Sabou et al. 2018b),
we circumvented this issue by restricting participation from a controlled lab
environment with the same setup for all participants.

E4. Data Analysis and Interpretation
Dealing with multiple, possibly low-quality contributions. A direct consequence of
working with a diverse and unknown workforce is that the collected contributions
are also likely to contain low-quality inputs introduced inadvertently (i.e., because
of lack of needed skills or experience) or intentionally by spammers (Stolee and
Elbaum 2010; Mao et al. 2017). Quality assurance (QA) is therefore a key aspect
of using HC successfully. QA involves a set of measures that can be taken during
task design (e.g., providing clear, example-based instructions, including gold units
that help filter out spammers during task execution) and after the data collection
process. In the later stage, aggregation methods should also take into consideration
the overall performance of the contributors and attempt to minimize the influence
of low-quality contributors. There is a large body or research on truth inference
mechanisms as surveyed by Zheng et al. (2017).

Dealing with imprecise measurements of task duration. For studies that need
exact information on how much time participants spend on performing a task, a
challenge lies in collecting this duration information in a reliable manner: indeed,
crowdsourcing platforms report the time during which a task was open in the
browser, which does not necessarily correspond to the time that was dedicated to
performing the task itself (Stolee and Elbaum 2010).

Lessons Learned We have already reported on preliminary results or parts of the
family of experiments with focus model analysis and defect detection (Biffl et al.
2018; Sabou et al. 2018b; Winkler et al. 2017a, 2018) and received promising results
in the context of model scoping. Up to now we have executed the experiment four
times since 2016 and derived a set of lessons learned from previous experiment runs,
involving 100+ participants during experiment runs. Thus, we have implemented
several improvements:

Task design. In the first experiment run, tasks were designed in order to capture
textual information from participants (for EME identification and defect reports).
The research team experienced a considerable effort for manual aggregation of EME
results (HC Task 1) and defect reports (HC Tasks 2) because it was hard to extract
and analyze different spellings, acronyms, and free text information automatically
via the HC platform. Thus, we introduced a so-called output language, i.e., informal
grammars for reporting EMEs and for reporting defects. Although this change
has improved the analysis process to some extent, manual effort was required to
analyze the results because some participants did not follow the reporting grammars.
Therefore, we introduced a defect reporting user interface that guides participants in

Empirical Software Engineering Experimentation with Human Computation 211

reporting defects (e.g., by selecting relevant options). Although this setup requires
additional effort for the HC technical experts, this change pays off during the
analysis phase because the output can be analyzed automatically.

Participant feedback. In the first experiment runs, we received participant
feedback on wanting to know their individual performance during defect detection,
i.e., their effectiveness. At the beginning, it required several weeks for data analysis
to deliver this feedback to participants. By introducing guided defect detection, we
were able to inform participants via E-Mail on initial results within a couple of
hours. This fast feedback was received positively and increased the motivation for
taking part in the experiments.

Defect Validation. While we had to analyze defects with high human effort
manually in the first two experiment runs, we implemented a defect validation
task (another HC-related activity) to gain benefits of HC for defect classification
and aggregation. To keep the experiment duration similar, we skipped the EME
identification part as we use the predefined set of EMEs for the experiment runs.
Note that this additional defect validation step is based on voting of participants (and
only a subset of reported defects require manual analysis); therefore, the analysis
process was more efficient and effective.

Evaluation Platform (SQL database). All HC-related data were captured via
the HC platform including a large amount of organizational data required for
HC management, not directly relevant for analysis and interpretation. Thus, we
introduced an evaluation platform that holds relevant experimental data and external
sources (such as Google.forms questionnaire results). However, the HC technical
experts need to provide transformation and querying mechanisms to retrieve relevant
experiment information for further analysis.

8 Recommended Further Reading

Interested readers could find interesting the papers on the following topics:

• HC and related topics: An excellent introductory paper of the HC field is Quinn
and Bederson (2011), while O. Alonso (2019) presents practical considerations
for designing and implementing large-scale HC tasks. A recent overview of truth
inference mechanisms and their comparison is presented in Zheng et al. (2017).
Ethical issues related to the use of crowdsourcing platforms are discussed in Fort
et al. (2011).

• HC and its impact on scientific research in other research communities. In our
own work, we have surveyed the use and impact of HC to support research in the
communities of natural language processing (Sabou et al. 2012) and Semantic
Web (Sabou et al. 2018a, b).

• HC in software engineering. The surveys of LaToza and van der Hoek (2016)
and especially Mao et al. (2017) provide a valuable overview of crowdsourcing
to support software engineering tasks in both industrial praxis and research.

212 M. Sabou et al.

9 Conclusion

This chapter is motivated by the recent, intensified use of HC methods to solve a
variety of SE tasks (Mao et al. 2017) which implies that the traditional SE methods
are adapted to benefit from HC capabilities. Therefore, two interesting research
lines emerge for ESE. Firstly, to better understand the impact of HC on SE task
performance, e.g., task effectiveness and efficiency, there is a need for ESE studies
that compare HC-enabled SE tasks to traditional alternatives, such as illustrated in
this chapter in the area of software inspection. Secondly, HC could provide useful
capabilities for those steps in ESE studies (especially experiments) that deal with
large-scale data processing tasks (collection, cleaning, and aggregation) and are
currently hard to automate. HC seems to be mostly relevant to consider for ESE
experiments, as the tool support for case studies and surveys is likely to benefit
from HC, in general, only to a limited extent. Therefore, in this chapter, we focused
on HC as a collaboration technology mainly used during study operation and data
analysis of ESE experiments, which requires the consideration of HC methods and
tools during the experiment design. We hereby summarize the main conclusions
from the three thematic areas of the chapter.

Section 3 analyzed those ESE experiment steps that might benefit the most
from HC. We concluded that, in general, the ESE study steps experiment scoping
(E1), experiment planning (E2), and presentation and packaging (E5) are tasks that
require the close collaboration of a small group of ESE researchers and are not
likely to benefit considerably from the strengths of HC methods. However, for using
HC methods and tools during experiment operation (E3), ESE study design has to
consider HC-related aspects regarding HC method selection and HC technology
strengths and limitations. Contrary to steps E1 and E2, experiment operation (E3)
steps, such as data collection, cleaning, and aggregation, may benefit from involving
a large number of distributed online contributors that may be pre-selected to ensure
the necessary skills and motivation for these tasks. Therefore, experiment operation
(E3) can benefit significantly from HC methods and tool support both for (a) the
investigation of HC-enabled SE tasks and for (b) HC-enabled data collection.

In terms of ESE requirements, when performing an ESE experiment to compare a
traditional SE task to its HC-enabled version, the underlying HC technology should
provide capabilities for (R1) definition of the experiment plan; (R2) control of the
SE task during the experiment; (R3) measurement during experiment operation;
(R4) validation; and (R5) aggregation of experimental data. These requirements
are met by key capabilities of HC methods and technologies such as the efficient
organization of study subjects and efficient data collection. Further, HC methods
are, in general, well suited for data cleaning and aggregation. Data aggregation
with HC enables achieving better higher-level results at the cost of a higher number
of lower-level contributions, e.g., building confidence in the classification of a
defect report based on the classification results of several subjects on this defect
report. Using HC technology may require effort to provide input to HC tasks and
to organize HC tasks and integrate HC results. In an ESE experiment design, this

Empirical Software Engineering Experimentation with Human Computation 213

means to consider how to collect, clean, and aggregate data using HC, in particular,
the number of HC tasks resulting from an experiment design and the associated
resources required to conduct these HC tasks. Data interpretation will remain the
work of research experts. Therefore, it is important for an ESE researcher to
understand which ESE processes and tasks are likely to benefit from HC method
and tool support.

The core part of the chapter describes an ESE experiment for studying the
effects of HC on a model quality assurance task, showing promising results
regarding scalable defect detection performance, i.e., defect detection efficiency,
and effectiveness. In this chapter, we reflect on the changes needed to the ESE
experiment steps in order to perform this analysis. In particular, the experiment team
needs to design and implement specific tasks and the associated data, e.g., the tasks
the HC contributors should conduct, the data required to show task-specific texts to
contributors, and the data to collect during a task. HC requires the configuration of
HC tasks and workers to design and document the distribution of tasks to workers.
While HC could, in principle, be used to support many different tasks in a distributed
group, the strengths and benefits should be compared to alternative collaboration
technologies for working on the task in a distributed group. Alternative collaboration
technologies include collaborative editors in distributed office tools (e.g., Google
Docs, MS Office 365), shared databases, or file systems (e.g., Dropbox).

Acknowledgments This work was supported by the Christian Doppler Forschungsgesellschaft,
the Federal Ministry of Economy, Family and Youth, and the National Foundation for Research,
Technology and Development in Austria. We thank Marcos Kalinowski and his team for
collaboration on HC-enabled inspection.

References

Acosta M, Zaveri A, Simperl E, Kontokostas D, Flock F, Lehmann J (2018) Detecting linked data
quality issues via crowdsourcing: a DBpedia study. Semantic Web J 9(3):303–335

Alonso O (2019) The practice of crowdsourcing, vol 11. Morgan & Claypool, San Rafael, p 1
Barowy DW, Curtsinger C, Berger ED, McGregor A (2016) AutoMan: a platform for integrating

human-based and digital computation. Commun ACM 59(6):102–109
Behrend TS, Sharek DJ, Meade AW (2011) The viability of crowdsourcing for survey research.

Behav Res Method 43:800
Berrang-Ford L, Garton K (2013) Expert knowledge sourcing for public health surveillance:

national tsetse mapping in Uganda. Soc Sci Med 91:246–255
Biffl S, Halling M (2003) Investigating the defect detection effectiveness and cost benefit of

nominal inspection teams. IEEE Trans Softw Eng 29(5):385–397
Biffl S, Kalinowski M, Winkler D (2018) Towards an experiment line on software inspection with

human computation. In: Proceedings of the 6th international workshop on conducting empirical
studies in industry. ACM, pp 21–24

Brown AW, Allison DB (2014) Using crowdsourcing to evaluate published scientific literature:
methods and example. PLoS One 9:7

214 M. Sabou et al.

Ciolkowski M, Laitenberger O, Vegas S, Biff S (2003) Practical experiences in the design and
conduct of surveys in empirical software engineering. In: Conradi R, Wang AI (eds) Empirical
methods and studies in software engineering. Springer, Berlin, pp 104–128

de Boer V, Hildebrand M, Aroyo L, De Leenheer P, Dijkshoorn C, Tesfa B, Schreiber G (2012)
Niche sourcing: harnessing the power of crowds of experts. In: ten Teije A et al (eds) EKAW
2012. Springer, Heidelberg

Fagan ME (1986) Advances in software inspections. IEEE Trans Softw Eng 12(7):744–751
Fort K, Adda G, Cohen KB (2011) Amazon mechanical Turk: gold mine or coal mine? Comput

Linguist 37(2):413–420
Franklin MJ, Kossmann D, Kraska T, Ramesh S, Xin R (2011) CrowdDB: answering queries with

crowdsourcing. In: Proceedings of the international conference on management of data, pp
61–72

Fye SR, Charbonneau SM, Hay JW, Mullins CA (2013) An examination of factors affecting
accuracy in technology forecasts. Technol Forecast Soc Change 80(6):1222–1231

Gogolla M (2008) An extended entity-relationship model: fundamentals and pragmatics. Lecture
notes in computer science, vol 767. Springer, Berlin

Howe J (2006) The rise of crowdsourcing. Wired Mag 14(6):06
Jedlitschka A, Ciolkowski M, Pfahl D (2008) Reporting experiments in software engineering. In:

Shull E et al (eds) Guide to advanced empirical software engineering. Springer, London, pp
201–228

Juristo N, Moreno AM (2013) Basics of software engineering experimentation. Springer Science
& Business Media, New York

Kawrykow A, Roumanis G, Kam A, Kwak D, Leung C, Wu C, Zarour E (2012) Phylo players.
Phylo: a citizen science approach for improving multiple sequence alignment. PLoS One
7(3):e31362

Ko AJ, LaToza TD, Burnett MM (2015) A practical guide to controlled experiments of software
engineering tools with human participants. Empir Softw Eng 20(1):110–141

LaToza TD, van der Hoek A (2016) Crowdsourcing in software engineering: models, motivations,
and challenges. IEEE Softw 33(1):74–80

Mao K, Capra L, Harman M, Jia Y (2017) A survey of the use of crowdsourcing in software
engineering. J Syst Softw 126:57–84

Molléri JS, Petersen K, Mendes E (2016) Survey guidelines in software engineering: an annotated
review. In: Proceedings of the 10th ACM/IEEE international symposium on empirical software
engineering and measurement, p 58

Mortensen JM, Minty EP, Januszyk M, Sweeney TE, Rector AL, Noy NF, Musen MA (2015) Using
the wisdom of the crowds to find critical errors in biomedical ontologies: a study of SNOMED
CT. J Am Med Inf 22(3):640–648

Mortensen ML, Adam GP, Trikalinos TA, Kraska T, Wallace BC (2016) An exploration of
crowdsourcing citation screening for systematic reviews. Res Synth Methods. RSM-02-2016-
0006.R4

Neto AA, Kalinowski M, Garcia A, Winkler D, Biffl S (2019a) A preliminary comparison of
using variability modeling approaches to represent experiment families. In: Proceedings of the
evaluation and assessment on software engineering. ACM, pp 333–338

Neto CG, Neto AA, Kalinowski M, de Oliveira DCM, Sabou M, Winkler D, Biffl S (2019b) Using
model scoping with expected model elements to support software model inspections: results of
a controlled experiment. In: Proceedings of ICEIS, pp 107–118

Poesio M, Chamberlain J, Kruschwitz U, Robaldo L, Ducceschi L (2013) Phrase detectives:
utilizing collective intelligence for internet-scale language resource creation. ACM Trans
Interact Intell Syst 3(1):1–44

Quinn AJ, Bederson BB (2011) Human computation: a survey and taxonomy of a growing field.
In: Proceedings of conference on human factors in computing systems. ACM, pp 1403–1412

Runeson P (2003) Using students as experiment subjects – an analysis on graduate and freshmen
student data. In: Proceedings of the 7th EASE conference

Empirical Software Engineering Experimentation with Human Computation 215

Runeson P, Höst M (2009) Guidelines for conducting and reporting case study research in software
engineering. Empir Softw Eng 14(2):131

Runeson P, Host M, Rainer A, Regnell B (2012) Case study research in software engineering:
guidelines and examples. Wiley, New York

Sabou M, Bontcheva K, Scharl A (2012) Crowdsourcing research opportunities: lessons from
natural language processing. In: Proceedings of the international conference on I-KNOW

Sabou M, Bontcheva K, Derczynski L, Scharl A (2014) Corpus annotation through crowd-
sourcing: towards best practice guidelines. In: Proceedings of the international conference on
language resources and evaluation (LREC), pp 859–866

Sabou M, Aroyo L, Bozzon A, Qarout RK (2018a) Semantic web and human computation: the
status of an emerging field. Semantic Web J 9(3):1–12

Sabou M, Winkler D, Penzenstadler P, Biffl S (2018b) Verifying conceptual domain models with
human computation: a case study in software engineering. In: AAAI conference on human
computing and crowdsourcing

Sarasua C, Simperl E, Noy N, Bernstein A, Leimeister JM (2015) Crowdsourcing and the semantic
web: a research manifesto. Hum Comput 2(1):3–17

Snow R, O’Connor B, Jurafsky D, Ng AY (2008) Cheap and fast—but is it good?: evaluating non-
expert annotations for natural language tasks. In: Proceedings of the conference on empirical
methods in NLP, pp 254–263

Stolee KT, Elbaum S (2010) Exploring the use of crowdsourcing to support empirical studies in
software engineering. In: Proceedings of the interantional symposium on empirical software
engineering and measurement

Sun Y, Cheng P, Wang S, Lyu H, Lease M, Marshall I, Wallace BC (2016) Crowdsourcing
information extraction for biomedical systematic reviews. In: 4th AAAI conference on human
computation and crowdsourcing (HCOMP): works-in-progress track

Surowiecki J (2004) The wisdom of crowds: why the many are smarter than the few and how
collective wisdom shapes business, economies, societies and nations. Doubleday, New York

van Solingen R, Basili V, Caldiera V, Rombach HD (2002) Goal question metric (GQM) approach.
In: Encyclopedia of software engineering

von Ahn L, Dabbish L (2008) Designing games with a purpose. Commun ACM 51(8):58–67
Winkler D, Sabou M, Petrovic S, Carneiro G, Kalinowski M, Biffl S (2017a) Improving model

inspection processes with crowdsourcing: findings from a controlled experiment. In: European
conference on software process improvement. Springer, Cham, pp 125–137

Winkler D, Sabou M, Petrovic S, Carneiro G, Kalinowski M, Biffl S (2017b) Improving model
inspection with crowdsourcing. In: International workshop on crowdsourcing in software
engineering (CSI-SE), pp 30–34

Winkler D, Kalinowski M, Sabou M, Petrovic S, Biffl S (2018) Investigating a distributed and
scalable model review process. CLEI Electron J 21(1)

Wohlgenannt G, Sabou M, Hanika F (2016) Crowd-based ontology engineering with the uComp
Protégé plugin. Semantic Web J 7(4):379–398

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2012) Experimentation in
software engineering. Springer Science & Business Media, New York

Zheng Y, Li G, Li Y, Shan C, Cheng R (2017) Truth inference in crowdsourcing: is the problem
solved? VLDB Endow 10(5):541–552

Data Science and Empirical Software
Engineering

Ezequiel Scott, Fredrik Milani, and Dietmar Pfahl

Abstract Empirical Software Engineering (ESE) roots back to the 1970s and has
since then gained growing recognition as the standard approach to scientific inquiry
in the context of software engineering. Many different quantitative and qualitative
research methods have been described and supplied with guidelines and checklists
and several books have been written about good practice in ESE. With the emerging
amount of data being produced during software development, a new paradigm of
scientific inquiry has gained much attention, i.e., Data Science (DS). The goal of
this chapter is to discuss whether DS could replace traditional ESE or, if it does
not replace it, how traditional ESE could benefit from adopting DS practices—and
vice versa. In this chapter, we first give some general background information about
ESE and DS, then we describe in more detail how both paradigms are typically
used in the context of software engineering research and what are their respective
strengths and weaknesses. Finally, we illustrate with the help of an industry-driven
case example how both paradigms, ESE and DS, could benefit from each other if
used in combination.

1 Introduction

The term “Empirical Software Engineering” (ESE) has been popularized by a
community of researchers in academia and industry that roots back to the 1970s
when Vic Basili at the University of Maryland started a long-term research program
that resulted in methods and frameworks such as the Goal-Oriented Measurement
(GQM) (Basili et al. 1994) method for designing and using proper measurement
systems, the Experience Factory (EF) (Basili et al. 2001) for systematic reuse of
products, processes, and models, and the Quality Improvement Paradigm (QIP)
(Basili 1985) for systematic improvement of processes and products. Much of

E. Scott · F. Milani · D. Pfahl (�)
Institute of Computer Science, University of Tartu, Tartu, Estonia
e-mail: ezequiel.scott@ut.ee; fredrik.milani@ut.ee; dietmar.pfahl@ut.ee

© Springer Nature Switzerland AG 2020
M. Felderer, G. H. Travassos (eds.), Contemporary Empirical Methods in Software
Engineering, https://doi.org/10.1007/978-3-030-32489-6_8

217

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32489-6_8&domain=pdf
mailto:ezequiel.scott@ut.ee
mailto:fredrik.milani@ut.ee
mailto:dietmar.pfahl@ut.ee
https://doi.org/10.1007/978-3-030-32489-6_8

218 E. Scott et al.

the work inspired by Basili and his colleagues worldwide focused on quantitative
approaches (Boehm et al. 2010).

A broader view on what constitutes empirical research was introduced into
the ESE community under the label “Evidence-Based Software Engineering”
(Kitchenham et al. 2004) by promoting the idea that qualitative methods constitute
an important complement to purely quantitative methods. This led to an advanced
and broader understanding of the essence of ESE (Shull and Singer 2007) and
triggered the publication of several related guidelines (Kitchenham et al. 1995;
Kitchenham and Charters 2007; Petersen et al. 2008; Runeson and Höst 2009;
Seaman 1999).

While the view on ESE has become more comprehensive and inclusive during the
past 20 years, a new science has emerged, i.e., “Data Science” (DS). There exists
no agreement on how exactly the field of DS is defined. In this chapter, we use a
definition given by Chikio Hayeshi as one possible point of reference. According
to Hayeshi, DS is a “concept to unify statistics, data analysis, machine learning
and their related methods” in order to “understand and analyze actual phenomena”
with data (Hayashi 1998). With the new capabilities of modern computer hardware,
the emergence of cloud computing, and its capabilities of handling large volumes
of data, DS has become key to many fields of research, for example, in medicine
and bioinformatics, in natural language processing, in robotics, and in image
recognition. In particular in the field of medicine, DS has shown to be useful in the
context of DNA analysis, interpretation of CT scans, personalized healthcare, and
many other applications. This made software engineers wonder whether DS could
not be similarly successfully applied to improve software engineering practice.

The goal of this chapter is to discuss whether DS could replace traditional
ESE or, if it does not replace it, how traditional ESE could benefit from adopting
DS practices—and vice versa. In Sect. 2, we first give some general background
information about ESE and DS. Then, in Sect. 3, we describe in more detail how
both paradigms are typically used in the context of software engineering research
and what are their respective strengths and weaknesses. In Sect. 4 of this chapter
we describe with the help of a case study how we think ESE and DS could benefit
from each other when used in proper combination in a typical research setting of an
industry-driven case study. Finally, in Sect. 5 we provide pointers for further reading
and, in Sect. 6, we conclude the chapter.

2 Background

While the view on ESE has broadened during the past 20 years, all approaches
that are usually subsumed under this label have one crucial aspect in common, i.e.,
goal-orientation. The reason for the strong focus on goal-orientation in the ESE
community originally resulted from the problem that either there was no data at

Data Science and Empirical Software Engineering 219

all available to understand and analyze real-world phenomena or the data that had
been collected was useless, e.g., due to lack of quality, lack of completeness, or
lack of consistency, in order to address a problem of interest. If clear goals for an
understanding, evaluation, improvement, or problem-solving activity are defined, it
is much easier to decide what data should be collected, how this data should be
collected, and when it should be collected, in order to keep the collection effort low
and focused. If, instead, existing data was used to answer a question related to a
newly defined goal, typically, it turned out that a proper analysis was not feasible
due to the fact that the collection of available data had been done in an overly
opportunistic way (i.e., whatever was easy/cheap to collect was collected) and thus
resulted in useless data cemeteries.

In order to guide data collection, goal-oriented methods such as Goal/Ques-
tion/Metric (GQM), Quality Improvement Paradigm (QIP), and the Experience
Factory (EF) organization were introduced. In particular, the process of setting
up measurement (or rather, data collection) programs following the GQM method
were precisely described and applied in industry despite its cost and administrative
overhead (Briand et al. 1996). What is interesting about GQM is its flexibility
with regard to the definition of goals (i.e., understanding, evaluation, prediction,
improvement) and its strong demand for combining top-down definition of metrics,
starting out from the defined goals, with bottom-up development of models from the
collected data used to answer the questions related to the defined goals. One could
argue that this combination of first top-down data definition and collection and then
bottom-up data analysis and interpretation is the essence of ESE.

In the past 20 years, the situation with regard to availability of data has
dramatically changed. Data is everywhere and can be collected automatically and
cheaply.

Therefore, it is not surprising that DS has moved into the focus. One char-
acteristic of DS is that it starts out with data. Often, data is simply explored in
order to detect “interesting” phenomena using a constantly growing machinery of
sophisticated machine learning techniques. Exploration is the standard case when
unsupervised learning is employed. When supervised learning is employed, often
prediction is the goal. What is similar for both supervised and unsupervised learning
is that data is not specifically searched for or created but existing data is being used
and models are built using advanced feature identification/selection processes to
build best performing models. The question is now: Can DS achieve the same or
even better results than ESE? If this is the case, can it do so at a lower cost? Is
there perhaps not even a need to first define precise and measurable goals and then
select the data and do an analysis to achieve the defined goal? In order to prepare
the ground for answering this question, we present in the next section a framework
that we will use to illustrate how we think a sensible combination of ESE and DS
could look like.

220 E. Scott et al.

3 Combining ESE with DS

Analyzing data in order to discover new insights can be cumbersome, especially
if we are dealing with real-life datasets. For this reason, the Knowledge Discovery
from Data (KDD) process (Fayyad et al. 1996) has been proposed as an iterative
methodology to extract knowledge from data. The workflow includes several phases,
ranging from data selection to interpretation and evaluation of the results. One can
argue that this workflow is related to an inductive approach to research. In this
approach, a researcher starts with first setting a goal or research interest, and then
continues with the collection of data that is relevant to that goal. Once data have
been collected, the researcher will then start the analysis and look for patterns in
the data. The ultimate goal of the researcher is then to develop a theory that could
explain those patterns. Basically, this approach involves moving from data to theory,
or from the specific to the general (Blackstone 2012). Typically, this is what is done
in DS.

When researchers use the opposite approach, i.e., the deductive approach, they
start with a theory that they find compelling and select a set of hypotheses to
be tested. During this process, researchers study what others have done and read
existing theories of the phenomena they are studying. Then, researchers can either
select hypotheses that emerge from those theories or elaborate new ones based on
certain assumptions. In a next step, researchers collect the data that will allow them
to test the selected hypotheses. That is, they move from a more general level to
a more specific one (Blackstone 2012). While the deductive approach to scientific
inquiry has a long tradition in science, it is rarely used in its pure form in ESE.
This might be due to the fact that the field of software engineering still seems
to have a lack of theories (Hannay et al. 2007). Nevertheless, there exist cases
where specific goals might have been derived from theory, the theory often coming
from another field, e.g., organization science or management science. Due to the
underlying mindset one could argue that ESE at least mimics the deductive approach
to research inquiry.

In general, there is not one single way to do research, and many examples of
research exist that have successfully applied one or another approach. Usually, it is
recommended to use a complementary approach (Blackstone 2012). This comple-
mentary approach has been used in many fields of science, and software engineering
should not be the exception. Although it might seem to be oversimplifying reality,
in the rest of this chapter, we treat ESE as a representative of a predominantly
deductive approach, while we treat DS as a representative of a predominantly
inductive approach. Our main goal is to demonstrate that the two approaches can
benefit from each other if combined properly.

Before we illustrate with the help of an example how we experienced the
advantage of using the complementary approach to research, i.e., combining
induction (DS) with deduction (ESE), in the next section, we would like to provide
a framework that will help us discuss our example case.

Data Science and Empirical Software Engineering 221

In 1971, W. L. Wallace published a book titled “The Logic of Science in
Sociology” (Wallace 1971). This book presented the so-called Wallace Wheel of
the scientific method.

The “Wallace Wheel” contains four key elements, i.e., theories, hypotheses
(research questions), observations, empirical generalizations (laws). The interesting
aspect is that there is no specific starting point for scientific inquiry. For example,
a deductive approach would start out with a theory, then derive hypotheses, then
make observations in the empirical world, analyze these to derive laws, and then
integrate the laws into the theories that were used as a starting point. Integration of
a law could mean that it is added to a theory (i.e., complementing the existing laws),
or that it is replacing an existing law, or that it is used to update/correct/evolve an
existing law.

The inductive approach, on the other hand, would start out with observations,
then generate laws, then form a theory, and only then come up with hypotheses that
would trigger a new round of data collection and analysis.

In the upper part of Fig. 1 we present a simplified version of the “Wallace Wheel,”
only showing the four key elements in the upper part of the figure, and added
simple decision-tree that is supposed to help understand better the possibilities that
a researcher may encounter when starting to analyze empirical observations.

Theories Data

Unexpected
outcomes

Lack of data
quality

Unexpected
outcomes without

explanation

Unexpected
outcomes with

explanation

Expected
outcomes

Goals

Analysis
results

24

3

3A 3B

1

3B1 3B33B2

Simplified version of Wallace Wheel

Fig. 1 Proposed steps for analyzing data

222 E. Scott et al.

In order to adapt the vocabulary used by Wheeler to the context of soft-
ware engineering, we use the following terminology in Fig. 1: “goals” (replacing
“hypotheses/research questions”), “data” (replacing “observations”), and “analysis
results” (replacing “laws/empirical generalizations”). We keep the term “theories.”
The numbers next to the key elements of the cycle only indicate the order in which
the elements play a role in a scientific inquiry. That “goal” is labeled with “1” does
not necessarily mean that a scientific inquiry starts with a goal. It might as well start
with a theory (induction) or with data (deduction).

A goal (1) helps to focus the scientific inquiry and thus helps define the scope and
direction of a study. In addition, a goal has to be defined precisely enough that it is
possible to decide, after data analysis, whether it has been achieved or not. In other
words, ideally, a proper goal is defined in such a way that it can be expressed in terms
of variables that are measurable. Ideally the goals would have been derived from a
theory (and stated in the form of hypotheses) but, as stated above, a theory might
not always be readily available in the field of software engineering and its subfields.
Once one or several goals have been set, researchers define the kind of data (2) they
need to analyze in order to tackle the goal. In case data is not yet readily available,
this may require the definition of data collection procedures. If data already exists,
procedures for selecting and extracting the appropriate data may have to be defined
and applied. Once the appropriate data is available, researchers must analyze the
data. If the data is quantitative, this may involve the creation of descriptive statistics
and follow-up in-depth analyses. If the data is qualitative, this may involve coding
and follow-up analyses. Whatever analyses are applied, there will be results (3).
Often the scientific inquiry stops at the point when analysis results are found and
can be used to check whether the goals have been achieved. Ideally, however, one
goes one step further and tries to generate a theory (4) from the results or, at least,
uses the results to confirm, refute, or modify an existing theory.

What are now the characteristics of ESE and DS approaches to scientific inquiry?
ESE typically starts out with clearly defined goals (1), then collects the appropriate
data (2), and then conducts the analyses producing results (3) that will help to decide
whether the goals have been achieved. This cycle may be conducted once, several
times, or continuously.

DS typically starts out with a given set of data (2). There may or may not exist a
precisely defined (measurable) goal. In the case where there is no measurable goal
defined, the task is often to explore the data in order to find “something interesting”
as a proxy for results related to a specific goal (3).

For both ESE and DS in the context of software engineering, theories do not yet
play a big role although they have attracted more attention during the last 10–15
years (Hannay et al. 2007).

Once the data has been analyzed, there are two possible outcomes (items 3A and
3B in 1). Either the results are as expected or they are unexpected. Typically, an
explicit expectation exists when a goal has been formulated as a precise hypothesis
that can be tested statistically using the available data. There might also be weaker
forms of expectations of a specific result of the data analysis. Even if the goal of
the analysis is simply to understand or describe a phenomenon, researchers often

Data Science and Empirical Software Engineering 223

expect at least to find something interesting. If the outcome of the data analysis is
not confirming a stated hypothesis or an explicit (or even implicit) expectation, then
we speak of an unexpected result. Unexpected results can be of different nature. An
unexpected result might either come with an explanation from the analysis and thus
help evolve an existing theory (3B1) or without explanation (3B2). In the latter case,
it is most probably that the next round in the scientific inquiry would try to find an
explanation and thus help establish a new or evolving an existing theory. Another
possibility is that the analysis result is not as expected because it turns out that the
data quality is not sufficient (3BC) to achieve an (explicit or implicit) goal, e.g.,
because the data is incorrect, incomplete, inconsistent, or simply insufficient.

Reflecting upon the different mindsets in ESE and DS, i.e., with ESE essentially
being goal-driven while DS being essentially data-driven, one could argue that the
goal-driven approach has the advantage of having control over the data that is been
collected and analyzed but the disadvantage of high planning and data collection
cost, while the data-driven approach has the advantage of small data-preparation
cost but the disadvantage of a higher risk that data is not suitable for specific goals.

In order to take advantage of the new analysis techniques available in DS,
and to balance out the disadvantages of each individual approach, we suggest to
combine the goal-driven (ESE) with the data-driven (DS) approach, and thus the
predominantly deductive mindset with the predominantly inductive mindset. We
illustrate with the help of an example study how this could work.

4 Example Study

In the following, we describe an illustrative example of how the goal-driven (ESE)
and the data-driven (DS) approach can be combined. The example is based on
preliminary results taken from an ongoing collaboration project with a software
company in Estonia. The project started when we were given a dataset containing
information about the execution of developers’ tasks. This dataset was directly
extracted from the issue tracker and contains two sources of information. On the
one hand, it describes 1 year of issue reports stored in the issue tracker. On the
other hand, the dataset contains a log of the sequence of tasks (linked to the issue
reports) performed by the developers and the time they spent on each one. In total,
the dataset describes 2501 issues reported by 92 different developers.

As the project evolved, we went through different steps that have been organized
in iterations. In the following, we describe each iteration and their main components
and how they are related to the proposed steps for analyzing data (see Fig. 1).
Finally, Table 1 summarizes the iterations.

224 E. Scott et al.

Table 1 Summary of the steps applied during the example case study

Iteration 1 Iteration 2 Iteration 3

1. Goal ? Precise Precise

2. Data Yes* Yes Yes

3. Analysis result Descriptive statistics Task-switching vs. bugs Task-switching vs.
productivity

4. Theory x Seven wastes in lean
software development*

Operational waste
task-switching*

The starting point of each iteration is marked with (*)

4.1 First Iteration

At the beginning of the project, there was no precisely defined (measurable) goal to
guide the research to be done. We had just a generic vision about providing insights
from the data that might help to improve the company’s software development
process. Therefore, the project started with a set of observations (raw data) (see
Fig. 1, element 2). These observations were directly extracted from the popular
JIRA1 issue tracker, without any specific data collection procedure driven by goals
or hypotheses to test.

During the analysis phase of the dataset (see Fig. 1, element 3), we described the
data using descriptive statistics. The dataset consists of 1 year of issue reports that
were created from 02 Jan 2018 to 28 Dec 2018. In total, 2501 issue reports with their
title, descriptions, metadata, and change records are included in the dataset. The
issue reports were created by 92 different developers and the most important issue
types are Improvement (1110; 44.38%), Bug (732; 29.27%), Task (419; 16.75%),
New Feature (188; 7.52%), and Other (52; 2.08%).

In addition, the dataset contains records of the time spent on the issue reports.
These records are self-reported by the developers and stored in a log (i.e., worklog)
by using a JIRA plugin named Tempo.2 Tempo allows developers to track the
amount of time they spend on each task, which complements the existing infor-
mation of the issue reports.

1945 of 2501 issue reports have entries in the worklogs. These entries were
recorded by 50 developers. In total, the worklogs had 26,710 entries. The mean
tracked time per entry is 1.98 h with values ranging from 0.004 to 13 h. Figure 2
shows the distribution of the tracked working hours, where it can be seen that most
of the entry values are lower than 1 h.

Once the data was described, we discussed how to make the most of it. Since
the dataset contains a reasonable amount of information about the tasks (issues)
executed by the developers and the time spent, we decided to investigate if there is
waste involved in the execution of those tasks. This decision was partly driven by

1JIRA web site—https://www.atlassian.com/software/jira.
2Tempo website—https://www.tempo.io/.

https://www.atlassian.com/software/jira
https://www.tempo.io/

Data Science and Empirical Software Engineering 225

Fig. 2 Histogram of the
working hours recorded in the
worklog

the fact that the company in general tries to follow a lean development approach. We
will cover the selection of a suitable theory related to waste in the following section.

4.2 Second Iteration

The starting point of the second iteration corresponds to the element 4 in Fig. 1:
Theories.

We sought for a theory, bearing in mind the characteristics of the company and
the software development process that the teams said they were using. We were
interested in waste analysis in lean software development processes. The theory of
lean development (or rather production) originally introduced seven types of wastes
that have been adapted for software development (Poppendieck and Poppendieck
2003; Morgan and Liker 2006). The seven wastes, tasks switching, defects, waiting,
motion, extra-processes, partially done-work, and extra-features, exist in most
organizations and therefore should be reduced to improve efficiency.

We decided to measure waste with the goal to identify where it originates in the
software development process and, thereby, help us find starting points to reduce
waste in the future. Having measurements showing the current status is important to
determine potential improvement potential, i.e., opportunities where the waste can
be reduced/eliminated. However, these measurements are not commonly measured
and tracked by companies. In a multiple case study, Alahyari et al. (2019) asked
14 companies if they measure waste and found that the majority do not have any
measurements in place and does not measure waste.

Among the different sources of waste, task-switching is considered to be the
most important (Alahyari et al. 2019). Every time developers switch between tasks,
a significant switching time is incurred before they get their thoughts into the flow of
the new task. This amount of time is considered as waste that should be eliminated
or, at least, reduced.

226 E. Scott et al.

Once the theoretical background for our analysis had been determined, the
definition of the goals and hypotheses to test (see Fig. 1, element 1) become much
easier. We defined the following measurable goal:

Goal: To measure developers’ context switching and determine if it is positively
correlated with the number of reported bugs.

Correlation is calculated using the Spearman’s correlation coefficient (r), where
r > 0.5 indicates a correlation meriting further investigation.

Measuring context switching is not trivial since it requires to operationalize the
concept. For example, the temporal resolution (e.g., days, weeks, months) and the
dimension of analysis (e.g., project, tasks) are important factors to be considered
(Vasilescu et al. 2016). In this project, we decided to focus on daily temporal
resolution and the task dimension in order to get insights at the finest level of
granularity. Then, the worklog collected from Tempo represents the sequence of
ongoing tasks of each developer. We proposed three alternatives to measure context
switching by analyzing this data:

1. Every time a developer changes tasks, there is a context switch involved that
generates waste.

2. Every time a developer changes tasks and the developer is already worked on the
task (repeated task), there is a context switch involved that generates waste.

3. Every time a developer changes tasks and the developer did not complete the task
(incomplete task), there is a context switch involved that generates waste.

After performing a preliminary analysis of the data by following the first
alternative, we observed that developers incur in context switching on a daily basis.
Figure 3 shows the average number of daily switches per developer, which ranges
from 2 to 6 task switches. In addition, we calculated the maximum number of task
switches per day and developer, and we observed that it can reach a value of 16
switches per day.

When analyzing the distribution of context switching over time by considering
the three alternatives, one can see that there is no relevant difference among
the different values obtained: the three different measurements follow the same
pattern over time. Figure 4 illustrates this by showing the average number of

Fig. 3 Average number of daily switches per developer

Data Science and Empirical Software Engineering 227

Fig. 4 Average number of daily switches per developer

Fig. 5 Average number of daily switches per developer vs. average number of bugs

context switching per developer over time. In order to simplify the analysis and the
visualization, we use weekly samples to calculate the average, which is represented
by the dots in the figure. We concluded that using the three metrics for calculating
context switching does not add any practical value. Therefore, we opt to use the
simplest one: every time a developer changes tasks, there is a context switch
involved that generates waste.

During the analysis phase (see Fig. 1, element 3), we analyzed task-switching
with regard to the reported bugs. Figure 5 shows the number of task switches and
the number of reported bugs over time. For simplicity, we aggregated the results
using the weekly average number of occurrences (bugs or switches). It can be seen
from the figure that the number of bugs reported increased sharply in October. This
clearly indicates that a relevant event occurred at that time but the current data is not
enough to tell us what happened.

We analyzed the correlation between both time series by calculating the Spear-
man rank-order correlation coefficient (r). There was no correlation between the
weekly average number of task switches and the weekly average number of reported
bugs (r = −0.04). Moreover, if we only consider the period before the number of
bugs peaked (from Jan to Oct 2018), the variables are not correlated (r = 0.06).
These results are then unexpected (see Fig. 1, element 3B), since we expected a
correlation r > 0.5.

228 E. Scott et al.

We concluded that we should go back to the data collection due to the lack of
data quality of the dataset (see Fig. 1, point 3B3). The current dataset does not
have enough information to explain the increased number of bugs in October. We
decided that we should define new strategies that would help us explain the current
situation. For example, interviews with the developers could be conducted to get a
better understanding of the observed results.

4.3 Third Iteration

The starting point of the third iteration is element 4 in Fig. 1. During this iteration,
another theory was explored. This theory complements the one studied during the
second iteration by increasing the understanding of task-switching.

According to Clark and Wheelwright (1993), the time individuals (i.e., develop-
ers) spend on value-adding tasks drops rapidly when the individual works on more
than two tasks. Figure 6 shows the described effect. The same idea was explored
by McCollum and Sherman (1991). In their work, the authors arrived to similar
conclusions that working on two tasks at the same time seemed to be optimal, while
working on one or three tasks may still not be problematic.

In this context, we defined the following goal (see Fig. 1, element 1):

Goal: to measure productivity in terms of value-adding tasks (issues).

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5

Pe
rc

en
t o

f t
im

e
sp

en
t o

n
va

lu
e-

ad
di

ng
 ta

sk
s

Number of concurrent assigned tasks

Effect on multi-tasking on productivity

Fig. 6 Effect of multitasking on productivity as reported by the experimental results of Clark
and Wheelwright (1993). Illustration adapted from Michael Cohn’s book “Agile Estimating and
Planning” (Cohn 2005)

Data Science and Empirical Software Engineering 229

Hypothesis: The percentage of time spent on value-adding tasks reaches their
optimal value when the number of tasks is between two and three.

As for the data collection phase (see Fig. 1, element 2), we used the same dataset
with information about issues and worklogs. There was no additional data collection
performed in this iteration.

During the analysis phase (see Fig. 1, element 3), we analyzed context switching
with regard to productivity in terms of value-adding tasks (issues). The concept of
value-adding tasks was operationalized as follows: value-adding tasks are tasks that
were completed (e.g., their status is ‘Closed’). That is, if a developer worked on a
task on a given day and the task was not closed, then the task is not adding value. In
contrast, if a developer worked on a task and the task was closed the same day, then
the task is consider as value-adding.

On average, each developer works on 2.65 tasks every day, spending 5.45 h in
total. Out of those tasks, each developer resolve 0.14 tasks every day, which means
that 0.28 h are spent on value-adding tasks every day. The percentage of time spent
on value-adding tasks is calculated as the total time spent on value-adding tasks over
the total working time. On average, the percentage of daily time spent on value-
adding tasks is 5.13%.

Figure 7 shows the results obtained from the analysis. We observed that the
highest percentage of time spent on value-adding tasks is obtained by developers
having between 3 and 4 daily task switches on average. Although these results are
not exactly the same than the reported by Clark and Wheelwright (1993), the results
are similar: the percentage drops rapidly when developers works on more than four
tasks.

These results are subject to certain limitations. Among them, we can mention
two as the most important ones. Firstly, there can be more value-adding tasks that
were not added to the issue tracker. Secondly, developers may spend more than 1
day working on it. These limitations indicate that, at this point, our results are still
preliminary and further studies are needed to mitigate these issues.

Fig. 7 Results of the effect
of task-switching on
productivity for the case
study. The line shows the
percentage of time spent on
value-adding tasks, whereas
the bars indicate the number
of developers on each bin.
The bins in the x-axis show
the range of task-switching
that developers have on a
daily average

230 E. Scott et al.

Takeaways

• The process of analyzing data can be described as an iterative process.
• Descriptive statistics can help us to understand the underlying properties

of the data and to limit the scope of analysis.
• Theories and related work are fundamental to motivate the research, define

research goals, and contribute to the body of knowledge.
• Often, there are several alternatives to operationalize the constructs we

are interested in. We must be aware that each alternative involves a
set of assumptions, and in consequence, threats to construct validity are
introduced.

• When several alternatives to operationalize constructs are considered, it
is recommended to apply the one that requires the smallest number of
assumptions (Occam’s razor).

• The lack of data quality in a dataset can lead to misleading conclusions.
Different strategies (e.g., having interviews with the involved developers)
are recommended to support quantitative results.

5 Recommended Further Reading

Other chapters in this book that are tightly related to this chapter include the
following:

• In their chapter titled “The Evolution of Empirical Methods in Software Engi-
neering,” Michael Felderer and Guilherme Travasso describe the various flavors
of empirical software engineering research and discuss challenges such as
the lack of an agreed taxonomy and an unclear research agenda within the
community of empirical software engineers (see chapter “The Evolution of
Empirical Methods in Software Engineering”).

• In their chapter titled “Guidelines for Conducting Software Engineering
Research,” Klaas-Jan Stol and Brian Fitzgerald describe the ABC framework
as a means to structure knowledge seeking research (see chapter “Guidelines
for Conducting Software Engineering Research”). This chapter evolves an older
publication by the same authors (Stol and Fitzgerald 2018).

Good introductory sources describing the methods and discussing the evolution
of ESE are the following books:

• Although already more than 10 years old, the book titled “Empirical Software
Engineering Issues—Critical Assessment and Future Directions” edited by Basili
et al. provides an interesting summary of discussions conducted by leading

Data Science and Empirical Software Engineering 231

researchers of the empirical software engineering community during a workshop
held at Dagstuhl Castle in June 2006 (Basili et al. 2007).

• The book titled “Guide to Advanced Empirical Software Engineering” edited by
Shull et al. provides an overview of the most important research methods used in
empirical software engineering (Shull and Singer 2007).

To get an introduction into the wide field of DS, we recommend the following
literature as a starting point:

• An introduction into the basic concepts of DS can be found in the paper titled
“What is Data Science? Fundamental Concepts and a Heuristic Example” by
Hayashi. The paper is contained in a conference proceeding that in spite of its
age gives a multi-facetted introduction into standard problems of DS with special
focus on classification problems (Hayashi et al. 1998).

• While there exist many books on various topics of DS we recommend to the
reader the book series written by Menzies et al. (2014), Bird et al. (2015), and
Menzies et al. (2016) as their books not only describe DS techniques in an easy-
to-understand way but also provide many application examples in the context of
software engineering.

There does not exist any specific literature that would discuss the combination
of or relationship between ESE and DS. However, in a recent article, Fitzgerald and
Stol coin the term “continuous software engineering” (Stol and Fitzgerald 2017).
The authors describe a road map and agenda towards creating software development
systems that continuously self-improve based on a constant stream of feedback in
the form of data. In our opinion, their vision is a good example of creating synergy
from a smart combination of ESE and DS.

6 Conclusion

In this chapter we discussed whether DS could replace traditional ESE or, if it does
not replace it, how traditional ESE could benefit from adopting DS practices—and
vice versa. Our main assumption was that the most critical disadvantage of ESE is
its potentially high data collection cost, while the disadvantage of DS is that, in a
typical case, goals are not stated precisely enough to serve as a yardstick for deciding
whether the conducted data analyses actually helped in achieving the vaguely stated
goal. While it is not always true that ESE and DS have the stated downsides in a
specific research situation, we think that it is often enough the case to spend some
thinking on how to combine the two paradigms in order to generate synergy. With
the help of an industry-driven case study we illustrated the ever more frequently
occurring situation that a company has data but no clear (or rather precise) goals of
what exactly the data analysis should achieve. In such a situation, we suggest that
one starts out with the vague goal and does some descriptive data analysis which is
fed back to the case stakeholders using the results to sharpen the goal definition to a

232 E. Scott et al.

degree that it allows to define more precise research questions (or even hypotheses
derived from an existing theory) for which some deeper analysis is conducted on
the given data. It may or may not turn out that additional data needs to be collected
or another round of goal refinement or adjustment must be conducted.

In conclusion, we believe that ESE and DS have many characteristics in common.
Both paradigms should not be considered as contradictory but rather constitute
complementary approaches that can benefit from each other in cases where much
data is available and specific research goals have not yet been formulated.

Acknowledgements This research was partly supported by the institutional research grant IUT20-
55 of the Estonian Research Council and the Estonian Centre of Excellence in ICT Research
(EXCITE).

References

Alahyari H, Gorschek T, Svensson RB (2019) An exploratory study of waste in software develop-
ment organizations using agile or lean approaches: a multiple case study at 14 organizations.
Inf Softw Technol 105:78–94

Basili VR (1985) Quantitative evaluation of software methodology. In: Keynote address, proceed-
ings of the first pan pacific computer conference, Melbourne, pp 379–398

Basili VR, Caldiera G, Rombach DH (1994) The goal question metric approach. Wiley, Hoboken,
pp 528–532

Basili VR, Caldiera G, Rombach HD (2001) The experience factory. In: Marciniak J (ed)
Encyclopedia of software engineering. Wiley, Hoboken

Basili VR, Rombach HD, Schneider K, Kitchenham B, Pfahl D, Selby RW (2007) Empirical soft-
ware engineering issues. Critical assessment and future directions. In: International workshop,
Dagstuhl Castle, June, 2006. Revised Papers. LNCS 4336, Springer, Berlin, pp 26–30

Bird C, Menzies T, Zimmermann T (2015) The art and science of analyzing software data. Elsevier,
Amsterdam

Blackstone A (2012) Principles of sociological inquiry–Qualitative and quantitative methods. BC
open textbook collection, Open Textbook Library

Boehm B, Rombach HD, Zelkowitz MV (2010) Foundations of empirical software engineering:
the legacy of Victor R, 1st edn. Springer; Basili Publishing Company, Berlin

Briand LC, Differding CM, Rombach HD (1996) Practical guidelines for measurement-based
process improvement. Softw Process Improv Prac 2:253–280

Clark KB, Wheelwright SC (1993) Managing new product and process development: text and
cases. The Free Press, New York

Cohn M (2005) Agile estimating and planning. Pearson Education, London
Fayyad U, Piatetsky-Shapiro G, Smyth P (1996) From data mining to knowledge discovery in

databases. AI Mag 17:37–37
Hannay J, Sjøberg D, Dybå TA (2007) Systematic review of theory use in software engineering

experiments. IEEE Trans Softw Eng 33:87–107
Hayashi C (1998) What is data science? Fundamental concepts and a heuristic example. In:

Hayashi C, Yajima K, Bock H-H, Ohsumi N, Tanaka Y, Baba Y (eds) Data science,
classification, and related methods. Studies in classification, data analysis, and knowledge
organization. Springer, Berlin, pp 40–51

Hayashi C, Yajima K, Bock H-H, Ohsumi N, Tanaka Y, Baba YDS (eds) (1998) Classification, and
related methods, studies in classification, data analysis, and knowledge organization. Springer,
Berlin

Data Science and Empirical Software Engineering 233

Kitchenham B, Charters S (2007) Guidelines for performing systematic literature reviews in
software engineering. Technical report, EBSE-2007-01, School of Computer Science and
Mathematics, Keele University

Kitchenham B, Pickard L, Pfleeger SL (1995) Case studies for method and tool evaluation. IEEE
Softw 12(4):52–62

Kitchenham BA, Dybå T, Jorgensen M (2004) Evidence-based software engineering. In: Proceed-
ings of the 26th international conference on software engineering (ICSE ’04), pp 273–281

McCollum JK, Sherman JD (1991) The effects of matrix organization size and number of project
assignments on performance. IEEE Trans Eng Manag 38(1):75–78

Menzies T, Kocaguneli E, Turhan B, Minku L, Peters F (2014) Sharing data and models in software
engineering. Morgan Kaufmann, Burlington

Menzies T, Williams L, Zimmermann T (2016) Perspectives on data science for software
engineering. Morgan Kaufmann, Burlington

Morgan JM, Liker JK (2006) The Toyota product development system: integrating people, process
and technology. Productivity Press, New York

Petersen K, Feldt R, Mujtaba S, Mattsson M (2008) Systematic mapping studies in software
engineering. In: Visaggio G, Baldassarre MT, Linkman S, Turner M (eds) Proceedings of
the 12th international conference on evaluation and assessment in software engineering
(EASE’08). BCS Learning & Development Ltd., Swindon, pp 68–77

Poppendieck M, Poppendieck T (2003) Lean software development: an agile toolkit: an agile
toolkit. Addison Wesley, Boston

Runeson P, Höst M (2009) Guidelines for conducting and reporting case study research in software
engineering. Empir Softw Eng 14(2):2009

Seaman CB (1999) Qualitative methods in empirical studies of software engineering. IEEE Trans
Softw Eng 25(4):1999

Shull FJ, Singer J (2007) Sjøberg, i. In: ‘K’, guide to advanced empirical software engineering.
Springer, Berlin

Stol K, Fitzgerald BC (2017) Continuous software engineering: a roadmap and agenda. J Syst
Softw 123:176–189

Stol K, Fitzgerald B (2018) The ABC of software engineering research. ACM Trans Softw Eng
Methodol 27:3

Vasilescu B, Blincoe K, Xuan Q, Casalnuovo C, Damian D, Devanbu P, Filkov V (2016) The sky is
not the limit: multitasking across GitHub projects. In: IEEE/ACM 38th international conference
on software engineering (ICSE). IEEE, Piscataway, pp 994–1005

Wallace WL (1971) The logic of science in sociology. Aldine, New York

Optimization in Software Engineering:
A Pragmatic Approach

Günther Ruhe

Abstract Empirical software engineering is concerned with the design and analysis
of empirical studies that include software products, processes, and resources.
Optimization is a form of data analytics in support of human decision-making.
Optimization methods are aimed to find best decision alternatives. Empirical studies
serve both as a model and as data input for optimization. In addition, the complexity
of the models used for optimization triggers further studies on explaining and
validating the results in real-world scenarios. The goal of this chapter is to give
an overview of the as-is and of the to-be usage of optimization in software
engineering. The emphasis is on a pragmatic use of optimization, and not so
much on describing the most recent algorithmic innovations and tool developments.
The usage of optimization covers a wide range of questions from different types
of software engineering problems along the whole life cycle. To facilitate its
more comprehensive and more effective usage, a checklist for a guided process is
described. The chapter uses a running example Asymmetric Release Planning to
illustrate the whole process. A Return-on-Investment analysis is proposed as part
of the problem scoping. This helps to decide on the depth and breadth of analysis
in relation to the effort needed to run the analysis and the projected value of the
solution.

1 Introduction

The famous Aristotle (384 to 322 BC) is widely attributed with saying It is the mark
of an educated mind to rest satisfied with the degree of precision which the nature
of the subject admits and not to seek exactness where only an approximation is
possible (Lucas and McGunnigle 2003). Applying Aristotle’s saying to software
engineering means that we need to understand the problem first, its nature and

G. Ruhe (�)
Department of Computer Science, University of Calgary, Calgary, AL, Canada
e-mail: ruhe@ucalgary.ca

© Springer Nature Switzerland AG 2020
M. Felderer, G. H. Travassos (eds.), Contemporary Empirical Methods in Software
Engineering, https://doi.org/10.1007/978-3-030-32489-6_9

235

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32489-6_9&domain=pdf
mailto:ruhe@ucalgary.ca
https://doi.org/10.1007/978-3-030-32489-6_9

236 G. Ruhe

degree of uncertainty, before we start running any sophisticated solution algorithm.
In this chapter, we explore the usage and usefulness of optimization techniques in
software engineering. We take a pragmatic perspective and propose a model looking
at the Return-on-Investment and provide directions for future research in this field.

The purpose of optimization is insight rather than numbers (Geoffrion 1976).
What counts is utilizing insight for making decisions. Software development and
evolution are full of decisions to be made on processes, resources, artifacts,
tools, and techniques occurring at the different stages of the life cycle. Some of
these decisions have a strong impact on the success of the project. However, the
information available for doing that is typically incomplete, imprecise, and even
contradictory.

The paradigm of software engineering decision support (Ruhe 2002) emphasizes
the decision-centric nature of software engineering. It outlines how different meth-
ods including modeling, measurement, simulation as well as analysis and reasoning
can be used to support human decision-making. Optimization is another piece of
that decision support agenda. Looking for the best possible item, artifact, process,
action, or plan is tempting and a natural desire, but it is not automatically clear what
that actually means. Part of the difficulty is that decisions typically are in the space
of multiple criteria: Improving in one direction typically requires compromising
against another criteria. In other cases, the data and information available are vague
or even contradictory. Finally: To what extent decisions are based on rationality?
Software development is a creative and human-centered process, and humans do
not necessarily act based on rational arguments. So, another question arises: How
valuable and how practical is optimization for the area of (Empirical) Software
Engineering?

This chapter shows all the many opportunities of optimization in the various
areas of software engineering (Sect. 2) and how to avoid pitfalls in its application.
Optimization is not something that creates value automatically and easily. It is data
intensive and requires time and effort investment. Optimization includes the whole
process starting from the problem analysis, followed by modeling, running solution
algorithms, understanding and interpreting data, likely modifying data and/or the
underlying model, and rerunning algorithms. In this chapter, we take a process view
and provide a checklist for how to perform this process (Sect. 3). Its implementation
is illustrated by a case study addressing asymmetric release planning (Sect. 4).
Usage and usefulness of optimization is the key concern of Sect. 5. The chapter
is completed by recommendations for further reading (Sect. 6) and conclusions on
the future usage of optimization in the context of software engineering (Sect. 7). A
list of all abbreviations of the chapter is given in Table 1.

Optimization in Software Engineering: A Pragmatic Approach 237

Table 1 List of abbreviations used in this chapter

Abbreviation Full text

GA Genetic Algorithm

NSGA-II Non-dominated Sorting Genetic Algorithm II

MOEAs Multi-Objective Evolutionary Algorithms

ACO Ant Colony Optimization

ILP Integer Linear Programming

QoS Quality-of-Service

EAs Evolutionary Algorithms

GSA Genetic Simulated Annealing

SA/AAN Simulated Annealing with Advanced Adaptive Neighborhood

CCEA Cooperative Co-Evolutionary Algorithms

LSR Least-Squares Linear Regression

CBR Case-based reasoning

2 Software Engineering Optimization: What, How,
and Where?

The Capability Maturity Model Integration (CMMI) (Chrissis et al. 2003) character-
ized companies with the highest maturity CMMI level as Optimizing. This highest
level of maturity refers to the application error analysis and process monitoring
in order to optimize the current processes. While optimization is applicable to
all types of questions, in software engineering it is primarily related to structured
and semi-structured decisions on all technical and managerial aspects of software
development and evolution.

The Software Engineering Body of Knowledge SWEBOK (Abran et al. 2004)
lists technical and managerial areas to describe the field of software engineering:

• Software requirements
• Software design
• Software construction
• Software testing
• Software maintenance
• Software configuration management
• Software project management1

• Software engineering process
• Software engineering models and methods
• Software quality

1Replacing Software Engineering Management as used in SWEBOK.

238 G. Ruhe

Decisions are made during all stages of the software life cycle. Depending
on their type of control and impact, decisions are classified into operational
(short-term), tactical (midterm), and strategic (long-term) decisions (Aronson et al.
2005). As another dimension of their classification, decisions are classified, based
on their input, into structured, semi-structured, or unstructured decisions. The
emphasis of optimization is on tactical and strategic decisions based on structured
or semi-structured information. In Table 2 we present a list of publications using
optimization methods in software engineering. As it is impossible to present a
complete list, we only selected papers published since 2000. Among the many
papers found, we picked those having highest number of citations in Google Scholar
(as of September 4, 2019).

Using the keywords of 84 optimization related papers published since 2000, a
word cloud was created and is presented in Fig. 1. We found a diversity of algorithms
and concepts. Overall, the highest number of publications is in testing, requirements
engineering, and design. This does not imply that there is nothing to optimize in
the remaining areas. Lack of proper data might be one reason, and uncertainty in
formulating explicit objectives and constraints another one for these current deficits.

3 Recommended Process and Checklist for Applying
Optimization

3.1 Recommended Process

Optimization is a form of prescriptive analytics, aimed to propose actions to the
decision-maker. Different models for the process of data analytics exist (Kurgan
and Musilek 2006). We adapted the widely accepted CRISP data mining process
introduced by Shearer (2000) and integrated ideas of the engineering and the
empirical cycle described by Wieringa (2014). The process model shown in Fig. 2
establishes a link between (1) iterative software development (object of study), (2)
empirical studies (as a means to improve problem understanding, to create valid
data, or to validate the research design), and (3) existing model and data repositories.

For iterative development, two sample iterations k and k+1 form the optimization
context. Each iteration is assumed of having design, coding, and test activities,
which result in a release version of the software product. Different parts of these
processes might be optimized for higher efficiency. For example, there might be
the problem of how to perform refactoring, to finding best test strategies and test
cases, to perform scheduling and staffing, or to decide about the functionality of the

Optimization in Software Engineering: A Pragmatic Approach 239

T
ab

le
2

Se
le

ct
ed

op
ti

m
iz

at
io

n
st

ud
ie

s
in

so
ft

w
ar

e
en

gi
ne

er
in

g

A
re

a
Pr

ob
le

m
O

pt
im

.c
ri

te
ri

a
O

pt
im

.m
et

ho
d

Y
ea

r
C

ita
tio

ns
a

R
ef

R
eq

ui
re

m
en

ts
Se

le
ct

in
g

op
tim

al
fe

at
ur

es
fo

r
ne

xt
re

le
as

e
V

al
ue

G
A

20
04

43
4

G
re

er
an

d
R

uh
e

(2
00

4)

R
eq

ui
re

m
en

ts
N

ex
tr

el
ea

se
pr

ob
le

m
C

os
t,

va
lu

e
Pa

re
to

op
tim

al
ge

ne
tic

al
go

ri
th

m
,N

SG
A

-I
I

20
07

23
7

Z
ha

ng
et

al
.(

20
07

)

R
eq

ui
re

m
en

ts
So

ft
w

ar
e

re
le

as
e

pl
an

ni
ng

M
ax

im
iz

e
th

e
va

lu
e

of
th

e
pr

od
uc

tf
or

ea
ch

re
le

as
e

H
yb

ri
d

in
te

lli
ge

nc
e

20
04

12
5

R
uh

e
et

al
.(

20
04

)

R
eq

ui
re

m
en

ts
R

el
ea

se
pl

an
ni

ng
fo

r
ev

ol
vi

ng
sy

st
em

s
V

al
ue

G
A

20
05

10
9

Sa
liu

an
d

R
uh

e
(2

00
5)

R
eq

ui
re

m
en

ts
So

ft
w

ar
e

re
le

as
e

pl
an

ni
ng

Se
le

ct
io

n
of

hi
gh

ly
co

up
le

d
fe

at
ur

es
in

th
e

sa
m

e
re

le
as

e
IL

P
20

07
10

3
Sa

liu
an

d
R

uh
e

(2
00

7)

R
eq

ui
re

m
en

ts
N

ex
tr

el
ea

se
pr

ob
le

m
M

in
im

iz
e

co
st

an
d

m
ax

im
iz

e
cu

st
om

er
sa

tis
fa

ct
io

n
G

A
,e

vo
lu

tio
na

ry
st

ra
te

gy
20

11
85

D
ur

ill
o

et
al

.(
20

11
)

R
eq

ui
re

m
en

ts
So

ft
w

ar
e

re
le

as
e

pl
an

ni
ng

O
pt

im
iz

ed
re

so
ur

ce
al

lo
ca

tio
n

IL
P,

G
A

20
09

58
N

go
-T

he
an

d
R

uh
e

(2
00

8)

D
es

ig
n

M
od

ul
ar

iz
at

io
n

C
oh

es
iv

en
es

s
Pa

re
to

op
tim

al
ge

ne
tic

al
go

ri
th

m
20

10
27

4
Pr

ad
itw

on
g

et
al

.(
20

10
)

D
es

ig
n

R
ef

ac
to

ri
ng

Se
ar

ch
-b

as
ed

re
fa

ct
or

in
g

Pa
re

to
op

tim
al

ity
20

07
20

9
H

ar
m

an
an

d
T

ra
tt

(2
00

7)

D
es

ig
n

Pe
rf

or
m

an
ce

of
so

ft
w

ar
e

G
en

et
ic

im
pr

ov
em

en
t

G
en

et
ic

pr
og

ra
m

m
in

g
20

14
17

3
L

an
gd

on
an

d
H

ar
m

an
(2

01
4)

D
es

ig
n

M
od

ul
ar

iz
at

io
n

C
oh

es
iv

en
es

s
G

A
20

02
16

3
H

ar
m

an
et

al
.(

20
02

)

D
es

ig
n

Fe
at

ur
e

se
le

ct
io

n
V

al
ue

G
A

20
11

15
6

G
uo

et
al

.(
20

11
)

D
es

ig
n

Q
oS

-d
ri

ve
n

w
eb

se
rv

ic
e

se
le

ct
io

n
Q

ui
ck

co
nv

er
ge

nc
e

G
A

20
08

15
6

M
a

an
d

Z
ha

ng
(2

00
8)

D
es

ig
n

O
pt

im
al

us
e

of
th

e
ha

rd
w

ar
e

Pe
rf

or
m

an
ce

Pr
ofi

lin
g,

op
tim

iz
at

io
n

20
03

13
4

K
is

tle
r

an
d

Fr
an

z
(2

00
3) (c
on

tin
ue

d)

240 G. Ruhe

T
ab

le
2

(c
on

ti
nu

ed
)

A
re

a
Pr

ob
le

m
O

pt
im

.c
ri

te
ri

a
O

pt
im

.m
et

ho
d

Y
ea

r
C

it
at

io
ns

a
R

ef

D
es

ig
n

R
ea

ss
ig

n
m

et
ho

ds
an

d
at

tr
ib

ut
es

to
cl

as
se

s
in

a
cl

as
s

di
ag

ra
m

C
la

ss
co

up
li

ng
an

d
co

he
si

on
M

ul
ti

-o
bj

ec
tiv

e
G

A
20

10
10

7
B

ow
m

an
et

al
.(

20
10

)

D
es

ig
n

C
ho

os
in

g
th

e
op

ti
m

al
ar

ch
it

ec
tu

ra
ld

es
ig

n
al

te
rn

at
iv

e
R

ed
uc

e
de

ve
lo

pm
en

t
co

st
,

im
pr

ov
e

qu
al

it
y

E
A

s
20

06
80

G
ru

ns
ke

(2
00

6)

D
es

ig
n,

m
ai

nt
en

an
ce

Q
oS

-a
w

ar
e

se
rv

ic
e

co
m

po
si

ti
on

C
on

cr
et

e
se

rv
ic

es
co

m
bi

na
ti

on
G

A
20

08
98

W
ad

a
et

al
.(

20
08

)

Te
st

in
g

R
eg

re
ss

io
n

te
st

pr
io

ri
ti

za
ti

on
Q

ua
li

ty
G

A
20

06
36

6
W

al
co

tt
et

al
.(

20
06

)

Te
st

in
g

R
eg

re
ss

io
n

te
st

ca
se

se
le

ct
io

n
C

od
e

co
ve

ra
ge

,p
as

t
fa

ul
t-

hi
st

or
y

de
te

ct
io

n
an

d
ex

ec
ut

io
n

co
st

G
A

20
07

33
3

Y
oo

an
d

H
ar

m
an

(2
00

7)

Te
st

in
g

Te
st

da
ta

ge
ne

ra
ti

on
M

ul
ti

-o
bj

ec
tiv

e
br

an
ch

co
ve

ra
ge

M
O

E
A

s
20

07
16

0
L

ak
ho

ti
a

et
al

.(
20

07
)

Te
st

in
g

Te
st

ca
se

pr
io

ri
ti

za
ti

on
fo

r
re

gr
es

si
on

te
st

in
g

Fa
ul

tc
ov

er
ag

e
A

C
O

20
10

80
Si

ng
h

et
al

.(
20

10
)

Te
st

in
g

C
om

pa
ri

ng
di

ff
er

en
t

al
go

ri
th

m
s

fo
r

te
st

ca
se

ge
ne

ra
ti

on

C
ov

er
ag

e
G

A
,S

A
,G

SA
,

SA
/A

A
N

20
07

76
X

ia
o

et
al

.(
20

07
)

Pr
oj

ec
tm

an
ag

em
en

t
So

ft
w

ar
e

ef
fo

rt
es

ti
m

at
e

A
cc

ur
at

e
ef

fo
rt

es
ti

m
at

io
n

G
A

w
it

h
gr

ey
ra

ti
on

al
an

al
ys

is
20

08
23

8
H

ua
ng

et
al

.(
20

08
)

Pr
oj

ec
tm

an
ag

em
en

t
St

af
fin

g
of

so
ft

w
ar

e
pr

oj
ec

t
V

al
ue

C
on

st
ra

in
t

sa
ti

sf
ac

ti
on

20
08

16
6

B
ar

re
to

et
al

.(
20

08
)

Pr
oj

ec
tm

an
ag

em
en

t
So

ft
w

ar
e

ef
fo

rt
es

ti
m

at
e

In
pu

tf
ea

tu
re

su
bs

et
,

pa
ra

m
et

er
s

fo
r

m
ac

hi
ne

le
ar

ni
ng

G
A

20
10

13
9

O
liv

ei
ra

et
al

.(
20

10
)

Pr
oj

ec
tm

an
ag

em
en

t
Pr

oj
ec

tt
as

k
sc

he
du

li
ng

an
d

hu
m

an
re

so
ur

ce
al

lo
ca

ti
on

Fl
ex

ib
il

it
y

A
C

O
20

12
13

8
C

he
n

an
d

Z
ha

ng
(2

01
3)

Optimization in Software Engineering: A Pragmatic Approach 241

Pr
oj

ec
tm

an
ag

em
en

t
C

om
pa

ri
ng

di
ff

er
en

t
te

ch
ni

qu
es

fo
r

pl
an

ni
ng

re
so

ur
ce

al
lo

ca
ti

on

D
ur

at
io

n
G

A
,S

A
,h

il
lc

li
m

bi
ng

20
05

12
8

A
nt

on
io

le
ta

l.
(2

00
5)

Pr
oj

ec
tm

an
ag

em
en

t
So

ft
w

ar
e

pr
oj

ec
t

sc
he

du
li

ng
Sc

he
du

li
ng

G
A

20
08

12
1

C
ha

ng
et

al
.(

20
08

)

Pr
oj

ec
tm

an
ag

em
en

t
A

ss
ig

n
fe

at
ur

es
to

re
le

as
es

V
al

ue
IL

P
20

08
10

8
V

an
de

n
A

kk
er

et
al

.(
20

08
)

Pr
oj

ec
tm

an
ag

em
en

t
C

om
pa

ri
ng

so
ft

w
ar

e
ef

fo
rt

pr
ed

ic
ti

on
te

ch
ni

qu
es

A
cc

ur
ac

y
of

pr
ed

ic
ti

on
E

xp
er

tj
ud

gm
en

t,
L

SR
,

C
B

R
20

03
10

5
M

ac
D

on
el

la
nd

Sh
ep

pe
rd

(2
00

3)

Pr
oj

ec
tm

an
ag

em
en

t
So

ft
w

ar
e

co
st

es
ti

m
at

io
n

Fe
at

ur
e

se
le

ct
io

n
w

it
h

lo
w

er
co

m
pl

ex
it

y
M

ut
ua

li
nf

or
m

at
io

n
ba

se
d

fe
at

ur
e

se
le

ct
io

n
20

09
95

L
ie

ta
l.

(2
00

9)

Pr
oj

ec
tm

an
ag

em
en

t
D

ec
id

in
g

w
he

th
er

to
bu

y
or

bu
il

d
a

co
m

po
ne

nt
C

os
ta

nd
qu

al
it

y
op

ti
m

iz
at

io
n

IL
P

20
08

93
C

or
te

ll
es

sa
et

al
.(

20
08

)

Pr
oj

ec
tm

an
ag

em
en

t
A

ll
oc

at
io

n
of

te
st

in
g

re
so

ur
ce

R
el

ia
bi

li
ty

an
d

te
st

in
g

co
st

M
O

E
A

s
20

10
87

W
an

g
et

al
.(

20
10

)

Pr
oj

ec
tm

an
ag

em
en

t
U

se
of

se
ar

ch
-b

as
ed

op
ti

m
iz

at
io

n
te

ch
ni

qu
es

fo
r

m
an

ag
em

en
ta

ct
iv

it
ie

s

St
af

f
an

d
ta

sk
al

lo
ca

ti
on

G
A

,N
SG

A
-I

I
20

11
58

D
iP

en
ta

et
al

.(
20

11
)

Pr
oj

ec
tm

an
ag

em
en

t
So

ft
w

ar
e

pr
oj

ec
ts

ta
ffi

ng
an

d
jo

b
sc

he
du

li
ng

Te
am

st
af

fin
g

an
d

w
or

k
pa

ck
ag

e
sc

he
du

li
ng

C
C

E
A

20
11

51
R

en
et

al
.(

20
11

)

Pr
oc

es
s

C
lo

ud
co

m
pu

ti
ng

de
pl

oy
m

en
ta

nd
re

co
nfi

gu
ra

ti
on

R
es

po
ns

e
ti

m
e

an
d

co
st

G
A

20
13

12
5

Fr
ey

et
al

.(
20

13
)

Q
ua

li
ty

So
ft

w
ar

e
qu

al
it

y
m

od
el

in
g

C
os

t
G

en
et

ic
pr

og
ra

m
m

in
g

20
10

11
7

L
iu

et
al

.(
20

10
)

a G
oo

gl
e

Sc
ho

la
r

ci
ta

ti
on

s
as

of
Se

p.
5,

20
19

242 G. Ruhe

Fig. 1 Word cloud for publications devoted to optimization in software engineering since 2000

upcoming releases. For any of these questions, optimization helps to find a good or
even the (formally) best answer. The process to find these answers is composed of
eight steps that are further outlined in Sect. 3.2 by providing checklist questions to
each step.

3.2 Checklist

Checklists are a means to facilitate the application of the knowledge existing in a
field (Gawande 2010). Similar to tools, applying checklists are no guarantee for
success, but hopefully serve as filters or recommendations. They need continuous
adaption to accommodate all the new directions and developments.

Checklists have been used in software engineering, e.g., for case studies, project
risk analysis, and performing inspections. Here, we propose a checklist for the
usage of optimization in software engineering. The checklist questions follow the
key steps recommended in Sect. 3.1. The questions are classified in terms of their
usage. M(andatory) questions need to be answered with “yes” to make optimization
a valuable effort. C(larification) questions (What?) are aimed to qualify the setup of
the whole process. TMTB questions (How? How much?) are the ones that benefit
from “the more the better.”

Optimization in Software Engineering: A Pragmatic Approach 243

External Data

Internal data

Empirical Studies

Controlled experiment

Case studies

Surveys

Interviews

Ethnographies

Artefact analysis

Action research

Simulation

Benchmarks

Iterative Software Development

Data & Model
Repositories

Model repository

Design Coding Test Product release

Design Coding Test Product release i+1

i

Evaluation

Modeling & problem
formulation

Solution design

Scoping & ROI analysis

Validation

Optimization

Implementation

Data collection

1

2

3

4

5

6

7

Fig. 2 Process of performing optimization in the context of empirical studies for iterative software
development

1. Scoping and ROI Analysis Scoping defines the problem context and its bound-
aries. At this stage, performing an analysis of the potential Return-on-Investment
(ROI) helps to determine the depth and the breadth of the investigation.

244 G. Ruhe

Questions Type

How important is the problem? TMTB

How much time and money can be invested to solve the
problem?

TMTB

Can the problem not be solved easily without optimization? M

What are alternative solution approaches? C

How much is the optimization problem aligned with
business objectives?

TMTB

How much impact an optimized solution has in the problem
context?

TMTB

What is part of the investigation, what is not? C

Who are the key stakeholders and decision-makers? C

2. Modeling and Problem Formulation Modeling and formulation of the problem
is the phase where the variables, constraints, and objectives of the problem are
formulated. The formulation needs to be verified against the original problem
statement.

Questions Type

What are the key independent problem variables? C

What is a reasonable granularity for problem formulation? C

What are the dependent variables? C

What are the human resource, budget, and time constraints? C

What are the technological constraints? C

3. Solution Design The design step includes an analysis of what? and how much
is enough? Exploring possible solution alternatives and its related tools depends
on the scope selected. The design depends on the size of the problem (and its
subsequent computational effort), the nature of the problem (linear, integer, convex,
non-convex), and its projected impact. The design also decides between the use
of traditional methods (linear, integer programming) and one of the many existing
bioinspired algorithms (Binitha et al. 2012).

Optimization in Software Engineering: A Pragmatic Approach 245

Questions Type

What baseline solution exists to compare with? C

What are possible solution method alternatives and which
ones have proven successful in similar context?

C

Which related tools exist? TMTB

What are the expectations on optimization solutions
(heuristic vs approximation vs exact)?

C

Is it search for just one (optimized) solution or for a set of
solutions?

C

What scenarios are planned for running the algorithms? C

How much would the optimization process benefit from
interaction with the decision-makers?

TMTB

4. Data Collection Collect and prepare data needed to run optimization. While data
is seldom complete, empirical studies can be used to improve the amount and quality
of data. Goal oriented measurement (Van Solingen et al. 2002) is the established
technique to guide the data collection and analysis.

Questions Type

Is all necessary information available? M

Is all available information also reliable? TMTB

Is there a need for data cleaning? M

Is there agreement between stakeholders on the data? TMTB

5. Optimization Specify parameters for the tool and algorithm to execute optimiza-
tion. How robust is the solution against changes on the input? What is the impact of
adding or changing constraints?

246 G. Ruhe

Questions Type

Which parameter settings are made and why? C

Should the parameter settings be varied and if so, how? C

For randomized algorithms (e.g., bioinspired algorithms),
how many replications are needed to make sound
conclusions?

C

Is there a time constraint for running the solution algorithm? C

What are the termination criteria for the optimization
algorithm?

C

6. Validation The solution of the mathematical optimization problem needs to be
validated. How do the results compare to applying alternative algorithms? What
do the results mean for the original problem? Possibly, the scope, the problem
formulation, or the solution design needs to be adjusted.

Questions Type

How much do the generated solutions make sense in the
problem context?

TMTB

How much do stakeholders agree with the proposed
solution(s)?

TMTB

In case of conflicts, how they can be resolved? C

How robust is the proposed solution against changes of input
data?

TMTB

7. Implementation The selected solution is implemented as a decision for the
original problem.

Questions Type

Are the additional considerations to select one solution for
final implementation in the original problem context?

C

Is there any need to adjust the proposed solution to the
actual problem context?

C

Optimization in Software Engineering: A Pragmatic Approach 247

8. Evaluation The usefulness of the implemented solution is evaluated in the
original problem context and with the stakeholders involved.

Questions Type

How much does the implemented solution solve the original
problem?

TMTB

How much the implemented solution is accepted by
included stakeholders?

TMBM

How much the implemented solution improves the baseline? TMTB

The checklist serves as a filter. In the case that the two M questions are not
answered positive, optimization is not recommended. The more information is
available on C questions, the more guidance is available to run the process. For
the TMTB questions, the more they accumulate “more” evaluation, the more likely
there is a positive return on the optimization investment.

4 Optimization Case Study: Asymmetric Release Planning

In this section, we go through a case study presented by Nayebi and Ruhe (2018).
The purpose is to illustrate the steps of the process illustrated in Fig. 2.

4.1 Scoping and ROI Analysis

Release planning is a key part of iterative development. It is the process to decide
about the functionality of upcoming releases of an evolving software product.
Typically, a large number of requests for new or changing features as well as bug
fixes are candidates to get implemented in each release. For simplicity, we call
them features here. There are dependencies between the features that need to be
considered for their implementation.

Implementation of features is expected to create value. However, there is an
asymmetry in the sense that providing a feature does create satisfaction, but not
providing it does not automatically create the same amount of dissatisfaction. This
problem is called Asymmetric Release Planning. The ROI is supposed to be high,
especially for products in a competitive market and when shipped in large quantities.
The attractiveness of features is critical for success or failure of a product. Looking
into the best release strategy in consideration of the asymmetry in value creation
improves the traditional perspective of just looking at customer satisfaction as the
single criterion.

248 G. Ruhe

4.2 Modeling and Problem Formulation

To run optimization, we need to model the problem and provide a formal problem
description. Let F = {F(1) . . . F (N)} be a set of N candidate features for
development during the upcoming K product releases. A feature is called postponed
if it is not offered in one of the next K releases. Each release plan is characterized
by a vector x with N components x(n)(n = 1 . . .N) defined as:

x(n) = k if feature F(n) is offered at release k (1)

x(n) = K + 1 if feature F(n) is postponed (2)

The objective of the planning approach is to maximize stakeholder satisfaction
and simultaneously minimize stakeholder dissatisfaction. These two objectives are
independent and competing with each other. Pursuing each objective in isolation
will create different release planning strategies.

To calculate stakeholder satisfaction S(n) of feature F(n), all stakeholder
responses related to satisfaction elements (Attractive and One-dimensional) are
divided by the sum of the Attractive, One-dimensional, Must-be, and Indifferent
portions of that feature:

S(n) = FA(n) + FO(n)

FA(n) + FO(n) + FI (n) + FM(n)
(3)

Similarly, DS(n) is calculated by adding all responses with dissatisfaction
elements (One-dimensional and Must-be) and dividing it by the total amount of
relevant responses:

DS(n) = FM(n) + FO(n)

FA(n) + FO(n) + FI (n) + FM(n)
(4)

For modeling of the total satisfaction objective, we follow the proven concepts
of the EVOLVE based algorithms, in particular, the more recent EVOLVE II (Ruhe
2010). For a given time horizon of K releases, there is a discount factor making
the delivery of a feature less satisfactory when it is offered later. While using a
weighting (discounting) factor w(k) for all releases k = 1 . . .K , we assume that
w(K + 1) = 0, w(1) = 1, and

w(k) > w(k + 1) (k = 1 . . .K − 1) (5)

This assumption implies that the value of delivering a feature will be the
higher the earlier it is delivered. For a plan x assigning features to releases, Total
Satisfaction T S(x) is defined based on the summation of the discounted feature
values S(n) taken over all assigned features and all releases.

Optimization in Software Engineering: A Pragmatic Approach 249

T S(x) =
∑

k=1...K

∑

n:x(n)=k

w(k) × S(n) → Max! (6)

Total Dissatisfaction T DS(x) of a plan x follows the same idea as just introduced
for satisfaction. The longer a feature is not offered, the higher the dissatisfaction.
Similar to satisfaction, we introduce factors describing the relative degree of
dissatisfaction between releases. z(k) is the dissatisfaction discount factor related
to release k. As dissatisfaction of nondelivery increases over releases, we assume
z(1) = 0, z(K + 1) = 1, and

z(k) < z(k + 1) (k = 1 . . .K) (7)

If plan x would not offer any features at all, total dissatisfaction T DS(x) would
be the summation of all feature dissatisfaction values. More generally, if a feature
is offered in release k, then this creates a dissatisfaction of z(k) × DS(n). If it is
offered in the next release, no dissatisfaction is created at all. Total dissatisfaction
T DS(x) created by a plan x is modeled as the summation of all adjusted feature
values DS(n), and this function needs to be minimized:

T DS(x) =
∑

k=1...K+1

∑

n:x(n)=k

z(k) × DS(n) → Min! (8)

Implementation of features is effort consuming. We make the simplifying
assumption of just looking at the total amount of (estimated) effort needed per
feature. The estimated effort for implementation of feature F(n)(n = 1 . . . N) is
denoted by effort(n). When planning K subsequent releases, the consumed effort
per release is not allowed to exceed a given release capacity. For all releases k

(k = 1 . . .K), this capacity is denoted by Cap(k).
More formally, a feasible release plan x needs to satisfy all constraints of the

form:

∑

n:x(n)=k

eff ort (n) ≤ Cap(k) for k = 1 . . .K (9)

In Eq. (9), effort consumption for release k is constrained by the given capacity
Cap(k). For each release k, the summation is done over all the features F(n) that
are assigned to this release, i.e., fulfilling x(n) = k.

Among all the plans fulfilling resource constraints (known as feasible plans),
a plan x∗ is called a trade-off solution if no other plan exists that is better on one
criterion and at the same time not worse in the other. This means that we are looking
for feasible plans x∗ with the property that there is no other feasible plan x ′ (also
called a dominating plan) such that is better in one dimension and not worse in all
the others.

250 G. Ruhe

Asymmetric Release Planning ARP We consider a given set of features F(n)

with feature values S(n) and DS(n)(n = 1 . . . N). Among all the plans fulfilling
resource constraints, the ARP problem is to find trade-off solutions for concurrently
maximizing T S(x) and minimizing T DS(x). That means, ARP is the problem of
finding trade-off release plans that are balancing satisfaction and dissatisfaction.

4.3 Solution Design

Software release planning can be solved by a variety of algorithms. For a more
recent analysis, we refer to Ameller et al. (2016). In its simplest form, greedy
heuristics could be applied. The general greedy principle is to select the best local
features at each iteration, where the definition of “locally best” varies between the
heuristics (Cormen et al. 2001). With no backtracking, greedy solutions are fast and
often “good enough.” The quality of the solutions depends on the problem structure
and the instance of the problem. It can be quite far from the optimum in specific
instances.

Integer linear programming was used by Veerapen et al. (2015) to solve the
single and bi-objective Next Release Problem. While there has been a dominance
of search-based techniques in the past (starting with the genetic algorithm of Greer
and Ruhe (2004)), the authors have shown that integer linear programming-based
outperforms the NSGA-II (Deb et al. 2002) genetic approach on large bi-objective
instances. For the bi-objective asymmetric release problem, we propose a method
of solving a sequence of single-criterion optimization problems, each of them
generating a new or an existing trade-off solution. The step-size for varying the
parameter can be selected by the concrete problem. For the implementation, we
apply the (mixed) integer linear programming optimizer Gurobi (2012), version 6.4
and its interface MATLAB to manage data.

4.4 Data Collection

Data collection covered towards elicitation of features, effort estimation, and feature
evaluation by stakeholders.

Stakeholders We invited 24 software engineering graduate students to serve as
stakeholders. Even though students were not a direct customer of the company, they
were familiar with the domain and were considered to be representative for the
purpose of this case study.

Optimization in Software Engineering: A Pragmatic Approach 251

Weight of Stakeholders The survey participants provided a self-evaluation in
terms of their familiarity with Over-the-Top (OTT) services and mobile applications.
At the beginning of the survey, stakeholders stated their domain expertise on a Likert
scale ranging from one to nine. We used this value as the weight of stakeholders for
the planning process.

Features The pool of candidate app features was extracted from the description
of 261 apps, all of them providing media content over the internet without the
involvement of an operator in the control or distribution of the OTT TV services.
A commercial text analysis tool was used to retrieve 42 candidate features. Domain
experts evaluated the meaningfulness of extracted features and eliminated the
phrases which did not point into any OTT feature. Feature extraction itself was
managed by the case study company and resulted in 36 features further investigated.

Feature Value To predict the impact of offering versus missing features, we
applied the Kano analysis (Kano et al. 1984). We performed a survey with a
continuous Kano design and asked the two types of questions (functional and
dysfunctional). For each feature, each of the stakeholders expressed the percentages
that the feature matches one of the five possible answers per question.

Effort The effort for developing each feature was estimated by domain experts
within the company. A product manager and two senior developers estimated the
effort needed (in person hours) to develop each feature. They applied a triangular
(three point) effort estimation to estimate the optimistic, pessimistic, and most-likely
effort amount needed to deliver a feature. The three estimates were combined using
a weighted average.

Capacity To show the impact of tight, medium, and more relaxed resource
availability, we ran three concurrent scenarios with three varying release capacities
Cap(1) of 112.7 (lower bound), 367.4 (most probable), and 625.5 (upper bound)
person hours, respectively.

4.5 Optimization

We were running the optimization solver for three defined optimization scenarios
in correspondence to three varying capacity levels. Each time, a set of alternative
solutions is generated. In total, 14 structurally trade-off solutions (plans) were
generated. Each plan represents one possible way to balance between satisfaction
and dissatisfaction of stakeholders. Based on the equivalence between parametric
and multi-objective optimization (Clímaco et al. 1997), each solution set is received
from running a sequence of single-criterion problems.

252 G. Ruhe

4.6 Validation

We performed a comparison between the quality of the optimized solutions in
comparison to those obtained from (1) random search and (2) heuristic search. Using
random search is selecting a feature randomly as long as the effort for implementing
that feature is less than the available capacity. The results showed that optimized
solutions strongly dominate all the 1000 solutions generated by random searching.

We also compared the results against running eight different heuristics. 66.7% of
the heuristic plans were dominated with at least one of the fully optimized solutions.
This demonstrates that heuristics are fast and conceptually easy, but often not good
enough. The comprehensiveness of solutions generated from the optimization in
conjunction with their guaranteed quality is considered a strong argument in favor
of the proposed approach.

4.7 Implementation and Evaluation

We conducted a survey to understand stakeholders preference among the various
plans generated. The survey included 20 stakeholders. Using Fleiss Kappa test
(Sheskin 2003) for measuring inter-rater agreement showed a slight to poor
agreement between the 20 participants.

By comparing plans per stakeholder, among stakeholders, and between criteria,
we found that:

• One plan does not fit all: For both planning objectives, there is substantial
variation between stakeholders in terms of what they consider their preferred
solution.

• One criterion is not enough: Six of the 20 stakeholders have a varying top
preference when comparing plans selected from satisfaction and dissatisfaction
perspective.

5 Usage and Usefulness of Optimization

5.1 Limits of Optimization Models

As any model, even the most detailed models lack some details in comparison to the
real-world ecosystem. This means that the representation of real world always lacks
some details and contains inaccuracies. Meignan et al. (2015) described four types
of potential optimization model limitations:

• Approximation of complex problem’s aspects: Formulation of real-world prob-
lems might be difficult because of the lack of quantifying constraints or

Optimization in Software Engineering: A Pragmatic Approach 253

objectives. Human involvement, as being the case in software engineering, often
requires to use approximations of the phenomena.

• Simplification for model tractability: Even if the phenomena under investigation
are quantifiable, simplification of the model is needed to apply a computational
optimization approach. For example, linear models are often used for that
purpose.

• Limited specifications: In some cases, the problem is not (yet) well defined. This
might be caused by the lack of problem and domain knowledge.

• Lack of resources: Optimization is not for free but consumes time and cost. This
implies making compromises and simplifications.

5.2 Difficulties Which Are Specific to the Discipline
of Software Engineering

Software engineering differentiates from other disciplines by a number of factors
(Ruhe and Wohlin 2014). Among those factors, some of them are critical for
deciding and running optimization:

• High degree of uncertainty in the software project and product scope.
• Planning and estimating of software projects is challenging because these

activities depend on requirements that are often imprecise or based on lacking
information.

• Software development is nondeterministic. The data received from observations
are incomplete and sometimes contradictory.

• Objective measurement and quantification of software quality is difficult.

As a conclusion of the above, we need to check more carefully which type of
optimization is most appropriate and in which situation and how much we should
pursue this pathway. Is it always “The more the better”? The following subsection
proposes three attributes to answer this question.

5.3 How Much Is Enough?

There is a very broad spectrum of decision problems that potentially benefit from
running optimization. But which technique to apply in what situation? Both the
problems under investigation and the techniques available have characteristics that
are relevant to decide which one is used for what. Along with this understanding
goes the question How much is enough?. In the sequel, we define three key
dimensions which have shown to have substantial impact on the breadth and depth
of analytics of optimization. The key motivation for doing this is the statement
attributed to Aristotle mentioned in the introduction.

254 G. Ruhe

5.3.1 Validity: How Valid Is the Problem Definition?

There is no easy way to measure validity of a model (being always wrong and
sometimes useful), but some possibilities to verify its behavior from running
through some scenarios with an outcome already known. Validity can also relate to
wickedness (Rittel and Webber 1974) which refers to the difficulty to find a proper
formulation of the problem and a termination criterion for its solution.

5.3.2 Cost: How Much Effort Is Needed to Run the Whole Optimization
Process?

The cost of performing the process outlined in Fig. 1 is mainly determined by the
resources consumed in it. The cost might vary substantially between the cases. For
example, the effort for data collection is highly influenced by the amount and quality
of data already available and the effort needed to elicit additional information.
Once the problem is defined, the notion of computational complexity (Garey and
Johnson 2002) guides the effort estimation to determine a solution with a proven
quality. This effort typically depends on the size (small, medium, or large number
of variables involved), difficulty (low, medium, or high in terms of number of
constraints, objectives), the linearity versus non-linearity, and the continuous versus
discrete nature of the variables included.

5.3.3 Value: How Valuable Is It to Find an Optimized Solution?

How much value is added to the real-world problem when an optimized and
carefully analyzed solution is applied versus an ad hoc one suggested by the
domain expert? This value is associated with the impact of the decision to be
made. Operational decisions are in the day-to-day business with typically short-term
impact on a company. Tactical ones are concerned with work assignments, selection
of tools, reuse of artifacts. Strategic decisions have the longest impact, but are also
based on the strongest degree of uncertainty.

5.4 Return-on-Investment

Comparing the investment made into something with the potential return achieved
from this investment is a common question, mainly triggered from economical
considerations. As an example, Erdogmus et al. (2004) analyzed the ROI of quality
investment. The authors state that “We generally want to increase a software
product’s quality because fixing existing software takes valuable time away from
developing new software. But how much investment in software quality is desirable?
When should we invest, and where?”

Optimization in Software Engineering: A Pragmatic Approach 255

The same idea could be used to the application of optimization. More precisely,
evaluating the impact of decisions made based on optimization versus the baseline
decision-making approach, typically some form of relying on intuition. There are
at least three prerequisites for doing that: (1) Characterization of the context, (2)
Characterization and quantification of the investment (cost), and (3) Projection of
the value added from implementing an optimized solution.

For the characterization of context, Dybå et al. (2012) introduced a template that
has the two main dimensions called omnibus context and discrete context. The first
dimension includes the 5 W’s: What? Who? Where? When? and Why? The second
one is along the technical, social, and environmental aspects of the context which
are likely vary in detail from case to case. Specifying the context attributes allows to
related specific empirical results to the characteristics where they are coming form.
It also helps to provide more specific recommendations about when and how well
certain things work.

Software development and evolution is a value-creating process. However, there
seems to be a “disconnect” between the decision criteria that guide software
engineers and the value creation criteria of an organization (Boehm and Sullivan
2000). Projecting the impact of an improvement in decision-making against a
technical parameter (e.g., test coverage) in terms of its impact can be expressed
as Net Present Value (NPV) but is a challenging task. If analyzing a project over a
period of n time periods, the formula for the net present value of a project is

NPV =
n∑

t=0

R(t)

(1 + d)t
(10)

Therein, R(t) denotes the difference between net cash inflow and net cash
outflow during a single period t . The model assumes a discount rate d to transfer
future value to the today value. The added NPV that is from applying an optimized
versus a baseline solution is the difference between their respective NPVs.

NPVImprovement = NPVOptimalSolution − NPVBaseline (11)

The cost of analytics is determined from both the depth and the breadth of
investigations. The depth can be exemplified by the extent of running optimization
algorithms to achieve close to optimal results. Another example refers to the level
of details included in visualization. The extent of applying multiple analytical
techniques to data from multiple sources to achieve results refers to breadth. Solving
a problem by looking for data from different sources and/or performing method
triangulation is of clear value but also of clear additional cost. The variation of
perspectives in visualization is an example for breadth.

Figure 3 shows a ROI curve of technology usage. Following some phase of
increase, there is a saturation point. After that, further investment does not further
pay off. We hypothesize that a similar behavior applies in principle for the usage of
optimization and analytics in general.

256 G. Ruhe

Va
lu

e
an

d
co

st
 o

f a
dd

iti
on

al
 in

fo
rm

at
io

n

Amount of analytics

Cost

Fig. 3 Expected ROI curve from technology investment

5.5 ROI of Asymmetric Release Plan Optimization

It is difficult to quantify the ROI. The value of providing the right features at the
right time depends on the competitiveness of the market the product is related to,
the number of product instances sold, and maturity of data collection and decision-
making processes the organization is in. For the running example, additional
effort was needed to elicit the information related to stakeholder satisfaction and
dissatisfaction. We performed a survey with six company managers and asked: To
what extent do you think the additional effort (from answering ten questions per
feature based on Kano) is worthwhile? In response, five managers agreed or strongly
agreed, and one manager was neutral about the efficiency of the Kano model.

6 Recommended Further Reading

Optimization is an established discipline with roots going back to names such as
Leonid Kantorovich, George Dantzig, and John von Neumann. Its applications
range through all disciplines of Science, Engineering, and Economics. There are
numerous models, methods, and tools. The encyclopedia of optimization (Floudas
and Pardalos 2001) gives an overview. In its essence, optimization is the process of
searching for the best out of a pool of alternatives. What means best is described by
one or multiple criteria. The alternatives are explicitly or implicitly described (by
constraints). For the actual optimization step in the whole problem-solving process
(Step 5 in Fig. 1), different alternatives can be considered, ranging from simple
heuristics to meta- and hyper-heuristics to exact common purpose solvers. In the
sequel, we provide guidance for further reading for three emerging directions of
using optimization in the context of (empirical) software engineering.

Optimization in Software Engineering: A Pragmatic Approach 257

6.1 Meta- and Hyper-Heuristics

In the area of software engineering, the term Search-based Software Engineering
(SBSE) was coined by a paper of Harman and Jones (2001), who argued that
software engineering is ideal for the application of meta-heuristic search techniques,
such as genetic algorithms, simulated annealing, and tabu search. In November
2017, the SBSE repository at University College London (edited by [Zhang, Har-
man, Mansouri]) counted 1727 relevant publications. More recently, the portfolio
of techniques has been enlarged by other bioinspired algorithms that are designed
and following the behavior of biological systems. These algorithms are intuitive
and have proven successful in many occasions including software engineering (Kar
2016).

Independently, hyper-heuristics have been designed; Burke et al. (2013) have
performed a state-of-the art survey regarding this. The key characteristic is that these
algorithms operate on a search space of heuristics (or heuristic components) rather
than directly on the search space of solutions to the underlying problem that is being
addressed (Burke et al. 2013). For the area of testing, Balera and de Santiago (2019)
performed a systematic mapping study on hyper-heuristics. For the multi-objective
next release problem and analyzing ten real-world data sets, Zhang et al. (2018)
have shown that hyper-heuristics are particularly effective.

6.2 Bioinspired Algorithms

Bioinspired optimization is an emerging paradigm which encompasses the prin-
ciples and inspiration of the biological evolution of nature to develop new and
robust optimization techniques (Binitha et al. 2012). These algorithms are drawing
attention from the scientific community due to the increasing complexity of the
problems, increasing range of potential solutions in multidimensional hyperplanes,
dynamic nature of the problems and constraints, and challenges of incomplete,
probabilistic, and imperfect information for decision-making.

Not much exploration has happened in the true application space for the rest
of these algorithms, probably due to the recency of some of these developments
or due to the lack of availability of pseudo-codes which can be used directly.
There is a need for studies highlighting the preferred application for algorithms
like artificial bee colony algorithm, bacterial foraging algorithm, firefly algorithm,
leaping frog algorithm, bat algorithm, flower pollination algorithm, and artificial
plant optimization algorithm in actual problem contexts.

258 G. Ruhe

6.3 Interactive Optimization

Interactive optimization approaches acknowledge existing limits to modeling and
parameter settings and value the user’s expertise in the application domain (Meignan
et al. 2015). They maintain the human expert in the problem-solving loop and
distinguish between problem-oriented interaction and search-oriented interaction.
For the first one, the user can either adjust or enrich the optimization problem,
e.g., by adjusting existing constraints or objectives or by defining new ones. For
search-oriented interaction, the user actively influences the search procedure, e.g.,
by parameter tuning.

7 Conclusions

Optimization is an important means to improve software development and evo-
lution. Optimizing processes is the ultimate goal of most mature CMMI level 5
organizations. Practically, there is almost no limit to consider optimization in soft-
ware engineering. But as for any technology, its usage needs to be guided. Besides
the opportunity to enlarge the scope of optimization, this chapter emphasizes the
need to take a closer look at the ROI of optimization. Taking into account the
perceived validity of the problem formulation, the ROI model serves as justification
for investing into optimality. In the language of the CMMI model, it is unlikely that a
specific part of the software development landscape is highly optimized if the whole
surrounding is immature. The ROI estimation servers as a guidance in this decision
process of deciding How much optimization is needed and how much is enough?

Optimization by no means is a silver bullet. We are not fascinated just by numbers
but are more interested in insight, especially actionable insight. If designed and
performed properly (for example, as guided in the recommended process of Fig. 2),
it is a valuable part of decision support. Its pragmatic usage means to understand
the scope and degree of its usage. Furthermore, it often means searching not for just
one ultimate solution but for a diversity of alternative solutions which is formulated
as the diversification principle (Ruhe 2010):

A single optimal solution to a cognitive complex (optimization) problem is less likely to
serve the original problem when compared to a portfolio of optimized solutions being
qualified AND structurally diversified.

Acknowledgements This research was supported by the Natural Sciences and Engineering
Research Council of Canada, Discovery Grant RGPIN-2017-03948. The literature analysis of the
study was mainly done by Debjyoti Mukherjee. The author is grateful to discussions with and
comments received from Maleknaz Nayebi and Julian Harty.

Optimization in Software Engineering: A Pragmatic Approach 259

References

Abran A, Moore JW, Bourque P, Dupuis R, Tripp LL (2004) Software engineering body of
knowledge. IEEE Computer Society, Angela Burgess, Washington

Ameller D, Farré C, Franch X, Rufian G (2016) A survey on software release planning models. In:
Product-focused software process improvement: 17th international conference, PROFES 2016,
Trondheim, November 22–24, 2016, Proceedings 17. Springer, Berlin, pp 48–65

Antoniol G, Di Penta M, Harman M (2005) Search-based techniques applied to optimization of
project planning for a massive maintenance project. In: 21st IEEE international conference on
software maintenance (ICSM’05). IEEE, Piscataway, pp 240–249

Aronson JE, Liang T-P, Turban E (2005) Decision support systems and intelligent systems, vol 4.
Pearson Prentice-Hall, Upper Saddle River

Balera JM, de Santiago VA Jr (2019) A systematic mapping addressing hyper-heuristics within
search-based software testing. Inf Softw Technol 114:176–189

Barreto A, de O Barros M, Werner CML (2008) Staffing a software project: a constraint satisfaction
and optimization-based approach. Comput Oper Res 35(10):3073–3089

Binitha S, Sathya SS, et al (2012) A survey of bio inspired optimization algorithms. Int J Soft
Comput Eng 2(2):137–151

Boehm, BW, Sullivan KJ (2000) Software economics: a roadmap. In: Proceedings of the
conference on the future of Software engineering. ACM, New York, pp 319–343

Bowman M, Briand LC, Labiche Y (2010) Solving the class responsibility assignment problem
in object-oriented analysis with multi-objective genetic algorithms. IEEE Trans Softw Eng
36(6):817–837

Burke EK, Gendreau M, Hyde M, Kendall G, Ochoa G, Özcan E, Qu R (2013) Hyper-heuristics: a
survey of the state of the art. J Oper Res Soc 64(12):1695–1724

Chang CK, Jiang H-y, Di Y, Zhu D, Ge Y (2008) Time-line based model for software project
scheduling with genetic algorithms. Inf Softw Technol 50(11):1142–1154

Chen WN, Zhang J (2013) Ant colony optimization for software project scheduling and staffing
with an event-based scheduler. IEEE Trans Softw Eng 39(1):1–17

Chrissis MB, Konrad M, Shrum S (2003) CMMI guidelines for process integration and product
improvement. Addison-Wesley Longman Publishing Co., Inc., Boston

Clímaco J, Ferreira C, Captivo ME (1997) Multicriteria integer programming: an overview of the
different algorithmic approaches. In: Multicriteria analysis. Springer, Berlin, pp 248–258

Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to algorithms, vol 6. MIT Press,
Cambridge

Cortellessa V, Marinelli F, Potena P (2008) An optimization framework for “build-or-buy”
decisions in software architecture. Comput Oper Res 35(10):3090–3106

Deb K, Pratap A, Agarwal S, Meyarivan T, Fast A (2002) A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

Di Penta M, Harman M, Antoniol G (2011) The use of search-based optimization techniques to
schedule and staff software projects: an approach and an empirical study. Softw Pract Exp
41(5):495–519

Durillo JJ, Zhang Y, Alba E, Harman M, Nebro AJ (2011) A study of the bi-objective next release
problem. Empir Softw Eng 16(1):29–60

Dybå T, Sjøberg DIK, Cruzes DS (2012) What works for whom, where, when, and why?:
on the role of context in empirical software engineering. In: Proceedings of the ACM-
IEEE international symposium on empirical software engineering and measurement. ACM,
New York, pp 19–28

Erdogmus H, Favaro J, Strigel W (2004) Return on investment. IEEE Softw 21(3):18–22
Floudas CA, Pardalos PM (2001) Encyclopedia of optimization, vol 1. Springer Science &

Business Media, Berlin

260 G. Ruhe

Frey S, Fittkau F, Hasselbring W (2013) Search-based genetic optimization for deployment and
reconfiguration of software in the cloud. In: 2013 35th international conference on software
engineering (ICSE). IEEE, Piscataway, pp 512–521

Garey MR, Johnson DS (2002) Computers and intractability, vol 29. W. H. Freeman, New York
Gawande A (2010) Checklist manifesto, the (HB). Penguin Books India, New Delhi
Geoffrion AM (1976) The purpose of mathematical programming is insight, not numbers.

Interfaces 7(1):81–92
Greer D, Ruhe G (2004) Software release planning: an evolutionary and iterative approach. Inf

Softw Technol 46(4):243–253
Grunske L (2006) Identifying good architectural design alternatives with multi-objective optimiza-

tion strategies. In: Proceedings of the 28th international conference on software engineering.
ACM, New York, pp 849–852

Guo J, White J, Wang G, Li J, Wang Y (2011) A genetic algorithm for optimized feature selection
with resource constraints in software product lines. J Syst Softw 84(12):2208–2221

Gurobi (2012) Gurobi optimizer reference manual. http://www.gurobi.com
Harman M, Jones BF (2001) Search-based software engineering. Inf Softw Technol 43(14):833–

839
Harman M, Tratt L (2007) Pareto optimal search based refactoring at the design level. In:

Proceedings of the 9th annual conference on genetic and evolutionary computation. ACM,
New York, pp 1106–1113

Harman M, Hierons RM, Proctor M (2002) A new representation and crossover operator for search-
based optimization of software modularization. In: GECCO 2002: Proceedings of the genetic
and evolutionary computation Conference, New York, vol 2, pp 1351–1358

Huang S-J, Chiu N-H, Chen L-W (2008) Integration of the grey relational analysis with genetic
algorithm for software effort estimation. Eur J Oper Res 188(3):898–909

Kano N, Seraku N, Takahashi F, Tsuji S (1984) Attractive quality and must-be quality. J Jan Soc
Qual Control 14(2):39–48

Kar AK (2016) Bio inspired computing–a review of algorithms and scope of applications. Expert
Syst Appl 59:20–32

Kistler T, Franz M (2003) Continuous program optimization: a case study. ACM Trans Program
Lang Syst 25(4):500–548

Kurgan LA, Musilek P (2006) A survey of knowledge discovery and data mining process models.
Knowl Eng Rev 21(1):1–24

Lakhotia K, Harman M, McMinn P (2007) A multi-objective approach to search-based test
data generation. In: Proceedings of the 9th annual conference on genetic and evolutionary
computation. ACM, New York, pp 1098–1105

Langdon WB, Harman M (2014) Optimizing existing software with genetic programming. IEEE
Trans Evol Comput 19(1):118–135

Li Y-F, Xie M, Goh TN (2009) A study of mutual information based feature selection for case
based reasoning in software cost estimation. Expert Syst Appl 36(3):5921–5931

Liu Y, Khoshgoftaar TM, Seliya N (2010) Evolutionary optimization of software quality modeling
with multiple repositories. IEEE Trans Softw Eng 36(6):852–864

Lucas TW, McGunnigle JE (2003) When is model complexity too much? Illustrating the benefits
of simple models with Hughes’ salvo equations. Nav Res Logist 50(3):197–217

Ma Y, Zhang C (2008) Quick convergence of genetic algorithm for QoS-driven web service
selection. Comput Netw 52(5):1093–1104

MacDonell SG, Shepperd MJ (2003) Combining techniques to optimize effort predictions in
software project management. J Syst Softw 66(2):91–98

Meignan D, Knust S, Frayret J-M, Pesant G, Gaud N (2015) A review and taxonomy of interactive
optimization methods in operations research. ACM Trans Interact Intell Syst 5(3):17

Nayebi M, Ruhe G (2018) Asymmetric release planning – compromising satisfaction against
dissatisfaction. IEEE Trans Softw Eng 45(9):839–857

Ngo-The A, Ruhe G (2008) Optimized resource allocation for software release planning. IEEE
Trans Softw Eng 35(1):109–123

http://www.gurobi.com

Optimization in Software Engineering: A Pragmatic Approach 261

Oliveira ALI, Braga PL, Lima RMF, Cornélio ML (2010) GA-based method for feature selection
and parameters optimization for machine learning regression applied to software effort
estimation. Inf Softw Technol 52(11):1155–1166

Praditwong K, Harman M, Yao X (2010) Software module clustering as a multi-objective search
problem. IEEE Trans Softw Eng 37(2):264–282

Ren J, Harman M, Di Penta M (2011) Cooperative co-evolutionary optimization of software project
staff assignments and job scheduling. In: International symposium on search based software
engineering. Springer, Berlin, pp 127–141

Rittel HWJ, Webber MM (1974) Wicked problems. Man-Made Futures 26(1):272–280
Ruhe G (2002) Software engineering decision support–a new paradigm for learning software

organizations. In: International workshop on learning software organizations. Springer, Berlin,
pp 104–113

Ruhe G (2010) Product release planning: methods, tools and applications. CRC Press, Boca Raton
Ruhe G, Wohlin C (2014) Software project management: setting the context. In: Software project

management in a changing world. Springer, Berlin, pp 1–24
Ruhe G, et al (2004) Hybrid intelligence in software release planning. Int J Hybrid Intell Syst

1(1–2):99–110
Saliu O, Ruhe G (2005) Supporting software release planning decisions for evolving systems. In:

29th annual IEEE/NASA software engineering workshop. IEEE, Piscataway, pp 14–26
Saliu MO, Ruhe G (2007) Bi-objective release planning for evolving software systems. In:

Proceedings ESEC/FSE. ACM, New York, pp 105–114
Shearer C (2000) The CRISP-DM model: the new blueprint for data mining. J Data Warehouse

5(4):13–22
Sheskin DJ (2003) Handbook of parametric and nonparametric statistical procedures. CRC Press,

Boca Raton
Singh Y, Kaur A, Suri B (2010) Test case prioritization using ant colony optimization. ACM

SIGSOFT Softw Eng Notes 35(4):1–7
Van den Akker M, Brinkkemper S, Diepen G, Versendaal J (2008) Software product release

planning through optimization and what-if analysis. Inf Softw Technol 50(1–2):101–111
Van Solingen R, Basili V, Caldiera G, Rombach HD (2002) Goal question metric (GQM) approach.

Encycl Softw Eng 2:578–583
Veerapen N, Ochoa G, Harman M, Burke EK (2015) An integer linear programming approach to

the single and bi-objective next release problem. Inf Softw Technol 65:1–13
Wada H, Champrasert P, Suzuki J, Oba K (2008) Multiobjective optimization of SLA-aware service

composition. In: 2008 IEEE congress on services-part I. IEEE, Piscataway, pp 368–375
Walcott KR, Soffa ML, Kapfhammer GM, Roos RS (2006) TimeAware test suite prioritization.

In: Proceedings of the 2006 international symposium on software testing and analysis. ACM,
New York, pp 1–12

Wang Z, Tang K, Yao X (2010) Multi-objective approaches to optimal testing resource allocation
in modular software systems. IEEE Trans Reliab 59(3):563–575

Wieringa RJ (2014) Design science methodology for information systems and software engineer-
ing. Springer, Berlin

Xiao M, El-Attar M, Reformat M, Miller J (2007) Empirical evaluation of optimization algorithms
when used in goal-oriented automated test data generation techniques. Empir Softw Eng
12(2):183–239

Yoo S, Harman M (2007) Pareto efficient multi-objective test case selection. In: Proceedings of the
2007 international symposium on software testing and analysis. ACM, New York, pp 140–150

Zhang Y, Harman M, Mansouri SA (2007) The multi-objective next release problem. In:
Proceedings of the 9th annual conference on genetic and evolutionary computation. ACM,
New York, pp 1129–1137

Zhang Y, Harman M, Ochoa G, Ruhe G, Brinkkemper S (2018) An empirical study of meta-and
hyper-heuristic search for multi-objective release planning. ACM Trans Softw Eng Methodol
27(1):3

The Role of Simulation-Based Studies
in Software Engineering Research

Breno Bernard Nicolau de França and Nauman Bin Ali

Abstract Several decades ago, inspired by other knowledge areas, simulation
was introduced as a research method to Software Engineering. Motivated by
potential benefits achieved in other areas, the software engineering community has
used simulation-based studies for planning, controlling, and improving software
development. However, unclear expectations from simulation-based studies, a lack
of methodological support, as well as dispersed knowledge to support model
building and calibration have hindered widespread adoption of simulation-based
investigations. In this chapter, we delineate the role of simulation in software
engineering research and compile processes and guidelines into a comprehensive
life cycle. This chapter aims to guide software engineering researchers to conduct
effective simulation-based studies in real-world settings.

1 Introduction

Computer simulation is used as a research tool in several areas, such as
Medicine (Burton et al. 2006), Engineering (Babuska and Oden 2004), Social
Sciences (Eck and Liu 2008), and others (Law and Kelton 2000). In Software
Engineering (SE), the community presented several initiatives on simulating
different kinds of phenomena, ranging from software products, processes to team
behavior.

Among these different areas, the use of the term simulation varies substantially.
To frame our perspective on simulation for this chapter, we have adopted the fol-
lowing definition from Banks (1999): “Simulation is the imitation of the operation
of a real-world process or system over time. Simulation involves the generation of

B. B. N. de França (�)
Universidade Estadual de Campinas, Campinas, SP, Brazil
e-mail: breno@ic.unicamp.br

N. B. Ali
Blekinge Institute of Technology, Karlskrona, Sweden
e-mail: nauman.ali@bth.se

© Springer Nature Switzerland AG 2020
M. Felderer, G. H. Travassos (eds.), Contemporary Empirical Methods in Software
Engineering, https://doi.org/10.1007/978-3-030-32489-6_10

263

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32489-6_10&domain=pdf
mailto:breno@ic.unicamp.br
mailto:nauman.ali@bth.se
https://doi.org/10.1007/978-3-030-32489-6_10

264 B. B. N. de França and N. B. Ali

an artificial history of the system, and the observation of that artificial history to
draw inferences concerning the operating characteristics of the real system that is
represented.”

In this chapter, empirical investigations of a system of interest are referred to
as simulation-based studies (SBS) if they use simulation to numerically evaluate a
mathematical model that imitates the real-world behavior of the system.

As a supporting tool for research in SE, SBS are not meant to replace other types
of empirical investigations such as controlled experiments or case studies (we refer
to chapter “Guidelines for Conducting Software Engineering Research” for a more
comprehensive view on research methods). Rather, it is useful to support knowledge
acquisition and decision-making during the research process. Simulation-based
studies also require previous empirical knowledge from in vivo1 or in vitro2

studies for modeling SE phenomena or behavior (Travassos and Barros 2003). Such
modeling fosters large-scale observations, using a controlled and computational
environment (in virtuo3 and in silico4), to understand better the phenomenon and
possibly explain it through simulation traces and diverse scenarios that could be
difficult to observe in an in vivo or in vitro environment. Therefore, simulations are
recommended for studies involving a combination of many factors (with possible
interactions) and alternatives, as well as long-term observations.

Besides modeling, SBS also require data for calibration, validation, and exper-
imentation. Usually, such data come from observations and, consequently, are
limited to their original context. When insufficient data and theories are available,
simulation can still be used. In such cases, the role of simulation is limited to a
tool that models our assumptions and approximations. The likely outcome of our
proposed solutions is then judged objectively under these assumptions. However,
we should be aware of the reliability of the results and take extreme care not to
overinterpret the results.

Building on lessons learned from the existing literature on simulation in SE, this
chapter proceeds in Sect. 2 with a discussion of the claimed benefits to motivate
the adoption of simulation in SE. Then, in Sect. 3, we present what we understand
are the actual benefits and describe the role of SBS in SE research. In Sect. 4, we
motivate the need for methodological support for conducting SBS. Later, in Sect. 5,
we present a comprehensive and consolidated life cycle for simulation-based studies
in SE. Section 6 presents two practical examples of SBS conducted based on several
of the recommendations presented in this chapter. Furthermore, additional readings
are suggested in Sect. 7. Finally, we conclude the chapter in Sect. 8.

1In vivo studies are the ones occurring in real-life environments.
2In vitro studies are the ones occurring in controlled environments with human participants.
3In virtuo studies are the ones occurring in computational environments driven by human
participants.
4In silico studies are the ones occurring completely in computational environments with no human
intervention.

The Role of Simulation-Based Studies in Software Engineering Research 265

2 Motivation for Simulation-Based Studies

Software development is a dynamic activity that involves several people, work-
ing with various tools and technologies, guided by policies and processes to
develop solutions that fulfill user requirements. The interaction and interdependence
between human, technological, and organizational factors make it difficult to con-
fidently assess the potential impact of a proposed change in software development.
Furthermore, introducing a change in the development practice is a time and
resource-intensive undertaking. Therefore, we want to have high confidence in the
likely impact of a change before changing the actual process.

Figure 1 depicts several ways of studying the impact of introducing a change in a
system. Broadly, we can (1) manipulate the actual system and investigate the effect
of an intervention or (2) study the effects on a model of the system in controlled
settings. The main trade-off between the two choices is that of realism vs. control in
conducting the investigation. An additional concern is that of the cost of conducting
the investigation and the risk if the introduced change does not produce the expected
results or has unforeseen consequences.

Due to the cost of manipulating the actual system and the lack of control in
real-world settings, we tend to rely on developing and manipulating models of the
system. It is only after gaining more confidence in solution proposals that we begin
moving towards changing the actual practice. Even in that case, the investigations
in real-world settings (through case study or action research) often try to reduce
the cost of such studies by incorporating change on a smaller scale. For example,
investigating by introducing change in one of the teams or projects and observing
the effects before adopting a change throughout the organization.

Simulation is proposed as an inexpensive (Wu and Yan 2009; Melis et al. 2006;
Kellner et al. 1999; Madachy 2002) and proactive means to assess what will happen
before actually committing resources for a change (Kellner et al. 1999). McCall
et al. (1979) made the first suggestion for its use in SE in 1979. It has since been used
to study various aspects of software development, e.g., effort estimation, project
planning, risk assessment, and training. The simulation models developed over the

System

Manipulating the actual system Manipulating a model of the system

Pilot studies in a reduced scope Physical modelsMathematical models

Analytical solution Simulation

Fig. 1 Ways of studying a system (adapted from Law 2007)

266 B. B. N. de França and N. B. Ali

years have varied in scope (from parts of the life cycle to long-term organizational
evolution), purpose (including planning and training), and approach (e.g., system
dynamics or discrete-event simulation) (Zhang et al. 2010).

3 Limitations of Simulation-Based Studies in SE

As discussed in the previous section, the range of claimed potential benefits coupled
with occasional claims of industrial application and impact (Zhang et al. 2011) gives
an impression that simulation is a panacea for problems in SE. However, in the
following sections, we discuss the limitations of SBS in SE. This discussion draws
on an analysis of the existing literature (Ali et al. 2014) and our experience of using
simulation in industrial settings (Ali and Petersen 2012; Ali et al. 2015). In the SE
literature, the use of simulation has two implied purposes, which are:

1. Simulation as a problem-solving tool for decision support for SE practition-
ers (Banks 1999).

2. Simulation as a means to conduct controlled experiments (Abdel-Hamid 1988)
and as an alternative to industrial case study research (Müller and Pfahl 2008).

To scrutinize the above two claims, it is useful to assess the following two aspects
of SBS: (a) the cost of conducting effective SBS and (b) the strength of evidence
generated in SBS. Other limitations of SBS in SE are further discussed by Pfahl
(2014).

3.1 Cost of Conducting SBS

SBS are certainly less risky than experimenting with a physical model of a system
or the actual system (Fig. 1). Physical models in software engineering are very
uncommon, so that is not considered as a feasible alternative unless embedded or
robotics systems are into play. Similarly, the limitations of generalizability when
experimenting with students as subjects and artifacts that are not representative
of industrial-scale are well-documented (Feldt et al. 2018). However, the cost of
conducting SBS for industrial cases should be accounted for, and will include,
e.g.: (1) the cost of developing and calibrating a simulation model, (2) design and
analysis of simulation-based investigations, (3) the cost of necessary data collection,
or (4) setting up a measurement program that can feed the simulation model with
sufficiently reliable data.

Pfahl and Lebsanft (2000) reported 18 months of calendar time for a simulation
study. They reported an effort of one person-year in consulting and 0.25 person-
years for the development part of the study. In another study, Pfahl et al. (2004)
report the calendar time of 3 months for knowledge elicitation and modeling and
four meetings with the client while conducting a simulation-based study. Shannon

The Role of Simulation-Based Studies in Software Engineering Research 267

(1986) predicted a high cost for simulation as well, “a practitioner is required to have
about 720 h of formal classroom instruction plus 1440 h of outside study (more than
one man-year of effort).”

3.2 Quality of Evidence from SBS

The role of SBS as a decision-support tool and an empirical method requires
a consideration of the strength of evidence generated by SBS. Some limitations
discussed below are general limitations of simulation, but they get aggravated in
SBS because of the nature of software development.

Models Are Simplifications Simulation models are a simplification, abstraction,
and approximation of the system of interest (Christie 1999). SBS in SE often require
modeling the process or project dynamics. Fully capturing these complex dynamics
of a real-world process or project in a simulation model is not possible, which raises
questions about the validity of a simulation model.

Measurement Challenges SBS in SE deal with quantification of variables and
their relationships. Often strict cause–effect relations with determined magnitudes
of relations are not available in SE (Christie 1999). Therefore, the confidence in a
simulation model depends on the verification and validation of both the structure and
behavior of the model (Christie 1999). The lack of reliable measures and quantified
relations (Jørgensen and Kitchenham 2012; Kitchenham 2010) also adds another
degree of uncertainty in the simulation models used in SE.

Lack of Data Accurate data to use in an SBS is extremely important, as a model
without supporting data cannot deliver adequate predictions, and such a model is
essentially a visual metaphor (Olsen 1993). However, in SE, a lack of empirical data
is a common challenge faced by researchers conducting SBS (Kellner et al. 1999).
Launching a measurement program to feed a simulation model is often not feasible,
and often existing SBS rely on the use of industrial averages, expert estimates, or
values acquired from analytical models. The lack of accurate data also challenges
the reliability of SBS results.

3.3 Simulation as a Problem-Solving, Decision-Support Tool
for SE Practitioners

The vision to have practitioners using simulation as a decision-support tool in SE
practice suggests a transfer of technology from academia to industry. As we are

268 B. B. N. de França and N. B. Ali

proposing a new tool or practice to the industry, it is important to have the following
prerequisite information (Ali 2016):

• Cost of adoption.
• Effectiveness over the existing methods.

Apart from the cost of conducting an SBS, we should take into account the cost
of required tool support and training and the effort required for the development
and maintenance of a simulation model. Besides, frequent changes in technology,
software development process, environment, and customer requirements require
keeping the simulation model up to date. Given the high cost of simulation model
development and maintenance, it is unlikely that practitioners will invest the
required effort.

There is a need to identify the challenges when using simulation in a company.
This includes the integration of simulation models with the existing decision-
support systems used at the company (Balci 1990; Murphy and Perera 2001).

Contrary to the claims of impact on the software industry (Zhang et al. 2011), an
extensive literature review on the industrial applications of simulation in SE found
no evidence of adoption (Ali et al. 2014).

3.4 Simulation as an Alternative Empirical Method

In the past, some authors had suggested the use of simulation in SE research
as an alternative to case study research. For example, “the usual way to analyze
process behavior is to perform the actual process in a case study and observe the
results. This is a very costly way to perform process analysis, because it involves
the active participation of engineers. Furthermore, results from a particular case
study cannot necessarily be generalized to other contexts. Another way of analyzing
processes is to simulate them” (Müller and Pfahl 2008). Others have indicated its use
as an alternative to expensive controlled experiments, e.g., “Simulation modeling
provides a viable experimentation tool for such a task. In addition to permitting
less costly and less time-consuming experimentation, simulation-type models make
‘perfectly’ controlled experimentation possible” (Abdel-Hamid 1988).

Given the strength of evidence generated in SBS (as we briefly summarized
in Sect. 3.2), we do not see the use of simulation as an alternative to controlled
experiments or case study research. Rather, we suggest the use of simulation to
complement other empirical methods, which aligns with advice by Münch et al.
(2003) and by Pfahl and Ruhe (2002).

The cost of conducting an SBS and the lack of the inclusion of simulation
in CS/SE undergraduate or graduate curriculum are likely to prevent industry
practitioners from designing and conducting SBS anytime soon. However, there is
sufficient evidence (Ali et al. 2014) to show that researchers can use simulations to
support empirical research.

The Role of Simulation-Based Studies in Software Engineering Research 269

Validation in use
(in limited scope)

Release solution

Problem /
issue

Candidate
solution

Validation in
academia

Sanity testing of
solutions

Problem formulation

Study state of
the art

Validation in use VV
(in limited scope)

Release solution

Problem /
issue

Candidate
solution

Validation in VV
academia

Sanity testing of
solutions

Problem formulation

Study state of
the art

1

2

4

5

6

7

Industry

Academia

Simulation

Simulation

3

Fig. 2 The technology transfer model (adapted from Gorschek et al. 2006)

In our opinion, the use of simulation is most suitable as a means to sanity test
solution proposals. Such SBS can be conducted both in academic and industrial
settings, as shown in Fig. 2. Example 2 in Sect. 6 reports the use of simulation for
supporting software process improvement decisions. Further use of simulation, with
empirical evidence supporting its use, is for training and educational purposes (Pfahl
2014; Ali and Unterkalmsteiner 2014). Example 1 in Sect. 6 reports the use of
simulation for training in an industrial setting.

Simulation Is Not a Silver Bullet
• Simulation is not free of cost, but there are contexts in which incurring this

cost is worthwhile.
• Simulation results come with a certain degree of confidence. It is up to the

experimenter to understand whether it has achieved the research goals.
• Simulation-based investigations do not mean to replace other empirical

methods, but they can complement them in situations where the in loco
observation is unfeasible.

270 B. B. N. de França and N. B. Ali

4 The Need for Guidance

The conduction of SBS in the context of software engineering has several chal-
lenges, and here we present evidence on the need for guidance when adopting
simulation to support research.

Two systematic literature reviews (De França and Travassos 2013; Ali et al.
2014) of SBS in software engineering found that these studies lack rigor. De França
and Travassos (2013) identified lack of planning (study definition), V&V (before
running simulation investigations) to assure minimal confidence in the simulation
results, and output analysis procedures. Mainly, such activities are performed ad
hoc, with particular studies using systematic procedures to perform one or another
activity, but studies presenting a full systematic process or method are scarce. Ali
et al. (2014) assessed the quality of software process simulation and modeling
(SPSM) studies concerning rigor and practical relevance. They did not find reported
cases of the successful transfer of SPSM to practitioners in the software industry.
Furthermore, no studies were found reporting a long-term use of SPSM in practice
and no evidence to back the claims of practical adoption and impact on industrial
practice (Zhang 2012; Zhang et al. 2011). Finally, both reviews agree on the lack of
information in simulation reports.

Regarding reporting of simulation studies in software engineering, De França
and Travassos (2012) present general guidelines, and specifically for SPSM
studies using continuous simulation, a good template is available in Madachy’s
book (Madachy 2008). Recently, Monks et al. (2019) proposed the STRESS
checklist for reporting simulation studies.

Simulation can provide actual benefits when supporting software engineering
research, and both simulation and SE literature have presented some guidance
on conducting SBS. However, it is not an obvious decision for practitioners or
researchers to select one process or a set of guidelines to follow, considering the little
background in the area. For that, Ali and Petersen (2012) proposed a consolidated
process for SPSM with supporting guidelines. Besides, De França and Travassos
(2016) propose simulation guidelines for experimenting with dynamic models in
SE. These contributions are the foundation for the life cycle presented in Sect. 5.

5 Simulation-Based Studies Life Cycle

When supporting a research process with simulations, researchers generally char-
acterize the life cycle (process) for simulation studies as a knowledge-intensive
and iterative process (Alexopoulos and Seila 1998; Balci 1990; Maria 1997;
Banks 1999; Sargent 1999), including the following activities: study definition
or phenomenon understanding (also called system observation); model design
and development; verification and validation (V&V); performing simulation-based

The Role of Simulation-Based Studies in Software Engineering Research 271

Fig. 3 Simulation-based studies life cycle

investigations, including experimental design and output analysis; and finally
documentation and reporting.

The consolidated life cycle for SBS (Ali and Petersen 2012; Fig. 3) described in
this section is based on processes identified both in general computer simulation and
SE literature. For this, we adopt the following guiding principles:

• Start small and later on enhance the simulation model, looking for analogies
to solve the problem rather than starting the model building from scratch and
working over an extended period for developing the model in one go (Ahmed
et al. 2008). It reinforces the iterative nature of the process.

• Involve and keep frequent contact with all stakeholders throughout the
study (Murphy and Perera 2001; Ahmed and Robinson 2007; Ahmed et al.
2008). It is important to improve the utility and practical relevance for the
simulation.

• Models are abstractions, and that imposes a trade-off between complexity and
realism, so not pursuing a perfect model is recommended, but still critically
analyzing the results (Madachy 2008).

• All models are incomplete, bounded by the behavior under study as much as it
is required to answer the questions of interest (Madachy 2008). It highlights the
need to constantly revisit the simulation goals and raises a question about the
reuse of a model beyond its original intent.

• In industrial simulation studies, it is important to deliver results and recom-
mendations quickly as the modeled system and its environment are likely to
change (Ahmed and Robinson 2007; Murphy and Perera 2001).

272 B. B. N. de França and N. B. Ali

• It is possible to model a phenomenon of interest in several ways. The differences
may arise because of the perspective of stakeholders, level of detail, and the
modeler’s assumptions (Madachy 2008).

• Continually challenge the model to increase the credibility of the model through
further verification and validation (V&V) (Madachy 2008; Ahmed and Robinson
2007). That is why V&V activities are placed as continuous and parallel.

• To facilitate effective communication, use simple diagrams to communicate with
stakeholders until they seek more detail, such as equations, since it may not be
necessary to present those details (Madachy 2008).

Next sections provide detailed discussion for each major activity in the simula-
tion studies life cycle.

5.1 Study Definition

Simulation-based studies should present a definition including the research context,
problem, goals, and questions. For the context, model users and audience should be
taken into account, as well as organizational policies involved when conducting
simulation studies in industry. There are two suggestions (Petersen and Wohlin
2009; Dybå et al. 2012) on how to identify and describe contextual information for
software engineering research that we understand as useful for simulation studies.
The motivating problem frames the SBS in a proper scope and can be used to
define relevant usage scenarios. Ideally, simulation models answer questions based
on a purpose that can be assessed. Therefore, research goals and derived questions
should guide the whole life cycle so that the chances for practical acceptance are
increased. Goal-Question-Metric (GQM) (Basili and Rombach 1988) goal template
can support the study definition, also recommended in the IMMoS method (Pfahl
2001; Pfahl and Lebsanft 2000).

Kellner et al. (1999) mention common purposes for SPSM, such as strategic
management; planning, control, and operational management; process improvement
and technology adoption; understanding; and training and learning.

Before the simulation model development, technical feasibility should be
checked (Pfahl and Ruhe 2002; Ahmed et al. 2005) considering prerequisites
for model development and usages like adequacy of problem definition, availability
of data, and process maturity (Pfahl 2001). For that, Balci (1990) proposed the
following questions:

• Do the benefits of conducting a simulation-based study justify the cost?
• Is it possible to use simulation for the goal of the study?
• Is it possible to complete the study in the given time and resource constraints?
• Is the necessary information available, e.g., classified or not available?

The Role of Simulation-Based Studies in Software Engineering Research 273

Furthermore, we recommend questions to support this decision focusing on addi-
tional constraints regarding the model development and experimentation (De França
and Travassos 2016):

• Are the risks of running the real system high, including loss or waste of money
or time, reaching an irreversible state, or compromised safety?

• What are the available instruments and procedures for data collection?
• Is there enough data to support model calibration and validation, as well as

statistical analysis?

5.2 Model Design

Simulation studies in SE span widely in terms of phenomena to simulate. Known
behaviors like Brooks’ law, process evaluation, and project estimation, as well as
architectural issues such as performance and scalability assessment, are examples of
objects of study. Mostly, software engineering simulations concentrate on software
process and project issues (De França and Travassos 2013). In the following
sections, we describe relevant aspects of simulation modeling and provide some
specifics on software process and projects.

5.2.1 Input Parameters and Response Variables

Input parameters represent the independent variables for which users of a simulation
model can define values that impact on the model state and, consequently, on the
response variables. Inputs can be calibration or variable parameters. To identify
these parameters, it is recommended to start designing the model early on (Kellner
et al. 1999). Also, consider that it in case of unavailability of data it may not be
practical to measure all relevant variables accurately.

In the case of stochastic simulation, select appropriate probability distributions
for input parameters (Balci 1990). Law (2007) provides a detailed discussion of
statistical methods to support this decision. Stochastic or not, the integrity of
simulation data must be ensured by maintaining constant communication with
stakeholders (Murphy and Perera 2001).

On the other side, to identify the response (output) response variables required
for the model (Park et al. 2008; Kellner et al. 1999; Rus et al. 2003), one needs
to address the problem statement by answering the key questions identified in the
study definition. For that, it is recommended to use GQM to identify the response
variables (metrics) that address the defined research goals (Madachy 2008; Rus
et al. 2003). Additionally, to specify problematic or desired behaviors (called the
reference behavior) (Müller and Pfahl 2008) can help to identify response variables.

Reference behaviors describe changes on variables by plotting their values over
time (Madachy 2008), preferably using historical data (Pfahl 2001). However, it is

274 B. B. N. de França and N. B. Ali

also possible to consider behavioral patterns based on experience when actual data
is not available (Madachy 2008; Pfahl 2001) and using relative measures instead of
striving for absolute ones (Madachy 2008).

5.2.2 Conceptual Modeling

This activity requires both explicit and tacit knowledge about the phenomenon to
be simulated. This way, modelers should identify constructs and behaviors (e.g.,
process elements, information flows, and decision rules) influencing the response
variables and relevant to the simulation goal. In addition, it is essential to consult
or interview domain experts as they have knowledge beyond the project or product
documentation and can judge the relevance of the information to the problem under
study (Müller and Pfahl 2008), avoiding missing important aspects and reducing the
threat of misunderstanding (Pfahl and Lebsanft 1999).

At this stage, the creation of influence diagrams to describe the positive or
negative influence of various parameters supports the identification of internal
variables (Rus et al. 2003). In this sense, the researchers need to motivate the
choice of cause–effect relationships with relevant data sources and evidence from
the literature (Pfahl 2001). Besides, individual cause–effect relationships should be
reviewed before introducing more combinations (Pfahl 2001).

In the case of SPSM, creating static process models helps to understand the flow
of information and the transformation of artifacts in various activities (Rus et al.
2003).

The conceptual model should not capture the whole phenomenon at once, i.e.,
researchers should include only the constructs and relations necessary to generate
the behaviors of interest, according to the goal and the scope of the model.
For that, a top-down iterative approach provides additional details only when
necessary (Madachy 2008).

As researchers gain more knowledge on model variables (explicitly described),
the simulation feasibility should be assessed again, as described in Sect. 5.1.

5.3 Model Implementation

To develop a simulation model, it is required to understand the selected simulation
approach, the conceptual model, including its variables, parameters, and associated
metrics, as well as the underlying assumptions and calibration procedures. The lack
of knowledge regarding any of these aspects may impose different types of threats
to validity (De França and Travassos 2015).

In addition, the simulation model should be developed with high modular-
ity (Ahmed et al. 2008), separating data from the model to support modification
and experimentation (Murphy and Perera 2001), and always kept in a state that it
could be simulated (or tested) (Madachy 2008).

The Role of Simulation-Based Studies in Software Engineering Research 275

5.3.1 Simulation Approach

An executable model is implemented from the conceptual model using a simulation
language, which should be based on a simulation approach like system dynamics
(SD), discrete-event simulation (DES), or agent-based simulation (ABS). The
simulation approach abstracts the essential characteristics and behaviors the model
has to fit in.

The choice of a proper simulation approach depends on the particular goal of
the study (Madachy 2002; Kellner et al. 1999). One consequence of concentrating
on software process and project issues is the focus on continuous and discrete
simulation (De França and Travassos 2013). Madachy (2002) considers continuous
simulation (e.g., SD) more suitable for strategic analysis, high-level perspectives,
and long-term trends, while discrete simulations can make detailed process analysis,
resource utilization, and relatively short-term analysis more convenient.

5.3.2 Simulation Environment and Tools

The simulation environment consists of all instruments needed to perform the study,
encompassing the simulation model itself, data sets, data analysis tools (including
statistical packages), and simulation tools/packages. This way, planning and report-
ing studies considering those aspects are very important (see chapter “Open Science
in Software Engineering” for a broader discussion on making the experimental
package available). Simulation packages often differ in how they implement the
simulation engine mechanism. Therefore, it is possible to get different results
depending on the engine implementation.

Also, a simulation package should support not only the underlying simulation
approach, but also the experimental design and output data analysis. Several tools
are available to facilitate this analysis, providing a graphical interface to support
output visualization, walk-through, interactive simulation, sensitivity analysis, and
integration with third-party applications.

Raw input data requires extra effort to understand its properties (e.g., data
distribution and shape, trends, and descriptive stats) and perform the transformations
(e.g., scale transformations and derived metrics) needed to fit the model parameters
and variables. Similarly, the simulation output data needs specific analysis tech-
niques such as statistical tests and accuracy analysis.

Madachy (2008) and Ahmed and Robinson (2007) list the price, ease of use,
training, documentation and maintenance support, computer platform and user
familiarity, and performance requirements as the criteria for choosing an appropriate
simulation tool. This choice also depends on the fit of the research questions,
assumptions, and the theoretical logic of the conceptual model with those of the
simulation approach (Houston et al. 2001).

Another important perspective concerns the computational infrastructure. The
simulation needs to be settled up and reported so that one can understand the details
for replicating the study. This way, processor capacity, operating system, amount

276 B. B. N. de França and N. B. Ali

of data, and execution time interval are relevant characteristics to estimate schedule
and costs for the study.

Finally, simulations involving multiple trials/runs often need to summarize
information from each intermediate trial for the final output analysis. Mean and
standard deviation are common measures for this purpose and determine confidence
intervals, for instance. This way, the individual measures are stored in a database or
external files.

5.3.3 Model Calibration

It is recommended to use actual data for model calibration (Madachy 2008; Kellner
et al. 1999). Such data is used for the generation of equations and parameters and
to determine the distribution of random variables. However, the lack of data for
calibration and validation in real-world settings (Kellner et al. 1999) imposes some
threats as the desired data is often poorly defined, inaccurate or missing altogether,
considering it was not planned and collected to support a particular simulation-based
study.

An alternative is to work with synthetic data (Ören 1981). However, it requires
evidence on data validity, i.e., provide indications that the simulated data represents
the real phenomenon. For that, statistical tests can be applied to verify how close
both real and synthetic samples are. Additionally, modelers may consult domain
experts to deduce the accuracy and relevance of data (Murphy and Perera 2001;
Raffo and Kellner 2000).

Planning the data collection avoids measurement mistakes, promoting the collec-
tion of data as soon as they are made available for the target variables and tracking
contextual information (including qualitative data), which provides better and
accurate reasoning when performing output analysis by supporting the explanations.

After the collection, quality assurance procedures ought to take place to verify
their consistency and accuracy, avoiding the inclusion of outliers or incomplete data.
For instance, to avoid biased observations and exposure to risks (i.e., undetected
seasonal periods in time series), the data collection period should represent both
transient and steady states.

Data used for model calibration and setting model parameters in the investiga-
tions need to share the same context. Therefore, the values used for investigation
have to be consistent, avoiding attempts to generalize behaviors to different contexts
inappropriately. The use of cross-company data is an example of how it can impose
a threat to internal validity on the simulation results.

5.4 Verification and Validation

As the phenomenon under investigation is essentially observed through the execu-
tion of a simulation model, validity aspects concentrate on both model and data

The Role of Simulation-Based Studies in Software Engineering Research 277

validity. Besides, model validity is a relative matter (Madachy 2008), depending
on the purpose of the study. This way, evidence regarding model (conceptual and
implemented) validity means the researcher should be aware of all the initiatives of
submitting the simulation model to V&V procedures and their results.

The list provided in Table 1 supports the identification of attempts to verify or
validate a simulation model in existing reports. These procedures were identified
both in the context of SE (De França and Travassos 2013) and general discrete
simulation (Sargent 1999). Barlas (1989) presents general procedures for validating
SD models. None of these V&V procedures can avoid all the potential threats
to validity alone. However, properly combining some of them can increase the
confidence in simulation results.

Face validity is a white-box procedure for reviewing both simulation model and
I/O matching from the perspective of experts and it is a relevant indication that,
in the face of the model representation and its generated behavior, it gives the
impression of being valid. It enables the review of internal properties and behaviors
of a simulation model like model variables, equations, and relationships, rather
than dealing with it as black box, i.e., observing just the I/O matching. This way,
domain experts may identify threats to construct validity in advance. Face validity
sessions may happen on workshops, group or individual interviews. The main idea
is to present the model by following a walk-through approach to show how the
input values generate outcomes, exemplifying with real scenarios so that experts
can realize the model behavior and validate the simulation results for a given set of
inputs.

To have the causal relationships and assumptions supported by empirical evi-
dence improves external validity (Davis et al. 2007). Besides, it reduces the
modeler’s bias, not relying exclusively on experts’ opinions or ad hoc observations.
This way, secondary studies may be performed to search for evidence. However,
models with many causal relationships may impose a great effort into using this
approach.

The verification of model assumptions increases the reliability of simulation
results. Face validity can be combined with other procedures to compare empirical
data/behavior (Sargent 1999) to assess explicit model assumptions. For instance,
to use comparison with reference behaviors, historical validation, or predictive
validation to understand if the model is capable of reproducing an empirical
behavior in terms of internal variables and outcomes. The modelers make, even
implicitly, some assumptions regarding the phenomenon. For instance, the increase
in a response variable directly caused by the presence of a given parameter. If these
assumptions are embedded in the model, it may represent a threat to internal validity,
since this behavior should not be coded directly in the model, rather it should be
treated as an effect of a chain of actions, events, and conditions generating such
behavior in the output variable.

When performing sensitivity analysis, it is important to consider constraints from
the real world to make sure that the model reflects real-world behavior (Madachy
2008).

278 B. B. N. de França and N. B. Ali

Table 1 Verification and validation procedures (De França and Travassos 2016)

Procedure Description

Face validity Consists of getting feedback from individuals knowledgeable about the
phenomenon of interest through reviews, interviews, or surveys, to
evaluate whether the (conceptual) simulation model and its results
(input–output relationships) are reasonable

Comparison with
reference behaviors

Compare the simulation output results against trends or expected
results captured from historical data or reported in the literature

Comparison with
other models

Compare the results (outputs) of the simulation model being validated
to the results of other valid (simulation or analytic) models. Controlled
experiments can be used to arrange such comparisons

Event validity Compare the events triggered during the simulation runs to those of the
real phenomenon to determine if they are similar. This technique is
applicable to event-driven models

Historical data
validation

If historical data exists, part of the data is used to build the model, and
the remaining data are used to compare the model behavior and the
actual phenomenon. Such testing is conducted by driving the
simulation model with either sample from distributions or traces, and it
is likely used for measuring model accuracy

Rationalism Use logic deductions from model assumptions to develop the correct
(valid) model, by assuming that everyone knows whether the stated
underlying assumptions are true

Predictive validation Use the model to forecast the phenomenon behavior, and then compare
this behavior to the model forecast to determine if they are similar (or
equal). The data may be obtained by observing the real phenomenon or
conducting experiments, e.g., field tests for provoking its occurrence.
Also, data from the literature may be used when there is no complete
data in hands

Internal validity It is likely used for measuring model accuracy. Several runs of a
stochastic model are made to determine the amount of (internal)
stochastic variation. A large amount of variation (lack of consistency)
may threat the model confidence, even if it is typical of the problem
under investigation

Sensitivity analysis Consists of systematically changing the values of the input and internal
parameters of a model to determine the effect upon the model output.
The same effects should occur in the model as in the real phenomenon.
This technique can be used semi-qualitatively—trends only—and
quantitatively—both directions and (precise) magnitudes of outputs

Testing model
structure and
behavior

Submit the simulation model to test cases, evaluating its responses and
traces. Both model structure and outputs should be reasonable for any
combination of values of model inputs, including extreme and unlikely
ones. Besides, the degeneracy of the model behavior can be tested by
appropriate selection of values of parameters

Based on empirical
evidence

Collect evidence from the literature (empirical studies reports) to
develop the model causal relationships (mechanisms)

Turing tests Individuals knowledgeable about the phenomenon are asked if they can
distinguish between real and model outputs

The Role of Simulation-Based Studies in Software Engineering Research 279

Performance measures such as bias, accuracy, coverage, and confidence intervals
can be used as criteria to benchmark more accurate simulation models (Burton et al.
2006). For instance, if the outcomes have low accuracy or are in a wide confidence
interval, these results may be distant from reality. This information also brings
credibility to the simulation study.

Finally, modelers should avoid false expectations (e.g., perfect predictions on the
first model run) by reviewing patterns for qualitative similarity (Madachy 2008).

5.5 Simulation-Based Investigation

The experimental design defines a causal model establishing relationships between
parameters and response variables, based on research goals and questions. Balci
(1990) mentions that different parameters (input variables), behavioral relationships,
and auxiliary variables may represent model variants. Thus, during simulation
execution, the model variables may be held constant or allowed to vary according
to conditions established a priori.

To fully describe the experimental design, we suggest using a design matrix, in
which every row is a design point or scenario, which is a combination of different
alternatives for each factor (column). However, several designs can be generated for
the same set of factors. Kleijnen et al. (2005) claim that the design of experiments
for simulation is different since we are not limited by real-world constraints.

Factorial designs are the most common one for simulation as they include all
possible combinations (scenarios) for a set of factors. For instance, a full factorial
design for k factors using two alternatives per factor is denoted as 2k design,
meaning the number of scenarios required to determine effects from k factors
and their interactions. In addition, there are variants for situations in which the
simulation runs are time-consuming, as execution time grows exponentially with the
number of factors and alternatives. Therefore, it is possible to reduce the number of
scenarios by executing just a fraction of the scenarios (fractional factorial designs),
but still having an effective estimator. In the following, we list (not exhaustively)
important aspects to select an adequate design as suggested by De França and
Travassos (2016):

• Simulation goals: designs for understanding or characterization are not the same
for comparison or optimization;

• Experimental frame: whether the area of interest is local or global, and its impacts
in the range of levels;

• Number of factors and levels: they exponentially increase the number of scenar-
ios in full factorial designs;

• Domain of admissible scenarios: full factorial designs may generate inadmissible
(unrealistic) scenarios;

280 B. B. N. de França and N. B. Ali

• Deterministic and stochastic components of the model: they affect how to deal
with variation in the experimental design;

• Terminating conditions: if it is a steady-state or a terminating simulation, with an
event to specify the end of the experiment.

Sensitivity analysis is a useful technique to select interest factors and a range of
alternatives. Furthermore, such a systematic approach reduces the bias and avoids
the “fishing” for positive results. For characterization purposes, it is recommended
to keep a low number of levels per factor, but covering a high region of inter-
est (Montgomery 2017).

When designing a simulation-based investigation, researchers should consider
as factors (and levels) not only the input parameters, but also internal parameters,
different data sets and versions of the model, implementing alternative strategies
to be evaluated (De França and Travassos 2016). For instance, Garousi et al.
(2009) use a design with two distinct data sets as alternatives for calibration based
on data from the technical literature to derive the scenarios and the simulation
model remaining constant. This way, different calibrations representing the different
simulation scenarios can be compared.

Ad hoc designs explore the use of scenarios. In this case, the modeler plans
the scenarios of interest (Barros et al. 2000) and then derives the design. By
adopting this strategy, the relevance and adequacy of each chosen scenario should
be explained and tied to the study goals. Furthermore, the description of scenarios
needs to be as precise as possible, clarifying all the relevant contextual information,
as well as input parameters for them.

The main drawback of ad hoc designs is the possibility of introducing bias, with
no opportunity to investigate side effects such as interactions between factors.

Selected scenarios and the nature of the model (deterministic or stochastic)
drive the number of simulation runs. Each scenario consists of an arrangement of
experimental conditions where possible alternatives are assigned to specific factors.
The more scenarios involved, the more simulation runs are required.

Stochastic simulation models produce an inherent variation in the output due to
the pseudorandom number generation. Therefore, running each scenario only once
is not enough to reveal the amount of variation. On the other side, the higher the
number of runs (replications), the closer one gets of the desired accuracy level.
Replication is achieved by using different pseudorandom numbers to simulate the
same scenario. In this case, each output is derived from auto-correlated observa-
tions (Kleijnen et al. 2005) that cannot be aggregated as they are not independent.
Thus, given the required accuracy and a sample estimate from a few model runs, it
is possible to determine the number of required runs and avoid threats to conclusion
validity. Such a procedure for the calculation can be found in Law and Kelton
(2000).

The Role of Simulation-Based Studies in Software Engineering Research 281

5.6 Threats to Simulation-Based Studies Validity

The SE community has discussed threats to validity, and most of the reported threats
concerned with in vitro experimentation are described by Wohlin et al. (2012) and
categorized under a positivist perspective as threats to construct, internal, external,
and conclusion validity (Petersen and Gencel 2013). We consider this perspective is
more suitable for considering and addressing threats to validity for SBS than other
world-views. Therefore, most of the known threats to controlled experiments have
to be considered when conducting simulation studies, especially considering in vitro
experiments, in which the human subjects drive the simulations, which introduces
additional risks to the validity of a study. Moreover, new situations emerge from
in silico experiments, in which common types of experimental validity are closely
related to the simulation model and data validity (De França and Travassos 2015).
A list of categorized threats to simulation studies validity can be found in De França
and Travassos (2015).

Garousi et al. (2009) and Raffo (2005), for instance, consider model validity
in several perspectives, such as model structure, supporting data, input parameters
and scenarios, and simulation output. We understand that these aspects are relevant,
but researchers should not be limited to them (De França and Travassos 2015),
also considering the simulation investigation design as well. This way, researchers
should consider checking for threats to the simulation study validity before running
the experiments and analyzing output data to avoid bias. Additionally, non-mitigated
threats, limitations, and non-verified assumptions must be reported (De França and
Travassos 2016).

The use of simulation promotes both the construct and internal validity as it
demands accurately specifying and measuring constructs (and their relationships)
and the theoretical logic that is enforced through the discipline of algorithmic
representation in software, respectively (Davis et al. 2007). However, De França
and Travassos (2015) identified threats to construct validity, such as inappropriate
cause–effect relationship definitions, inappropriate real-world representation by
model parameters and calibration data and procedure, hidden or invalid underlying
assumptions regarding model concepts, and the simulation model not capturing the
corresponding real-world building blocks and elements.

External and conclusion validity can be accomplished by reproducing empirical
behaviors and applying adequate statistical analysis over the model outputs, respec-
tively. However, conclusion validity also relates to design issues like sample size,
the number of simulation runs, model coverage, and the degree of representation of
scenarios for all possible situations.

282 B. B. N. de França and N. B. Ali

Simulation Life Cycle Considerations
• A simulation-based study is about gaining knowledge and dynamically

analyzing it. So, an iterative approach is fundamental to allow explication
and reflection about the phenomenon under study.

• Keeping involved stakeholders when modeling and analyzing simulation
results is as important as in software development.

• Verification and validation procedures play a fundamental role in the
validity of a study.

• Mostly, this consolidated process is based on solid simulation literature,
empirical evidence, and the authors’ experience. This way, some recom-
mendations may require a level of adaptation.

6 Practical Examples

To illustrate some potential uses of SBS, in the following sections, we briefly
describe two practical scenarios where we have conducted SBS in industrial settings.

6.1 Example 1: Use of Simulation to Encourage Behavioral
Change in a Company

We, together with the representatives from a case company, identified a need
to illustrate the benefits of early integration. The intention was to highlight the
consequences of missing a test iteration in the current way of working. Given the
scale and complexity of the test process, it was not possible to demonstrate this with
static process diagrams. The aim was to develop a simulation model that adequately
represents the test process at the case company so that it is relevant and realistic
for the developers. This realism made the results more relatable for them. Also, it
provided the ability to show the consequences of various what-if scenarios in terms
of the flow of requirements through the various stages of development, testing, and
release.

We used interviews, process documentation, and guided walk-through of the
testing process to develop a realistic process understanding. This understanding was
modeled in a simulation model using system dynamics. The model was calibrated
using data collected from various repositories in the company. For variables and
relations where data was not available, we relied on expert opinion to estimate the
missing values. For details, please see (Ali and Petersen 2012).

The Role of Simulation-Based Studies in Software Engineering Research 283

6.2 Example 2: Use of Simulation to Sanity-Check Process
Improvement Ideas

We were supporting an organization in a process assessment and improvement
initiative. Two main alternatives being considered were (a) changing the sprint
length (particularly for testing) or (b) improving the flow. We conducted an SBS
to assess the likely impact of the two improvement proposals. The simulation model
represented both scenarios and was calibrated using the company data.

The use of a simulation model was received positively by the practitioners, and
the results of the simulation study influenced the choice of improvement actions
pursued by the company. For details, please see Ali et al. (2015).

7 Recommended Further Reading

7.1 Simulation Modeling and Approaches

The two most common approaches for simulation modeling are continuous and
discrete-event simulation. Madachy’s book (Madachy 2008) is an excellent resource
when using system dynamics for continuous simulation of SE phenomena. For
discrete-event simulation, Law and Kelton (2000) provide an excellent resource
covering all technical steps in developing a simulation model. However, their focus
is not on the modeling of SE phenomena.

7.2 Verification and Validation in SBS

For additional discussion on verification and validation in simulation-based studies,
readers are encouraged to refer to the software engineering (De França and
Travassos 2015) and general computer simulation literature (Sargent 1999; Babuska
and Oden 2004).

7.3 Simulation-Based Investigations

For detailed instructions on designing simulation-based investigations or experi-
ments using a simulation model, please see the works in De França and Travassos
(2016), Kleijnen et al. (2005), and Houston et al. (2001).

284 B. B. N. de França and N. B. Ali

7.4 Software Process and Project Simulation

For guidelines to investigate the software process and project using simulation,
please see the guidelines from Ali et al. (2014), as well as the ones presented by
Pfahl (2014).

8 Conclusion

This chapter summarizes a wide span of knowledge on computer simulations in the
context of SE. We discussed, under several perspectives, the role of SBS in software
engineering research and methodological aspects relevant for conducting this sort
of study to support SE research.

Although we do not intend to discuss in detail each potential application of
simulation, it is notable the need for systematic observation of the system or
phenomenon to be simulated before developing and performing investigations based
on simulation models. Moreover, the experimental basis is fundamental to benefit
from simulation studies. Therefore, SBS should be considered as part of a greater
research methodology, i.e., it should not be seen as an “end” or a sole research
method, but a tool to achieve complementary evidence and to reduce risk before
intervening on the target context or moving towards more focused observation.

Acknowledgements Breno has been supported by CNPq-Brazil (Grant 141152/2010-9) during
the development of part of this work. Nauman has been supported by a research grant for the VITS
project (reference number 20180127) by the Knowledge Foundation in Sweden and by ELLIIT,
a Strategic Area within IT and Mobile Communications, funded by the Swedish Government.
We would also like to thank the reviewers for their feedback that has helped us to improve the
presentation and the contents of the chapter significantly.

References

Abdel-Hamid TK (1988) Understanding the “90% syndrome” in software project management: a
simulation-based case study. J Syst Softw 8(4):319–330

Ahmed R, Robinson S (2007) Simulation in business and industry: how simulation context can
affect simulation practice? In: Proceedings of the 2007 spring simulation multiconference, vol
3. Society for Computer Simulation International, pp 152–159

Ahmed R, Hall T, Wernick P, Robinson S (2005) Evaluating a rapid simulation modelling process
(RSMP) through controlled experiments. In: 2005 International symposium on empirical
software engineering. IEEE, Piscataway, p 10

Ahmed R, Hall T, Wernick P, Robinson S, Shah M (2008) Software process simulation modelling:
a survey of practice. J Simul 2(2):91–102

Alexopoulos C, Seila AF (1998) Output data analysis. In: Banks J (ed) Handbook of simulation.
Wiley, New York, pp 225–272

The Role of Simulation-Based Studies in Software Engineering Research 285

Ali NB (2016) Is effectiveness sufficient to choose an intervention?: considering resource use
in empirical software engineering. In: Proceedings of the 10th ACM/IEEE international
symposium on empirical software engineering and measurement, ESEM 2016, Ciudad Real,
September 8–9, 2016, pp 54:1–54:6

Ali NB, Petersen K (2012) A consolidated process for software process simulation: state of the
art and industry experience. In: 2012 38th Euromicro conference on software engineering and
advanced applications. IEEE, Piscataway, pp 327–336

Ali NB, Unterkalmsteiner M (2014) Use and evaluation of simulation for software process
education: a case study. In: European conference software engineering education (ECSEE),
Shaker Verlag, Herzogenrath, pp 59–73

Ali NB, Petersen K, Wohlin C (2014) A systematic literature review on the industrial use of
software process simulation. J Syst Softw 97:65–85

Ali NB, Petersen K, de França BBN (2015) Evaluation of simulation-assisted value stream
mapping for software product development: two industrial cases. Inf Softw Technol 68:45–61

Babuska I, Oden JT (2004) Verification and validation in computational engineering and science:
basic concepts. Comput Methods Appl Mech Eng 193(36):4057–4066

Balci O (1990) Guidelines for successful simulation studies. In: Proceedings of the winter
simulation conference. IEEE Press, New Jersey, pp 25–32

Banks J (1999) Introduction to simulation. In: Proceedings of the 31st conference on Winter
simulation: simulation – a bridge to the future, WSC 1999, Phoenix, December 05–08, 1999,
vol 1, pp 7–13

Barlas Y (1989) Multiple tests for validation of system dynamics type of simulation models. Eur J
Oper Res 42(1):59–87. https://doi.org/10.1016/0377-2217(89)90059-3

Barros M, Werner C, Travassos G (2000) Applying system dynamics to scenario based software
project management. In: Proceedings of the 2000 international system dynamics conference

Basili VR, Rombach HD (1988) The TAME project: towards improvement-oriented software
environments. IEEE Trans Softw Eng 14(6):758–773

Burton A, Altman DG, Royston P, Holder RL (2006) The design of simulation studies in medical
statistics. Stat Med 25(24):4279–4292

Christie AM (1999) Simulation: an enabling technology in software engineering. CROSSTALK J
Def Softw Eng 12(4):25–30

Davis JP, Eisenhardt KM, Bingham CB (2007) Developing theory through simulation methods.
Acad Manag Rev 32(2):480–499

De França BBN, Travassos GH (2012) Reporting guidelines for simulation-based studies in
software engineering. In: Proceedings of the 16th international conference on evaluation
assessment in software engineering (EASE), pp 156–160

De França BBN, Travassos GH (2013) Are we prepared for simulation based studies in software
engineering yet? CLEI Electron J 16(1):9

De França BBN, Travassos GH (2015) Simulation based studies in software engineering: a matter
of validity. CLEI Electron J 18:5

De França BBN, Travassos GH (2016) Experimentation with dynamic simulation models in
software engineering: planning and reporting guidelines. Empir Softw Eng 21(3):1302–1345

Dybå T, Sjøberg DI, Cruzes DS (2012) What works for whom, where, when, and why?: on the role
of context in empirical software engineering. In: Proceedings of the ACM-IEEE international
symposium on empirical software engineering and measurement. ACM, New York, pp 19–28

Eck JE, Liu L (2008) Contrasting simulated and empirical experiments in crime prevention. J Exp
Criminol 4(3):195–213

Feldt R, Zimmermann T, Bergersen GR, Falessi D, Jedlitschka A, Juristo N, Münch J, Oivo M,
Runeson P, Shepperd M, Sjøberg DIK, Turhan B (2018) Four commentaries on the use of
students and professionals in empirical software engineering experiments. Empir Softw Eng
23(6):3801–3820. https://doi.org/10.1007/s10664-018-9655-0

Garousi V, Khosrovian K, Pfahl D (2009) A customizable pattern-based software process
simulation model: design, calibration and application. Softw Process Improv Pract 14(3):165–
180. https://doi.org/10.1002/spip.411

https://doi.org/10.1016/0377-2217(89)90059-3
https://doi.org/10.1007/s10664-018-9655-0
https://doi.org/10.1002/spip.411

286 B. B. N. de França and N. B. Ali

Gorschek T, Wohlin C, Garre P, Larsson S (2006) A model for technology transfer in practice.
IEEE Softw 23(6):88–95

Houston DX, Ferreira S, Collofello JS, Montgomery DC, Mackulak GT, Shunk DL (2001) Behav-
ioral characterization: finding and using the influential factors in software process simulation
models. J Syst Softw 59(3):259–270. https://doi.org/10.1016/S0164-1212(01)00067-X

Jørgensen M, Kitchenham B (2012) Interpretation problems related to the use of regression models
to decide on economy of scale in software development. J Syst Softw 85(11):2494–2503

Kellner MI, Madachy RJ, Raffo DM (1999) Software process simulation modeling: Why? What?
How? J Syst Softw 46:91–105

Kitchenham B (2010) What’s up with software metrics? – a preliminary mapping study. J Syst
Softw 83(1):37–51

Kleijnen JPC, Sanchez SM, Lucas TW, Cioppa TM (2005) State-of-the-art review: a user’s guide
to the brave new world of designing simulation experiments. INFORMS J Comput 17(3):263–
289. https://doi.org/10.1287/ijoc.1050.0136

Law AM (2007) Simulation modeling and analysis, vol 4. McGraw-Hill, New York
Law AM, Kelton WD (2000) Simulation modeling and analysis, vol 3. McGraw-Hill, New York
Madachy RJ (2002) Simulation. Wiley, New York
Madachy RJ (2008) Software process dynamics. Wiley-IEEE Press, New York
Maria A (1997) Introduction to modeling and simulation. In: Proceedings of the 29th conference

on Winter simulation, WSC, pp 7–13
McCall JA, Wong G, Stone A (1979) A simulation modeling approach to understanding the

software development process. In: Fourth annual software engineering workshop. Goddard
Space Flight Center, Greenbelt

Melis M, Turnu I, Cau A, Concas G (2006) Evaluating the impact of test-first programming and pair
programming through software process simulation. Softw Process Improv Pract 11(4):345–360

Monks T, Currie CS, Onggo BS, Robinson S, Kunc M, Taylor SJ (2019) Strengthening the
reporting of empirical simulation studies: introducing the stress guidelines. J Simul 13(1):55–
67

Montgomery DC (2017) Design and analysis of experiments. Wiley, Hoboken
Müller M, Pfahl D (2008) Simulation methods. In: Shull F, Singer J, Sjøberg DIK (eds) Guide to

advanced empirical software engineering. Springer, London, pp 117–152
Münch J, Rombach D, Rus I (2003) Creating an advanced software engineering laboratory by

combining empirical studies with process simulation. In: Proceedings of the international
workshop on software process simulation and modeling (ProSim), pp 3–4

Murphy S, Perera T (2001) Key enablers in the development of simulation. In: Proceedings of the
Winter simulation conference, pp 1429–1437

Olsen NC (1993) The software rush hour (software engineering). IEEE Softw 10(5):29–37
Ören TI (1981) Concepts and criteria to assess acceptability of simulation studies: a frame of

reference. Commun ACM 24(4):180–189
Park S, Kim H, Kang D, Bae DH (2008) Developing a software process simulation model using

SPEM and analytical models. Int J Simul Process Model 4(3–4):223–236. https://doi.org/10.
1504/IJSPM.2008.023684

Petersen K, Gencel C (2013) Worldviews, research methods, and their relationship to validity in
empirical software engineering research. In: 2013 Joint conference of the 23rd international
workshop on software measurement and the 8th international conference on software process
and product measurement. IEEE, Piscataway, pp 81–89

Petersen K, Wohlin C (2009) Context in industrial software engineering research. In: Proceedings
of the 3rd international symposium on empirical software engineering and measurement
(ESEM), pp 401–404

Pfahl D (2001) An integrated approach to simulation based learning in support of strategic and
project management in software organisations. Fraunhofer-IRB-Verlag, Stuttgart

Pfahl D (2014) Process simulation: a tool for software project managers? In: Software project
management in a changing world. Springer, Berlin, pp 425–446

https://doi.org/10.1016/S0164-1212(01)00067-X
https://doi.org/10.1287/ijoc.1050.0136
https://doi.org/10.1504/IJSPM.2008.023684
https://doi.org/10.1504/IJSPM.2008.023684

The Role of Simulation-Based Studies in Software Engineering Research 287

Pfahl D, Lebsanft K (1999) Integration of system dynamics modelling with descriptive process
modelling and goal-oriented measurement. J Syst Softw 46(2):135–150. https://doi.org/10.
1016/S0164-1212(99)00007-2

Pfahl D, Lebsanft K (2000) Knowledge acquisition and process guidance for building system
dynamics simulation models: an experience report from software industry. Int J Softw Eng
Knowl Eng 10(04):487–510

Pfahl D, Ruhe G (2002) IMMoS: a methodology for integrated measurement, modelling and
simulation. Softw Process Improv Practice 7(3–4):189–210

Pfahl D, Stupperich M, Krivobokova T (2004) PL-SIM: a generic simulation model for studying
strategic SPI in the automotive industry. In: IET conference proceedings. Citeseer, pp 149–158.
https://doi.org/10.1049/ic:20040454

Raffo DM (2005) Software project management using prompt: a hybrid metrics, modeling and
utility framework. Inf Softw Technol 47(15):1009–1017

Raffo DM, Kellner MI (2000) Empirical analysis in software process simulation modeling. J Syst
Softw 53(1):31–41. https://doi.org/10.1016/S0164-1212(00)00006-6

Rus I, Neu H, Münch J (2003) A systematic methodology for developing discrete event simulation
models of software development processes. In: Proceedings of the 4th international workshop
on software process simulation and modeling (ProSim 2003), Portland, May 3–4

Sargent R (1999) Validation and verification of simulation models. In: WSC’99. 1999 Winter sim-
ulation conference proceedings. ‘Simulation – a bridge to the future’ (Cat. No. 99CH37038),
vol 1. IEEE, Piscataway, pp 39–48

Shannon RE (1986) Intelligent simulation environments. In: Proceedings of the conference on
intelligent simulation environments, pp 150–156

Travassos GH, Barros MO (2003) Contributions of in virtuo and in silico experiments for the
future of empirical studies in software engineering. In: 2nd Workshop on empirical software
engineering the future of empirical studies in software engineering, pp 117–130

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2012) Experimentation in
software engineering. Springer, New York

Wu M, Yan H (2009) Simulation in software engineering with system dynamics: a case study. J
Softw 4(10):1127–1135

Zhang H (2012) Special panel: software process simulation – at a crossroads? In: Proceedings of
the international conference on software and system process (ICSSP). IEEE, Piscataway, pp
215–216

Zhang H, Kitchenham B, Pfahl D (2010) Software process simulation modeling: an extended
systematic review. In: Proceedings of the international conference on software process (ICSP).
Springer, Berlin, pp 309–320

Zhang H, Jeffery R, Houston D, Huang L, Zhu L (2011) Impact of process simulation on software
practice: an initial report. In: Proceedings of the 33rd international conference on software
engineering (ICSE), pp 1046–1056

https://doi.org/10.1016/S0164-1212(99)00007-2
https://doi.org/10.1016/S0164-1212(99)00007-2
https://doi.org/10.1049/ic:20040454
https://doi.org/10.1016/S0164-1212(00)00006-6

Bayesian Data Analysis
in Empirical Software Engineering:
The Case of Missing Data

Richard Torkar, Robert Feldt, and Carlo A. Furia

Abstract Bayesian data analysis (BDA) is today used by a multitude of research
disciplines. These disciplines use BDA as a way to embrace uncertainty by using
multilevel models and making use of all available information at hand. In this
chapter, we first introduce the reader to BDA and then provide an example from
empirical software engineering, where we also deal with a common issue in our
field, i.e., missing data. The example we make use of presents the steps done
when conducting state-of-the-art statistical analysis. First, we need to understand
the problem we want to solve. Second, we conduct causal analysis. Third, we
analyze non-identifiability. Fourth, we conduct missing data analysis. Finally, we
do a sensitivity analysis of priors. All this before we design our statistical model.
Once we have a model, we present several diagnostics one can use to conduct sanity
checks. We hope that through these examples, the reader will see the advantages
of using BDA. This way, we hope Bayesian statistics will become more prevalent
in our field, thus partly avoiding the reproducibility crisis we have seen in other
disciplines.

1 Introduction

Statistics, we argue, is one of the principal tools researchers in empirical software
engineering have at their disposal to build an argument that guides them towards
the ultimate objective, i.e., practical significance and (subsequent) impact of their

R. Torkar (�) · R. Feldt
Chalmers and University of Gothenburg, Gothenburg, Sweden
e-mail: torkarr@chalmers.se; robert.feldt@chalmers.se

C. A. Furia
Università della Svizzera Italiana, Lugano, Switzerland
e-mail: furiac@usi.ch

© Springer Nature Switzerland AG 2020
M. Felderer, G. H. Travassos (eds.), Contemporary Empirical Methods in Software
Engineering, https://doi.org/10.1007/978-3-030-32489-6_11

289

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32489-6_11&domain=pdf
mailto:torkarr@chalmers.se
mailto:robert.feldt@chalmers.se
mailto:furiac@usi.ch
https://doi.org/10.1007/978-3-030-32489-6_11

290 R. Torkar et al.

findings.1 Practical significance is, as we have seen (Torkar et al. 2017), not very
often explicitly discussed in software engineering research today and we argue that
this is mainly out of two reasons.

The first one being that statistical maturity of empirical software engineering
research is not high enough (Torkar et al. 2017), leading to difficulties with
connecting statistical findings to practical significance. The second reason is a
combination of issues hampering our research field, e.g., small sample sizes, failure
to analyze disparate types of data in a unified framework, or lack of data availability
(only 13% of publications provide a replication package and carefully describe each
step to make reproduction feasible (Rodríguez-Pérez et al. 2018)).

Both of the above issues are worrisome since it could make it hard to strengthen
arguments concerning practical significance, e.g., connecting effort and, conclu-
sively, ROI2 to the findings of a research study, if one would want so. For academic
research to be more relevant and have more impact on practitioners, its practical
significance and its implications need to be precise.

Furthermore, issues such as the above are also likely to lead empirical software
engineering towards a replication crisis as we have seen in other disciplines, e.g.,
medicine (Ioannidis 2005b,a, 2016; Glick 1992), psychology (Aarts et al. 2015;
John et al. 2012; Shanks et al. 2013), economics (Ioannidis et al. 2017; Camerer
et al. 2016), and marketing (Hunter 2001).

In order to solve some of the above challenges researchers have proposed that we
need to focus on, e.g., (1) openness, i.e., that data and manuscripts are accessible
for all stakeholders, (2) preregistration, i.e., a planned study is peer-reviewed in
the usual manner and accepted by a journal before the experiment is run, so that
there is no incentive to look for significance after-the-fact (Dutilh et al. 2017), (3)
increasing the sample size, (4) lowering the significance threshold from p < 0.05
to p < 0.005 (Benjamin et al. 2018), and (5) removing null hypothesis significance
testing (NHST) altogether, which the journal Basic and Applied Social Psychology
advocates (Trafimow and Marks 2015), as do McShane et al. (2017).

However, some researchers, most notably Gelman (2018), claim that even the
above is not enough and argue that a unified approach for these matters should
mainly evolve from three components: procedural solutions, solutions based on
design and data collection, and improved statistical analysis.

Concerning procedural solutions, Gelman (2018) like others suggests pub-
lishing papers on, e.g., Arxiv, to encourage post-publication review, and to use
preregistration as a tool for lowering the “file drawer” bias. For design and data
collection, Gelman provides convincing arguments that we should focus on reducing
measurement error (the example being that reducing the measurement error by a

1In this chapter, we focus on empirical software engineering research where quantitative data is
a major component; for studies that are mainly qualitative, a different set of concerns need to be
taken into account, see, for example, Lenberg et al. (2017).
2In literature, Return-On-Investment refers to, in various ways, the calculation one does to see the
benefit (return) an investment (cost) has.

Bayesian Data Analysis in Empirical Software Engineering: The Case of Missing Data 291

factor of two is like multiplying the sample size by a factor of four), and move
to within-subject from between-subject study designs when possible.3 Finally,
concerning improved statistical analysis, Gelman advocates the use of Bayesian
inference and multilevel models (MLMs),4 as a way to discuss “. . . the range of
applicability of a study,” i.e., practical significance.

Overall, we side with these arguments and believe they are critical also for
software engineering to better connect empirical research with the practice it
ultimately aims to improve. We will thus introduce and exemplify the use of
Bayesian statistical methods in empirical software engineering research. They are a
good starting point since individual researchers can learn them and apply them in
isolation without waiting for the community as a whole to take further steps needed
to avoid a replication crisis and to become more practically relevant. We argue
that using Bayesian methods allows us to better connect our findings to practical
significance through the use of more balanced out-of-sample predictions, i.e., one
of the outputs from Bayesian data analysis (this will be further elaborated on in
Sect. 2). Additionally, we have yet to face data from empirical software engineering
where Bayesian data analysis cannot be employed, and when having a small sample
size, due to the priors employed, Bayesian data analysis, we would argue, shows its
strengths.

In this chapter, we rely on three key concepts: Bayes’ theorem, multilevel models,
and Markov chain Monte Carlo sampling.

Bayes’ theorem states that,

P(A|B) = P(B|A)P(A)

P(B)
(1)

where A and B are events, and P(B) �= 0. In the theorem, we have two conditional
probabilities, P(A|B) and P(B|A), the likelihood of event A occurring given that
B is true and vice versa. The marginal probability is then observing A and B

independently of each other, i.e., P(A) and P(B). Often the above is rewritten as,
P(A|B) ∝ P(B|A) × P(A), i.e., the posterior is proportional to the likelihood
times the prior or, in other words, given a likelihood and a prior we will be able to
approximate the posterior probability distribution; this is, of course, also applicable
to MLMs. We will come back to these concepts in the next section.

Multilevel models are not a particularly new thing. However, in the last decades,
they have become accessible to researchers due to the rise in computational power,
and they go nicely in hand with Bayesian analysis. Bayesian MLMs have several
advantages (McElreath 2015): (1) When using repeated sampling they do not
underfit or overfit the data to the extent single-level models do (i.e., maximally), (2)

3In a within-subject design the same group of subjects are used in more than one treatment.
4Multilevel models can also be called hierarchical linear models, nested data models, mixed
models, random coefficient, random-effects models, random parameter models, or split-plot
designs.

292 R. Torkar et al.

the uncertainty across uneven sample sizes is handled automatically, (3) they model
variation explicitly (between and within clusters of data), and (4) they preserve
uncertainty and make much data transformation unnecessary. In our particular case,
Bayes’ theorem is the foundation for conducting inference when using MLMs, and
Markov chain Monte Carlo (MCMC) is the engine that drives it.

The reason for using MCMC for sampling is simply that before MCMC
was introduced, it was virtually impossible to sample large Bayesian multilevel
models (Banerjee et al. 2014). Today, if one wants to sample from a complex, mul-
tidimensional, unknown, posterior probability distribution, MCMC is a widespread
technique to use since we have the computational power available. (For more
background on sampling algorithms, please see McElreath (2015, Ch. 8).)

Next, we first introduce the main elements of Bayesian data analysis (BDA)
with a non-software engineering example. Our main contribution is then a detailed
worked case study of applying BDA to an estimation problem in empirical software
engineering. In particular, the example highlights that with this BDA analysis, we
do not need to delete data points for which some data is missing. We conclude the
chapter by discussing the methodological implications.

Bayesian data analysis (BDA) is growing and, as such, is being used in many
disparate scientific disciplines. The approach of BDA that we use in this
chapter relies on designing a generative model which we then can use to
do out-of-sample predictions. It will be a more involved analysis, but in the
end we hope that it will also provide us with a richer understanding of the
phenomena under study.

2 A Short Introduction to Bayesian Data Analysis

Lately, many tools and probabilistic programming languages have been developed
to tackle some of the challenges we face when designing more powerful statistical
models. In our view, several things have improved. First, probabilistic programming
languages, e.g., using Julia with Turing.jl, or Stan, tailored for statistical
programming, in combination with resampling techniques, have matured.5 Second,
resampling techniques based on MCMC have improved (Brooks et al. 2011). Third,
procedures for using these techniques now exist (Talts et al. 2018; Betancourt 2018;
Gabry et al. 2017; Gelman et al. 2017; Betancourt 2017) and are being improved
iteratively (Vehtari et al. 2019). Together, these developments make more powerful
analysis methods available to a wider audience.

5See https://julialang.org, http://turing.ml, and https://mc-stan.org.

https://julialang.org
http://turing.ml
https://mc-stan.org

Bayesian Data Analysis in Empirical Software Engineering: The Case of Missing Data 293

In this section, we will provide a short introduction to model design, its tool
support, and some terminology that we will use in this chapter. To keep it simple
and general, we will take data and an example from everyday life, rather than an
empirical software engineering example. We do not expect the reader to be an expert
after this, but rather be able to follow what we present in this chapter, be better
prepared for the empirical software engineering case study that then follows, and
then perhaps read further into the literature we present in Sect. 4. Let us start with
terminology.

In this chapter, we will design statistical models. We will use mathematical
notation for precision as well as brevity. To generalize, a model will consist of a
likelihood, a linear equation, and priors. The purpose of the model is ultimately to
make predictions/inferences concerning the outcome by using a posterior predictive
distribution. Let us introduce a simple example inspired by McElreath (2015).

We want to predict the height of human beings given their weight. A model could
then look like this,

heighti ∼ N(μi , σ)

μi = α + βw × weighti

α ∼ N(181, 20)

βw ∼ N(0, 10)

σ ∼ Half-Cauchy(0, 10)

Let us now go through this line by line. First, we claim that height has a
Normal distribution with mean μ and standard deviation σ , i.e., our likelihood. The
subset i in height, weight, and μ is an indication that this holds for each height
we have in the data set, i.e., for every human being in the data set. But why a
Normal distribution? Well, there are ontological and epistemological reasons for
this (McElreath 2015), but in short: if we add together random values from the same
distribution it converges to a normal distribution. Since there are many different
factors that, jointly, determine the height of a person, e.g., their genetics, nutrients
of the mother during pregnancy, food intake as a small child, etc., and their effects
“add up,” it is often a sensible assumption to assume the result will be normally
distributed.

The next line encodes our main assumption about the heights, i.e., they have a
linear connection to the weight (our linear equation). We have an intercept labeled
α, expressing the average height of a human that has average weight, together with a
slope βw, which captures how much longer (shorter) a human can be expected to be
for each added (subtracted) unit of weight they have. We want to estimate these two
parameters using the data: height and weight. In this example, height is the outcome
and weight is the predictor. We can have more than one outcome, this is known as
a multivariate model (compared to univariate models as in the example above), and
we can have more than one predictor, as we will see later in this chapter.

294 R. Torkar et al.

α β
100 150 200 250 −50 −25 0 25 50 0 25 50 75 100

σ

0.000

0.005

0.010

0 100 200 300
μ

Fig. 1 Our selected prior probabilities (priors) for parameters α, β, and σ , respectively (top row).
These are then combined into our prior predictive distribution for the height μ (bottom row)

Next, in a Bayesian model, we need to express our prior belief, our so-called
priors. The α parameter is the intercept, and hence captures the mean height we
expect (see Fig. 1 for a graphical presentation). What we are saying is that we have
prior knowledge, i.e., we believe that the mean height will be 181 cm. Why 181?
Well, this is the average height of the three authors of this chapter, and when writing
the chapter, we had direct and reliable access to this data. Also, our prior expresses
that we can expect the mean to vary with a standard deviation of 20, i.e., finding
humans with a height in the range 161–201 cm would not be too uncommon even
if values outside that range can also sometimes happen. For βw, our prior indicates
that the slope has a mean of 0 and a standard deviation of 10 (Fig. 1). We could also

Bayesian Data Analysis in Empirical Software Engineering: The Case of Missing Data 295

set a more specific prior here, e.g., we have a feeling that an increase in weight also
leads to an increase in height, but let us use a very wide and “allowing” prior.

Finally, we have a prior on σ , which is the expected variation in actual, measured
data from what our linear, “core” model predicts. We have chosen a Half-Cauchy
distribution here since we know that the variation cannot be negative (Fig. 1). The
Half-Cauchy is a common prior for σ and is roughly a Normal distribution cut in
half, i.e., we do not allow negative values on σ .6 It also has a higher probability
for larger values than a Normal distribution, since we have less information on
how much variation to expect. In the end, if we have enough evidence (data), it
will dominate, also known as “swamp,” the priors. This means that the priors are
not as critical in situations when we collect lots of data. Before we go on and use
our statistical model on actual, measured data, we should study how our model
behaves based on only the priors. We can do this by sampling from our priors and
“executing” the model to see which heights it predicts.

In the lower half of Fig. 1, we see the joint prior probability distribution, which
is a combination of the figures on the first row. The mixtures of the priors for α, β,
and σ , and the linear regression they imply could be seen as representative for our
height given a weight.

So what does our prior probability distribution (Fig. 1) tell us? Well, 2.93% of the
population is assumed to be more than 272 cm tall.7 Additionally, 13.8% are less
than 147 cm.8 This seems a bit strange in our view, and even more bizarre is that
0.015% of the population is shorter than 20 cm, when the shortest human recorded
was approximately 53 cm.

But there is no need to worry. The main idea when selecting priors is to delimit
the volume that the sampling needs to cover. We want to get rid of obviously absurd
values while ensuring that we do not rule out values that could happen. Who knows,
maybe someone who is <53 cm or >272 cm will be found this year. We have just
conducted a prior predictive analysis, which is, we claim, a compulsory part of
doing Bayesian data analysis.

For actually making inferences, i.e., determining the likely ranges of the param-
eters given our model, we will need data. We will make use of a data set found
in the rethinking R package and a R Markdown script of our analysis can
be downloaded.9 After sampling, we will have a posterior distribution, which is
proportional to the likelihood and the prior distribution. In Fig. 2, we have plotted
the empirical data set (circles) and the linear prediction (straight line). The narrow
shaded interval is the 95% distribution of μ (i.e., the exact values for many μ from
the posterior), and the wider and lighter interval is the 95% plausible region (i.e.,
95% of our μ should be found within that region).

6Other priors for σ can of course also be used. Please see https://github.com/stan-dev/stan/wiki/
Prior-Choice-Recommendations.
7The tallest man, for whom there is irrefutable evidence, was 272 cm.
8People of short stature are <147 cm.
9https://github.com/torkar/BDA_in_ESE.

https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations
https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations
https://github.com/torkar/BDA_in_ESE

296 R. Torkar et al.

140

150

160

170

180

30 40 50 60

weight

h
ei

g
h
t

Fig. 2 Height as a function of weight. The line represents the μ, the dark shade the 95%
distribution of μ, and the lighter shade the 95% plausible region

Having a posterior predictive distribution we can now start to conduct various
inferences, but we will stop here for now and instead, in Sect. 3, present multiple
ways we can make use of a posterior.

To summarize, the three main steps of Bayesian model design and analysis
are:

1. Understand the data and the problem.
2. Design a probability model (conduct model checking and iterate if the

model needs to be revised) and sample from the posterior to conduct
diagnosis.

3. Conduct inference. That is, learn something about the population by using
the posterior probability distribution, e.g., by conducting statistical tests or
deriving estimates.

The above is an iterative process, and in the last step, we also can change the
parameters to see how they affect the outcome variable, i.e., to analyze the practical
implications of different scenarios and thus assessing the practical significance of
the results. The above steps will next be covered in a detailed case study within
empirical software engineering.

Bayesian Data Analysis in Empirical Software Engineering: The Case of Missing Data 297

3 Case Study

Most would argue that to conduct estimations in software projects, one should not
rely exclusively on expert opinion, but also on quantitative data collected in a more
unbiased way. To this end, researchers have published studies making use of, among
others, the International Software Benchmarking Standards Group’s data repository
(ISBSG).10 (For an overview and introduction to the data sets, please see Hill et al.
2001.) Their large collection of data sets includes cost, size, and defect data from
projects and sprints, which can be used for research, estimation, and prediction for
and in future projects.

While the ISBSG data sets are typically cleaned and anonymized version of data
sets collected from industrial projects they, like similar data sets in other collections,
still exhibit many of the same characteristics that we can expect from actual projects
in industry. For example, they have missing data, disparate quality in data collection
procedures, and a large variety of data types. These are data quality issues we see
also in empirical software engineering research in general.

As we will later see in Sect. 4, the dominant strategy to handle missing data in
empirical software engineering research is to merely remove cases that have missing
data (listwise deletion). We believe that this strategy is suboptimal and, generally
speaking, not good for our research discipline. Even in cases when data can be
classified according to the quality of the data collection procedure, as is the case
with the ISBSG data sets, one sees that our community often chooses only to use
a subset of data, classified to be of the highest quality (see, e.g., Keung (2008),
Liebchen and Shepperd (2008) for recommendations, and Mittas et al. (2015) for
an example where the authors use the recommendations). In short, we believe that
data of low quality should be seen as better than no data at all, and the general rule
of thumb should be never to throw away data. This is the context for our showcase
and, in the following, we will both apply techniques for data imputation and conduct
Bayesian data analysis on effort estimation data on the ISBSG data set collection.11

As we will see, missing data can be naturally handled in Bayesian analysis and,
thus, showcases one of the unique and pertinent strengths in an empirical software
engineering context.

10http://isbsg.org.
11A reproducibility package, making use of brms (Bürkner 2017) (with Stan (Carpenter et al.
2017)) written in R (R Core Team 2018), can be downloaded: https://github.com/torkar/
BDA_in_ESE. The raw data can, however, not be downloaded due to copyright reasons. Please
see README.txt in the repository for more information and what you need to do to access the
raw ISBSG data.

http://isbsg.org
https://github.com/torkar/BDA_in_ESE
https://github.com/torkar/BDA_in_ESE

298 R. Torkar et al.

3.1 The Data and the Problem

We will use the ISBSG Release 10 data set and set the dependent variable to
Effort, i.e., the total number of person-hours to conduct a certain development
task. According to, e.g., Keung (2008), Liebchen and Shepperd (2008) and the
International Software Benchmarking Standards Group (ISBSG), the following
preprocessing steps are appropriate:

1. Only projects classified with data quality rating “A” are kept, and “B–D” are
excluded.

2. Only projects using IFPUG (unadjusted functional size measurement) should be
kept. However, the data description clearly states that versions ≥4.0 should not
be compared to <4.0. Hence, we only use versions ≥4.0.

3. According to Keung (2008), some additional variables should be kept for
compatibility with previous studies.

4. Cases with missing values should be excluded.

The above leads to variables of interests as listed in Table 1, according to Mittas
et al. (2015). If we use the variables in Table 1, and follow the advice above, we will
later see that we need to remove 3895 projects out of the total 4106 (close to 95%
of the projects). This seems wasteful but is the practice in our discipline, given the
current standards and relevant recommendations.

Imagine instead that we aim to keep as much data as possible, i.e., a data-greedy
approach. Well, first of all, we should consider including all projects no matter the
quality rating. After all, we can easily classify them differently in a statistical model
and even investigate the difference between projects depending on the data quality

Table 1 Variables of interest
according to previous studies.
The variable names that are
underlined have been
removed in this study as
explained in Sects. 3.1.1 and
3.1.2. The variable name in
bold was added as explained
in Sect. 3.1

Name Description

AFP Adjusted function points

Input Number of inputs

Output Number of outputs

Enquiry Number of enquiries

File Number of files

Interface Number of interfaces

Added Number of added features

Changed Number of changed features

Deleted Number of deleted features

Effort Actual effort (person-hours)

DQR Data quality rating

Bayesian Data Analysis in Empirical Software Engineering: The Case of Missing Data 299

rating. Hence, we decide to include all projects and mark them according to their
data quality rating, i.e., DQR, no matter if they have missingness in them.

The next, crucial step before stating our model is to analyze causality among our
variables (in Table 1). While this was not needed in the simple, height-of-humans
example above, it is essential in more complex situations when multiple variables
measure entities that might be causally related. Since this is almost always the case
in real-world empirical software engineering research, it should be an essential
step in building our statistical model. Otherwise, we risk that dependencies, e.g.,
correlations and collinearity, among variables might influence and could potentially
weaken our analysis. Below, we will then also directly analyze correlations between
predictors, through an analysis of non-identifiability before we can then decide on
our model we will also discuss how to handle the missing data and the sensitivity of
our priors.

3.1.1 Causal Analysis

All predictors except DQR seem to be raw and unadjusted measurements that are
later used to calculate the adjusted function point (AFP).

Drawing our causal model (Fig. 3) as a directed acyclic graph (DAG) shows
something generally considered to be a pipe confounder (one of the four types of
relations in causal DAGs) (Pearl 2009).

In short, AFP mediates association between the other predictors and our outcome
Effort, i.e., Effort⊥⊥Input|AFP, or to put it differently, Effort is independent
of Input, when conditioning on AFP.

We often worry about not having a predictor that we need for making good
predictions (omitted variable bias). However, we do not often consider mistaken
inferences because we rely on variables that are derived from other variables, i.e.,
posttreatment bias (McElreath 2015). (Rosenbaum (1984) calls this the concomitant
variable bias.) In experimental studies, one would declare AFP to be a posttreatment

AFP

Added

Changed

Effort

Enquiry

File

Input

Interface

Output

Fig. 3 A directed acyclic graph of our scientific model

300 R. Torkar et al.

variable, but the same nomenclature can be used in observational studies. To
summarize, the above indicates that AFP should not be a predictor since it is derived
from other, more basic, variables, so we will leave it out for now.

Note that causal analysis is not absolute in the sense that there is only one
possible causal model that could be posited. Much scientific debate might be needed
to argue for one or the other specific model and, thus, could lead to the exclusion
of different sets of variables by different authors. As a consequence, this might
lead different researchers to include or exclude different sets of variables and, thus,
obtain different statistical results from separate analyses of the same data. However,
in theory, this uncertainty and apparent subjectivity are still present with a traditional
approach to statistical analysis, albeit hidden under the simplicity and familiarity of
just applying a known statistical test.

3.1.2 Identifying Non-identifiability

Strong correlations between variables are generally speaking a challenge when
building statistical models. The model will make good predictions, but it will be
harder to analyze and understand since the impression will be that variables that
have a strong correlation do not seem to have predictive power, while in fact, they
have strong associations with the outcome (McElreath 2015, Sect. 5). As a concrete
example, if you want to build a model of a person’s length, using the length of both
her legs as separate predictors will not help the matter, i.e., adding another leg will
not add predictive power to the model since it will correlate very strongly with the
length of the first included leg. This type of multicollinearity we generally want to
avoid in statistical models.

Traditionally, there are two ways one can investigate this: Examining a pairs
plot where all combinations of parameters and their correlations are visualized, or
check if the matrix of predictor values is a full rank matrix, and thus identify non-
identifiability that way.12

The latter, matrix-based approach consists of declaring a model y = β1x1+· · ·+
βnxn, using the data, i.e., the values of the predictor variables, xi, . . . , xn as a matrix
A, and decompose it into a productA = QR of an orthogonal matrix Q, and an upper
triangular matrix R. By analyzing the diagonal of the matrix R a threshold value of
|dij | < 0.1 along the diagonal is then often used to declare a variable as unsuited
for inclusion in a model. Often something like 1e−12—quasi-zero for a computer—
could be used, but generally speaking anything below 1.0 has traditionally been
excluded. The argument is that if it is below 1.0, then the variable would provide
very little additional value to the model and should thus not be included.

12In short, different values of the parameters must generate different probability distributions of
the observable variables. Otherwise we face various degrees of non-identifiability, i.e., essentially
that (too) many parameter combinations could lead to the same observations.

Bayesian Data Analysis in Empirical Software Engineering: The Case of Missing Data 301

Identifying non-identifiability for our data set from Table 1 clearly indicates that
Deleted should be a candidate for removal (|dDeleted| = 9e−12). It might feel
strange to remove predictors when our ultimate goal is to use as much data as
possible. However, to build a statistical model that is sane, has good out-of-sample
prediction, and is understandable, a trade-off is needed. Here we argue that the bulk
of work should be done before we design our statistical model, to make use of the
missing data techniques available to us.

3.1.3 Missing Data Analysis

When data is missing from cases of our data sets the most common solution is to
either delete such cases or impute, i.e., “guess,” based on the values we do have.
Rubin (1987) has shown that very often 3–5 imputations are enough (the complete
data set is imputed fully 3–5 times) and that the relative efficiency of an estimate
based on m imputations is approximately:

relative efficiency ≈
(

1 + γ

m

)−1

where γ is the fraction of missing information. The relative efficiency in this case
refers to using the finite m imputation estimator instead of the infinite number for
the fully efficient imputation.

As an example, consider that we have 20% missing information in a variable
(γ = 0.2), given m = 5, we have reached a relative efficiency of approximately
96%. Setting m = 10 we reach 98%. By doubling the computational effort, we
have only a slight gain in relative efficiency. On the other hand, we have lots of
computing power at our hands nowadays. However, more recently, we have seen
that other recommendations for handling missing data have been presented.

Bodner (2008) and White et al. (2011) showed through simulations and by
analytically deriving Monte Carlo errors, respectively, that the general rule of thumb
should be m = γ ×100, i.e., if a variable has 40% missing data (γ = 0.4) we should
set m = 40 (using Rubin’s efficiency estimate this would mean 92.6%→99.0%).

As will be evident, we will take the more conservative approach (i.e., m = γ ×
100), when we present the model implementation in Sect. 3.2.1.

Before we continue with the next section, it might be worthwhile to note that
missingness in a Bayesian framework can be done in different ways. Either we
conduct multiple imputations to derive uncertainty for all parameters, including our
missing data. This is the path we have chosen here. The other approach would be to
design a model of all data, including the missingness mechanism.

302 R. Torkar et al.

To model the missingness mechanism can be more involved and requires us
to be very explicit about how our missingness occurred. At the best of times,
this is a challenging task. We could instead argue that using the first approach,
as we do here, shows the strengths of the Bayesian approach, since it easily
can make use of various techniques, to handle missing data, in a coherent and
principled way.

3.1.4 Sensitivity Analysis of Priors

Our analysis so far, to summarize, indicates that we should use seven predictors
and one group variable (quality level of the project, in ISBSG terms), to predict one
outcome variable (Effort). We can already now assume that we will most likely use a
likelihood (i.e., our assumptions regarding the data generative process) that is based
on counts (Effort is after all a count, the number of hours, going from zero to
infinity).

Thus, we plan to use a generalized linear model, with a link function that
translates between the linear predictor value and the mean of the distribution
function. In the case of count distributions, such as Poisson, it is customary to use a
log link function, i.e., a parameter’s value is the exponentiation of the linear model.
However, when setting priors for parameters and using a link function, unexpected
things can happen, and the priors might not have the effect one would expect. To this
end, we should always do prior predictive simulations, i.e., a sensitivity analysis of
how different settings of the priors affect the predicted variable.

The description of the data set indicates that approximately 20% of the projects
have more than 20 people in the team. If we assume, roughly 1700 h/year for an
individual, having 60 people in a team sums up to approximately 100,000 person-
hours per year. Let us now assume that this is the maximum value for our outcome
variable Effort. Random sampling from eN(5,4) provides us with x̄ ≈ 208,000
(we use the exponential since we assume a log link function) indicating that this
could be an acceptable prior for the intercept α.

We arrived at the values 5 and 4 above by starting from typical default values
such as assuming α to be N(0, 10) (not uncommon as a default choice in, e.g.,
Poisson regressions), this would lead to x̄ = 8 × 1011 hours of work effort for an
average project. This would correspond to close to half a billion people working
on the project for 1 year. Thus we should use non-default priors to adapt the priors
better so that they do not (often) give absurd values.

To assess the impact of very broad priors like N(0, 10) for our seven parameters,
we thus, iteratively, compared their usage to that of other, narrower priors like
N(0, 0.25). Furthermore, assuming a log link function, the additive effects of the
seven priors for our β parameters would, on a normalized scale, correspond to
N(0, (10 × 7)2) and N(0, (0.25 × 7)2), respectively. As is evident from Fig. 4a, we

Bayesian Data Analysis in Empirical Software Engineering: The Case of Missing Data 303

Fig. 4 Prior predictive simulation of broad and informative priors, respectively. The x-axes are
z-scores, while the y-axes represent our outcome variable Effort. The dashed horizontal line
corresponds to our assumed maximum value for our outcome variable and is the only value of
interest in this case. We have plotted 100 simulations with the intercept N(5, 4) and our seven
priors for the respective β parameters. (a) β priors N(0, 10). (b) β priors N(0, 0.25)

have a massive emphasis on extremely high y-values (we would require the world’s
total population to work in a project for this to happen). Now compare (a) with (b).
We still allow extremely large y-values (up to 640 × 106!), but the emphasis is now
a bit more realistic.

To summarize, prior predictive simulations indicate that setting N(5, 4) and
N(0, 0.25) on α and β, respectively, allows us to delimit the multidimensional
Gaussian space of possible parameter values while still not remove the probability of
extreme values altogether. If we would still be uncertain, one could have conducted
even more prior predictive simulations (Simpson et al. 2014). The prior knowledge
we took with us when doing this analysis was that it was not likely that very many
projects had billions of people involved. One could have taken a more conservative
approach and claim that it is not likely that we have millions of people in our
projects; however, as we will see, Hamiltonian Monte Carlo will handle these priors
well given the available data.

One should always conduct prior sensitivity analysis (prior predictive simu-
lation) before making use of the available data. There is always some prior
knowledge one can use!

304 R. Torkar et al.

Table 2 Descriptive statistics of our predictors and the outcome variable Effort using all data
available to us (i.e., 4106 projects), after conducting the preprocessing steps in Sect. 3.1

Variable x̄ x̃ max(x) min(x) s2

Input 143 56 9404 0 144, 167

Output 125 47 3653 0 70, 522

Enquiry 74 27 2886 0 22, 318

File 118 43 10, 821 0 137, 172

Interface 39 10 1572 0 11, 082

Added 357 142 15, 121 0 591, 300

Changed 128 0 18, 357 0 344, 677

Effort 5384 1828 645, 694 4 391, 631, 309

From left to right: Name, mean, median, max, min, and sample variance (with removed NAs). All
numbers rounded to the nearest integer

3.2 Design of Model and Diagnosis

Based on our initial analysis, we have a much clearer picture of which variables to
include and the overall sensitivity of our priors. For our model one could imagine
using a Poisson likelihood, that is, we have a count (Effort0→∞), which we can
model binomial events for when the trials N are very large and the probability p

small. However, that would be a mistake.
In any analysis, it is important first to get to know the actual data. Thus, let us

look at some descriptive statistics of the data (taking into account the preprocessing
steps previously introduced).13 Some issues catch the eye in Table 2. First, Effort
has a max value of 645,694 (three times larger than the mean for our priors). Second,
the medians are consistently lower than the means (in one case the median is zero)
indicating positive skewness. Third, not visible in the table, Effort, compared to
the predictors, contains no zeros (indicating that we do not need to consider zero-
inflated or hurdle models (Hu et al. 2011)). Finally, the mean and the variance for
our outcome variable are very different (the variance is approximately 70,000 times
larger than the mean).

Concerning the latter issue, a Poisson likelihood assumes the mean and the
variance be approximately equal. This allows us to use the negative binomial, known
as the Gamma–Poisson (mixture) distribution, as our likelihood, i.e., a continuous
mixture model where we assume each Poisson count observation has its own rate.
However, since we are still using a Poisson model, in essence, one could claim that
we do not need to redo analysis.

13For all data sets we use single quotes to emphasize the names, e.g., “A_clean,” while we print
out variable names in verbatim.

Bayesian Data Analysis in Empirical Software Engineering: The Case of Missing Data 305

To summarize our findings so far we can now formulate our model:

Efforti ∼ Gamma–Poisson(λi , φi)

log(λi) ∼ α + βInput × Input + βOutput × Output + βEnquiry × Enquiry

+ βFile × File + βInterface × Interface + βAdded × Added

+ βChanged × Changed + αDQR[i]
α ∼ N(5, 4)

β1,...,7 ∼ N(0, 0.25)

αDQR ∼ N(0, σ)

σ ∼ HalfCauchy(0, 1)

log(φi) ∼ Gamma(0.5, 0.5)

We model each observation from a negative-binomial (Gamma–Poisson) distri-
bution, with a failure rate λ and shape φ. We then use a log link for our linear model
λ where we include an intercept α and parameters (β) for all predictors.

We also add varying intercepts in the form of our DQR variable. The idea is that
each data quality rating should be treated uniquely by allowing us to estimate α for
each rating, i.e., each DQR will have its own intercept. This will enable us to see
if there is an overall difference between projects judged to have different quality
ratings.

Finally, we set the aforementioned priors on our β parameters (but we use
N(0, σ) for our unique intercepts, to separately estimate σ for each level of DQR).
We also set HalfCauchy(0, 1) and Gamma(0.5, 0.5) for σ and φ, respectively. Both
of these priors are regularizing priors common for these types of parameters.14

3.2.1 Using the Model

In the previous sections, we presented our statistical model with assumptions. In
this section, we will make use of it in two ways: sampling with complete data and
imputed data. However, before we begin, Table 3 describes the data sets we will use.

The data sets are divided into two categories. First, we have data sets that only
take into account projects classified as having the highest quality rating (“A”) and
data sets where we use all four quality ratings (“AD”), taking into account the
preprocessing steps in Sect. 3.1.

First, we have subsets with NAs (“A” and “AD”) and, second, subsets where all
original NAs are removed (“*_clean”). The logic to use these data sets is that we

14Please see here for prior choice recommendations: https://goo.gl/fx2F7V.

https://goo.gl/fx2F7V

306 R. Torkar et al.

Table 3 Data sets used Name # projects # NAs % NAs # zeros

“A” 501 2109 23.8 316

“A_clean” 214 0 0 316

“AD” 1689 8507 19.8 736

“AD_clean” 494 0 0 727

The “A*” and “AD*” categories are of different dimen-
sions due to our index variable, DQR, added to the
“AD*” sets. From left to right. Name of data set, number
of projects (rows), number of NAs, percentage of NAs,
and number of zeros

want to use as much data as possible (but we pay the price of missing data), and
removing all NAs is, as we have discussed, not uncommon.

One could also imagine having subsets where all zeros are assumed to be NAs,
but that would be a bit too conservative assumption in our opinion, and we leave it
to the reader to try out such a scenario.

If one would like to compare our data sets with what is commonly seen in
literature then, taking into account that we have a more restrictive view on which
IFPUG versions are included, “A_clean” would be the most similar data set (e.g.,
Mittas et al. (2015) report using 501 projects, while we end up with 214, using our
more restrictive subset). However, we are more interested in the cases where we
have larger data sets, together with missing data, and comparing these with, e.g.,
“A_clean.”

Missing Data Imputation
Summarizing missing data (Table 4) shows that the missingness is multivariate
(there is missing data in more than one variable), connected (the second row with
data indicates that we have 214 rows that are complete, i.e., no data is missing for
these rows), and non-monotone (we have zeros spread out within all the ones, i.e.,
there is no monotonicity). Generally speaking, this indicates that data imputation is
possible (in particular, connectivity is an essential part of missing data imputation).

van Buuren (2007) recommends that one calculates each variable’s influx and
outflux and plots them. Influx (I) is defined as the number of variable pairs with Yj

missing and Yk observed, divided by the total number of observed data cells while,
in the case of outflux (O), we instead divide by the total number of incomplete data
cells. In short, a completely observed variable gives Ij = 0, while the opposite
holds for Oj . If one has two variables with the same degree of missing data, then
the variable with the highest Oj is potentially more useful for imputation purposes.
Examining Fig. 5, Effort and Change have the highest Oj and Ij . To summarize,
Effortwill be the most influential variable for imputation, while Changewill be
the easiest variable to impute. This is worth keeping in mind later when we analyze
the results.

To conclude, we will create multiple imputations (replacement values) for mul-
tivariate missing data, based on fully conditional specification (van Buuren 2007).

Bayesian Data Analysis in Empirical Software Engineering: The Case of Missing Data 307

Table 4 Missingness of missing data

Effort Added Input Output Enquiry File Interface Changed

Freq. # missing
entries

214 1 1 1 1 1 1 1 1 0

14 1 1 1 1 1 1 1 0 1

8 1 1 1 1 1 1 0 1 1

2 1 1 1 1 1 1 0 0 2

1 1 1 1 1 1 0 0 1 2

2 1 1 1 1 0 1 1 0 2

1 1 1 1 1 0 0 1 0 3

3 1 1 1 0 1 1 1 0 2

1 1 1 1 0 1 1 0 0 3

1 1 1 1 0 1 0 0 1 3

2 1 1 0 1 0 0 1 0 4

5 1 1 0 0 0 0 0 1 5

4 1 1 0 0 0 0 0 0 6

1 1 0 1 1 1 1 1 1 1

1 1 0 1 1 1 0 0 1 3

84 1 0 0 0 0 0 0 0 7

157 0 0 0 0 0 0 0 0 8

Missingness 157 243 252 255 255 256 264 270
∑∑

1952
per variable

Top row lists each variable. Bottom row the number of missing entries per variable. First column,
the frequency of each pattern. Last column, number of missing entries per pattern

Each incomplete variable is imputed by a separate model using predictive mean
matching (numeric data), or proportional odds model/ordered logit model (factor
data with >2 ordered levels) (Rubin 1986; van Buuren 2007). Concerning predictive
mean matching, the assumption is that the missingness follows approximately the
same distribution as the data, but the variability between the imputations over
repeated draws reflects the uncertainty of the actual value.

We will approach this conservatively and follow the latest guidelines, as already
discussed in Sect. 3.1.3, and hence set the number of imputations m = 25 (see
Table 3) since we have approximately 25% missingness in certain variables.

3.2.2 Diagnostics

In this section, we will first present some diagnostics from the Hamiltonian Monte
Carlo sampling we conducted.

First, the ratio of the average variance of draws within each chain to the variance
of the pooled draws across chains is an estimate we can use to see how well our
chains have diverged towards a common posterior. This is measured by R̂ and

308 R. Torkar et al.

Effort

Changed
0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Ij

O
j

Fig. 5 Outflux versus influx of data set “A” as described in Sect. 3 (A small degree of random
noise, “jitter,” was added to the plot to make it more readable.)

generally speaking R̂ should go towards 1.00, and anything above 1.01 should
be a clear warning sign of bias. In our case, for all sampling conducted, R̂ was
consistently low (see Fig. 6a for one example where we used the “AD_clean” data
set).

Second, the effective sampling was consistently high, i.e., 0.1. As an example, if
we have 2000 samples from each chain, the default is then to throw away the first
1000 as warmup samples. But then we use four chains, ending up with 1000 × 4
samples. This means that we should not, in our example, have less than 400 samples
for a parameter (see Fig. 6b).

Third, the visual inspection revealed that the chains seemed to mix well (hairy
caterpillar ocular test). It should look messy, tight, and mixed (Fig. 7). If we are a
bit hesitant concerning the mixture, and in particular the sampling conducted at the
tails, one could also use rank plots (Vehtari et al. 2019). If we investigate Fig. 7 we
see a clear difference between βIntercept and the other parameters. Using rank plots
for the chains for βIntercept, Fig. 8, provides a better view. We can see that there is a
dip at the start of Chain 1 and the end of Chain 3, but it still indicates that the chain
managed to sample quite well at the tails.

Finally, the Bayesian fraction of missing information, another diagnostic, shows
a significant overlap between the energy transition density, πE , and the marginal

Bayesian Data Analysis in Empirical Software Engineering: The Case of Missing Data 309

lp__

r_DQR[B,Intercept]

b_Intercept

sd_DQR__Intercept

r_DQR[A,Intercept]

r_DQR[C,Intercept]

r_DQR[D,Intercept]

b_Changed

b_Added

b_File

b_Output

b_Input

b_Interface

b_Enquiry

shape

0 0.1 0.25 0.5 0.75 1

Neff N

shape

(a)

(b)

b_Output

b_Added

b_Enquiry

b_Interface

b_Input

sd_DQR__Intercept

b_Changed

b_File

r_DQR[C,Intercept]

lp__

r_DQR[D,Intercept]

r_DQR[A,Intercept]

r_DQR[B,Intercept]

b_Intercept

1 1.0035

R̂

Fig. 6 R̂ values for each parameter (a) and effective sample sizes (b). For R̂ (a), generally
speaking, any values above 1.01 are not appropriate and indicate that one or more chains are biased.
Concerning effective sample sizes (b), anything below 0.1 is generally speaking a warning sign of
a misspecified model. Here we used the “AD_clean” data set

energy distribution, π�E (Fig. 9). When the two distributions are well-matched, the
random walk will explore the marginal energy distribution efficiently (Betancourt
2017).

We sampled four chains, each with 2000 iterations, and the first half of the
iterations were discarded as warmup iterations. For our imputed data sets this means
that we have 1000 × 4 × 25 = 100,000 posterior samples. Figure 10 provides a

310 R. Torkar et al.

b_Changed b_Enquiry

b_Intercept b_Input

0 0

0 0

200 400 600 800 1000 200 400 600 800 1000

200 400 600 800 1000 200 400 600 800 1000

−0.2

0.0

0.2

0.4

0.3

0.4

0.5

0.6

7

8

9

10

−0.50

−0.25

0.00

0.25

Fig. 7 Trace plots of four parameters using the “AD_clean” data set

chain:3 chain:4

chain:1 chain:2

0 1000 2000 3000 4000 0 1000 2000 3000 4000

0 1000 2000 3000 4000 0 1000 2000 3000 4000

Fig. 8 Rank plots of the four chains from the βIntercept sampling. The chains should be close to
uniform. Here we see a slight dip at the start of Chain 1 and the end of Chain 3. These dips can
be much more exaggerated (e.g., no samples collected at all) and then there would be reasons to
worry

Bayesian Data Analysis in Empirical Software Engineering: The Case of Missing Data 311

3 4

1 2

−20 −10 0 10 20 30 −20 −10 0 10 20 30

0.00

0.03

0.06

0.09

0.12

0.00

0.03

0.06

0.09

0.12

E − E

Fig. 9 Comparisons of the energy transition density, πE , and the marginal energy distribution,
π�E (light and dark gray, respectively). A significant overlap is visible

0.00

0.25

0.50

0.75

1e+00 1e+02 1e+04 1e+06

log
10

 (Effort)

Fig. 10 Comparison of the empirical distribution of the data (“AD_clean”), to the distributions
of simulated data from the posterior predictive distribution (50 samples). Note that the x-axis has
been transformed

comparison of our empirical outcome y (using the data set “A_clean”), with draws
from our posterior distribution; we see evidence of a fairly good match; a perfect
match is not what we want since then we could just use our data as-is, i.e., the
variability of each yrep vis-à-vis y is what interests us.

312 R. Torkar et al.

0

10000

20000

30000

40000

50000

1 2 3 4 5 6 7 8 9 10

Project #

E
ff

o
rt

Fig. 11 Posterior predictive checks of the first 10 projects in our data set. Vertical bars with points
indicate the simulated medians and darker points indicate our empirical values. Thicker and thinner
lines indicate 50% and 90% central intervals, respectively. We drew 500 samples from the posterior

Another check one should do is to investigate how well the sampling (yrep)
matches our empirical data y for each project (row) in our data set. In Fig. 11, we
have drawn 500 samples from the posterior. As we can see our empirical data, y,
does not always match yrep, but that is all fine actually, what we want is a model that
on average makes better predictions. After all, if we would want perfect predictions
for our data set, why not use the data set as-is?

3.3 Conduct Inference

If we turn our attention to the estimated intercepts for our group-level variable DQR
(i.e., a project’s rating according to the quality of data collected), we see something
interesting in Fig. 12. There is a clear pattern, in both data sets, where quality rating
“A” and “D” are to the left, while “B” and “C” are to the right. It is an indication that
these two groups are perceived as similar to each other, which is a bit ironic since
“A” and “D” are conceptually the opposite of each other in terms of data quality
rating. This indicates that one should question the data quality ratings in the data set
and, given enough data, DQR seems to become less critical.

Examining the estimated parameters (Fig. 13) we see that parameters perceived
as “significant” differ between the data sets.15 There are three comparisons we
should make here. First, comparing imputed with cleaned data sets (within each

15Our notion of “significant” is here that the 95% highest density posterior interval does not cross
zero. However, other notions do exist (Kruschke 2018).

Bayesian Data Analysis in Empirical Software Engineering: The Case of Missing Data 313

αD

αC

αB

αA

αD

αC

αB

αA

−1 0 1

Fig. 12 Interval plots of α estimates with 50% and 95% uncertainty intervals. Upper plot is the
imputed data set, below plot the cleaned data set. The uncertainty is slightly different between each
category even though this is not very obvious in this plot (the cleaned data set, below, has higher
uncertainty)

column). Second, comparing “A” and “AD” models (between columns). Third,
compare the upper right and lower left plots (data-greedy approach vs. state of
practice).

First, if we look at the left column, we see that nothing significant has changed.
On the other hand, examining the right column, we see that βAdded is no longer
significant in the imputed data set. This might make you sad. However, using all
data can lead to weaker inferences and, honestly, should we not make use of all data
available no matter our wishful thinking concerning inferences?

Second, if we compare our simple models with our multilevel models (between
column comparisons), examining the two lower plots we see that βAdded has become
“significant” in the model where we make use of all quality ratings (right plot). In
this particular case, one would lean towards the multilevel model (right plot) since
it, after all, makes use of more data and employs partial pooling to avoid overfitting.

Finally, we should compare the upper right and lower left plots (our data-greedy
approach with state of practice); they are the reason for conducting this study. Two
things are worth noticing here: (1) βEnquiry is shifted noticeably more to the right
in the imputed data set and is significant, as is βInterface. (2) βChanged is clearly not
significant in the imputed data set, while in the cleaned data set, it is nearly so. Once
again, making use of more data can lead to weaker inferences, which is a good thing.

Let us now examine what the posterior predictive distribution provides us
with concerning point estimates regarding our outcome Effort. The posterior
distribution allows us to set predictors at different values and generate predicted
outcomes with uncertainty. In our case, we would like to examine the difference
between posterior predictive distributions of “A_clean” and “AD,” since “A_clean”
is based on the assumptions commonly used in literature and “AD” makes use of as
much data as possible, i.e., our data-greedy approach.

Plotting our two posterior distributions indicates the differences (see Fig. 14).
As is clear, the median is higher when taking into account more data (“AD”), but

314 R. Torkar et al.

βChanged

βAdded

βInterface

βFile

βEnquiry

βOutput

βInput

A AD

βChanged

βAdded

βInterface

βFile

βEnquiry

βOutput

βInput

−0.5 0.0 0.5 −0.5 0.0 0.5

Fig. 13 Density plots drawn with overlapping ridgelines of β estimates and 95% uncertainty
intervals. Left column presents data sets “A,” while right column presents data sets “AD.” Dark gray
plots indicate imputed data sets (first row), while light gray represents cleaned sets. In particular
the top right and lower left plots are of interest to us since they represent the data-greedy approach
and the state of practice, respectively

the uncertainty is also slightly larger. Ultimately, comparing these types of point
estimates should always go hand in hand with the purpose of the analysis, i.e., the
utility function.

The posterior distribution allows us to make probabilistic statements that provide
us with a deeper understanding of the phenomena we study. We could make
statements for each model separately, i.e., investigating “AD” we can say that the
probability that the effect is greater than 10% (a decline of >10%) for the D category
is 2.6%, while for the A category it is 7.2%. Alternatively, in the case of “A_clean,”
that the probability that the effect of Enquiry is greater than 5% (an increase of
>5% in this case) is 58.6%. Of course, one could also look at the probability that

Bayesian Data Analysis in Empirical Software Engineering: The Case of Missing Data 315

ADA_clean

0

1

2

3

4

3.0 3.5 4.0 4.5 5.0
log10 (Effort)

Fig. 14 Comparison of the posterior distributions of the “A_clean” and “AD” data sets (n =
4000). Notice the transformation of the x-axis. The median values on natural scale, with
95% highest posterior density intervals for “A_clean” and “AD,” are μ̃Aclean = 2937,
95%HPDI[2069, 15441] and μ̃AD = 3280, 95%HPDI[1920, 17783], respectively (medians
indicated by vertical lines). Highest posterior density interval (HPDI) is the tightest interval
containing the specified probability mass, i.e., 95% in our case

the estimates of parameter βInput are larger than 0 using the “AD_clean” and “AD”
data sets, i.e., 79.8% and 60.2%, respectively.

These types of probability statements are a positive aspect of Bayesian analysis
and the posterior probability distributions that accompanies it.

3.4 Threats to Validity

In this section, we will cover threats to validity from a quantitative and statistical
perspective. The below threats are not the type of threats that are normally discussed
in empirical software engineering (Wohlin et al. 2012) (such as threats to internal
and external validity). The latter refers to a rigid experimental design (often based
on statistical hypothesis testing) and is mainly qualitative; in contrast, the threats
we discuss are grounded in the quantitative analysis we performed, and as such
they address the very design of the analysis (which allows for much more flexibility
using the tools of Bayesian data analysis). In Sect. 3.4.1 we will compare our study’s
design to recent guidelines concerning the design and reporting of software analytics
studies.

Directed Acyclic Graphs (DAGs) Making ones scientific model explicit is dan-
gerous since it becomes open to attack. We believe, however, that it should be
compulsory in any scientific publication. We employed DAGs to this end, a concept
refined by Pearl and others (Pearl 2009). Using DAGs makes things explicit. If

316 R. Torkar et al.

things are explicit, they can be criticized. One threat to validity is of course that
our scientific model is wrong and AFP is not a mediator (Sect. 3.1.1). This is for the
reader to comment on. Of course, instead of using the graphical approach of DAGs
and applying do-calculus to determine d-separation, one could walk down the road
of numerical approaches according to Peters et al. (2017).

Non-identifiability Through our non-identifiability analysis we concluded that
the variable Deleted should be removed. Removing this variable is a trade-off.
The non-identifiability analysis showed that it should be removed, thus allowing
for better understandability and better out-of-sample prediction. However, we
could have taken a more prudent approach and investigated Deleted’s role in
predictions, but in this particular case, we believe the initial analysis provided us
with a convincing argument to remove it.

Priors The sensitivity analysis of priors provided us with confidence regarding
the choice of priors. We conducted prior predictive analysis and, together with
recommendations regarding default priors, concluded that our selection of priors
was balanced. However, our conclusions could be wrong, and further studies could
indicate that our priors are too broad. The latter is, however, what one can expect
when doing science.

Bayesian Data Analysis In a Bayesian context, model comparison is often divided
into three categoriesM-open,M-complete, and M-closed (Yao et al. 2018; Navarro
2019). In the M-open world the relationship between the data generating process
and our list of models M = M1, . . . ,MK is unknown. However, what we do know
is that Mt , our “true” model, is not in M, and we cannot specify the explicit form
p(ỹ|y) due to computational or conceptual reasons. In the M-complete world, Mt

is also not in M, but we use any model in M that is closest in Kullback–Leibler
divergence (Yao et al. 2018; Betancourt 2015). Finally, in the case of the M-closed
world, Mt ∈ M.

The bulk of statistical methodology is concerned with the latter category (M-
closed) and Clarke et al. (2013) claim that,

this class of problems is comparatively simple and well-studied.

Many problems we face are in the M-complete and not the M-closed world
(this chapter is such an example). Selecting the “best” model is often done through
relative comparisons of M1, . . . ,MK using the Watanabe–Akaike information cri-
terion (WAIC) or leave-one-out cross-validation with Pareto-smoothed importance
sampling (Vehtari et al. 2017). However, to use WAIC or PSIS-LOO for out-of-
sample prediction, one should use the same data set for each model (e.g., you can
change the likelihood and priors, but the data set is fixed).

In this chapter, we have not done model comparison (e.g., using PSIS-
LOO (Vehtari et al. 2017)), but the reason is apparent—we use different data
sets—which is the purpose of this chapter. To this end we defend our choice of
likelihood, i.e., the Gamma–Poisson (a.k.a. negative binomial), epistemologically:
If we have counts from zero to infinity, where the variance is significantly different

Bayesian Data Analysis in Empirical Software Engineering: The Case of Missing Data 317

from the mean then, from a maximum entropy point of view, Gamma–Poisson is a
rational choice. By conducting posterior predictive checks, we ultimately received
yet another validation to strengthen us in our opinion that the model has predictive
capabilities (Sect. 3.3).

Residuals One threat to validity is also the residuals of the model (fitting devia-
tion). If the residuals are too large, it is an indication that the model does not fit data
well. This is a trade-off since a perfect fit could imply overfitting. By conducting
posterior predictive checks, we concluded that the models, as such, had a convincing
fit (see, e.g., Fig. 10).

3.4.1 Common Threats in Software Analytics Papers

Finally, we believe that using the traditional threats to validity nomenclature seen in
empirical software engineering research most likely does not fit the type of studies
we present here. Instead we will propose something different.

Menzies and Shepperd (2019) present 12 “bad smells” in software analytics
papers. Below we will now cover each “smell” and contrast it with what we did
in this chapter.

1. Not interesting. (Research that has negligible software engineering impact.)
We argue that the problem we have analyzed in this section is not only relevant,
common, and interesting. To this we mainly point to Sect. 4.

2. Not using related work. (Unawareness of related work concerning RQs and
SOA.) We point to further reading (Sect. 4) as a basis for this study, i.e.,
studies which throw away data and show how other state-of-the-art analytical
approaches might be more suitable.

3. Using deprecated and suspect data. (Using data out of convenience.) The data
is definitely suspect as we have shown by our analysis of data quality ratings,
but it would be hard to argue that the data is deprecated. However, we used a
particular version of the data set, but that was due to our intention to align with
previous work.

4. Inadequate reporting. (Partial reporting, e.g., only means.) In this section,
we have presented not only point estimates but also contrasted different
distributions and derived probabilistic statements. We would have also liked
to provide model comparisons but, alas, the design of this study did not allow
this. To this end, we rely on posterior predictive checks.

5. Underpowered experiments. (Small effect sizes and little theory.) Using more
data provides us with more statistical power, and we base our priors on state-
of-the-art recommendations and logical conclusions, e.g., estimating that the
world’s population is part of a project is not appropriate.

6. p < 0.05 and all that. (Abuse of null hypothesis testing.) We mention p-values
only when making a point not to use them.

7. Assumptions of normality and equal variances. (Impact of outliers and
heteroscedasticity.) We use a Bayesian generalized linear model, which we

318 R. Torkar et al.

model using a Gamma–Poisson likelihood. Additionally, we employ multilevel
models when possible, and hence make use of partial pooling (which takes into
account the presence of outliers).

8. Not exploring stability. We conducted a sensitivity analysis of priors, and we
report on the differences between imputed and cleaned data sets.

9. No data visualization. We leave it up to the reader to decide if appropriate
levels of visualization were used. We have followed guidelines on data visual-
ization (Gabry et al. 2017).

10. Not tuning. We avoid bias in comparisons mainly by clearly stating our
assumptions, conducting a sensitivity analysis, making use of multilevel mod-
els, and, generally speaking, following guidelines on how to conduct Bayesian
data analysis.

11. Not exploring simplicity. Using state-of-the-art missing data analysis is
needed and wanted to decrease our bias. Additionally, using a complex mixture
model was unavoidable because of epistemological reasons, as presented earlier
in this section. We used simulated data to assess the appropriateness of our
likelihood and priors independently.

12. Not justifying choice of learner. This concerns, ultimately, the risk of overes-
timation (or overfitting). We would argue that any usage of frequentist statistics
would potentially introduce this “smell,” i.e., using uniform priors, as is the
case in a traditional frequentist setting, ensures maximum overfitting.

3.5 Discussion

We argue that one should have solid reasons to throw away data since we now have
techniques available that can provide us with the opportunity to use as much data as
possible. The example we provided showed that by using missing data techniques,
in combination with Bayesian multilevel models, we could better make use of the
data and, thus, gain higher confidence concerning our findings. The inferences
can become weaker, but ask yourself if that is not how you think your fellow
researchers should conduct their analysis. We could show two things in our analysis:
(1) Parameters’ “significance” changed depending on if we used imputation or not
and (2) there was really not much of a difference between the various data quality
ratings (once again indicating that we should use as much data as possible).

However, we pay a price for this more sophisticated analysis. It is a more
involved analysis compared to a frequentist analysis where only the likelihood of
the outcome is required to be specified, and maximum likelihood estimates are not
conditioned on the observed outcome; the uncertainty is instead connected to the
sampling distribution of the estimator. The same applies to confidence intervals
in the frequentist world, i.e., one can set up a distribution of predictions, but it
entails repeating the process of random sampling on which we apply the estimator
every time to then generate point predictions. Contrast this with conditioning on the
posterior predictive distribution, which is based on the observed outcome.

Bayesian Data Analysis in Empirical Software Engineering: The Case of Missing Data 319

Additionally, making probabilistic statements is very much more natural when
having a posterior at hand, while the p-values we have made use of traditionally
rely on observing a z-statistic that is so large (in magnitude) if the null hypothesis
is true, i.e., not if the scientific hypothesis is true. To make the point, the term “p-
value” was used in this section for the first time here in this section and in our
case, where we used different data sets, one could have expected us to lean towards
traditional hypothesis testing, since it was not possible to compare models explicitly,
regarding out-of-sample predictions.

We will not further contrast our approach with how analyses are done in
empirical software engineering today. Suffice to say, issues such as the arbitrary
α = 0.05 cutoff, the usage of null hypothesis significance testing, and the
reliance on confidence intervals, have been criticized (Ioannidis 2005b; Morey et al.
2016; Nuzzo 2014; Woolston 2015), and when analyzing the arguments, we have
concluded that many of the issues plaguing other scientific fields are equally relevant
to come to terms within empirical software engineering.

We believe that evidence-based interpretation is more straightforward with
Bayesian data analysis, and empirical software engineering should embrace it
as soon as possible. In our view, it is a natural choice to make in this particular
case; to base one’s inferences on more data is wise, and doing so in a Bayesian
context is natural.

4 Recommended Further Reading

There are few early publications in software engineering where we see evidence
of using MLMs. In Ehrlich and Cataldo (2012) the authors used multilevel models
for assessing communication in global software development, while in Hassan et al.
(2017) the authors applied MLMs for studying reviews in an app store. However,
both studies used a frequentist approach (maximum likelihood), i.e., not a Bayesian
approach.

As far as we can tell, there are only a few examples of studies in software
engineering that have applied BDA with MLMs to this date (Furia 2016; Ernst
2018). Furia (2016) presents several cases of how BDA could be used in computer
science and software engineering research. In particular, the aspects of including
prior belief/knowledge in MLMs are emphasized, which is further elaborated on
in Furia et al. (2019). Ernst (2018) on the other hand, presents a conceptual
replication of an existing study where he shows that MLMs support cross-project

320 R. Torkar et al.

comparisons while preserving local context, mainly through the concept of partial
pooling, as used in Bayesian MLMs.16

Finally, much literature on BDA exist, but not all have the clarity that is needed
to explain, sometimes, relatively complex concepts. If one would like to read up on
the basics of probability and Bayesian statistics we recommend Jaynes (2003), for a
slightly more in-depth view of Bayesian statistics we would recommend Lambert
(2018). For a hands-on approach to BDA, we recommend McElreath (2015);
McElreath’s book Statistical Rethinking: A Bayesian Course with Examples in
R and Stan is an example of how seemingly complex issues can be explained
beautifully while at the same time help the reader improve their skills in BDA.
To conclude, there is one book that every researcher should have on their shelf,
Bayesian Data Analysis by Gelman et al. (2013), which is considered the leading
text on Bayesian methods.

Missing data can be handled in two main ways. Either we delete data using one
of the three main approaches (listwise or pairwise deletion and column deletion) or
we impute new data. Concerning missing data, we conclude the matter is not new
to the empirical software engineering community. Liebchen and Shepperd (2008)
have pointed out that the community needs more research into ways of identifying
and repairing noisy cases, and Mockus (2008) claims that the standard approach to
handle missing data, i.e., remove cases of missing values (e.g., listwise deletion), is
prevalent in empirical software engineering.

Two additional studies on missing data are, however, worthwhile pointing out.
Myrtveit et al. (2001) investigated listwise deletion, mean imputation, similar
response pattern imputation, and full information maximum likelihood (FIML), and
concluded that FIML is the only technique appropriate when data are not missing
completely at random. Finally, Cartwright et al. (2003) concluded that k-nearest
neighbor and sample mean imputation are significantly better in improving model
fit when dealing with imputation. However, much has happened concerning research
in imputation techniques lately.

In this chapter, we focused on multivariate imputation by chained equations
(MICE), sometimes called fully conditional specification or sequential regression
multiple imputation, a technique that has emerged as a principled method of
dealing with missing data during the last decade (van Buuren 2007). MICE
specifies a multivariate imputation model on a variable-by-variable basis by a set
of conditional densities (one for each incomplete variable) and draws imputations
by reiterating the conditional densities. The original idea behind MICE is old, see,
e.g., stochastic relaxation (Geman and Geman 1984), but the recent refinements and
implementations have made the technique easily accessible.

Finally, related work concerning the ISBSG data set is worthwhile pointing out.
Fernández-Diego and de Guevara (2014) present pros and cons of using the ISBSG
data set. A systematic mapping review was used as the research method, which
was applied to over 120 papers. The dependent variable of interest was usually

16Partial pooling takes into account variance between units.

Bayesian Data Analysis in Empirical Software Engineering: The Case of Missing Data 321

Effort (more than 70% of the studies), and the most frequently used methods
were regression (∼60%) and machine learning (∼35%), the latter a term where
many techniques can hide. Worth noting is also that Release 10 was used most
frequently, which provided us with a reason to also use that data set. Additionally,
we also used Effort as the dependent variable of interest, since a majority of the
studies seem to find that variable interesting to study. (The importance of the ISBSG
data set, when considering replication studies in empirical software engineering, has
already been pointed out by Shepperd et al. (2018).) By and large, our chapter took
another approach entirely, we imputed missing data in a Bayesian context, and we
see this more as complementary to some of the work mentioned above.

5 Conclusion

In this chapter, we introduced the reader to Bayesian data analysis. Before even
designing the model, we took several steps, each providing us with a better
understanding of the data. We did a causal analysis, analyzed non-identifiability,
performed sensitivity analysis of priors, and an analysis of missing data. Addi-
tionally, we presented the reader with several diagnostics one should use for sanity
checking a statistical model. Except for the missing data analysis (if no missingness
is present), we would argue that this is something one should always do when
conducting Bayesian data analysis.

Missing data was an additional complexity that our case presented. We rec-
ommend that one should always be conservative with throwing away data. Many
state-of-the-art techniques exist today, which provides the researcher with ample of
possibilities to conduct rigorous, systematic, and transparent missing data analysis.
We followed a traditional imputation approach, but other approaches, i.e., purely
Bayesian, do exist. In our example, we showed that inferences can become weaker,
which is not a bad thing, and that the qualitative assessment of quality ratings can
be biased. This further strengthens the argument never to throw data away.

By using Bayesian data analysis, we believe that researchers will be able to get
a more nuanced view of the challenges they are investigating. In short, we do not
need p-values for this.

References

Aarts AA, et al (2015) Estimating the reproducibility of psychological science. Science
349(6251):aac4716. https://doi.org/10.1126/science.aac4716

Banerjee S, Carlin B, Gelfand A (2014) Hierarchical modeling and analysis for spatial data, 2nd
edn. Chapman and Hall/CRC monographs on statistics and applied probability. Taylor and
Francis, Boca Raton

Benjamin DJ, et al (2018) Redefine statistical significance. Nat Hum Behav 2:6–10. https://doi.
org/10.1038/s41562-017-0189-z

https://doi.org/10.1126/science.aac4716
https://doi.org/10.1038/s41562-017-0189-z
https://doi.org/10.1038/s41562-017-0189-z

322 R. Torkar et al.

Betancourt M (2015) A unified treatment of predictive model comparison. arXiv:1506.02273
Betancourt M (2017) A conceptual introduction to Hamiltonian Monte Carlo. arXiv:1701.02434
Betancourt M (2018) Calibrating model-based inferences and decisions. arXiv:1803.08393
Bodner TE (2008) What improves with increased missing data imputations? Struct Equ Model

Multidiscip J 15(4):651–675. https://doi.org/10.1080/10705510802339072
Brooks S, Gelman A, Jones G, Meng XL (2011) Handbook of Markov chain Monte Carlo. CRC,

Boca Raton
Bürkner PC (2017) brms: an R package for Bayesian multilevel models using Stan. J Stat Softw

80(1):1–28. https://doi.org/10.18637/jss.v080.i01
Camerer CF, et al (2016) Evaluating replicability of laboratory experiments in economics. Science

351(6280):1433–1436. https://doi.org/10.1126/science.aaf0918
Carpenter B, Gelman A, Hoffman M, Lee D, Goodrich B, Betancourt M, Brubaker M, Guo J, Li P,

Riddell A (2017) Stan: a probabilistic programming language. J Stat Softw 76(1):1–32. https://
doi.org/10.18637/jss.v076.i01

Cartwright MH, Shepperd MJ, Song Q (2003) Dealing with missing software project data.
In: Proceedings of 5th international workshop on enterprise networking and computing in
healthcare industry (IEEE Cat. No.03EX717), pp 154–165. https://doi.org/10.1109/METRIC.
2003.1232464

Clarke JL, Clarke B, Yu CW (2013) Prediction in M-complete problems with limited sample size.
Bayesian Anal 8(3):647–690. https://doi.org/10.1214/13-BA826

Dutilh G, Vandekerckhove J, Ly A, Matzke D, Pedroni A, Frey R, Rieskamp J, Wagenmakers
EJ (2017) A test of the diffusion model explanation for the worst performance rule using
preregistration and blinding. Atten Percept Psychophys 79(3):713–725. https://doi.org/10.
3758/s13414-017-1304-y

Ehrlich K, Cataldo M (2012) All-for-one and one-for-all?: a multilevel analysis of communication
patterns and individual performance in geographically distributed software development. In:
Proceedings of the ACM 2012 conference on computer supported cooperative work (CSCW
’12). ACM, New York, pp 945–954. https://doi.org/10.1145/2145204.2145345

Ernst NA (2018) Bayesian hierarchical modelling for tailoring metric thresholds. In: Proceedings
of the 15th international conference on mining software repositories (MSR ’18). IEEE,
Piscataway, pp 587–591. https://doi.org/10.1145/3196398.3196443

Fernández-Diego M, de Guevara FGL (2014) Potential and limitations of the ISBSG dataset in
enhancing software engineering research: a mapping review. Inf Softw Technol 56(6):527–544.
https://doi.org/10.1016/j.infsof.2014.01.003

Furia CA (2016) Bayesian statistics in software engineering: practical guide and case studies.
arXiv:1608.06865

Furia CA, Feldt R, Torkar R (2019) Bayesian data analysis in empirical software engineering
research. IEEE Trans Softw Eng. https://doi.org/10.1109/TSE.2019.2935974

Gabry J, Simpson D, Vehtari A, Betancourt M, Gelman A (2017) Visualization in Bayesian
workflow. arXiv:1709.01449

Gelman A (2018) The failure of null hypothesis significance testing when studying incremental
changes, and what to do about it. Personal Soc Psychol Bull 44(1):16–23. https://doi.org/10.
1177/0146167217729162

Gelman A, Carlin J, Stern H, Dunson D, Vehtari A, Rubin D (2013) Bayesian data analysis, 3rd
edn. Chapman and Hall/CRC texts in statistical science. Taylor and Francis, Boca Raton

Gelman A, Simpson D, Betancourt M (2017) The prior can often only be understood in the context
of the likelihood. Entropy 19(10):555. https://doi.org/10.3390/e19100555

Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration
of images. IEEE Trans Pattern Anal Mach Intell 6(6):721–741. https://doi.org/10.1109/TPAMI.
1984.4767596

Glick JL (1992) Scientific data audit—a key management tool. Account Res 2(3):153–168. https://
doi.org/10.1080/08989629208573811

1506.02273
1701.02434
1803.08393
https://doi.org/10.1080/10705510802339072
https://doi.org/10.18637/jss.v080.i01
https://doi.org/10.1126/science.aaf0918
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1109/METRIC.2003.1232464
https://doi.org/10.1109/METRIC.2003.1232464
https://doi.org/10.1214/13-BA826
https://doi.org/10.3758/s13414-017-1304-y
https://doi.org/10.3758/s13414-017-1304-y
https://doi.org/10.1145/2145204.2145345
https://doi.org/10.1145/3196398.3196443
https://doi.org/10.1016/j.infsof.2014.01.003
1608.06865
https://doi.org/10.1109/TSE.2019.2935974
1709.01449
https://doi.org/10.1177/0146167217729162
https://doi.org/10.1177/0146167217729162
https://doi.org/10.3390/e19100555
https://doi.org/10.1109/TPAMI.1984.4767596
https://doi.org/10.1109/TPAMI.1984.4767596
https://doi.org/10.1080/08989629208573811
https://doi.org/10.1080/08989629208573811

Bayesian Data Analysis in Empirical Software Engineering: The Case of Missing Data 323

Hassan S, Tantithamthavorn C, Bezemer CP, Hassan AE (2017) Studying the dialogue between
users and developers of free apps in the Google Play Store. Empir Softw Eng 23(3):1275–1312.
https://doi.org/10.1007/s10664-017-9538-9

Hill PR, Stringer M, Lokan C, Wright T (2001) Organizational benchmarking using the ISBSG
data repository. IEEE Softw 18:26–32. https://doi.org/10.1109/52.951491

Hu MC, Pavlicova M, Nunes EV (2011) Zero-inflated and hurdle models of count data with extra
zeros: examples from an HIV-risk reduction intervention trial. Am J Drug Alcohol Abuse
37(5):367–375. https://doi.org/10.3109/00952990.2011.597280

Hunter JE (2001) The desperate need for replications. J Consum Res 28(1):149–158. https://doi.
org/10.1086/321953

Ioannidis JPA (2005a) Contradicted and initially stronger effects in highly cited clinical research.
J Am Med Assoc 294(2):218–228. https://doi.org/10.1001/jama.294.2.218

Ioannidis JPA (2005b) Why most published research findings are false. PLoS Med 2(8):e124.
https://doi.org/10.1371/journal.pmed.0020124

Ioannidis JPA (2016) Why most clinical research is not useful. PLOS Med 13(6):1–10. https://doi.
org/10.1371/journal.pmed.1002049

Ioannidis JPA, Stanley TD, Doucouliagos H (2017) The power of bias in economics research. Econ
J 127(605):F236–F265. https://doi.org/10.1111/ecoj.12461

Jaynes ET (2003) Probability theory: the logic of science. Cambridge University Press, Cambridge
John LK, Loewenstein G, Prelec D (2012) Measuring the prevalence of questionable research

practices with incentives for truth telling. Psychol Sci 23(5):524–532. https://doi.org/10.1177/
0956797611430953

Keung J (2008) Empirical evaluation of Analogy-X for software cost estimation. In: Proceedings
of the second ACM-IEEE international symposium on empirical software engineering and
measurement (ESEM ’08). ACM, New York, pp 294–296. https://doi.org/10.1145/1414004.
1414057

Kruschke JK (2018) Rejecting or accepting parameter values in Bayesian estimation. Adv Methods
Pract Psychol Sci 1(2):270–280. https://doi.org/10.1177/2515245918771304

Lambert B (2018) A student’s guide to Bayesian statistics. SAGE, Beverly Hills
Lenberg P, Feldt R, Wallgren Tengberg LG, Tidefors I, Graziotin D (2017) Behavioral software

engineering—guidelines for qualitative studies. arXiv:1712.08341
Liebchen GA, Shepperd M (2008) Data sets and data quality in software engineering. In:

Proceedings of the 4th international workshop on predictor models in software engineering
(PROMISE ’08). ACM, New York, pp 39–44. https://doi.org/10.1145/1370788.1370799

McElreath R (2015) Statistical rethinking: a Bayesian course with examples in R and Stan. CRC,
Boca Raton

McShane BB, Gal D, Gelman A, Robert C, Tackett JL (2017) Abandon statistical significance.
arXiv:1709.07588

Menzies T, Shepperd M (2019) “Bad smells” in software analytics papers. Inf Softw Technol
112:35–47. https://doi.org/10.1016/j.infsof.2019.04.005

Mittas N, Papatheocharous E, Angelis L, Andreou AS (2015) Integrating non-parametric models
with linear components for producing software cost estimations. J Syst Softw 99:120–134.
https://doi.org/10.1016/j.jss.2014.09.025

Mockus A (2008) Missing data in software engineering. In: Shull F, Singer J, Sjøberg DIK (eds)
Guide to advanced empirical software engineering. Springer, London, pp 185–200. https://doi.
org/10.1007/978-1-84800-044-5_7

Morey RD, Hoekstra R, Rouder JN, Lee MD, Wagenmakers EJ (2016) The fallacy of placing
confidence in confidence intervals. Psychon Bull Rev 23(1):103–123. https://doi.org/10.3758/
s13423-015-0947-8

Myrtveit I, Stensrud E, Olsson UH (2001) Analyzing data sets with missing data: an empirical
evaluation of imputation methods and likelihood-based methods. IEEE Trans Softw Eng
27(11):999–1013. https://doi.org/10.1109/32.965340

https://doi.org/10.1007/s10664-017-9538-9
https://doi.org/10.1109/52.951491
https://doi.org/10.3109/00952990.2011.597280
https://doi.org/10.1086/321953
https://doi.org/10.1086/321953
https://doi.org/10.1001/jama.294.2.218
https://doi.org/10.1371/journal.pmed.0020124
https://doi.org/10.1371/journal.pmed.1002049
https://doi.org/10.1371/journal.pmed.1002049
https://doi.org/10.1111/ecoj.12461
https://doi.org/10.1177/0956797611430953
https://doi.org/10.1177/0956797611430953
https://doi.org/10.1145/1414004.1414057
https://doi.org/10.1145/1414004.1414057
https://doi.org/10.1177/2515245918771304
1712.08341
https://doi.org/10.1145/1370788.1370799
1709.07588
https://doi.org/10.1016/j.infsof.2019.04.005
https://doi.org/10.1016/j.jss.2014.09.025
https://doi.org/10.1007/978-1-84800-044-5_7
https://doi.org/10.1007/978-1-84800-044-5_7
https://doi.org/10.3758/s13423-015-0947-8
https://doi.org/10.3758/s13423-015-0947-8
https://doi.org/10.1109/32.965340

324 R. Torkar et al.

Navarro DJ (2019) Between the devil and the deep blue sea: tensions between scientific judgement
and statistical model selection. Comput Brain Behav 2(1):28–34. https://doi.org/10.1007/
s42113-018-0019-z

Nuzzo R (2014) Scientific method: statistical errors. Nature 506(7487):150–152. https://doi.org/
10.1038/506150a

Pearl J (2009) Causality: models, reasoning and inference, 2nd edn. Cambridge University Press,
New York

Peters J, Janzing D, Schölkopf B (2017) Elements of causal inference: foundations and learning
algorithms. In: Adaptive computation and machine learning. MIT Press, Cambridge

R Core Team (2018) R: a language and environment for statistical computing. In: R foundation for
statistical computing, Vienna, Austria. https://www.R-project.org/

Rodríguez-Pérez G, Robles G, González-Barahona JM (2018) Reproducibility and credibility in
empirical software engineering: a case study based on a systematic literature review of the use
of the SZZ algorithm. Inf Softw Technol 99:164–176. https://doi.org/10.1016/j.infsof.2018.03.
009

Rosenbaum PR (1984) The consequences of adjustment for a concomitant variable that has been
affected by the treatment. J R Stat Soc Ser A 147(5):656–666

Rubin DB (1986) Statistical matching using file concatenation with adjusted weights and multiple
imputations. J Bus Econ Stat 4:87–94. https://doi.org/10.1080/07350015.1986.10509497

Rubin DB (1987) Multiple imputation for nonresponse in surveys. Wiley, Hoboken
Shanks DR, et al (2013) Priming intelligent behavior: an elusive phenomenon. PLOS One 8(4):1–

10. https://doi.org/10.1371/journal.pone.0056515
Shepperd M, Ajienka N, Counsell S (2018) The role and value of replication in empirical software

engineering results. Inf Softw Technol 99:120–132. https://doi.org/10.1016/j.infsof.2018.01.
006

Simpson DP, Rue H, Martins TG, Riebler A, Sørbye SH (2014) Penalising model component
complexity: a principled, practical approach to constructing priors. arXiv:1403.4630

Talts S, Betancourt M, Simpson D, Vehtari A, Gelman A (2018) Validating Bayesian inference
algorithms with simulation-based calibration. arXiv:1804.06788

Torkar R, Feldt R, de Oliveira Neto FG, Gren L (2017) Statistical and practical significance of
empirical software engineering research: a maturity model. CoRR abs/1706.00933

Trafimow D, Marks M (2015) Editorial. Basic Appl Soc Psychol 37(1):1–2. https://doi.org/10.
1080/01973533.2015.1012991

van Buuren S (2007) Multiple imputation of discrete and continuous data by fully conditional spec-
ification. Stat Methods Med Res 16(3):219–242. https://doi.org/10.1177/0962280206074463

Vehtari A, Gelman A, Gabry J (2017) Practical Bayesian model evaluation using leave-one-out
cross-validation and WAIC. Stat Comput 27:1413–1432. https://doi.org/10.1007/s11222-016-
9696-4

Vehtari A, Gelman A, Simpson D, Carpenter B, Bürkner PC (2019) Rank-normalization, folding,
and localization: an improved R̂ for assessing convergence of MCMC. arXiv:1903.08008

White IR, Royston P, Wood AM (2011) Multiple imputation using chained equations: issues and
guidance for practice. Stat Med 30(4):377–399. https://doi.org/10.1002/sim.4067

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2012) Experimentation in
software engineering. Springer, Berlin

Woolston C (2015) Psychology journal bans P values. Nature 519(7541):9. https://doi.org/10.
1038/519009f

Yao Y, Vehtari A, Simpson D, Gelman A (2018) Using stacking to average Bayesian predictive
distributions (with discussion). Bayesian Anal 13(3):917–1007. https://doi.org/10.1214/17-
BA1091

https://doi.org/10.1007/s42113-018-0019-z
https://doi.org/10.1007/s42113-018-0019-z
https://doi.org/10.1038/506150a
https://doi.org/10.1038/506150a
https://www.R-project.org/
https://doi.org/10.1016/j.infsof.2018.03.009
https://doi.org/10.1016/j.infsof.2018.03.009
https://doi.org/10.1080/07350015.1986.10509497
https://doi.org/10.1371/journal.pone.0056515
https://doi.org/10.1016/j.infsof.2018.01.006
https://doi.org/10.1016/j.infsof.2018.01.006
1403.4630
1804.06788
1706.00933
https://doi.org/10.1080/01973533.2015.1012991
https://doi.org/10.1080/01973533.2015.1012991
https://doi.org/10.1177/0962280206074463
https://doi.org/10.1007/s11222-016-9696-4
https://doi.org/10.1007/s11222-016-9696-4
1903.08008
https://doi.org/10.1002/sim.4067
https://doi.org/10.1038/519009f
https://doi.org/10.1038/519009f
https://doi.org/10.1214/17-BA1091
https://doi.org/10.1214/17-BA1091

Part III
Knowledge Acquisition and Aggregation

Automating Systematic Literature
Review

Katia R. Felizardo and Jeffrey C. Carver

Abstract Systematic literature reviews (SLRs) have become the foundation of
evidence-based software engineering (EBSE). Conducting an SLR is largely a
manual process. In the past decade, researchers have made major advances in
automating the SLR process, aiming to reduce the workload and effort for conduct-
ing high-quality SLRs in software engineering (SE). The goal of this chapter is to
provide an overview of strategies researchers have developed to automate the SLR
process. We used a systematic search methodology to survey the literature about
the strategies used to automate the SLR process in SE. Study selection is the most
supported activity, while protocol definition, data extraction, and synthesis have only
partial support. SE researchers have most frequently explored the visual text mining
strategy. Visual text mining is useful from the beginning of the process (formulation
of research questions) to the end of the process (extracting and summarizing data).
Overall, we recommend that the SE community develop more automated strategies
to reduce the manual effort required for SLRs in SE.

1 Introduction

Secondary studies, such as systematic literature reviews (SLRs), systematic map-
pings (SMs), and rapid reviews (RRs, see chapter “Rapid Reviews in Software
Engineering”) are beneficial for software engineering (SE) practice and research.

SLRs are one of the key aspects of the evidence-based software engineering
(EBSE) paradigm. They play an important role by synthesizing relevant evidence
about a topic of interest through transparent, auditable methods. Despite their

K. R. Felizardo (�)
Federal University of Technology – Paraná (UTFRP), Departament of Computing,
Cornélio Procópio, PR, Brazil
e-mail: katiascannavino@utfpr.edu.br

J. C. Carver
University of Alabama, Department of Computer Science, Tuscaloosa, AL, USA
e-mail: carver@cs.ua.edu

© Springer Nature Switzerland AG 2020
M. Felderer, G. H. Travassos (eds.), Contemporary Empirical Methods in Software
Engineering, https://doi.org/10.1007/978-3-030-32489-6_12

327

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32489-6_12&domain=pdf
mailto:katiascannavino@utfpr.edu.br
mailto:carver@cs.ua.edu
https://doi.org/10.1007/978-3-030-32489-6_12

328 K. R. Felizardo and J. C. Carver

importance, the process of conducting an SLR is much more labor intensive than
a traditional (i.e., non-systematic) narrative literature review.

SE researchers and SLR authors have highlighted a number of challenges with
the SLR process. The following list describes some of the most common challenges
(Carver et al. 2013; Hassler et al. 2014).

1. Developing the Protocol is a non-trivial activity since the authors must make
important SLR planning decisions about the review question, selection criteria,
search strategy, study selection, data extraction, quality assessment, and data
synthesis (Staples and Niazi 2007).

2. Searching for Evidence can be difficult due to factors like inadequate search
strategy, heterogeneity of SE terminology, and limited range of indexing
terms (Brereton et al. 2007; Dybå et al. 2007; Dieste and Padua 2007; Dieste
et al. 2009; Zhang and Muhammad 2011; Zhang et al. 2011; Carver et al. 2013;
Wohlin 2014; Al-Zubidy et al. 2017; Kitchenham and Brereton 2013; Waiyahong
and Reddy 2014; Al-Zubidy and Carver 2019; Sjøberg et al. 2007).

3. Selecting Relevant Studies is a difficult activity due to the large number of
studies authors must analyze (Engström et al. 2008; Felizardo et al. 2017a).

4. Extracting Data is difficult because authors use inconsistent data formats and
paper designs (Riaz et al. 2010).

5. Synthesizing the Evidence is especially difficult because papers may not
provide all the necessary information. In addition, the differences between
studies is a source of heterogeneity (Cruzes and Dybå 2010; Felizardo et al.
2011).

In this chapter, we provide an overview of the aspects of the SLR process that
lend themselves to automation. Then we compile many published strategies for
automating the SE SLR process.

The remainder of this chapter is organized as follows. Section 2 presents the
SLR activities that are most amenable to automation. Section 3 describes the various
strategies proposed for automating SLR activities. Section 4 provides a discussion
of the findings. Section 5 recommends further reading. Section 6 presents the final
remarks.

2 SLR Activities Amenable to Automation

Based on our experience and on published literature (Carver et al. 2013; Hassler
et al. 2014), in this section we enumerate five SLR activities that have the
most potential for automation: Developing the Protocol, Searching for Evidence,
Selecting Relevant Studies, Extracting Data, and Synthesizing the Evidence. We
organize the following discussion around these five activities.

Automating Systematic Literature Review 329

2.1 Developing the Protocol

Creating the SLR protocol is complex and time-consuming. However, to ensure
a high-quality SLR, the authors must perform this step well (Staples and Niazi
2007). The purpose of an SLR is to answer clear and focused research question(s).
Therefore, well-formulated research questions are necessary to guide the review
process. However, identifying a knowledge gap and translating that knowledge gap
into an answerable question is difficult due to increase in volume and availability of
scientific information.

Text analysis through the combinations of words within studies has the potential
to identify knowledge gaps in collections of scientific studies and help define
research questions in a clear, unambiguous manner prior to performing the
review (Westgate et al. 2005). Even before developing the protocol, automated
support can help researchers find previous SLRs related to the research question,
thereby reducing the effort needed to establish whether a previous review exists
(Tsafnat et al. 2014). Consequently, text analysis can reduce the number of duplicate
SLRs. Even if the text analysis locates an outdated SLR, it would be preferable for
a researcher to update that SLR instead of conducting a new SLR.

2.2 Searching for Evidence

Another challenge in conducting a high-quality SLR is performing the
search (Zhang and Muhammad 2011). According to Dieste and Padua (2007),
because the design and execution of an appropriate and effective search string is
critical, the authors must be careful. The primary approach SLR authors use to
identify evidence is employing search strings in the various digital libraries (DLs).
For this process to be effective, authors must have an adequate method for defining
the search strings, which is a time-consuming and error-prone step.

Al-Zubidy and Carver (2019) conducted an SLR of published SLRs and a survey
of SLR authors to identify barriers and solutions related to the SLR search process.
Based on 84 studies in the literature and 131 survey responses, they identified
barriers related to the DLs, automation support, and SLR authors. The barriers
specifically related to automation support are prime candidates for additional
automation and tools support. These barriers include:

1. Developing the search string—Authors also find it difficult to define keywords,
their synonyms, and their appropriate combinations for search purposes (Sjøberg
et al. 2007; Carver et al. 2013; Frantzi et al. 2000; Wohlin 2014). One reason
for this difficulty is the lack of standardized terminology within SE (Wohlin
2014). Therefore providing support for defining appropriate search strings could
be of great benefit to SLR authors by reducing the time required for this step.
Construction of the entire search string is also an option for automation. Having

330 K. R. Felizardo and J. C. Carver

defined the main terms, they could be automatically merged with an AND and
synonyms could be merged with an OR.

2. Converting the search string to the appropriate format(s) for each DL—
DLs do not provide adequate support for the type of automated search required
for SLRs, i.e., the same search string does not work in all DLs without some sort
of modification (Brereton et al. 2007; Dybå et al. 2007; Dieste et al. 2009; Zhang
and Muhammad 2011; Zhang et al. 2011; Al-Zubidy et al. 2017; Kitchenham
and Brereton 2013). Therefore, authors must modify the search string manually
to obtain valid results in each of the DLs used.

3. Importing/exporting studies in a standardized format—Data standardization
is currently a significant topic for information retrieval systems and for DLs,
primarily, when used by SLR researchers to gather data from different sources.
The data standardization processes aim to improve information retrieval, prevent
loss of data, and provide non-duplicated data (Waiyahong and Reddy 2014).

2.3 Selecting Relevant Studies

After conducting the search, the next challenge is selecting the studies most relevant
to the research questions. As reported by Felizardo et al. (2017a), the number of
studies that included SLRs in the area of SE varies widely. In fact, it is possible to
find SLRs that analyze tens of studies up to those that analyze thousands of studies.
Working through these studies, especially when there are a very large number of
them, requires significant effort from the SLR author(s). In addition, many of the
studies returned by the search process are irrelevant to the underlying research
question, resulting in additional wasted effort (Engström et al. 2008).

Automated support for study selection can assist by reducing the number of
papers the author(s) must read, by acting as a second “reader,” by increasing the
speed of selection, and prioritizing which papers the author(s) should read (O’Mara-
Eves et al. 2015).

2.4 Extracting Data

Extracting useful data from a collection of studies is one of the most challenging
SLR activities. SLR authors have to examine each study to identify the information
relevant to the research question(s). Therefore, automation of this activity can save
a large amount of time. However, Jonnalagadda et al. (2015) performed an SLR
to identify tools related to automating SLR data extraction. They concluded that
creating a universal automatic data extraction tool is not feasible. The solution is to
automatically retrieve data in specific scientific areas.

Among the many difficulties faced by automation are enormous diversity of
studies, vast amount of different data, each scientific field and each research group

Automating Systematic Literature Review 331

might have its own vocabulary, and similar research goals and outcomes can be
described in different ways. Moreover, because SLRs and other secondary studies
are a recent practice in SE, authors of earlier papers did not write with these types of
studies in mind. Therefore, a large number of SE papers (at least until recently) do
not follow the type of standard structure that helps SLR authors extract appropriate
information.

For a more complete discussion about threats to validity in SLR, please see
chapter “Guidelines for Managing Threats to Validity of Secondary Studies in
Software Engineering”.

2.5 Synthesizing the Evidence

Because the overall goal of an SLR is to synthesize information presented in
a disparate set of studies and present the findings to the reader in an easily
understandable fashion, this step is critical to the success of an SLR. If studies are
very heterogeneous it may be most appropriate to summarize the data in a narrative
fashion. However, when studies refer to similar data, a statistical/graphical summary
might be more appropriate.

Cruzes and Dybå (2010) found that SLR authors often report their findings in
large tables containing data from individual studies (e.g., title, authors, year, outline,
strengths). This type of reporting is not as useful as a tabular synthesis or other
visual representations that help make the overall findings more understandable. The
results of an experiment by Felizardo et al. (2011) showed SLR experts and students
were able to understand SLR findings presented in graphical or tabular form with
less time and the same accuracy compared with other presentations of the results.
However, the process of manually producing tables and graphs could greatly benefit
from automation to reduce the required amount of manual work.

Some tools that are not specific to SLRs may support the synthesis activity.
For example, NVivo may produce tabulations and graphs from qualitative analysis
applied to the studies.

For more information about evidence aggregation in SE, please see chap-
ter “Research Synthesis in Software Engineering”.

3 Strategies for Automating SLR Activities

This section provides an overview of some of the automation strategies proposed
for the five activities described in Sect. 2.

332 K. R. Felizardo and J. C. Carver

3.1 Systematic Literature Search

We conducted a systematic search by using backward and forward snowballing to
identify the current literature on SLR automation in SE. Our first step was to develop
a list of relevant studies, based on our experience researching SLRs, as our starting
set. We began with a list of 19 studies with which we were already familiar (Abilio
et al. 2014; Felizardo et al. 2010, 2012b, 2014a, 2017b; Feng et al. 2017a; Ghafari
et al. 2012; Laghrabli et al. 2015; Mergel et al. 2015; Muñoz Caro et al. 2017; Neto
et al. 2000; Octaviano et al. 2016; Osborne 2018; Rasmus et al. 2017; Santos 2018;
Silva 2009; Singh et al. 2018; Souza et al. 2017; Torres et al. 2012; Yu and Menzies
2019).

We applied both backward and forward snowballing to each of these 19 studies.
We performed three iterations looking at the references and citations. We

extracted the citations with the help of search engines, such as Google Scholar.
Table 1 details these three iterations.

The inclusion and exclusion criteria were:

(IC1) The study must be within SE AND
(IC2) The study must discuss a strategy for the SLR automation.

(EC1) The study is only an abstract OR
(EC2) The study is an older version of other study already considered OR.

Table 2 summarizes the results of the process and includes the references for all
included studies.

Table 1 Set of included/excluded studies using backward and forward snowballing

Strategy Round Included Excluded

Backward Round 1 3 studies (Ramampiaro et al.
2010; Tomassetti et al. 2011;
Fabbri et al. 2012)

583 studies

Backward Round 2 1 study (Sun et al. 2012) 95 studies

Backward Round 3 0 135 studies

Forward Round 1 2 studies (Aliyu et al. 2018; Götz
2018)

45 studies

Forward Round 2 4 studies (Abilio et al. 2014; Feng
et al. 2017b; Shakeel et al. 2018;
Pulsiri and Vatananan-Thesenvitz
2018)

5 studies

Forward Round 3 0 5 studies

Total 3 rounds 10 studies 868 studies

Automating Systematic Literature Review 333

Table 2 Snowballing rounds and their respective seed set

Round Seed set

Round 1 19 studies (Feng et al. 2017a; Mergel et al. 2015; Souza et al. 2017; Rasmus et al.
2017; Ghafari et al. 2012; Felizardo et al. 2010, 2012b, 2014a, 2017b; Octaviano
et al. 2016; Yu and Menzies 2019; Muñoz Caro et al. 2017; Singh et al. 2018;
Osborne 2018; Santos 2018; Neto et al. 2000; Torres et al. 2012; Silva 2009;
Laghrabli et al. 2015)

Round 2 5 studies (Ramampiaro et al. 2010; Tomassetti et al. 2011; Fabbri et al. 2012; Aliyu
et al. 2018; Götz 2018)

Round 3 5 studies (Abilio et al. 2014; Feng et al. 2017b; Shakeel et al. 2018; Pulsiri and
Vatananan-Thesenvitz 2018; Sun et al. 2012)

In summary, during the first round we found 47 studies that cited at least one of
the 19 studies from the original seed set. These studies were candidates for inclu-
sion. After we applied the selection criteria, only two of these 47 remained (Aliyu
et al. 2018; Götz 2018). In addition, the 19 studies in the seed set referenced a
total of 583 studies. After applying the inclusion criteria, we included only three of
them (Fabbri et al. 2012; Ramampiaro et al. 2010; Tomassetti et al. 2011).

In Round 2, we started with the five studies identified in Round 1 (Aliyu et al.
2018; Fabbri et al. 2012; Götz 2018; Ramampiaro et al. 2010; Tomassetti et al.
2011). We found nine studies that cited at least one of these five and included four
of them (Abilio et al. 2014; Feng et al. 2017b; Pulsiri and Vatananan-Thesenvitz
2018; Shakeel et al. 2018). In addition, the five studies referenced 95 studies. We
included only one of these studies.

In Round 3, we found five studies that cited at least one of the studies identified
in Round 2. We did not include any of them. In addition, the studies in Round 2
cited 135 other studies. None of these were relevant.

Therefore, because we found no additional studies in Round 3, we stopped
the snowballing process. These three iterations resulted in a total of ten new
studies (Aliyu et al. 2018; Abilio et al. 2014; Fabbri et al. 2012; Feng et al.
2017b; Götz 2018; Pulsiri and Vatananan-Thesenvitz 2018; Ramampiaro et al. 2010;
Shakeel et al. 2018; Sun et al. 2012; Tomassetti et al. 2011).

In the next sections, we discuss the strategies obtained in our systematic search
and how they can support SLR activities.

3.2 Developing the Protocol

The existing automation support in this area is based on visual text mining (VTM)
and focuses on identifying the most appropriate research questions.

334 K. R. Felizardo and J. C. Carver

Visual Text Mining The SLR Planning Based on Suffix Tree Clustering (SLRP-
STC) is a VTM strategy designed to identify common phrases in a collection of
studies and use these phrases as the basis for creating clusters (Feng et al. 2017a).
SLRP-STC supports decision-making activities within the SLR planning phase, such
as specifying research topics.

VTM makes use of the strong visual processing abilities possessed by humans
to support knowledge discovery. VTM is an extension of text mining (TM), a
practice commonly used to extract patterns and non-trivial knowledge from natural
language textual documents. VTM combines mining algorithms with information
visualization techniques to support visualization and interactive data exploration.

The four strategies that are part of the SLRP-STC are (1) retrieve web studies, (2)
clean irrelevant information, e.g., stopwords (the most common words in a language
such as “the”), (3) identify phrases, and (4) provide a visual representation (cluster)
of the relevant information extracted and analyzed from the web studies.

VTM groups the retrieved studies into clusters. It uses the classification of topics
(e.g., “Tool, support”) to suggest topics for research questions.

A difference between the SLRP-STC and other typical VTM strategies is that
SLRP-STC retrieves online studies and clusters web search results, whereas typical
strategies use off-line studies collection that has standardized format.

3.3 Searching for Evidence

Relative to the search phase, we identified two types of automation: (1) automation
to help in search string generation (Mergel et al. 2015; Rasmus et al. 2017; Souza
et al. 2017) and (2) automation to help during search execution (Ghafari et al. 2012;
Lausberger 2017). The sections below provide information about these types of
automation.

3.3.1 Visual Text Mining

VTM can also be applied to iteratively elaborate a search string by suggesting new
terms (Mergel et al. 2015). Initially, VTM extracts and recommends relevant terms
based on a collection of studies returned from using a preliminary search string.
Then, the researcher can refine the string by inserting the suggested terms and re-
running the process until the search string is suitable. The two main limitations of
this approach are that it works only on IEEE Xplore and only on abstracts.

Automating Systematic Literature Review 335

3.3.2 Artificial Intelligence (AI)

Similar to TM/VTM strategies, AI also enables the creation and calibration of search
strings (Souza et al. 2017). The hill climbing (HC) algorithm runs as follows (Souza
et al. 2017): a user provides a set of parameters including, terms, synonyms, number
of iterations, and a list of control studies (studies that must be retrieved when
searching in a given DL) to the HC algorithm to create an initial search string. From
the initial search string the HC algorithm generates a set of neighbor search strings.
The neighbor strings are similar to initial string with small changes in each part of
the string, e.g., addition or removal of terms/synonyms previously defined by the
user. If a neighbor string is better in terms of sensibility and precision (considering
the control group) than the initial string, then the HC algorithm selects this new
neighbor string and the process restarts interactively until the HC algorithm reaches
the specified number of iterations. Generally, SLR researchers use at least three
DLs as sources for primary studies in their SLRs. However, this AI strategy uses
only IEEE Xplore as source (Souza et al. 2017).

3.3.3 Machine Learning

Machine learning is a strategy that semi-automates both search and selection,
provides cost savings, and allows for replicability (Rasmus et al. 2017). The main
goal of machine learning is to use statistical inference to learn which studies are
relevant. The input to the process is a set of included and excluded studies to train a
classifier. The algorithm then extends this set of studies by automated searching
and snowballing. The algorithm generates the search string using a data-driven
approach based on terms from title, abstract, and keyword of the currently accepted
papers. The algorithm executes the string in the Scopus library and automatically
downloads only the metadata. Then, the algorithm performs snowballing. Scopus
has tool support for backwards snowballing. Then, the algorithm marks the results
as included or excluded through the classifier. Finally, the researcher validates the
classification. This validation is added to the training set for the classifier and the
process is used interactively and iteratively. A weakness of this strategy is that
the search string is kept fixed once the selection phase is started. Moreover, the
validation is a proof of concept and uses only Scopus.

Once the authors have a search string, they can use a tool created by Ghafari et al.
(2012) that unifies the search across best-known DLs in SE or a tool by Lausberger
(2017) to automatically adapt search terms to different DLs during search execution.
Study results show the strategy by Ghafari et al. decreased search time and increased
the readability of the results compared with a manual strategy. In both cases, the
SLR author still has to provide the tool with a search string to execute.

Feng et al. (2017a) also provide a unified search tool for DLs, including IEEE
Xplore, the ACM Digital Library, the Web of Science, Science Direct, Scopus, and
Google Scholar. However, due to the limited access to the full text of studies, the
tool only retrieves title, keywords, and abstract.

336 K. R. Felizardo and J. C. Carver

3.4 Selecting Relevant Studies

Our review of the literature identified a number of automated strategies for selecting
relevant studies. We group these strategies into four categories as follows.

3.4.1 Text Mining/Visual Text Mining

TM helps filter relevant studies during the first stage of selection (reading abstracts),
thereby reducing the set of studies that researchers must examine in the final
selection (full text). Initially, researchers indicate the most well-known and funda-
mental studies on the chosen topic. Then, TM identifies studies with similar content
and studies that have conceptual relations to the content expressed in the already
selected papers. The main advantage of this strategy is the reduction of workload
to classify studies, without losing any relevant studies. The reduced workload
allows researchers to manage large collection of studies. However, it is important
to conduct a wider empirical validation of this strategy (Tomassetti et al. 2011).

Using VTM it is possible to generate two visualizations of the primary studies
to support the selection activity: content-maps and edge bundles. Content-maps
organize documents into clusters based on the similarity of their content. By
placing similar documents physically close to each other in the visualization, this
strategy helps authors identify those studies that are similar and extract appropriate
information from them. Edge bundle is a hierarchical tree visualization containing
nodes and links (i.e., relationships between nodes). Nodes represent primary studies
with links representing the relationships between the primary studies.

VTM strategies can facilitate a researcher’s exploration, interpretation, and
decision-making about a large set of primary studies (Felizardo et al. 2010, 2012b;
Octaviano et al. 2016; Malheiros et al. 2007). VTM strategies minimize efforts,
accelerate the selection process, and allow authors to be more comprehensive in
the selection process. Because VTM supports a larger search space, it reduces the
chances of authors missing a relevant study.

Building on this initial work, Felizardo et al. (2014a) evaluated the effectiveness
of the VTM strategy. The study found VTMs give solid clues about which studies
the author(s) should review closely, reducing the overall number of studies manually
evaluated and the total time required. They also evaluated how well such a strategy
supported the evolution of SLRs through adding new evidence. The strategy
increases the number of correctly chosen studies. Overall, VTM strategies improve
the performance and accuracy of study selection during the update of SLRs.

One limitation of VTM approaches is that, although scalability is feasible, they
have only been tested on small datasets (containing at most 261 studies). Introducing
VTM in the SLR process requires additional knowledge about the visual tools.

Automating Systematic Literature Review 337

3.4.2 Sampling

Sampling strategies save time by presenting the SLR author(s) with a subset of the
studies for manual analysis. We found two strategies that used sampling:

• Using bibliometric approximation, Muñoz Caro et al. (2017) determine the
sample size needed to attain a confidence level of 95% with a confidence interval
of 10%. They reduced a large set of primary studies (4846) to a representative
sample of 94 studies that had to be manually reviewed while still maintaining a
confidence level of 95%. The 94 studies were randomly chosen from the retrieved
studies.

• While conducting a tertiary study, Singh et al. (2018) ranked the distribution of
the retrieved studies across DLs and then used random sampling based on this
ranking to identify a sample of studies. For example, if 30% of the retrieved
studies were from IEEE Xplore, then the expected percentage of studies from
IEEE Xplore in the sample is 30%.

The key difficulty in using sample strategies is to allow repeatability.

3.4.3 Machine Learning

Researchers have also used both unsupervised learning (K-means) (Xiong et al.
2018) and semi-supervised learning (Timsina et al. 2016) to identify and classify
relevant studies. Researchers have also shown that use of different classification
models and features sets can work well with human decisions in the selection
process (Bannach-Brown et al. 2019).

One specific machine learning strategy, FASTREAD has shown promising results.
FASTREAD combines and parameterizes the most efficient active learning algo-
rithms to support study selection when there are a large number of candidate studies.
Results show that FASTREAD can find results while reviewing 20–50% fewer
studies than other strategies (Yu and Menzies 2019). An automated assistant to this
strategy, called FAST, helps further minimize researcher efforts by using keywords
to identify and rank relevant studies. FAST helps reduce research effort by 20% (Yu
and Menzies 2019). A positive aspect of FASTREAD is that it was validated using
SE SLRs. Problems including how to assign selection task to multiple reviewers
will be explored in the future. Novel methods should also be explored for parameter
selection.

338 K. R. Felizardo and J. C. Carver

3.4.4 Other

We identified a few other strategies in the literature for supporting the study selection
process.

• Expert-Driven Automatic Methodology (EDAM), which generates an ontology
using candidate studies and then classifies studies using that ontology, allowed
researchers to spend their effort on analysis and discussion rather than on
classification (Osborne 2018). The main advantage of EDAM is it infers the
domain ontology using the set of retrieved studies, reflecting the real trends of
the studies and avoiding arbitrary reviewers’ decisions about keywords used to
cluster similar studies. The ontology is structured hierarchically; however, subar-
eas (e.g., software requirements, software quality, etc.) are subsumed by previous
area at the upper level of the taxonomy (e.g., SE). Deeper hierarchies could allow
a finer-grained ontology providing a higher precision in the clustering process.

• Concept Maps, which summarize a complex structure of textual information,
help researchers identify the most relevant studies (Felizardo et al. 2017b; Santos
2018). The use of CM presents numerous advantages. They have a flexible
structure and are easy to understand, allow for knowledge sharing and there is
a large diversity of subareas of computer science in which CMs can be applied,
including SE. However, the most important limitation in the use of CM is its
scalability, i.e., how to scale a CM to thousands of nodes. A representation of
a CM can lose its utility when the amount of information increases and the
high number of concepts and cross-links between concepts makes it difficult
to understand the represented knowledge. This strategy can be supported with
natural language processing to reduce the effort required (Santos 2018).

• Another strategy is to rank studies in decreasing order of importance for an SLR
with respect to the terms in the search string. The presence of a term in the title
of the study has more weight than its presence in keywords. As a result, the most
relevant studies appear earlier in the list. Although the strategy does not indicate
a percentage of studies considered relevant, in the case study performed, relevant
studies were ranked between 15% and 20% of the top ranking studies. Further
validation is required to confirm the initial results (Abilio et al. 2014).

Table 3 summarizes the strategies previously described addressing study selec-
tion automation.

3.5 Extracting Data

We identified three strategies to automatically extract information from studies.

Automating Systematic Literature Review 339

Table 3 Studies addressing study selection automation in SE

Strategy Purpose (P) References

VTM P1a; P2b; P3c Felizardo et al. (2010,
2012b, 2014b), Malheiros
et al. (2007), Octaviano
et al. (2016)

VTM P1a; P2b Felizardo et al. (2014a)

TM P1a; P3c Tomassetti et al. (2011)

Sampling P1a; P4d Muñoz Caro et al. (2017),
Singh et al. (2018)

Machine learning (FASTREAD) P1a; P4d Yu and Menzies (2019)

Semi-supervised learning P1a; P3c Timsina et al. (2016)

Ontology (EDAM) P1a; P3c Osborne (2018)

Concept map P1a Felizardo et al. (2017b),
Santos (2018)

Ranking P3c Abilio et al. (2014)
aP1: Increase the speed of selection
bP2: Be a second screener
cP3: Prioritize the list of studies for manual reading
dP4: Reduce number needed to read

3.5.1 Extractive Text Summarization

An extractive text summarization strategy partitions a document into a set of
topics and then chooses the most relevant sentences for each topic (Neto et al.
2000). The TextTiling algorithm (Hearst 1993) is used for partitioning documents
into topics. Term frequency–inverse sentence frequency (TF–ISF) (Neto et al.
2000) is the metric that classifies the relevance of each topic. The number of
sentences selected from each topic is proportional to the relative importance of
the topic within the document. The size of the summary is flexible, defined by the
researcher. Using human judgement, the quality of three out of seven summaries
created was considered as satisfactory in terms of capturing of the main ideas and
understandability for researchers who did not read the full text. The results obtained
are encouraging; however, there is a need for more tests to obtain more consistent
results.

Another strategy, developed by Torres et al. (2012), has as its main objective
to locate sentences that specifically represent study results. Initially, the strategy
converts the papers into a plain text format and removes undesirable characters.
Then it extracts pieces of text (sentences) that represent the results of the scientific
papers. Next, it represents each sentence as attribute vector of features. Text clas-
sification strategies use a number of predefined features of importance, including
keyword frequency, sentence length, paragraph and section positions, and the lexical
connectivity (number of words shared between the sentences), to automatically infer
the category of the sentences. Rule-based and machine learning algorithms then
select the best sentences. While the performance on unstructured text, as found

340 K. R. Felizardo and J. C. Carver

in research papers, was lower than on more structured texts, the result was still
promising. For example, this strategy can reduce the text to be analyzed to 1/5 of the
original size, decreasing the effort required to perform the data extraction activity.

3.5.2 Regular Expressions

This strategy uses a template that characterizes experimental studies in SE and
uses regular expression rules to extract the template information directly from
the studies (Silva 2009). While regular expressions are useful for extracting
information, they have the following limitations: a limited number of extraction
rules and case sensitivity.

3.5.3 Text Mining and Machine Learning

TM and machine learning identify section headings (i.e., paper structure) from
research studies. This approach uses a statistical analysis of the most frequent word-
s/phrases in the section headings to build the structure, which guides subsequent
automatic extraction of data. This approach achieved an accuracy of 82%. From
1000 studies analyzed, the strategy correctly identified the section headings and
their associated text in 820 documents. Obviously not all the papers will conform
exactly to the structure, but researchers are developing appropriate techniques to
deal with this problem (Aliyu et al. 2018).

3.6 Synthesizing the Evidence

We found the following strategies for automated support for the synthesis process.

3.6.1 Visual Text Mining

VTM, discussed earlier, can also support the categorization and classification of
studies in a systematic mapping (SM). This strategy creates two visualizations:
(1) a cluster view and (2) a chronological view. A cluster view presents a set of
clusters and related topics. Each cluster contains a subset of studies and topics that
form the basis for category definition. By analyzing the topics in a cluster, VTM
suggests terms for the subset of studies in that cluster. This view makes it possible
to identify evidence gaps clearly (i.e., clusters with low concentration of primary
studies) and evidence groups (i.e., clusters with high concentration of primary
studies). A chronological view gives a visual representation of the studies based on
their publication year. This representation makes it possible to identify how much
the topic of interest has been investigated throughout the years. A case study has

Automating Systematic Literature Review 341

shown that VTM reduces effort for categorizing and classifying studies (Felizardo
et al. 2010), but there is a need for more studies to confirm these findings.

3.6.2 Association Rules

Laghrabli et al. (2015) developed a strategy for extracting multiple patterns using
association rules analysis. Its goal is to generate relationships, associations, correla-
tions, or frequent patterns among the attributes of a collection of studies (included
studies in an SLR). Using the rules extracted, researchers can draw conclusions,
e.g., whether there are strong relationships between the methods, algorithms, etc.,
under analysis. However, a large collection of studies is necessary for extracting
interesting and reliable rules. Laghrabli et al. (2015) selected 35 studies for their
illustrative example, but there is a need for a larger sample.

Tables 4, 5, and 6 summarize the strategies previously presented as well as their
strengths and weaknesses.

Table 4 Strategies supporting SLR activities in SE

Strategy Activities supported

Visual text mining Definition of research questions (Feng et al. 2017a)

Generation of search string (Mergel et al. 2015)

Images to select studies (Adeva et al. 2014; Felizardo et al.
2012b, 2014a; Octaviano et al. 2016)

Creation of initial categories for SM (Felizardo et al. 2010)

Artificial intelligence (AI) Generation of search string (Souza et al. 2017)

Text mining Recommendation of studies (Tomassetti et al. 2011)

Data extraction (Aliyu et al. 2018)

Machine learning Recommendation of studies (Yu and Menzies 2019)

Data extraction (Aliyu et al. 2018)

Sampling Definition of studies sample (Muñoz Caro et al. 2017;
Singh et al. 2018)

Ontology Selection of studies (Osborne 2018)

Concept map (CM) Selection of studies (Felizardo et al. 2017b; Santos 2018)

Ranking Selection of studies (Abilio et al. 2014)

Extractive text summarization Summarization of topics (Neto et al. 2000; Torres et al.
2012)

Regular expressions Summarization of topics (Silva 2009)

Association rules Relationships between methods (Laghrabli et al. 2015)

342 K. R. Felizardo and J. C. Carver

Table 5 Strategies supporting SLR activities in SE: Strengths

Strategy Strengths

Definition of research questions (Feng et al.
2017a)

Identify topics of research

Retrieve online studies

Clustering web search results

Generation of search string (Mergel et al.
2015; Souza et al. 2017; Rasmus et al. 2017)

Suggest new terms

Extract the most significant terms

Interactive and iterative process

Consider a collection of studies

Unification of the search (Ghafari et al. 2012;
Lausberger 2017)

Adapt search terms to different DLs

Images to select studies (Felizardo et al. 2010,
2012b, 2014a; Octaviano et al. 2016)

Avoid the missing of a relevant study

Reduction of studies manually evaluated

Reduction of the time to select studies

Support the evolution of SLRs

Recommendation of studies (Yu and Menzies
2019; Abilio et al. 2014; Tomassetti et al.
2011)

Reduction of the burden of study selection (Yu
and Menzies 2019; Tomassetti et al. 2011)

Identify and rank relevant studies (Yu and
Menzies 2019; Abilio et al. 2014)

Management of large collection of
studies (Tomassetti et al. 2011)

Definition of studies sample (Muñoz Caro
et al. 2017; Singh et al. 2018)

Reduction of studies manually evaluated

Selection of studies (Osborne 2018; Felizardo
et al. 2017b; Santos 2018)

Flexible structure (Felizardo et al. 2017b;
Santos 2018)

Knowledge sharing (Felizardo et al. 2017b;
Santos 2018)

Applicable in SE area (Felizardo et al. 2017b;
Santos 2018)

Domain is automatically inferred (Osborne
2018)

Extraction of data (Aliyu et al. 2018) Automatic extraction of data using a structure

Creation of initial categories for
SM (Felizardo et al. 2010)

Reduction of effort

Topics “translate” the content of the studies

Relationships between methods (Laghrabli
et al. 2015)

Extraction of multiple patterns

Summarization of topics (Neto et al. 2000;
Torres et al. 2012; Silva 2009)

The number of sentences is proportional to the
importance of the topic (Neto et al. 2000)

Summary size defined by user (Neto et al.
2000)

Reduction of the text to 1/5 (Torres et al.
2012)

Useful in extracting information (Silva 2009)

Automating Systematic Literature Review 343

Table 6 Strategies supporting SLR activities in SE: Weaknesses

Strategy Weaknesses

Definition of research questions (Feng et al.
2017a)

Extraction based on metadata

Generation of search string (Mergel et al.
2015; Souza et al. 2017; Rasmus et al. 2017)

Extraction based on metadata

Validated in only one DL

Synonyms are not considered

Unification of the search (Ghafari et al. 2012;
Lausberger 2017)

Need of a search string to execute

Images to select studies (Felizardo et al. 2010,
2012b, 2014a; Octaviano et al. 2016)

Validated on small datasets

Additional knowledge on visual tools

Recommendation of studies (Abilio et al.
2014; Yu and Menzies 2019)

Restricted to having only one reviewer (Yu
and Menzies 2019)

Parameters are arbitrarily chosen (Yu and
Menzies 2019)

Wider empirical validation is needed (Abilio
et al. 2014; Tomassetti et al. 2011)

Definition of studies sample (Muñoz Caro
et al. 2017; Singh et al. 2018)

No repeatability of sample (random)

Selection of studies (Osborne 2018; Felizardo
et al. 2017b; Santos 2018)

Scalability (Felizardo et al. 2017b; Santos
2018)

Ontology-hierarchy refinement (Osborne
2018)

Extraction of data (Aliyu et al. 2018) Not all the papers match to the structure

Creation of initial categories for
SM (Felizardo et al. 2010)

Wider empirical validation is needed

Relationships between methods (Laghrabli
et al. 2015)

>35 studies are necessary

Summarization of topics (Neto et al. 2000;
Torres et al. 2012; Silva 2009)

Wider empirical validation is needed (Neto
et al. 2000; Torres et al. 2012)

Limited number of extraction rules (Silva
2009)

Regular expressions are case sensitive (Silva
2009)

4 Discussion

Overall, we found encouraging results that researchers are investing more effort
into the development of automated strategies to support the SLR process. Table 7
provides a summary of the strategies previously described in Sect. 3. An analysis
of the strategies shows that some activities have full automation support (e.g.,
study selection), while others have only partial support (e.g., protocol definition,
data extraction, and synthesis). In fact, other studies have found many SLRs

344 K. R. Felizardo and J. C. Carver

Table 7 SLR process automation in SE

SLR phase Automated support

Planning—protocol definition

Definition of research questions Feng et al. (2017a)

Generation of search string Mergel et al. (2015), Souza et al. (2017), Rasmus
et al. (2017)

Execution—searching for evidence

Unification of the search Ghafari et al. (2012), Lausberger (2017)

Execution—selecting relevant studies

Images to select studies Felizardo et al. (2010, 2012b, 2014a), Octaviano
et al. (2016)

Recommendation of studies Yu and Menzies (2019), Tomassetti et al. (2011)

Definition of studies sample Muñoz Caro et al. (2017), Singh et al. (2018)

Selection of studies Osborne (2018), Felizardo et al. (2017b), Santos
(2018), Abilio et al. (2014)

Execution—extracting data

Summarization of topics Neto et al. (2000), Torres et al. (2012), Silva
(2009)

Data extraction Aliyu et al. (2018)

Execution—synthesizing the evidence

Creation of initial categories for SM Felizardo et al. (2010)

Relationships between methods Laghrabli et al. (2015)

Fig. 1 Visual summary of strategies supporting SLR activities in SE

lack appropriate synthesis (Cruzes and Dybå 2010), perhaps due to the lack of
automation support.

As demonstrated in Fig. 1, among the strategies previously presented, VTM is
the most used to reduce the amount of time required for conducting an SLR (Feng

Automating Systematic Literature Review 345

Table 8 Strategies validation maturity level in SE

Type of validation References

Case study Abilio et al. (2014), Aliyu et al. (2018), Feng et al.
(2017a), Ghafari et al. (2012), Lausberger (2017),
Felizardo et al. (2010, 2012b, 2014a, 2017b), Octaviano
et al. (2016), Yu and Menzies (2019), Muñoz Caro et al.
(2017), Osborne (2018), Santos (2018), Neto et al. (2000),
Torres et al. (2012), Silva (2009), Laghrabli et al. (2015)

Preliminary study Mergel et al. (2015)

Controlled experiment Souza et al. (2017)

Proof of concept Rasmus et al. (2017)

Preliminary analysis Singh et al. (2018)

et al. 2017b). VTM is a strategy especially explored in the SE community to
support the formulation of research questions (Feng et al. 2017a), searching (Mergel
et al. 2015), selection of studies (Adeva et al. 2014; Felizardo et al. 2012b, 2014a;
Octaviano et al. 2016), and synthesis (Felizardo et al. 2010).

Table 8 shows that the majority of strategies have only preliminary evaluations.
Often the studies describe examples of the strategy in use or a small case study.
Moreover, we found several limitations in the presented validations, such as the
papers do not compare the strategies to other strategies published in the literature,
there is no standard dataset used to validate the different strategies, and usually
validation of search strategies occurs in a reduced number of sources (IEEE Xplore
or Scopus). Despite the various initiatives, SLR automation is an immature research
area and more validation work is essential to determine the value of “new” strategies
to automate the SLR process. In addition, researchers need to perform more large-
scale case studies to validate the strategies. As a summary, Table 9 highlights
both the current research and the open challenges (Shakeel et al. 2018; Pulsiri and
Vatananan-Thesenvitz 2018) as inspiration for future work on SLR automation.

4.1 Research Question Identification and Prioritization

Because the unexplored space for SLRs in SE is quite large, researchers may
struggle to choose the “best” RQs around which to focus their SLR. New algorithms
could help prioritize potential research questions based on various factors such as
which ones have greater relevance to a specific area of research or which have
most value to industry. Similarly, automated tools could help researchers determine
when the RQ chosen for an SLR duplicates, or largely duplicates, questions already
covered in an existing SLR. While there are search strings specifically designed to

346 K. R. Felizardo and J. C. Carver

Table 9 Existing strategies for SLR in SE and future research

Activity description Current
Future
research References

Definition of research questions (RQs)

Definition of research questions • Feng et al. (2017a)

Research question identification •
Research question prioritization •
Searching for evidence

Generation of search string • Mergel et al. (2015), Souza et al.
(2017), Rasmus et al. (2017)

Unification of the search • Ghafari et al. (2012),
Lausberger (2017), Ramampiaro
et al. (2010)

Customization of search strings for
DLs

•

Validating search string for each DL •
Reporting limitations from search •
Extracting references for snowballing •
Selecting relevant studies

Images to select studies • Felizardo et al. (2010, 2012b,
2014a), Octaviano et al. (2016)

Recommendation of studies • Yu and Menzies (2019),
Tomassetti et al. (2011)

Definition of studies sample • Muñoz Caro et al. (2017), Singh
et al. (2018)

Selection of studies • Osborne (2018), Felizardo et al.
(2017b), Santos (2018), Abilio
et al. (2014)

Refining selection criteria •
Extracting data

Summarization of topics • Neto et al. (2000), Torres et al.
(2012), Silva (2009)

Data extraction • Aliyu et al. (2018)

Data standardization •
Resolving divergence of extracted
data

•

Synthesizing the evidence

Creation of initial categories for SM • Felizardo et al. (2010)

Revelation of relationships • Laghrabli et al. (2015)

General

Validation of automation •
“Plug and Play” tools •

Automating Systematic Literature Review 347

find SLRs (Napoleão et al. 2019), currently, the process of identifying related SLRs
and RQs is not trivial. A researcher may follow published guidelines (Mendes et al.
2019) to decide whether it is more preferable to update an existing SLR rather than
conduct a new one.

4.2 Automated Searching

As a key starting point in identifying the right set of studies, the SE community
needs tools to support integrated search in the DLs (Al-Zubidy and Carver 2019;
Marshall et al. 2014; Ramampiaro et al. 2010). There are still a number of
inconsistencies in the automated search features of the most commonly used
DLSs (Singh et al. 2018), including: (1) definition and customization of search
strings for each DL, (2) learning the expected behavior of each DL, (3) validating
the search strings defined for each DL, and (4) reporting the validity threats and
limitations that arise from the search process. In general, there is still expectations
that a researcher manually develops a complete search string for each DL.

DLs (IEEE Xplore, ACM DL, etc.) are more prone to provide mechanisms to
search and export papers (e.g., web services) than are Search Engines (Scopus,
Google Scholar, etc.). In Search Engines researchers have to implement the search
through precarious web scraping techniques. This lack of export functionality is an
important discussion to be raised by the SE community in order to request changes
in DLs/Search Engineers policies.

4.3 Snowballing

Although use of automatic search is the recommended strategy for identifying
studies in an SLR (Webster and Watson 2002), snowballing can also prove useful in
some cases. There are two types of snowballing: backward snowballing and forward
snowballing. In either case, researchers first identify a set of relevant studies (the
seed set). Then, for backward snowballing, they examine each of the references
included in the studies in the seed set looking for other relevant studies. For forward
snowballing, researchers examine the papers that cite the ones included in the seed
set. In either case, when a research identifies a paper that is relevant to the SLR, the
researcher adds that paper to the seed set and continues with forward or backward
snowballing until she/he finds no more new references. Performing snowballing
manually is a tedious and time-consuming process. This task seems amenable to
tool support, at least in terms of automatically extracting references, if not helping
to determine the relevancy of those references.

348 K. R. Felizardo and J. C. Carver

4.4 Data Standardization

DLs and tools have different data formats. It is often difficult to integrate the
metadata from the various DLs (Shakeel et al. 2018) or the results from different
tools. Data standardization can help researchers take advantage of the strengths of
various tools and facilitate collaboration. As of this writing, we are not aware of any
efforts to standardize SLR data in SE.

4.5 Automated Data Extraction

Fully automated data extraction is challenging due to different ways to report
numerical results (e.g., tables or graphs), restricted full text access, and lack of
information provided by study authors. Another challenge is obtaining high-quality,
accurate extracted data. In most cases, two researchers perform data extraction
independently and resolve conflicts. Tool support could be helpful to identify
disagreements, serve as an arbiter on disagreements, or even take the place of one
of the human reviewers (Marshall et al. 2018).

4.6 Refining the Inclusion/Exclusion Criteria

Researchers initially define inclusion and exclusion criteria during the SLR planning
phase. However, because study selection is an iterative process (Zhang and Muham-
mad 2011), these criteria may need refinement. Automated text mining tools could
help by extracting terms from candidate studies that could be useful in refining the
criteria while performing SLR.

4.7 Validation of Automation

With all of the existing strategies, and any new ones developed, there is still a need
for solid validation. Researchers need to ensure that the strategies are providing
valid results and are actually saving effort. The evaluation can use various metrics
including: workload savings, ease of use, precision, and recall.

Automating Systematic Literature Review 349

4.8 Development of an International Collaboration

Up until now, much of the effort towards developing automated tools for SE SLRs
has been performed disjointedly in various research groups around the world. Due
to the independent nature of these efforts, the SE community has not had the full
benefit of the work. A lack of agreement on the technical standards or data exchange
rules among these tools prevents their full integration.

We would like to see greater co-operation among the different efforts along with
agreed-upon standards to enable “plug and play” standardization among different
tools. We propose that it would be beneficial if we could combine the strengths of
existing tools (Marshall et al. 2014, 2018) and integrate them into the activities of
the SLR process. For this proposal to work, these tools will have to work together
and be able to exchange data/results.

Even with all these tools (properly integrated), human effort is still essential to
a successful SLR. Human effort is required for various activities in specific SLRs
and for providing data to “train” tools which can then automate (or semi-automate)
activities of the SLR process. Thus, tools and automation must operate in a mutually
beneficial manner (Thomas et al. 2017).

5 Recommended Further Reading

Researchers can save much effort and resources through partial and complete
automation of SLR activities. Based on our analysis in this chapter, this section
highlights some of the references on automated tools for SLR activities.

Table 10 provides a list of some existing tools (Marshall et al. 2014, 2018; Al-
Zubidy and Carver 2014).

The Systematic Review Toolbox (http://systematicreviewtools.com/about.php)
is a community-driven, searchable, web-based catalog of tools that support the
SLR process in multiple domains, including SE. Using the search it is possible to
identify SLR tools and which aspects of the SLR process they support (e.g., protocol
development, automated search, study selection, quality assessment, data extraction,
automated analysis, text analysis, meta-analysis, report writing, collaboration,
document management).

The Toolbox presents the up-to-date list of tools. However, one caution with
the information presented in the Systematic Review Toolbox is that we have no
assurance of the quality of the data. For example, a separate analyses of the
automated search features for SE SLR tools found that StArt, SLuRp, and SLR-Tool
do not fully support automated search on the DLs, even though the website claims
that they do (Al-Zubidy and Carver 2019).

http://systematicreviewtools.com/about.php

350 K. R. Felizardo and J. C. Carver

Table 10 Tools which support researchers in conducting SLR in SE

Tool Brief description Future reading

Linked Dataa It suggests the use of text mining to
semi-automate the selection activity

Tomassetti et al. (2011)

PEx/Revisb It provides visual representations of studies to
support selection activity

Felizardo et al. (2010, 2011,
2012a, 2014a)

Review
Toolkitc

It supports simple literature filtering, design of
a taxonomy, classification of literature, and
analysis of the classification by generated
diagrams

Götz (2018)

SluRpd It supports the whole SLR process, the
management of a large number of studies, and
shares tasks among a group of researchers

Bowes et al. (2012)

SLRONTe It describes common terminologies and their
relationships during the SLR process

Sun et al. (2012)

SLR-Toolf It supports the whole SLR process and uses
text mining to refine search results

Fernández-Sáez et al. (2010)

StArtg It assists SLR conduction from protocol
creation to results presentation through
graphics

Fabbri et al. (2012),
Hernandes et al. (2012)

UNITEXh It automatically extracts knowledge from
studies using text mining

Torres et al. (2012)

aNo prototype available
bhttp://vicg.icmc.usp.br/vicg/tool/1/projection-explorer-pex
chttps://github.com/sebastiangoetz/slr-toolkit
dhttps://uhra.herts.ac.uk/handle/2299/14730
eNo prototype available
fhttps://alarcos.esi.uclm.es/
ghttp://lapes.dc.ufscar.br/tools/start_tool
hhttps://unitexgramlab.org/pt

6 Conclusion

The SLR process consists of five basic activities; (1) developing the protocol, (2)
retrieving relevant studies from the literature, (3) selecting appropriate studies for
inclusion, (4) extracting data from the studies, and (5) synthesizing the evidence.
Much of this process is labor intensive. However, automation can provide support
for each of these activities. The objective of this chapter is to present current
strategies that support the automation of SLR activities, so that researchers can
produce SLRs in SE more efficiently and cost effectively. We performed a (non-
exhaustive) survey of the literature to describe strategies and tools that support or
automate the SLR process or its activities. We found a number of strategies for
automation of the search and selection activities, but fewer about protocol definition
and automation of the data extraction/synthesis activities.

http://vicg.icmc.usp.br/vicg/tool/1/projection-explorer-pex
https://github.com/sebastiangoetz/slr-toolkit
https://uhra.herts.ac.uk/handle/2299/14730
https://alarcos.esi.uclm.es/
http://lapes.dc.ufscar.br/tools/start_tool
https://unitexgramlab.org/pt

Automating Systematic Literature Review 351

Our primary conclusions are:

1. We identified strategies to automate activities across the SLR process. These
strategies aim to reduce the human effort required for conducting an SLR.

2. Because an SLR requires careful search and review of the literature, which are
time-consuming activities, reducing the search and selection effort will result
in faster results from SLRs and potentially improve decision-making in SE
industry (Kitchenham et al. 2009; Lu et al. 2009; Grigoleit et al. 2015).

3. The development of automation tools has been slow and fragmented in SE. To
fully reach the potential of automating SLRs, researchers will need a sustained
coordinated collaborative effort. Automation tools need to be able to work
together and exchange data so SLR authors can choose the most appropriate set
of tools for their review.

Each of the strategies described in this chapter has the potential to automate var-
ious activities of the SLR process. However, many of these strategies are relatively
unknown in the SE SLR community. There is a need for better dissemination and use
by SE researchers so we can develop an evidence base about their usage and more
insight into their relative advantages. The strategies discussed are complementary
and should be composed in such a way to take advantage of their strengths. This
topic is worth of further investigation.

Key Chapter Takeaways

• Researchers are devoting more effort to the development of SLR automa-
tion tools.

• There is still a need for more formal evaluation of these tools as most
evaluations use only case studies.

• There are still needs for automated tool support in most phases of the SLR
process.

• While a large number of tools exists, the efforts have generally been
fragmented and would benefit from more integration.

References

Abilio R, Vale G, Pereira D, Oliveira C, Morais F, Costa H (2014) Systematic literature review
supported by information retrieval techniques: a case study. In: 40th Latin American computing
conference (CLEI’ 14), pp 1–11

Adeva JJG, Atxa JMP, Carrillo MU, Zengotitabengoa EA (2014) Automatic text classification to
support systematic reviews in medicine. Expert Syst Appl 4(41):1498–1508

Al-Zubidy A, Carver JC (2014) Review of systematic literature review tools – technical report
serg–2014-03. Technical report, University of Alabama

Al-Zubidy A, Carver JC (2019) Identification and prioritization of SLR search tool requirements:
an SLR and a survey. Empir Softw Eng 1(24):139–169

352 K. R. Felizardo and J. C. Carver

Al-Zubidy A, Carver JC, Hale DP, Hassler EE (2017) Vision for SLR tooling infrastructure:
prioritizing value-added requirements. Inf Softw Technol 2017(91):72–81

Aliyu MB, Iqbal R, James A (2018) The canonical model of structure for data extraction in
systematic reviews of scientific research articles. In: 15th International conference on social
networks analysis, management and security (SNAMS’18), pp 264–271

Bannach-Brown A, Przybyla P, Thomas J, Rice ASC, Ananiadou S, Liao J, Macleod M (2019)
Machine learning algorithms for systematic review: reducing workload in a preclinical review
of animal studies and reducing human screening error. Syst Rev 1(8):23

Bowes D, Hall T, Beecham S (2012) Slurp: a tool to help large complex systematic literature
reviews deliver valid and rigorous results. In: 2nd International workshop on evidential
assessment of software technologies (EAST’12), pp 33–36

Brereton PO, Kitchenham BA, Budgen D, Turner M, Khalil M (2007) Lessons from applying
the systematic literature review process within the software engineering domain. J Syst Softw
80(4):571–583

Carver JC, Hassler E, Hernandes E, Kraft NA (2013) Identifying barriers to the systematic
literature review process. In: 7th International symposium on empirical software engineering
and measurement (ESEM’13), pp 203–213

Cruzes DS, Dybå T (2010) Synthesizing evidence in software engineering research. In: ACM-IEEE
international symposium on empirical software engineering and measurement (ESEM’10), pp
1–10

Dieste O, Padua A (2007) Developing search strategies for detecting relevant experiments for
systematic reviews. In: 1st International symposium on empirical software engineering and
measurement (ESEM’07), pp 215–224

Dieste O, Grimán A, Juristo N (2009) Developing search strategies for detecting relevant
experiments. Empir Softw Eng 14(5):513–539

Dybå T, Dingsøyr T, Hanssen GK (2007) Applying systematic reviews to diverse study types:
an experience report. In: 1st International symposium on empirical software engineering and
measurement (ESEM’07), pp 225–234

Engström E, Skoglund M, Runeson P (2008) Empirical evaluations of regression test selection
techniques: a systematic review. In: 2nd International symposium on empirical software
engineering and measurement (ESEM’08), pp 22–31

Fabbri SCPF, Hernandes E, Di Thommazo A, Belgamo A, Zamboni A, Silva C (2012) Using
information visualization and text mining to facilitate the conduction of systematic literature
reviews. In: 14th International conference on enterprise information systems (ICEIS’12), pp
243–256

Felizardo KR, Nakwgawa EY, Feitosa D, Minghim R, Maldonado JC (2010) An approach based
on visual text mining to support categorization and classification in the systematic mapping.
In: 14th International conference on evaluation and assessment in software engineering
(EASE’10), pp 1–10

Felizardo KR, Riaz M, Sulayman M, Mendes E, MacDonell SG, Maldonado JC (2011) Analysing
the use of graphs to represent the results of systematic reviews in software engineering. In: 25th
Brazilian symposium on software engineering (SBES’11), pp 174–183

Felizardo KR, MacDonell SG, Mendes E, Maldonado JC (2012a) A systematic mapping on the use
of visual data mining to support the conduct of systematic literature reviews. J Softw 2(7):450–
461

Felizardo KR, Salleh N, Martins RM, Mendes E, MacDonell SG, Maldonado JC (2012b) Using
visual text mining to support the study selection activity in systematic literature reviews. In:
5th International software engineering and measurement (ESEM’12), pp 1–10

Felizardo KR, Andery GF, Paulovich FV, Minghim R, Maldonado JC (2014a) A visual analysis
approach to validate the selection review of primary studies in systematic reviews. Inf Softw
Technol 10(54):1079–1091

Felizardo KR, Nakagawa EY, MacDonell SG, Maldonado JC (2014b) A visual analysis approach
to update systematic reviews. In: 18th International conference on evaluation and assessment
in software engineering (EASE’14), pp 1–4

Automating Systematic Literature Review 353

Felizardo KR, Nakagawa EY, Fabbri SCPF, Ferrari FC (2017a) Systematic literature review in
software engineering: theory and practice (in Portuguese), 1st edn. Elsevier Brazil, São Paulo

Felizardo KR, Takemiya SH, Souza EF (2017b) Analyzing the use of graphical abstracts to support
study selection in secondary studies. In: Experimental software engineering (ESELAW’17), pp
1–10

Feng L, Chiam Y, Abdullah ERMF, Obaidellah U (2017a) Using suffix tree clustering method to
support the planning phase of systematic literature review. Malays J Comput Sci 4(30):311–332

Feng L, Chiam YK, Lo SK (2017b) Text-mining techniques and tools for systematic literature
reviews: a systematic literature review. In: 24th Asia-Pacific software engineering conference
(APSEC’ 17), pp 41–50

Fernández-Sáez AM, Genero M, Romero FP (2010) SLR-tool – a tool for performing system-
atic literature reviews. In: 5th International conference on software and data technologies
(ICSOFT’10), pp 157–166

Frantzi K, Ananiadou S, Mima H (2000) Automatic recognition of multi-word terms. Int J Digit
Libr 2(3):117–132

Ghafari M, Saleh M, Ebrahimi T (2012) A federated search approach to facilitate systematic
literature review in software engineering. Int J Softw Eng Appl 2(3):1–13

Götz S (2018) Supporting systematic literature reviews in computer science: the systematic litera-
ture review toolkit. In: 21st ACM/IEEE International conference on model driven engineering
languages and systems: companion proceedings (MODELS’18), pp 22–26

Grigoleit F, Vetro A, Diebold P, Mendez DF, Bohm W (2015) In quest for proper mediums for
technology transfer in software engineering. In: 9th International symposium on empirical
software engineering and measurement (ESEM’15), pp 1–4

Hassler E, Carver J, Kraft NA, Hale D (2014) Outcomes of a community workshop to identify and
rank barriers to the systematic literature review process. In: 18th International conference on
evaluation and assessment in software engineering (EASE’14), pp 1–10

Hearst MA (1993) TextTiling: a quantitative approach to discourse segmentation – technical report
93/24. Technical report, University of California

Hernandes E, Zamboni A, Thommazo A, Fabbri SCPF (2012) Using GQM and TAM to evaluate
StArt – a tool that supports systematic review. CLEI Electron J 1–2012(15):1–13

Jonnalagadda S, Goyal P, Huffman M (2015) Automating data extraction in systematic reviews: a
systematic review. Syst Rev 4(1):78

Kitchenham BA, Brereton PO (2013) A systematic review of systematic review process research
in software engineering. Inf Softw Technol 1(55):2049–2075

Kitchenham BA, Brereton OP, Budgen D, Turner M, Bailey J, Linkman S (2009) Systematic
literature reviews in software engineering – a systematic literature review. Inf Softw Technol
1(51):7–15

Laghrabli S, Benabbou L, Berrado A (2015) A new methodology for literature review analysis
using association rules mining. In: 10th International conference on intelligent systems:
theories and applications (SITA’15), pp 1–6

Lausberger C (2017) Konzeption von suchprozessen und suchstrategien für systematische literatur
reviews (in German). Master’s thesis, Otto-von-Guericke-University Magdeburg

Lu X, Liu L, Liu L (2009) Relationship research between communication activities and success
indexes in small and medium software projects. In: International conference on information
science and engineering (ICISE’09), pp 5022–5025

Malheiros V, Hohn E, Pinho R, Mendonça M, Maldonado J (2007) A visual text mining approach
for systematic reviews. In: 1st International symposium on empirical software engineering and
measurement (ESEM’07), pp 245–254

Marshall C, Brereton OP, Kitchenham BA (2014) Tools to support systematic reviews in software
engineering: a feature analysis. In: 18th International conference on evaluation and assessment
in software engineering (EASE’14), pp 13:1–13:10

Marshall C, Kitchenham BA, Brereton OP (2018) Tool features to support systematic reviews in
software engineering – a cross domain study. e-Informatica Softw Eng J 1(12):79–115

354 K. R. Felizardo and J. C. Carver

Mendes E, Wohlin C, Felizardo KR, Kalinowski M (2019) When to update systematic literature
reviews in software engineering? Inf Softw Technol (submitted manuscript, under review)

Mergel GD, Silveira MS, da Silva TS (2015) A method to support search string building in
systematic literature reviews through visual text mining. In: 30th Annual ACM symposium
on applied computing (SAC’15), pp 1594–1601

Muñoz Caro C, Niño A, Reyes S (2017) A bibliometric approach to systematic mapping studies:
the case of the evolution and perspectives of community detection in complex networks.
Preprint. arXiv: 1702.02381

Napoleão BM, Felizardo KR, de Souza EF, Petrillo F, Vijaykumar NL, Nakagawa EY (2019)
Establishing a search string to detect secondary studies in software engineering. Inf Softw
Technol (submitted manuscript, under review)

Neto JL, Santos AD, Kaestner CAA, Freitas A (2000) Generating text summaries through the
relative importance of topics. In: Advances in artificial intelligence, IBERAMIA 2000 1952.
Lecture notes in computer science

Octaviano FR, Felizardo KR, Maldonado JC, Fabbri SCPF (2016) Semi-automatic selection of
primary studies in systematic literature reviews: is it reasonable? Empir Softw Eng 6(20):1898–
1917

O’Mara-Eves A, Thomas J, McNaught J, Miwa M, Ananiadou S (2015) Using text mining for
study identification in systematic reviews: a systematic review of current approaches. Syst Rev
1(4):1–5

Osborne F, Muccini H, Lago P, Motta E (2018) Reducing the effort for systematic
reviews in software engineering. https://research.vu.nl/en/publications/reducing-the-effort-for-
systematic-reviews-in-software-engineering

Pulsiri N, Vatananan-Thesenvitz R (2018) Improving systematic literature review with automation
and bibliometrics. In: Portland international conference on management of engineering and
technology (PICMET’ 18), pp 1–8

Ramampiaro H, Cruzes D, Conradi R, Mendona R (2010) Supporting evidence-based software
engineering with collaborative information retrieval. In: 6th International conference on
collaborative computing: networking, applications and worksharing (CollaborateCom’10), pp
1–5

Rasmus R, Bjarnason E, Runeson P (2017) A machine learning approach for semi-automated
search and selection in literature studies. In: 21st International conference on evaluation and
assessment in software engineering (EASE’17), pp 1–10

Riaz M, Sulayman M, Salleh N, Mendes E (2010) Experiences conducting systematic reviews
from novices’ perspective. In: 14th International conference on evaluation and assessment in
software engineering (EASE’10), pp 44–53

Santos V (2018) Concept maps construction using natural language processing to support studies
selection. In: 33rd Annual ACM symposium on applied computing (SAC’18), pp 926–927

Shakeel Y, Krüger J, Nostitz-Wallwitz Iv, Lausberger C, Durand GC, Saake G, Leich T (2018)
(Automated) literature analysis – threats and experiences. In: 13th International workshop on
software engineering for science (SE4Science’ 18), pp 20–27

Silva MCR (2009) Contextextractor: uma ferramenta de apoio para a extração de informações de
contexto de artigos de engenharia de software experimental (in Portuguese). Master’s thesis,
Universidade Salvador

Singh P, Galster M, Singh K (2018) How do secondary studies in software engineering report
automated searches? In: 22nd International conference on evaluation and assessment in
software engineering (EASE’18), pp 145–150

Sjøberg DIK, Dybå T, Jørgensen M (2007) The future of empirical methods in software engineering
research. In: Future of software engineering (FOSE’07), pp 358–378

Souza FC, Santos A, Andrade S, Durelli R, Durelli V, Oliveira R (2017) Automating search strings
for secondary studies. In: Information technology – new generations. Part of the advances in
intelligent systems and computing book series (AISC’17), pp 839–848

Staples M, Niazi M (2007) Experiences using systematic review guidelines. J Syst Softw
80(9):1425–1437

https://research.vu.nl/en/publications/reducing-the-effort-for-systematic-reviews-in-software-engineering
https://research.vu.nl/en/publications/reducing-the-effort-for-systematic-reviews-in-software-engineering

Automating Systematic Literature Review 355

Sun Y, Yang Y, Zhang H, Zhang W, Wang Q (2012) Towards evidence-based ontology for support-
ing systematic literature review. In: 16th International conference on evaluation assessment in
software engineering (EASE’ 12), pp 171–175

Thomas J, Noel-Storr A, Marshall I, Wallace B, McDonald S, Mavergames C, Glasziou P, Shemilt
I, Synnot A, Turner T, Elliott J (2017) Living systematic reviews: 2. Combining human and
machine effort. J Clin Epidemiol 1(91):31–37

Timsina P, Liu J, Shang Y (2016) Using semi-supervised learning for the creation of medical
systematic review: an exploratory analysis. In: 49th Hawaii international conference on system
sciences (HICSS’16), pp 1195–1203

Tomassetti F, Rizzo G, Vetro A, Ardito L, Torchiano M, Morisio M (2011) Linked data approach
for selection process automation in systematic reviews. In: 15th International conference on
evaluation and assessment in software engineering (EASE’11), pp 31–35

Torres JAS, Cruzes DS, Salvador L (2012) Automatic results identification in software engineering
papers. Is it possible? In: 12th International conference on computer science and its applica-
tions, pp 108–112

Tsafnat G, Glasziou P, Choong MK, Dunn A, Galgani F, Coiera E (2014) Systematic review
automation technologies. Syst Rev 3(1):74

Waiyahong N, Reddy ER (2014) Technical standards for accessing information in the 21st century:
Z39.50 to web gateways. In: 3rd International conference on integrated information (IC-
ININFO’13), pp 26–31

Webster J, Watson R (2002) Analyzing the past to prepare for the future: writing a literature review.
MIS Q 2(26):13–23

Westgate MJ, Barton PS, Pierson JC, Lindenmayer DB (2005) Text analysis tools for identification
of emerging topics and research gaps in conservation science. Conserv Biol 6(29):1606–1614

Wohlin C (2014) Writing for synthesis of evidence in empirical software engineering. In: 8th
International symposium on empirical software engineering and measurement (ESEM’14), pp
1–10

Xiong Z, Liu T, Tse G, Gong M, Gladding PA, Smaill BH, Stiles MK, Gillis AM, Zhao J (2018)
A machine learning aided systematic review and meta-analysis of the relative risk of atrial
fibrillation in patients with diabetes mellitus. Front Physiol 9:835

Yu Z, Menzies T (2019) Fast2: an intelligent assistant for finding relevant papers. Expert Syst Appl
15(120):57–71

Zhang H, Muhammad AB (2011) An empirical investigation of systematic reviews in software
engineering. In: 5th International symposium on empirical software engineering and measure-
ment (ESEM’11), pp 1–10

Zhang H, Babar MA, Tell P (2011) Identifying relevant studies in software engineering. Inf Softw
Technol 6(53):625–637

Rapid Reviews in Software Engineering

Bruno Cartaxo, Gustavo Pinto, and Sergio Soares

Abstract Integrating research evidence into practice is one of the main goals of
evidence-based software engineering (EBSE). Secondary studies, one of the main
EBSE products, are intended to summarize the “best” research evidence and make
them easily consumable by practitioners. However, recent studies show that some
secondary studies lack connections with software engineering practice. In this
chapter, we present the concept of Rapid Reviews, which are lightweight secondary
studies focused on delivering evidence to practitioners in a timely manner. Rapid
reviews support practitioners in their decision-making, and should be conducted
bounded to a practical problem, inserted into a practical context. Thus, Rapid
Reviews can be easily integrated in a knowledge/technology transfer initiative. After
describing the basic concepts, we present the results and experiences of conducting
two Rapid Reviews. We also provide guidelines to help researchers and practitioners
who want to conduct Rapid Reviews, and we finally discuss topics that may concern
the research community about the feasibility of Rapid Reviews as an evidence-based
method. In conclusion, we believe Rapid Reviews might be of interest to researchers
and practitioners working on the intersection of software engineering research and
practice.

B. Cartaxo (�)
Federal Institute of Pernambuco (IFPE), Paulista, Pernambuco, Brazil

G. Pinto
Federal University of Pará (UFPA), Belém, Pará, Brazil
e-mail: gpinto@ufpa.br

S. Soares
Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
e-mail: scbs@cin.ufpe.br

© Springer Nature Switzerland AG 2020
M. Felderer, G. H. Travassos (eds.), Contemporary Empirical Methods in Software
Engineering, https://doi.org/10.1007/978-3-030-32489-6_13

357

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32489-6_13&domain=pdf
mailto:gpinto@ufpa.br
mailto:scbs@cin.ufpe.br
https://doi.org/10.1007/978-3-030-32489-6_13

358 B. Cartaxo et al.

1 Introduction

Evidence-based practice aims to curate the best research evidence in a given
domain of expertise and integrate the findings into practice (McKibbon 1998).
The medical research field was one of the pioneers embracing such a paradigm.
More recently, following the promising results in medicine, many other research
fields have been adopting evidence-based practice, such as psychology (Anderson
2006), nursing (DiCenso et al. 1998), crime prevention (Farrington et al. 2003),
social work (Webb 2001), and education (Davies 1999). The seminal paper of
Kitchenham et al. (2004) introduced the evidence-based practice in the software
engineering community. According to the authors, the goal of evidence-based
software engineering (EBSE) is to provide the means by which current best
evidence from research can be integrated with practical experience and human
values in the decision-making process regarding the development and maintenance
of software. (Kitchenham et al. 2004) (bold emphasis added)

Considering this goal, it is no coincidence that secondary studies are the main
products of EBSE. Some authors argue that the knowledge aggregated in secondary
studies is the most appropriate to be transferred to practice (Lavis et al. 2003). This
belief is rooted in years of evidence-based practice, showing that individual studies
often lead to different conclusions compared to more mature and comprehensive
secondary studies (Lavis et al. 2003). As an example, a study comparing the
mortality rates of for-profit and nonprofit hospitals found a lower risk of death in
for-profit hospitals. On the opposite direction, a secondary study, considering data
from studies that summed up 26,000 hospitals and 38 millions patients, found a
higher risk of death in for-profit hospitals (Devereaux et al. 2002).

Fast forwarding 15 years, EBSE is now a mature field with new studies being
conducted on a regular basis (da Silva et al. 2011; Borges et al. 2014, 2015).
However, despite its evolution, several researchers claim that EBSE still lacks
connection with software engineering practice (Hassler et al. 2014; Santos and
da Silva 2013; da Silva et al. 2011). An investigation with researchers specialized
in EBSE revealed that the “lack of connection with industry” is the sixth top barrier
to conduct secondary studies, from a total of 37 barriers (Hassler et al. 2014). In
the same direction, the study of Santos and da Silva (2013) deployed a survey to 44
authors of 120 secondary studies; only six of them affirmed their studies had direct
impact on industrial practice. In addition, a tertiary study identified that only 32 out
of 120 secondary studies provide guidelines to practitioners. These findings may
indicate that EBSE has not been accomplishing its main goal.

The evidence-based medicine community also faced similar problems in its early
days and it is still facing them to some extent nowadays (Best et al. 1997; Tricco
et al. 2015, 2017). To mitigate this lack of connection with practice, one of the most
successful initiatives of the medical field is what has been called Rapid Reviews
(RRs) (Tricco et al. 2015). Rapid Reviews are secondary studies aiming to provide
research evidence to support decision-making in practice. RRs must be conducted
taking into account the constraints inherent to practical environments, such as time

Rapid Reviews in Software Engineering 359

and effort. RRs usually deliver evidence in a more timely manner, with lower costs,
and reporting results through more appealing mediums (Cartaxo et al. 2018a). As
a consequence, RRs tend to be more connected to practice when compared to
Systematic Reviews (SRs).1 To achieve these goals, RRs omit or simplify some
steps of SRs. For instance, RRs can limit the search sources or use just one person
to screen primary studies (Tricco et al. 2015).

Inspired by our peers from the medical field, we recently introduced the concept
of RRs in software engineering contexts (Cartaxo et al. 2018a,b, 2019). The
kick start of an RR is a practical problem that exists in a software project. This
particular problem must motivate researchers to screen the literature looking for
potential answers. As a consequence, researchers must work closely to practitioners
to guarantee that the RR is close tied to a practical context. Instead of using a
traditional paper-based format, the results of an RR should be incorporated in more
attractive mediums, such as Evidence Briefings, which are one-page documents
reporting the main findings of an RR (Cartaxo et al. 2016).

At first sight, one may argue that while RRs speed up the process by simplifying
some predefined steps of SRs, they may also introduce methodological threats.
To better understand this concern, several studies were conducted in medicine
to evaluate the impact of RRs methodological adaptations, in comparison to
SRs (Abou-Setta et al. 2016; Corabian and Harstall 2002; Best et al. 1997; Taylor-
Phillips et al. 2017; Van de Velde et al. 2011). Although there is evidence reporting
divergences between RRs and SRs (Van de Velde et al. 2011), there is more evidence
reporting the similarity of results obtained with those two approaches (Abou-Setta
et al. 2016; Corabian and Harstall 2002; Best et al. 1997; Taylor-Phillips et al. 2017).
While further investigations are still needed to draw more conclusive results, RRs
should not be understood as a replacement for SRs. Instead, we believe that both can
(and should) co-exist: while SRs are important to provide in-depth evidence, RRs
are useful to easily and quickly transfer scientific knowledge to practice.

In this chapter, we present the background concepts related to RRs (Sect. 2);
show results and experiences on conducting this type of studies in software
engineering (Sect. 3); introduce guidelines on how to plan, perform, and report
RRs (Sect. 4); further discuss topics about the feasibility of RRs that may concern
the software engineering research community (Sect. 5); list recommended further
reading (Sect. 6); and close with the conclusions (Sect. 7).

1By SRs we mean the more methodologically rigorous secondary studies like meta-analyses, the
traditional systematic literature reviews, or systematic mapping studies (Kitchenham and Charters
2007).

360 B. Cartaxo et al.

2 Background

In this section we provide some background information about what an RR is; why
using RRs, based on evidence of their benefits; who is using RRs; and how RRs
compare to SRs in terms of their results and methodological characteristics.

2.1 What Is a Rapid Review?

Rapid Reviews are practice-oriented secondary studies (Watt et al. 2008; Haby
et al. 2016; Polisena et al. 2015; Tricco et al. 2017). The main goal of an RR is
to provide evidence to support decision-making towards the solution, or at least
attenuation, of issues practitioners face in practice. To support this goal and to meet
time constraints of practitioners, RRs have to deliver evidence in shorter time frames
when compared to SRs, which often take months to years (Tricco et al. 2015). To
make RRs compliant with such characteristics, some steps of SRs are deliberately
omitted or simplified.

Since RRs are a recent phenomenon in evidence-based medicine, many method-
ological variations have been identified. This can be observed in the study of Feath-
erstone et al. (2015), which analyzed the methods employed in many published RRs.
Additionally, Tricco et al. (2016) interviewed 40 RRs producers and also observed
the presence of method variability. These two studies identified high heterogeneity
among RRs, from varying time frames to ambiguous definitions of what an RR is.
Despite RRs high methodological variability, the majority of RRs share at least the
following core aspects:

Rapid Reviews Should Be Performed in Close Collaboration with Prac-
titioners, Bounded to Practical Problems, and Conducted Within Practi-
tioners Context The argument to conduct lightweight secondary studies like
RRs holds only in scenarios where time and costs are hard constraints. This
kind of scenario is typically observed in the practice of many fields. Therefore,
RRs are only conceived bounded to practical problems and conducted within
their practical contexts. Thus, practitioners should be willing to devote part
of their busy schedule in order to participate on RRs, although the level
of participation can vary. RRs that are neither conducted with practitioners’
collaboration nor related to a problem that emerged from a practical context
are considered deviations, and then, should be avoided by the software
engineering community.

Rapid Reviews in Software Engineering 361

Rapid Reviews Are Intend to Reduce Costs and Time of Heavyweight
Methods To better fit in the practitioners’ agenda, RRs should be conducted
and reported in a timely manner. Many strategies have been applied to RRs
in health-care related fields to reduce cost and time, such as limiting search
strategy by date of publication and/or search source; using just one person to
screen studies; not conducting quality appraisal of primary studies; presenting
results with no formal synthesis, among others (Tricco et al. 2015, 2016).

Rapid Reviews Results Should Be Reported Through Mediums Appeal-
ing to Practitioners One important aspect of RRs is the way they are
reported. Many authors argue that alternative mediums should be used—
when practitioners are the target audience—instead of the traditional research
paper format (Beecham et al. 2014; Grigoleit et al. 2015; Cartaxo et al.
2016). To substantiate this claim, Tricco et al. (2015) observed that, although
RRs present several variations on their methods and terminologies, 78%
present results as a narrative summary reported in mediums that better fit
practitioners’ needs. Examples of alternative mediums include: the Contextual
Summaries of Young et al. (2014), which limit the report to a one-page
document; the Briefings presented by Chambers and Wilson (2012), which
summarize the main findings of a secondary study in one section; or even the
Evidence Summaries by Khangura et al. (2012), which use an informative box
separated from the main text to highlight the audience and nature of the report.
In the context of software engineering, there are only a few approaches that
can be used in this regard. We particularly recommend Evidence Briefings
(Sect. 4.3.1) as a potential way to report the results of an RR.

It is important to note that RRs are neither (1) ad-hoc literature reviews nor (2)
an excuse for absence of scientific rigor. RRs must be systematic, by means of
following a well-defined protocol. In addition, all the methodological concessions
made to an RR must be documented in its protocol. In the RR’s report, there must
also be a disclaimer about potential methodological limitations (although the details
can go on the protocol only, aiming to make the report as concise as possible).

2.2 Why Should One Use Rapid Reviews?

The emerging character of RRs can be explained in terms of their benefits.
For instance, a study observed that RRs saved approximately $3 million when
implemented in a hospital (McGregor and Brophy 2005). Moreover, a survey

362 B. Cartaxo et al.

exploring the use of 15 RRs revealed that 67% were used as reference material
and 53% were used to, in fact, support decision-making in practice (Hailey 2009).
Additionally, Lawani et al. (2017) reported that RRs enabled the development of
clinical tools more rapidly than with SRs. Other studies have also demonstrated
positive impact of RRs in practice (Taylor-Phillips et al. 2017; Hailey et al. 2000;
Batten 2012; Zechmeister and Schumacher 2012; Tricco et al. 2015). Although the
main targets of RRs are practitioners, some benefits to researchers and the research
community as a whole can be identified. For example, RRs can support and facilitate
applied research or serve as a platform to make software engineering research more
relevant (Beecham et al. 2014).

2.3 Who Is Using Rapid Reviews?

Although RRs are not well-known in software engineering, there is a growing
interest in RRs in health-related fields. For instance, Tricco et al. (2015) mapped 100
RRs published between 1997 and 2013 in medicine. Additionally, major medicine
venues, such as the prestigious Systematic Reviews journal2 officially recognized
RRs as one of the evidence-based practice methods (Moher et al. 2015). Moreover,
Cochrane—a global renowned group of researchers and practitioners specialized in
evidence diffusion in health-care—announced in 2016 a group to play a leading role
in guiding the production of RRs (Garritty et al. 2016; Cochrane Rapid Reviews
Methods Group n.d.). Due to the increasing importance of RRs, the Canadian
Agency for Drugs and Technologies in Health (CADTH) promoted the Rapid
Review Summit in 2015, which focused on the evolving role and practices of RRs
to support informed health care policy and clinical decision-making (Polisena et al.
2015). Even the World Health Organization (WHO) has recently published a guide
presenting the importance of RRs (Tricco et al. 2017).

2.4 How Rapid Reviews Are Compared to Systematic Reviews?

Some studies were conducted to evaluate the impact of RRs methodological
adaptations by comparing them with SRs. A scoping review found nine studies
comparing the results of RRs and SRs. The comparision found that the results of
RRs and SRs were similar (Abou-Setta et al. 2016). To illustrate, Corabian and
Harstall (2002) compared six RRs with their SRs peer reviewed publications. The
conclusions differed only in one case. Another example is the study of Best et al.
(1997), where two of the RRs conducted by the authors were in agreement with SRs
published later on the same topic. Still, Taylor-Phillips et al. (2017) conducted an RR

2https://systematicreviewsjournal.biomedcentral.com.

https://systematicreviewsjournal.biomedcentral.com

Rapid Reviews in Software Engineering 363

and an SR about the same topic in order to compare their results. The comparison
shows that RRs can provide similar results compared to SRs. In that case, both RR
and SR identified the same set of papers.

Although there is evidence reporting the similarity of results obtained by RRs and
SRs, there is also evidence on the opposite side. For instance, the work of Van de
Velde et al. (2011) compared results from their RR to an SR that was conducted by
another group, on the same topic, and conflicting results were observed. Therefore,
further investigations are still needed to draw more conclusive results.

Rapid Reviews Should Not Be Considered as Replacements for System-
atic Reviews We believe RRs should be understood as a complementary
scientific product. More concretely, while SRs are important to curate in-
depth knowledge, RRs are important to easily and quickly transfer established
knowledge to practice.

Table 1 compares the main methodological characteristics of RRs and SRs. The
RRs characteristics are based on many medicine studies and guidelines (Tricco et al.
2017; Khangura et al. 2012; Abou-Setta et al. 2016; Taylor-Phillips et al. 2017),
while the SRs characteristics are based on Kitchenham’s software engineering
guidelines (Kitchenham and Charters 2007; Cruzes and Dybå 2011a; Santos and
da Silva 2013).

3 Examples of Rapid Reviews

In this section, we describe two RRs that we conducted. The goal is to make people
who want to perform an RR familiar with the approach. The real problems that the
two conducted RRs were intended to provide solutions to are (1) the improvement
of customer collaboration and (2) the improvment of team motivation, respectively.
We will use these two RRs as example throughout this chapter.

3.1 Improving Customer Collaboration

This RR was conducted in collaboration with an innovation institute. At first, we
performed an interview with the institute’s representatives to identify the problems
they were facing. Among various software projects, we focused on the one that was
having difficulties related to low customer collaboration. The complete and detailed
results of this experience are reported in Cartaxo et al. (2018a).

364 B. Cartaxo et al.

Table 1 Comparison of rapid reviews with systematic reviews methodological characteristics

Characteristic Rapid reviews Systematic reviews

Problem Bounded to a practical problem
and conducted within a practical
context

Can emerge from academic and
practical contexts (Kitchenham and
Charters 2007). However, SRs
focusing on problems emerged from
practice are the exception (Santos
and da Silva 2013)

Research questions Lead to answers that help solving
or at least attenuating the
practitioners’ problem.
Exploratory questions aiming to
identify which are the strategies
and their effectiveness to deal with
practitioners problem are one of
the gold standards

SRs admit questions aiming to
support practitioners
decision-making, but also studies
that are primarily of interest to
researchers, with no
practice-oriented
questions (Kitchenham and Charters
2007)

Protocol Must have a document formalizing
the protocol

Must have a document formalizing
the protocol

Stakeholders roles Conducted in close collaboration
with practitioners, sometimes even
having practitioners responsible
for executing some of the steps

Despite practitioners participation is
possible, researchers usually
conduct the entire process

Time frame Days or weeks Months or years

Search strategy – May use few or just one search
source (e.g., Scopus)

– May limit search by publication
year, language, and study design

– Multiple sources to search for pri-
mary studies are recommended

– May also limit search by publi-
cation year, language, and study
design, although more compre-
hensive search is recommended

Selection procedure – Can be conducted by a single
person

– The inclusions/exclusion crite-
ria can be more restrictive aim-
ing to focus on primary stud-
ies conducted in contexts sim-
ilar to the one motivating the
RR. (e.g., studies with small-
/medium/large companies, with
companies in countries under
specific laws, with open source
projects only, etc.) (Tricco et al.
2017)

– Must be conducted in pairs to
avoid selection bias

– Usually is less restrictive regard-
ing specificities of primary stud-
ies context, especially when it is a
mapping study, broader in scope

Quality appraisal Conducted by a single person, or
not conducted at all (Tricco et al.
2017)

Conducted in pairs to avoid threats
to validity due to low primary
studies’ quality

(continued)

Rapid Reviews in Software Engineering 365

Table 1 (continued)

Characteristic Rapid reviews Systematic reviews

Extraction
procedure

Usually conducted by a single
person to reduce time and effort

Conducted in pairs to avoid
extraction bias

Synthesis
procedure

Narrative summaries are the most
common way to synthesize
evidence (Tricco et al. 2015)

More systematic methods should be
applied (e.g., meta-analysis,
meta-ethnography, thematic
analysis, etc.), although it is not
always the case (Cruzes and Dybå
2011a)

Report Alternative mediums that better fit
practitioners needs (e.g., Evidence
Briefings)

Traditional research paper format

This particular software project was late, and the software team needed either the
approval or information from its customers to conclude many of the pending tasks.
However, the team was having a hard time to establish a proper communication with
their client. To illustrate this, one of the participants affirmed that “emails requesting
clarification about requirements take one or two weeks for customer to reply.”

In this context, we decided to conduct an RR together with the practitioners to
provide evidence about strategies that would help them to deal with low customer
collaboration. More concretely, each aspect of the RR protocol was discussed with
the practitioners (e.g., the research questions, the inclusion/exclusion criteria, etc.).
Online channels such as Skype and email were frequently used during this step.
After selecting 17 primary studies, we summarized the findings in an Evidence
Briefing document (Cartaxo et al. 2016). We also ran a workshop to discuss the
findings and to answer additional questions. A full-time researcher (experienced in
conducting secondary studies) was assigned to conduct this RR, which lasted 6 days.
That time frame comprehends the first interview with the institute representatives to
identify their problem, up to the workshop in the end to present and discuss the RR
results.

After the workshop, we interviewed practitioners to assess their perception
regarding the RR we conducted together with them. Practitioners reported many
benefits regarding the use of RRs, such as the novelty of the approach, the
applicability to their problem, the reliability of the content, among others. They
also reported that the RR fostered the learning of new concepts. As a shortcoming,
however, they found that some findings were not clear in the printed version of the
Evidence Briefing—although they became clearer after discussing with researchers
during the workshop (Cartaxo et al. 2018a).

We also did a follow-up with the practitioners 2 months after the workshop to
assess whether they applied some of the strategies and findings reported in the RR.
Interestingly, we discovered that practitioners indeed adopted some of the strategies
in their daily work habits to improve customer collaboration, such as Story Owner,
Change Priority, and Risk Assessment Up Front (Cartaxo et al. 2018a).

366 B. Cartaxo et al.

3.2 Improving Team Motivation

This RR was performed in collaboration with a software company that develops
educational software products in Recife, Brazil. We first contacted the IT director,
who is responsible for all technological aspects of the company. After presenting
the goal of this research, a project manager joined us and discussed problems
regarding low team motivation he faced in one of their projects. Similar to the RR
on low customer collaboration, this RR was conducted in close collaboration with
the practitioners from the software company (e.g., defining the research questions
and the protocol). The complete and detailed results of this experience are reported
in Cartaxo (2018).

Thirty five studies were selected and their evidence summarized and reported in
an Evidence Briefing document. The results were also presented in a workshop. This
RR took 8 days of a researcher experienced in conducting secondary studies.

When interviewing the practitioners after the workshop, they reported many
benefits regarding the use of RRs, such as improvements in team confidence and the
reliability on RRs findings. They also demonstrated to be willing to embrace RRs in
their own process. This particular finding revealed that practitioners are willing to
take the risks of using less rigorous methods, such as RRs, in exchange for evidence
delivered in short time frames.

4 The Rapid Review Process

Conducting an RR involves three main phases planning, performing, and reporting.
We describe them in detail next.

These phases are similar to the ones of an SR, as described by Kitchenham and
Charters (2007). Each phase comprises various specific steps and that is where
the differences between RRs and SRs become evident. While the latter adopts
strategies aiming to reduce any type of research bias and to guarantee evidence
quality, the former aims to deliver scientific evidence in a timely manner to support
practitioners’ decision-making.

4.1 Planning a Rapid Review

The planning phase of an RR comprehends the creation of a protocol to define all
the decisions and procedures demanded to conduct the RR. The protocol must also
make the practical problem it intends to provide evidence for explicit, as well as the
roles of each stakeholder aiming to guarantee practitioners’ active participation.

Rapid Reviews in Software Engineering 367

4.1.1 Demand for a Rapid Review

The demand for an RR can emerge from different sources under different contexts.
Some possible arrangements we envision are:

• Practitioners ask for a Rapid Review: A decision-maker (i.e., practitioner)
contacts a researcher or research institution asking for an RR aiming to make
decisions based on evidence.

• Researcher aligns her/his research agenda based on a practical problem:
A researcher contacts a software company (or an open source team) facing
problems related to her/his research agenda. A researcher then proposes an RR
to both provide evidence that practitioners need and to bound her/his research on
a practical problem.

• Researcher prospects a research agenda based on a practical problem: A
researcher contacts a software company (or an open source team) aiming to
prospect practical problems to focus her/his research on. In this case, the RR
has initially no predetermined focus. To narrow it down, the researcher could
leverage interviews with practitioners to grasp the problems they are facing and
then decide which one to tackle. This is how we conducted the two RRs presented
in Sect. 3.

4.1.2 Defining the Problem

Close collaboration with practitioners is crucial to define the problem that will drive
an RR. Since sometimes the problem is not already well-defined (or perhaps not
even the practitioner is fully aware of the main problem s/he is facing), researchers
can use qualitative research methods such as interviews or focus groups to better
understand the context and the (eventually hidden) problems (Cartaxo et al. 2018a).
Depending on how clear a problem is to practitioners, interviews could be more
exploratory (e.g., to understand the whole challenges and needs), more objective
(e.g., to understand missing details), or even skipped (e.g., if the problem is very
well-defined). One important point to bear in mind when interviewing practitioners
to define problems for RRs is that this may be an interactive process. Sometimes
you identify a practical problem but there are no studies approaching such problem,
so an RR will not be viable, and you may need to find another problem.

4.1.3 Defining the Research Questions

Research questions in RRs are as important as in SRs (Kitchenham and Charters
2007). Once they are defined, all effort is towards answering them. However, to
provide useful answers, one has to ask meaningful questions. In RRs, answers are
considered useful when they help practitioners to solve or at least attenuate their

368 B. Cartaxo et al.

practical problem. Consequently, questions are considered meaningful only when
they lead to such answers.

Research Questions in Rapid Reviews Should Be Defined in Close Collab-
oration with Practitioners Questions aiming to identify research gaps or to
provide more general insights into the research community should be avoided,
and left to SRs. RRs should provide answers bounded to the practical context
they are inserted into. In other words, RRs naturally have a narrower character
than SRs.

Each problem will certainly demand different kinds of questions and approaches
to investigate them. However, in our experience, exploratory questions aiming
to identify strategies to deal with a particular problem are the cornerstone of
RRs (Cartaxo et al. 2018a) since the most important thing to practitioners under
time constraints is to discover strategies, supported by evidence, to solve their
problems (Yourdon 1995). Examples of such questions are found in the RRs
presented in Sect. 3. In the RR about customer collaboration we asked:

• What are the strategies to improve customer collaboration in software develop-
ment practice?

• What are their effectiveness?

Similarly, in the RR about team motivation we asked:

• What are the strategies to improve software development teams motivation?
• What are their effectiveness?

Other research questions are possible, if answering them helps practitioners
towards the solution of their problem. For instance, in the RR about customer
collaboration, we also added the following two research questions:

• What are the benefits of customer collaboration in software development prac-
tice?

• What are the problems caused by low customer collaboration in software
development practice?

Answers to those questions are useful because the findings were used by the
development team to convince their customers about the importance of a better
collaboration. On the other hand, these research questions were not necessary in
the RR about team motivation, since the problem was internal to the company, and
the stakeholders already agreed with the importance to improve team motivation.
They just did not know how they can do it effectively.

Rapid Reviews in Software Engineering 369

4.1.4 Defining the Stakeholders Roles

An RR is a joint initiative between researchers and practitioners. Thus, active
participation of both sides is not only important, but (as we see it) mandatory. The
researchers’ role is to guarantee the methodological consistency and transparency,
while the practitioners’ role is to make sure that the research is bounded to an
actual practical problem, so the evidence will be useful.

In that context, different levels of participation are possible. Considering the
extremes, it is possible for researchers to perform all activities related to an RR
(e.g., defining the protocol, selecting primary studies, extracting data, synthesizing
evidence, and reporting the results) as long as practitioners are involved in the entire
process, validating each decision and ensuring the RR is bounded to their practical
problem. We could also perceive, nevertheless, that practitioners could perform all
activities of an RR, as long as researchers are involved, in particular, to validate each
methodological decision. Any level of participation between these two extremes
is also possible and encouraged. However, the effort of each stakeholder will be
defined taking into account the time constraints and resource limitations in each
specific situation.

Both, the RR about customer collaboration and team motivation were conducted
near the extreme where researchers defined and executed the reviews. However,
the practitioners were aware of every single step made, validating and making
suggestions to it. This alignment between researchers and practitioners is crucial in
order to avoid researchers losing focus, which in turn may lead to research questions
that, although interesting from a pure academic perspective, are not related to a
practical problem.

Since RRs and even SRs are not well-known in practice (Cartaxo et al. 2017), we
believe this kind of arrangement (where researchers perform most of an RR’s tasks)
will happen more frequently, at least at the beginning. However, if the collective
effort to link software engineering research and practice more closer unfolds, then
we believe practitioners will recognize the relevance of initiatives like RRs and will
be more willing to actively participate.

4.1.5 Creating the Protocol

The protocol of an RR has the same goal as the protocol of an SR: to specify all
the methodological steps that undertake the review. The protocol itself is one of the
most important elements that makes both RRs and SRs systematic. In this sense, it is
important to highlight that RRs are not synonymous to ad-hoc literature reviews, but
rather systematic. As a consequence, an RR demands a well-documented protocol.

370 B. Cartaxo et al.

A major difference between RRs and SRs protocols, nevertheless, is the natural
inclination of the former to suffer changes throughout the review process. These
changes might happen due to the flexible process that RRs allow. However,
changes made after the protocol definition must be documented and justified
transparently (Tricco et al. 2017).

The components of an RR protocol are similar to the ones of SRs as described
by Kitchenham and Charters (2007), such as: research questions, search strategy,
inclusion/exclusion criteria, selection procedure, extraction procedure, synthesis
procedure, reporting, among others.

Again, we want to highlight the importance of establishing a close collaboration
with practitioners when defining and conducting an RR protocol. This is crucial
to make sure practitioners’ needs are well-covered and the RR will be performed
aiming to provide useful answers. An example of an RR protocol can be found
in Cartaxo et al. (2018a).

4.2 Performing a Rapid Review

In this section we present some strategies that may be used to reduce time and
cost of performing an RR. For each step, we present some suggestions on how
to perform the step. However, one does not have to embrace all strategies, on the
contrary, the researcher has to analyze the context and limitations where an RR is
being conducted and define which strategies better conciliate given trade-offs. For
instance, an RR may use more than one search source to identify primary studies
if ensuring broad coverage is critical, but skip the quality appraisal. While other
RRs may use just one search source and conduct a rigorous quality appraisal if the
reliability on the evidence is critical.

Transparency Is the Golden Standard in Rapid Reviews Regardless of the
strategies employed to reduce cost and/or time to conduct an RR, limitations
and threats to validity must be reported in the protocol. Practitioners may and
are willing to consume evidence based on less rigorous methods like RRs, as
long as they are aware of the limitations and threats to validity (Cartaxo et al.
2018a).

4.2.1 Search Strategy

SRs usually employ multiple search strategies to guarantee exhaustive coverage
such as using multiple search engines, manual search in conference proceedings
and journal issues, as well as forward and backward snowballing approaches.

Rapid Reviews in Software Engineering 371

Adopting all these strategies simultaneously can be extremely resource consum-
ing. An RR, on the other hand, may choose to focus on a single search strategy. For
instance, instead of using several search engines, RRs may focus on a single one,
more likely Scopus or Google Scholar. These search engines cover a wide spectrum
of research papers and usually index papers from the major digital libraries. Com-
plementing the results of the search engine with a snowballing approach has also
shown to be a viable option (Badampudi et al. 2015). There are other approaches
that, if employed, could reduce the effort placed on conducting RRs, such as:

1. Limiting the search by date;
2. Restricting the language in which the paper is written;
3. Focusing on a given geographical area, or;
4. Limiting the primary studies according to their research method (e.g., controlled

experiments only, or case studies only) (Tricco et al. 2017).

It is important to note that those approaches may lead to relevant studies being
not included and, as a consequence, reducing the coverage of an RR. If one of these
strategies is adopted, threats to validity must be transparently reported. In both RRs,
the one about customer collaboration and the one about team motivation, we used
one search source only: the Scopus search engine.

4.2.2 Selection Procedure

Since RRs are bound to a practical context, one may define restrictive inclusion/ex-
clusion criteria. The goal here is twofold: to reduce the amount of studies to screen
and to provide evidence that better fit practitioners’ needs.

For instance, the RR about team motivation was conducted in a small private
company with collocated teams. Therefore, some of the inclusion/exclusion criteria
were as follows:

• The study must not be related to large companies;
• The study must not be related to distributed teams;
• The study must not be related to crowd source software development;
• The study must not be related to open source software development;

Defining restrictive inclusion/exclusion criteria may reduce the time and effort
to conduct an RR. However, this procedure does not necessarily incur in threats
to validity. In fact, it may be considered good practice to consider evidence only
from primary studies conducted in similar contexts to that of the performed RR.
Highly contextualized studies are considered one of the best ways to have impact in
practice (Dybå et al. 2012; Cartaxo et al. 2015).

Moreover, SRs usually require independent screening of studies by at least
two reviewers (Kitchenham and Charters 2007; Tricco et al. 2017), which is
very resource intensive. RRs, on the other hand, may have a selection procedure
conducted by a single reviewer. Another option is to have a second reviewer just to

372 B. Cartaxo et al.

pass through a reduced sample of studies. Such strategies may obviously introduce
selection bias and must be reported accordingly.

Usually, SRs split the selection procedure into several substeps. In the first
substep, reviewers screen primary studies’ titles and abstracts, and in the second,
the entire papers content. To abbreviate this process, one may split the selection
procedure into three substeps, instead of two. The first substep can be dedicated to
screening primary studies’ titles only. This might accelerate the exclusion of papers
that are clearly out of scope since it prevent one to read papers abstracts. On the
other side, it may provoke false negatives. The second substep would select primary
studies based on abstract only, and the third substep based on the entire content.
Regarding this particular strategy, one of the practitioners that participated on the
RR about customer collaboration give us the following feedback:

Sometimes we search for solutions in just one source [. . .] Then we do it exactly as
recommended by that source but it may not work for us. When we do it like this [the RR],
we can have more possibilities [the strategies identified by the RR], even considering it was
conducted faster [the RR compared to SRs], and maybe many things [papers] could be lost
just because of the title [the first round of selection procedure, which we analyzed only the
titles of the papers], because someone put a bad title. That is ok, who cares?

4.2.3 Quality Appraisal

In addition to inclusion/exclusion criteria, quality criteria are also usually defined
in SRs in order to select high quality evidence only. In a more extreme view, RR
researchers can entirely skip this step, but threats to validity associated with this
decision must be transparently reported. Both RRs we presented in Sect. 3, adopted
this strategy.

Another less radical strategy would be to focus only on studies published in
conferences and/or journals that employ a rigorous review process. This may
increase the chances of selecting high quality evidence with a low effort (e.g., no
need to analyze the evidence quality of each and all papers). Although this approach
can also have limitations (e.g., a potentially relevant study could have published on
a less prestigious venue or on arXiv), at least we know that the primary studies being
included already passed through a rigorous sieve.

If evidence quality is critical in the context where the RR is being conducted, a
strategy that may reduce the time and effort is to have quality appraisal carried out
by a single reviewer or using pairs to appraise just a sample of papers. This differs
from SRs, where quality appraisal is recommended to be conducted fully in pairs.

4.2.4 Extraction Procedure

The data extraction procedure can be conducted by a single reviewer in RRs, as long
as the inherent biases are transparently reported. Both RRs we presented in Sect. 3,
adopted this strategy. Moreover, in SRs, when data is missing on the selected studies,

Rapid Reviews in Software Engineering 373

it is usually recommended to contact the authors. Researchers who conducted RRs
in medicine very infrequently indeed contacted primary studies’ authors (Tricco
et al. 2017). That can be a viable strategy: studies with missing data should probably
be excluded from the RR and their exclusion must be reported. RRs consumers
(a.k.a. practitioners) can reach those studies later if they wish to.

4.2.5 Synthesis Procedure

Knowledge synthesis is probably one of the most important steps of any secondary
study, but at the same time one of the most time-consuming activities. However, a
tertiary study revealed that as many as half of the SRs analyzed in software engi-
neering do not present any kind of formal knowledge synthesis procedure (Cruzes
and Dybå 2011b). They also summarized various methods for knowledge synthesis
(e.g., meta-analysis, meta-ethnography, grounded theory, qualitative metasummary,
among others) to encourage researchers to apply them. Furthermore, the chapter
“Research Synthesis in Software Engineering” of this book summarizes the most
frequently used synthesis methods in software engineering.

A possible strategy to reduce time and effort synthesizing evidence in RRs is
using lightweight methods like narrative synthesis (Cruzes and Dybå 2011b; Tricco
et al. 2017) in contrast to the more rigorous and time/effort consuming ones like
meta-analysis (Lipsey and Wilson 2001) or grounded theory (Stol et al. 2016)
methods alike. This decision brings an obvious limitation and must be reported,
so practitioners consuming RRs evidence can make informed decision.

Conclusions, recommendations, and implications are particularly important in
RRs since they can guide practitioners to adopt the synthesized knowledge. In
medicine, they encourage researchers to dedicate time to make her/his conclusions
and recommendations to practitioners and avoid presenting a report with findings
only (Tricco et al. 2017). We experienced such kind of demand from practitioners on
the RR about team motivation when a practitioner gave us the following feedback:

since it [the RR] was focused on our problem, maybe if there was something saying which
one [strategy identified with the RR] you recommend [. . .] this is what is missing [. . .]
maybe it is missing a conclusion, the researcher’s comments.

In addition, one should keep in mind that those conclusions, recommendations,
and implications should be strongly bounded to the RR’s context, in opposition
to the ones drawn from SRs that usually aim to reach a wider audience and
scope (Tricco et al. 2017).

4.3 Reporting a Rapid Review

Reporting and disseminating knowledge produced with RRs are as important as
conducting the RR itself. SRs are usually conducted in academic environment and
thus the report is usually focused on that audience. That means SRs are commonly

374 B. Cartaxo et al.

reported in scientific paper format and diffused through academic journals and
conferences.

RRs, however, target software practitioners. Therefore, one should consider that
not all information that is crucial to researchers is also relevant to practitioners (e.g.,
research method, background, related work, etc.). As a consequence, RRs must be
reported in a more straightforward way, focusing on results and recommendations,
so practitioners can easily consume the information to support their decision-
making.

There are several approaches that could be used in this regard, as presented in
Sect. 2.1 (Chambers and Wilson 2012; Khangura et al. 2012; Young et al. 2014;
Best et al. 1997). This section presents the concept of Evidence Briefings, which are
alternative mediums to report RRs more focused on practitioners needs, and also
discusses the importance of disseminating knowledge produced with RRs.

4.3.1 Evidence Briefings

Evidence Briefings are one-page documents reporting the main findings of
RRs (Cartaxo et al. 2016). A template, as well as examples of such documents
can be found online.3 The Evidence Briefings template was defined based on the
best practices observed in medicine as well as on Information Design (Tondreau
2011) and Gestalt Theory (Lupton and Phillips 2015) principles. Figure 1 shows an
example of an Evidence Briefing. The numbers within squares denote each part of
Evidence Briefing’s structure, and following there are some guidelines on how to
fill each of those parts:

1. The title of an Evidence Briefing should be as concise as possible, and comprise
one or two lines only. Titles with more than two lines should be avoided since
they might reduce document space to report RRs’ findings.

2. To fill the Evidence Briefing’s summary, we suggest researchers to adopt the
following structure: This briefing reports scientific evidence on <RESEARCH
GOAL>. The summary should span few lines. Following is an example of
Evidence Briefing’s summary: “This briefing reports scientific evidence on the
challenges involved in using Scrum for global software development (GSD)
projects, and strategies available to deal with them.”

3. The findings section is the most important one. It should list the main findings
of the RR. When writing the findings, we recommend to use one finding per
paragraph. Bullets to highlight important points as well as charts, figures, and
tables are welcome since they make the findings even easier to read. Findings
should be short sentences, straight to the point. The findings section should not
include information about the research method. The idea of the Evidence Briefing
is to quickly communicate the main findings of an RR to practitioners. If they

3http://cin.ufpe.br/eseg/briefings.

http://cin.ufpe.br/eseg/briefings

Rapid Reviews in Software Engineering 375

Fig. 1 Evidence Briefing structure

376 B. Cartaxo et al.

have interest they can refer to the complementary material reference shown in
item 5.

4. The box at the right side of the Evidence Briefing should be filled with
information about the Evidence Briefing’s target audience, clarifications about
what information is included, and what is not included in the Evidence Briefing.
The template has a complete set of suggestions to structure information in the
right box.

5. The reference to complementary material should be placed at the bottom of the
Evidence Briefing. It may be a link to a webpage containing at least the following
documents/information: the RR protocol document and a list of references to the
primary studies included in the RR.

6. Logos of universities, software companies, and any other institutions involved
in the RR initiative should be placed at the very top of the Evidence Briefing
document. This publicizes the institutions producing Evidence Briefings and
might make practitioners search for more RRs on institutions’ websites.

Although other mediums to transfer scientific evidence exist, we recommend
the use of the Evidence Briefings because, as observed in an empirical evaluation,
both researchers and practitioners are positive about using Evidence Briefings as a
medium to transfer scientific knowledge to software engineering practice (Cartaxo
et al. 2016).

4.3.2 Dissemination of Rapid Reviews Results

Not all RRs are disseminated beyond the practitioners’ scope due to sensitive
information belonging to the software company involved. However, if this is not the
case, we recommend researchers conducting an RR to post the resulting report (e.g.,
Evidence Briefing) online on the research institution’s or the company’s website.
Sharing the report on social networks such as Twitter or ResearchGate can also
increase the impact of the reviews.

5 Further Discussions on the Feasibility of Rapid Reviews

In this section we present further discussions about topics that may concern software
engineering research community about the feasibility of RRs as an evidence-based
method.

5.1 Research Community Viewpoints on Rapid Reviews

Although RRs are a rising research method in the medical domain, they are so
far hardly recognized in the SE community. We believe our community could
and should benefit from it. However, due to the lack of RR studies in software

Rapid Reviews in Software Engineering 377

engineering, little is known about how our research community perceives the
adoption of RRs.

This is particularly important because, according to Rogers (2003), the percep-
tions of all individuals involved in an initiative is one of the main predictors of
its adoption. The importance of exploring the perceptions of practitioners—as we
have done in Cartaxo et al. (2018a)—is easy to understand since practitioners are
the target audience of RRs. But the perceptions of researchers should certainly not
be neglected. Moreover, if the software engineering research community discards
RRs, such kind of initiative can easily end even before having shown its potential.
In informal discussions with EBSE specialists during conferences, we observed
that their opinions about RRs seem to be highly polarized, especially when
methodological concessions are made.

This feeling is now backed up with evidence from a study we conducted
with 37 software engineering researchers (Cartaxo et al. 2019). We applied a
Q-Methodology approach, enabling us to identify that researchers in software
engineering can be classified in four groups according to their viewpoint on RRs:

Unconvinced Researchers aligned with this viewpoint are the ones that agree the
most that further research comparing the methods and results of RRs and SRs
is required before they decide how they think about RRs. The indecision of this
viewpoint towards RRs is even more explicit when we look at the contradictory
affirmations these participants provided. They think a well-conducted RR may
produce better evidence than poorly conducted SRs, but on the other hand,
they have more confidence in evidence produced with an SR than in evidence
produced with an RR.

Enthusiastic Researchers aligned with this viewpoint are generally positive
about RRs and believe RRs can provide reasonable evidence to practitioners
if minimum standards to conduct and report RRs are established. They also
strongly agree that a well-conducted RR may produce better evidence than a
poorly conducted SR.

Picky Researchers aligned with this viewpoint are very skeptical about RRs, as
well as concerned about the quality of primary studies included in RRs and how
the results are reported. This negative perception can be explained by a strong
belief hold by researchers aligned with this viewpoint, that knowledge users
(practitioners) do not fully understand the implications of RR methodological
concessions. Researchers sharing this point of view also put little faith in RRs
validity. They strongly disregard the possibility that RRs can be timely and valid,
especially when methodological concessions are made.

Pragmatic Researchers aligned with this viewpoint pragmatically focus on a
variety of contextual information to decide if RRs are the best fit to support
decision-making. They also believe practitioners are able to understand the
impacts of flexible research methods adopted by RRs. Still, they believe rigid
standards in RRs could reduce their usefulness to practitioners.

Although the viewpoints are quite diverse, there is a consensus that both RRs and
SRs can be conducted very well or very poorly, and that time needed to conduct an

378 B. Cartaxo et al.

evidence synthesis study is not related to its quality. The main concerns about RRs—
not necessarily shared among the four viewpoints—are: the need for more evidence
about the effectiveness of RRs, the importance to determine minimum standards,
the relevance of quality assessment to include primary studies, and the emphasis on
transparency in RRs.

With this typology in mind, one can better understand what the main concerns
of researchers are and promote better understanding about RRs. As a consequence,
our community can pave a road better connecting research with practice and make
software engineering research more impactful and relevant.

5.2 Publishing Rapid Reviews in Scientific Peer Reviewed
Venues

Since RRs are commonly reported in non-scientific paper format (i.e., Evidence
Briefings), they are usually internally reviewed, but not peer reviewed (Tricco et al.
2017). This may be seem as an unpromising incentive for researchers to conduct
RRs since publishing papers in peer reviewed venues is important for their career.
Nevertheless, we encourage researchers who conduct RRs to also publish their
results in traditional scientific venues by reporting their results in a scientific outlet
too.

Rapid Reviews Can and Should Also Be Published in Academic Peer
Reviewed Venues One may argue that an RR will probably not constitute
enough contribution to deserve a rigorous scientific publication. However, one
should note that RRs are usually inserted into broader knowledge/technology
transfer initiatives (Cartaxo et al. 2018b), and such initiatives are usually very
enriching and welcomed in scientific venues. The paper may report not only
the RR protocol and results, but also the perceptions of practitioners partici-
pating in the entire RR initiative. One example of such a peer reviewed RR
publication in software engineering is one of our works (Cartaxo et al. 2018a).
Additionally, if the cooperation between researchers and practitioners goes
beyond the RR itself—for instance, when researchers actively participate,
together with practitioners, designing the solutions to practitioners’ problems
based on the evidence provided by the RR, and adopting a participatory
method like action research—the paper may report how the knowledge
produced with that RR was applied in practice, and to what degree it solved or
at least attenuated practitioners’ problems. In fact, this kind of research would
probably close the entire knowledge/technology transfer cycle in a marvelous
way. It puts the scientific knowledge in action with direct impact to practice.

Rapid Reviews in Software Engineering 379

5.3 On the Use of Grey Literature

The last point that is worth discussing is whether one could conduct an RR with
grey literature. This is a positive argument along these lines, which is often related
to how practitioners share and acquire knowledge (i.e., through blog posts, talks,
videos, etc.). These mediums are often created by (and for) practitioners and do not
necessarily pass through a rigorous revision process. Although some researchers are
taking advantage of grey literature (Garousi et al. 2016, 2017) in academic studies,
there are still some conservative researchers that favor the traditional peer reviewed
literature. In this chapter, we do not intend to add more fire on this already heated
debate. However, we also concur that eventually, a researcher conducting an RR
would have to think about what kind of literature s/he will include in her/his review.
To guide this researcher, our experience suggests that researchers should focus only
on peer reviewed literature when conducting an RR. This is particularly due to the
fact that RRs may have already several limitations and threats to validity. We believe
that adding grey literature to this equation could weaken the quality of the review
produced, at least in the eyes of an unconvinced researcher. Obviously, this is a
hypothesis that could be tested in follow-up studies. For more detailed information
about using grey literature as evidence, refer to the chapter “Benefitting from the
Grey Literature in Software Engineering Research” in this book.

6 Recommended Further Reading

For a better comprehension of this chapter, we suppose the reader has experience
conducting SRs, or at least has knowledge of what an SR is, as well as the steps
and procedures it comprises. If that is not the case, we refer the reader to the
Kitchenham and Charters (2007) guidelines as well as the Kitchenham et al. (2004)
EBSE seminal paper.

Regarding RRs, one can read the first experience conducting such kind of study
in software engineering in Cartaxo et al. (2018a). We also recommend reading the
practical guide on RRs provided by the World Health Organization (Tricco et al.
2017). It distills most of the accumulated experience conducting RRs in medicine.
For a comprehensive view on the state of practice and research about RRs in
medicine, one can take a look on Tricco et al. (2015) scoping study. It analyzes
100 RRs conducted between 1997 and 2013 under various perspectives, such as
RRs characteristics, terminology, citation, impact on practice, comparison with SRs,
among others. For a better understanding on how RRs fit in a more comprehensive
knowledge/technology transfer initiative, there is our study proposing such a model
in Cartaxo et al. (2018b).

Regarding initiatives related to RR, there is a recent trend towards the use of
grey literature in multivocal literature reviews (MLRs) (Garousi et al. 2016, 2017;
Yasin and Hasnain 2012). Generally speaking, the use of MLRs shares the core
goal of an RR, which is to make research more aligned with practice. However,

380 B. Cartaxo et al.

there is a fundamental difference between these two approaches. On the one hand,
RRs aim to provide knowledge based on scientific evidence from peer-reviewed
and rigorous primary studies only, as well as deliver evidence in a timely manner.
On the other hand, MLRs apply systematic methods to synthesize not only primary
studies, but also grey literature. Moreover, MLRs do not necessarily emerge from
a practical problem nor are they necessarily concerned about delivering evidence
in a timely manner to practitioners. While RRs flexibilize the method, MLRs
flexibilize the source of evidence. However, flexibilizing both aspects at the same
time may produce results of low validity. Thus, RRs and MLRs are different
approaches, although both can potentially contribute to reduce the gap between
software engineering research and practice.

7 Conclusion

A new era of software engineering has emerged and it is changing the way we
think about empirical research. In a recent series of posts at Communications of
ACM blog, Meyer (2018a,b,c) precisely framed this era throughout a vision where
empirical evidence and practice orientation are pivotal elements:

As long as empirical software engineering was a young, fledgling discipline, it made good
sense to start with problems that naturally landed themselves to empirical investigation. But
now that the field has matured, it may be time to reverse the perspective and start from
the consumer’s perspective: for practitioners of software engineering, what problems, not
yet satisfactorily answered by software engineering theory, could benefit, in the search for
answers, from empirical studies? (Meyer 2018a)

Meyer’s voice certainly is not alone. Many other researchers are starting to
recognize practice orientation as the next long way ahead (Beecham et al. 2014;
Duarte 2015; Laird and Yang 2015; Santos and da Silva 2013). Unfortunately, there
is evidence that secondary studies in software engineering lack connection with
practice (Santos and da Silva 2013; da Silva et al. 2011; Hassler et al. 2014; Cartaxo
et al. 2017).

In this chapter, we introduced the concept of Rapid Reviews (RRs) in the context
of knowledge transfer in software engineering. They are a type of secondary studies
aiming to provide research evidence to support decision-making in practice, and
in consequence, must be conducted taking into account the constraints inherent to
practical environments. RRs usually deliver evidence in a more timely manner, with
lower costs, reporting results through more appealing mediums, and more connected
to practice, when compared to Full Systematic Reviews.

We also presented examples of experiences conducting RRs together with
software engineering practitioners. They affirmed to have learned new concepts
about the problem they were facing, as well as declared to trust in the findings
provided by RRs. We also presented guidelines covering the entire RRs process
aiming to help researchers and/or practitioners interested in conducting their own
RRs.

Rapid Reviews in Software Engineering 381

Even looking for all the good results, to be fair, one has to highlight that RRs are
not always a bed of roses. RRs have their limitations, and this must be considered
carefully. They are certainly neither a silver bullet nor can they replace Systematic
Reviews. Moreover, we explored and provided solutions aiming to address some
concerns that researchers may have about the feasibility of RRs as a viable evidence-
based research method. Such concerns are researchers perceptions (skepticism)
about RRs flexible strategies, how to publish RRs in scientific rigorous peer review
venues, as well as how to disseminate the results obtained by RRs.

In conclusion, we believe RRs can play an important role in promoting knowl-
edge transfer from scientific empirical evidence to practice and reduce the gap
between academic research and software engineering practice.

References

Abou-Setta AM et al (2016) Methods for developing evidence reviews in short periods of time: a
scoping review. PloS One 11(12)

Anderson NB (2006) Evidence-based practice in psychology. Am Psychol 61(4):271–285
Badampudi D, Wohlin C, Petersen K (2015) Experiences from using snowballing and database

searches in systematic literature studies. In: Proceedings of the 19th international conference
on evaluation and assessment in software engineering, EASE ’15. ACM, New York, pp 17:1–
17:10. http://doi.acm.org/10.1145/2745802.2745818

Batten J (2012) Comment on editorial literature reviews as a research strategy. J Sch Nurs
28(6):409–409

Beecham S, O’Leary P, Baker S, Richardson I, Noll J (2014) Making software engineering research
relevant. Computer 47(4), 80–83. http://dx.doi.org/10.1109/MC.2014.92

Best L, Stevens A, Colin-Jones D (1997) Rapid and responsive health technology assessment:
the development and evaluation process in the south and west region of England. J Clin Eff
2(2):51–56

Borges A, Ferreira W, Barreiros E, Almeida A, Fonseca L, Teixeira E, Silva D, Alencar A,
Soares S (2014) Support mechanisms to conduct empirical studies in software engineering. In:
Proceedings of the 8th ACM/IEEE international symposium on empirical software engineering
and measurement, ESEM ’14. ACM, New York, pp 50:1–50:4. http://doi.acm.org/10.1145/
2652524.2652572

Borges A, Ferreira W, Barreiros E, Almeida A, Fonseca L, Teixeira E, Silva D, Alencar A,
Soares S (2015) Support mechanisms to conduct empirical studies in software engineering:
a systematic mapping study. In: Proceedings of the 19th international conference on evaluation
and assessment in software engineering, EASE ’15, pp 22:1–22:14

Cartaxo B (2018) A model to transfer knowledge from research to software engineering practice
based on rapid reviews and evidence briefings. PhD thesis, Center of Informatics – Federal
University of Pernambuco – CIn/UFPE

Cartaxo B, Almeida A, Barreiros E, Saraiva J, Ferreira W, Soares S (2015) Mechanisms to
characterize context of empirical studies in software engineering. In: Experimental software
engineering Latin American workshop (ESELAW 2015), pp 1–14

Cartaxo B, Pinto G, Vieira E, Soares S (2016) Evidence briefings: towards a medium to transfer
knowledge from systematic reviews to practitioners. In: Proceedings of the 10th ACM/IEEE
international symposium on empirical software engineering and measurement, ESEM ’16.
ACM, New York, pp 57:1–57:10. http://doi.acm.org/10.1145/2961111.2962603

http://doi.acm.org/10.1145/2745802.2745818
http://dx.doi.org/10.1109/MC.2014.92
http://doi.acm.org/10.1145/2652524.2652572
http://doi.acm.org/10.1145/2652524.2652572
http://doi.acm.org/10.1145/2961111.2962603

382 B. Cartaxo et al.

Cartaxo B, Pinto G, Ribeiro D, Kamei F, Santos RES, da Silva FQB, Soares S (2017) Using q&a
websites as a method for assessing systematic reviews. In: 2017 IEEE/ACM 14th international
conference on mining software repositories (MSR), pp 238–242

Cartaxo B, Pinto G, Soares S (2018a), The role of rapid reviews supporting decision-making in
software engineering practice. In: 22nd International conference on evaluation and assessment
in software engineering (EASE).

Cartaxo B, Pinto G, Soares S (2018b) Towards a model to transfer knowledge from software
engineering research to practice. Inf Softw Technol 97:80–82. http://www.sciencedirect.com/
science/article/pii/S0950584918300028

Cartaxo B, Pinto G, Fonseca B, Ribeiro M, Pinheiro P, Soares S, Baldassarre MT (2019) Software
engineering research community viewpoints on rapid reviews. In: Proceedings of the 13th
ACM/IEEE international symposium on empirical software engineering and measurement
(ESEM), ESEM ’19

Chambers D, Wilson P (2012) A framework for production of systematic review based briefings to
support evidence-informed decision-making. Syst Rev 1:32

Cochrane Rapid Reviews Methods Group (RRMG) (n.d.) http://methods.cochrane.org/
rapidreviews/. Accessed 27 Mar 2018

Corabian P, Harstall C (2002) Rapid assessments provide acceptable quality advice. In: Annu Meet
Int Soc Technol Assess Health Care

Cruzes DS, Dybå T (2011a) Research synthesis in software engineering: a tertiary study. Inf
Softw Technol 53(5):440–455. Special Section on Best Papers from {XP2010}. http://www.
sciencedirect.com/science/article/pii/S095058491100005X

Cruzes DS, Dybå T (2011b) Research synthesis in software engineering: a tertiary study. Inf Softw
Technol 53(5):440–455

da Silva FQ, Santos AL, Soares S, França, ACC, Monteiro CV, Maciel FF (2011) Six years
of systematic literature reviews in software engineering: an updated tertiary study. Inf Softw
Technol 53(9):899–913. Studying work practices in Global Software Engineering. http://www.
sciencedirect.com/science/article/pii/S0950584911001017

Davies P (1999) What is evidence-based education? Br J Educ Stud 47(2):108–121
Devereaux P, Schünemann HJ, Ravindran N, Bhandari M, Garg AX, Choi PT-L, Grant BJ, Haines

T, Lacchetti C, Weaver B et al (2002) Comparison of mortality between private for-profit and
private not-for-profit hemodialysis centers: a systematic review and meta-analysis. J Am Med
Assoc 288(19):2449–2457

DiCenso A, Cullum N, Ciliska D (1998) Implementing evidence-based nursing: some misconcep-
tions. Evid Based Nurs 1(2):38–39

Duarte CHC (2015) Patterns of cooperative technology development and transfer for software-
engineering-in-the-large. In: 2015 IEEE/ACM 2nd international workshop on software engi-
neering research and industrial practice, pp 32–38

Dybå T, Sjøberg DI, Cruzes DS (2012) What works for whom, where, when, and why?: on the role
of context in empirical software engineering. In: Proceedings of the ACM-IEEE international
symposium on empirical software engineering and measurement, ESEM ’12. ACM, New York,
pp 19–28. http://doi.acm.org/10.1145/2372251.2372256

Farrington DP, MacKenzie DL, Sherman LW, Welsh BC et al (2003) Evidence-based crime
prevention. Routledge, London

Featherstone RM et al (2015) Advancing knowledge of rapid reviews: an analysis of results,
conclusions and recommendations from published review articles examining rapid reviews.
Syst Rev 4:50

Garousi V, Felderer M, Mäntylä MV (2016) The need for multivocal literature reviews in software
engineering: complementing systematic literature reviews with grey literature. In: EASE

Garousi V, Felderer M, Mäntylä MV (2017) Guidelines for including the grey literature and
conducting multivocal literature reviews in software engineering. Preprint. arXiv: 1707.02553

Garritty C et al (2016) Cochrane rapid reviews methods group to play a leading role in guiding the
production of informed high-quality, timely research evidence syntheses. Syst Rev 5:184

http://www.sciencedirect.com/science/article/pii/S0950584918300028
http://www.sciencedirect.com/science/article/pii/S0950584918300028
http://methods.cochrane.org/rapidreviews/
http://methods.cochrane.org/rapidreviews/
http://www.sciencedirect.com/science/article/pii/S095058491100005X
http://www.sciencedirect.com/science/article/pii/S095058491100005X
http://www.sciencedirect.com/science/article/pii/S0950584911001017
http://www.sciencedirect.com/science/article/pii/S0950584911001017
http://doi.acm.org/10.1145/2372251.2372256

Rapid Reviews in Software Engineering 383

Grigoleit F, Vetro A, Fernandez DM, Bohm W, Diebold P (2015) In quest for proper mediums for
technology transfer in software engineering. In: ESEM

Haby MM, Chapman E, Clark R, Barreto J, Reveiz L, Lavis JN (2016) What are the best
methodologies for rapid reviews of the research evidence for evidence-informed decision
making in health policy and practice: a rapid review. Health Res Policy Syst 14(1):83. https://
doi.org/10.1186/s12961-016-0155-7

Hailey D (2009) A preliminary survey on the influence of rapid health technology assessments. Int
J Technol Assess Health Care 25:415–418

Hailey D et al (2000) The use and impact of rapid health technology assessments. Int J Technol
Assess Health Care 16:651–656

Hassler E, Carver JC, Kraft NA, Hale D (2014) Outcomes of a community workshop to identify
and rank barriers to the systematic literature review process. In: Proceedings of the 18th
international conference on evaluation and assessment in software engineering, EASE ’14.
ACM, New York, pp 31:1–31:10. http://doi.acm.org/10.1145/2601248.2601274

Khangura S, Konnyu K, Cushman R, Grimshaw J, Moher D (2012) Evidence summaries: the
evolution of a rapid review approach. Syst Rev 1:10

Kitchenham B, Charters S (2007) Guidelines for performing systematic literature reviews in
software engineering

Kitchenham BA, Dybå T, Jorgensen M (2004) Evidence-based software engineering. In: Proceed-
ings of the 26th international conference on software engineering, ICSE ’04. IEEE Computer
Society, Washington, pp 273–281. http://dl.acm.org/citation.cfm?id=998675.999432

Laird L, Yang Y (2015) Transferring software engineering research into industry: the Stevens
way. In: 2015 IEEE/ACM 2nd international workshop on software engineering research and
industrial practice, pp 46–49

Lavis JN, Robertson D, Woodside JM, McLeod CB, Abelson J (2003) How can research
organizations more effectively transfer research knowledge to decision makers? Milbank Q
81(2):221–248

Lawani MA et al (2017) Five shared decision-making tools in 5 months: use of rapid reviews to
develop decision boxes for seniors living with dementia and their caregivers. Syst Rev 6:56

Lipsey MW, Wilson DB (2001) Practical meta-analysis. SAGE Publications, Thousand Oaks
Lupton E, Phillips JC (2015) Graphic design: the new basics, 2nd edn. Princeton Architectural

Press, New York
McGregor M, Brophy JM (2005) End-user involvement in health technology assessment (HTA)

development: a way to increase impact. Int J Technol Assess Health Care 21:263–267
McKibbon K (1998) Evidence-based practice. Bull Med Libr Assoc 86(3):396
Meyer B (2018a) Empirical answers to important software engineering questions (part 1 of

2). https://cacm.acm.org/blogs/blog-cacm/224351-empirical-answers-to-important-software-
engineering-questions-part-1-of-2/fulltext

Meyer B (2018b) Empirical answers to important software engineering questions (part 2 of
2). https://cacm.acm.org/blogs/blog-cacm/224677-empirical-answers-to-important-software-
engineering-questions-part-2-of-2/fulltext

Meyer B (2018c) The end of software engineering and the last methodologist. https://cacm.acm.
org/blogs/blog-cacm/224352-the-end-of-software-engineering-and-the-last-methodologist/
fulltext

Moher D et al (2015) All in the family: systematic reviews, rapid reviews, scoping reviews, realist
reviews, and more. Syst Rev 4:183

Polisena J et al (2015) Rapid review summit: an overview and initiation of a research agenda. Syst
Rev 4:137

Rogers E (2003) Diffusion of innovations, 5th edn. Free Press, New York. https://books.google.
com.br/books?id=9U1K5LjUOwEC

Santos RES, da Silva FQB (2013) Motivation to perform systematic reviews and their impact
on software engineering practice. In: 2013 ACM/IEEE international symposium on empirical
software engineering and measurement, pp 292–295

https://doi.org/10.1186/s12961-016-0155-7
https://doi.org/10.1186/s12961-016-0155-7
http://doi.acm.org/10.1145/2601248.2601274
http://dl.acm.org/citation.cfm?id=998675.999432
https://cacm.acm.org/blogs/blog-cacm/224351-empirical-answers-to-important-software-engineering-questions-part-1-of-2/fulltext
https://cacm.acm.org/blogs/blog-cacm/224351-empirical-answers-to-important-software-engineering-questions-part-1-of-2/fulltext
https://cacm.acm.org/blogs/blog-cacm/224677-empirical-answers-to-important-software-engineering-questions-part-2-of-2/fulltext
https://cacm.acm.org/blogs/blog-cacm/224677-empirical-answers-to-important-software-engineering-questions-part-2-of-2/fulltext
https://cacm.acm.org/blogs/blog-cacm/224352-the-end-of-software-engineering-and-the-last-methodologist/fulltext
https://cacm.acm.org/blogs/blog-cacm/224352-the-end-of-software-engineering-and-the-last-methodologist/fulltext
https://cacm.acm.org/blogs/blog-cacm/224352-the-end-of-software-engineering-and-the-last-methodologist/fulltext
https://books.google.com.br/books?id=9U1K5LjUOwEC
https://books.google.com.br/books?id=9U1K5LjUOwEC

384 B. Cartaxo et al.

Stol K-J, Ralph P, Fitzgerald B (2016) Grounded theory in software engineering research: a
critical review and guidelines. In: Proceedings of the 38th international conference on software
engineering, ICSE ’16. ACM, New York, pp 120–131. http://doi.acm.org/10.1145/2884781.
2884833

Taylor-Phillips S et al (2017) Comparison of a full systematic review versus rapid review
approaches to assess a newborn screening test for tyrosinemia type 1. Res Synth Methods
8:475–484

Tondreau B (2011) Layout essentials: 100 design principles for using grids. Design essentials.
Rockport Publishers, Beverly

Tricco A, Antony J, Zarin W, Strifler L, Ghassemi M, Ivory J, Perrier L, Hutton B, Moher D, Straus
SE (2015) A scoping review of rapid review methods. BMC Med 13:224

Tricco AC et al (2016) An international survey and modified Delphi approach revealed numerous
rapid review methods. J Clin Epidemiol 70:61–67

Tricco AC, Langlois EV, Straus SE et al (2017) Rapid reviews to strengthen health policy and
systems: a practical guide. World Health Organization, Geneva

Van de Velde S et al (2011) Medicinal use of potato-derived products: conclusions of a rapid versus
full systematic review. Phytother Res 25:787–788

Watt A, Cameron A, Sturm L, Lathlean T, Babidge W, Blamey S, Facey K, Hailey D, Norderhaug
I, Maddern G et al (2008) Rapid reviews versus full systematic reviews: an inventory of
current methods and practice in health technology assessment. Int J Technol Assess Health
Care 24(2):133–139

Webb SA (2001) Some considerations on the validity of evidence-based practice in social work.
Br J Soc Work 31(1):57–79

Yasin A, Hasnain MI (2012) On the quality of grey literature and its use in information synthesis
during systematic literature reviews

Young I et al (2014) A guide for developing plain-language and contextual summaries of systematic
reviews in agri-food public health. Foodborne Pathog Dis 11(12):930–937

Yourdon E (1995) When good enough software is best. IEEE Softw 12:79–81
Zechmeister I, Schumacher I (2012) The impact of health technology assessment reports on

decision making in Austria. Int J Technol Assess Health Care 28:77–84

http://doi.acm.org/10.1145/2884781.2884833
http://doi.acm.org/10.1145/2884781.2884833

Benefitting from the Grey Literature
in Software Engineering Research

Vahid Garousi , Michael Felderer , Mika V. Mäntylä ,
and Austen Rainer

Abstract Researchers generally place the most trust in peer-reviewed, published
information, such as journals and conference papers. By contrast, software engineer-
ing (SE) practitioners typically do not have the time, access, or expertise to review
and benefit from such publications. As a result, practitioners are more likely to turn
to other sources of information that they trust, e.g., trade magazines, online blog
posts, survey results, or technical reports, collectively referred to as grey literature
(GL). Furthermore, practitioners also share their ideas and experiences as GL, which
can serve as a valuable data source for research. While GL itself is not a new
topic in SE, using, benefitting, and synthesizing knowledge from the GL in SE is
a contemporary topic in empirical SE research and we are seeing that researchers
are increasingly benefitting from the knowledge available within GL. The goal of
this chapter is to provide an overview of GL in SE, together with insights on how
SE researchers can effectively use and benefit from the knowledge and evidence
available in the vast amount of GL.

1 Introduction

Scientists generally place the most trust in peer-reviewed, published information,
such as journals and conference papers, according to the Institute for Work &

V. Garousi (�) · A. Rainer
Queen’s University Belfast, Belfast, Northern Ireland, UK
e-mail: v.garousi@qub.ac.uk; a.rainer@qub.ac.uk

M. Felderer
Department of Computer Science, University of Innsbruck, Innsbruck, Austria

Blekinge Institute of Technology, Karlskrona, Sweden
e-mail: michael.felderer@uibk.ac.at

M. V. Mäntylä
University of Oulu, Oulu, Finland
e-mail: mika.mantyla@oulu.fi

© Springer Nature Switzerland AG 2020
M. Felderer, G. H. Travassos (eds.), Contemporary Empirical Methods in Software
Engineering, https://doi.org/10.1007/978-3-030-32489-6_14

385

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32489-6_14&domain=pdf
https://orcid.org/0000-0001-6590-7576
https://orcid.org/0000-0003-3818-4442
https://orcid.org/0000-0002-2841-5879
https://orcid.org/0000-0001-8868-263X
mailto:v.garousi@qub.ac.uk
mailto:a.rainer@qub.ac.uk
mailto:michael.felderer@uibk.ac.at
mailto:mika.mantyla@oulu.fi
https://doi.org/10.1007/978-3-030-32489-6_14

386 V. Garousi et al.

Health (2019). By contrast, software practitioners typically do not have access to
peer-reviewed publications, or the time or expertise to read such publications. As a
result, practitioners are more likely to turn to other sources of information that they
trust, e.g., trade magazines, online blog posts, question-answers sites, survey results,
or technical reports, collectively referred to as grey literature (GL), as mentioned
in a technical report by the Institute for Work & Health (2019). Furthermore,
practitioners also share their ideas and experiences as GL, which can serve as a
valuable data source for research. Indeed, Devanbu et al. (2016) and Rainer et al.
(2003) both found that practitioners most trust their peers, particularly local experts.
This situation can lead to various negative outcomes for research, e.g., the limited
quality and quantity of communication between researchers and practitioners as
reported by Garousi et al. (2019), and the limited relevance and applicability of
many research papers when applied into industrial settings.

In an online article by the University of New England (2019), it is mentioned that
“Much grey literature is of high quality. Grey literature is often the best source of
up-to-date research on certain topics, such as rural poverty.” We wonder about
the comparable situation in software engineering (SE). As examples, there is a
book by Brooks (1995), entitled The Mythical Man-Month, and also another book
by DeMarco and Lister (2013), entitled Peopleware. While both of these books
formally belong to the GL, since they are books, and, yet, they are highly cited
in SE research.

We and many researchers, e.g., Elliott (2019), share the opinion that “if used
with care, grey literature can open up valuable additional sources of information
for researchers.” Furthermore, according to a paper by Farace (1997), the growth
rate of GL was 3–4 times that of conventional peer-reviewed literature. With the
major advancement of the Internet, we believe that the dissemination rate of GL
would be much higher now.

While GL can offer a wealth of additional information for researchers, some of
this information being much more current than research, GL should also be treated
with caution and cross-checked with other sources. For example, an assessment
by the Intergovernmental Panel on Climate Change (IPCC) of climate science in
2007 was subsequently criticized by the Inter-Academy Council (IAC), an umbrella
council for science academies. According to Rincon (2010), the IAC reported that
part of the IPCC report contained statements based on little evidence, and the use of
GL in that assessment “sparked controversy.”

There is a great potential for benefitting from grey literature in software-
engineering research.

Other papers put forward bold ideas relating to GL, e.g., Banks (2006) suggested
the notions of a “continuum of scholarship” and “the eventual collapse of the

Benefitting from the Grey Literature in Software Engineering Research 387

distinction between grey and non-grey literature,” implying that different types of
literature (peer-reviewed and grey) are, or could be, merging into each other.

Over many years, SE research has used a variety of practitioner-generated content
in close collaboration with practitioners, e.g., the work by Molléri et al. (2016) on
interviews, opinion surveys, and project documents and the work by Sharp et al.
(2010) on ethnographies. Garousi et al. (2019) recently suggested the use of GL as
a knowledge source in SE research (Garousi and Mäntylä 2016; Williams and Rainer
2017). As reported by Garousi et al. (2019), a large number of SE practitioners write
and share technical writings as GL, e.g., in the form of blog-like documents, videos,
and white papers. As recent work in SE has shown—e.g., Garousi et al. (2016a),
Rainer (2017), Williams and Rainer (2017), and Rainer and Williams (2019)—there
is great potential for benefitting from GL in SE research.

Practitioners have shared their ideas and experiences online for many years,
and thus, GL itself is not a recent topic in SE. However, using, benefitting, and
synthesizing knowledge from the GL in SE is a contemporary issue in SE research
and in empirical SE. The goal of this chapter is to provide an overview of GL,
together with insights into using and benefitting from the knowledge available in
the vast amount of GL in SE research.

The remainder of this chapter is organized as follows. We first review the general
concept of GL and provide further background information. We then review the
state of GL in SE research, including context, types, diversity, and scale of GL in
SE research and practice. We then suggest and discuss a selection of approaches for
using and analyzing GL in SE research.

2 The General Concept of Grey Literature

In this section, we provide an overview of the general concept of GL, including
different types of GL, and how GL has been conceived and used in other research
disciplines.

2.1 What Is GL and What Are Its Types, in General?

Though there are many definitions of GL in the literature, they are quite similar.
The Cochrane Handbook for Systematic Reviews of Interventions (Lefebvre et al.
2008) defines GL as “literature that is not formally published in sources such as
books or journal articles.” According to the Institute for Work & Health (2019),
GL is essentially any document that has not gone through formal peer review for
publication. There is an annual conference on GL1 and an international journal

1www.textrelease.com

http://www.textrelease.com/

388 V. Garousi et al.

O
ut

le
t c

on
tr

ol
K

no
w

n

 U

nk
no

w
n 3rd tier GL: Low outlet control/ Low

credibility: such as blogs, emails, tweets

2nd tier GL: Moderate outlet control/
Moderate credibility: such as annual
reports, news articles, presentations, videos,
Q/A sites (such as StackOverflow), Wiki
articles

1st tier GL: High outlet control/ High
credibility: such as books, magazines,
government reports, white papers

Known Unknown
Expertise (or credibility)

Fig. 1 “Shades” of grey literatures (based on Adams et al. 2016)

on GL.2 There is also a Grey Literature Network Service,3 which is “dedicated
to research, publication, open access, education, and public awareness to grey
literature.”

However, which types of sources are considered as GL depends to some extent on
the research discipline. Therefore, models that classify source types into categories
of GL are very helpful. There are many models for classifying different categories
of GL and GL sources, e.g., the model by Adams et al. (2016), shown in Fig. 1,
stems from the management sciences. This model has two dimensions: (1) expertise
and (2) outlet control. Both dimensions run between the extremes “unknown”
and “known.” Expertise is the extent to which the authority and knowledge of
the producer of the content can be determined. Outlet control is the extent to
which content is produced, moderated, or edited in conformance with explicit
and transparent knowledge-creation criteria. Rather than having discrete bands,
the gradation in both dimensions is on a continuous range between known and
unknown, producing the shades of GL. To emphasize: the figure is not intended
to suggest discrete boundaries between the tiers.

The model presented in Fig. 1 is comparable with Table 1, developed by Giustini
and Thompson (2010), which shows the spectrum of the “white,” “grey,” and
“black.” The “white” literature is visible in both Fig. 1 and Table 1 and indicates
that both expertise and outlet control are fully (or at least sufficiently) known. With
the examples presented in Table 1, GL corresponds mainly to the second tier in
Fig. 1, with moderate outlet control and expertise.

“Black” literature is at the low end of both the outlet control and credibility
spectrums. Blogs, but also emails and tweets, mainly refer to ideas, concepts, or

2http://www.greynet.org/thegreyjournal.html
3www.greynet.org

http://www.greynet.org/thegreyjournal.html
http://www.greynet.org/

Benefitting from the Grey Literature in Software Engineering Research 389

Table 1 Spectrum of the “white,” “grey,” and “black” literature

“White” literature “Grey” literature “Black” literature

• Published journal papers
• Conference proceedings
• Books

• Preprints
• e-prints
• Technical reports
• Lectures
• Datasets
• Audio-video (AV) media
• Blogs

• Ideas
• Concepts
• Thoughts

From: Giustini and Thompson (2010)

thoughts that are not peer reviewed by any “outlets.” They are typically in the third
tier of the model presented in Fig. 1.

We noted earlier that there are “shades” of grey in the classifications given in
Fig. 1 and Table 1 and, depending on the degree of peer review during the process
of creating the item of GL, a specific item of GL can be in different tiers of Fig. 1.
For example, in a GL review study of microservices, Soldani et al. (2018) identified
20 blog posts for further analyses, using a quality checklist to identify the higher-
quality GL. As a contrasting example that analyzed the types, frequencies, and
findability of interdisciplinary GL, Marsolek et al. (2018) treated conference papers
as GL. This is because, in some disciplines, conferences accept all submitted papers
with no peer review. However, in SE research at least, the highly ranked conferences
have established peer review processes to select submitted papers for publication in
a similar process to journals. Thus, the SE research community does not in general
treat conference papers as GL.

Grey literature sources can be classified according to the two dimensions:
expertise and outlet control. Expertise is the extent to which the authority and
knowledge of the producer of the content can be determined. Outlet control is
the extent to which content is produced, moderated, or edited in conformance
with explicit and transparent knowledge-creation criteria.

As further contrasting examples, M.Sc. and Ph.D. theses are often reviewed
by several examiners and therefore are also often peer reviewed. Also, in most
software companies who intend to share technical reports or white papers online,
such documents are almost always reviewed to some degree by peers, and therefore
such publications could be considered as peer-reviewed literature. The peer review
process for technical documents differs from the peer review of academic publi-
cations, however. For example, academic peer review is often done anonymously
by reviewers who are independent, with less potential for conflicts of interest. The
peer review process is also managed by an independent editor. By contrast, the peer
review of technical documents, in practice, may often be undertaken by known

390 V. Garousi et al.

colleagues. Thus, in summary, we conclude that what constitutes GL depends on
the standards of the respective research discipline.

We also recognize that the rise of social media is increasing the extent of GL in
SE. Storey et al. (2014) write of “The (R)Evolution of Social Media in Software
Engineering.” They illustrate that communication and social media produce data
through different channels and this communication evolves over the years. For
example, Usenet, Email List, and SourceForge used to be popular, but currently
tools such as Stack Overflow, Slack, and GitHub dominate. Social media is usually
third level (tier) GL, in Fig. 1, but some of content sources such as Stack Overflow
or Wikipedia can be considered second level GL as there are informal controls
and other people can edit and improve the content. Williams and Rainer (2017)
recommend that GL materials “need to be rigorous, relevant, well written and
experience based for them to be considered credible to [SE] researchers.” Another
consideration is that as one lowers the quality threshold, i.e., move from tier 1 to 3
(in Fig. 1), the amount of available literature grows to enable large-scale quantitative
analysis. The scale of this GL is further addressed in Sect. 3.5.

Due to the limited control of expertise and outlet in GL, it is important to also
identify GL producers. Giustini and Thompson (2010) identified the following GL
producers: (1) government departments and agencies (i.e., in municipal, provincial,
or national levels); (2) nonprofit economic and trade organizations; (3) academic
and research institutions; (4) societies and political parties; (5) libraries, museums,
and archives; (6) businesses and corporations; and (7) freelance individuals, i.e.,
bloggers, consultants, and Web 2.0 enthusiasts. Marsolek et al. (2018) found that
GL was present in the majority (68%) of the subject databases and almost all
institutional repositories (95%).

2.2 GL in Other Research Disciplines

GL is already established in a number of other research disciplines. Marsolek et
al. (2018) examined 118 subject databases used by academic researchers, together
with 115 repositories held by North American institutions, which included GL. The
databases and repositories covered the arts, business, education, health sciences,
humanities, multidisciplinary research, natural sciences, physical sciences and
engineering, and social sciences.

Grey literature is already established, as a source of knowledge/evidence, in
many other research disciplines.

Luzi (2000) identified stages in the growth of GL, from its first appearance in
the post-war period to its evolution into electronic GL, and analyzes a selection

Benefitting from the Grey Literature in Software Engineering Research 391

of studies and conferences organized up to the 1990s. He also examines the first
databases: these transformed the way in which GL was collected and distributed.
Luzi’s review is of course dated now by about 20 years. In contrast to Luzi’s ret-
rospective, Banks (2006) took a more prospective view and considers political and
technological aspects for increasing access to valuable GL. For Banks, institutional
repositories present an exciting opportunity for both the preservation and retrieval
of GL.

Other relevant work includes discussions by Thompson (2001) of ways in which
GL in engineering can be acquired and used, and arguments provided by McKimmie
and Szurmak (2002) on how grey questions can drive research.

2.3 Usage and Analysis of GL in the CS Research

GL has also received attention in the computer science (CS) research commu-
nity, e.g., computational linguistics, data and knowledge engineering, information
retrieval, database, and expert systems. Studies have analyzed the GL data to
answer a variety of research questions. For example, Swanson et al. (2014) focused
on identifying narrative clauses in personal stories. Their study used 50 personal
stories drawn from 5000 blog posts. Facca and Lanzi (2005) reported a survey
on mining “interesting” knowledge from weblogs. Park et al. (2010) analyzed 588
sentences from 6000 blog posts on WordPress. Kurashima et al. (2009) analyzed
29 million blog posts collected using the BlogRanger 2.0 API. In another study,
Kurashima et al. (2006) analyzed 62,396 articles from two Japanese blog hosting
sites. Finally, Inui et al. (2008) analyzed 50 million posts from 150 million
weblog posts (in Japanese). Bansal et al. (2007) developed BlogScope, a system
for analyzing temporally ordered streaming text online. At the time, BlogScope
“ . . . track[ed] more than 36 million blogs with more than 837 million posts in the
blogosphere . . . [fetching on average] 14,000 new documents every hour,” a quote
from Lakshmanan and Oberhofer (2010). The service was shut down in early 2012.

3 Grey Literature in Software Engineering

In this section, we review the state of GL in SE, considering the context, types,
diversity, and scale of GL.

3.1 What Is GL in SE?

Based on the two dimensions to classify GL defined in the previous section, i.e.,
expertise and outlet control, GL in SE can be defined as any material about SE that

392 V. Garousi et al.

Fig. 2 A context diagram showing the context of GL in SE

is not formally peer reviewed nor formally published. We summarize the concept of
GL in SE using a UML context diagram (see Fig. 2).

Grey literature in SE can be defined as any material about SE that is not
formally peer reviewed nor formally published.

At the center of this diagram lies the “Technical information (writing)” class
which has two subclasses: Paper in academic literature and Artefact in grey
literature. A technical information piece is written by one or more Authors and is
read by one or more Readers, who are themselves Software Engineers. A Software

Benefitting from the Grey Literature in Software Engineering Research 393

Engineer has two subtypes: Practitioner and Researcher. An Artefact in grey
literature could be a Blog-like document, or Video, or White paper, etc. According
to Rainer (2017), an Artefact in grey literature could include Conclusions which
in turn may be backed (supported) by Reasoning, Experience, and/or Evidence
and illustrated by one or more Examples. The Practitioner writes an Artefact in
grey literature using her/his professional experience of software practice (empirical
world).

3.2 Scale of the Software Engineering Community: Academia
Versus Industry

To further understand the role and position of GL in SE practice and SE research,
we present a high-level view of the community of SE practice versus research. We
look at the estimated population of the two communities.

According to a report by Evans Data Corporation (2018), there were about
23 million software developers worldwide in 2018, and that number is estimated
to reach 27.7 million by 2023. According to an IEEE Software paper by Briand
(2012), “4000 individuals” are “actively publishing in major [SE] journals,” which
can be used as the estimated size (lower bound) of the SE research community.
If we divide the two numbers, we can see that on average, there is one SE
academic for every 5750 practicing software engineers, indicating that the size
of the SE research community is very small compared to the size of the SE
practitioner community. We visualize the two communities and the current state
of collaboration in Fig. 3, which has been taken from the work of Garousi et
al. (2018). The chapter “Practical Industry Co-production and Technology and
Knowledge Interchange” also presents important concepts about industry–academic
collaborations in software engineering.

As visualized in Fig. 3, while there exist established ways to enable knowledge
flow from software industry to academia, e.g., interviews, opinion surveys, and
ethnography, we believe that benefitting from GL materials is another prominent
enabler for this.

3.3 Process of Generating the GL Content in SE

To better understand the nature of GL in SE, it is also important to characterize the
process by which GL content is generated. We depict such a process in Fig. 4 which
is a simplified version of the ideas presented in Rainer and Williams (2019). The
process presented in the figure is intended only as an illustrative example, not as an
accurate descriptive account or a prescription of the processes that should occur.

394 V. Garousi et al.

Fig. 3 Visualizing the community of software practitioners and researchers, and the knowledge
flow between them (including GL); from Garousi et al. (2018)

Software
engineering

activity
Experiencing

Believing

Opinion/ beliefs
from/of peers/other

practitioners

Self-reflection

Reasoning

Author

Grey-literature
materials

Influences

Writes /
Shares

Fig. 4 Process model of the generation of GL contents; simplified from Rainer and Williams
(2019)

Benefitting from the Grey Literature in Software Engineering Research 395

In terms of research, we are interested in what the GL author is able to describe
of real-world software engineering practice. These descriptions are obviously
filtered through the processes that occur between experiencing and reporting in
the model. Many of these processes are internal to the GL author. These internal
processes therefore introduce threats to validity relating to subjectivity, and also
challenges to research due to the invisibility of these processes. Peer review helps
to counteract these threats by independently reviewing the outputs from the internal
processes, rather than reviewing the processes themselves. The chapter “Systematic
Assessment of Threats to Validity in Software Engineering Secondary Studies”
presents important concepts about systematic assessment of threats to validity in
software engineering secondary studies, and some of those ideas can be applied
when conducting secondary studies involving GL.

In terms of the internal processes represented in Fig. 4:

• Experiencing is an active engagement between the author and the empirical
world. Experiencing can take place at different levels of scope and resolution,
e.g., directly experiencing programming in contrast to experiencing the “behav-
ior” of a software organization. The formation of experience is influenced by
prior beliefs and in turn influences those beliefs and is influenced by self-
reflection and reasoning.

• Beliefs are defined as conceptions, personal ideologies, worldviews, and values
that shape practice and orient knowledge. Passos et al. (2011) investigated the
role of beliefs in software practice.

• Underpinning the processes that occur within the author, the author has the ability
to self-reflect (to some degree) and to reason (to some degree) about her or his
experiencing, beliefs, and reporting.

Other peoples’ beliefs may influence the author. As noted earlier, Devanbu et
al. (2016) and Rainer et al. (2003) have investigated the role of others’ beliefs.
Figure 4 indicates that, finally, the author reports information that may include some
description of their experience of software practice, some expression of her or his
beliefs, and some degree of reasoning relating these experiences and beliefs. It is
very likely that the information reported will be incomplete in some way(s), which
could also be the case for papers written by researchers.

3.4 GL as a Source of Knowledge and Evidence in SE

An emerging view in SE is that a large amount of SE-related information and
experience is becoming available, much of it in the GL, and those data need to be
more effectively used to solve practical issues and to push SE research forward, e.g.,
reported by Garousi et al. (2016a), Rainer (2017), Williams and Rainer (2017), and
Rainer and Williams (2019). Lawrence and Giles (1999) observe that this situation
occurs in many other disciplines. MacDonald et al. (2007) state that “the problems
of awareness [e.g., for using GL in SE research] persist, even though most of the

396 V. Garousi et al.

new information is now digitally produced and arguably easier to access.” It has
been recognized in other disciplines that the diffusion, use, and influence of such
GL information are complex and variable processes, e.g., by Farace (1997).

GL has already been recognized as a knowledge source in other research areas,
e.g., in medicine, with studies by Chavez et al. (2007) and Pappas and Williams
(2011), and in earth sciences, with the study by Augusto et al. (2010).

Pappas and Williams (2011) stated that “Because of the delay between research
and publication, and because of the potential that some important research may
never be published, access to innovative information is challenging. Grey literature
is a tool to fill that void.”

Garousi et al. (2019) propose one approach to combine knowledge from both GL
and published literature: the Multivocal Literature Reviews (MLR). An MLR is a
form of a Systematic Literature Review (SLR), which includes the GL in addition
to the published literature (e.g., journal and conference papers). MLRs are useful for
both researchers and practitioners since they provide summaries of both the state of
the art and practice in a given area.

In an MLR on when and what to automate in software testing (abbreviated
ManAutoTest MLR in the following) conducted by Garousi and Mäntylä (2016),
the researchers reviewed the formal and grey literature. If GL would have been
excluded from the pool of papers, a significant body of experience and knowledge
from practicing test engineers on the topic would have been missed. To put this
in quantitative terms, we partitioned the synthesis of a major output of that MLR
(factors to be considered for deciding when and what to automate in testing) by
the type of source where they were mentioned in either formal or GL, as shown in
Fig. 5. As we can see, out of the total of 15 factor categories, GL sources contributed
a total of 219 occurrences (instances) while academic sources discussed only 67
occurrences.

Fig. 5 A main output of the
MLR on ManAutoTest; from
Garousi and Mäntylä (2016)

Benefitting from the Grey Literature in Software Engineering Research 397

Furthermore, we can see from the figure that, if we were to not include the GL,
two categories (test oracle and development process) would not have been identified
in the study. The study demonstrates that GL can be a major source of knowledge
and experience. In addition, we extracted in the MLR study a large number of
qualitative quotes, related and in support of the factors presented in Fig. 5, e.g.,
a presentation by IBM engineers expressed: “Main Application has lot of inter-
dependency with other Applications which in turn cannot be automated,” referring
to the System Under Test (SUT)-related factors.

Additionally, we found in the ManAutoTest MLR that the type of evidence
found in GL was generally valid viewpoints, ideas of cause–effect relationships
that could be scientifically studied, as well as explanations of why and in what
context certain heuristics worked while others did not. We did not, however, find
any sophisticated (hardcore) empirical evidence, such as controlled experiments,
in the GL. The stated findings were mostly based on claims and experience. Also,
the source of evidence was difficult to identify as the reporting was of low quality.
Furthermore, we observed in our study that replication of the GL results was not
generally possible.

In summary, we can see that the MLR leveraged the readily available GL
knowledge on the Internet to synthesize the data and answer the important RQs
of the MLR study. If no GL data were to be used, the researchers had to conduct
interviews and/or opinion surveys that are often costly and may lead to the same
outcomes. Thus, we can see that using GL as a knowledge source can save research
costs and also improve research quality.

While GL can be useful as a source of knowledge and evidence in SE research,
we raise some caution about how far one can go (scientifically) with GL-based
evidence. While such evidence could clearly complement empirical studies in SE, it
cannot substitute conventional data gathered in traditional empirical studies. As we
will discuss in one of the next subsections, there are inherent challenges when using
GL in SE research, e.g., the issue of quality assurance of GL materials. Chapter
“Evidence Aggregation in Software Engineering” presents concepts and approaches
about evidence aggregation in software engineering, most of which can be applied
for aggregation of evidence from GL.

3.5 Types of GL in SE

As noted above, there are different types of GL, for example, white papers, blog
posts, and videos. Within a particular item of GL for SE, there can be considerable
variety of content, e.g., a web page can contain text, formatted tables, static images
(that may themselves present text or tables), animated images (e.g., GIFs), videos
(that again may contain text and tables), and audio. Thus, there is a much greater
diversity of types of GL and content within an item of GL compared to academic
literature. We list different dimensions of variability in GL materials in Table 2.

398 V. Garousi et al.

Table 2 Dimensions of variability in GL materials; from Rainer and Williams (2019)

Dimension Explanation and examples

Quality of written
language

For example, the formality of language

Natural language Most research appears to focus on English, but there are, of course,
a very wide range of other languages to consider

Media Video, text, static image, animated image, audio, presentations
“Encoding” of the media Text with, for example, HTML

(Proprietary) binary formats, e.g., Adobe PDF
Structure Headings, subheadings
Content Reasoning, e.g., claims, reasons, arguments

Opinions
Reporting of actual experience, perhaps as a “war story”
Code-related information, e.g., source code, documentation, API
Web links, e.g., URLs
(Tables of) data
Citations

3.6 Scale of GL in SE

It is hard to establish the quantity of general GL available online (without even
considering variation in the quality of GL) aside from the challenge of considering
the scale of SE-specific GL. Consequently, we briefly report a range of example
measures for GL in general and for SE.

Statista, an online market research and business intelligence portal, reported in
October 2018 that Tumblr, a popular blog platform, alone has 440 million blogs.4 As
of January 2019, WordPress self-reported5 that “Users produce about 136.2 million
new posts and 77.7 million new comments each month.” None of these statistics
relate specifically to GL for SE, and it is unlikely that these statistics would report
GL hosted on intranets.

Choi maintains a curated list6 of blogs focusing on SE, classified by type (i.e.,
company, individual/group, and product/technology). Choi lists approximately 650
blogs, of which approximately 250 are written by individuals. Panji maintains
a curated list of 185 software-related corporate blogs,7 e.g., Autodesk, BBC,
Dropbox, Facebook, LinkedIn, Mozilla, and Netflix. Merchant maintains a list of
over 50 tech blogs.8 Abstracta provides a list of 75 blogs and websites on software

4https://www.statista.com/statistics/256235/total-cumulative-number-of-tumblr-blogs/
5https://wordpress.com/activity/
6https://github.com/kilimchoi/engineering-blogs
7https://github.com/sumodirjo
8https://github.com/amitmerchant1990/tech-blogs

https://www.statista.com/statistics/256235/total-cumulative-number-of-tumblr-blogs/
https://wordpress.com/activity/
https://github.com/kilimchoi/engineering-blogs
https://github.com/sumodirjo
https://github.com/amitmerchant1990/tech-blogs

Benefitting from the Grey Literature in Software Engineering Research 399

testing.9 By contrast, Zalecki maintains a list10 of software podcasts. He states
that he is subscribed to over 100 podcasts, although lists 11 at his site. In their
systematic GL review of microservices, Soldani et al. (2018) observed a “ . . .

massive proliferation of grey literature [on microservices], with more than 10,000
articles on disparate sub-topics”

3.7 Benefits of Utilizing the GL in SE Research

Rainer and Williams (2019) reviewed research on the benefits, challenges, and
research directions for the use of blogs in software engineering research. They
identified a number of benefits to the use of blogs. Many of these benefits may
apply to the use of GL more generally, but we focus here on SE. The benefits are
summarized in Table 3.

3.8 Challenges of Using GL in SE Research

As well as the benefits of using blog posts (identified earlier), Rainer and Williams
(2019) also identified a number of challenges to the use of blogs as a type of GL.
These challenges were organized into several themes and are summarized here in
Table 4.

3.9 Diversity in Quality and Degree of Evidence in GL
Materials

Since processes for GL are more diverse and less controlled, compared to academic
literature, the quality of GL is more diverse and often more difficult to assess.
The quality of GL determines whether data from GL or conclusions raised in GL
can be used and analyzed (see Sect. 4). Garousi et al. (2019) compiled a quality
assessment checklist for GL shown in Table 5. It contains the criteria of authority of
the producer, methodology, objectivity, date, position with respect to related sources,
novelty, impact, and outlet type as well as assessment questions for each criterion.

For each type of GL, the relevant quality criteria have to be selected, adapted,
and finally assessed, which can for instance be done on a two-point Likert scale
with values “yes” or “no”; see for example, Garousi et al. (2019). For instance, a

9https://abstracta.us/blog/75-best-software-testing-blogs/
10https://michalzalecki.com/curated-list-of-podcasts-for-software-developers/

https://abstracta.us/blog/75-best-software-testing-blogs/
https://michalzalecki.com/curated-list-of-podcasts-for-software-developers/

400 V. Garousi et al.

Table 3 Benefits of utilizing the GL in SE research, based on Rainer and Williams (2019)

In general, GL materials

1. Provide information on practitioners’ contemporary perspectives on important topics
relevant to practice and to research

2. Promote the voice of practitioners
In particular, GL materials (such as blog-like documents) provide (access to) information on
the practitioner’s

1. Experience and inexperience of theirs’ and others’ software practice

2. Motivations for that practice

3. Values relating to that practice

4. Emotions relating to that practice

5. Beliefs about software practice

6. Empirical data from their practice

7. Explanations of that practice
In providing such information, GL materials

1. Help bridge the divide between research and practice

2. Complement the research literature by “filling in gaps” in research

3. Help to counteract bias findings, as a result of publication bias in the research literature
GL materials should be considered when (Williams and Rainer 2017)

1. The topic of the research is complex

2. The topic is not “solvable” by using only the peer-reviewed research literature

3. There is a lack of quantity and/or quality of best evidence from research, or a lack of
consensus in the research

4. Context is important to the study of the topic

5. The researcher intends to challenge existing assumptions and findings, either in research or
practice, or both

6. A synthesis of practice and research would be valuable to either or both communities

7. The researcher intends to consider trends over time

8. The researcher seeks to better understand, assess, or demonstrate the impact of research in
relation to a particular topic

Methodologically, the use of GL materials in research helps researchers to

1. Assess and address publication bias

2. Compensate for the (un)availability of other sources of evidence

3. Increase research visibility into actual software practice

4. Access harder-to-access practitioners, e.g., due to logistics, or demographics

5. Gather information for the research in a noninvasive way

6. Scale-up their research to, or with, larger samples

7. Complement and triangulate with other sources of data

8. Provide an audit trail of their research

9. Replicate each other’s study through public access to original data

Benefitting from the Grey Literature in Software Engineering Research 401

Table 4 Challenges of working with and using GL in SE research, based on Rainer and Williams
(2019)

Challenges themes Concrete challenges

Foundations, e.g., there are a lack of . . . • Formal definitions of GL and GL materials
• Formal models of GL materials and content, in
particular

– A data model of GL materials and content
– A process model of the creation, review, and

publication of GL materials and content
• Frameworks for evaluating the quality of GL
materials and content, and classifying those
materials and content

Inherent nature of GL materials There are challenges managing . . .

• The very large quantity of GL materials
• The variability of GL materials
• The uncertain process for generating,
publishing, and revising the content of GL
materials

Resources There are a lack of . . .

• Central repositories of GL materials
• Tools to work with GL materials and content,
for example:

– To select the higher-quality documents when
performing a search

– To select particular types of GL materials,
e.g., those reporting experience, values,
explanations, etc.
• Datasets and corpora of GL materials

Quality assurance While some efforts have started, e.g., Garousi et
al. (2019), there is a shortage of:
• Well-developed and accepted checklists for the
quality assurance of various aspects of GL
materials including:

– The author
– The document
– The content of the document, e.g., claims
– The readers’ assessment of the credibility of

the document
– The readers
– The readers’ feedback on the document, e.g.,

comments, shares, up-votes
Methodology • The evidential value of blog-like content

• The appropriate research methods to use with
GL materials and content

number of online comments to measure the impact only exist for source types open
for comments like blog posts, news articles, or videos. A highly commented blog
post may indicate popularity, but on the other hand, spam comments may bias the
number of comments, thus invalidating the high popularity.

402 V. Garousi et al.

Table 5 Quality assessment checklist for GL in SE

Criteria Questions

Authority of the producer • Is the publishing organization reputable? For example, the
Software Engineering Institute (SEI)
• Is an individual author associated with a reputable
organization?
• Has the author published other work in the field?
• Does the author have expertise in the area? (e.g., job title
principal software engineer)

Methodology • Does the source have a clearly stated aim?
• Does the source have a stated methodology?
• Is the source supported by authoritative, contemporary
references?
• Are any limits clearly stated?
• Does the work cover a specific question?
• Does the work refer to a particular population or case?

Objectivity • Does the work seem to be balanced in presentation?
• Is the statement in the sources as objective as possible? Or,
is the statement a subjective opinion?
• Is there a vested interest? For example, a tool comparison by
authors that are working for a particular tool vendor
• Are the conclusions supported by the data?

Date • Does the item have a clearly stated date?
Position w.r.t. related sources • Have key-related GL or formal sources been linked

to/discussed?
Novelty • Does it enrich or add something unique to the research?

• Does it strengthen or refute a current position?
Impact • Normalize all the following impact metrics into a single

aggregated impact metric (when data are available): number
of citations; number of backlinks; number of social media
shares (the so-called alt-metrics); number of comments
posted for a specific online entry, like a blog post or a video;
number of page or paper views

Outlet type • First tier GL (measure = 1): high outlet control/high
credibility: books, magazines, theses, government reports,
white papers
• Second tier GL (measure = 0.5): Moderate outlet
control/moderate credibility: annual reports, news articles,
presentations, videos, Q/A sites (such as Stack Overflow),
Wiki articles
• Third tier GL (measure = 0): Low outlet control/low
credibility: blogs, emails, tweets

Benefitting from the Grey Literature in Software Engineering Research 403

4 How GL Can Be Used/Analyzed in SE

The SE research community has started to use the information and evidence from
the GL in different ways.

4.1 Review of How GL Has Been Used/Analyzed in SE
Research

Table 6 classifies the SE research community’s use of GL. We distinguish in Table 6
different ways of utilizing/analyzing the GL in SE research. The first three types of
study concern the use of GL in a primary study, ranging from studies with a specific

Table 6 Different ways of utilizing/analyzing the GL in SE research community so far

Study types Type of usage/analysis Example papers

Primary studies (from
specific focus on GL
to only citing GL)

Analyzing GL materials
with qualitative approach

• Using argumentation theory to analyze
software practitioners’ defeasible
evidence, inference, and belief (Rainer
2017)
• An analysis of major pivots of software
startups (Bajwa et al. 2017)
• Analyzing the motivations and
challenges of developers for blogging
(Parnin et al. 2013)

Analyzing GL with
quantitative approach

• Measuring API documentation: 1730
websites and 376 blog posts (Parnin and
Treude 2011)
• What are mobile developers asking
about? A large-scale study using Stack
Overflow (Rosen and Shihab 2016)

Citation to GL: GL
materials are cited in
research papers as related
works/examples

Many papers in SE cite GL materials for
different reasons, e.g., to motivate the
papers. Two examples of widely cited
GL materials in SE are:
• The economic impacts of inadequate
infrastructure for software testing
(Planning 2002)
• Various editions of the Standish
Group’s “Chaos” report (The Standish
Group 2019)

Secondary studies Systematic reviews
involving GL

• An MLR on iOS applications testing
(Kulesovs 2015)
• A GLR on choosing the right test
automation tool (Raulamo et al. 2017)
• An MLR on when to automate in
testing (Garousi and Mäntylä 2016)

404 V. Garousi et al.

focus on GL to those studies that only cite GL. The fourth type of study concerns
secondary studies, i.e., the systematic review of GL. We discuss these types in more
detail in the following subsections.

4.1.1 Qualitative Analysis of GL Materials

Many SE researchers are analyzing GL material and answering GL-specific research
questions even when they do not explicitly acknowledge it. The grey literature can
be analyzed with both qualitative and quantitative methods (see the next section).
With qualitative methods we mean analysis methods where humans read, analyze,
and classify GL text in order to produce knowledge. When using a qualitative
approach, one can use approaches presented in qualitative research guideline books
and articles, e.g., those by Patton (2002) and Cruzes and Dybå (2011).

We can find qualitative works in this area. In some papers, humans analyze
and classify the particular GL contents and explore motivations for GL production
in software development. Parnin et al. (2013) analyzed why and about what the
software developers write blogs. They found that the blogs covered multiple topics
such as code and tool tutorials, new releases and enhancement to the products the
developers were working with, and general technology discussions for example.
Blogging was motivated by personal branding, evangelism, and getting feedback,
and finally for personal knowledge repository. A study of similar nature was later
conducted by MacLeod et al. (2015) on software developers’ YouTube videos
that found video content was more about technical topics such as development
experience, implementation choices, and data structures. Videos were also seen as
an alternative to blogging and many similar motivations for video creations existed
as for blogging.

Bajwa et al. (2017) use GL of software startups and analyze their business pivots.
The authors frame their study as a case study on secondary data that the authors
collected from various websites. They find that software startups pivot for 14 reasons
(triggers) such as negative customer reaction, unable to beat a competitor, and
technological challenge. They also find evidence of ten different pivot types such
as switching to a different problem and zoom-in where a particular feature becomes
the whole product.

There are other studies that use a set of GL materials, but do not survey
a large/r set of literature, instead adopting a kind of case study approach. As
one example, Rainer (2017) used argumentation schemes to qualitatively analyze
information reported by Joel Spolsky in one of his blog posts, entitled The Language
Wars. Rainer formally modeled the integration of argumentation structures and
professional experience and then showed how the arguments and experience can
be related to previous research. Rainer’s in-depth analyses of one blog post may
be understood as a case study to complement the survey-like studies of MLRs and
Grey Literature Reviews (GLRs).

Benefitting from the Grey Literature in Software Engineering Research 405

4.1.2 Quantitative Analysis of GL Materials

In the quantitative analysis of GL, research methods range from simple frequency
counting to advanced machine learning used for natural language processing such
as Rosen and Shihab’s (2016) topic modeling LDA (Latent Dirichlet Allocation)
and Efstathiou et al.’s (2018) use of word embeddings. Much of the quantitative
analyses of GL appears to concentrate around a small number of sources, principally
Stack Overflow. This may be because the data is easy to access and relatively well
structured. But in addition to Stack Overflow, one can find more analyses of blogs,
e.g., by Parnin and Treude (2011), and emails, e.g., by Sharma et al. (2017), which
should offer a more multivocal view. Next, we present a few examples of studies
using quantitative analysis of GL.

Gruetze et al. (2016) examined topic shifts, by analyzing tags in software
development QA site Stack Overflow. The authors showed declining trends in
tags like Delphi and Database Design, while increasing trends were found for
the programming language “R” and Node.js for example. They also show that
automated tagging of posts is improved when the time of the post is considered.

As noted already, Rosen and Shihab (2016) also analyzed Stack Overflow but
with respect to questions that mobile developers are asking about. They analyze 13
million posts and use LDA to cluster the data. They find that mobile developers
ask about “app distribution, mobile APIs, data management, sensors and context,
mobile tools, and user interface development.”

Quantitative analyses of GL in Stack Overflow have also been used to create
guidelines of how to create good Stack Overflow posts, e.g., by Calefato et
al. (2018). The authors suggest using quantitative analysis that successful Stack
Overflow questions are short, have code snippets, do not abuse uppercase letter, and
have neutral emotional expressions. So the analysis of GL can be used to provide
advice on how to write better GL.

Sharma et al. (2017) performed quantitative analysis on email discussion in
Python language evolution. They collect a dataset of over 40,000 emails. They found
that technical discussion receives clearly the highest volume of emails over social
and process issues. The authors conclude that this shows that Python developers
mostly care and are passionate about technical features of the language.

4.2 Citations to GL in SE Papers

Many papers in SE cite GL materials for different reasons, e.g., to motivate the
papers, to use their insights/data, etc. Two example widely cited GL materials
in SE are: (1) A technical report entitled “The economic impacts of inadequate
infrastructure for software testing,” conducted by Research Triangle Institute
(2002), for the American National Institute of Standards and Technology (NIST),
which was cited about 700 times according to Google Scholar (October 2019) and

406 V. Garousi et al.

(2) various editions of the Standish Group’s “Chaos” report, e.g., the Standish Group
(2019).

We believe that by providing more citations and getting insights from GL in
research papers, researchers will contribute to a stronger linkage between industry
and academia, as mentioned in Garousi et al. (2016b, 2017a), since readers and
follow-up research studies will be encouraged to use more real-world industrial
approaches and data.

4.3 Systematic Reviews Using GL Sources

Systematic reviews systematically select, review, and synthesize knowledge in a
given topic of SE. Traditionally, since the inception of evidence-based software
engineering (EBSE) by Kitchenham et al. (2004), two types of review studies have
been published in the SE community: Systematic Literature Reviews (SLR) and
Systematic Literature Mappings (SLM or SM).

With more awareness for GL in SE, recent review studies in SE have started
to include GL, e.g., Garousi et al. (2019). We first discuss the different types of
systematic reviews which include GL and then discuss the guidelines to conduct
such studies.

To include GL, four new types of review studies have emerged, as discussed
by Garousi et al. (2019): (1) Multivocal Literature Review (MLR), (2) Multivocal
Literature Mapping (MLM), (3) Grey Literature Mapping (GLM), and (4) Grey
Literature Review (GLR). An MLR is a form of an SLR which includes the GL
in addition to the published literature. To clearly distinguish all different types of
review studies in SE, we depict the relationship among them in Fig. 6.

Fig. 6 Relationship among different types of systematic secondary studies (from Garousi et al.
2019)

Benefitting from the Grey Literature in Software Engineering Research 407

As we see in Fig. 6, the differentiation factors of six types of systematic
secondary studies are types of analysis and types of sources under study. For
example, the difference between an MLR and a GLR is that, while the former
reviews both GL and published literature, the latter reviews only the GL. The
difference between an MLM and an MLR is that, while both analyze GL, the former
reviews only the classified pool of sources, and the latter synthesizes the evidence
from those sources in addition.

We looked at recent review studies in SE involving GL. We were able to find
18 such studies as shown in Table 7. Note that this list only contains the review
studies involving GL focusing on SE. There have also been a recent trend on review
studies involving GL in other areas of CS, e.g., an MLR on server-less computing
by Sadaqat et al. (2018).

As highlighted in the table, the authors of this chapter have been involved in six
(6) of these studies. As it can be seen in the table, there has been a sharp increase in
such studies in recent years, as 9 out of 18 papers were published in 2018.

For each of the studies in Table 7, we also show the number of academic literature
(AL) sources, number of GL sources, and percentage of GL sources reviewed in that
study. Needless to say, the ratio would be %100 for GLR studies. The ratios, in a
sense, denote the scale of AL versus GL knowledge in a given topic. For example,
for the topic of involving security in DevOps (DevSecOps), the numbers of AL/ GL
sources are 2/50 (a GL ratio of 96%), while in the topic of ethics in requirements
engineering, the numbers of AL/GL sources are 98/34 (a GL ratio of 26%).

Grey literature and grey literature reviews inevitably have their limitations.
Rainer and Williams (2019) identified several challenges with using blog posts in
software engineering research. Many of these challenges apply to GL, e.g., the vast
quantity of GL available, and the variability in the quality of GL. MLRs are one
approach to addressing the limitations of GL, i.e., by combining GL with AL. As
researchers conduct more reviews using GL so the community can develop better
guidelines, checklists, and methodology for using GL in research.

5 Recommended Further Reading

The usage of grey literature (GL) in software engineering is strongly related to
evidence-based methods and literature reviews in software engineering. Kitchenham
et al. (2015) provided a comprehensive book on evidence-based software engineer-
ing and systematic reviews.

For the main types of systematic literature studies in software engineering,
i.e., systematic literature reviews and mapping studies, there are highly referenced
guideline papers, such as guidelines by Kitchenham and Charters (2007) for Sys-
tematic Literature Reviews (SLRs), which are also extensively discussed together
with background information in the aforementioned book Kitchenham et al. (2015),
and Petersen et al. (2015)’s guidelines for Systematic Mapping Studies (SMSs). You
could perhaps include a citation to Rapid Reviews?

408 V. Garousi et al.

T
ab

le
7

A
su

m
m

ar
y

of
th

e
re

ce
nt

re
vi

ew
st

ud
ie

s
in

vo
lv

in
g

G
L

Ty
pe

R
ev

ie
w

to
pi

c
M

L
R

G
L

R
Y

ea
r

R
ef

er
en

ce
s

#
of

A
L

so
ur

ce
s

#
of

G
L

so
ur

ce
s

%
of

G
L

so
ur

ce
s

Te
ch

ni
ca

ld
eb

t
x

20
13

To
m

et
al

.(
20

13
)

0
35

10
0

iO
S

ap
pl

ic
at

io
ns

te
st

in
g

x
20

15
K

ul
es

ov
s

(2
01

5)
12

9
42

W
he

n
to

au
to

m
at

e
in

te
st

in
g

x
20

16
G

ar
ou

si
an

d
M

än
ty

lä
(2

01
6)

26
52

66
G

am
ifi

ca
ti

on
of

SW
te

st
in

g
x

20
16

M
än

ty
lä

an
d

Sm
ol

an
de

r
(2

01
6)

6
14

70
R

el
at

io
ns

hi
p

of
D

ev
O

ps
to

ag
il

e
x

20
16

L
w

ak
at

ar
e

et
al

.(
20

16
)

33
20

1
86

C
ha

ra
ct

er
iz

in
g

D
ev

O
ps

x
20

16
de

Fr
an

ca
et

al
.(

20
16

)
24

19
44

Te
st

m
at

ur
it

y
an

d
te

st
pr

oc
es

s
im

pr
ov

em
en

t
x

20
17

G
ar

ou
si

et
al

.(
20

17
b)

13
0

51
28

In
vo

lv
in

g
se

cu
ri

ty
in

D
ev

O
ps

(D
ev

Se
cO

ps
)

x
20

17
M

yr
ba

kk
en

an
d

C
ol

om
o-

Pa
la

ci
os

(2
01

7)
2

50
96

C
ho

os
in

g
th

e
ri

gh
tt

es
t

au
to

m
at

io
n

to
ol

:a
G

L
R

x
20

17
R

au
la

m
o

et
al

.(
20

17
)

0
53

10
0

Sm
el

ls
in

SW
te

st
co

de
x

20
18

G
ar

ou
si

an
d

K
üç

ük
(2

01
8)

46
12

0
28

Se
ri

ou
s

ga
m

es
fo

r
SW

pr
oc

es
s

x
20

18
C

al
de

ró
n

et
al

.(
20

18
)

6
1

14
Pa

in
s

an
d

ga
in

s
of

m
ic

ro
se

rv
ic

es
x

20
18

So
ld

an
ie

ta
l.

(2
01

8)
0

51
10

0
R

el
ev

an
ce

of
so

ft
w

ar
e

en
gi

ne
er

in
g

re
se

ar
ch

x
20

18
G

ar
ou

si
et

al
.(

20
18

)
33

13
28

E
th

ic
s

in
re

qu
ir

em
en

ts
en

gi
ne

er
in

g
x

20
18

A
be

rk
an

e
(2

01
8)

98
34

26
Fu

nc
ti

on
-a

s-
a-

se
rv

ic
e

so
ft

w
ar

e
de

ve
lo

pm
en

t
x

20
18

L
ei

tn
er

et
al

.(
20

18
)

0
50

10
0

A
do

pt
in

g
th

e
sc

al
ed

ag
il

e
fr

am
ew

or
k

(S
A

Fe
)

x
20

18
Pu

tt
a

et
al

.(
20

18
)

52
47

47
M

on
ol

it
hi

c
re

po
si

to
ri

es
(M

on
or

ep
os

)
x

20
18

B
ri

to
et

al
.(

20
18

)
2

21
91

U
se

of
D

ev
O

ps
fo

r
e-

le
ar

ni
ng

sy
st

em
s

x
20

18
Sá

nc
he

z-
G

or
dó

n
an

d
C

ol
om

o-
Pa

la
ci

os
(2

01
8)

3
22

88

Benefitting from the Grey Literature in Software Engineering Research 409

However, none of the above guidelines explicitly discuss GL. Garousi et al.
(2019) filled this gap and provided guidelines for including GL and conducting
Multivocal Literature Reviews (MLRs) in software engineering. Researchers are
encouraged to consult those guidelines when planning MLR or other types of studies
involving GL. The guidelines for MLRs in SE cover planning, conducting, and
reporting the review. The step on conducting an MLR comprises guidelines for the
search process, source selection, study quality assessment, data extraction, and data
synthesis.

Marsolek et al. (2018) provided an overview of the usage of GL in other fields:
arts, business, education, health sciences, humanities, multidisciplinary research,
natural sciences, physical sciences and engineering, and social sciences. Especially,
in health sciences, GL and its analysis is well established and there is even a book
by Bonato (2018) on searching the GL.

6 Conclusion

The goal of this chapter has been to provide an overview of GL in SE, together with
insights on how SE researchers can effectively use and benefit from the knowledge
and evidence available in the vast amount of GL. We first reviewed the general
concept of GL and provided background information. We then discussed the state
of GL in SE research, including the context, types, diversity, and scale of GL in SE
research and practice. We then proposed and discussed five approaches for using
and analyzing GL in SE research: (1) analyzing GL materials to answer GL-specific
RQs; (2) using certain GL materials for qualitative studies; (3) using certain GL
materials quantitative studies; (4) citing GL materials; and (5) systematic reviews
involving GL.

As discussed above and also as indicated in other studies, e.g., by the University
of New England (2019), the reality is that researchers mostly write for, and read
from, scientific papers published in the academic, peer-reviewed literature, and by
contrast, practitioners mostly write for, and read from, materials published in the
GL. By reviewing how GL has been used in SE research, this chapter aims to
encourage further use of GL in SE research. We recommend all SE researchers
to reduce the gap between academia and industry via using GL materials in the five
forms as discussed in this chapter.

References

Aberkane A (2018) Exploring ethics in requirements engineering. Master thesis, Utrecht University
Adams RJ, Smart P, Huff AS (2016) Shades of grey: guidelines for working with the grey literature

in systematic reviews for management and organizational studies. Int J Manage Rev 19:432–
454

410 V. Garousi et al.

Augusto L, Bakker MR, Morel C et al (2010) Is ‘grey literature’ a reliable source of data to
characterize soils at the scale of a region? A case study in a maritime pine forest in southwestern
France. Eur J Soil Sci 61(6):807–822

Bajwa SS, Wang X, Nguyen Duc A et al (2017) “Failures” to be celebrated: an analysis of major
pivots of software startups. Empir Softw Eng 22(5):2373–2408

Banks MA (2006) Towards a continuum of scholarship: the eventual collapse of the distinction
between grey and non-grey literature. Publ Res Q 22(1):4–11

Bansal N, Chiang F, Koudas N et al (2007) Seeking stable clusters in the blogosphere. In:
Proceedings of VLDB endowment, pp 806–817

Bonato S (2018) Searching the grey literature: a handbook for searching reports, working papers,
and other unpublished research. RL & Associates LLC

Briand L (2012) Embracing the engineering side of software engineering. IEEE Softw 29(4):96–96
Brito G, Terra R, Valente MT (2018) Monorepos: a multivocal literature review. arXiv preprint

arXiv:1810.09477
Brooks F (1995) The mythical man-month: essays on software engineering. Pearson Education,

London
Calderón A, Ruiz M, O’Connor RV (2018) A multivocal literature review on serious games for

software process standards education. Comput Stand Interfaces 57:36–48
Calefato F, Lanubile F, Novielli N (2018) How to ask for technical help? Evidence-based guidelines

for writing questions on Stack Overflow. Inf Softw Technol 94:186–207
Chavez TA, Perrault AH, Reehling P et al (2007) The impact of grey literature in advancing global

karst research: an information needs assessment for a globally distributed interdisciplinary
community. Publ Res Q 23:3

Corporation ED (2018) Global developer population and demographic study 2018. https://
evansdata.com/reports/viewRelease.php?reportID=9

Cruzes DS, Dybå T (2011) Recommended steps for thematic synthesis in software engineering.
In: International symposium on empirical software engineering and measurement. IEEE, pp
275–284

de Franca BBN, Helvio Jeronimo J, Travassos GH (2016) Characterizing DevOps by hearing
multiple voices. In: Proceedings of the Brazilian symposium on software engineering, pp 53–62

DeMarco T, Lister T (2013) Peopleware: productive projects and teams. Addison-Wesley, Boston
Devanbu P, Zimmermann T, Bird C (2016) Belief & evidence in empirical software engineering.

In: IEEE/ACM international conference on software engineering. IEEE, pp 108–119
Efstathiou V, Chatzilenas C, Spinellis D (2018) Word embeddings for the software engineering

domain. In: Proceedings of the international conference on mining software repositories. ACM,
pp 38–41

Elliott C (2019) Jinfo Blog: Garner additional research sources with grey literature. https://
web.jinfo.com/go/blog/70203

Facca FM, Lanzi PL (2005) Mining interesting knowledge from weblogs: a survey. Data Knowl
Eng 53(3):225–241

Farace DJ (1997) Rise of the phoenix: a review of new forms and exploitations of grey literature.
Publ Res Q 13(2):69–76

Garousi V, Küçük B (2018) Smells in software test code: a survey of knowledge in industry and
academia. J Syst Softw 138:52–81

Garousi V, Mäntylä MV (2016) When and what to automate in software testing? A multivocal
literature review. Inf Softw Technol 76:92–117

Garousi V, Felderer M, Mäntylä MV (2016a) The need for multivocal literature reviews in software
engineering: complementing systematic literature reviews with grey literature. In: International
conference on evaluation and assessment in software engineering. Limmerick, pp 171–176

Garousi V, Petersen K, Özkan B (2016b) Challenges and best practices in industry-academia
collaborations in software engineering: a systematic literature review. Inf Softw Technol
79:106–127

Garousi V, Felderer M, Fernandes JM et al (2017a) Industry-academia collaborations in software
engineering: an empirical analysis of challenges, patterns and anti-patterns in research projects.

https://evansdata.com/reports/viewRelease.php?reportID=9
https://web.jinfo.com/go/blog/70203

Benefitting from the Grey Literature in Software Engineering Research 411

In: Proceedings of international conference on evaluation and assessment in software engineer-
ing, Karlskrona, pp 224–229

Garousi V, Felderer M, Hacaloğlu T (2017b) Software test maturity assessment and test process
improvement: a multivocal literature review. Inf Softw Technol 85:16–42

Garousi V, Borg M, Oivo M (2018) Cut to the chase: revisiting the relevance of software
engineering research. arXiv preprint arXiv:1812.01395

Garousi V, Felderer M, Mäntylä MV (2019) Guidelines for including grey literature and conducting
multivocal literature reviews in software engineering. Inf Softw Technol 106:101–121

Giustini D, Thompson D (2010) Finding the hard to finds: searching for grey (gray) lit-
erature. https://blogs.ubc.ca/dean/2010/02/finding-the-hard-to-finds-searching-for-grey-gray-
literature-2010/

Gruetze T, Krestel R, Naumann F (2016) Topic shifts in stackoverflow: ask it like Socrates. In:
International conference on applications of natural language to information systems. Springer,
pp 213–221

Institute for Work & Health (2019) What researchers mean by... Grey literature. https://
www.iwh.on.ca/what-researchers-mean-by/grey-literature

Inui K, Abe S, Hara K et al (2008) Experience mining: building a large-scale database of personal
experiences and opinions from web documents. In: IEEE Computer Society, pp 314–321

Kitchenham B, Charters S (2007) Guidelines for performing systematic literature reviews in
software engineering. EBSE technical report. EBSE-2007-01

Kitchenham BA, Dybå T, Jorgensen M (2004) Evidence-based software engineering. In: Proceed-
ings of international conference on software engineering, pp 273–281

Kitchenham B, Budgen D, Brereton P (2015) Evidence-based software engineering and systematic
reviews. CRC, Boca Raton

Kulesovs I (2015) iOS applications testing. In: Proceedings of the international scientific and
practical conference, pp 138–150

Kurashima T, Tezuka T, Tanaka K (2006) Mining and visualizing local experiences from blog
entries. In: International conference on database and expert systems applications. Springer, pp
213–222

Kurashima T, Fujimura K, Okuda H (2009) Discovering association rules on experiences from
large-scale blog entries. In: European conference on information retrieval, pp 546–553

Lakshmanan G, Oberhofer M (2010) Knowledge discovery in the blogosphere: approaches and
challenges. IEEE Internet Comput 14(2):24–32

Lawrence S, Giles CL (1999) Accessibility of information on the web. Nature 400:107
Lefebvre C, Manheimer E, Glanville J (2008) Searching for studies. In: Higgins JPT, Green S (eds)

Cochrane handbook for systematic reviews of interventions. Wiley-Blackwell, Chichester
Leitner P, Wittern E, Spillner J et al (2018) A mixed-method empirical study of function-as-a-

service software development in industrial practice. J Syst Softw 149:340–359
Luzi D (2000) Trends and evolution in the development of grey literature: a review. Int J Grey Lit

1(3):106–117
Lwakatare LE, Kuvaja P, Oivo M (2016) Relationship of DevOps to agile, lean and continuous

deployment: a multivocal literature review study. In: Proceedings of international conference
on product-focused software process improvement, pp 399–415

MacDonald BH, Cordes RE, Wells PG (2007) Assessing the diffusion and impact of grey literature
published by international intergovernmental scientific groups: the case of the Gulf of Maine
council on the marine environment. In: Proceedings of the international conference on grey
literature, pp 84–94

MacLeod L, Storey M-A, Bergen A (2015) Code, camera, action: how software developers docu-
ment and share program knowledge using YouTube. In: Proceedings of the IEEE international
conference on program comprehension, pp 104–114

Mäntylä MV, Smolander K (2016) Gamification of software testing – an MLR. In: International
conference on product-focused software process improvement, pp 611–614

https://blogs.ubc.ca/dean/2010/02/finding-the-hard-to-finds-searching-for-grey-gray-literature-2010/
https://www.iwh.on.ca/what-researchers-mean-by/grey-literature

412 V. Garousi et al.

Marsolek W, Cooper K, Farrell S et al (2018) The types, frequencies, and findability of disciplinary
grey literature within prominent subject databases and academic institutional repositories. J
Librariansh Sch Commun 6(1)

McKimmie T, Szurmak J (2002) Beyond grey literature: how grey questions can drive research. J
Agric Food Inf 4(2):71–79

Molléri JS, Petersen K, Mendes E (2016) Survey guidelines in software engineering: an annotated
review. In: Proceedings of the ACM/IEEE international symposium on empirical software
engineering and measurement, 58, pp 51–56

Myrbakken H, Colomo-Palacios R (2017) DevSecOps: a multivocal literature review. In: Confer-
ence on software process improvement and capability determination, pp 17–29

Pappas C, Williams I (2011) Grey literature: its emerging importance. J Hosp Librariansh 11:228
Park KC, Jeong Y, Myaeng SH (2010) Detecting experiences from weblogs. In: Proceedings of the

annual meeting of the association for computational linguistics, pp 1464–1472
Parnin C, Treude C (2011) Measuring API documentation on the web. ACM, New York, pp 25–30
Parnin C, Treude C, Storey M-A (2013) Blogging developer knowledge: motivations, challenges,

and future directions. In: IEEE international conference on program comprehension, pp 211–
214

Passos C, Braun AP, Cruzes DS et al (2011) Analyzing the impact of beliefs in software project
practices. In: International symposium on empirical software engineering and measurement.
IEEE, pp 444–452

Patton MQ (2002) Qualitative research and evaluation methods. Sage, Thousand Oaks
Petersen K, Vakkalanka S, Kuzniarz L (2015) Guidelines for conducting systematic mapping

studies in software engineering: an update. Inf Softw Technol 64:1–18
Planning S (2002) The economic impacts of inadequate infrastructure for software testing. National

Institute of Standards and Technology
Putta A, Paasivaara M, Lassenius C (2018) Benefits and challenges of adopting the scaled agile

framework (SAFe): preliminary results from a multivocal literature review. In: International
conference on product-focused software process improvement. Springer, pp 334–351

Rainer A (2017) Using argumentation theory to analyse software practitioners’ defeasible evi-
dence, inference and belief. Inf Softw Technol 87:62–80

Rainer A, Williams A (2019) Using blog-like documents to investigate software practice: benefits,
challenges, and research directions. J Softw Evol Process 31(11):e2197

Rainer A, Hall T, Baddoo N (2003) Persuading developers to “buy into” software process
improvement: a local opinion and empirical evidence. In: International symposium on empirical
software engineering. IEEE, pp 326–335

Raulamo P, Mäntylä MV, Garousi V (2017) Choosing the right test automation tool: a grey
literature review. In: International conference on evaluation and assessment in software
engineering. Karlskrona, pp 21–30

Research Triangle Institute (2002) The economic impacts of inadequate infrastructure for software
testing. American National Institute of Standards and Technology (NIST), Technical report
7007.011

Rincon P (2010) Stricter checks for climate body. https://www.bbc.com/news/science-
environment-11131897

Rosen C, Shihab E (2016) What are mobile developers asking about? A large scale study using
stack overflow. Empir Softw Eng 21(3):1192–1223

Sadaqat M, Colomo-Palacios R, Knudsen LES (2018) Serverless computing: a multivocal literature
review. In: Norwegian conference for organizations’ use of information technology (NOKO-
BIT)

Sánchez-Gordón M, Colomo-Palacios R (2018) A multivocal literature review on the use of
DevOps for e-learning systems. In: Proceedings of international conference on technological
ecosystems for enhancing multiculturality, pp 883–888

Sharma P, Savarimuthu BTR, Stanger N et al (2017) Investigating developers’ email discussions
during decision-making in Python language evolution. In: Proceedings of international confer-
ence on evaluation and assessment in software engineering. Karlskrona, ACM, pp 286–291

https://www.bbc.com/news/science-environment-11131897

Benefitting from the Grey Literature in Software Engineering Research 413

Sharp H, deSouza C, Dittrich Y (2010) Using ethnographic methods in software engineering
research. In: ACM/IEEE international conference on software engineering, pp 491–492

Soldani J, Tamburri DA, Van Den Heuvel W-J (2018) The pains and gains of microservices: a
systematic grey literature review. J Syst Softw 146:215–232

Storey M-A, Singer L, Cleary B et al (2014) The (r) evolution of social media in software
engineering. In: Proceedings of the on future of software engineering, ACM, pp 100–116

Swanson R, Rahimtoroghi E, Corcoran T et al (2014) Identifying narrative clause types in personal
stories. In: Proceedings of the annual meeting of the special interest group on discourse and
dialogue, pp 171–180

The Standish Group (2019) CHAOS report. https://www.standishgroup.com/outline
Thompson L (2001) Grey literature in engineering. Sci Technol Libr 19(3–4):57–73
Tom E, Aurum A, Vidgen R (2013) An exploration of technical debt. J Syst Softw 86(6):1498–

1516
University of New England (2019) Grey literature. https://www.une.edu.au/library/support/eskills-

plus/research-skills/grey-literature
Williams A, Rainer A (2017) Toward the use of blog articles as a source of evidence for

software engineering research. In: Proceedings of the international conference on evaluation
and assessment in software engineering, pp 280–285

https://www.standishgroup.com/outline
https://www.une.edu.au/library/support/eskills-plus/research-skills/grey-literature

Guidelines for Managing Threats
to Validity of Secondary Studies
in Software Engineering

Apostolos Ampatzoglou, Stamatia Bibi, Paris Avgeriou,
and Alexander Chatzigeorgiou

Abstract Secondary studies review and compile data retrieved from primary
studies and are vulnerable to factors that threaten their validity as any other
research method. Considering that secondary studies are often used to support the
evidence-based paradigm, it is crucial to properly manage their threats, i.e., identify,
categorize, mitigate, and report them. In this chapter, we build upon the outcomes
of a systematic review of secondary studies in software engineering, which has
identified (a) the most common threats to validity and corresponding mitigation
actions and (b) the categories in which threats to validity can be classified, so as to
guide the authors of future secondary studies in managing the threats to validity of
their work. To achieve this goal, we describe (a) a classification schema for reporting
threats to validity and possible mitigation actions and (b) a checklist, which authors
of secondary studies can use for identifying and categorizing threats to validity and
corresponding mitigation actions, while readers of secondary studies can use the
checklist for assessing the validity of the reported results.

This paper is based on Ampatzoglou et al. (2019): Identifying, categorizing and mitigating threats
to validity in software engineering secondary studies, Information and Software Technology,
Elsevier, 106 (2), pp. 201–230, February 2019.

A. Ampatzoglou · A. Chatzigeorgiou (�)
Department of Applied Informatics, University of Macedonia, Thessaloniki, Greece
e-mail: a.ampatzoglou@uom.edu.gr; achat@uom.gr

S. Bibi
Department of Electrical and Computer Engineering, University of Western Macedonia, Kozani,
Greece
e-mail: sbibi@uowm.gr

P. Avgeriou
Department of Mathematics and Computer Science, University of Groningen, Groningen,
The Netherlands
e-mail: paris@cs.rug.nl

© Springer Nature Switzerland AG 2020
M. Felderer, G. H. Travassos (eds.), Contemporary Empirical Methods in Software
Engineering, https://doi.org/10.1007/978-3-030-32489-6_15

415

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32489-6_15&domain=pdf
mailto:a.ampatzoglou@uom.edu.gr
mailto:achat@uom.gr
mailto:sbibi@uowm.gr
mailto:paris@cs.rug.nl
https://doi.org/10.1007/978-3-030-32489-6_15

416 A. Ampatzoglou et al.

1 Introduction

Over the past decade, due to the rise of the evidence-based software engineering
(EBSE) paradigm (Kitchenham and Dybå 2004), there has been a proliferation of
secondary studies. In this chapter, we focus on two types of secondary studies:

• Systematic Literature Reviews (SLRs), which constitute the core tool of the
evidence-based paradigm and originated in clinical medicine. SLRs aim at gath-
ering data from previously published studies, objectively and without bias, for
the purpose of synthesizing existing evidence and answering research questions.
Research synthesis as described more analytically in chapter “Evidence Aggre-
gation in Software Engineering” is a collective term for a family of methods
for summarizing, integrating, and, when possible, combining the findings of
different studies. Such synthesis can also identify crucial areas and questions
that have not been addressed adequately with past empirical research. It is built
upon the observation that empirical findings from individual studies are limited
to the extent that they may be generalized (Kitchenham and Charters 2007).

• Systematic Mapping Studies (SMS), which use the same basic methodology as
SLRs but aim to provide a more coarse-grained overview of the research that has
been performed on a topic rather than answering questions about the relative
merits of competing technologies. In an SMS, published results are usually
mapped onto a classification schema and visualized focusing on frequencies of
publications for subtopics within the schema (Petersen et al. 2015).

EBSE research relies substantially on systematic and rigorous guidelines on
how to conduct and report empirical results—e.g., experiments (Wohlin et al.
2000), SLRs (Kitchenham and Charters 2007), SMSs (Petersen et al. 2015), surveys
(Pfleeger and Kitchenham 2001), and case studies (Runeson and Höst 2009). These
guidelines emphasize, among others, the importance of managing (identifying,
managing, and reporting) relevant threats to validity, i.e., possible aspects of the
research design that in some way compromise the credibility of results. However,
we currently lack guidelines on how to manage threats to validity in secondary
studies. In this chapter, we build upon the results of a tertiary study (i.e., an SLR
on secondary studies in software engineering) (Ampatzoglou et al. 2019), namely a
classification schema for threats to validity and corresponding mitigation actions,
combined with a checklist to be used while conducting/evaluating secondary
studies.

The classification schema and the checklist can assist different stakeholders with
various activities as illustrated in Fig. 1. First, we expect that a critical appraisal
of secondary studies can be performed by readers and reviewers, by consulting the
checklist to identify possible threats in the study design, and confirm that they have
been properly mitigated. Also, the reporting of the studies can be evaluated, both in
terms of threats to validity and their mitigation, as well as in terms of categorization.
Second, authors of secondary studies can be guided on how to set up their study

Guidelines for Managing Threats to Validity of Secondary Studies in Software. . . 417

Re
vi

ew
er

s

Au
th

or
s

Re
ad

er
s

Cl
as

si
fic

at
io

n
Sc

he
m

a

Ch
ec

kl
is

t

H
ow

 c
an

 I
or

ga
ni

ze

th
e

th
re

at
s

to
 v

al
id

ity

se
ct

io
n?

Re
po

rt
 b

as
ed

on

 th
e

cl
as

si
fic

at
io

n
sc

he
m

a

H
ow

 c
an

 I
pr

op
er

ly

de
si

gn
 m

y
se

co
nd

ar
y

st
ud

y,
 s

o
as

 to
 h

av
e

as

fe
w

 th
re

at
s

to
 v

al
id

ity

as
 p

os
si

bl
e?

U
se

 th
e

re
co

m
m

en
de

d
m

iti
ga

tio
n

ac
tio

ns
 fo

r
ev

er
y

st
ep

 o
f t

he

se
co

nd
ar

y
st

ud
y

H
ow

 c
an

 I
m

iti
ga

te
 a

s
m

an
y

th
re

at
s

to

va
lid

ity
 a

s
po

ss
ib

le
?

U
se

 th
e

m
ap

pi
ng

 o
f

th
re

at
s

an
d

m
iti

ga
tio

n
ac

tio
ns

 in

th
e

ch
ec

kl
is

t

Is
 th

e
se

co
nd

ar
y

st
ud

y
w

el
l r

ep
or

te
d?

Ar
e

al
l p

os
si

bl
e

th
re

at
s

di
sc

us
se

d
in

 th
e

co
rr

es
po

nd
in

g
se

ct
io

n
an

d
w

el
l-o

rg
an

iz
ed

?

Is
 th

e
se

co
nd

ar
y

st
ud

y
w

el
l d

es
ig

ne
d?

Ar
e

al
l t

hr
ea

ts

pr
op

er
ly

m

iti
ga

te
d

in

se
co

nd
ar

y
st

ud
y

de
si

gn
?

F
ig

.1
U

sa
ge

sc
en

ar
io

s
of

th
re

at
s

to
va

li
di

ty
gu

id
el

in
es

418 A. Ampatzoglou et al.

design, so as to avoid or mitigate validity threats, while planning, conducting, and
reporting secondary studies.

Section 2 presents the basis of this chapter, i.e., the classification schema and the
validity checklist, proposed by Ampatzoglou et al. (2019). In Sect. 3, we present
the first usage scenario, which exemplifies how the classification schema and the
checklist can be used by authors of secondary studies, whereas Sect. 4 discusses
the usage scenario for reviewers and readers of secondary studies. Finally, Sect. 5
discusses further readings, and Sect. 6 concludes the chapter.

2 Classification Schema and Validity Checklist

Identifying, classifying, and mitigating threats to the validity of results obtained
through secondary studies are important to increase our confidence on the conclu-
sions drawn from these results. Despite the fact that the percentage of secondary
studies reporting threats to validity has been continuously increasing, considerable
confusion still exists in terms of terminology, mitigation strategies, and classifica-
tion (Ampatzoglou et al. 2019) often leading to erroneous classification of threats.
For instance, in many secondary studies any bias that might be introduced during
study selection is wrongly classified (by the authors of secondary studies) under
internal validity almost as often as under reliability, pointing to inconsistencies in
the classification of threats (Ampatzoglou et al. 2019). Arguably, problems in study
selection can threaten both aspects of validity. On the one hand, if some studies are
falsely included/excluded, the examined dataset will not be accurate, thus posing
a threat to internal validity. Therefore, the investigation of any relationship will be
prone to erroneous results. On the other hand, failing to include some studies in
the final selection can greatly reduce the possibility that an independent replication
reaches the same results posing reliability threats. While one can argue about the
correctness of both classifications, multi-label classification can be confusing and
does not allow for a uniform comparison of the threats. Therefore, next we present
a classification schema for threats to validity and their mitigation actions, tailored
for secondary studies.

2.1 Classification Schema

The classification schema consists of three levels: the first one depicting threat
categories, the second, threats per se, and the third one, mitigation actions. To derive
the threat categories (first level of the schema) and to facilitate the classification of
any given threat, we use the planning phases of the secondary studies (i.e., search
process, study filtering, data extraction and analysis—see Fig. 2). These are easily
identifiable steps in the secondary study, in contrast to using the aspects of validity
that are threatened (e.g., internal/external/construct validity). Moreover, we have

Guidelines for Managing Threats to Validity of Secondary Studies in Software. . . 419

Search process

Set of candidate
studies

Study filtering

Secondary Study Process

Set of included
studies

Populated
dataset

Data Extraction Data Analysis

Classification
schema

Threats to study selection validity Threats to data validity

Threats to research validity

Phases

Fig. 2 Secondary studies phases and corresponding threats

added an additional category (i.e., a horizontal one) that corresponds to threats that
cover the lifecycle of the secondary study:

• Study Selection Validity. This category involves threats that can be identified in
the first two phases of secondary studies (i.e., search process and study filtering
phase). Issues classified in this category threaten the validity of searching and
including primary studies in the examined set. This involves threats like the
selection of digital libraries, search string construction, etc.

• Data Validity. This category includes threats that can be identified in the last
two phases of secondary studies (i.e., data extraction and analysis) and threaten
the validity of the extracted dataset and its analysis. Examples of threats in this
category are small sample size, lack of statistical analysis, etc.

• Research Validity. Threats that can be identified in all phases and concern the
overall research design are classified into this category. Examples of threats in
this category are generalizability, coverage of research questions, etc.

Although the majority of the names for threats to validity and mitigation actions
can be considered self-explanatory, more details are provided in Sect. 3. We note
that due to space limitations, only the most frequent mitigation actions for every
threat are presented in Fig. 3a–c. The full list of mitigation actions is available
online, in the accompanying technical report of Ampatzoglou et al. (2019). The
three categories of validity threats along with the proposed mitigation actions are
shown in Fig. 3a–c, respectively. Blue cells represent threats to validity and red
cells to mitigation actions. Groups of validity threats are depicted as adjacent blue
cells. When a number of mitigation actions can be used for a threat or a group of
threats, they are also depicted as adjacent red cells.

The study selection validity category involves seven specific threats (see Fig. 3a).
Five threats to validity can be grouped into a more generic one, i.e., adequacy of
initial relevant publication identification (TV1), whereas the rest are ungrouped.
From the threats of this category, some are mutually exclusive, whereas others

420 A. Ampatzoglou et al.

MA1: Use broad searches

TV2: Limited journals/ confrences

MA1: Snowballing

 TV1.4: Search Engines Inefficiencies

MA2: Pilot searches

MA3: Selection of known venues/ DLs

MA4: Comparison to golden standards

 TV1.3: Definition of starting year

 TV1.1: Construction of search string

 TV1.2: Selection of digital libraries

 TV1.3: Selection of publication venues

MA5: Use broad searches

MA6: Systematic search string construction

MA9: Evaluate/ document search results

MA8: Tools supporting the review process

MA7: Review by independent expert

MA1: Systematic voting

TV7: Study inclusion/ exclusion

MA2: Random paper screening
MA3: Discussion among authors

MA5: Revisit criteria after pilots

MA4: Develop strategy

MA6: Prescribe set of decision rules

MA7: Define quality thresholds

MA8: Perform sensitivity analysis

MA9: Use of kappa statistic

MA1: Check against study goals

TV6: Inclusion/ exclusion grey lit.

MA1: Use summaries of articles

TV5: Handling of duplicate articles

MA2: Develop strategy for handling
duplicates

MA1: Check if the no. of identified
papers is a low fraction of population

TV4: Paper inaccesibility

TV3: Missing non English papers

TV1: Adequacy of relevant publication

MA1:Discuss among authors

TV9: Choices of variables to be
extracted

MA1: Snowballing

TV10: Publication bias

MA2: Include grey literature

MA3: Investigate manually other venues

MA1: Pilot data extraction

TV11: Lack of relationships

MA1: Only quality venues

TV12: Validity of primary studies

MA2: Quality assessment

MA1: Involve more than one researchers

 TV13.5: Misclassification of studies

MA2: Use kappa statistic

MA3: Pilot data extraction

MA4: Use expert’s opinion

 TV13.4: Unverified data extraction

 TV13.1: Data extraction bias

 TV13.2: Quality assessment subjectivity

 TV13.3: Data extraction inaccuracies

MA1: Check for quantitative data

TV14: Lack of statistical analysis

MA1: Use existing schemas

 TV15: Construction of attribute
 framework

MA2: Continuous update

 TV15.1: Robustness of initial
 classification

MA1: Pilot data analysis

TV16: Researcher bias

MA2: Conduct reliability checks

MA1: Draw conclusions based on trends

 TV8.2: Primary stud. heterogeneity

MA2: Use broad searches

 TV8.1: Small sample size

MA3: Assess the validity using statistics

MA3: Use formal data synthesis

MA4: Perform sensitivity analysis
MA5: Use scientific quality of primary
studies when drawing conclusions

MA5: Random paper screening

MA6: Perform keywording of abstracts

TV13: Data extraction bias

TV8: Small sample size

TV15: Bias of Classification
Schema

TV18: Research Method Bias

MA1: Use a broad search

 TV22.2: Research not applicable
 to other domains/ organizations

MA2: Compare with existing studies

MA1: Involve more than one
researchers

TV17: Repeatability

MA2: Make data available

MA3: Develop protocol

MA1: Brainstorming

TV19: Coverage of research questions

MA1: Brainstorming

TV20: Lack of comparable studies

MA1: Compare with related work

TV21: Unfamiliar with research field

 TV22.1: Generalizability

MA1: Discuss among authors

 TV18.2: Review process deviation

 TV18.1: Chosen research method

MA2: Develop protocol

MA3: Consult target audience

MA2: Motivate well research questions

TV22: Generalizability

a

b

c

Fig. 3 (a) Study selection validity threats and mitigation actions. (b) Data validity threats and
mitigation actions. (c) Research validity threats and mitigation actions

may coexist. For example, if selection of digital libraries is performed, the threat
selection of publication venues (TV1.3) is excluded since normally only one of
the two search strategies (digital libraries or venues) is selected (except if a quasi-
gold standard from specific venues is used for study selection validation, then both
strategies are used). The construction of the search string threat (TV1.1) exists when
both digital libraries and specific publication venues are selected. After the initial set
of publications is derived, other aspects threaten the validity of the study: were there

Guidelines for Managing Threats to Validity of Secondary Studies in Software. . . 421

enough journals and conferences for the authors to search (TV2), what languages
have the authors explored (TV3), were all papers accessible by the authors (TV4),
how have the authors handled the duplicate articles (TV5) or the grey literature
(TV6), and is the selection of inclusion/exclusion criteria accurate? (TV7).

The data validity category includes nine specific threats (see Fig. 3b), which
are organized into three groups and five ungrouped threats to validity. One group
includes any kind of bias that can be introduced while collecting data, namely:
data extraction bias (TV13), data extraction inaccuracies, quality assessment
subjectivity, unverified data extraction, and misclassification of primary studies
(mostly relevant for mapping studies). Another group includes limitations of the
dataset (TV8) that are due to the nature of the subject and not due to researchers’ bias
(i.e., small sample size and heterogeneous primary studies). A third group represents
threats that are relevant for mapping studies and have been posed by the use of
inadequate classification schemas or attributes frameworks (TV15). Furthermore,
other aspects such as the validity of primary studies (TV12), the potential lack of
relationships in the dataset (TV11), the publication bias (TV10), and the choice
of extracted variables (TV9) are classified in this category since they are prone to
damaging the quality of the dataset. Other individual threats that are mapped to this
category are the researchers’ bias (TV16) while interpreting the results and the lack
of statistical analysis (TV14).

Finally, the research validity category includes six specific threats (see Fig. 3c)
that are forming two groups and include four ungrouped threats. The first group
represents threats that have to do with the followed process. First, there is a
possibility that the selected research method (i.e., mapping study vs. literature
review) does not fit the goal of the study (TV18). Second, sometimes researchers
deviate from the established review process. The second group involves threats to
generalizability (TV22). The individual threats that are mapped to this category
are the lack of comparable studies (TV20), the coverage of research questions
(TV19), and the unfamiliarity of researchers with the application domain (TV21).
Finally, repeatability (TV17) has been classified in this category since although it is
threatened by data unavailability, it is also threatened by any undocumented parts of
the reviewing process. Therefore, it is considered more as a horizontal threat (that
pertains to the whole research process), rather than a specific threat for the data
extraction or analysis phase.

Although we believe that the current classification schema improves the orthog-
onality among threat categories, there are still some “grey-zone” threats. Using the
proposed classification schema, we address the problem of classifying a single threat
to two categories: every threat is classified within one category, based on the phase
of the study design, in which it was identified and the set of artifacts, whose validity
is threatened. We identified five cases of threats that can be classified into more than
one category:

• Quality Assessment Subjectivity—In the context of secondary studies, the quality
of a primary study can be used either as an inclusion criterion or as a variable that
is collected during data extraction (when for example, the quality of the primary

422 A. Ampatzoglou et al.

studies is part of the research questions) Thus, quality assessment subjectivity
can be classified under both study selection validity and data validity, based on
the role of the quality assessment. To ease the readability of this section, quality
assessment subjectivity is presented only as part of data validity.

• Publication Bias and Validity of Primary Studies—Although publication bias
and validity of primary studies stem from the study selection phase, they threaten
the validity of the extracted data, their analysis, and the subsequent interpretation.
In particular publication bias may result in an extracted dataset that does
not represent a wide research community, but only reflects the opinions of a
limited number of researchers or researchers involved in a particular scientific
subdiscipline. At the same time, low validity of primary studies also threatens
the validity of the extracted dataset, since they may offer low-quality evidence.
Thus, we have classified both threats in the data validity category.

• Robustness of Initial Classification and Construction of Attribute Framework.
These two threats are highly related to data validity in the sense that if a “wrong”
classification schema is selected, the complete data collection will be misguided
due to the use of inaccurate classification classes and terminology. Thus, the
correctness of the final dataset is threatened. Although these threats first appear
in the study selection phase, their impact is mainly observed in the data analysis
phase.

2.2 Checklist for Threats to Validity Identification
and Mitigation

Based on the classification schema of Fig. 3, we present a checklist (as a series
of questions) that authors of secondary studies should answer when performing
secondary studies, so as to assess the validity of their studies. This instrument can
aid both in the identification of threats (since not all threats apply in all studies)
and in the suggestion of mitigation actions (what the authors can do if they identify
any threat in their study design). This checklist can serve as a guide for the authors
of secondary studies. The structure of the checklist is quite simple: First each top-
level question is asked to understand if a specific threat exists (TVn), and then a
series of sub-questions are asked to check if a proper mitigation action MAm has
been performed. The numbering of mitigation actions is restarted for every threat
to validity. Each of the three boxes below corresponds to one category of threats:
study selection, data, and research validity. For example, TV1–TV7 correspond to
the seven threats that are reported in Fig. 3a (study selection validity). The mapping
between questions and threats reported in Fig. 3 is one-to-one, by considering
Sect. 2.1.

Guidelines for Managing Threats to Validity of Secondary Studies in Software. . . 423

Study selection validity

TV1: Has your search process adequately identified all relevant primary
studies?

MA1: Have you used snowballing?
MA2: Have you performed pilot searches to train your search string?
MA3: Have you selected the most-known digital libraries or have you

made a selection of specific publication venues or used broad search
engines or indices (based on the goal of your study)?

MA4: Have you compared your list of primary studies to a gold standard
or to other secondary studies?

MA5: Have you used a broad search process in generic search engines or
indices (e.g., Google Scholar) so that you ensure the identification of all
relevant publication venues?

MA6: Have you used a strategy for systematic search string construction?
MA7: Has an independent expert reviewed the search process?
MA8: Have you used tools to facilitate the review process?
MA9: Have you evaluated search results and documented the outcomes?

TV2: Were primary studies relevant to the topic of the review published in
several different journals and conferences?

MA1: Have you used a broad search process in generic search engines or
indices (e.g., Google Scholar) so that you ensure the identification of all
relevant publication venues?

TV3: Have you identified primary studies in multiple languages?

MA1: Is their number expected to be high compared to the population?

TV4: Were the full texts of all primary studies accessible from the
researchers?

MA1: Is the number of studies with missing full texts expected to be high
compared to the population?

TV5: Have you managed duplicate articles?

MA1: Have you developed a consistent strategy (e.g., keep the newer one
or keep the journal version) for selecting which study should be retained
in the list of primary studies?

MA2: Have you used summaries of candidate primary studies to guarantee
the correct identification of all duplicate articles?

(continued)

424 A. Ampatzoglou et al.

TV6: Have you included/excluded grey literature?

MA1: Does the decision to include or exclude grey literature comply with
the goals of the study and the availability of sources?

TV7: Have you adequately performed study inclusion/exclusion?

MA1: Have you used systematic voting?
MA2: Have you performed random screening of articles among authors?
MA3: Have researchers discussed the inclusion or exclusion of selected

articles in case of conflict?
MA4: Have the inclusion exclusion criteria been documented explicitly in

the protocol?
MA5: Have the authors discussed the inclusion/exclusion criteria and

revised them after pilots, or by experts’ suggestions after review?
MA6: Have you prescribed a set of decision rules for study inclusion/ex-

clusion?
MA7: Have you defined quality thresholds for inclusion/exclusion?
MA8: Have you performed sensitivity analysis?
MA9: Have you quantified experts’ disagreement with the kappa statistic?

Data validity

TV8: Is your sample size large enough so that the obtained results can be
considered valid?

MA1: Have you tried to draw conclusions based on trends?
MA2: Have you used a broad search process in generic search engines or

indices (e.g., Google Scholar) so that you ensure the identification of all
relevant publication venues?

TV9: Have you chosen the correct variables to extract?

MA1: Has the choice of variables been discussed among authors to
guarantee that the research questions can be answered?

TV10: Are the studies in your dataset published in a limited set of venues?

MA1: Have you used snowballing?
MA2: Have you included grey literature (if this does not affect TV6)?
MA3: Have you manually scanned selected venues to check if they publish

articles related to your secondary study?

TV11: Do you expect to identify relationships in your dataset?

MA1: Have you performed pilot data extraction to test the existence of
relationships?

(continued)

Guidelines for Managing Threats to Validity of Secondary Studies in Software. . . 425

TV12: Does the quality of studies guarantee the validity of extracted data?

MA1: Have you focused your search process on quality venues only?
MA2: Have you used article quality assessment as inclusion criterion?
MA3: Have you assessed the validity of primary studies and their impact

using statistics?

TV13: Is there data extraction bias in your study?

MA1: Have you involved more than one researcher?
MA2: Have you identified experts’ disagreement with kappa statistic?
MA3: Have you performed pilot data extraction to test agreement between

researchers? (Not applicable if MA1 is no)
MA4: Have you used experts or external reviewers’ opinion in case of

conflicts? (Not applicable if MA1 is no)
MA5: Have you performed paper screening to cross-check data extraction?
MA6: Have you used a keywording of abstracts? (Applicable only in

mapping studies)

TV14: Have you performed statistical analysis?

MA1: Does your data extraction record quantitative data and, if yes, does
answering your research questions imply the use of statistics?

TV15: Have you selected a robust initial classification schema?

MA1: Have you selected an existing initial classification schema?
MA2: Have you continuously updated the schema, until it becomes stable

and classifies all primary studies in one or more classes?

TV16: Is your interpretation of the results subject to bias or is it as objective
as possible?

MA1: Have you performed pilot data analysis and interpretation?
MA2: Have you conducted reliability checks (e.g., post-SLR surveys with

experts)?
MA3: Have you used a formal data synthesis method?
MA4: Have you performed sensitivity analysis?
MA5: Have you used the scientific quality of primary studies when

drawing conclusions?

Research validity

TV17: Is your process reliable/repeatable?

MA1: Have more than one researcher been involved in the process?
MA2: Have you made all gathered data publicly available?

(continued)

426 A. Ampatzoglou et al.

MA3: Have you documented in detail the review process in a protocol?

TV18: Have you chosen the correct research method?

MA1: Have the authors discussed if the selected research method (SLR or
SMS) fits the goals/research questions of the study, by advocating the
purpose and scope of the methods?

MA2: Have you developed a protocol, monitored the process for devia-
tions, and accurately reported any (if existed)?

TV19: Do the answers to your research questions guarantee the accomplish-
ment of your study goal?

MA1: Have the authors discussed and brainstormed on if the research
questions holistically cover the goal of the study?

MA2: Is your study and research questions well-motivated?
MA3: Have you consulted target audience for setting up your goals?

TV20: Does your study have substantial related work, so that you can compare
and discuss findings?

MA1: Have the authors discussed and brainstormed to reach possible
interpretations of the findings, due to the absence of related studies?

TV21: Were you familiar with the research field before performing the review?

MA1: Have the authors exhaustively searched related work so as to (a)
familiarize with the field, (b) identify comparable studies, and (c)
identify relevant publication venues and influential papers?

TV22: Are the results of your study generalizable?

MA1: Do your findings comply with those of existing studies?
MA2: Have you used a broad search process w/o an initial starting date?

3 Usage Scenario 1: How Authors Can Mitigate Threats

We advise authors to use the checklist and the classification schema provided in
this chapter to improve the validity of their study following a number of steps.
First, the authors should create a dedicated section for threats to validity in both
the study protocol and the study report (final manuscript). Second, this section
should be organized according to categories of threats (e.g., by following the
proposed classification schema or another established one). Third, all threats should
be checked whether they pertain to the study. Finally, for all identified threats, either

Guidelines for Managing Threats to Validity of Secondary Studies in Software. . . 427

appropriate mitigation action should be explicitly reported or an acknowledgment
should be made that the threat is not (fully) mitigated.

To facilitate the aforementioned steps, in Sects. 3.1–3.3 we present references to
representative exemplary mitigation activities from the literature. Finally, in Sect.
3.4, we summarize the mitigation actions that can be applied in each phase of the
secondary study execution.

3.1 Mitigating Threats to Study Selection Validity

Construction of the search string refers to problems that might occur when the
researchers are building the search string. As a consequence, the search might
return a large number of primary studies (including many irrelevant ones) or a
very limited number (thus missing some relevant studies). A mitigation strategy
that covers a wide range of activities is provided by Shahin et al. (2014), in
which the authors have complemented automated searching in digital libraries (see
also chapter “Automating Systematic Literature Reviews”) with manual search on
specific venues that are considered as important to the domain of the secondary
study. In addition, the authors have used snowballing (both backward and forward)
to decrease the chances of missing articles, i.e., they searched the references of the
identified articles or papers that cite the identified articles for candidate articles they
may have missed.

Selection of Digital Libraries refers to problems that can arise from using
very specific, too broad, or not credible search engines. The consequence of
this threat can be either the return of a lot irrelevant or missing of relevant
studies. As a response to this threat, Garcés et al. (2017) opted to select the most
adequate databases for their search. Based on the criteria discussed by Dieste and
Padua (2007), they opted for using six databases: namely ACM Digital Library,
IEEE Xplore, ScienceDirect, Scopus, Springer, and Web of Science. According to
Kitchenham and Charters (2007), these publication databases are the most relevant
sources in the computer science area.

Selection of publication venues refers to the problem that might occur, when
the research team selects to explore specific venues rather than using broad search
engines. The most common rationale for this decision is either the fact that a topic is
too broad or that the research aims at high-quality studies only. The consequence of
this threat is missing relevant studies. A rigorous process for selecting high-quality
and relevant publication venues has been discussed in the recent bibliometrics study
on top scholars and institutes (Karanatsiou et al. 2019). In particular, the authors
have selected publication venues based on their relevance to software engineering,
their specificity (e.g., architecture, maintenance), and their average number of
citations per month in Google Scholar. Nevertheless, it is also crucial to pilot the
searches and compare the obtained studies against a golden standard. An exemplar
application of this practice is provided by Jabangwe et al. (2015), where the authors
have developed the golden standard set by creating an initial validation through

428 A. Ampatzoglou et al.

Google Scholar, by identifying relevant papers to seminal works (i.e., mostly cited
ones) of the secondary study domain.

The selection of an arbitrary starting year as a starting point for performing
the search process can lead to missing studies prior to that date. In order for this
decision to not be considered as a threat, it should be clear why such a choice does
not influence the results. For instance, according to Li et al. (2015), after 2010 there
were at least 15 studies published per year focusing on technical debt management,
which is a big leap compared with the years before 2010. One reason for this could
be that the MTD workshop was initiated in 2010 and this workshop raised the
attention on TD and the awareness of managing TD. Therefore, future secondary
studies on technical debt could use 2010 as a starting year, without considering this
choice as a threat to validity. If such a justification cannot be claimed researchers
should consider shifting the starting year earlier.

Problems of the search engines within digital libraries are characterized as search
engine inefficiencies (e.g., SpringerLink cannot perform a search based only on
the abstract of manuscripts). This can lead to missing studies, or deriving a large
corpus of papers for filtering. A tentative mitigation action for this threat is the
use of bibliography management tools (e.g., JabRef, Zotero) for further filtering
the large corpus of retrieved articles, based on the desired fields. This mitigation
action, although it does not reduce the amount of effort required for data collection,
it ensures the consistency of data collection. A discussion on this is provided by
Penzenstadler et al. (2012).

A limited number of publication venues in which primary studies can be
published suggest a narrow scope of the secondary study. This will probably
lead to obtaining a low number of primary studies. If the intended scope of the
study is indeed narrow there might be no reason to mitigate this threat, as in the
case of Santos et al.’s study (2016) that focuses on action research (i.e., rather
young empirical method, that is still underemployed compared to more established
ones, e.g., case studies, experiments) in software engineering. However, alternative
strategies could be the inclusion of grey literature (see chapter “Benefitting from the
Grey Literature in Software Engineering Research”), or the execution of broader
searches.

Exploring studies written in a specific language (e.g., missing non-English
papers) can lead to the omission of important studies (or number of studies) written
in other languages. This threat exists in almost any secondary study that considers
primary studies written in English, since most of them list it as an exclusion
criterion. In our opinion this consists of a threat only in cases in which a very
active community publishes high-quality papers in a domain, in languages other
than English. A way to evaluate the risk that this threat poses is to assess the
number of studies written in non-English languages compared to the population
of the research corpus, regardless of the language.

Papers whose full text is not available cannot be processed (i.e., papers inac-
cessibility). If this number is large, the set of retrieved studies might be limited/not
representative. As a mitigation action for this threat that is however questionable
in terms of generalizability, Magdaleno et al. (2012) refer to asking access to the

Guidelines for Managing Threats to Validity of Secondary Studies in Software. . . 429

papers through email, directly from the authors. This threat is not very common,
since most academic institutes have institutional access to most digital libraries. In
case there is no such access, other sources (e.g., research social media, personal
websites, etc.) can be used for retrieving a copy, as well as personal contact to the
authors by email.

Some early versions of a study may be published in a conference and an extended
one in a journal. Duplicate studies should be identified and handled, so that the
study set does not contain duplicate information. For example, Ampatzoglou and
Stamelos (2010) suggested the merging of multiple versions as one study. In the
field of software engineering, a common practice among researchers is to publish
their early research results in conference proceedings to get quicker feedback from
the research community and as a means for evolving and maturing their work. In
many cases, a publication to a software engineering journal chronologically follows
and includes the results reported in the conference proceedings. In these cases, only
the journal article can be added to the set of primary studies without the risk of
missing relevant information.

Based on the goal of the study, including or excluding grey literature can pose
a threat. For example, grey literature should be considered in Multivocal Literature
Reviews (MLRs), in which practitioners’ view should be examined. For more details
on such discussions, see the paper of Montalvillo and Diaz (2016). On the other
hand, if the authors are interested in focusing only on top-quality venues (e.g.,
Arvanitou et al. 2017; Galster et al. 2014), then grey literature should be omitted
from the searching space.

Study inclusion/exclusion bias refers to problems that might occur in the study
filtering phase, i.e., when applying the inclusion/exclusion criteria. Such threats are
usually found in studies, in which there are conflicting inclusion/exclusion criteria,
or very generic ones. As illustrative mitigation action for study inclusion/exclusion,
Yang et al. (2016) suggest the following strategies: (a) set a group of inclusion
and exclusion criteria for study selection, which can be provided as a basis for an
objective selection process; (b) considering the possible different interpretation and
understanding of selection criteria by the researchers, a pilot selection has to be
conducted before the formal selection to guarantee that the researchers reached a
clear and consistent understanding of the selection criteria; and (c) two researchers
need to conduct the study selection independently at least in one round of selection,
and discuss/resolve any conflicts between their results, to mitigate personal bias in
study selection.

3.2 Mitigating Threats to Data Validity

A small sample threatens the validity of the dataset, since results may be (a) prone
to bias (data might come from a small community), (b) not statistically significant,
and (c) not safe to generalize. The small sample size can be mitigated by broadening
the searching space (Ali et al. 2010), but this decision must comply with the goals of

430 A. Ampatzoglou et al.

the study and the research area of interest. Additionally, according to Barreiros et al.
(2011) the small sample size threat is mitigated if the quality of the obtained studies
is high. Based on the findings of this study, existing secondary studies parse from
less than 10 papers to more than 500 primary studies. The mean value is 90 primary
studies, whereas 2.5% of our sample includes studies with less than 10 papers and
9.5% of the studies have considered more than 200 papers.

Data from primary studies that are highly heterogeneous are not easy/safe to
synthesize, since such a process is prone to involve a high degree of subjectivity.
The mitigation actions that are reported as relevant to this threat are the careful
construction of the search string (Al-Baik and Miller 2015), based on the PICO
strategy proposed by Kitchenham et al. (2009) that takes into account the popu-
lation, intervention, comparison, and outcomes of the review. Such an approach
aims at identifying only the most relevant publications, by limiting the chances
for a heterogeneous dataset. Additionally, Nguyen-Duc et al. (2015) suggested the
development of a data extraction form based on the research questions to ensure
data homogeneity.

The variables that have been chosen to be extracted might threaten the validity of
the results, since they might not fit answering the research questions. Additionally,
they are prone to researchers’ bias. The best practice that can be used for mitigating
this threat is the extraction of variables based on the set of research questions and
their beforehand mapping. An exemplary way of mapping variables to research
questions is provided by Galster et al. (2014), in which the authors list the extracted
variables, and inside a parenthesis they denote the corresponding research question.

Publication bias refers to cases where the majority of primary studies are
identified in a specific publication venue. If the majority of primary studies stem
from a single workshop, the likelihood of biasing the dataset, and thereof the
results, based on the beliefs of a certain community, is rather high. To avoid
publication bias, extended and broad searches (e.g., Google Scholar, Scopus)
are encouraged (Lenberg et al. 2015), whereas another alternative would be the
inclusion of grey literature (blogs, websites, etc.; Tiwari and Gupta 2015); see also
chapter “Benefitting from the Grey Literature in Software Engineering Research.”
Nevertheless, we need to note that both these mitigation actions should be treated
with caution, since in specific types of studies, they might hurt the quality of primary
studies.

Examining data that lack relations might hinder reaching a conclusion. A
tentative solution to this threat is the application of quality assessment as a criterion
for study inclusion or exclusion. In particular, Nguyen-Duc et al. (2015) have
assessed the quality of the studies in terms of rigor, credibility, and relevance
by using the checklist of Dybå and Dingsøyr (2008). An alternative schema for
evaluating rigor and relevance for empirical studies has been proposed by Ivarsson
and Gorschek (2011). In particular, rigor is evaluated based on the description of
the context, the empirical design, and the validity discussion. Relevance is assessed
based on subjects, context, scale, and used research method (Kitchenham and
Charters 2007).

Guidelines for Managing Threats to Validity of Secondary Studies in Software. . . 431

Another type of publication bias is the validity of the primary studies, which
suggests that the results of the secondary study might be biased from inaccurate
results reported in the primary studies. A common reason for this is that studies
with negative results are less probable to get accepted for publication. The two
most common mitigation actions related to this threat are (a) the use of quality
thresholds as an exclusion criterion (Ahmad and Babar 2016) (e.g., rigor and
relevance checklist Dybå and Dingsøyr 2008; Ivarsson and Gorschek 2011) and
(b) the inclusion of high-quality venues (Karanatsiou et al. 2019).

Data extraction bias refers to problems that can arise in the data extraction
phase. Such problems might be caused from the use of open questions in the
collected variables, whose handling is not explicitly discussed in the protocol. The
specific threat to validity is one of the most common ones in software engineering.
Therefore, a variety of mitigation actions have been linked to it. The most common
ones are (a) the involvement of more than one researcher in the process and
the continuous assessment of their level of agreement (e.g., using Fleiss’s kappa,
Nguyen-Duc et al. 2015), (b) the piloting through random sampling (Kabbedijk et al.
2015), and (c) the use of keywording from abstracts (Petersen et al. 2015). A special
type of data extraction bias is the quality assessment subjectivity, i.e., the process
during which the quality of the primary studies is evaluated by the authors of the
secondary study. This threat is relevant only for SLRs that report the evaluation of
primary studies’ quality. Similarly, data extraction inaccuracies refer to cases when
data analysis might not be carefully performed, or might not follow strict guidelines.
For example, the same concept might be inconsistently classified into two primary
studies. This leads to inaccuracies in the dataset. Finally, unverified data extraction
refers to the situation in which data are not validated by external reviewers, or have
not been subject to internal review. Since all the above threats fall in the generic
data extraction bias threats, their mitigation can be achieved by applying the same
actions.

In some designs it is not possible to perform statistical analysis, for example, in
cases that all extracted data items are categorical. This threat can be mitigated during
the selection of variables to be extracted, when the selection of numerical data can
be opted (see above). Nevertheless, as noted by Engström (2008), qualitative data
analysis methods are equally important to quantitative analysis. Therefore, using
solid qualitative analysis methods mitigates the lack of statistical analysis.

Primary studies inconsistent classification is valid for secondary studies that aim
at developing a classification schema (usually mapping studies). A similar threat
is the construction of attribute framework. While constructing this framework,
the authors define a set of possible values for the attributes (i.e., variables)
that are used to characterize each primary study. If the selected values are not
discrete and comprehensive, then the data extraction can result in an insufficient
dataset. In case a classification schema is already in place, robustness of initial
classification is applicable to secondary studies that rely upon it. A common
mitigation while performing the classification of primary studies is to identify an
existing classification schema that is tailored to fit the needs of the secondary study.
The selection of this initial classification schema poses a threat to validity, since

432 A. Ampatzoglou et al.

it might not be fitting for the domain, and its tailoring is not efficient. Actions
that can be used for avoiding the aforementioned threat are (a) the piloting of data
extraction to test the classification schema or the attribute framework—Cornelissen
et al. (2009) evaluated the usefulness of the attribute framework and measured the
degree to which the attributes in each facet coincide; (b) the use of an existing
and established classification schema—e.g., Haselberger (2016) used the project
manager competence development framework; and (c) the use of experts’ opinion—
Kosar et al. (2016) have relied upon the opinion of a DSL expert for obtaining a
coarse-grained classification that could offer a broader picture of the field.

Researcher bias refers to potential bias that authors of the secondary studies may
have while interpreting or synthesizing the extracted results. This can be a bias
toward a certain topic, or because only one author worked on data synthesis. To
mitigate this threat, vivid discussion among authors of the studies is encouraged, by
a variety of studies. Furthermore, Nair et al. (2014) advise the execution of reliability
checks; the execution of pilot interpretations is proposed by Khurum and Gorschek
(2009), whereas Penzenstadler et al. (2012) compare results with existing studies.

3.3 Mitigating Threats to Research Validity

Repeatability refers to threats that deal with the replication of a secondary study.
The most common reason for the existence of such threats is the lack of a detailed
protocol, or the existence of researcher and data extraction bias. The key practice for
boosting the repeatability of a secondary study is the development and the public
sharing of a review protocol (e.g., Engström et al. 2008). Other good practices
are the involvement of more than one researcher in the process (e.g., Yusifoğlu
et al. 2015) and the adoption of well-known guidelines—most studies follow the
guidelines of Kitchenham and Charters (2007) or of Petersen et al. (2015).

Chosen research method. Mapping studies and literature reviews are designed
to serve different goals and scopes. The selection of a specific research method
might not fit the goals, the scope, or the context of the performed secondary study.
A discussion on the proper way for selecting the research method for a secondary
study is provided by Kitchenham et al. (2010). For example, broad topics should be
approached through mapping studies, whereas more specialized ones through SLRs.

Review process deviations. In some cases, researchers choose to deviate from the
guidelines offered by the research method. Such deviations [e.g., not performing the
keywording of abstracts step in a mapping study, despite the use of the guidelines
of Petersen et al. (2015)] threaten validity, since some important aspects might be
compromised. In such cases a strong argumentation should be set. For example,
Galster et al. (2014) deviated from the data extraction guidelines of Kitchenham
and Charters (2007) and adopted the strategy suggested by Brereton et al. (2007).

Coverage of research questions refers to the formulation of research questions
that do not adequately fulfill the goal of the secondary study (i.e., setting a very
generic goal, or the improper decomposition of the goal into questions). The most

Guidelines for Managing Threats to Validity of Secondary Studies in Software. . . 433

common best practice for resolving this threat is the use of the GQM approach
that has been introduced by Basili and Selby (1991). Brainstorming among authors
(Ameller et al. 2015) and the consultation of experts (Alves et al. 2016) are highly
advisable.

Some secondary studies lack comparable related work (i.e., other secondary
studies or primary studies). In this case, there is no possibility of comparing the
results to existing literature. Therefore, in our opinion, the only option is the intuitive
validation and discussion of the obtained results. A best practice for this is the
brainstorming between the authors and possible external experts.

In some cases, secondary studies are performed by nonexpert researchers who are
unfamiliar with the research field. The lack of knowledge in the domain can lead
to undesired consequences, such as omission of well-known studies in the field,
limited synthesis capacity, and inability to reason about the findings. A tentative
best practice for this is the thorough studying of the literature and the detailed
comparison of findings. According to MacDonnell (2019), senior researchers should
be included in the data analysis and interpretation of the results of secondary studies.

Generalizability threats refer to the possibility of not being able to generalize
the results of the secondary study (e.g., due to the identification of only a portion
of existing primary studies). A special case of this threat that is quite frequently
reported is results not applicable to other organizations or domains. The mitigation
actions that have been linked to generalizability threats are the use of broad searches
(Ding et al. 2014), and the comparison to state of the art and related studies (Staples
and Niazi 2008).

3.4 Mapping Mitigation Actions to Secondary Studies Activities

To put the application of the aforementioned mitigation actions in context, we assign
mitigation actions to activities of secondary studies design processes—see Fig. 4.
In particular, at the first level (framed font) we present the phases for performing
secondary studies as suggested by Kitchenham and Charters (2007), and then the
corresponding activities (bold font). The used activities are selected as the union
of the activities presented in the five studies suggesting guidelines for performing
secondary studies (Ampatzoglou et al. 2019; Cruzes and Dybå 2011; Avellar et al.
2017; Kitchenham and Charters 2007; Petersen et al. 2008). Being as inclusive as
possible in the selection of activities (i.e., by using the union of activities) guarantees
that any author will be able to identify the activity that he intends to perform in the
figure, regardless of the followed guidelines. In the third level, we list the mitigation
actions that can be performed in each step. We note that the reporting phase of the
secondary studies is omitted since no threats can arise at that stage. However, the
step is of paramount importance, in the sense that it includes the reporting of the
threats to validity per se.

434 A. Ampatzoglou et al.

Conducting Phase

1. Identify Research
Generate Search strategy
1.6 Use a specific strategy for
systematic search string construction
1.1 Perform Snowballing
1.2 Perform pilot searches to train
search string
Develop the search
1.5- 22.2 Use broad search process in
generic search engines w/o start date
1.3- 12.1- 8.2 Search known DLs/
broad search engines/ specific high
quality publication venues
Document the process
1.9 Evaluate results/ Document
outcomes
1.8 Use tools to support the review
process
1.10 Use tools for bibliography
management
Evaluate the search
1.9 Evaluate results/ Document
outcomes
1.4 Compare to gold standard/ other
secondary studies
1.7 Independent experts review the
search process

2. Study selection

Handle Grey literature
6.1 Decide based on the goal of the
study and the availability of sources.
Assess the completeness of the final
set (if the studies in the data set are
published in a limited set of venues)
10.1 Perform snowballing
10.2 Include grey literature
10.3 Scan manually selected venues
Assess Quality
7.9 Assess the validity of primary
studies using statistics
7.7 Define quality thresholds
7.8 Perform Sensitivity analysis

Define the data to be extracted
9.1 Discuss the choice of variables among authors
11.1 Perform pilot data extraction to test the existence of
relationships
Perform data extraction
13.1 Involve more than one researchers
13.6 Use keywording of abstracts
13.5 Perform paper screening to cross check data extraction
17.2 Make all collected data publicly available
Handle disagreements (only if multiple researchers are involved)

13.3 Perform pilot data extract. to test researchers agreement
13.2 Identify expert’s disagreement level with the kappa statistic
13.4 Use experts or external reviewers opinion to handle conflicts

Perform data synthesis
16.3 Use a formal data synthesis method
14.1 Perform statistical analysis if you have
quantitative data
15.1 Select an existing classification schema
15.2 Continuously update the classification schema to
be able to classify all primary studies
Interpret the results objectively
16.1 Perform pilot data analysis and interpretation
16.2 Conduct reliability checks (i.e. post-SLR surveys)
16.4 Perform sensitivity analysis
16.5 Take into consideration the quality of primary
studies
8.1 If the sample size of results is small draw
conclusions based on trends
22.1- 20.1 Compare with related work, in case of
absence of related work brainstorm among authors

Define inclusion/exclusion criteria
7.5 Do pilots and revise criteria or use
independent expert’s suggestions
7.6 Prescribe a set of decision rules
12.2 Perform quality assessment
Manage duplicate articles
5.2 Use summaries of studies to identify
duplicates
5.1 Develop a strategy (keep newer or
journal version).
Handle work in other languages or with
missing text
3.1/ 4.1 Decide based on their number
compared to population
Handle disagreements
7.1 Use systematic voting
7.3 Discuss criteria among authors
Evaluate the final set of studies
7.2 Perform random screening of papers
12.3 Evaluate the quality of studies using
statistics
2.1 If the studies are published in limited
journals/ conferences use a broad search
Document the process
7.4 Document inclusion/ exclusion criteria in
the protocol

3. Study Quality Assurance

4. Data Extraction

5. Data Synthesis

1. Define the need 2. Define the review protocol 3. Review the protocol
Define the goal of the study
19.3 Consult target audience to define
questions
19.2 Motivate the need of the study/ RQs
Define the research method
18.1 Select Research Method (SLR, MS)
21.1 Search exhaustively related work
18.2 Define the process of handling/ reporting
deviations

Motivate the study
19.2 Motivate the need of the
study/ RQs
21.1 Search exhaustively
related work

Review study goals
19.1 Discuss/brainstorm if research
questions cover holistically the goal of
the study
Review protocol
17.1 Involve more than one
researchers in the review process
17.3 Document in detail the review
process in the protocol

Planning Phase

Study Selection Validity

Data Validity

Research Validity

Fig. 4 Mitigation actions that can be applied in each step of the secondary study design process.
∗ In front of each mitigation action, the code refers to the ID of the threat to validity, followed by
the ID of the mitigation action in the checklist

Guidelines for Managing Threats to Validity of Secondary Studies in Software. . . 435

4 Usage Scenario 2: How Reviewers Can Appraise Validity

In this section, we illustrate the scenario in which a secondary study needs to
be evaluated, either by a reviewer or by a reader of the study, for the purpose
of scientific review before publication or for evaluating its validity before usage,
respectively. In particular, the evaluation of validity of a secondary study based on
the classification schema and the checklist can be performed using two parts of
the manuscript: (a) the threats to validity section and (b) the study design section.
We first examine if the threats are classified/organized into sensible categories in
the threats to validity section. Subsequently, we check if all threats to validity are
discussed in the threats to validity section, or if some of them (or some mitigation
actions) are only discussed while reporting the study design.

To illustrate this scenario, we consider a sample of five secondary studies that
have been performed by the authors of this chapter (and other coauthors). We note
that the evaluation provided below does not reflect upon the quality of the published
studies, and the trustworthiness of the results, but only focuses on the way that the
threats to validity are reported. The studies are listed in chronological order:

[S1] A. Ampatzoglou, and I. Stamelos, “Software engineering research for computer
games: A systematic review,” Information and Software Technology, Elsevier,
2010 (Ampatzoglou and Stamelos 2010).

[S2] A. Ampatzoglou, S. Charalampidou, and I. Stamelos, “Research state of the
art on GoF design patterns: A mapping study,” Journal of Systems and Software,
Elsevier, 2013 (Ampatzoglou et al. 2013).

[S3] M. Galster, D. Weyns, D. Tofan, B. Michalik and P. Avgeriou, “Variability in
Software Systems—A Systematic Literature Review,” Transactions on Software
Engineering, IEEE Computer Society, 2014 (Galster et al. 2014).

[S4] A. Ampatzoglou, A. Ampatzoglou, A. Chatzigeorgiou, and P. Avgeriou, “The
financial aspect of managing technical debt: A systematic literature review,”
Information and Software Technology, 2015 (Ampatzoglou et al. 2015).

[S5] E. M. Arvanitou, A. Ampatzoglou, A. Chatzigeorgiou, M. Galster, and P.
Avgeriou, “A mapping study on design-time quality attributes and metrics,”
Journal of Systems and Software, Elsevier, 2017 (Arvanitou et al. 2017).

In Table 1, we present the classification of threats to specific categories in the
threats to validity section. From Table 1, we can observe that even for studies
that come from the same group of authors (or at least overlapping ones), the
classification of the threats is not uniform, or it is sometimes completely omitted.
Also, we note that for the two studies that are reporting categories, the classes are
similar, and quite close to the classification schema reported in Sect. 2.1. Based on
this analysis, reviewers of studies [S1], [S3], and [S5] could point out to authors to
either use an established classification schema or come up with their own custom
schema. Authors of [S3] should be asked to include an explicit section on validity
threats. Reviewers of studies who use custom classifications schemas can encourage
the authors to precisely and accurately define them, if they have not done so (which

436 A. Ampatzoglou et al.

Table 1 Classification of threats into categories

Study ID Dedicated section Classification of threats to validity

[S1] Yes No categorization
[S2] Yes Construct validity. Defined as threats during study design

Internal validity. Defined as threats occurring during data
collection
External validity. Referring to threats when generalizing to
population
Conclusion validity. Referring to possibly incorrect
conclusions (e.g., missing relations, or wrongly extracted
relations)

[S3] No No categorization
[S4] Yes Threats to identification of primary studies

Threats to data extraction
Threats to generalization of results
Threats to conclusions

[S5] Yes No categorization

is not the case for [S2] and [S4]). Not all authors need to use an existing schema,
but it is crucial that they thoroughly define the types of threats.

Proceeding to a more in-depth analysis of reported threats, Table 2 presents
which of the threats to validity listed in Sect. 2.2 have been identified by the five
specific studies, how they have been mitigated (the code MAx of the mitigation
action of the corresponding threat TVy in Table 2), and where (i.e., threats or study
design section) they are reported. The rows of the table correspond to a specific
threat, and the columns to the five examined papers, while each cell denotes the
corresponding mitigation action. A blank cell implies that either the threat is not
identified or it does not apply to the specific secondary study. In case no mitigation
action has been taken for a specific threat, then we mark it only as identified (ID),
but not mitigated. Threats to validity that are discussed in study design (mitigated
or not) but not in the “threats to validity” section are marked with italics.

From Table 2 we can observe that the selected studies are covering the majority
of the possible threats to validity. Nevertheless, 80.7% of the mitigation actions of
studies are only discussed as part of the study design and not the threats to validity
section. Although the level of validity for the studies is high, the reporting of the
threats is somehow limited. This hinders the evaluation of how threats to validity
are considered and mitigated and undermines the overall validity of the studies. In
very few cases a threat has been identified without applying any mitigation action,
while often more than one action is applied to mitigate a given threat, which implies
relatively good management of threats.

Based on this analysis, reviewers could use the proposed classification schema
and checklist to encourage the authors: (a) to check whether more threats to validity
pertain to their studies, preferably pointing out specific threats that the reviewers
have identified; (b) suggest additional mitigation actions for the reported threats that
seem more relevant to the study; (c) ensure that all identified threats are mitigated

Guidelines for Managing Threats to Validity of Secondary Studies in Software. . . 437

Table 2 Identified threats to validity

Checklist question [S1] [S2] [S3] [S4] [S5]

TV1: Has your search process adequately identified all
relevant primary studies?

MA3
MA5

MA3 MA2
MA3
MA5
MA6
MA9

MA2
MA3
MA4
MA6

MA2
MA3
MA4
MA6

TV2: Were primary studies relevant to the topic of the
review published in several different journals and
conferences?

MA1 MA1

TV3: Have you identified primary studies in multiple
languages?
TV4: Were the full texts of all identified primary studies
accessible from the researchers
TV5: Have you managed duplicate articles? MA1 MA1 MA1 MA1 MA1

TV6: Have you included/excluded grey literature? MA1 MA1

TV7: Have you adequately performed study
inclusion/exclusion?

MA3
MA4

MA3
MA4

MA2
MA3
MA4
MA5

MA3
MA4

MA3
MA4

TV8: Is your sample size large enough so that the
obtained results can be considered valid?

MA1
MA2

MA1 MA1
MA2

MA1 MA1

TV9: Have you chosen the correct variables to extract? MA1 MA1

TV10: Are the primary studies in your dataset published
in a limited set of venues?

ID

TV11: Do you expect to identify relationships in your
dataset?
TV12: Does the quality of primary studies guarantee the
validity of extracted data?

MA1 MA1 MA1

TV13: Is there data extraction bias in your study? MA1
MA2

MA1
MA5

MA1 MA1

TV14: Have you performed statistical analysis? MA1 MA1

TV15: Have you selected a robust classification schema? MA1 MA1 MA1

TV16: Is your interpretation of the results subject to bias
or is it as objective as possible?

ID MA1 MA1 MA1

TV17: Is your process reliable/repeatable? MA1
MA2
MA3

MA1
MA3

MA1
MA3

MA1
MA3

MA1
MA2
MA3

TV18: Have you chosen the correct research method? MA1 MA2

TV19: Do the answers to your research questions
guarantee the accomplishment of your study goal?

MA2 MA2 MA2 MA2 MA2

TV20: Does your study have substantial related work, so
that you can compare and discuss findings?
TV21: Were you familiar with the research field before
performing the review?

MA1 MA1 MA1 MA1 MA1

TV22: Are the results of your study generalizable? MA2 ID MA2 ID

438 A. Ampatzoglou et al.

with at least one action; and (d) encourage them to report all the threats identified in
the study design, also within the threats to validity section.

5 Recommended Further Reading

We point out three different groups of related work. First, one needs to understand
how threats to validity are categorized in the empirical software engineering field,
without focusing on secondary studies. The initial categorization of Cook and
Campbell (1979) is a fitting starting point, and of course the seminal books by
Wohlin et al. (2013), Runeson et al. (2012), and Shull et al. (2007) on experimenta-
tion, case study design, and empirical SE are also of paramount importance. Second,
we advise the interested reader to refer to studies that are related to the identification
and reporting of threats to validity in medical science, which lies at the heart of the
evidence-based software engineering paradigm. This can provide valuable input for
our field, since medical research is considered a more mature field in secondary
study design and execution and has already inspired the guidelines for conducting
secondary studies in software engineering. Indicative readings in this perspective
are Avellar et al. (2017), Downs and Black (1998), Moher et al. (2015), Shea et
al. (2007), and Verhagen et al. (1998). Finally, to fully comprehend the underlying
concepts of this chapter, the readers can refer to the most common guidelines for
performing secondary studies in the software engineering domain (Budgen et al.
2018; Cruzes and Dybå 2011; Kitchenham and Charters 2007; Petersen et al. 2015).

6 Conclusions

Threats to the validity of scientific results are inescapable when a particular method
or experimental setup is used to collect, analyze, and interpret data. In this chapter,
we have focused on factors that may jeopardize the validity of secondary studies in
software engineering. In particular, based on the results of a Systematic Literature
Review of secondary studies we have proposed a classification schema, depicting
three threat categories (study selection, data, and research validity), threats belong-
ing to each category, and the corresponding mitigation actions. To assist authors,
reviewers, and readers in assessing the rigor of secondary studies, we provided
a checklist including questions asked to understand if a specific threat is present
and corresponding sub-questions to investigate if an appropriate mitigation action
has been applied. Finally, we discussed guidelines for identifying and managing
threats during the execution of a secondary study and actions for mitigating threats,
providing examples and references to the relevant literature.

Secondary studies are a significant driver for the evidence-based software
engineering and often lead to works of major significance that act as reference
points in a research topic. Researchers often consult secondary studies to obtain

Guidelines for Managing Threats to Validity of Secondary Studies in Software. . . 439

insights to the collective knowledge in a domain and identify opportunities for
further research. Ensuring a consistent classification of threats in Systematic
Literature Reviews and Mapping Studies and supporting a systematic identification
of appropriate mitigation actions can further increase their credibility. Eventually,
the proper identification and management of threats can improve the secondary
studies’ process itself, solidifying the search and selection of primary studies, the
extraction of data from the literature, and the applied data synthesis.

References

Ahmad A, Babar A (2016) Software architectures for robotic systems: a systematic mapping study.
J Syst Softw 122:16–39

Al-Baik O, Miller J (2015) The Kanban approach, between agility and leanness: a systematic
review. Empir Softw Eng 20(6):1861–1897

Ali MS, Babar A, Chen L, Stol KJ (2010) A systematic review of comparative evidence of aspect-
oriented programming. Inf Softw Technol 52(9):871–887

Alves NS, Mendes TS, de Mendonsa MG, Spinola RO, Shull F, Seaman C (2016) Identification
and management of technical debt: a systematic mapping study. Inf Softw Technol 70:100–121

Ameller D, Burgués X, Collell O, Costal D, Franch X, Papazoglou MP (2015) Development of
service-oriented architectures using model-driven development: a mapping study. Inf Softw
Technol 62:42–66

Ampatzoglou, Stamelos I (2010) Software engineering research for computer games: a systematic
review. Inf Softw Technol 52(9):888–901

Ampatzoglou A, Charalampidou S, Stamelos I (2013) Research state of the art on GoF design
patterns: A mapping study. J Syst Softw 86(7):1945–1964

Ampatzoglou A, Chatzigeorgiou, Avgeriou P (2015) The financial aspect of managing technical
debt: a systematic literature review. Inf Softw Technol 64:52–73

Ampatzoglou S, Bibi P, Avgeriou M, Verbeek A, Chatzigeorgiou (2019) Identifying, categorizing
and mitigating threats to validity in software engineering secondary studies. Inf Softw Technol
106:201–230

Arvanitou EM, Ampatzoglou A, Chatzigeorgiou A, Galster M, Avgeriou P (2017) A mapping
study on design-time quality attributes and metrics. J Syst Softw 127:52–77

Avellar SA, Thomas J, Kleinman R, Sama-Miller E, Woodruff SE, Coughlin R, Westbrook TPR
(2017) External validity: the next step for systematic reviews? Eval Rev 41(4):283–325

Barreiros E, Almeida A, Saraiva J, Soares S (2011) A systematic mapping study on software
engineering testbeds. In: 5th International symposium on empirical software engineering and
measurement, Alberta, pp 107–116

Basili VR, Selby RW (1991) Paradigms for experimentation and empirical studies in software
engineering. Reliab Eng Syst Saf 32(1–2):171–191

Brereton P, Kitchenham B, Budgen D, Turner M, Khalilc M (2007) Lessons from applying the
systematic literature review process within the software engineering domain. J Syst Softw
80(4):571–583

Budgen D, Brereton P, Drummond S, Williams N (2018) Reporting systematic reviews: some
lessons from a tertiary study. Inf Softw Technol 95:62–74

Cook D, Campbell DT (1979) Quasi-experimentation: design & analysis issues for field settings.
Houghton Mifflin, Boston

Cornelissen AZ, van Deursen A, Moonen L, Koschke R (2009) A systematic survey of program
comprehension through dynamic analysis. IEEE Trans Softw Eng 35(5):684–702

440 A. Ampatzoglou et al.

Cruzes S, Dybå T (2011) Research synthesis in software engineering: a tertiary study. Inf Softw
Technol 53(5):440–455

Dieste O, Padua D (2007) Developing search strategies for detecting relevant experiments for
systematic reviews. In: 1st International symposium on empirical software engineering and
measurement, Washington, DC, pp 215–224

Ding PL, Tang A, van Vliet H (2014) Knowledge-based approaches in software documentation: a
systematic literature review. Inf Softw Technol 56(6):545–567

Downs SH, Black N (1998) The feasibility of creating a checklist for the assessment of
the methodological quality both of randomised and non-randomised studies of health care
interventions. J Epidemiol Community Health 52(6):377–384

Dybå T, Dingsøyr T (2008) Empirical studies of agile software development: a systematic review.
Inf Softw Technol 50:833–859

Engström M, Skoglund, Runeson P (2008) Empirical evaluations of regression test selection
techniques: a systematic review. In: 2nd ACM-IEEE international symposium on empirical
software engineering and measurement, New York, pp 22–31

Galster M, Weyns D, Tofan D, Michalik B, Avgeriou P (2014) Variability in software systems – a
systematic literature review. IEEE Trans Softw Eng 40(3):282–306

Garcés L, Ampatzoglou A, Avgeriou P, Nakagawa EY (2017) Quality attributes and quality models
for ambient assisted living software systems: a systematic mapping. Inf Softw Technol 82:121–
138, 2017

Haselberger D (2016) A literature-based framework of performance-related leadership interactions
in ICT project teams. Inf Softw Technol 70:1–17

Ivarsson M, Gorschek T (2011) A method for evaluating rigor and industrial relevance of
technology evaluations. Empir Softw Eng 16(3):365–395

Jabangwe R, Borstler J, Smite D, Wohlin C (2015) Empirical evidence on the link between object-
oriented measures and external quality attributes: a systematic literature review. Empir Softw
Eng 20(3):640–693

Kabbedijk J, Bezemer CP, Jansen S, Zaidman A (2015) Defining multi-tenancy: a systematic
mapping study on the academic and the industrial perspective. J Syst Softw 100:139–148

Karanatsiou D, Li Y, Arvanitou EM, Misirlis N, Wong WE (2019) A bibliometric assessment of
software engineering scholars and institutions (2010–2017). J Syst Softw 147:246–261

Khurum M, Gorschek T (2009) A systematic review of domain analysis solutions for product lines.
J Syst Softw 82(12):1982–2003

Kitchenham, Charters S (2007) Guidelines for performing systematic literature reviews in software
engineering. Technical report EBSE-2007-01, School of Computer Science and Mathematics,
Keele University

Kitchenham T, Dybå MJ (2004) Evidence-based software engineering. In: Proceedings of the 26th
international conference on software engineering (ICSE ’04), IEEE, pp 273–281, May, 2004

Kitchenham OP, Brereton D, Budgen M, Turner J, Bailey SL (2009) Systematic literature reviews
in software engineering – a systematic literature review. Inf Softw Technol, Elsevier 51(1):7–15

Kitchenham RP, Budgen D, Pearl Brereton O, Turner M, Niazi M, Linkman S (2010) Systematic
literature reviews in software engineering – a tertiary study. Inf Softw Technol 52(8):792–805

Kosar T, Bohra S, Mernik M (2016) Domain-specific languages: a systematic mapping study. Inf
Softw Technol 71:77–91

Lenberg P, Feldt R, Wallgren LG (2015) Behavioral software engineering: a definition and
systematic literature review. J Syst Softw 107:15–37

Li Z, Avgeriou P, Liang P (2015) A systematic mapping study on technical debt and its
management. J Syst Softw 101:193–220

MacDonnell SG (2019) Invited lighting talks. In: 23rd International conference on evaluation and
assessment in software engineering, Copenhagen

Magdaleno AM, Werner CM, Araujo RM (2012) Reconciling software development models: a
quasi-systematic review. J Syst Softw 85(2):351–369

Guidelines for Managing Threats to Validity of Secondary Studies in Software. . . 441

Moher L, Shamseer M, Clarke D, Ghersi A, Liberati M, Petticrew P, Shekelle LAS (2015)
Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015
statement. Syst Rev 54(1)

Montalvillo L, Diaz O (2016) Requirement-driven evolution in software product lines: a systematic
mapping study. J Syst Softw 122:110–143

Nair S, de la Vara JL, Sabetzadeh M, Briand L (2014) An extended systematic literature review on
provision of evidence for safety certification. Inf Softw Technol 56(7):689–717

Nguyen-Duc DS, Cruzes, Conradi R (2015) The impact of global dispersion on coordination, team
performance and software quality – a systematic literature review. Inf Softw Technol 57:277–
294

Penzenstadler V Bauer C, Caleroand X (2012) French, “sustainability in software engineering”: a
systematic literature review. In: 16th International conference on evaluation & assessment in
software engineering, pp 32–41

Petersen K, Feldt R, Mujtaba S, Mattsson M (2008) Systematic mapping studies in software
engineering. In: Proceedings of evaluation and assessment in software engineering, EASE, vol
8, pp 68–77

Petersen K, Vakkalanka S, Kuzniarz L (2015) Guidelines for conducting systematic mapping
studies in software engineering: An update. In: Information and Software technology, vol 64,
pp 1–8

Pfleeger SL, Kitchenham BA (2001) Principles of survey research: part 1: turning lemons into
lemonade. SIGSOFT Softw Eng Notes 26, 6 November 2001

Runeson P, Höst M (2009) Guidelines for conducting and reporting case study research in software
engineering. Empir Softw Eng 14(2):131–164

Runeson P, Höst M, Rainer A, Regnell B (2012) Case study research in software engineering:
guidelines and examples. Wiley, Hoboken

Santos RE, da Silva FQ, de Magalhães CV (2016) Benefits and limitations of job rotation in
software organizations: a systematic literature review. In: 20th International conference on
evaluation and assessment in software engineering, p 16

Shahin M, Liang P, Babar MA (2014) A systematic review of software architecture visualization
techniques. J Syst Softw 94:161–185

Shea BJ, Grimshaw JM, Wells GA, Boers M, Andersson N, Hamel C, Porter AC, Tugwell P,
Moher D, Bouter LM (2007) Development of AMSTAR: a measurement tool to assess the
methodological quality of systematic reviews. BMC Med Res Methodol 7(1):10

Shull F, Singer J, Sjøberg DI (2007) Guide to advanced empirical software engineering. Springer
Science & Business Media, Boston

Staples M, Niazi M (2008) Systematic review of organizational motivations for adopting CMM-
based SPI. Inf Softw Technol 50(7–8):605–620

Tiwari S, Gupta A (2015) A systematic literature review of use case specifications research. Inf
Softw Technol 67:128–158

Verhagen P, de Vet HC, de Bie RA, Kessels AG, Boers M, Bouter LM, Knipschild PG (1998) The
Delphi list: a criteria list for quality assessment of randomized clinical trials for conducting
systematic reviews developed by Delphi consensus. J Clin Epidemiol 51(12):1235–1241

Wohlin C, Host M, Runeson P, Ohlsson M, Regnell B, Wesslen A (2000) Experimentation in
software engineering: an introduction. Kluwer Academic, Norwell

Wohlin C, Runeson P, da Mota Silveira Neto PA, Engström E, do Carmo Machado I, Santana de
Almeida E (2013) On the reliability of mapping studies in software engineering. J Syst Softw
86(10):2594–2610

Yang C, Liang P, Avgeriou P (2016) A systematic mapping study on the combination of software
architecture and agile development. J Syst Softw 111:157–184

Yusifoğlu VG, Amannejad Y, Can AB (2015) Software test-code engineering: a systematic
mapping. Inf Softw Technol 58:123–147

Research Synthesis in Software
Engineering

Paulo Sérgio Medeiros dos Santos and Guilherme Horta Travassos

Abstract Research synthesis represents an essential element of the knowledge
accumulation and application process, which is indispensable to any scientific field
such as software engineering. In the case of the software engineering domain, the
evidence is produced in both quantitative and qualitative forms, which challenges
their combined analysis. Research synthesis methods, in general, follow similar
processes but differ in being integrative or interpretative. This chapter intends to
introduce the reader to the research synthesis theme. It discusses the most frequently
used synthesis methods in software engineering. They range from the ones geared
toward interpretative synthesis approaches—for instance, thematic synthesis and
meta-ethnography—to those more focused on integrative approaches—e.g., case
survey, qualitative comparative analysis, and statistical meta-analysis. Besides brief
descriptions of these methods, the structured synthesis method is presented in detail,
together with a worked example concerning the synthesis of four primary studies
regarding the usage-based reading inspection technique.

1 Introduction

The scientific community is highly dependent on methodological and technological
instruments to acquire, describe, and effectively disseminate its knowledge objec-
tively. These instruments allow the researchers to interpret and exploit the available
knowledge to advance the understanding of different matters.

Scientific contributions are usually built incrementally, involving some transfor-
mation, expansion, or refutation of existing conceptual and propositional knowl-

P. Santos (�)
Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
e-mail: pasemes@uniriotec.br

G. H. Travassos
Department of Systems Engineering and Computer Science, COPPE, Federal University of Rio
de Janeiro, Rio de Janeiro, Brazil
e-mail: ght@cos.ufrj.br

© Springer Nature Switzerland AG 2020
M. Felderer, G. H. Travassos (eds.), Contemporary Empirical Methods in Software
Engineering, https://doi.org/10.1007/978-3-030-32489-6_16

443

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32489-6_16&domain=pdf
https://orcid.org/0000-0001-9502-1362
https://orcid.org/0000-0002-4258-0424
mailto:pasemes@uniriotec.br
mailto:ght@cos.ufrj.br
https://doi.org/10.1007/978-3-030-32489-6_16

444 P. S. M. dos Santos and G. H. Travassos

edge. As the body of knowledge increases, scientists concentrate more effort
into ensuring that new hypotheses and observations are needed and comparable
with previous findings. The knowledge accumulation is mainly grounded on the
organization and systematization of interrelated facts, aiming at identifying and
characterizing patterns of relationships among phenomena and processes of the
observed world (Overton 1991). In general, knowledge accumulation involves two
main parts: its creation and application. Research synthesis plays a crucial role in
the knowledge accumulation process since it organizes and summarizes the created
knowledge so that it can be more conveniently applied.

Within the evidence-based practice, knowledge creation is directly associated
with primary studies. This topic has been carefully examined in the last couple
of decades, resulting in an extensive repertoire of primary study methods tailored
for SE such as controlled experiment, case study, survey, ethnography, action
research, and simulation (Harrison et al. 1999; Wohlin et al. 2003; Zelkowitz 2007;
Easterbrook et al. 2008; Runeson and Höst 2009; Santos and Travassos 2011;
de Mello et al. 2014; de França and Travassos 2016). The reading of chapter
“Introduction: The Evolution of Empirical Methods in Software Engineering” can
give a complete perspective on the evolution of empirical studies in software
engineering (SE).

Knowledge application, on the other hand, concerns with how evidence produced
with primary studies can reach the audience outside the academic confinement or
can facilitate researchers in deriving new hypotheses. In SE, it has not yet been
subjected to the same level of scrutinization as knowledge creation. A conjecture
for this is that it is chronologically at the end of the knowledge accumulation
progression, i.e., it occurs after knowledge creation.

Both knowledge creation and application are commonly discussed under a more
extensive process known as knowledge translation. This process is fundamental to
the evidence-based practice since, as the name implies, it is how knowledge can
be adapted to suit other needs—i.e., besides research—usually for the practitioners
in the field. By adapting the description of knowledge translation from Davis
et al. (2003), who characterized the problem in medicine, Budgen et al. (2013)
define knowledge translation in SE as being “the exchange, synthesis and ethically
sound application of knowledge—within a complex system of interactions between
researchers and users—to accelerate the capture of the benefits of research through
better quality software and software development processes.” According to these
authors, its three main concerns are (1) the outcomes of secondary studies, such as
research syntheses; (2) the interpretations of what these outcomes mean in particular
contexts; and (3) the appropriate forms for communicating the outcomes.

This brief description of knowledge creation and application is sufficient to draw
attention to two essential issues. One is the fact that research synthesis is central
to knowledge accumulation since secondary studies represent a necessary step for
knowledge application. That is, the act of translating knowledge itself requires
that researchers first synthesize knowledge in order to collect and discern what is
essential for applying it. The other is that there is considerable heterogeneity of
primary study strategies in SE. The main driver for this is primarily due to the nature

Research Synthesis in Software Engineering 445

of SE as, differently from most fields, it blends technical and human aspects in a
balanced proportion. For instance, on the human and social side, researchers need to
investigate problems such as the cognitive load of software developers (Walenstein
2003) or the software engineers’ attitudes toward organizational change (Lenberg
et al. 2017). On the technical side, the software product is emphasized as well as
the tools supporting its development, as in the case of the adoption of programming
languages and its impact on software quality (Góis Mateus and Martinez 2019).
Not to mention that quantitative and qualitative perspectives are associated with
particular worldviews, which influences researchers on how their investigations are
conducted or interpreted (Mahoney and Goertz 2006). It leads to a situation where
quantitative and qualitative findings in SE are abundantly available, resulting in
considerable forms of research outcomes in the technical literature.

Therefore, this chapter presents research synthesis methods in SE, taking into
account these two previously mentioned issues. It acknowledges not only the
role of quantitative and qualitative findings in the knowledge translation process
but also the challenges that the heterogeneity of research outcomes imposes to
evidence aggregation. Thus, it aims at introducing and offering guidance for
strategies and methods employed when using research synthesis methods, mainly
focusing those the authors believe are most suited to address these issues. Among
these methods, the chapter presents the structured synthesis method, which has
been proposed explicitly for SE and can aggregate qualitative and quantitative
evidence. For supporting the discussion, this chapter begins describing the basic
definitions of research synthesis (Sect. 2). Then, it differentiates interpretative and
integrative methods, discussing its relation with the qualitative and quantitative
dichotomization (Sect. 3). The research synthesis methods commonly used in SE
are presented in Sect. 4. Then, the structured synthesis method detailed in Sect. 5
is followed by a worked example in Sect. 6. The chapter ends with suggestions for
further readings in Sect. 7 and a conclusion in Sect. 8.

2 Basic Definitions

The terms systematic literature review, research synthesis, and research review are
often used interchangeably, but as we will see in this section, they have different
meanings (Cooper and Hedges 2009).

The goal of systematic literature reviews (SLRs) is to search, identify, and
collect primary studies regarding a research topic, preferably regarding a specific
research question. In order to answer a research question, SLRs should provide
some synthesis such that the research question at hand is addressed precisely by
taking into consideration all primary studies together. Research synthesis, on the
other hand, can be described as “a collective term for a family of methods that are
used to summarize, integrate, combine, and compare the findings” (Cruzes and Dybå
2011a). It can be used as part of a systematic literature review, for synthesizing the
collected primary studies, or alone provided that there is a set of primary studies

446 P. S. M. dos Santos and G. H. Travassos

as input that can be collected by, for instance, using a search strategy such as
Snowballing (Wohlin 2016). At last, research review is associated with some quality
evaluation of the current technical literature regarding a theme, although it can be
easily found as a synonym for a literature review or research synthesis.

Despite the confusion around the terms, Cooper and Hedges (2009) indicate that
the most definitional aspect of a research synthesis study is its primary focus and
goal. According to the authors, “research syntheses attempt to integrate empirical
research to create generalizations.” To that end, like any other kind of scientific
inquiry, it should follow a process or at least a set of guidelines so that the rigor of
the study can be improved and its quality assessed.

The concerns regarding the rigor and quality of research synthesis studies are
present since the early works regarding synthesis have flourished. For instance,
Taveggia (1974) enumerates six common problems in research synthesis: selecting
research; retrieving, indexing, and coding information from studies; analyzing the
comparability of findings; accumulating comparable findings; analyzing distribu-
tions of results; and reporting of results. A more contemporary analysis of research
synthesis methods identifies similar issues. As Sandelowski et al. (2012) state,
all research synthesis studies require to define research problems, purposes, and
questions; set parameters for the searching, retrieval, inclusion, and extraction of
information from the technical literature; compare and translate the findings; and
perform some activity of content or thematic analysis, counting, tabulating, plotting,
diagramming, and narrating.

Taking these issues together, we believe that they could be used as corner-
stones for a “canonical” research synthesis process since they represent typical
circumstances that must be addressed when combining or organizing the outcomes
of studies. Thus, as these issues are pervasive to any method, research synthesis
methods are not differentiated by these practices per se, but rather by how, why, and
when in the course of a synthesis study, these practices are executed.

In the SE realm, Ciolkowski (2009) defines an approach for quantitative aggre-
gation whose process addresses the same concerns regarding the synthesis rigor and
quality, taking into account the following steps:

1. Definition: Define goals, dependent and independent variables, inclusion criteria
for studies

2. Study selection: Systematically collect primary studies, according to defined
goals; assess appropriateness regarding inclusion criteria; extract data

3. Study quality assessment: In addition to general inclusion-exclusion criteria, it is
generally considered essential to assess the “quality” of primary studies

4. Data extraction: Design data extraction forms to accurately record the informa-
tion researchers obtain from the primary studies. In this case, extract information
necessary to compute the effect size of individual studies

5. Data synthesis: Collate and summarize the results of the included primary
studies; in this case, using meta-analysis to combine effect sizes from primary
studies.

Research Synthesis in Software Engineering 447

Although this approach was proposed for aggregating quantitative (primary)
studies in SE, the approach’s process can be thought out in other contexts. For
instance, the structured synthesis method (Santos and Travassos 2013) (see Sect.
5)—a synthesis method proposed for aggregating qualitative and quantitative studies
in SE—uses similar steps as a process for research synthesis, even though it
represents a mixed (qualitative and quantitative) method. It shows how methods
distinguish among themselves due to how they suggest performing their expected
tasks and not by the steps involved in synthesizing research.

Another aspect that should be highlighted regarding the research synthesis
process is the large intersection with systematic literature reviews. As it has been
mentioned before, both processes are complementary. Just as an example of this
intersection, the first three steps of the previously described process are more related
to systematic literature reviews, in which a disciplined identification and collection
of primary studies is expected, than to research synthesis itself.

Furthermore, it is essential to add that the term “systematic” is precisely associ-
ated with the idea that they can be conducted in an organized and auditable way to
produce repeatable results. However, even though it seems to be achievable when
independent reviewers use the same protocol, significant differences usually appear
in the way the last two steps are carried out (MacDonell et al. 2010). These steps
are precisely the ones that represent the procedures related to research synthesis
and, as MacDonell et al. (2010) observe, are highly dependent on the researcher’s
individual decisions and interpretations. Nevertheless, despite this reliance on the
researchers’ abilities, there are two fundamental ways of performing a synthesis of
research. It is the subject of the following section.

3 Synthesizing Research: Interpretation, Integration,
or Both?

The typical classification used for describing primary studies, segregating the ones
based on qualitative data from those based on quantitative data, gives a much
less impressive view when applied for understanding secondary studies using
research synthesis methods. The preferred way for describing research synthesis
methods is to think about them in terms of their primary purpose, which is
interpreting or integrating knowledge. Noblit and Hare (1988) are the first authors
to make this distinction between research synthesis methods. The primary goal
of an interpretative synthesis is to describe or develop concepts to support their
organization, such as in theoretical models, taxonomical relationships, analytical
arguments, or any other organizational form that allows a connection between the
outcomes of the synthesized studies. An integrative synthesis, on the other hand,
involves summarizing and pooling data, incorporating the results into each other.
Its purpose usually involves determining the size of the combined effect when the
primary studies’ outcomes are considered together.

448 P. S. M. dos Santos and G. H. Travassos

As one can suppose, a direct line can be drawn between these two classifications.
Interpretative syntheses are usually associated with qualitative analysis, whereas
integrative syntheses are associated with quantitative analysis. However, this link
does not paint the whole picture. Even though there are authors who use these
terms as synonyms (Guzmán et al. 2014), in our understanding, the arguments
offered by Dixon-Woods et al. (2005) represent a more accurate description of
interpretative and integrative synthesis without necessarily associating them with
qualitative and qualitative analysis. For these authors, as we highlighted before,
the integrative synthesis is focused on data summarization, but they add that the
concepts (or variables) used to pool the data are assumed to be more secure and
well specified. In contrast with an integrative synthesis, an interpretative synthesis
will not be concerned with fixing the meaning of the concepts at an early stage to
facilitate the summary of empirical data relating to those concepts. On the contrary,
an interpretive synthesis will seek to conceptualize the available evidence guided
by the research question at hand, so that the details can be abstracted away and the
essential interpretations are reflected in the identified concepts usually described in
the form of a theory.

Interpretative and integrative syntheses do not represent excluding alternatives.
Any theory development, besides the focus on conceptual development, will involve
some level of summarization in order to explain the data. Analogously, any summa-
rization will involve some level of conceptual development, usually related to the
causal relationships among variables to analyze the generalizability of aggregated
outcomes. As a consequence, following this line of reasoning, interpretative and
integrative methods are not restricted to qualitative and quantitative analysis,
respectively. Both can use diverse forms of evidence, but this usually requires the
conversion of qualitative data into a quantitative form or vice versa (Dixon-Woods
et al. 2005).

When the synthesis does not use an explicit approach (interpretative or inte-
grative) for aggregating evidence, it represents a narrative synthesis, which is an
ad hoc approach that is neither traceable nor systematic. According to Guzmán
et al. (2014), a narrative synthesis (or narrative summary) emphasizes a narrative
description and ordering of heterogeneous evidence to produce an account of the
primary studies at hand, often providing some conclusion or making new hypotheses
regarding the interpretations. As one can observe in Cruzes and Dybå (2011a), most
syntheses previously accomplished in SE are narrative.

3.1 Procedures for Interpreting and Integrating

This section provides a general view regarding the procedures involved in the
interpretative and integrative strategies, by enumerating and presenting the actions
usually taken in each type of synthesis, particularly those that best distinguish these
strategies. Two aspects are discussed in this section for each type of synthesis: data
extraction and analysis.

Research Synthesis in Software Engineering 449

In an interpretative synthesis, the researcher must pay attention to extract pieces
of data that support inductive interpretations, without predefined preconceptions,
bias, or inclinations. For instance, a synthesis concerned with how testers use
software testing tools can include one study describing whether they believe the
tools are appropriate for the task at hand and another study investigating the
difficulties of novice testers using the same testing tools. In terms of data analysis,
one could conceptualize the former as related to the understandability and the latter
as associated with the learnability. Then they realize that both are concerned with the
usability of software testing tools when using the definitions regarding, for instance,
the software quality properties presented in Kitchenham and Pfleeger (1996). This
example shows how the inductive process supports the analysis in identifying
concepts that can translate studies’ variables or notions, which at first glance are not
comparable, but when translated to the proper concept, they become comparable.
In the interpretative synthesis, data extraction should be as open as possible, so
that the analysis can be guided by what is discovered in the studies and not to
(un)confirm an a priori hypothesis. As discussed earlier in this section, data can
be of qualitative or quantitative nature. Qualitative data are usually associated with
field notes or interviews, whereas quantitative data complement it with frequencies
and other kinds of descriptive statistics.

In an integrative synthesis, on the other hand, the researcher is more focused
on examining correlational or causal relationships. These relationships are usually
defined at the beginning of the synthesis study, and they contain the concepts that
are going to be investigated. As one can see, it employs deductive reasoning since
the synthesis study starts with a general statement, or hypothesis, and examines the
possibilities to achieve the hypothesized logical conclusion, based on the extracted
data. For instance, still using the example of a synthesis related to software testing
tools and taking the same concepts related to the quality properties used earlier, two
hypotheses could be conceived.

One is whether there is a difference between two (or more) software testing tools
regarding their learnability, using the time necessary to grasp and use the tools in
a software project. The other is whether there is a relationship between the testers’
experience and their understandability of the tools. These examples are sufficient
to illustrate how concepts embodied the hypothesis definition itself—in this case,
learnability and understandability. Thus, data extraction is centered on collecting
information that supports or contradicts the hypotheses and relationships of interest.
As data analysis is based on the extracted data, it also uses the same concepts so that
all the studies can be analyzed together by providing some summarization of their
outcomes. As in the case of interpretative synthesis, both quantitative and qualitative
data can be used in the analysis. Quantitative data is usually associated with a
particular property of the object under study (e.g., learnability), whereas qualitative
data can add explanations to the patterns found or just incorporated in the pooling
with the quantitative data by converting it.

450 P. S. M. dos Santos and G. H. Travassos

4 Current Research Synthesis Methods

In this section, we briefly introduce some research synthesis methods that, in our
understanding, are the most used in and more balanced for use in SE. The idea is
to offer a list of options for taking a grasp of what is available and its applicability
considering the profile of primary studies in SE.

• Thematic synthesis: it involves the identification of recurrent themes in technical
literature, summarizing results from different studies related to each theme
(Dixon-Woods et al. 2005). In the process defined in Cruzes and Dybå (2011b),
five steps are indicated: data extraction, data coding, translation of codes into
themes, creation of a higher-order model, and trustworthiness assessment. One
of the fundamental principles driving this process is the increasing abstraction
levels, starting from the text, passing through the identification of themes,
and concluding with a higher-order model. It is also interesting how graphical
representations are used for the model, usually a cognitive map (Cruzes and Dybå
2011b).

• Meta-ethnography: it seems that the most distinctive feature of meta-ethnography
is the translation (reciprocal or refutational) procedure, which supports the
researcher in identifying and inducing concepts and relations by considering
findings in one study that is like the findings of other ones (Da Silva et al.
2013). This translation can be done literally, concept by concept, or idiomatically,
preserving the text meaning. In any case, the objective is to produce new
interpretations using analogies to consolidate different studies’ results or by
developing concepts and relations that can capture the findings together.

• Case survey method: conceptually more straightforward than the other methods,
it consists of a closed questionnaire, which is applied to each (case) study (Yin
and Heald 1975). Since the questions are closed-ended, the summarization comes
from the analysis of the answers’ distributions. In Yin and Heald (1975) and
Larsson (1993), three methodological concerns are emphasized: (1) synthesis
reliability as a parameter to assess its replicability, (2) the differentiation between
weak and strong responses to estimate the confidence on each answer and
on the whole synthesis, and (3) an explicit definition of criteria for excluding
studies from the synthesis. See chapter “Guidelines for Case Survey Research in
Software Engineering” for more details.

• Qualitative comparative analysis: it assumes that a given outcome can be an
effect of different combinations of circumstances so that the notion of causality
may be understood in terms of the sufficient and necessary conditions distinction
(Dixon-Woods et al. 2005). These conditions are usually associated with the stud-
ies’ dependent and independent variables, which are tabulated using dichotomous
values—in the case of crisp set qualitative comparative analysis—to indicate the
presence or absence of a cause, effect, or contextual aspect. The summarization is
then achieved by using first-order logic to determine which descriptive inferences
are supported by data, constituting the so-called explanatory model. The model

Research Synthesis in Software Engineering 451

represents the sufficient and necessary conditions for the explored cause–effect
relations.

• Statistical meta-analysis: it represents the analysis of analyses by applying
statistics aiming to integrate the results of individual quantitative studies (Lipsey
and Wilson 2001). It should not be confounded with secondary analysis, on
which previously collected datasets are reanalyzed with more powerful statistical
testing. However, it can be compared with a survey, on which the quantitative
results of empirical studies (and not just individuals) characterize the participants
(Schulze 2004). Due to its nature, meta-analysis only applies to quantitative
results of experimental studies that are conceptually comparable (similar con-
structs, relationships, and the same statistical configuration). Therefore, it is not
appropriate to use meta-analysis to aggregate results from different research
designs even when they are dealing with the same topic of interest. Usually, the
comparison of effect sizes (fixed or random) of the selected studies represents the
results of a meta-analysis. However, the quality of the selected studies challenges
its results (Wolf 1986). For instance, the lack of negative results reported in the
technical literature can jeopardize confidence in the obtained aggregated result.

• Theory building and statistical meta-analysis: because it is a combination of
two research strategies, its underlying idea is that theories can be developed
through a statistical meta-analysis study (Yang 2002). The method is cited here
to indicate the practicability of using theory-building techniques to support
research synthesis. One of the main features of using theories as a tool for
meta-analytical synthesis is the distinction between theory abstract constructs
and observable indicators from the empirical level. Based on this idea, Yang
(2002) defines three research domains: theoretical, empirical, and measurement.
In the theoretical level, abstract concepts and entities are defined, which are
used to define a theory. Both empirical and measurement domains are used
to operationalize variables. The empirical domain contains all known existing
definitions regarding how to operationalize a construct based on the definition of
the theoretical domain, whereas the measurement domain contains representative
samples of observations from the empirical domain for the same construct. Based
on this distinction, the explicit link between theoretical and empirical levels can
be formed, and meta-analytical statistic instruments are used to verify if the
theoretical relationships are statistically significant according to the variables
used to measure them.

• Structured Synthesis Method (SSM): it is a research synthesis method that can
be used to aggregate both quantitative and qualitative studies. It is a kind of
integrative synthesis method, such as meta-analysis, but has several features from
interpretative methods, such as meta-ethnography, particularly those concerned
with conceptual development. The method is further detailed in the next section.

When choosing among these methods, we suggest considering at least two
aspects: their interpretative and integrative capabilities and which type of evidence
the method can synthesize (i.e., qualitative or quantitative). We created a three-level
scale to describe these capabilities in the following manner:

452 P. S. M. dos Santos and G. H. Travassos

Table 1 Classification of the research synthesis methods

Method Interpretative level Integrative level Type of evidence

Thematic synthesis Level 2 Level 1 Both qualitative and
quantitative

Meta-ethnography Level 3 Level 1 Preferably qualitative
Case survey method Level 1 Level 2 Only evidence from case

studies
Qualitative comparative
analysis

Level 1 Level 2 Both qualitative and
quantitative

Statistical meta-analysis Level 1 Level 3 Only quantitative
Theory building and
statistical meta-analysis

Level 2 Level 3 Only quantitative

Structured synthesis
method

Level 2 Level 2 Both qualitative and
quantitative

• For the interpretative scale:

– Level 1—low concept development
– Level 2—concepts are developed and defined, but there is no explanation of

the mechanisms involving these concepts
– Level 3—high concept development and explanation of the mechanisms

involving these concepts

• For the integrative scale:

– Level 1—some vote counting (Pickard et al. 1998) without considering the
uncertainty related to each primary study included in the synthesis

– Level 2—findings are pooled using a nominal or ordinal scale, considering the
uncertainty of each primary study

– Level 3—findings are pooled using an interval or ratio scale, considering the
uncertainty of each primary study

Table 1 uses this classification to enumerate the methods discussed in this
section.

5 Integrating and Interpreting with the Structured Synthesis
Method: A Small Introduction

This section depicts the structured synthesis method (SSM), which was first
introduced in Santos and Travassos (2013) and used in different synthesis studies
(see Sect. 7). The most salient feature of SSM is its support to combine qualitative
and quantitative evidence, which is essential in SE considering the heterogeneity
of primary studies in the area. This feature is a direct result of how SSM blends
elements from both integrative and interpretive syntheses. Another nice feature of

Research Synthesis in Software Engineering 453

the method is that it was conceived for SE with specific constructs related to the
software development domain (e.g., technology and software systems).

SSM uses diagrammatic models to represent essential pieces of information
about primary studies and aggregate them. The central role of the models is to
support the researcher in deciding whether primary studies’ outcomes should be
combined. In the SSM, the diagrammatic models are denominated theoretical
structures since their representational constructs are based on theory building
notions (e.g., concepts and relationships). The representation has ten constructs
(eight can be seen in Sect. 6.4, Fig. 3) underlined in the following paragraphs.

There are three possible types of structural relationships in the representation:
is a, part of , and property of . The is a and part of relationships use the same UML
semantic of generalization and composition. Dashed connections denote properties.
These relationships are used to link two types of concepts—value and variable.

A value concept represents a particular variable value, usually an independent
variable. Rectangles represent value concepts. They are classified in archetypes
(the root of each hierarchy), causes (indicated by the use of bold font and a “C1”
following the name denoting that it is the “cause 1,” e.g., “usage-based reading”),
and contextual aspects (e.g., “Web system”). The four archetypes—activity, actor,
system, and technology—were defined in an attempt to capture the typical scenario
in SE described by an actor applying a technology to perform activities in a software
system.

A variable concept focuses on value variations, usually associated with a
dependent variable. Variable concepts are represented by ellipses or parallelograms
symbolizing effects (e.g., “crucial faults”) and moderators (not present in Fig. 3),
respectively. It should be noticed that effects are not connected to cause using lines
as they are implicit in the diagram. Lines are also lacking in the link between
moderators and the (moderated) effects. In this case, a textual hint (e.g., “M1”) is
shown beside both the moderated effect and moderator (not present in Fig. 3). Both
relationships cause–effect and moderation are denominated influence relationships.

In the theoretical structures, the notion of an effect size, used in the meta-analysis,
is referred to as effect intensity. A seven-point Likert scale is used to represent the
effect intensity. The scale ranges from strongly negative to strongly positive. It is
indicated above the ellipse (e.g., indicates that “important faults” is between
weakly positively and positively affected by “usage-based reading”—the number of

arrows indicates the value in the scale, represents strongly negative and strongly
positive, and half-sized arrows indicate a range such as in the case of “important
faults”). Since it is used mathematically in the SSM as explained in the following
paragraph, the scale is defined using a set representation {SN, NE, WN, IF, WP,
PO, SP}—the set elements are abbreviations for the Likert scale terms, e.g., SN
is “strongly negative.” The other type of variable concepts, namely moderators,
indicates that some positive or negative effect is moderated (i.e., reduced) when it
increases or decreases, but they are not used in the examples of this chapter. The
last aspect related to variable concepts is the association of a belief value (ranging
from 0% to 100% or 0 to 1) to estimate the confidence in the observed effects and

454 P. S. M. dos Santos and G. H. Travassos

moderators. The bar under each element represents the belief value, e.g., “important
faults” has 69% of belief value.

Belief values and the intensity of the effect (e.g., positive or negative) form
the main instruments for aggregation. The SSM uses an uncertainty formalism
to combine the results named mathematical theory of evidence (Shafer 1976)
(also known as Dempster–Shafer theory, DST)—otherwise, a simple vote counting
strategy would be used, which is widely regarded as inefficient and imprecise for
research synthesis. The DST uses two primary inputs to combine two pieces of
evidence. One is the hypotheses to which a belief value can be assigned, and the
other is the belief values themselves. The set of possible hypotheses is called frame
of discernment (or using the symbol �), which in the SSM is formed by the seven-
point Likert scale used to represent the effect intensity.1 That is, the set defined in the
previous paragraph: � = {SN, NE, WN, IF, WP, PO, SP}. In the DST, belief values
can be assigned to both single hypotheses (e.g., {WP}) and compound hypotheses
(e.g., {IF, WP})—the latter is used when the hypothesis which is believed to be
true is not clear and more than one hypothesis is chosen instead. So, a belief value
assigned to a compound hypothesis {IF, WP} should be represented as “the effect
intensity is somewhere between indifferent and weakly positive.” More formally,
belief values can be assigned to any element of the powerset2 of the frame of
discernment.

Once hypotheses and belief values are defined for each piece of evidence, then the
Dempster’s rule of combination is applied. Equation (1) shows that the aggregated
belief value for the hypothesis C is equal to the sum of the product of the hypotheses’
belief values whose intersection between all hypotheses Ai and Bj of both evidence
is C. The letters A, B, and C are sets, which are elements of the powerset, and the
indexes i and j go through all the powerset elements. The function m is called the
basic probability assignment function, which, as the name implies, is used to assign
a belief value to the different hypotheses (i.e., sets) of the powerset.

m3(C) =

∑

i, j

Ai ∩ Bj = C

m1 (Ai) m2
(
Bj

)

1 − K
, where (1)

K =
∑

i, j

Ai ∩ Bj = ∅

m1 (Ai) m2
(
Bj

)
.

1The reader should note that as hypotheses are used to represent effect intensity in some parts of
this text, the terms are used interchangeably.
2The powerset is a set whose elements are represented by all possible subsets of a specific set. As
the frame of discernment used in the SSM is defined as � = {SN, NE, WN, IF, WP, PO, SP}, the
associated powerset is given by 2� = {{}, {SN}, {NE}, . . . {SN, NE}, {NE, WN}, . . . , {SN, NE,
WN}, . . . , {SN, NE, WN, IF, WP, PO, SP}}.

Research Synthesis in Software Engineering 455

When the intersection between two hypotheses is an empty set, it can be said that
there is a conflict. A conflict is, then, redistributed to the aggregated hypotheses—
that is, the function of 1 − K in the denominator. More details about how DST is
used in SSM are available in Santos and Travassos (2013).

The next section describes a worked example using the SSM five-stage process.
It is analog to the five steps presented in Sect. 2 and shares several similarities with
the methods presented in Sect. 4. For comparison with those methods, the reader
should check Table 2. The process briefly described below:

1. Planning and Definition: the study objectives are defined, including the research
question and the inclusion/exclusion criteria. In some situations, a theoretical
structure can be created to serve as a basis to identify what must be present
in selected papers in a similar manner as extraction forms used in systematic
reviews.

2. Selection: primary studies are collected by following a systematic procedure
considering the defined criteria. Also, to help manage and organize papers,
relevant information about the studies can be extracted, such as bibliographic
data, research goal, or study type.

3. Quality assessment: the quality of primary studies is evaluated using quality
assessment checklists proposed for SE. The quality assessment (combined with
the type of study) is used as an input to estimate the confidence in the studies’
outcomes. The SSM represents this confidence by the belief values that are
assigned to effects and moderators.

4. Extraction and Translation: evidence is extracted from primary studies and
translated to theoretical structures. Data extraction is performed to identify
concepts and relationships following the restrictions of the diagrammatic model
described above.

5. Aggregation and Analysis: based on the created theoretical structures, the
compatible evidence is aggregated by pooling their effects and moderators. Then,
the results are analyzed together.

6 A Worked Research Synthesis Example with the SSM

For this example, we have chosen the classical domain of software inspections,
in particular, the usage-based reading (UBR) inspection technique. This domain
was deliberately chosen because it is a well-known domain in SE, especially
within the empirical software engineering community, where it has been extensively
investigated and was one of the first topics to be the target of experimental studies
(Basili et al. 1999). Thus, we used this in an attempt to draw attention to the
application of the SSM method itself rather than to the synthesis results.

Inspection of software artifacts is a meaningful way of avoiding rework and
improving software quality (Fagan 2002). The primary factors for its success are
the relatively low cost of utilization and its capability in finding defects throughout

456 P. S. M. dos Santos and G. H. Travassos

T
ab

le
2

C
om

pa
ri

ng
re

se
ar

ch
sy

nt
he

si
s

m
et

ho
ds

us
in

g
SS

M
’s

fiv
e-

st
ag

e
pr

oc
es

s

M
et

ho
d

SS
M

ph
as

e
T

he
m

at
ic

sy
nt

he
si

s
M

et
a-

et
hn

og
ra

ph
y

C
as

e
su

rv
ey

Q
ua

li
ta

tiv
e

co
m

pa
ra

tiv
e

an
al

ys
is

T
he

or
y

bu
il

di
ng

an
d

m
et

a-
an

al
ys

is
Pl

an
ni

ng
an

d
de

fin
it

io
n

•
In

ge
ne

ra
l

te
rm

s,
th

es
e

re
se

ar
ch

sy
nt

he
si

s
m

et
ho

ds
do

no
th

av
e

an
y

pa
rt

ic
ul

ar
co

nc
er

n
ab

ou
tr

es
ea

rc
h

de
fin

iti
on

an
d

st
ud

ie
s

se
le

ct
io

n,
w

it
h

fe
w

m
in

or
co

ns
id

er
at

io
ns

–
D

is
cu

ss
io

ns
in

vo
lv

in
g

m
et

a-
et

hn
og

ra
ph

y
an

d
qu

al
ita

tiv
e

co
m

pa
ra

tiv
e

an
al

ys
is

po
in

tt
o

th
e

im
po

rt
an

ce
of

pr
io

ri
tiz

in
g

fe
w

er
st

ud
ie

s
th

an
br

oa
d

ge
ne

ra
li

za
ti

on
s,

pa
yi

ng
pa

rt
ic

ul
ar

at
te

nt
io

n
to

th
e

st
ud

ie
s’

co
nt

ex
t

Se
le

ct
io

n
–

T
he

ca
se

su
rv

ey
hi

gh
li

gh
ts

th
e

im
po

rt
an

ce
of

ha
vi

ng
ex

pl
ic

it
ex

cl
us

io
n

cr
it

er
ia

fo
r

st
ud

ie
s

Q
ua

li
ty

as
se

ss
m

en
t

N
/A

N
/A

•
T

he
le

ve
lo

f
ag

re
em

en
tb

et
w

ee
n

re
se

ar
ch

er
s

is
us

ed
as

a
pa

ra
m

et
er

fo
r

re
su

lt
s

re
li

ab
il

it
y

N
/A

•
M

et
a-

an
al

ys
is

at
te

m
pt

s
to

re
co

rd
va

ri
ou

s
as

pe
ct

s
of

re
se

ar
ch

m
et

ho
do

lo
gi

es
fo

r
th

e
ex

is
ti

ng
st

ud
ie

s
to

id
en

ti
fy

th
ei

r
re

la
ti

on
sh

ip
to

st
ud

y
fin

di
ng

s—
e.

g.
,

pa
rt

ic
ip

an
ts

’
ex

pe
ri

en
ce

Research Synthesis in Software Engineering 457

E
xt

ra
ct

io
n

an
d

tr
an

sl
at

io
n

•
A

n
in

cr
ea

si
ng

le
ve

lo
f

ab
st

ra
ct

io
n

(t
ex

t
co

di
ng

)
is

us
ef

ul
fo

r
co

nc
ep

ts
an

d
re

la
ti

on
sh

ip
id

en
ti

fic
at

io
n

•
T

he
m

et
ho

d
su

gg
es

ts
us

in
g

ta
bl

es
to

en
um

er
at

e
m

os
to

f
th

e
da

ta
us

ed
fo

r
sy

nt
he

si
s

(c
on

te
xt

,c
on

ce
pt

s,
an

d
re

la
ti

on
sh

ip
s)

an
d

th
e

sy
nt

he
si

s
it

se
lf

,w
hi

ch
co

nt
ri

bu
te

s
to

th
e

m
et

ho
d

tr
an

sp
ar

en
cy

an
d

im
pr

ov
es

th
e

ev
id

en
ce

co
m

pa
ra

bi
li

ty

•
It

s
no

ti
on

of
co

nfi
de

nc
e

as
so

ci
at

ed
w

it
h

su
rv

ey
an

sw
er

s,
w

hi
ch

re
pr

es
en

t
ev

id
en

ce
fin

di
ng

s,
is

ac
co

m
m

od
at

ed
by

D
-S

th
eo

ry

•
T

he
lo

gi
ca

l
de

sc
ri

pt
io

n
of

(a
bs

en
t

an
d

pr
es

en
t)

co
nd

it
io

ns
as

so
ci

at
ed

w
it

h
de

pe
nd

en
t

an
d

in
de

pe
nd

en
tv

ar
ia

bl
es

is
si

m
il

ar
to

th
e

th
eo

re
ti

ca
ls

tr
uc

tu
re

s’
va

lu
e

an
d

va
ri

ab
le

co
nc

ep
ts

al
on

g
w

it
h

th
ei

r
po

ss
ib

le
re

la
ti

on
sh

ip
s

•
D

at
a

ta
bu

la
ti

on
is

su
gg

es
te

d
he

re
to

de
sc

ri
be

al
l

co
m

bi
na

ti
on

s
of

co
nd

it
io

ns
an

d
is

si
m

il
ar

to
th

e
ro

le
of

th
eo

re
ti

ca
ls

tr
uc

tu
re

s
in

im
pr

ov
in

g
ev

id
en

ce
co

m
pa

ra
bi

li
ty

•
W

he
n

m
od

el
in

g
ev

id
en

ce
w

it
h

th
eo

re
ti

ca
ls

tr
uc

tu
re

s,
it

is
es

se
nt

ia
lt

o
be

aw
ar

e
of

th
e

di
ff

er
en

ti
at

io
n

be
tw

ee
n

co
ns

tr
uc

ts
,

co
nc

ep
ts

,a
nd

va
ri

ab
le

s
si

nc
e

it
ca

n
su

pp
or

t
re

se
ar

ch
er

s
to

id
en

ti
fy

re
le

va
nt

in
fo

rm
at

io
n

in
pa

pe
rs

A
gg

re
ga

ti
on

an
d

an
al

ys
is

•
T

he
us

ag
e

of
di

ag
ra

m
m

at
ic

re
pr

es
en

ta
ti

on
in

di
ca

te
s

it
s

ap
pl

ic
ab

il
it

y
as

a
to

ol
fo

r
sy

nt
he

si
s

•
T

ra
ns

la
ti

on
pr

oc
ed

ur
e

is
us

ef
ul

to
ho

m
og

en
iz

e
(t

ra
ns

la
te

)
ev

id
en

ce
m

od
el

s
in

to
on

e
an

ot
he

r

N
/A

•
T

he
in

du
ct

iv
e

ap
pr

oa
ch

is
si

m
il

ar
to

th
e

ap
pr

oa
ch

us
ed

in
th

e
SS

M
,w

he
re

al
l

th
eo

re
ti

ca
ls

tr
uc

tu
re

s
ar

e
an

al
yz

ed
an

d
re

fin
ed

to
ge

th
er

N
/A

458 P. S. M. dos Santos and G. H. Travassos

the process. Moreover, software inspections can integrate the defect prevention and
detection process.

The UBR is an inspection technique whose primary goal is to drive reviewers to
focus on crucial parts of a software artifact from the user’s point of view. In UBR,
faults are not assumed to be of equal importance, and the technique aims at finding
the faults that have the most negative impact on the users’ perception of system
quality. To that end, reviewers are given use cases in prioritized order and inspect
the software artifacts following the usage scenarios defined in the ordered use cases.
Therefore, UBR assumes that the set of use cases can be prioritized in a way that
reflects the desired user quality perspective. If the inspection aims at finding the
defects that are most critical to a particular system quality attribute, the use cases
should be prioritized accordingly.

As discussed in Sect. 2, a research synthesis study usually takes a literature
review (systematic or not) as input. For completeness, the five stages of the SSM
process will be detailed, but it is worth mentioning that only steps 3, 4, and 5 are
directly related to the synthesis. All details of this synthesis example, particularly
the theoretical structures and the description of the concepts, can be found in the
Evidence Factory tool.3 A presentation of the tool features can be found in Santos
et al. (2015) and dos Santos and Travassos (2017).

6.1 Planning and Definition

Using the structure suggested in SSM, the research question was defined as follows:

What are the expected effects of the Usage-Based Reading inspection technique when it
is applied for inspecting high-level design artifacts produced in the analysis phase of the
software development process?

The research question incorporates aspects related to technology, activity, and
system archetypes from the diagrammatic model, leaving out any consideration of
the actors’ characteristics. Thus, no characteristics about the organization, team, or
persons, such as software development experience, are determinant for the study
selection.

This phase also defines the search string to retrieve the papers based on the
four archetypes of the SSM’s diagrammatic representation. The only term used in
the search string was “usage-based reading,” which is related to the technology
archetype. This simple string was sufficient because UBR is a concrete software
technology and does not represent a technology category. We judged that making the
search string more detailed would only add the risk of leaving out papers that did not
include terms about the activity and system characteristics defined in the research
question. As a result, the aspects of activity and system characteristics compose the

3http://evidencefactory.lens-ese.cos.ufrj.br/synthesis/editor/291

http://evidencefactory.lens-ese.cos.ufrj.br/synthesis/editor/291

Research Synthesis in Software Engineering 459

paper inclusion criteria. For exclusion criteria, on the other hand, the theoretical
or analytical papers and articles not written in English were eliminated. The last
definition for paper selection is the digital libraries to be used, which in this case
was Scopus.4

6.2 Selection

The search was able to find 15 technical papers in Scopus with the given search
string, from which four were selected following the inclusion and exclusion criteria.
The selection was performed in November 2015. For the sake of exemplification
and results conciseness, no updating has been executed at the time of preparing
this chapter. However, the reader can use the updating opportunity as a way
to experiment using the SSM before applying it in more specific and intricate
aggregations. Among the excluded papers, one was a duplicate, one was classified
as theoretical (analyzing the contributions of three included papers), and the others
did not fulfill the inclusion criteria.

The four included studies form a family of experiments aiming at investigating
UBR performance in identifying faults on software artifacts. Two researchers
participated in three of them. The first experiment (Thelin et al. 2001—Study S1–27
participants) compared UBR with the ad hoc inspection. Moreover, the other three
studies (Thelin et al. (2003)—Study S2–34 participants, Thelin et al. (2004)—Study
S3–23 participants, and Winkler et al. (2004)—Study S4–62 participants) compared
UBR against a checklist-based reading (CBR).

All the experiments used the same set of instruments. Subjects inspected a real-
world high-level design document, which consisted of an overview of the software
modules and communication signals that are sent to/received from the modules. The
system application domain is related to taxi management, and the design document
specifies the three modules composing the system: one client module used in the
vehicles, one central module for the operators, and one integration module acting
as a communication link between them. All faults were classified into three classes
depending on the fault importance from the user’s point of view. Class A or crucial
faults represent faults in system functions that are crucial for a user (i.e., functions
that are important for users and that are often used). Class B or important faults
represent those that affect essential functions for users (i.e., functions that are either
important and rarely used or not as important but often used). Class C or minor
faults are those that do not prevent the system from continuing to operate. Besides
the number of faults, the experiments also report the efficiency (faults/hour) and
effectiveness (faults/total faults).

4http://www.scopus.com

http://www.scopus.com

460 P. S. M. dos Santos and G. H. Travassos

Table 3 Belief values for moderation and causal relationships of theoretical structures

Study Base belief value Increase factor based on the study quality Final belief value

S1 0.50 0.1858 (of 0.25) 0.6858
S2 0.50 0.2042 (of 0.25) 0.7042
S3 0.50 0.2042 (of 0.25) 0.7042
S4 0.50 0.1858 (of 0.25) 0.6858

6.3 Quality Assessment

The SSM uses the study type and quality to estimate the belief values for effects and
moderators. Based on the study type, as all studies are quasi-experiments, the belief
values for them have an inferior limit of 0.50. The limits for each study type are
defined in Martinez-Fernandez et al. (2015), using the GRADE evidence hierarchy
(Atkins et al. 2004). There are four inferior limits 0.00, 0.25, 0.50, and 0.75. Then,
we add to that base value the result from the scoring scheme for systematic studies,
as discussed in Martinez-Fernandez et al. (2015) with a maximum score of 0.25.
These values are calculated automatically by the Evidence Factory tool (dos Santos
and Travassos 2017). Table 3 presents the computed belief values for the four
studies.

It is possible to see that belief values are similar. It is a direct result of the fact
that the first three papers have authors in common. Thus, they tend to share the same
textual structure when describing the procedures, analysis, and results. Furthermore,
the fourth study is an external replication, which explains why the authors focused
on reporting the same aspects to facilitate further comparison between the studies.

6.4 Extraction and Translation

The quantitative nature of the studies facilitated information extraction. Each paper
enumerated dependent and independent variables, as can be seen in Fig. 1, so
it was straightforward to identify theoretical structures’ concepts. The context of
experiments was detailed enough, which in controlled studies tend to be simpler
than observational studies (Fig. 2). Moreover, translation procedures were mostly
unnecessary since studies’ design was similar and used the same set of variables
as surrogates. Causal relationships were extracted from the statistical tests used to
answer the research questions. It is essential to say that extraction and translation
are solely based on what is reported. Thus, even though researchers knew important
variables regarding the object of study at hand, theoretical structures only have what
is in the papers’ text. For instance, researchers are aware that several, if not most,
studies on software inspection consider the inspector’s experience as a variable.
Still, researchers could not include this variable into the theoretical structures, as
the four studies did not observe this aspect.

Research Synthesis in Software Engineering 461

Independent variable. The independent variable is the use case
order in UBR. The two experiment groups use the same use
cases in different orders. One order is prioritized and another is
randomized. The group with prioritized use cases is denoted prio
group and the group with randomized use cases is denote
control group. Notice that neither of the groups was provided with
organized use cases, as would be the case if they were written in
an ordinary document.

Controlled variable. The controlled variable is the experience of
the reviewers and it is measured on an ordinal scale. The
reviewers were asked to fill in a questionnaire consisting of
seven different questions.

Dependent variables. The dependent variables measured are
time and faults. The first four variables are direct measures. The
last three are indirect measures and are calculated using the
direct measures.

1. Time spent on preparation, measured in minutes.
2. Time spent on inspection, measured in minutes.
3. Clock time when each fault is found, measured in minutes.
4. Number of faults found by each reviewer.
5. Number of faults found by each experiment group.
6. Efficiency, measured as: 60 * (Number of Faults Found /

(Preparation Time + Inspection Time)).
7. Effectiveness, measured as: Number of Faults Found / Total

Number of Faults.

Fig. 1 Study S1 variables listing (Source: Study S1)

The inspected document is a design
document (9 pages, 2300 words), which
consists of an overview of the software
modules and communication signals that are
sent to and from the modules.

The modules are one taxi module for each
vehicle, one central module for the operator
and one communication link in-between
these, see Fig. 2.

Inspected artifact:
high-level design

Web system

Fig. 2 Examples of concept identification for theoretical structure modeling (Source: Study S1)

Given the similarity among the studies, the theoretical structures for the four
studies share most of the concepts and relationships. Figure 3 depicts the theoretical
structure modeled for the study S1 based on the information extracted. The only
difference between theoretical structures from the four studies is related to the
dependent variables. Two papers do not consider minor defects (class C) in their
analysis. The authors do not provide any apparent justification for that, but it is

462 P. S. M. dos Santos and G. H. Travassos

Sy
st

em

Ef
fe

ct
iv

en
es

s
of

 c
ru

...
Ef

fe
ct

iv
en

es
s

of
 im

p.
..

An
al

ys
is

Ef
fe

ct
iv

en
es

s
of

 to
t..

.
Ef

fic
ie

nc
y

of
 c

ru
ci

al
...

Ef
fic

ie
nc

y
of

 im
po

rt
...

Ef
fic

ie
nc

y
of

 to
ta

l f
a.

..

W
eb

 S
ys

te
m

H
ig

h
le

ve
l d

es
ig

n

Cr
uc

ia
l f

au
lts

Im
po

rt
an

t f
au

lts
M

in
or

 fa
ul

ts
To

ta
l f

au
lts

Ac
to

r

So
ft

w
ar

e
pr

oj
ec

t

In
sp

ec
to

r

Ac
tiv

ity

U
sa

ge
-B

as
ed

Re
ad

in
g(

C1
)

Te
ch

no
lo

gy

68
%

68
%

64
%

69
%

68
%

66
%

69
%

69
%

69
%

69
%

F
ig

.3
E

vi
de

nc
e

m
od

el
re

pr
es

en
ti

ng
st

ud
y

S1
re

su
lt

s
(T

he
li

n
et

al
.2

00
1)

Research Synthesis in Software Engineering 463

Table 4 Effects reported in UBR primary studies

Effects showed as intensity (belief value)
Study effect S1 S2 S3 S4

Efficiency (total faults) {SP}
(0.66)

{SP}
(0.67)

{WP, PO}
(0.68)

{PO}
(0.65)

Efficiency (crucial faults) {PO, SP}
(0.69)

{PO, SP}
(0.70)

{WP, PO}
(0.70)

{WP, PO}
(0.68)

Efficiency (important faults) {PO}
(0.68)

{WP}
(0.60)

{WP}
(0.70)

{IF, WP}
(0.69)

Efficiency (minor faults) N/A {WP}
(0.52)

{WP}
(0.70)

N/A

Effectiveness (total faults) {WP, PO}
(0.64)

{PO}
(0.63)

{PO}
(0.70)

{SP}
(0.67)

Effectiveness (crucial faults) {PO, SP}
(0.68)

{PO, SP}
(0.68)

{PO, SP}
(0.70)

{SP}
(0.69)

Effectiveness (important faults) {PO}
(0.68)

{WP, PO}
(0.58)

{PO}
(0.70)

{IF, WP}
(0.69)

Effectiveness (minor faults) N/A {IF, WP}
(0.60)

{WP}
(0.70)

N/A

Total faults {SP}
(0.69)

{PO}
(0.63)

{PO}
(0.70)

{SP}
(0.67)

Crucial faults {PO, SP}
(0.69)

{PO, SP}
(0.68)

{PO, SP}
(0.70)

{SP}
(0.69)

Important faults {WP, PO}
(0.69)

{WP, PO}
(0.58)

{PO}
(0.70)

{IF, WP}
(0.69)

Minor faults {WP}
(0.69)

{IF, WP}
(0.60)

{WP}
(0.70)

N/A

possible to conjecture that it can be associated with publication space restrictions.
Table 4 enumerates all effects, along with its intensity and belief value. The belief
values in Table 4 are already adjusted according to the p-values found in the primary
studies, using the discount operation of the DST (Martinez-Fernandez et al. 2015).

It is essential to note at this point that, although we are focusing on the
descriptive5 theoretical structures for UBR, they were modeled using the dismem-
bering operation (Santos 2015). It means that, first, similar theoretical structures
(comparing UBR with ad hoc or CBR) were modeled and, then, based on the
differences of the comparative cause–effect relationships, the intensity of effects
for UBR was determined. This strategy was chosen, instead of extracting two

5In the SSM, there are two kinds of theoretical structures: descriptive and comparative. The
difference between them is the number of causes analyzed. In descriptive theoretical structures,
there is only one cause (as in Fig. 3), and the goal is to describe the effects (and moderators) of the
cause. In comparative theoretical structures, two causes are compared. The effects and moderators
in this case represent the difference between the two causes. Hence, an effect intensity instead of
being considered negative or positive becomes superior or inferior to represent that one cause is
superior or inferior than another regarding a given effect.

464 P. S. M. dos Santos and G. H. Travassos

Table 5 Dismembering operation values for study S1

Effect Comparativea Descriptive for ad hoc Descriptive for UBR

Efficiency (total faults) {WS} {PO} {SP}
Efficiency (crucial faults) {SU} {WP} {PO, SP}
Efficiency (important faults) {WS} {WP} {PO}
Effectiveness (total faults) {WS} {WP} {WP, PO}
Effectiveness (crucial faults) {SU} {WP} {PO, SP}
Effectiveness (important faults) {WS} {WP} {PO}
Total faults {WS} {PO} {SP}
Crucial faults {SU} {WP} {PO, SP}
Important faults {WS} {WP} {WP, PO}
Minor faults {WS} {WP, PO} {WP}

aComparative theoretical structures use a different scale for representing the comparisons. It is a
seven-point Likert scale: {SI, IN, WI, IF, WS, SU, SS}—the set elements are abbreviations for the
scale terms, e.g., SI is “strongly inferior,” IN is “inferior,” and SS is “strongly superior”

descriptive, theoretical structures from comparative studies as recommended in
SSM, because papers contained a percentage difference in most cases. Still, when
individual data about each technology were present, it was used to calibrate the
dismembering operation. Even secondary data, such as graphical data and boxplots,
were used to that end. Table 5 lists the effects for Study S1 detailing how they were
dismembered.

The conversion rules used for comparative and descriptive values are enumerated
in Table 6. Both comparative and descriptive rules were defined because, in some
cases, descriptive values were available. When only comparative rules are used, it
can lead to some inconveniences as the rules could conflict. For instance, in the case
of “efficiency (crucial faults)” in study S1, the percentage difference between the
inspection techniques is 95%, as the mean values of identified faults per hour are
1.29 and 2.53 for ad hoc and UBR, respectively. Therefore, if only the percentage
difference would have been considered, then the descriptive values obtained from
dismembering operation should have two units of distance (e.g., WP and SP)
since the 95% percentage difference is converted to {SU}. On the other hand, the
approximate values of 1.29 and 2.53 map to {WP} and {PO}, respectively, according
to the defined rules (Table 6), which has only one unit of difference between them.
In these different cases, to make the comparative and descriptive conversion rules
compatible, the precision of the converted values was reduced. As a result, in this
same example, the comparative value {SU} was dismembered to {WP} and {PO, SP}
instead of {WP} and {PO}.

6.5 Aggregation and Analysis

The first step involved in the aggregation phase is to analyze whether the studies can
be combined. The aggregation is performed by comparing the theoretical structures’

Research Synthesis in Software Engineering 465

Table 6 Conversion rules for effects quantitative values

Effect Qualitative intensity/difference Quantitative rule range

Comparative Efficiency Indifferent (IF) [0%, 0%]
Effectiveness Weak difference (WI or WS) (0%, 50%]
defects Moderate difference (IN or SU) (50%, 100%]

Strong difference (SI or SS) –a

Descriptive Efficiency Indifferent (IF) 0
Weak impact (WN or WP) (0, 2.50]
Moderate impact (NE or PO) (2.50, 5]
Strong impact (SN or SP) (5, ∞]

Effectiveness Indifferent (IF) 0
Weak impact (WN or WP) (0, 0.33]
Moderate impact (NE or PO) (0.33, 0.66]
Strong impact (SN or SP) (0.66, 1]

defects Indifferent (IF) 0
Weak impact (WN or WP) (0, 4]
Moderate impact (NE or PO) (4, 8]
Strong impact (SN or SP) (8, 12]

aAs we observed that the compared technologies are always able to identify defects (positive
effects), we decided not to use strong difference

concepts. When they are compatible—i.e., the same concepts or synonyms—then
the studies’ outcomes are considered combinable. That is, they are all combined
at the same time. When there are incompatibilities, then the studies have to be
partitioned into sets of compatible studies, which are then combined.

Only the descriptive theoretical structures relative to UBR were analyzed to
answer the research question defined for this working example. Given the similarity
among the studies, it was not possible to identify any incompatibility among the
theoretical structures. As mentioned above, the only difference among them was
that some did not report minor faults. Still, this is not impeditive for the aggregation
since, in the SSM, each effect is individually aggregated considering the papers in
which they are present.

After analyzing the theoretical structures’ compatibility and given the confidence
level of each effect, the Dempster’s rule of combination is used. The detailed
aggregation results are listed in Table 7. The first column shows the reported effect.
The second column indicates the number of papers that have reported this effect.
The third column shows the aggregated UBR effect intensity. The fourth column
represents the aggregated belief on the respective effect. The fifth column lists
conflict levels computed in each combination for the respective effect. For instance,
the aggregation of four pieces of evidence leads to three combinations. Conflicts
are always shown in the same order ((S1⊕S3)⊕S4)⊕S2. This order was applied by
the Evidence Factory tool, based on the order of the random IDs assigned to the
evidence models. The sixth column registers the difference between the maximum
belief value of individual evidence for the respective effect and the aggregated value.

466 P. S. M. dos Santos and G. H. Travassos

Table 7 Aggregated effects of UBR

Aggregation results
Effect #Papers Intensity Belief Conflicts Difference

Efficiency (total faults) 4 {SP} 0.47 0.45, 0.25, 0.49 −0.21
Efficiency (crucial faults) 4 {PO} 0.82 0.00, 0.00, 0.00 0.12
Efficiency (important faults) 4 {WP} 0.82 0.48, 0.27, 0.10 0.12
Efficiency (minor faults) 2 {WP} 0.86 0.00 0.16
Effectiveness (total faults) 4 {PO} 0.82 0.00, 0.60, 0.12 0.12
Effectiveness (crucial faults) 4 {PO, SP} 0.99 0.00, 0.00, 0.00 0.29
Effectiveness (important faults) 4 {PO} 0.75 0.00, 0.64, 0.00 0.05
Effectiveness (minor faults) 2 {WP} 0.70 0.00 0.00
Total faults 4 {SP} 0,49 0.48, 0.28, 0.46 −0.21
Crucial faults 4 {PO, SP} 0.99 0.00, 0.00, 0.00 0.29
Important faults 4 {WP, PO} 0,93 0.00, 0.48, 0.00 0.23
Minor faults 3 {WP} 0,91 0.00, 0.00 0.21

The effects that were most strengthened were the effectiveness and the number of
crucial faults.

Before analyzing the aggregated results, it should first be defined how conflicts
should be resolved. Although there is no incompatibility among the theoretical
structures, significant conflicts between study results can be noted. There are three
main factors associated with these conflicts. The first comes from the fact that
results for UBR were dismembered from comparisons with both ad hoc and CBR.
Therefore, some differences among results are expected. The second aspect is
related to the dismembering operation itself. As defined in SSM, dismembering
is imprecise and suggested to be used only in specific situations. Thus, it is a
potential source of differences between results as well. The last aspect considered
for explaining results is that the second combination (between S4 and the resulting
aggregation from S1 and S3) has the highest frequency of conflict occurrence—
half effects had conflicts in the second combination. Interestingly enough, it is the
combination involving the Study S4, which is the only study that is an external
experiment of UBR.

The combined belief values presented in Table 7 were computed using the basic
conflict resolution strategy of the SSM, which ignores the conflict by redistributing
it among hypotheses. However, to use this strategy, SSM establishes that all conflicts
must be lower than 0.50, or the mean conflict is below 1/n where n is the number of
combinations, which in this case is 3. Hence, it was understood that the best strategy
to handle conflicts in this aggregation was incorporation—see all conflict resolution
strategies in Santos (2015). Succinctly, it is a strategy that “absorbs” the conflict by
making the effect intensity less precise. For instance, note that the effect intensity for
“Efficiency (total faults)” changed from {SP} to {PO, SP}. Thus, it is best used when
there is less interest in specific values (i.e., effect intensity) within the Likert scale
and more interest in the trend. It is precisely the case in this worked example as the
combined results came from comparing UBR with different techniques (ad hoc and

Research Synthesis in Software Engineering 467

Table 8 Aggregated effects of UBR after conflicts resolution by incorporation

Aggregation results
Effect #Papers Intensity Belief Conflicts Difference

Efficiency (total faults) 4 {PO, SP} 0.85 (Incorporated) 0.17
Efficiency (crucial faults) 4 {PO} 0.82 0.00, 0.00, 0.00 0.12
Efficiency (important faults) 4 {WP} 0.82 0.48, 0.27, 0.10 0.12
Efficiency (minor faults) 2 {WP} 0.86 0.00 0.16
Effectiveness (total faults) 4 {PO, SP} 0.87 (Incorporated) 0.17
Effectiveness (crucial faults) 4 {PO, SP} 0.99 0.00, 0.00, 0.00 0.29
Effectiveness (important faults) 4 {WP, PO} 0.77 (Incorporated) 0.07
Effectiveness (minor faults) 2 {WP} 0.70 0.00 0.00
Total faults 4 {PO, SP} 0.99 (Incorporated) 0.29
Crucial faults 4 {PO, SP} 0.99 0.00, 0.00, 0.00 0.29
Important faults 4 {WP, PO} 0.93 0.00, 0.48, 0.00 0.23
Minor faults 3 {WP} 0.91 0.00, 0.00 0.21

CBR), not to mention that the dismembering operation is imprecise by itself. Next,
Table 8 presents the new belief values after the resolution of conflicts.

At this point, with conflicts resolved, we focus on the results themselves. The
substantial agreement among the studies is noticeable, particularly the results
associated with crucial faults. It can be seen in the high belief value of 0.99 observed
in efficiency, effectiveness, and the number of crucial faults. The high belief values
resulting from aggregation should be analyzed considering the specificities of the
aggregated studies. In this case, the 0.99 belief value should not be necessarily
interpreted as an “almost certainty” (i.e., belief value of 1), but rather as a virtually
full agreement among four strong evidence (i.e., quasi-experiments). Thus, in other
words, the current body of knowledge indicates that UBR seems to have a direct
impact on crucial faults since it is possible to observe similar results in four different
studies, which even compare different technologies (ad hoc and CBR). Nevertheless,
one must take into consideration that there is a limited number of studies being
considered.

Another interesting finding that can be observed in the aggregated results is
the relative difference between the intensity of effects associated with crucial and
minor faults. The results suggest that UBR has a more substantial impact on crucial
faults than minor faults. It is precisely the most crucial aspect of UBR as it focuses
inspections on the most critical type of faults. A similar pattern was observed in
all dimensions explored in the studies: efficiency, effectiveness, and the number of
faults. UBR has a {PO} impact over efficiency relative to crucial faults while it has
{WP} for efficiency relative to minor faults. For effectiveness, {PO, SP} was found
for crucial faults, and {WP} for minor faults. The same was found for the number
of crucial faults. Thus, this consistency in the difference between crucial and minor
faults among the studies is another significant result strengthened in the aggregation.

Based on this analysis and the overall results detailed in Table 8, there is enough
input to answer this synthesis’s research question. UBR inspection technique can

468 P. S. M. dos Santos and G. H. Travassos

safely be used for identifying most important (i.e., crucial) faults in high-level
design, with a high level of efficiency and effectiveness. It still can be used for less
critical faults, although with relatively less efficacy. These effects seem to result
from the underlying mechanism behind UBR, which is the assumption that the
proper prioritization of use cases can help identify relatively more critical faults.

The scope in which the aggregation findings can be claimed to be valid is
explicit in the aggregated theoretical structure.6 In all studies, the same Web
system’s high-level design models were inspected using UBR. Thus, it is difficult
to argue any generalization beyond this context. Still, the cause of the observed
effects is theoretically reproducible in other contexts with different kinds of systems
and software artifacts, since the UBR working mechanism is based on use case
prioritization, which is, at least theoretically, independent of the inspected software
artifacts. Moreover, the studies did not explicitly consider the participation of
graduate students as an essential factor influencing the findings. Arguably, this is
because most subjects have experience in the SE industry. Thus, it is understandable
that industry professionals can be included within the findings of external validity.

Besides external validity, considerations to other types of validity threads should
be extended. In these authors’ viewpoint, the most critical internal validity threat is
the potential bias associated with the fact that the same researchers who authored the
SSM conducted the synthesis. Thus, from the studies selection to the definition of
concepts and their relationships, practically all steps were subjected to this issue.
This issue was the primary motivation for choosing an inspection technique as
the theme for research synthesis so that the domain aspects would not represent
a confounding factor during the synthesis process. Regarding construct validity, the
use of the dismembering operation represents a validity threat in itself as it increases
the imprecision of effect intensity. To minimize this lack of accuracy, when apart
from the percentage difference, the absolute quantitative values were available, they
were used to improve the precision of the effect intensity.

6.6 Discussion

As stated at the beginning of this section, the domain of software inspections was
selected for this worked example because of the substantial familiarity regarding
this theme among empirical software engineering researchers since it is arguably
one of the most experimentally investigated technology in SE. Thus, this familiarity
was essential to focus on the SSM mechanics, not on the synthesis findings. Still,
given the relative synthesis simplicity, some aspects had to be left out.

The main limitation of the worked example is the absence of qualitative studies.
Therefore, although we discussed that interpretative synthesis is not restricted to
the aggregation of qualitative findings, the data extraction and translation step is

6http://evidencefactory.lens-ese.cos.ufrj.br/evidenceEditor/19032

http://evidencefactory.lens-ese.cos.ufrj.br/evidenceEditor/19032

Research Synthesis in Software Engineering 469

usually more abundant in this scenario. Nevertheless, it was possible to see the
interpretative and integrative aspects of the SSM. The interpretations are directly
related to the diagrammatic representation as it is formed by concepts, which have
to be extracted or coded from the studies and translated to the theoretical structures.
In the case of quantitative studies, particularly in controlled experiments, concepts
are frequently taken from independent and dependent variables. It eliminated the
need for text coding in our example, as it is only necessary when dealing with data
from qualitative studies. The integration, on the other hand, is almost the same in the
SSM regardless of whether the studies synthesized are qualitative or quantitative.

The studies included in the synthesis also have limitations of their own. Three
of the four studies were conducted with at least one researcher in common. The
synthesis results seem to have reflected this issue, as there were few contradictions
among the studies’ findings. The quality assessment also showed how the studies
were similar in their planning and execution as the study type and quality are used
as input for this assessment. At last, the lacking of the inspector experience among
the variables considered in the studies was noticeable.

Despite these limitations, it was possible to see how the SSM works throughout
its five-stage process. The first three steps define the aim of the synthesis and select
the primary studies. Due to the restricted scope of the synthesis, only four studies
were selected. In the fourth step, the worked example shows how the studies’
findings are translated into theoretical structures. In this synthesis, it used the
dependent and independent variables of the controlled experiments. Besides, in the
last step, the focus was given on how the Dempster–Shafer theory was used to pool
the confidence in the studies’ findings.

7 Recommended Further Reading

We suggest the following further readings to complement this chapter. For those
interested in a general overview of the leading research synthesis methods, Dixon-
Woods et al. (2005) present several methods, ranging from those that are mostly
qualitative and interpretative through the ones that are mostly quantitative and
integrative. Also, Cruzes and Dybå (2011a) and Guzmán et al. (2014) show the
current state of the research synthesis methods usage in SE.

Regarding the methods briefly presented in Sect. 4, they all have specific
technical literature available: thematic analysis (Cruzes and Dybå 2011b), meta-
ethnography (Da Silva et al. 2013), case survey method (Larsson 1993) (it is also
discussed in chapter “Guidelines for Case Survey Research in Software Engineer-
ing”), qualitative comparative analysis (Yamasaki and Rihoux 2009), statistical
meta-analysis (Lipsey and Wilson 2001), and theory building with meta-analysis
(Yang 2002).

Additionally, for more details about SSM, some studies use the method in
different domains: software reference architectures (Martinez-Fernandez et al.

470 P. S. M. dos Santos and G. H. Travassos

2015), Kanban software process (dos Santos et al. 2018), software productivity
(Chapetta 2018), and nonfunctional requirements (Buitrón et al. 2019).

At last, there are also recommendations regarding a few related themes. For
instance, a computational perspective on the research synthesis theme, denominated
scientific knowledge engineering, is presented in Santos and Travassos (2016).
Furthermore, recently, researchers are mining treatment-outcome constructs from
sequential SE data (Nayebi et al. 2019), which shares some similarities with how
data is synthesized in the process of research synthesis.

8 Conclusion

This chapter discussed the relevance of research synthesis along with its central
processes, methods, and procedures. Research synthesis represents an essential
element of the knowledge accumulation and application process. It is indispensable
to any scientific field such as SE. In fact, in the case of the SE domain, this
process introduces additional challenges as evidence in the area is produced in both
quantitative and qualitative forms. Research synthesis methods, in general, follow
similar processes but differ in the procedures adopted to perform each of their steps.
Integrative and interpretative approaches are categorizations used to differentiate
these procedures. In an integrative synthesis, data is extracted from primary studies
in order to confirm or refute some hypothesis. In an interpretative synthesis, data is
collected to explore or provide explanations to phenomena.

The main research synthesis methods were also briefly described. The methods
included here were those which are either most frequently used in SE or were
evaluated as the most applicable to the SE domain. They range from the ones
geared toward interpretative synthesis approaches—thematic synthesis and meta-
ethnography—to those more focused on integrative approaches—case survey,
qualitative comparative analysis, and statistical meta-analysis. It was also empha-
sized that interpretative and integrative syntheses are not synonyms to qualitative
and quantitative. From the methods enumerated, for instance, both qualitative
comparative analysis and statistical meta-analysis represent integrative methods, but
the former primarily uses qualitative data, whereas the latter quantitative data.

Besides the brief description of these methods, the structured synthesis method
was presented in detail. Its main feature is the ability to conceptualize the primary
studies’ context and integrate their outcomes. In SSM, interpretative synthesis
aspects are concerned with the organization and development of concepts to
describe contextual aspects of evidence, whereas integrative features are focused
on pooling data about cause–effect or moderation relations. Because of this
balanced combination of interpretative and integrative features, the SSM is also
acknowledged for its ability to deal with qualitative and quantitative evidence in
SE.

A worked example was used to present the SSM concerning the synthesis of
four primary studies regarding the usage-based reading inspection technique. As

Research Synthesis in Software Engineering 471

all the four aggregated studies are quantitative, it was possible to see that SSM
produces outcomes consistent with the input data. The synthesis showed that
evidence was strengthened regarding the effectiveness and efficiency of UBR in
identifying crucial faults, which is what is precisely intended with the inspection
technique. Still, researchers must be aware that the set of studies to synthesize
greatly influences the consistency and reliability of the resulting synthesis. The
synthesis of poor studies will inevitably lead to poor results. In this regard, SSM
has relatively fewer and more crystalline phases. The extraction and translation
steps are relatively less objective than the other ones as they depend on conceptual
development. On the other hand, the aggregation and analysis steps are relatively
more objective since they are carried out based on the theoretical structures’ formal
representation.

This chapter is intended to introduce the reader to the research synthesis theme,
including the application of the SSM. It is also expected that researchers can
understand the challenges of conducting studies concerned with research synthesis.
More importantly, it is necessary that SE advance in this theme so that the scenario
where authors do not describe the form of synthesis used in their studies becomes
increasingly scarce. As stated by Miller (2000), “the good news is that we are
not alone in this battle. Other disciplines also struggle with this issue, they have
just been struggling longer, and hence have progressed beyond the point where we
currently find ourselves.” The proposition of the SSM, specifically for SE, is an
indication that the field can make progress in this realm.

References

Atkins D, Best D, Briss PA et al (2004) Grading quality of evidence and strength of recommenda-
tions. BMJ 328:1490. https://doi.org/10.1136/bmj.328.7454.1490

Basili VR, Shull F, Lanubile F (1999) Building knowledge through families of experiments. IEEE
Trans Softw Eng 25:456–473. https://doi.org/10.1109/32.799939

Budgen D, Kitchenham B, Brereton P (2013) The case for knowledge translation. In: 2013
ACM/IEEE international symposium on empirical software engineering and measurement, pp
263–266

Buitrón S, Apa C, Pino F, Travassos GH (2019) Sobre la Viabilidad de un Componente para
Especificar Requisitos No Funcionales: Un Estudio de Síntesis Estructurada. In: XXII Ibero-
American Conference on Software Engineering, Track: XXI Workshop on Experimental
Software Engineering. Curran Associates, La Habana, Cuba

Chapetta WA (2018) The influence of factors on software development productivity according to a
model of theoretical structures. Thesis, Federal University of Rio de Janeiro

Ciolkowski M (2009) What do we know about perspective-based reading? An approach for
quantitative aggregation in software engineering. In: Proceedings of the 2009 3rd international
symposium on empirical software engineering and measurement. IEEE Computer Society,
Washington, DC, pp 133–144

Cooper H, Hedges LV (2009) Research synthesis as a scientific process. In: Cooper H, Hedges LV
(eds) The handbook of research synthesis and meta-analysis, 2nd edn. Russell Sage Foundation,
New York, pp 3–16

http://dx.doi.org/10.1136/bmj.328.7454.1490
http://dx.doi.org/10.1109/32.799939

472 P. S. M. dos Santos and G. H. Travassos

Cruzes DS, Dybå T (2011a) Research synthesis in software engineering: a tertiary study. Inf Softw
Technol 53:440–455. https://doi.org/10.1016/j.infsof.2011.01.004

Cruzes DS, Dybå T (2011b) Recommended steps for thematic synthesis in software engineer-
ing. In: 2011 International symposium on empirical software engineering and measurement
(ESEM), pp 275–284

Da Silva FQB, Cruz SSJO, Gouveia TB, Capretz LF (2013) Using meta-ethnography to synthesize
research: a worked example of the relations between personality and software team processes.
In: 2013 ACM/IEEE international symposium on empirical software engineering and measure-
ment, pp 153–162

Davis D, Davis ME, Jadad A et al (2003) The case for knowledge translation: shortening the
journey from evidence to effect. BMJ 327:33–35. https://doi.org/10.1136/bmj.327.7405.33

de França BBN, Travassos GH (2016) Experimentation with dynamic simulation models in
software engineering: planning and reporting guidelines. Empir Softw Eng 21:1302–1345.
https://doi.org/10.1007/s10664-015-9386-4

de Mello RM, da Silva PC, Runeson P, Travassos GH (2014) Towards a framework to support
large scale sampling in software engineering surveys. In: Proceedings of the 8th ACM/IEEE
international symposium on empirical software engineering and measurement. ACM, New
York, 48, pp 1–4

Dixon-Woods M, Agarwal S, Jones D et al (2005) Synthesising qualitative and quantitative
evidence: a review of possible methods. J Health Serv Res Policy 10:45–53B

dos Santos PSM, Travassos GH (2017) Structured synthesis method: the evidence factory
tool. In: 2017 ACM/IEEE international symposium on empirical software engineering and
measurement (ESEM), pp 480–481

dos Santos PSM, Beltrão AC, de Souza BP, Travassos GH (2018) On the benefits and challenges of
using kanban in software engineering: a structured synthesis study. J Softw Eng Res Dev 6:13.
https://doi.org/10.1186/s40411-018-0057-1

Easterbrook S, Singer J, Storey M-A, Damian D (2008) Selecting empirical methods for software
engineering research. In: Shull F, Singer J, Sjøberg DIK (eds) Guide to advanced empirical
software engineering. Springer, London, pp 285–311

Fagan M (2002) A history of software inspections. In: Broy PDM, Denert PDE (eds) Software
pioneers. Springer, Berlin, pp 562–573

Góis Mateus B, Martinez M (2019) An empirical study on the quality of android applications
written in Kotlin language. Empir Software Eng 24:3356. https://doi.org/10.1007/s10664-019-
09727-4

Guzmán L, Lampasona C, Seaman C, Rombach D (2014) Survey on research synthesis in software
engineering. In: Proceedings of the 18th international conference on evaluation and assessment
in software engineering. ACM, New York, 2, pp 1–10

Harrison R, Badoo N, Barry E et al (1999) Directions and methodologies for empirical software
engineering research. Empir Softw Eng 4:405–410. https://doi.org/10.1023/A:1009877923978

Kitchenham B, Pfleeger SL (1996) Software quality: the elusive target [special issues section].
IEEE Softw 13:12–21. https://doi.org/10.1109/52.476281

Larsson R (1993) Case survey methodology: quantitative analysis of patterns across case studies.
Acad Manag J 36:1515–1546. https://doi.org/10.2307/256820

Lenberg P, Wallgren Tengberg LG, Feldt R (2017) An initial analysis of software engineers’
attitudes towards organizational change. Empir Softw Eng 22:2179–2205. https://doi.org/
10.1007/s10664-016-9482-0

Lipsey MW, Wilson DB (2001) Practical meta-analysis. Sage, Thousand Oaks
MacDonell S, Shepperd M, Kitchenham B, Mendes E (2010) How reliable are systematic reviews

in empirical software engineering? IEEE Trans Softw Eng 36:676–687. https://doi.org/10.1109/
TSE.2010.28

Mahoney J, Goertz G (2006) A tale of two cultures: contrasting quantitative and qualitative
research. Polit Anal 14:227–249. https://doi.org/10.1093/pan/mpj017

http://dx.doi.org/10.1016/j.infsof.2011.01.004
http://dx.doi.org/10.1136/bmj.327.7405.33
http://dx.doi.org/10.1007/s10664-015-9386-4
http://dx.doi.org/10.1186/s40411-018-0057-1
http://dx.doi.org/10.1007/s10664-019-09727-4
http://dx.doi.org/10.1023/A:1009877923978
http://dx.doi.org/10.1109/52.476281
http://dx.doi.org/10.2307/256820
http://dx.doi.org/10.1007/s10664-016-9482-0
http://dx.doi.org/10.1109/TSE.2010.28
http://dx.doi.org/10.1093/pan/mpj017

Research Synthesis in Software Engineering 473

Martinez-Fernandez S, Santos PSM, Ayala CP et al (2015) Aggregating empirical evidence
about the benefits and drawbacks of software reference architectures. In: 2015 ACM/IEEE
international symposium on empirical software engineering and measurement (ESEM), pp 1–
10

Miller J (2000) Applying meta-analytical procedures to software engineering experiments. J Syst
Softw 54:29–39. https://doi.org/10.1016/S0164-1212(00)00024-8

Nayebi M, Ruhe G, Zimmermann T (2019) Mining treatment-outcome constructs from
sequential software engineering data. IEEE Trans Softw Eng:1–1. https://doi.org/10.1109/
TSE.2019.2892956

Noblit GW, Hare RD (1988) Meta-ethnography: synthesizing qualitative studies. Sage, Newbury
Park

Overton WF (1991) The structure of developmental theory. In: Geert P, Mos LP (eds) Annals of
theoretical psychology. Springer, New York, pp 191–235

Pickard LM, Kitchenham BA, Jones PW (1998) Combining empirical results in software engineer-
ing. Inf Softw Technol 40:811–821. https://doi.org/10.1016/S0950-5849(98)00101-3

Runeson P, Höst M (2009) Guidelines for conducting and reporting case study research in software
engineering. Empir Softw Eng 14:131–164. https://doi.org/10.1007/s10664-008-9102-8

Sandelowski M, Voils CI, Leeman J, Crandell JL (2012) Mapping the mixed methods–
mixed research synthesis terrain. J Mixed Methods Res 6:317–331. https://doi.org/10.1177/
1558689811427913

Santos PSM (2015) Evidence representation and aggregation in software engineering using
theoretical structures and belief functions. Thesis, Federal University of Rio de Janeiro

Santos PSM, Travassos GH (2011) Action research can swing the balance in experimental software
engineering. In: Advances in computers. Elsevier, Amsterdam, pp 205–276

Santos PSM, Travassos GH (2013) On the representation and aggregation of evidence in software
engineering: a theory and belief-based perspective. Electron Notes Theor Comput Sci 292:95–
118. https://doi.org/10.1016/j.entcs.2013.02.008

Santos PSM, Travassos GH (2016) Scientific knowledge engineering: a conceptual delineation
and overview of the state of the art. Knowl Eng Rev 31:167–199. https://doi.org/10.1017/
S0269888916000011

Santos PSM, Nascimento IE, Travassos GH (2015) A computational infrastructure for research
synthesis in software engineering. In: XVIII Ibero-American conference on software engineer-
ing, track: XVII workshop on experimental software engineering. Curran Associates, Lima, pp
309–322

Schulze R (2004) Meta-analysis: a comparison of approaches. Hogrefe & Huber, Ashland
Shafer G (1976) A mathematical theory of evidence. Princeton University Press, Princeton
Taveggia TC (1974) Resolving research controversy through empirical cumulation: toward

reliable sociological knowledge. Sociol Methods Res 2:395–407. https://doi.org/10.1177/
004912417400200401

Thelin T, Runeson P, Regnell B (2001) Usage-based reading—an experiment to guide reviewers
with use cases. Inf Softw Technol 43:925–938. https://doi.org/10.1016/S0950-5849(01)00201-
4

Thelin T, Runeson P, Wohlin C (2003) An experimental comparison of usage-based and checklist-
based reading. IEEE Trans Softw Eng 29:687–704. https://doi.org/10.1109/TSE.2003.1223644

Thelin T, Andersson C, Runeson P, Dzamashvili-Fogelstrom N (2004) A replicated experiment
of usage-based and checklist-based reading. In: 10th International symposium on software
metrics, 2004. Proceedings. IEEE, pp 246–256

Walenstein A (2003) Observing and measuring cognitive support: steps toward systematic tool
evaluation and engineering. In: 11th IEEE international workshop on program comprehension,
pp 185–194

Winkler D, Halling M, Biffl S (2004) Investigating the effect of expert ranking of use cases for
design inspection. In: Euromicro conference, 2004. Proceedings. 30th, pp 362–371

http://dx.doi.org/10.1016/S0164-1212(00)00024-8
http://dx.doi.org/10.1109/TSE.2019.2892956
http://dx.doi.org/10.1016/S0950-5849(98)00101-3
http://dx.doi.org/10.1007/s10664-008-9102-8
http://dx.doi.org/10.1177/1558689811427913
http://dx.doi.org/10.1016/j.entcs.2013.02.008
http://dx.doi.org/10.1017/S0269888916000011
http://dx.doi.org/10.1177/004912417400200401
http://dx.doi.org/10.1016/S0950-5849(01)00201-4
http://dx.doi.org/10.1109/TSE.2003.1223644

474 P. S. M. dos Santos and G. H. Travassos

Wohlin C (2016) Second-generation systematic literature studies using snowballing. In: Proceed-
ings of the 20th international conference on evaluation and assessment in software engineering.
ACM, New York, 15, pp 151–156

Wohlin C, Höst M, Henningsson K (2003) Empirical research methods in software engineering.
In: Conradi R, Wang A (eds) Empirical methods and studies in software engineering. Springer,
Berlin, pp 7–23

Wolf FM (1986) Meta-analysis: quantitative methods for research synthesis. Sage, Beverly Hills
Yamasaki S, Rihoux B (2009) A commented review of applications. In: Rihoux B, Ragin CC (eds)

Configurational comparative methods. Sage, Los Angeles, pp 123–145
Yang B (2002) Meta-analysis research and theory building. Adv Dev Hum Resour 4:296–316.

https://doi.org/10.1177/1523422302043005
Yin RK, Heald KA (1975) Using the case survey method to analyze policy studies. Adm Sci Q

20:371. https://doi.org/10.2307/2391997
Zelkowitz M (2007) Techniques for empirical validation. In: Basili V, Rombach D, Schneider K

et al (eds) Empirical software engineering issues. Critical assessment and future directions,
Springer, pp 4–9

http://dx.doi.org/10.1177/1523422302043005
http://dx.doi.org/10.2307/2391997

Part IV
Knowledge Transfer

Open Science in Software Engineering

Daniel Mendez , Daniel Graziotin , Stefan Wagner, and Heidi Seibold

Abstract Open science describes the movement of making any research artifact
available to the public and includes, but is not limited to, open access, open data,
and open source. While open science is becoming generally accepted as a norm
in other scientific disciplines, in software engineering, we are still struggling in
adapting open science to the particularities of our discipline, rendering progress in
our scientific community cumbersome. In this chapter, we reflect upon the essentials
in open science for software engineering including what open science is, why we
should engage in it, and how we should do it. We particularly draw from our
experiences made as conference chairs implementing open science initiatives and
as researchers actively engaging in open science to critically discuss challenges
and pitfalls and to address more advanced topics such as how and under which
conditions to share preprints, what infrastructure and licence model to cover, or
how do it within the limitations of different reviewing models, such as double-blind
reviewing. Our hope is to help establishing a common ground and to contribute to
make open science a norm also in software engineering.

D. Mendez (�)
Technical University of Munich, Munich, Germany

Blekinge Institute of Technology, Karlskrona, Sweden

fortiss GmbH, Munich, Germany
e-mail: mendezfe@acm.org

D. Graziotin · S. Wagner
University of Stuttgart, Stuttgart, Germany
e-mail: daniel.graziotin@iste.uni-stuttgart.de; stefan.wagner@iste.uni-stuttgart.de

H. Seibold
Ludwig-Maximilians-University Munich, Munich, Germany
e-mail: hseibold@ibe.med.uni-muenchen.de

© The Author(s) 2020
M. Felderer, G. H. Travassos (eds.), Contemporary Empirical Methods in Software
Engineering, https://doi.org/10.1007/978-3-030-32489-6_17

477

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32489-6_17&domain=pdf
http://orcid.org/0000-0003-0619-6027
http://orcid.org/0000-0002-9107-7681
mailto:mendezfe@acm.org
mailto:daniel.graziotin@iste.uni-stuttgart.de
mailto:stefan.wagner@iste.uni-stuttgart.de
mailto:hseibold@ibe.med.uni-muenchen.de
https://doi.org/10.1007/978-3-030-32489-6_17

478 D. Mendez et al.

1 Introduction

In a nutshell, open science refers to the movement of making any research artifact
available to the public. This ranges from the disclosure of software source code
(“open source”) over the actual data itself (“open data”) and the material used
to analyse the data (such as analysis scripts, “open material”) to the manuscripts
reporting on the study results (“open access”).1 Disclosing research artifacts
increases transparency and, thus, reproducibility and replicability of our scientific
process and our results. Open science is often seen as an important means to move
forward as a scientific research community. Open data and open source—both being
major principles under the common banner of open science—constitute a major
hallmark in making empirical studies transparent and understandable to researchers
not involved in carrying out those studies. This can be done, for example, by
sharing replication packages that capture the raw data and anything necessary for
their analysis and interpretation. That way, we increase the reproducibility of our
research. This, in turn, strengthens the credibility of the conclusions we draw
from the analysed data and it allows others to build their own work upon ours;
hence, it strengthens more generally our overall body of knowledge in the research
community.

Besides these more ideological views on open science and reasonable arguments
in favour of engaging into it as a research community, on which any reader will
probably agree, there is much more to it which we need to understand when
considering open science in the context of software engineering research. There
are, for example, various challenges in data disclosure—technical ones, ethical and
legal ones, but also social ones—which are different to the standards and views
given in other disciplines and which make open science difficult to become the norm
in our own field. Consider, for example, the notion of repeatability, replicability,
and reproducibility by considering the terminology as introduced by the ACM2

(verbatim):

• Repeatability (Same team, same experimental setup): The measurement can
be obtained with stated precision by the same team using the same measurement
procedure, the same measuring system, under the same operating conditions, in
the same location on multiple trials. For computational experiments, this means
that a researcher can reliably repeat her own computation.

• Replicability (Different team, same experimental setup): The measurement
can be obtained with stated precision by a different team using the same
measurement procedure, the same measuring system, under the same operating

1Open science and open scholarship encompass a wide range of topics and activities, many of
which are described by Tennant et al. (2019). In this chapter, we concentrate on topics we believe
to be in scope of (empirical) software engineering, namely open access, open data, open materials,
open source, open peer review, and registered reports.
2https://www.acm.org/publications/policies/artifact-review-badging.

https://www.acm.org/publications/policies/artifact-review-badging

Open Science in Software Engineering 479

conditions, in the same or a different location on multiple trials. For computa-
tional experiments, this means that an independent group can obtain the same
result using the author’s own artifacts.

• Reproducibility (Different team, different experimental setup): The mea-
surement can be obtained with stated precision by a different team, a different
measuring system, in a different location on multiple trials. For computational
experiments, this means that an independent group can obtain the same result
using artifacts which they develop completely independently.

As an engineering discipline heavily inspired by the natural sciences, we often
make implicit assumptions that our focus is on quantitative and even purely
computational studies (e.g., simulations). For these, existing definitions and norms
hold as they are and we are able to yield replicability and reproducibility. This
situation is, however, not the norm. Most studies in software engineering involve—
in one form or another—humans. In the end, software is made by human beings
for human beings. Human subjects, however, act purely rational in exceptional
cases only, if at all (see Lambert 2006). This means that every change in an
experimental context, even if strictly following the same experimental setup and
procedure, will eventually yield different (context-dependent) results. Such studies
would then not fit the available definition of reproducibility as used in computational
studies, but it is still reasonable to argue that they would be reproducible. Further
challenges in software engineering research are that much of our data emerges
from sensitive (e.g., industrial) settings and finally the reliance upon qualitative
data where the data analysis is less procedural when compared to quantitative data
(also imposing significant integrity challenges). All this renders full disclosure often
difficult and we often need to anonymise the data to act within legal and ethical
constraints that most computational studies do otherwise not have. Those two facets
of software engineering research alone show already that we need to adapt open
science principles to the particularities of our discipline, same as it is the case in
other disciplines.

How can our software engineering community of researchers adopt its own open
science movement? We believe that it is a lack of proper understanding about

• what open science is (and what it is not) for software engineering,
• why we should all do our best to implement it, whether as editor, chair, or as

researcher, and finally
• how we could and should do it

that often leads to a general reluctance towards implementing open science.
Sometimes, it even leads to a general dismissal of the potential open science has
for individual researchers and the community as a whole. All this renders our own
open science movement cumbersome.

In this chapter, we cover the essentials in open science for software engineering.
In particular, we establish a common ground in our discipline by elaborating on
established key terms, principles, and approaches in Sect. 2—all tailored to the
particularities of our discipline. We further discuss why we should engage in

480 D. Mendez et al.

open science (Sect. 3) before discussing practical guidelines to implementing open
science in Sect. 4. In Sect. 5, we then end with a discussion of chosen challenges
and pitfalls. The latter is based on our shared experiences emerging from open
science activities and lessons we learnt so far as authors and as organizers where
we implemented first open science initiatives in the empirical software engineering
community.

The main target audience consists of software engineering scholars interested
in the general notion of open science and those interested in implementing open
science in their own research practices. One hope we associate with this chapter is
not only to oppose those critical voices still sceptical towards open science, but also
to strengthen the voices of those supporting it out of the firm conviction that open
science should soon become the norm in software engineering research, too.

2 What Is Open Science?

Open science is a movement whose aim is to render all artifacts born out of
scientific research activities accessible, without any barriers, to any individual on
Earth (Woelfle et al. 2011). Following Tennant et al. (2019), open science refers
also to the scientific part of the broader terms of open scholarship, i.e., “the
process, communication, and reuse of research as practised in any scholarly research
discipline, and its inclusion and role within wider society”. Open science itself is
an umbrella term that encompasses several facets of openness, for example, open
access, open data, open source, open government, open notebooks, or open stan-
dards (see FOSTER 2019). In the following, we discuss those concepts particularly
relevant to the (empirical) software engineering research community.

2.1 Open Access

Open access is associated with publications, i.e., research articles, technical reports
and papers in general. Open access occurs whenever a publication is freely available
on the public Internet without any access barrier—financial, legal, or technical ones
(including even not to force users to register to systems). It allows individuals to
read, download, copy, distribute, print, search, or link to the full texts of publications
for any lawful purpose (BOAI 2002). Minor constraints over redistribution and reuse
of the publication may still apply and usually take the form of attribution. It is typical
with open access publications that the authors retain the copyright of their work, and
the act to render the work as open access is enabled through proper licences. The
Creative Commons licence model is the most widely employed licence for open
access (see also Sect. 2.2).

Open access can take several forms. The form depends on which version of the
article is made public and at which point of the academic writing process. If authors

Open Science in Software Engineering 481

make an own produced copy of their work openly available, they perform an act of
self-archiving. The work is called preprint if it reflects a version of their manuscript
that has not yet been accepted for publication at a scientific venue. If the content
of the own produced work is identical to the content of the accepted publication, it
is called postprint. The only differences between the postprint and the manuscript
formally published by a traditional publisher like ACM, IEEE, or Springer are in
typesetting differences and the location of the document. The location of pre- and
postprints is typically an open repository for pre- and postprints, in contrast to the
digital libraries of the publishers. One such example is given in the following while
we will go more into detail in Sect. 4.

Self-archiving via arXiv
arXiv, pronounced as archive and available at https://arXiv.org, is a repository,
born in 1991, of freely accessible preprints and postprints, as well as
whitepapers, covering several scientific fields including physics, mathematics,
and computer science (see also Ginsparg 2011). arXiv is free to access, to
register to, and to submit to, but it presents two safeguards for publishing.
First, authors have to be endorsed by existing members before they are
allowed to register in the system. Second, every submission is moderated by
volunteers who check for issues such as scope or copyright. arXiv is the de
facto standard repository for mathematics and physics, and with some authors
only publishing their work in there, it receives more than 10,000 submissions
per month and is, at the time of writing this chapter, hosting approximately
1.5M manuscripts in a distributed archived system of multiple digital libraries
all over the world.

The act of self-archiving is also known as green open access and it is allowed by
the majority of academic publishers with some regulations.

Self-archiving options and publishers’ regulations
Different publishers define different regulations with effect to the needs and
possibilities of self-archiving, and it is imperative to strictly adhere to these
rules. The SHERPA partnership, a partnership of several universities with the
original goal of setting up an institutional open access repository, offers with
RoMEO—http://www.sherpa.ac.uk/romeo—a tool summarising publishers’
copyright and archiving policies. RoMEO distinguishes different categories
via the following colour codes commonly adopted also in the wider sense:

• White: Self-archiving not formally allowed
• Yellow: Authors can archive preprints (i.e., pre-refereeing)

(continued)

https://arXiv.org
http://www.sherpa.ac.uk/romeo

482 D. Mendez et al.

• Blue: Authors can archive postprints (i.e., final draft post-refereeing) or
publisher’s version/PDF

• Green: Authors can archive preprint and postprint or publisher’s version

Whenever a publisher renders an accepted publication as openly licensed and
available without any restriction whatsoever, the artifact becomes open access under
the gold open access model. This model often follows an author-pays strategy, but
there exist also publishers asking for no article processing charges at all. We refer
the reader to the work of Graziotin et al. (2014) for more information on open access
and its publishing models.

2.2 Open Data

Open data is very similar to open access, but it is applied to any data that was
produced in the course of research activities, such as the raw data obtained via a
controlled experiment. Openness of data can come in various forms and at different
degrees; for instance, while an abstract description of a data set (metadata) could
be found and accessed online, it could still be the case that access to the full data
set would only be granted upon request and only for specific research purposes
carefully selected and laid out by the owners of that data set. Here, we point to the
FAIR principles3 which describe how data should ideally be made open: When data
sets are Findable, Accessible, Interoperable, and Reusable, we refer to it as “FAIR
data”.

As pointed out by Auer et al. (2007), open (FAIR) data follows the idea that
research data should be freely available to everyone to use and redistribute as they
wish, without any restriction whatsoever born out of copyright and licences. As
with open access, the Creative Commons deeds are commonly employed licences
for open data.

Creative Commons (CC) Copyright Licences
Creative Commons copyright licences (see https://creativecommons.org/
licenses/) constitute a public licence model with the aim to facilitate granting
copyright permissions to published work. The two most employed Creative
Commons deeds are the Public Domain (CC0, “No rights reserved”) and the
Attribution 4.0 (CC BY 4.0) licence. The former is a licence that implements

(continued)

3See also https://www.force11.org/group/fairgroup/fairprinciples.

https://creativecommons.org/licenses/
https://creativecommons.org/licenses/
https://www.force11.org/group/fairgroup/fairprinciples

Open Science in Software Engineering 483

true public domain, effectively acting as a renounce of any copyright on the
artifacts. The latter is an open licence that allows reuse and redistribution
of the artifact with the only condition of attributing the original work to the
authors.

Besides the frequently used CC licence models introduced above, further ones are
possible, too. One example is the Attribution-NonCommercial 4.0 (CC BY NC 4.0),
which adds the clause that the original artifact and any derivation of it cannot be used
for commercial purposes. While the Public Domain and the CC BY NC licences
might seem more suitable for academic work, opting for them can be problematic
as we explain in Sect. 5.3.

2.3 Open Source

Open source in open science is nothing different to open source software as it is
commonly known by the computer science community. In fact, many argue that
the open source software movement served as an inspiration for more openness in
various fields going beyond software-related ones (see also the work by Boisseau
et al. (2018) providing an elaborate discussion). In any case, several research
endeavours in computer science and empirical software engineering, but also other
disciplines as well, produce software. One such example is what is often referred to
as research software (or scientific software), i.e., software products developed with
the purpose of analyzing (empirical) data, such as Python code. In principle, the
software developed can be released as open source software using known licences
such as the MIT licence or the GPLv3.

2.4 Preregistration of Studies

Preregistration is a useful tool to ensure a certain level of quality of a study
design, e.g., by making sure that hypotheses of a confirmatory study were actually
predefined rather than being defined after having analysed the data to fit the results.
Researchers define what their research questions are, why they want to pursue
the research, and how exactly they will try to answer their questions. The Open
Science Framework is currently one of the most common places to preregister
research projects (see https://osf.io/prereg/). Some journals have reported already
how preregistration avoids

• publication bias (Dickersin 1990),
• p-hacking (Head et al. 2015), and
• HARKing, i.e., hypothesising after the results are known (Kerr 1998).

https://osf.io/prereg/

484 D. Mendez et al.

These journals offer the possibility of submitting a registered report to their
journal.4 Such a report goes through peer review and, provided acceptance, the
report is in principle accepted (IPA). If the researchers conduct the study as
indicated in the registered report, their paper will be published in the journal
regardless of the results.

2.5 Open Science Badges

For every form of open science, publishers can award open science Badges. Badging
is a form of promoting open science activities of researchers via a specific badge that
publicly recognises their open science engagement. To this end, publishers associate
a specific symbol (i.e., a badge) to chosen artifacts to certify that the content is
available and accessible in a persistent location.

There exist various forms of badges obeying the particularities of the various
available badge systems. Some of them are publisher-specific (such as the ACM
badge system5) and some of them are independent, such as the OSF Open Science
Badges.

OSF Open Science Badges
A wide-spread open science badge system is the one of the Open Science
Framework (OSF, https://osf.io/) and further promoted by the Center for
Open Science (https://cos.io). This model distinguishes between badges in
the following categories:

• Open Data: This badge is awarded when shareable data necessary to
reproduce a study are made publicly (digitally) available.

• Open Materials: This badge is awarded when making available the
materials of the followed research methodology necessary to reproduce
or replicate that followed methodology (e.g., analysis scripts).

• Preregistered: That badge is awarded when preregistering a study design
including the description of the research design and study materials.

How to award which badges depends on many (often non-trivial) criteria defined
by editors and following a specific reviewing model to check the eligibility to obtain
the badges. Although badges are, at the time of writing this chapter, rather rare
in software engineering research (such as badges for preregistered studies) and
although some systems may still be perceived as difficult to implement (such as

4For a guide on writing registered reports, we refer the reader to https://osf.io/8mpji/.
5See https://www.acm.org/publications/policies/artifact-review-badging.

https://osf.io/
https://cos.io
https://osf.io/8mpji/
https://www.acm.org/publications/policies/artifact-review-badging

Open Science in Software Engineering 485

the ACM system due to the wide spectrum of often overlapping badges), badges are
generally recognised to be a valuable incentive that increases the participation in
open science initiatives (Rowhani-Farid et al. 2017). Hence, they are being adopted
more and more by journals and conferences.

2.6 Open Peer Review

As discussed by Tennant et al. (2017), different models of peer review exist and have
been experimented with lately. One of these is open peer review, for which there
is, however, yet no commonly accepted and clear definition nor an agreed schema
as elaborated in a secondary study by Ross-Hellauer (2017). Open peer review
implementations intend to make the review process as transparent as possible and
can feature factors ranging from removing the anonymity of authors and reviewers
alike, over making the actual reviews public and allowing for interaction between
authors and reviewers, to crowdsourcing reviews and even making manuscripts
public before the review phase.

One least common denominator of open peer review focuses on the names of
authors and reviewers so that both can see each other’s identities. This allows for
authors and reviewers to have a direct conversation rather than having to go through
third parties for communication purposes (e.g., via handling editors or chairs). In
the programming community, this type of review process has long been known in
code reviews, but—despite the advantages recognised in the research community
as shown in a recent study by Prechelt et al. (2018) on the future of peer review in
software engineering—it is not yet adopted by our journals and conferences (see
also Sect. 5). One exception is the Journal of Open Source Software.6 Another
definition focuses on disclosing the reviews—sometimes with the names of the
reviewers. That way, reviewers can be held more accountable, but they can also serve
to make the decision for acceptance more transparent to others and the reviewers
can also claim the recognition they deserve. There are many fears and hopes around
open peer review models, many of which are discussed in an editorial by Bolam and
Foxe (2017) for the European Journal of Neuroscience after having implementing
such a model. One fear (for which, however, there is no evidence yet) is the risk that
early career researchers might be more reluctant to provide profound critique if their
names are revealed (see also our discussion in Sect. 5.2). A partial implementation of
this model where reviewer names and their reviews are made public is followed by
the PeerJ Computer Science Journal, which asks the reviewers whether they wish to
disclose their name and subsequently to the authors if whether they wish to disclose
the peer review history in the published paper.

6For details, see https://joss.readthedocs.io/en/latest/submitting.html#the-review-process.

https://joss.readthedocs.io/en/latest/submitting.html#the-review-process

486 D. Mendez et al.

3 Why Do We Need Open Science?

Open science is becoming more and more accepted in scientific communities to be
having many positive effects. These effects range from increased access and citation
counts (Eysenbach 2006) to facilitating technology transfer with the industry
and fostering collaborations through open repositories. Academic publishing and
knowledge sharing is meant to become more cost-effective—German university
libraries alone are estimated to be spending well beyond 200 million EUR on
publication subscriptions fees per year (Schimmer et al. 2015)—and researchers and
practitioners with no publisher subscriptions can freely access and build on the work
of others. There are many discussions and controversies centred around publisher
subscription models and how institutions (and institutional alliances) should deal
with them. In this chapter, we will not even try to address these discussions to the
extent they deserve, but provide a broader view on why we do need open science in
general.

Imagine the following situation: A conference author submits a manuscript
promising to have provided scientific and empirically informed arguments for
considering Go To statements harmful; a statement previously relying on rationalist
arguments of software engineering pioneers like Dijkstra (1968) only. As laid
out by that author, those arguments emerge from the exploration of industrial
source code—which the author does not share, maybe because of non-disclosure
agreements with collaborating companies from which the data emerges, or maybe
for other reasons; this statement is not made explicit in the manuscript. They have
further analysed the impact of those statements based on in-depth interviews—
which the author does also not share, maybe because of ethical and legal constraints.
Imagine further that the reviewers find no obvious methodological flaws in the
design which the author describes in great detail for both the content analysis and
the interviews. The author is an experienced and recognised authority in the research
community and the manuscript is written in an easy-to-follow manner. The review-
ers further find the manuscript “compelling”, “interesting”, and the results are also
“surprising” to them given the availability of contrary evidence provided by other
authors who previously analysed publicly available software repositories coming to
very contrary conclusions (Nagappan et al. 2015). Even if the submitting author
did not discuss that other publication in detail, a presentation of that work would
certainly lead to controversial and interesting discussions; something the reviewers
believe to merit presentation at the prestigious conference they review for. So they
recommend acceptance and the PC chairs select that publication for inclusion in the
program. It is reasonable to believe that many readers of this chapter having served
as co-chairs and reviewers for conferences can identify with such a situation.

Now imagine you were a young scholar analyzing the effects of software defects
and you find this publication. You would certainly find this publication interesting as
it could provide a useful ground for follow-up work. Ask yourself—honestly—the
following questions:

• Would you trust the results? If so, based on what? The simple fact that it has been
accepted by the prestigious conference? The way the manuscript is generally

Open Science in Software Engineering 487

written? The name of the author or her or his affiliation? Maybe based on the high
number of citations that this publication already has? Maybe it is a combination
of all factors? Would the picture change if the author would be unknown to you
and if the work would have been published at a lower ranked conference?

• Would you be able to really comprehend how the study has been carried out?
Would you be able to reproduce the conclusions drawn by the author based on
the insights provided in the manuscript? Would you be able to replicate the study
in your own research environment?

• To what extent does that piece of work provide a good theory for your work?
Would this theory be robust and reliable (i.e., scientific)? Would you consider it
useful?

• How would you use the work if you could only access the abstract of the
manuscript because it is hidden behind a paywall and because your institution
has no subscription? Would you cite the work based on the information in the
abstract? Maybe based on the statements found in other papers citing that work?

• How would you cite that work and put it in relation to your own research? Would
the picture change in dependency to whether the statements in that manuscript
support your own arguments or whether it contradicts them?

This very example certainly describes a fictitious situation and yet it describes
in many ways the de-facto situation of software engineering research. Scientific
practices need to rely on certain safeguards, such as peer review, but they are
nevertheless also dictated by social and political mechanisms and many non-trivial,
subjective factors in the research communities. These factors very often dictate in
one form or the other which submissions eventually make it into the publication
landscape and which do not, and which publications are cited and which are not.
As a consequence, publication and citation regimes—although inherently rooted
in scepticism—have also much to do with trust and convictions (Mendez and
Passoth 2018); something which holds for most, if not all, scientific disciplines.
Transparency is therefore key to break with scientific theories being grounded in
common sense, taken-for-granted knowledge, hopes, convictions, and provisional
beliefs.

Software Engineering still faces many challenges not found in other disciplines.
Our data comprehends qualitative and quantitative data types and the theories
we work on often have various disciplinary backgrounds (from mathematics over
psychology to sociology). Further, our data very often emerges from highly sensitive
environments making a disclosure difficult and in many cases impossible. Even
if we can disclose the data, in many cases it has to be anonymised to an extent
it becomes difficult to fully comprehend. All this renders building and evaluating
empirically grounded theories in our field difficult. Hence, scientific practices often
remain rooted in trust rather than being rooted in transparent scientific processes. Yet
and as laid out by Mendez and Passoth (2018), it is theory building which constitutes
a crucial foundation to our avenue towards turning our engineering discipline into
a more scientific, evidence-based one, same as it was the case for many other
disciplines before. Transparency, credibility, and reproducibility are cornerstones

488 D. Mendez et al.

in building and evaluating robust and reliable theories for our still emerging field
and open science provides a solid foundation to achieve that goal.

In essence, open science practices in general and data sharing in particular
eventually allow us as a community of software engineering researchers and
practitioners to effectively make contributions to our body of knowledge based
upon shared data sets—making our empirical studies transparent, comprehensible,
and credible—thus, we move forward as a community. As we argue, not only
scientific publishing is essential in knowledge sharing and dissemination (Houghton
and Oppenheim 2010), but it is an essential facet in accumulating knowledge via a
variation of studies tackling the same or similar questions and building upon the
same or similar settings and data sets—e.g., as part of replication studies (Gómez
et al. 2012) which are rendered difficult if not impossible without clear open science
principles dictating shared values and principle scientific practices.

Therefore, there is no doubt anymore whether open science will become the
norm also in software engineering research. Ever more public and private funding
bodies are implementing open access and open data policies (see, e.g., Childs et al.
2014; Van den Eynden et al. 2011). Also the research community is in tune with
this movement, as we can observe: editors and conference organizers are already
planning for a smooth transition to open data, and reviewers are becoming more and
more sceptical towards manuscript submissions which do not disclose their data
and, consequently, ask the reviewers for too much credit. It remains, however, often
still a question of how the community should adopt open science practices and how
individual researchers should open their research. We discuss this question in more
detail in the next section.

4 How Do We Do Open Science?

In the following, we address the question of how to engage in open science.
There are many aspects to consider when engaging as a researcher in open
science. We believe that these aspects are best introduced along a simple (again,
fictitious) scenario introduced next. The goal is to demonstrate opportunities along
an exemplary set of practices and techniques available to engage in open science in
a hands-on manner.

4.1 Exemplary Scenario

As an exemplary scenario, we consider a research project where we are researchers
at European universities collaborating with project partners from other universities
in the USA. Those partners are researchers in psychology. Our project aims at
conducting a psychometric software engineering study and our overall goal is to
collect data involving a large-scale study with human subjects. The research design
is done in a joint effort. While our partners are largely responsible for the study

Open Science in Software Engineering 489

execution and the data collection, we are largely responsible for analyzing the data
and reporting on it.

To keep the example simple, we focus on the statistical analysis of quantitative
data in our study, but also refer the reader to the challenges emerging from the
disclosure of qualitative data in Sect. 5.

4.2 Overall Data Analysis Process

Figure 1 depicts, on the left side, the steps followed in our data analysis with a
particular focus on those aspects relevant from an open science perspective. Overall,
we first prepare our data and check for any errors, inconsistencies, and missing
values, and we discuss these with our partners. At the same time, we start thinking
about how to best answer our questions at hand. While we design our analysis
procedure, we update the data structure to best fit the analysis plan. Once the
analysis plan is finalised, we make it openly available. Ideally, we submit it as a
preregistered study. This submission includes our study protocol and the material
(analysis scripts) as well as a detailed sample description allowing reviewers to
judge upon the potential of the study with respect to its theoretical and practical
impact. After registering our study and considering the feedback received, only then,
we decide to begin with the data analysis.

After discovering no clear patterns in the data, we decide to participate at a
workshop where we present our ongoing work based on a previously published
short paper describing the overall goal of the study and preliminary results. This
work in progress presentation serves the purpose of receiving further feedback from

Data preparation

Analysis preparation

Data analysis

Presentation

Folder structure
Naming

Virtual Machine
R

Git + GitLab
Make

R Markdown Word

knitr PDF
OSF

R Markdown HTML
knitr PDF

arXiv

Fig. 1 Schema of an exemplary simple project

490 D. Mendez et al.

the research community and of getting useful ideas on how to improve our data
visualisation techniques. After successfully finishing our data analysis, we finally
write up our main publication on the project and disclose our manuscript preprint
prior to submitting our manuscript for review to a journal.

In the following, we walk through that process while focusing on the infras-
tructure and tools. Our hope is that by presenting the process in such a pragmatic
hands-on manner allows to fully reproduce the process as it should typically appear
in a research setting.

4.3 Exemplary Walk-Through

There are various tools to be used to make our project open and reproducible. While
we do not claim to be able to present an exhaustive list here, our aim is to give
some examples which we use ourselves to make recommendations based on our
own experiences. One basic issue to consider first is the folder structure and the
naming convention. A good folder structure, in our view, could be like the one in
Listing 1 as it captures the very essence of our process:

Listing 1 Project structure and naming convention for open science

m y p r o j e c t /
README. md
M a k e f i l e
d a t a /

c l e a n _ d a t a . Rmd
c l e a n _ d a t a . docx
d a t a _ c l e a n /

mydata . c sv
mymetadata . j s o n

da ta_ raw /
messy_da ta1 . x l s x
messy_da ta2 . c sv

a n a l y s i s _ p l a n
a n a l y s i s _ p l a n . Rnw
a n a l y s i s _ p l a n . p d f

a n a l y s i s /
a n a l y s i s . R
f u n c t i o n s /

m y f u n c t io n . R
c o n f e r e n c e _ s l i d e s . Rmd
c o n f e r e n c e _ s l i d e s . h tml
m a n _ r e f e r e n c e s . b i b
m a n u s c r i p t . Rnw
m a n u s c r i p t . p d f

Open Science in Software Engineering 491

Note that the folder structure clearly defines the different steps shown in Fig. 1
and the folder and file names clearly indicate what each of them contains.

Regardless of the actual size of the project, the basic rule should be to apply
that structure and naming convention concisely and consistently. We experienced
it to also be important to keep the original data in a separate folder (data_raw/ in
Listing 1) and to not manipulate the raw data files but to create new data files in
a separate folder for the data cleaning and analysis (data_clean / in Listing 1). In
combination with a script which cleans the data (clean_data .Rmd in Listing 1), this
makes the data cleaning process reproducible to others.

To keep the working environment stable in terms of software versions, we
decide to use a virtual machine for this project. An alternative option could also
be a container (Docker, Singularity, etc.). For the data cleaning and the analysis,
we decide to use R (see also R Core Team 2018). R is an open source software
environment for statistical computing. An alternative to that could be to use Python.
R scripts (e.g., analysis.R in Listing 1) are text files that can be executed in the
R console. In contrast to click-and-point programs (e.g., SPSS when used without
syntax) or programs producing binary files (e.g., Excel), R, same as Python, allows
for a reproducible workflow which can be easily version controlled.

For version control, in our project, we decide to use Git (Chacon and Straub
2014). We further use it in combination with the Git-repository hosting ser-
vice GitLab (https://gitlab.com). That version control system allows us and our
collaborating partners to trace the versions of all produced text documents in
an organised fashion. In combination with the hosting service GitLab, these
versions remain available online to all involved in our project. For automat-
ing our workflow, we use Make (Stallman et al. 2001). To this end, and we
keep referring to Listing 1, we store a Makefile in our main project folder
which contains the information on how different files depend on each other, for
example, that data / clean_data .Rmd depends on data /data_raw/messy_data1.xlsx
and data /data_raw/messy_data2.csv and produces data / data_clean /mydata.csv,
data / data_clean /mymetadata.json, and data / clean_data .docx. Our Makefile also
documents how the outputs can be produced (via bash commands).

Next to using R for our project, we use R Markdown (see Xie et al. 2018) and
knitr (see Xie 2015). Both allow users to combine R code chunks with explanatory
text snippets and, thus, allowing for literate programming (Knuth 1984). Our text is
formatted with Markdown (R Markdown) and LaTeX (knitr). As our partners rely
on MS Word, we regularly convert our R Markdown documents to Word documents
for constant feedback by commenting directly in those documents. This simplifies
the communication about the constant data checking and cleaning process. For an
intermediate project report and later for the manuscript writing, we use knitr as it
gives us more formatting options.

Our analysis plan is written with knitr and we upload the PDF to the open
science framework (OSF, https://osf.io). This allows us to use the analysis plan for
preregistration of the work we aim to do. Preregistration allows to reduce biases in
the process of the data analysis (see also https://osf.io/prereg). We create the slides
for the conference again using R Markdown which can produce high quality HTML

https://gitlab.com
https://osf.io
https://osf.io/prereg

492 D. Mendez et al.

slides. The manuscript is written using knitr and we make it available as open access
on the preprint server arXiv (https://arXiv.org). To check whether preprint sharing is
within the legal constraints of the publisher of the conference, we check for it using
the search engine SHERPA RoMEO (http://sherpa.mimas.ac.uk/romeo).

As we see that the publisher follows a yellow open access model allowing to
disclose the preprints but not the postprints, we choose to upload our preprint
only. After that submission, we directly submit our manuscript to a peer-reviewed
journal. Upon acceptance of the manuscript by that journal, we update our preprint
with the DOI provided by the publisher, but do not submit the postprint, i.e., the
postproduction version of the manuscript to comply with the copyright agreement.
This preprint version is also the one we distribute among the community, e.g., via
social media.

Since all root documents are text files (except for data /data_raw/messy_data1.
xlsx) we can further put them under version control with Git. Through GitLab, we
can make them easily accessible to others. This way, our project folder myproject/
can be seen as a replication package. Prior to disclosure, however, we check for
parts in our data that need anonymisation to comply with the European General
Data Protection Regulation (GDPR) as well as with the approval notification of the
Institutional Review Board of our partners in the USA. We remove any data that
might allow to trace observations back to individuals participating in the study.

For our work to be reproducible in a long-term manner, we need to further
document the versions of the software used. The virtual machine does that for us,
but is not very portable. The option we follow is to use the version management
system packrat in R (see Ushey et al. 2018).

We notice that our partners are very reluctant to share the data because of its
sensitivity and because they fear misuse (e.g., when taken out of its context), thus,
we would not be able to follow the FAIR principles (Sect. 2.2) as anticipated. It
is, however, possible for us to convince our project partners to disclose the data
when implementing some safeguards. To this end, we decide to disclose our data
using the service platform Zenodo (https://zenodo.org) while choosing Restricted
Access. Other researchers interested in accessing the data can first read the extensive
metadata describing the content of the data and how it was produced. If they believe
that the data would fit their scope of interest, they can apply for access and our
previously established Data Use and Access Committee (DUAC), formed by us data
owners and a member of the responsible ethics committee, so that we can decide
whether to grant access to the data or not.

That very example, we hope, illustrates an open science-conform study analysis
and reporting producing all artifacts relevant to an open science format adoptable to
software engineering and including the disclosure of:

1. A study protocol submission and review prior to publication (preregistered study)
2. The replication package including all analysed data (open data) and all files,

scripts, and codebooks necessary to comprehend the study (open materials)
3. A preprint (yellow open access)

https://arXiv.org
http://sherpa.mimas.ac.uk/romeo
https://zenodo.org

Open Science in Software Engineering 493

Needless to say, the example is a simplified one neglecting some challenges we
typically encounter in practice. In the following, we discuss those challenges in
more detail.

5 Challenges, Pitfalls, and Guidelines

In the following, we discuss typical challenges and pitfalls in open science from
the perspective of researchers engaging in open science. To this end, we draw from
our experiences covering both the roles of researchers and the roles of organizers
(handling editors and conference and workshop organizers).

5.1 General Issues

The major challenge that keeps researchers from following all the open science
practices described above is probably the difficulty and effort required when
making everything openly available. All the practices constitute additional steps
that researchers have to do in addition to the non-open research process. They might
be motivated to do these additional steps to support the scientific process and higher
visibility of open publications. Yet, this motivation has limits. Therefore, the ease
of doing open science practices is essential.

In our experience, the difficulty of being open has reduced dramatically over
the years. It is easy and cost-free to handle a research project on GitHub or OSF, to
permanently publish data on Zenodo or figshare, and to provide preprints on services
like arXiv. Some difficulty lies in the details, such as the LaTeX requirements of
arXiv, but nowadays we mostly work with modern web applications that behave as
one would expect.

Another challenge that might keep researchers from employing openness in their
research is the area of conflict between anonymity and confidentiality on the one
side and openness on the other. In open science, we ideally would like to make
everything open that helps others to understand, verify, and build on our work.
When we work with companies, however, they have an understandable interest
to protect their intellectual property and reputation, often reflected in signed non-
disclosure agreements. Therefore, we have to reduce the data that we can make
open or anonymise the data that we have. This is, again, additional effort and a risk
that we accidentally make something open that should be confidential.

Similarly, when our studies involve humans, they have an interest in protecting
their private data. With the EU GDPR, we now also have a strong legal basis
for that. Hence, again, we have the risk to violate corresponding laws. In both
cases, companies and individual humans, it is therefore imperative to publish any
potentially sensitive data only with the explicit consent of the study participants.
Only they themselves can decide what is sensitive and critical for them. In principle,

494 D. Mendez et al.

this holds for any kind of publication and, hence, only needs to be extended to
ask for consent for publishing the data as well. Anonymising company names is
often enough. For anonymising sensitive data of study participants, there are also
established techniques (see, e.g., Saunders et al. 2015).

The challenge of anonymity also plays into the third more general issue we would
like to mention: Often, openness is merely an afterthought. After we have done all
the work, we provide a preprint and make the data available. Ideally, however, the
whole process should be open, for example, by using OSF or GitHub for all the
documents, data, and analysis scripts. In terms of anonymity, this is difficult, as we
cannot make everything open and often need a shadow repository with the original
raw data. The raw data needs then to be carefully filtered when stored in an open
repository. Yet, keeping everything open has the advantage that there is no way of
manipulation during the analysis and publication phases of the research. We cannot
make the hypothesis fit the data in hindsight because we documented the hypothesis
before we did the analysis.

5.2 Sharing Preprints

For preprints, we need to consider where we want to publish the paper later on.
Upon acceptance of our manuscript, we can also post a postprint. This is rarely a
problem when we already have a preprint that is simply updated. Otherwise, there
might be publisher-specific embargo periods that need to be adhered to.

Self-archiving Options for Software Engineering
In principle, different publishers have different criteria about what they allow
at all and what licences to choose. One helpful overview of the different
self-archiving options in tune with the regulations of the major publishers
in Software Engineering is, as we believe, provided by van Deursen (2016).

One challenge we would like to highlight in the context of preprint sharing
emerges from the trend in software engineering to push for double-blind reviewing
models by also anonymising not only reviewers’ identifies but also ones of the
authors. While the higher goal to reduce potential biases is laudable, it complicated
open science practices considerably. Conferences are increasingly adopting a
double-blind model of peer review, which does not easily allow preprints to be made
available because it might allow the reviewers to find out who the authors are. It has
been our effort to start a trend in conferences to allow self-archiving preprints and
instruct peer reviewers to not actively look for the papers under review online, but
it remains nevertheless a challenge. The picture would change if open peer review
would be implemented in a code review style (as discussed in Sect. 2.6). However,

Open Science in Software Engineering 495

the downside and fear of many researchers is that open peer review will put a lot
of pressure on researchers, especially early career researchers: Both as authors—the
reviewers will know who made potential mistakes—and as reviewers—the authors
will know who proposed the changes or even who recommended rejection of the
paper.

5.3 Choosing Appropriate Licences

A common pitfall while starting to use open science practices is to assign unsuitable
licences. arXiv, for example, allows to select an ad hoc non-exclusive licence (to
arXiv). Granting this minimal licence is compatible with any relevant venue a
researcher might want to submit to. Hence, it keeps all options open even if the
paper is rejected at the initially planned venue. Adding a Creative Commons licence
could reduce this flexibility considerably. In fact, arXiv itself allows to choose from
various Creative Commons licences (CC BY, CC BY-SA, CC BY-NC-SA) as well
as the CC0 dedication, i.e., public domain (see also Arxiv 2019a).

Many argue that CC0 is preferable because it frees people from dealing with all
attributions. However, in the scientific context, attributing the source and authors of
all artifacts that are used is good practice independent of the licence used. Some
preprint servers might enforce the CC BY. This licence is also recommendable for
postprints, provided postprint sharing is compatible with the publisher copyright
agreement, as it ensures that the researchers are given credit while giving others the
largest amount of freedom to share and reuse the manuscript.

In principle, choosing the proper licence is a non-trivial but important task,
because certain licences for preprints might cause incompatibility issues further
down a publishing chain. Certain licences, including some Creative Commons ones,
prevent the work to be used in commercial settings (the -NC part of the CC) or
require the redistribution of derivative works using the same licence (the -SA part
of the CC). Traditional publishers are, most of the times, commercial entities that
require either a full copyright transfer or exclusive rights to distribute the work
in a more restricted way, i.e., selling access to papers through paywalls. Non-
commercial and share-alike CC licences are, thus, in most of the cases incompatible
with traditional publishing models.

Even the more liberal CC BY licence, which only requires attribution and does
not enforce a share-alike clause, might pose issues with traditional publishing as it
is non-revocable and allows commercial use by anyone (i.e., non-exclusive to the
publisher). The CC0 dedication has also caused issues with traditional publishing in
the past, as pointed out by O’Connor (2011). The default licence by arXiv is a non-
exclusive licence to distribute (Arxiv 2019b), and, virtually, does solely allow arXiv
to distribute and display a document (meaning that, theoretically, we are not allowed
to do anything at all with arXiv submissions but reading them). This licence is
perhaps the most restrictive one among the free licences, making it compatible with
traditional publishing (if the copyright transfer conditions allow for it, see Sect. 2.1).

496 D. Mendez et al.

We can provide two recommendations. arXiv default non-exclusive licence to
distribute should be used when there is certainty to publish a paper with a traditional
publisher. A CC BY licence should be used when there is certainty to publish a
paper with a gold open access journal. We do not recommend licensing any preprint,
postprint, or data set using a non-commercial clause (-NC). While counter-intuitive
at first sight (we wish for our work to stay free, after all), a non-commercial clause
prevents the work to be used by commercial entities. The term commercial is, from
a legal perspective much broader than it might appear at first; it might affect a
large spectrum of people and entities including a simple blog if the website uses an
advertisement system. There exist open companies that were born from commercial
entities and that are therefore not non-profit (e.g., figshare and PeerJ), and these
would not be allowed to make any use of material licensed with the -NC clause.
Some of the work might include data mining of papers and data sets and aggregating
results, which might still be very useful for the advancement of knowledge. For more
information on these legal aspects, we direct the reader to a joint group of copyright
experts and Wikimedia (2013).

5.4 Sharing Data and Materials

A common pitfall in publishing open data and open materials, e.g., as part of
replication packages, is to use a personal or institutional website for quickly and
easily making them available. It gives one a unique ID in the form of a URL. Yet, a
challenge is that we cannot ensure that the URL stays valid and that the content stays
on the website. As it has been empirically demonstrated, e.g., by Koehler (2002,
2003), web pages disappear continuously. Therefore, repositories such as Zenodo
or figshare, providing a DOI and ensuring permanent archival, are much preferable.

There are small differences between the repositories, but both are recommend-
able. figshare is commercial but free to use, and its usability seems more polished
than at Zenodo. Furthermore, figshare participates in data preservation mechanisms,
while Zenodo does not. The permanency of Zenodo is ensured, because it is financed
by the European Union and run by CERN.

Similarly as with preprint sharing in the context of double-blind reviewing
models, the availability of open data and material would also reveal the authors’
identity and, hence, is rendered complicated. While there is no easy solution to the
problem of sharing preprints when following a double-blind reviewing model, open
data repositories allow researchers now to publish data anonymously for review,
thus, being compliant to restrictions imposed by such reviewing model. The authors
of the data can then be made public after the paper is accepted. A set of instructions
on how to share and archive open data and keep it compatible with double-blind
review are presented by Graziotin (2019).

Open Science in Software Engineering 497

5.5 Preparing Qualitative Data

Achieving replicability and reproducibility of qualitative studies is particularly
challenging and many might argue that it is not possible at all (see also the
introductory discussion). This renders, however, the disclosure of qualitative data
not less important than the disclosure of quantitative data. Even if we cannot
support reproducibility of qualitative studies in the nearer sense (if interpreting those
terms literally), we can at least achieve transparency of the research and support
researchers not involved in the study in understanding how the researchers carrying
out the study have drawn their conclusions.

Qualitative data is usually the most difficult to prepare for disclosure in a
replication package, because it is most personal and most difficult to anonymise
within legal and ethical constraints. A number is more abstract (and easier to
open) than spoken words spoken (and transcribed) by individuals, e.g., during an
interview. Ideally, we anonymise also qualitative data7 and publish it with the
explicit consent of the participants. It is important to be open about it upfront to
understand whether the participants will agree. Especially for qualitative data, it
might often not be the case that we get the consent. Then, it is even more important
that at least the analysis material is shared. This is typically easier to share and
may include a study protocol as well as the coding schema and coding rules used
when coding qualitative data (e.g., as part of a Grounded Theory study). That way,
reviewers and other researchers can at least check the trustworthiness of the analysis
process and understand how the authors have drawn their conclusions.

6 Conclusion

Open science describes the movement to render all artifacts born out of scientific
research activities accessible. Openness in our research processes is important to
move forward in building reliable and robust theories, thus, turning our discipline
into a more scientific one. As outlined in this chapter, we still face, however, various
challenges other disciplines do not face. Despite those challenges of adapting open
science to the software engineering context, we can still see that our research
community is making great progress in that direction. We have ourselves either
accompanied or fully implemented efforts to help the community opening up their
research artifacts.

In the course of our endeavour, we have noticed very well that introducing open
science into a research community is a difficult and sensitive task, because open
science is still often confronted with prejudice, but also because many authors,
despite their willingness to conform to such policies, do not often know how exactly

7By anomymisation of qualitative data we refer to the removal of any information that allows to
reveal the individuals’ identities and/or otherwise sensitive not directly related to the study.

498 D. Mendez et al.

to follow such an initiative; that is to say, it is often difficult to see what we should
do and what we can do (also considering ethical and legal constraints).

This is also the reason why we, as organizers, are often constraint by a general
reluctance of implementing mandatory open science principles (e.g., via open
data policies), thus, rendering the transition to more openness in our discipline
rugged. However, the implementations of open science policies in the recent
editions of conferences and journals—even if non-mandatory ones where authors
could participate on a voluntary basis with the support of dedicated open science
chairs—nevertheless showed high participation ratios with more than 50% of the
authors disclosing their data. Such a support by the community and the positive
feedback, e.g., in Town Hall meetings, strengthen our confidence in that the research
community is showing more and more awareness of the importance of open science
and that open science will eventually become the norm.

One hope we associate with our ongoing efforts in implementing open science
initiatives in software engineering venues is to send strong signals into the research
community and to gradually increase the awareness of participating researchers to
move further in that direction.

Arguably, we are still confronted with various challenges, such as:

• How to implement a uniform and transparent guideline to review disclosed
artifacts covering all possible variations in the different types of study (e.g.,
quantitative and qualitative ones)?

• How to implement preregistered studies (which we consider especially important
to tackle the problems of publication bias or p-hacking) in tune with the
reviewing processes of our existing journals and conferences and how to redefine
existing roles and responsibilities?

• How to properly reward authors with a clear and easy to understand (and to use)
badge system which recognises the differences in the various study types and the
difficulties in opening up sensitive, e.g., industrial, data?

• How to implement open peer reviews? We can nowadays observe a significant
turn in the existing single-blinded reviewing regime, which we applaud, but
instead of opening up reviews as well, the current trend is towards even more
closeness via double-blind reviewing models, thus, rendering other open science
activities difficult, too.

We are still convinced that it is not anymore a question whether open science
will become the norm also for the software engineering research community, but we
recognise that there is still a long way to go, also because we still need to increase
the awareness for what open science is, why it is so important, and how to properly
adopt such principles to software engineering.

The chapter at hands is intended to address these questions and to contribute
to the movement. Our hope is to further encourage all members of our research
community in joining us in this important endeavour of actively shaping an open
science agenda for the software engineering community.

Open Science in Software Engineering 499

Acknowledgements We want to thank all the members of the empirical software engineering
research community who are actively supporting the open science movement and its adoption to
the software engineering community. Just to name a few: Robert Feldt and Tom Zimmermann,
editors in chief of the Empirical Software Engineering Journal, are committed to support the
implementation of a new Reproducibility and Open Science initiative8—the first one to implement
an open data initiative following a holistic process including a badge system. The steering
committee of the International Workshop on Cooperative and Human Aspects of Software
Engineering (CHASE) supported the implementation of an open science initiative from 2016 on.
Markku Oivo, general chair of the International Symposium on Empirical Software Engineering
and Measurement (ESEM) 2018, has actively supported the adoption of the CHASE open science
initiative with focus on data sharing for the major Empirical Software Engineering conference so
that we could pave the road for a long-term change in that community. Sebastian Uchitel, general
chair of the International Software Engineering Conference (ICSE) 2017, further supported an
initiative to foster sharing of preprints, and Natalia Juristo, general chair of ICSE 2021, further
actively supports the adoption of the broader ESEM open science initiative to our major general
software engineering conference. Finally, we want to thank Per Runeson, Klaas-Jan Stol, and Breno
de França for their elaborate comments on earlier versions on this manuscript.

References

Arxiv (2019a) arxiv license information. https://arxiv.org/help/license. Archived: http://web.
archive.org/web/20190410151011/https://arxiv.org/help/license. Accessed 10 Apr 2019

Arxiv (2019b) arxiv license information. https://arXiv.org/licenses/nonexclusive-distrib/1.
0/license.html. Archived: http://web.archive.org/web/20190410165523/https://arxiv.org/
licenses/nonexclusive-distrib/1.0/license.html. Accessed 10 Apr 2019

Auer S, Bizer C, Kobilarov G, Lehmann J, Cyganiak R, Ives Z (2007) DBpedia: a nucleus for a
web of open data. Springer, Berlin, pp 722–735

BOAI (2002) Budapest open access initiative. https://www.budapestopenaccessinitiative.org/read
Boisseau T, Omhover J-F, Bouchard C (2018) Open-design: a state of the art review. Des Sci 4:e3
Bolam JP, Foxe JJ (2017) Transparent review at the European journal of neuroscience: experiences

one year on. Eur J Neurosci 46(11):2647–2647. https://onlinelibrary.wiley.com/doi/abs/10.
1111/ejn.13762

Chacon S, Straub B (2014) Pro Git. Apress, New York
Childs S, McLeod J, Lomas E, Cook G (2014) Opening research data: issues and opportunities.

Rec Manag J 24(2):142–162
Dickersin K (1990) The existence of publication bias and risk factors for its occurrence. J Am Med

Assoc 263(10):1385. https://doi.org/10.1001/jama.1990.03440100097014
Dijkstra EW (1968) Go to statement considered harmful. Commun ACM 11:147–148
Eysenbach G (2006) Citation advantage of open access articles. PLoS Biol 4(5):e157
FOSTER (2019) Open science taxonomy. https://www.fosteropenscience.eu/taxonomy/term/7
Ginsparg P (2011) It was twenty years ago today. . . Preprint. arXiv:1108.2700
Gómez O, Juristo N, Vegas S (2012) Replication types in experimental disciplines. In: Proceedings

of the 2010 ACM-IEEE international symposium on empirical software engineering and
measurement, pp 1–10

Graziotin D (2019) How to disclose data for double-blind review and make it archived open
data upon acceptance. https://ineed.coffee/5205/. Archived: https://web.archive.org/web/
20190410141340/https://ineed.coffee/5205/. Accessed 10 Apr 2019

8See also https://github.com/emsejournal/openscience.

https://arxiv.org/help/license
http://web.archive.org/web/20190410151011/https://arxiv.org/help/license
http://web.archive.org/web/20190410151011/https://arxiv.org/help/license
https://arXiv.org/licenses/nonexclusive-distrib/1.0/license.html
https://arXiv.org/licenses/nonexclusive-distrib/1.0/license.html
http://web.archive.org/web/20190410165523/https://arxiv.org/licenses/nonexclusive-distrib/1.0/license.html
http://web.archive.org/web/20190410165523/https://arxiv.org/licenses/nonexclusive-distrib/1.0/license.html
https://www.budapestopenaccessinitiative.org/read
https://onlinelibrary.wiley.com/doi/abs/10.1111/ejn.13762
https://onlinelibrary.wiley.com/doi/abs/10.1111/ejn.13762
https://doi.org/10.1001/jama.1990.03440100097014
https://www.fosteropenscience.eu/taxonomy/term/7
https://ineed.coffee/5205/
https://web.archive.org/web/20190410141340/https://ineed.coffee/5205/
https://web.archive.org/web/20190410141340/https://ineed.coffee/5205/
https://github.com/emsejournal/openscience

500 D. Mendez et al.

Graziotin D, Wang X, Abrahamsson P (2014) A framework for systematic analysis of open access
journals and its application in software engineering and information systems. Scientometrics
101(3):1627–1656. Available: https://arxiv.org/abs/1308.2597

Head ML, Holman L, Lanfear R, Kahn AT, Jennions MD (2015) The extent and consequences of p-
hacking in science. PLOS Biol 13(3):e1002106. https://doi.org/10.1371/journal.pbio.1002106

Houghton JW, Oppenheim C (2010) The economic implications of alternative publishing models.
Prometheus 28(1):41–54

Kerr NL (1998) Harking: hypothesizing after the results are known. Personal Soc Psychol Rev
2(3):196–217

Knuth DE (1984) Literate programming. Comput J 27(2):97–111
Koehler W (2002) Web page change and persistence? A four-year longitudinal study. J Am Soc Inf

Sci Technol 53(2):162–171. https://doi.org/10.1002/asi.10018
Koehler W (2003) A longitudinal study of web pages continued: a consideration of document

persistence. Inf Res 9(2). http://www.informationr.net/ir/9-2/paper174.html
Lambert C (2006) The marketplace of perceptions. Harv Mag 108(4):50
Mendez D, Passoth J-H (2018) Empirical software engineering: from discipline to interdiscipline.

J Syst Softw 148:170–179
Nagappan M, Robbes R, Kamei Y, Tanter É, McIntosh S, Mockus A, Hassan A (2015) An empirical

study of goto in C code from GitHub repositories. In: Proceedings of the 2015 10th joint
meeting on foundations of software engineering. ACM, New York

O’Connor R (2011) The ACM and me. http://r6.ca/blog/20110930T012533Z.html. Archived:
http://web.archive.org/web/20190410153103/http://r6.ca/blog/20110930T012533Z.html.
Accessed 10 Apr 2019

Prechelt L, Graziotin D, Méndez Fernández D (2018) A community’s perspective on the status and
future of peer review in software engineering. Inf Softw Technol 95:75–85

R Core Team (2018) R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna. https://www.R-project.org/

Ross-Hellauer T (2017) What is open peer review? A systematic review [version 2; peer review: 4
approved]. F1000Research 6:588. https://doi.org/10.12688/f1000research.11369.2

Rowhani-Farid A, Allen M, Barnett AG (2017) What incentives increase data sharing in health and
medical research? A systematic review. Res Integrity Peer Rev 2(1):4

Saunders B, Kitzinger J, Kitzinger C (2015) Anonymising interview data: challenges and
compromise in practice. Qual Res 15(5):616–632. PMID: 26457066. https://doi.org/10.1177/
1468794114550439

Schimmer R, Geschuhn KK, Vogler A (2015) Disrupting the subscription journals’ business model
for the necessary large-scale transformation to open access. http://pure.mpg.de/pubman/item/
escidoc:2148961

Stallman RM, McGrath R, Smith P (2001) GNU make, Citeseer
Tennant JP, Dugan JM, Graziotin D, Jacques DC, Waldner F, Mietchen D, Elkhatib Y, Collister

LB, Pikas CK, Crick T, Masuzzo P, Caravaggi A, Berg DR, Niemeyer KE, Ross-Hellauer T,
Mannheimer S, Rigling L, Katz DS, Tzovaras BG, Pacheco-Mendoza J, Fatima N, Poblet M,
Isaakidis M, Irawan DE, Renaut S, Madan CR, Matthias L, Kjær JN, O’Donnell DP, Neylon
C, Kearns S, Selvaraju M, Colomb J (2017) A multi-disciplinary perspective on emergent and
future innovations in peer review [version 3; peer review: 2 approved]. F1000Research 6:1151.
https://doi.org/10.12688/f1000research.12037.3

Tennant J, Beamer JE, Bosman J, Brembs B, Chung NC, Clement G, Crick T, Dugan J, Dunning
A, Eccles D et al (2019) Foundations for open scholarship strategy development. https://osf.io/
preprints/metaarxiv/b4v8p

Ushey K, McPherson J, Cheng J, Atkins A, Allaire J (2018) packrat: a dependency management
system for projects and their R package dependencies. R package version 0.5.0. https://CRAN.
R-project.org/package=packrat

Van den Eynden V, Corti L, Woollard M, Bishop L, Horton L (2011) Managing and sharing data; a
best practice guide for researchers. Retrieved from the University of Essex Data Archive: http://
repository.essex.ac.uk/2156/1/managingsharing.pdf. Accessed 31 Mar 2020

https://arxiv.org/abs/1308.2597
https://doi.org/10.1371/journal.pbio.1002106
https://doi.org/10.1002/asi.10018
http://www.informationr.net/ir/9-2/paper174.html
http://r6.ca/blog/20110930T012533Z.html
http://web.archive.org/web/20190410153103/http://r6.ca/blog/20110930T012533Z.html
https://www.R-project.org/
https://doi.org/10.12688/f1000research.11369.2
https://doi.org/10.1177/1468794114550439
https://doi.org/10.1177/1468794114550439
http://pure.mpg.de/pubman/item/escidoc:2148961
http://pure.mpg.de/pubman/item/escidoc:2148961
https://doi.org/10.12688/f1000research.12037.3
https://osf.io/preprints/metaarxiv/b4v8p
https://osf.io/preprints/metaarxiv/b4v8p
https://CRAN.R-project.org/package=packrat
https://CRAN.R-project.org/package=packrat
http://repository.essex.ac.uk/2156/1/managingsharing.pdf
http://repository.essex.ac.uk/2156/1/managingsharing.pdf

Open Science in Software Engineering 501

van Deursen A (2016) Green open access FAQ. https://avandeursen.com/2016/11/06/green-open-
access-faq/. Archived: https://web.archive.org/web/20190410141222/https://avandeursen.com/
2016/11/06/green-open-access-faq/. Accessed 10 Apr 2019

Wikimedia (2013) Consequences, risks and side-effects of the license module “non-
commercial use only”. OpenGLAM. https://openglam.org/2013/01/08/consequences-risks-
and-side-effects-of-the-license-module-non-commercial-use-only/

Woelfle M, Olliaro P, Todd MH (2011) Open science is a research accelerator. Nat Chem 3:745
EP

Xie Y (2015) Dynamic documents with R and knitr, 2nd edn. Chapman and Hall/CRC, Boca Raton.
ISBN 978-1498716963. https://yihui.name/knitr/

Xie Y, Allaire J, Grolemund G (2018) R Markdown: the definitive guide. Chapman and Hall/CRC,
Boca Raton. ISBN 9781138359338. https://bookdown.org/yihui/rmarkdown

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://avandeursen.com/2016/11/06/green-open-access-faq/
https://avandeursen.com/2016/11/06/green-open-access-faq/
https://web.archive.org/web/20190410141222/https://avandeursen.com/2016/11/06/green-open-access-faq/
https://web.archive.org/web/20190410141222/https://avandeursen.com/2016/11/06/green-open-access-faq/
https://openglam.org/2013/01/08/consequences-risks-and-side-effects-of-the-license-module-non-commercial-use-only/
https://openglam.org/2013/01/08/consequences-risks-and-side-effects-of-the-license-module-non-commercial-use-only/
https://yihui.name/knitr/
https://bookdown.org/yihui/rmarkdown
http://creativecommons.org/licenses/by/4.0/

Third Generation Industrial
Co-production in Software Engineering

Tony Gorschek and Krzysztof Wnuk

Abstract Industry–academia collaboration is one of the cornerstones of empirical
software engineering. The role of researchers should be developing new practices
and principles that enable industry in meeting the engineering challenges today and
in the future. This chapter describes the third generation of industrial co-production
in software engineering that includes seven steps. The co-production model and
experiences associated with its use represent deep and long-term co-production
with over thirty companies, many of which are still active partners in Software
Engineering Research Lab (SERL).

1 Introduction

Software is at the core of almost every product and service today. Doing your taxes,
handling your bank errands, driving a car, or even booking a dentist appointment, all
powered by software. Software has created unprecedented benefits for companies
to be more effective, efficient, and to create smarter products to compete in
the marketplace. Software also enables the creation of completely new types of
business. However, as more companies transform into software intensive companies,
the amoung of software and software development activities in exploding (Gorschek
2018).

Software is also increasing in size, complexity, and interactions. This puts new
demands on how software is conceived, developed, evolved, and maintained; in
essence software engineering. Finding the balance between quickly responding to
market needs and keeping costs reasonable remains challenging.

The role of researchers can and should be developing new practices and
principles that enable industry in meeting the engineering challenges of today

T. Gorschek (�) · K. Wnuk
Department of Software Engineering, Blekinge Institute of Technology, Karlskrona, Sweden
e-mail: Tony.Gorschek@bth.se; Krzysztof.Wnuk@bth.se

© Springer Nature Switzerland AG 2020
M. Felderer, G. H. Travassos (eds.), Contemporary Empirical Methods in Software
Engineering, https://doi.org/10.1007/978-3-030-32489-6_18

503

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32489-6_18&domain=pdf
mailto:Tony.Gorschek@bth.se
mailto:Krzysztof.Wnuk@bth.se
https://doi.org/10.1007/978-3-030-32489-6_18

504 T. Gorschek and K. Wnuk

and the future. For clarity. The terms “new practices and principles” contain any
method, model, framework, practice, tool, ways-of-working, and so on that enable
the engineering, evolution, and long-term asset management of software and/or
software-intensive products and services. From now on, all these practices and
principles are called Solution(s).

The role of a software engineering researcher is the application of a scientifically
based and valid methodology to develop, validate, and transfer said solution. In this
context, defining usable and useful is critical. Usable in its base form denotes if a
solution can be used for its purpose, and to what extent. Useful denotes to what
degree a solution delivers value during said use, and to what extent. A significant
part of “proving” that your solution is good or not involves measuring if it is usable
and useful. This will become apparent later in this chapter.

One way to develop and transfer research results and solutions to industry is to
use co-production as a collaboration approach. The term co-production refers to the
collaborative work of researchers and practitioners in industry to identify challenges
and devise solutions that can be used in practice (Sannö et al. 2019). Co-production
has many origins and can be associated with, for example, action research (Rapoport
1970; Hult and Lennung 1980). However, co-production for the purposes of this
chapter is more of a macro-framework of research methods in which many other
micro-methodologies (e.g., case studies, action research, experimentation, etc.) can
be used in combination to achieve co-production.

This chapter is centered around a co-production model that was devised, tried,
and refined over a period of 15 years at the Software Engineering Research Lab
(SERL-Sweden) at Blekinge Institute of Technology, Sweden. The co-production
model and experiences associated with its use represent deep and long-term co-
production with over thirty companies, many of which are still active partners in
SERL (Gorschek et al. 2006; Wohlin et al. 2012). We also provide some general
lessons learned on knowledge and technology transfer and publication strategy.

2 The Three Generations of Software Engineering Research

The first generation of software engineering research was greatly focusing on
developing and establishing theoretical underpinnings of the discipline. Since
software engineering originates from computer science, many early advancements
originate from computer science research and offer increased understanding of
challenges in developing and maintaining large software systems (Naur and Randell
1969). Later on, software engineering continued to grow and develop theories and
models in many subareas, e.g., software architecture and decomposition (Parnas
1972) or management of software projects (Brooks 1995). Experimentation and lab
validation dominate in the first generation of software engineering, supported by
experience reports and essays about challenges and methods for managing large
software projects.

Third Generation Industrial Co-production in Software Engineering 505

The second generation of software engineering research broadens the research
topics within software engineering and the empirical methods used to work
with these topics. For example, software engineering researchers start to use
interview studies and grounded theory as methods for qualitative data analysis
and reasoning (Robson and McCartan 2016). Prominent authors offer guidelines
on how to conduct experiments (Wohlin et al. 2012), case studies (Runeson
et al. 2012), surveys (Punter et al. 2003), or even construct theories in software
engineering (Sjøberg et al. 2008), see also chapters “Guidelines for Case Survey
Research in Software Engineering,” “Challenges in Survey Research,” and “The
Design Science Paradigm as a Frame for Empirical Software Engineering.” Detailed
guidelines on what method to use in what circumstances are offered by Lethbridge
et al. (2005), supported with guidelines of using advanced statistics in software
engineering (Arcuri and Briand 2011). What characterizes the second generation of
software engineering research is a lack of long-term commitment from the studied
company and a discrete nature of the studies. Phenomena are often studied under
a limited period and proposed solutions are rarely deployed to studied organization
and used without the assistance of the researchers.

3 The Model for Co-production in Software Engineering

The seven steps described below are not necessarily sequential or determinant in
order or effort spent. For clarity, they are presented in a chronological manner.
The focus of the chapter is also on the co-production itself and not the overall
research methodology. That judicious application and use of research methodologies
is assumed in every step, but not detailed more than necessary for the purpose of
describing co-production, see Fig. 1.

3.1 Step 1: What Is the Problem?

Never, ever, use the word “problem.” Industry partners have challenges and
opportunities for improvement. The first thing to remember is that companies are
people, people in groups have politics and culture. Be aware of politics, learn and
respect the culture, and make allies.

Establishing contacts, selling yourself and the research collaboration, and getting
access to a company that is willing to work with you can be seen as Step 0. Step 0 is
not really covered in this chapter focusing on the co-production. However, it can be
as simple as giving an invited seminar on research and challenges overall, to spark
the interest of engineers and managers listening.

One overarching thing we should never forget, and which can be utilized with
great success is that a researcher is not an employee, nor a consultant. This might
make access and the way into a company harder, but it also gives you the element of

506 T. Gorschek and K. Wnuk

Fig. 1 The steps of the industrial co-production in software engineering

trust. A researcher can capitalize on being an external, unbiased party that focuses
on solving problems and supplying solutions, rather than developing products or
working at the company in question. In addition, a researcher’s work follows a
set of rules (ethics and methodology), and any results are scrutinized by not only
the industrial partner but also peers (peer-review). Handled correctly this can give
credibility that can be leveraged for attention and trust during a collaboration
between you as a researcher and your industrial partner(s). The assumption for
the purposes of this chapter is that you have established the relationship with your
industrial partner and at least secured the commitment to start working together in a
broad area.

Step 1 (see Fig. 1) is about identifying potential improvement areas (challenges)
based on industry needs. In its purest form, this is done by performing a process
assessment or exploratory investigation of some sort. This phase consists of four
main activities.

3.1.1 Activity 1: Select an Overarching Area or Direction

It is impossible to assess an entire organization from all areas and perspectives.
The size and possible findings are too great. Moreover, you as a researcher have
a research focus (requirements engineering, testing, architecture, and so on). This
is probably the first delimitation in area. Further refinement and narrowing can be
relevant and beneficial depending on circumstances. Initial workshops with your
industrial partner to discuss areas that require improvement can also be a good
way forward. The challenge here is to make sure you do not select what to do at
this point. The company telling you what to do exactly often leads to working on

Third Generation Industrial Co-production in Software Engineering 507

symptoms rather than actual cause/effect items. Symptoms are not the same as long-
term challenges.

3.1.2 Activity 2: Plan and Execute the “Assessment”

Like all terms and concepts subject to fashion, process assessment and improvement
(SPI) is by today’s standards seen as old. However, the core methodology supplied
by SPI frameworks like CMMI or uniREPM (Chrissis et al. 2003; Svahnberg et al.
2015), or even the original PDCA (Edwards 1986) and QIP, is still very much valid
and useful. The purpose of the assessment is threefold.

1. The assessment should be planned and anchored at an appropriate level of the
industry partner organization. How long will it take? What is your population
and sample (what (selection) of products will you study, what roles and selection
of practitioners having this role will you interact with, and so on) of your
study? What methodology (see below) will you use and why? This needs to
be planned and written down and agreed upon before you start. Typically, you
will have a reference group or contact person at the company that opens doors
and advises you. In order for this group or individual to help you, it is your job
to be professional and offer all the “sales support” this person needs to get the
resources and access needed for the assessment. A plan is such a thing.

2. Finding out what the challenges are (a.k.a. problems), how they manifest, their
source both in origin and observation, their impact, and potential for being
addressed. The process assessment models out there are often a combination of
traditional methods used in exploring a phenomenon like case-study research (on
an abstract level), and interviews, workshops, and document and artifact analysis
on a detailed level. Further, the method used to analyze the data collected needs to
be planned. Choose a combination of methodologies as appropriate. Remember,
the assessment’s purpose is to narrow down what to focus your research on,
thus is a part of the research itself, and the results from such an assessment are
research results in themselves (e.g., interview results about challenges in an area,
document analysis about the currently used processes and methodologies).

A critical part of the assessment is to use triangulation and root-cause analysis.
Triangulation implies that you use more than one source to identify and describe
challenges (e.g., documents and interviews and artifacts that show the same
phenomena but from different perspectives and different sources). A root-cause
analysis is also a good way to dig deeper and separate cause from symptom (e.g.,
“we have problems with bugs” can have a root cause of inadequate requirements
analysis). Examples of dedicated research focused assessment frameworks and
their use as well as result reporting can be found in Svahnberg et al. (2015),
Pettersson et al. (2008), Pernstål et al. (2012). A good practical example of trian-
gulation and root-cause analysis can be found here (Pernstål et al. 2015, 2019).

3. As you are performing the assessment you are getting to know your partner.
You meet people, more importantly they meet you. Trust is built, especially

508 T. Gorschek and K. Wnuk

in the assessment stage as you listen, take notes, and try to understand. The
relationship built here is crucial for a long-term relationship with the industrial
partner. Relationships are always between you as a researcher and one individual
at a time at the partner site. Establish and take care of these relationships, you
will need them down the line.

3.1.3 Activity 3: Report and Collect

As the assessment is completing and analysis is underway (largely done) you need
to report your findings in several ways and formats. Papers and technical reports can
be two such forums. But this is not enough in any way. Most important is to give
feedback to the ones that participated in your assessment. This can take the form
of one or several seminars and/or workshops. Results, analysis, and implications
are presented, root-cause analysis is clarified, and dependencies between findings
are made clear. A good rule of thumb is that the audience already know what they
told you. Repeating that is not relevant. Added value is in the form of your analysis
and findings based on what they showed you and told you. By this stage, you as a
researcher should know more about the challenges and their causes than any one of
the people that participated in the assessment.

By reporting back to the same people you met in the assessment you show them
that their investment has given results in the short-term (in the form of findings), and
you as a researcher should also utilize this opportunity to get additional input and
confirmation (or identify errors) in the assessment. A great way to do this is to ask
for it explicitly as a part of the seminar/workshop. Surveys post-seminar can also be
a complement.

3.1.4 Activity 4: Select

By this stage you often have a rather long list of “challenges” identified. One good
practice is to ask as many as possible to prioritize the challenges identified in the
assessment (perhaps as a part of Activity 3 above). This gives you and your industry
partner reference group/contact(s) input as to what to focus on. Overall, there are
three aspects that should dictate what challenges to focus your research around.
Listed in order of importance: (1) the importance to the company or potential benefit
if solved/addressed; (2) the dependencies between the challenges; (3) your interest
area—the least important, but still relevant.

Third Generation Industrial Co-production in Software Engineering 509

Running Example Step 1 The area for research is managing quality require-
ments. However, this is a large area within requirements engineering research
and body of knowledge. The important part of the assessment is to understand
what abstraction level and what organization we should study for improving
quality requirement. A good idea here is to start from a focus group meeting
with several roles to discuss what is quality, what is the impact of quality on
internal business and stakeholders, and what benefits a company may achieve
by investing in improving both the processes and product quality.

3.2 Step 2: Is It Researchable?

One of the most difficult things to do when working in co-production with industry
is to separate consultancy and research. Industry partners will be very happy to have
you do work for them, especially since you probably are very qualified, and cheap
(your salary most likely comes from university). Overall the rule of thumb is that
you do only research. Research is what you can publish (peer-reviewed venue). This
chapter will not go into a long discussion about what does or does not constitute
research; however, it is important that you are clear towards your industrial partner
as this will come up.

The purpose of Step 2 is to delve deeper into one or several of the challenges
in Step 1. This can be done in any number of ways but generally involves three
activities.

Running Example Step 2 (Is It Researchable?) When discussing the area and
the symptoms in Step 1, you identified that a company lacks an adequate
tool for the needs and education in managing quality requirements. The
need to introduce a new (better) tool is highly prioritized by the company
and You are asked to do that as a part of the research project. The answer
is that installing and configuring a tool is no research and you should be
clear in communicating that this is consultancy, maybe qualified work but
not research. You should explain this to the company and move to the other
challenge. For example, the information meta-model that the tool will use
and the associated improvements to handing quality requirements could be a
potential researchable area. Therefore, root-cause analysis of the challenges
is a very important step and it helps to define what is researchable and prepare
conducting focused state-of-the-art study.

510 T. Gorschek and K. Wnuk

3.2.1 Activity 1: Problem Formulation

Problem formulation involves a deepening of the root-cause analysis of the chal-
lenge(s) (see Step 1), but also breaking the challenge(s) into actual research
problems. In its simplest form you want to (1) be able to describe the context of
the challenge, (2) the area(s) of research/study, and (3) either identify a number of
research questions or potentially refine into a hypothesis. The end result is a research
direction with concrete research questions to answer.

3.2.2 Activity 2: Study State of the Art

Exploring state of the art is often done in parallel with Activity 1. However, a more
detailed and systematic review of state of the art is often a part of reading up on
a subject, positioning the problem formulation/research (from Activity 1) to other
research and being able to explain how your research will contribute to the state
of the art. An example of a systematic literature review (SLR) done in conjunction
with Step 2 can be found here Pernstål et al. (2013).

The literature review helps you to systematically obtain evidence about the area
of interest and formulate conclusions or recommendations based on the analysis
and synthesis of the evidence found in the selected papers. The process should be
transparent and traceable and decisions taken during the literature review (e.g., what
papers to include) should be clearly documented. Chapters “Automating Systematic
Literature Review” and “Rapid Reviews in Software Engineering” offer more details
about systematic literature reviews.

A critical lesson in Step 2 is not to lose touch with your industrial partner. Doing
a 1 year SLR is a very bad idea. You need to keep in touch with your industrial
partner, as well as present, discuss, and validate your ideas and findings, even from
this step. A rule of thumb is that Step 2 should not take more than 2–3 months of
calendar time to not risk the industrial partner moving on. Another good idea is to
find a recent SLR in the area of interest that contains a summary of the core papers
in the area and perform snowballing on these articles.

Our experience shows that a faster systematic literature review (narrow and
efficient methodology applied, see, e.g., snowballing (Wohlin 2014)) is preferable.
The purpose here is not to be perfect, rather to gauge; are the challenges and
subsequent problem formulation and breakdown likely to result in new research
that complements what is already out there? Other chapters provide additional
information around searching gray literature as so-called multivocal literature
reviews chapter “Benefitting from the Grey Literature in Software Engineering
Research”, and rapid reviews covered in chapter “Rapid Reviews in Software
Engineering”.

If the answer is yes, then you move on to Step 3 of the co-production model as
fast as possible. If the answer is no, on the other hand, move to the next challenge(s)
on the list. An overall tip for Step 2 is that even if much of the work is reading, you

Third Generation Industrial Co-production in Software Engineering 511

can do the reading at the company partners’ offices. That way you are part of the
environment, can talk to people, and be seen.

Selecting and detailing a research area is the topic for whole books and will not be
covered here in any detail in this chapter. However, type of contribution is relevant
for the discussion. The base question that any engineering scientist has to ask is; if
a research area is well established and significant research has been conducted, why
does my industrial partner have challenges/problems in this very area? The answer
can be that the company simply is unaware of the many “solutions” available. If
this is the case, then a very good idea is that you, as a researcher, help facilitate the
transfer and adaptation of one or several already existing “solutions.” This can be
a research contribution as you can do research on the adoption and subsequently
measure the usability and usefulness of a solution, even if it is not new or yours.
One of the benefits of this is presenting a solution to the partner company. However,
many, if not most, solutions out there (even if well published) have rarely been
extensively tried in industry. However, let us say that the solution has been validated
in industry, thus it appears to scale and show utility. Even then it most likely needs
modification and adaptation to fit and be a solution to your partner company’s
challenges. All this is very relevant and publishable engineering research in itself.

Running Example Step 2 (Selecting an Area) The challenge is “misman-
agement of quality requirements that lead to misunderstanding and defects
later in product development”. The root cause shows (among other things) (1)
inadequacies in specification where quality requirements are often neglected
and (2) inadequacies in communication in relation to requirements between
practitioners, roles, departments, etc. You start reading up and find a lot of
research in both of these fields (hundreds, if not thousands, of papers and
methods/tools, etc. already published). On this level, it seems like it will
be hard for you to contribute. Two choices exist. One, you can move on to
another area where less research is done and it is easier to contribute, or
two, you can delve deeper and see if you can contribute even if the area
is well researched. Maybe the problem is in decision-making about quality
requirements? If so, you should study how a requirement is decided upon
since its inception (both quality and functional), what roles are involved, what
artifacts are produced, and who prepares, takes, and influences the decisions
made about these requirements.

Outcomes from Step 2 result often in a hybrid. There are often many potential
solutions, but few are actually validated and tested in a real environment (shown
to be usable, useful, and scalable). These solutions can, however, act as input and
inspiration to you in your work to solve your partner company’s challenges. This is
all very good research practice if done correctly.

512 T. Gorschek and K. Wnuk

3.2.3 Activity 3: Formulate a Research Plan

Once you have an idea of what research to start with, whether it be to develop
something completely new, use existing research, or a hybrid, you need to develop
a plan for the next steps. These steps are basically the same as the ones described in
this co-production model.

3.3 Step 3: Solution or Not Solution?

The co-production model has a rather large step between Step 2 and this Step
3. Step 3 is the “do the research” step. From Step 2 we should have an idea of
research direction, area, and details on the initial parts of a plan. This research could
be further empirical studies (so more investigation deeper, and not a “solution”).
Studying a phenomenon in industry is relevant, valuable, and publishable.

Industry partners can be shown that further study can be directly beneficial to the
company and provide direct improvements. However, even after further study, some
sort of solution will be part of the research and change the nature of the research
activities from descriptive (what we can observe and what are the challenges or
problem associated with the phenomenon we are exploring) to prescriptive (can we
develop a way to improve the current way-of-working). For the purposes of this
chapter, we will focus on creating and delivering some sort of solution.

At the core of any solution is a continuous collaboration with industry partners
while developing the solution. This is critical. Sitting at university for months,
then visiting the company to show them what you have is most often not a good
idea. What you want is to involve company practitioners in the work. This can
take the form of formal workshops, work sessions, meetings, and so on (Santos
and Travassos 2009). However, informal discussions are at least as beneficial and
important. Sit at your partner company site. Discuss your research and ideas during
a lunch break. This is a great way to get input and also build trust and acceptance
of any solution you eventually come up with, as it was “made here” at the company
site, with constant input and feedback. This can be seen as a type of action research
(Pernstål et al. 2015).

Running Example Step 3 You came to a conclusion that a new way to
specify and communicate quality requirements could significantly limit mis-
understandings (usefulness), but at the same time not increase level work
needed or formality (usability and scalability). You call this way of quality
requirements specification/communication “QRImP.” You are sure that the
improved communication part is a way to improve decision-making about

(continued)

Third Generation Industrial Co-production in Software Engineering 513

quality requirements since it will provide improved rationale for decisions
and help decision makers to perform better work.

QRImP was developed based on challenges identified (Step 1), it was
refined and formulated for research (Step 2), and you developed a solution
in the form of QRImP (Step 3), in collaboration (many coffee machine
discussions, workshops, and meetings) with many practitioners and also
colleagues at university over months of work. Now what? Well, what you
actually have developed is a candidate solution that needs to be “tested” and
improved. This is described in Steps 4–6, as these steps are validation and
improvement incrementally within each steps and evolutionary as the steps
progress.

3.4 Lab-Based (Static) Validation and Improvement
in Academia

Most of the time Step 3 (developing the candidate solution), Step 4, and Step 5
happen simultaneously or at least overlap to some extent. For reasons of clarity,
we describe the steps in sequence. Step 4 is validation in academia. You devise
a “solution” of some sort, whether it be a method, model, framework, way-of-
working, organizational improvement, tool, or equivalent, and try it out on the
so-called toy examples and/or use students as subjects to try it out. Albeit being
a smart way to do initial validation of a solution, it also has many inherited flaws,
inconsistencies, and scalability problems.

Many researchers critique this type of lab-based scaled-down validation as it
does not represent an industrial scale, context, or application using practitioners
subjected to time and resource pressure. Our experience is that utilizing scaled-down
scenarios and/or students or even fellow researchers as subjects is beneficial. Any
use of industry resources poses a cost and disturbs the real production environment.
This should be avoided if non-production environments can be utilized to catch
the same incompatibility with the candidate solution. Wohlin et al. (2012) offer
a comprehensive overview and guidelines on how to plan, conduct, and report
experiments in software engineering.

Doing a short experiment with colleagues, or students, in a controlled environ-
ment can not only catch items that simply do not work, but you can also measure
usability and usefulness in an accurate manner as you can do, for example, a
controlled experiment and compare your candidate solution to another way-of-
working.

Lab-based validation is one step and not the end of validation, despite evidence to
the contrary looking at peer-reviewed papers in many fields (where an experimental
validation is sufficient for publishing in many top venues). However, since software

514 T. Gorschek and K. Wnuk

engineering is an applied engineering science, ending at the lab validation stage is
especially troubling. The only reason to end at the lab validation step in software
engineering is if the solution fails so badly that there is no reason to carry on.

The data collected during lab validation can and should be used to improve the
solution. In many cases, this implies simplification of the solution and making it less
useful and more usable. This might be contrary to your training as a scientist and
engineer; however, it is wise to remember that a perfect solution that no one uses is
a meaningless solution from the company’s point of view.

Lab validation is a perfect opportunity to try to balance usefulness and usability
as well as scalability of a solution. Does it take the students 2 h to specify and
coordinate one requirement? Well, if your industrial partner has a hundred require-
ments to handle per year (e.g., slow system evolution, safety critical applications,
for example), your solution may be acceptable. However, if your industry partner
has thousands of requirements per year, which change constantly as competition
and market circumstances evolve, then they will be lucky to have 5 min to spend on
a single requirement during initial specification and communication.

A notable problem inherent in software engineering research is that problems
can be very complex, but any solution has to be simple. This might sound obvious,
but publishing “simple solutions” might not be that easy as reviewers do not see the
entire evolution. The contribution of creating and refining a solution that is usable
and useful in industry and used for real requires a lot of work and time and often does
not result in many more publications. The point of taking the next step is working
towards refining and transferring the solution to reality and measuring how well
your solution works; not inventing new solutions or more advance concepts.

A good indication of when to stop/move on from the lab validation is when you
cannot learn more without adding the reality of industry to the validation (realistic
scale, real practitioners as subjects, industry partner context, and limitations). The
limited and scaled-down nature of lab validation can, however, be used to build a
case for your industry partner.

During lab validation, the solution and instrumentation are refined in continuous
collaboration with the company. The interaction with the company is realized in
seminars and presentations of results from the lab validations. Step 5 often overlaps
with Step 4 as the focus is on building the trust of the company in the developed
solution. The main potential is to build trust. Lab validation not only enables you to
improve the solution but shows this to the industry partner—you are doing all you
can to improve a solution that was coproduced with and by them, without wasting
their time and resources. It also minimizes risk for the partner, as major problems
associated with the solution can be caught before they invest in the next step.

Running Example Step 4 How well do the QRImP specification and coor-
dination method work in comparison to another established way to achieve
the same task? How can we measure that the effort dedicated to introducing

(continued)

Third Generation Industrial Co-production in Software Engineering 515

QRImP would yield expected benefits? How large should be the group of
participants (roles, availability) so we can objectively measure the effects
of introducing QRImP. How many quality requirements should be specified
and decided upon with the help fo QRImP? How to measure improved
communication and narrowing some communication gaps with the help of
QRImP?

When you develop the instrumentation for the lab-based validation you
get a good idea on what is needed for later industrial validation in terms
of training, manuals, templates, tools, etc. to support and enable the use of
QRImP. For example, you can measure the quality of requirements specified
with the QRImP template, the communication issues (delays, decisions that
need to be reversed), or other negative effects to see the effect of introduction
of QRImP.

3.5 Step 5: Static Validation in Industry

Static validation is often characterized by trying out your solution on a limited scale.
The subjects are real industrial practitioners (you need to think about population and
sample in relation to the future potential users of the solution); however, the time
and scale of application are limited.

Static validation is often a collection of activity steps and a progression towards
more realistic scenarios. Below examples of this are described based on real cases in
research. Please observe that these examples should be adapted to fit your contextual
characteristics and case specifics. The purpose of the static validation is to get input
to refine and improve the solution to the extent that the partner company wants to
try it in their real production environment. Static validation is conducted at several
levels described below:

Level 1: Workshop Sessions This typically denotes dedicated work sessions
where you plan and call a meeting. A handful of practitioners come, and you present
your solution, give them initial training and tools (from nothing, a simple template,
to an actual tool, depending on your solution), and let them try out the solution using
real data (e.g., requirements in our example). Data collection here is both direct and
indirect. You can measure things like task completion, defects, time to get proficient,
and so on.

Direct measurement gives you absolute measures what worked and what did not,
the comparison of your solution to the current way of working gives you additional
relative judgement. Direct measurement gives you absolute measures what worked
and what did not, the comparison of your solution to the current way of working
gives you additional relative judgement. During the session, actual observation and
lightweight logging (Lethbridge et al. 2005) of behavior and work can be useful as

516 T. Gorschek and K. Wnuk

a data collection tool in addition. A tip is to have one or two supporting scientists in
these sessions. The main scientist is typically the workshop leader and will have a
hard time observing and taking notes.

Level 1 is often carried out with multiple groups (as large groups are hard to
observe); thus you might replicate the “study” several times. Whether you choose to
change the solution (and/or instrumentation) between iterations is context dependent
and presents pros and cons either way. Our experience is that the validity threats
introduced (or sample size reduced as if you change instrumentation or perform
several smaller studies) are preferable than running studies with a solution and/or
instrumentation you know should be updated.

Level 2: Lightweight Production During workshops (where you optimally got a
lot of input utilizing several methodologies) the solution is refined either iterative or
in batches. Once you judge that more workshops will not yield different results (this
can be observed via the data collected) you can move on to static validation closer
to the production environment. This involves joining an actual production team on
an appropriate level that works with areas relevant to your solutions utilization.
The mandate to allow this comes from the issue that some of the same people
participating in the previous workshops are the same production team/practitioners
you now join. They use your solution to do their job. You as a researcher are on hand
to support them and to some extent compensate for the learning curve of any new
way-of-working. In this environment, it is much harder to be an external “observer”
and collect data in an objective manner as you become embedded into the team.
However, debriefings and observations are still important and possible. It is also
possible to combine post-work interviews or surveys as a complement. This is still
an activity to collect data to be used as input for improving your solution.

The practitioners’ goals are aligned (they have a vested interest to really see if the
solution works for real), but their primary goal is to do their work. Thus, any data
collection is up to you in this phase especially as generally you are not supported by
other scientists. The production environment is typically sensitive to disruption, and
you as a scientist should embed yourself into the term to minimize distractions and
biases. Having extra scientists present is typically impractical as a larger contingent
of scientists disturbs the production environment even more than one.

It should be observed that static validation is very costly for an industrial partner.
Person hours of the practitioners participating is only one part, the real cost for the
company is best alternative investment. That is, what they could have been doing
in their production environment, and all subsequent effects of this downstream are
cancelled to work with you and help validate the solution. Often researchers forget
that there is almost never any slack in an industrial production environment, thus it is
always a trade-off. This insight should inspire a researcher to be very well prepared
and maximize every opportunity for data collection aiming to improve the solution.

A central delivery of Step 5 is significant amounts of data on the usability
and usefulness of the solution, in addition to the evolution of the solution during
the static validation. This is critical from a research perspective, but also for the
industrial partner in preparation for the next step. Step 5 also brings significant

Third Generation Industrial Co-production in Software Engineering 517

educational value since the participants get improved understanding of the method
and potential benefits when implemented in the organization.

Running Example Step 5 After receiving encouraging positive results from
the QRImP lab validation (Step 4), you move on to static validation with
industry (Step 5). Here a large part of the instrumentation developed for
the lab validation can be reused, together with the description of the desired
participants and their required levels of expertise and availability.

You then plan and execute a workshop session and invite the roles you
decided are relevant and should use or be impacted by QRImP. You give
the group some initial training in the method (with many simple examples),
followed by a request to take some requirements from their environment and
work with them using QRImP.

It is important to be at least 2 persons in the room so one can moderate
and make sure it progresses according to the plan and the second person
takes notes and collect any other relevant data. It is wise to run more than
one workshop with two separated group and compare the results. Collect
comments and improvement suggestions during the workshops to tune and
improve QRImP. Ask for reasons and rationale for improvement to make
sure that the improvements are harmonized with the overarching goal of the
method.

3.6 Step 6: Dynamic Validation in Industry

The goal of dynamic validation is to let industry use the solution uninterrupted by
researchers. In this step there should be no action research, if you need to be on
board you are still in the static validation step. Dynamic validation is critical as the
true success of any co-production effort and solution is if an industry partner and the
practitioners use the solution after the researchers leave the organization. Dynamic
validation can be divided into three parts, and you can and often have to iterate
within the activities.

3.6.1 Activity 1: Sell-In, Buy-In, Finding the Right Production Instance

If you have worked closely with the industry partner throughout Steps 1–5, the move
towards trying out your solution in a production instance (project, iteration, etc.)
will be a natural next step. In some companies, there will still be a need for you to
present your case, and to sell the usability and usefulness of your solution to middle-
/senior management before they invest in dynamic validation. Again, the risk for the
company at this stage is greater than in any other step. You need to train practitioners

518 T. Gorschek and K. Wnuk

in using the solution, supply manuals, tool support, maybe even transfer data from
other systems. This is a part of your preparation for dynamic validation.

Do you remember under Step 2 we had a discussion about the distinction between
research and consultancy? The delivery of a tool (might be a commercial one
supporting your solution), the training of using the solution (using the tool), and so
on is consultancy (or at least not research). However, this is completely acceptable
and mandated given that it is in preparation for dynamic validation of your solution.
Thus, what is consultancy and what is not depends on the intent and context.
The preparation for the dynamic validation is mostly on you, but the subsequent
validation is all on the industry partner and the practitioners. Optimally you should
not even be present in the environment at all.

3.6.2 Activity 2: Data Gathering

What is the research part of Step 6? Mostly preparation. You should instantiate a
measurement program since you want to measure the usability and usefulness of
the solution in a completely real use scenario in a real live production environment.
In dynamic validation, practitioners use the solution without the researchers being
there or being able to help, or do any changes in how the practitioners use the
solution. The measurements you introduce need to collect as much data as possible
pertaining to usability and usefulness with as little (close to zero) interference from
the measurement being done. Any measurement interference in “normal” operations
is a threat to validity and also constitutes a confounding factor (Wohlin et al. 2012;
Feldt and Magazinius 2010).

Exactly how measurement is done varies depending on your solution, the
production environment and context of use (Petersen and Wohlin 2009). For
example, if there is tool support measurement on use, task completion, etc. can
be collected. If artifacts are produced (e.g., in our example, requirements) they can
be tagged and saved in as a granular versioning/variant manner as possible. If other
artifacts (code) result from the main solution artifacts (requirement) these are saved
for later analysis. Going against the no interference policy, you can do some direct
measurement, especially if use and artifact-based measurements are not possible.

For example, one of the practitioners can be “responsible” for the new way-of-
working (the solution). This person can then collect data as a part of this job. You
can also present surveys (short and fast ones) in the use process. However, please
observe that the practitioners not only have their jobs to do, but you are asking them
to change how they work and learn a new way (solution) at the same time. Any
additional parts are pressuring them further during the production instance. After
the production instance has ended (and the dynamic validation round has ended)
you can do more direct measurement in various forms.

Third Generation Industrial Co-production in Software Engineering 519

3.6.3 Activity 3: Data Analysis and Data Reconstruction

As a validation round ends and data is collected, analysis of the impact of applying
the solution is the focus. Measurements in relation to usability and usefulness are
key; however, there are complementary parts. Improvement ideas and deal breakers
(what was bad) are gathered through, e.g., interviews and workshops. This should
be done as fast as possible with as many as possible that were using the solution in
the production environment.

The data collected and analyzed can result in one of the three outcomes:

1. The usability and usefulness are too low compared to previous ways-of-
working. If this is the case you can either abandon the solution (that does not
mean that it was bad research) or you can reverse back to Step 3 and redesign
your solution.

2. The usability and usefulness are higher than the previous way-of-working.
The company decides to progress to Step 7 (covered later in more detail).

3. The solution is promising, but needs work and improvement and more
validation before it can move on to be used for real in the organization. This
third outcome is the most common. Outcome one is the least common given that
you have refined and progressed with the solution using co-production, and large
surprises should have been caught earlier in the lab and static validation rounds.

Step 6 is often executed several times for several reasons. One of the reasons
is that after the first static validation round you have tested the solution in one
production environment only. Companies are heterogeneous in terms of what they
do, and how they work. Thus, the solution might need several variants (instances)
at different places to be eligible for more dynamic validation rounds. Dynamic
validation completion depends on two goals. First, does the company have the
confidence to move on to Step 7, and second, have you as a researcher exhausted
the potential for data collection in relation to the solution (short-term).

Running Example Step 6 You need to start from creating a summary pre-
sentation of the results from the static validation that you can use to find the
production instance that would be interested in continuously using QRImP. It
is important here to remember the goals and the challenges and associate the
results from static validation as clear indication that we are on the good path
towards intended improvements. At Step 6, you need to work intensively with
sell-in activities but also remember what is researchable (please see Step 2 for
details).

For example, as a research you should not develop a tool unless it is a
step towards gathering data for dynamic validation and later handing over
the tool management to the studied company. Based on the validation in
academia and static validation, you should establish a measurement program

(continued)

520 T. Gorschek and K. Wnuk

and decide about the frequency of data collection (how often would you
measure if QRImP helps with managing quality requirements), and how often
the results will be shared with the management team. You should also appoint
a person who can be “responsible” for introducing the new “way-of-working”
and making sure it is not forgotten or neglected.

3.7 Step 7: Solution Release

A company progressing to Step 7 is committing to using the solution without the
assist or influence of the researchers. Your role in the end of Step 6 is of course
significant research reporting (peer-review), but also significant reporting (mostly
in the form of discussions and presentations) to the company on multiple levels.
This gives the decision makers decision support input as to convincing management
and themselves to adopt the solution.

The institutionalization of the solution in the company is not really part of the
research; however, it is in your interest to be supportive of these efforts for two
main reasons. The future collaboration and research with the company is dependent
to a degree, but more importantly, the ability to get access to long-term study of the
solution post-release. In Step 6 we did try out the solution in a real environment;
however, the long-term effects of the solution on the company (people, teams,
products, and other artifacts) are largely unknown.

In our example, improving requirements communication might result in, e.g.,
improved team coherence (soft factor) and improved ability to test customer value
(hard factor). By helping with the company with instances (not doing it all but
helping) you might be able to get them to let you also instantiate some sort of
measurement program alongside it. This will enable you to monitor and collect data
on a complete organizational scale, continuously. This can easily be motivated to the
company (input for them too) when the measurement program is reasonably non-
intrusive and low cost. The ability to perform such longitudinal studies (Sjøberg
et al. 2007) is as rare as it is a great opportunity. Steps 1–7 completed implies you
actually start over with a new set of challenges.

Running Example Step 7 You should work mostly with packaging your
research results and the artifacts created so that the person “responsible” can
smoothly take over. A significant amount of effort you should also decide to
creating educational material about QRImP (recording lectures with examples
from the company, slides, and supplementary material). Lastly, you should
present the results from dynamic validation to several roles and levels of the
organization to raise awareness and enable more easy technology transfer.

Third Generation Industrial Co-production in Software Engineering 521

4 General Lessons Learned

This chapter presents some general lessons learned and experiences from applying
the presented model. We focus here on clarifying what means a delivery and how
the developed solution should be treated by both the researcher and industry. We
also clarify how to establish an effective publication strategy when working with
the model.

A Word on Technology and Knowledge Transfer The actual solution creation
and subsequent refinement through validation is the visible delivery. However, just
as much knowledge and improvement is “transferred” as an indirect effect of the co-
production and collaboration work itself. The researcher learns about the industry
partner’s context, products, challenges, technologies, ways-of-working, and more.
At the same time practitioners at the company learn more about themselves and thus
can change and improve things independent of the actual solution. Practitioners also
learn things associated with the work. For example, training practitioners to try the
solution out will improve their knowledge in the application field (become better at
specifying requirements and/or communication and coordination in our example).
This effect is hard for a researcher to measure. Purists will say that this in itself
constitutes a confounding factor and validity issue. Engineering scientists say, any
positive influence on state-of-practice is a good thing and our job.

A Word on Publications and Papers As you might have noticed very little
has been voiced about “studies” and “papers” during the description of the co-
production model. Working in real co-production and trying to base solutions on
real problems and then devise solutions that eventually can and will be used in
a real production environment without you as a researcher is very hard, prone to
failure, and relatively speaking, harder to publish. You do not do studies and then a
paper or two (a.k.a. “hit and run” research). You do not listen to industry, devise a
solution that you apply on a toy example or subject students to, and then stop and
write paper after paper (toy level validation). If publications are your main goal, I
would stay away from co-production in any real sense. However, if you want to work
with industry and earn a status as an expert “problem solver,” then co-production is
vastly rewarding. As a researcher, you very seldom get to see the results of your
work beyond some peer-recognition and citations. Seeing something you helped
create working without your assistance, being used by strangers 10 years after you
released in a company is the real reward. If the practitioners using the solution have
renamed it, use it in a different way than you originally intended, and do not know
who you are, that is success.

All of this said, of course you can publish. Maybe you will not churn out papers
at the speed of changing statistical methods on the same data set of open source
data, but your papers will be much more relevant and contain real data and report on
solutions you measure. We would like to avoid detailing the reporting part, but since
younger researchers might read this chapter, we wanted to share examples of how
you can plan out your publication parts while working in a co-production scenario.

522 T. Gorschek and K. Wnuk

Tips for reporting industrial co-production in software engineering

Step 1 Finding challenges is, in essence, a detailed and deep empirical
study of one or several macro-cases (companies) and/or micro-cases (dept.
or divisions in a comp.). Real challenges, their descriptions, and actual origin
are in themselves research results. This is especially if you apply a rigorous
assessment methodology.

Step 2 Investigating state of the art, doing detailed root-cause analysis, and
combining this with empirical data is relevant for publication. The quality
of the publication depends on the scope and rigidness of the state-of-the-art
investigation.

Step 3 Formulating a candidate solution is often very interesting to convey
in a position paper, spanning everything from a good workshop where your
ideas can be discussed, to actual heavier publications—depending on the
novelty and potential of your candidate solution. Remember, you are basing
its creation on input from industry even if the solution is not validated yet.

Step 4 Lab validation can result in any number of publications, from
student experiments to simulations and details on the solution. Refinement
evolution based on lab validation is also interesting and relevant to base in a
publication(s).

Step 5 Static validation is often very well anchored, and you collect data
from actual industrial practitioners in several iterations and phases of solution
evolution. You also measure real usability and usefulness in this step, all
relevant for publication.

Steps 6 and 7 The data collected on the use, usability, usefulness of the
solution, and impact in industry is well worth publication, often resulting in
several heavier papers.

Overall As you progress through the steps you will notice that you might
need to develop macro contributions so that you can move on and validate and
improve the solution itself. These “macro” contributions can, for example, be:
new ways of assessing a company (Steps 1–2), new tools and tool support for
the solution, new ways to measure usability and usefulness of your solution,
and so on. All of these are also relevant in their own right and viable for
publication.

Third Generation Industrial Co-production in Software Engineering 523

5 Recommended Further Reading

Wohlin et al. (2012) outline the success factors powering the industry–academia
collaboration. The authors highlight the usefulness of 14 factors, e.g., collaboration
champion on site, buy-in and support from company management, researcher’s
visible presence, and regular meetings.

Svahnberg et al. (2015) offer a framework for requirements engineering process
assessment that is lightweight and offers comprehensive overview of the maturity
level of an organization. The assessment brings practical examples of how to plan
questions in various areas of software engineering, how to collect the answers and
prepare the report to the companies.

Pettersson et al. (2008) offer detailed guidelines on how to perform lightweight
process assessment and improvement planning. It is the initial work that led to the
creation of uniREPM (Svahnberg et al. 2015) and brings practical viewpoints of
process assessment and improvement.

Pernstål et al. (2012) offer a method for root-cause analysis when performing
software process improvement activities. Flex-RCA method for root-cause analysis
is used to delve deeper into challenges identified to find root causes as a part of the
evaluation and subsequent improvement activities.

On the methodological stance, Wohlin (2014) outline how to conduct snow-
balling literature studies in software engineering as an alternative to database search
systematic literature reviews, while Lethbridge et al. (2005) list what data collection
techniques to use in what empirical study in software engineering. They divide the
techniques into the first-order techniques where the researcher has a direct context
with study subjects and second and third-degree techniques where researchers study
artifacts produced during software engineering activities.

Wohlin et al. (2012) offer a comprehensive overview how to plan, conduct, and
report experiments in software engineering. The authors provide detailed guidelines
with examples about how to plan an experiment, select dependent and independent
variables, subjects, and objects as well as instrumentation.

6 Conclusion

The co-production model presented here is one way of achieving co-production.
The idea is not to follow it like a blueprint, but rather use it to get inspiration and
understanding of the incremental and also stepwise nature of building a solution, but
also in building trust and commitment from your industrial partner. There are many
downsides to working in close collaboration with industry. The academic reward
systems are not really gauged to reward success that is actually defined as making a
real difference in reality.

The number of publications, H-index, funds acquired, doctoral students super-
vised, courses thought, and peer-recognition can all be good but do not necessarily

524 T. Gorschek and K. Wnuk

have anything to do with co-production. So why do we do it? This is a long
conversation and we can only speak for ourselves. We are engineers. We love
solving problems. As researchers, we get to try to solve really tricky and complex
problems. As engineering scientists this means solving complex problems by
devising solutions that actually work in an applied setting. Not in theory, not maybe
sometime in the future.

Acknowledgements We thank current and past SERL members and collaborating companies for
inspiration in writing this chapter.

References

Arcuri A, Briand L (2011) A practical guide for using statistical tests to assess randomized
algorithms in software engineering. In: 2011 33rd international conference on software
engineering (ICSE). IEEE, Piscataway, pp 1–10

Brooks Jr, FP (1995) The mythical man-month: essays on software engineering, anniversary
edition, 2/E. Pearson Education India, Noida

Chrissis MB, Konrad M, Shrum S (2003) CMMI guidelines for process integration and product
improvement. Addison-Wesley Longman Publishing Co., Inc., Boston

Edwards DW (1986) Out of the crisis. Massachusetts Institute of Technology, Center for Advanced
Engineering Study, Cambridge

Feldt R, Magazinius A (2010) Validity threats in empirical software engineering research-an
initial survey. In: Proceedings of the 22nd international conference on software engineering
& knowledge engineering (SEKE’2010), pp 374–379

Gorschek T (2018) Evolution toward soft(er) products. Commun ACM 61(3):78–84
Gorschek T, Garre P, Larsson S, Wohlin C (2006) A model for technology transfer in practice.

IEEE Softw 23(6):88–95
Hult M, Lennung S-A (1980) Towards a definition of action research: a note and bibliography. J

Manag Stud 17(2):241–250
Lethbridge TC, Sim SE, Singer J (2005) Studying software engineers: data collection techniques

for software field studies. Empir Softw Eng 10(3):311–341
Naur P, Randell B (1969) Software engineering: report of a conference sponsored by the NATO

science committee, Garmisch, 7th–11th October 1968
Parnas DL (1972) On the criteria to be used in decomposing systems into modules. Commun ACM

15(12):1053–1058
Pernstål J, Magazinius A, Gorschek T (2012) A study investigating challenges in the interface

between product development and manufacturing in the development of software-intensive
automotive systems. Int J Softw Eng Knowl Eng 22(07):965–1004

Pernstål J, Feldt R, Gorschek T (2013) The lean gap: a review of lean approaches to large-scale
software systems development. J Syst Softw 86(11):2797–2821

Pernstål J, Gorschek T, Feldt R, Florén D (2015) Requirements communication and balancing in
large-scale software-intensive product development. Inf Softw Technol 67:44–64

Pernstål J, Feldt R, Gorschek T, Florén D (2019) FLEX-RCA: a lean-based method for root cause
analysis in software process improvement. Softw Qual J 27(1):389–428

Petersen K, Wohlin C (2009) Context in industrial software engineering research. In: 2009
3rd international symposium on empirical software engineering and measurement. IEEE,
Piscataway, pp 401–404

Pettersson F, Ivarsson M, Gorschek T, Öhman P (2008) A practitioner’s guide to light weight
software process assessment and improvement planning. J Syst Softw 81(6):972–995

Third Generation Industrial Co-production in Software Engineering 525

Punter T, Ciolkowski M, Freimut B, John I (2003) Conducting on-line surveys in software
engineering. In: Proceedings 2003 international symposium on empirical software engineering,
2003. ISESE 2003. IEEE, Piscataway, pp 80–88

Rapoport RN (1970) Three dilemmas in action research: with special reference to the Tavistock
experience. Hum Relat 23(6):499–513

Robson C, McCartan K (2016) Real world research. Wiley, Hoboken
Runeson P, Host M, Rainer A, Regnell B (2012) Case study research in software engineering:

guidelines and examples. Wiley, Hoboken
Sannö A, Öberg AE, Flores-Garcia E, Jackson M (2019) Increasing the impact of industry–

academia collaboration through co-production. Technol Innov Manag Rev 9(4):37–47
Santos PSMD, Travassos GH (2009) Action research use in software engineering: an initial survey.

In: Proceedings of the 2009 3rd international symposium on empirical software engineering and
measurement. IEEE Computer Society, Washington, pp 414–417

Sjøberg DIK, Dybå T, Jorgensen M (2007) The future of empirical methods in software engineering
research. In: 2007 Future of software engineering, FOSE ’07, Washington. IEEE Computer
Society, Washington, pp 358–378

Sjøberg DI, Dybå T, Anda BC, Hannay JE (2008) Building theories in software engineering. In:
Guide to advanced empirical software engineering. Springer, Berlin, pp 312–336

Svahnberg M, Gorschek T, Nguyen TTL, Nguyen M (2015) Uni-REPM: a framework for
requirements engineering process assessment. Requir Eng 20(1):91–118

Wohlin C (2014) Guidelines for snowballing in systematic literature studies and a replication in
software engineering. In: Proceedings of the 18th international conference on evaluation and
assessment in software engineering. Citeseer, p 38

Wohlin C, Aurum A, Angelis L, Phillips L, Dittrich Y, Gorschek T, Grahn H, Henningsson K,
Kagstrom S, Low G, Rovegard P, Tomaszewski P, van Toorn C, Winter J (2012) The success
factors powering industry-academia collaboration. IEEE Softw 29(2):67–73

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2012) Experimentation in
software engineering. Springer Science & Business Media, Berlin

	Foreword
	References

	Contents
	The Evolution of Empirical Methods in Software Engineering
	1 Introduction
	2 Empirical Research Methods in Software Engineering
	2.1 Research Methods
	2.2 Empirical Methods

	3 Evolution of Empirical Software Engineering
	3.1 First Iteration: Mid-1960s to Mid-1970s
	3.2 Second Iteration: Mid-1970s to Mid-1980s
	3.3 Third Iteration: Mid-1980s to End of the 1990s
	3.4 Fourth Iteration: The 2000s
	3.5 Fifth Iteration: The 2010s

	4 Current Situation and Outlook
	5 Recommended Further Reading
	6 Conclusion
	References

	Part I Study Strategies
	Guidelines for Conducting Software Engineering Research
	1 Introduction
	2 Foundations
	2.1 Knowledge-Seeking vs. Solution-Seeking Research
	2.2 Two Dimensions of Research: Obtrusiveness and Generalizability
	2.3 Research Settings
	2.4 The ABC of Software Engineering Research

	3 Strategies for Software Engineering Research
	3.1 Field Studies
	3.2 Field Experiments
	3.3 Experimental Simulations
	3.4 Laboratory Experiments
	3.5 Judgment Studies
	3.6 Sample Studies
	3.7 Formal Theory
	3.8 Computer Simulations

	4 Applying the ABC Framework
	5 Recommended Further Reading
	5.1 Empirical Studies in Software Engineering
	5.2 Field Studies
	5.3 Experimental Studies
	5.4 Judgment Studies and Sample Studies
	5.5 Formal Theory and Computer Simulations
	5.6 Solution-Seeking Research

	6 Conclusion
	References

	Guidelines for Case Survey Research in Software Engineering
	1 Introduction
	2 Related Work
	2.1 Case Survey Method
	2.2 Case Surveys in Software Engineering

	3 Case Survey Guideline for Software Engineering Considering Primary and Secondary Data During Data Collection
	3.1 A1: Define Research Scope
	3.2 A2: Case Identification and Selection
	3.3 A3: Case Extraction
	3.4 A4: Case Analysis
	3.5 Reporting
	3.6 Validity Threats
	3.7 Quality Assessment

	4 Recommended Further Reading
	5 Conclusion
	References

	Challenges in Survey Research
	1 Introduction
	2 Survey Research and Theory Building
	3 Issues in Sampling
	3.1 Representativeness
	3.2 Sample Size Estimation
	3.3 Ethics

	4 Invitation and Follow-Up
	5 Alternative Approaches for Statistical Analysis
	5.1 Descriptive Statistics
	5.2 Null-Hypothesis Significance Testing
	5.3 Alternative 1: Bootstrapping Confidence Intervals
	5.4 Alternative 2: Bayesian Analysis

	6 Qualitative Analysis
	7 Issues When Assessing Psychological Constructs
	7.1 Software Engineering Questionnaires for Human Participants Should Focus on Psychometrics
	7.2 Reliability and Validity in Psychometrics
	7.3 An Experience Report on Adopting a Psychometrically Validated Instrument

	8 Recommended Further Reading
	9 Conclusion
	References

	The Design Science Paradigm as a Frame for Empirical Software Engineering
	1 Introduction
	2 Design Science: An Overview
	3 A Model of Design Science Research
	3.1 Technological Rules and Its Constructs
	3.2 Problem Conceptualization and Solution Design
	3.3 Validation, Instantiation, and Abstraction
	3.4 Design Science Research in Practice

	4 Using the Design Science Frame in Software Engineering
	4.1 A Template to Highlight Design Science Constructs
	4.2 Design Science Example
	4.3 Assessment of Contributions
	4.3.1 Relevance
	4.3.2 Rigor
	4.3.3 Novelty

	4.4 Knowledge Building
	4.5 Research Communication

	5 Recommended Further Reading
	6 Conclusion
	References

	Part II Data Collection, Production, and Analysis
	Biometric Measurement in Software Engineering
	1 Introduction
	2 Motivating Example
	3 Biometrics or Psychophysiology
	3.1 Examples of Biometric Sensors and Measures
	3.1.1 Eye-Related Measurements
	3.1.2 Skin-Related Measurements
	3.1.3 Brain-Related Measurements
	3.1.4 Heart-Related Measurements

	3.2 Biometric Sensing
	3.2.1 Choosing the Right Measurement and Sensor
	3.2.2 Dealing with Noisy Data and Individual Differences

	3.3 Analyzing Biometric Data

	4 Work in the Area
	4.1 Tracking Developers' Eyes in the Code
	4.2 Examining Developers' Brains
	4.3 Sensing Developers

	5 Recommended Further Reading
	6 Conclusion
	References

	Empirical Software Engineering Experimentation with Human Computation
	1 Introduction
	2 Human Computation and Crowdsourcing (HC)
	2.1 Definition
	2.2 Stakeholders and Process
	2.3 HC Genre
	2.4 Application Areas

	3 ESE Experiment Steps Related to HC
	4 Requirements in ESE Experiments for HC Capabilities
	5 HC Method Capabilities for ESE Experiments
	6 Case Study on Applying HC to a Line of Experiments
	6.1 Illustrative Use Case: Software Model Inspection with HC
	6.2 Experiment Scoping (E1)
	6.3 Experiment Planning (E2)
	6.4 Experiment Operation (E3)
	6.5 Analysis and Interpretation (E4)
	6.6 Presentation and Package (E5)
	6.7 Toward a Family of Experiments

	7 Benefits and Limitations
	8 Recommended Further Reading
	9 Conclusion
	References

	Data Science and Empirical Software Engineering
	1 Introduction
	2 Background
	3 Combining ESE with DS
	4 Example Study
	4.1 First Iteration
	4.2 Second Iteration
	4.3 Third Iteration

	5 Recommended Further Reading
	6 Conclusion
	References

	Optimization in Software Engineering: A Pragmatic Approach
	1 Introduction
	2 Software Engineering Optimization: What, How, and Where?
	3 Recommended Process and Checklist for Applying Optimization
	3.1 Recommended Process
	3.2 Checklist

	4 Optimization Case Study: Asymmetric Release Planning
	4.1 Scoping and ROI Analysis
	4.2 Modeling and Problem Formulation
	4.3 Solution Design
	4.4 Data Collection
	4.5 Optimization
	4.6 Validation
	4.7 Implementation and Evaluation

	5 Usage and Usefulness of Optimization
	5.1 Limits of Optimization Models
	5.2 Difficulties Which Are Specific to the Discipline of Software Engineering
	5.3 How Much Is Enough?
	5.3.1 Validity: How Valid Is the Problem Definition?
	5.3.2 Cost: How Much Effort Is Needed to Run the Whole Optimization Process?
	5.3.3 Value: How Valuable Is It to Find an Optimized Solution?

	5.4 Return-on-Investment
	5.5 ROI of Asymmetric Release Plan Optimization

	6 Recommended Further Reading
	6.1 Meta- and Hyper-Heuristics
	6.2 Bioinspired Algorithms
	6.3 Interactive Optimization

	7 Conclusions
	References

	The Role of Simulation-Based Studies in Software Engineering Research
	1 Introduction
	2 Motivation for Simulation-Based Studies
	3 Limitations of Simulation-Based Studies in SE
	3.1 Cost of Conducting SBS
	3.2 Quality of Evidence from SBS
	3.3 Simulation as a Problem-Solving, Decision-Support Tool for SE Practitioners
	3.4 Simulation as an Alternative Empirical Method

	4 The Need for Guidance
	5 Simulation-Based Studies Life Cycle
	5.1 Study Definition
	5.2 Model Design
	5.2.1 Input Parameters and Response Variables
	5.2.2 Conceptual Modeling

	5.3 Model Implementation
	5.3.1 Simulation Approach
	5.3.2 Simulation Environment and Tools
	5.3.3 Model Calibration

	5.4 Verification and Validation
	5.5 Simulation-Based Investigation
	5.6 Threats to Simulation-Based Studies Validity

	6 Practical Examples
	6.1 Example 1: Use of Simulation to Encourage Behavioral Change in a Company
	6.2 Example 2: Use of Simulation to Sanity-Check Process Improvement Ideas

	7 Recommended Further Reading
	7.1 Simulation Modeling and Approaches
	7.2 Verification and Validation in SBS
	7.3 Simulation-Based Investigations
	7.4 Software Process and Project Simulation

	8 Conclusion
	References

	Bayesian Data Analysis in Empirical Software Engineering: The Case of Missing Data
	1 Introduction
	2 A Short Introduction to Bayesian Data Analysis
	3 Case Study
	3.1 The Data and the Problem
	3.1.1 Causal Analysis
	3.1.2 Identifying Non-identifiability
	3.1.3 Missing Data Analysis
	3.1.4 Sensitivity Analysis of Priors

	3.2 Design of Model and Diagnosis
	3.2.1 Using the Model
	3.2.2 Diagnostics

	3.3 Conduct Inference
	3.4 Threats to Validity
	3.4.1 Common Threats in Software Analytics Papers

	3.5 Discussion

	4 Recommended Further Reading
	5 Conclusion
	References

	Part III Knowledge Acquisition and Aggregation
	Automating Systematic Literature Review
	1 Introduction
	2 SLR Activities Amenable to Automation
	2.1 Developing the Protocol
	2.2 Searching for Evidence
	2.3 Selecting Relevant Studies
	2.4 Extracting Data
	2.5 Synthesizing the Evidence

	3 Strategies for Automating SLR Activities
	3.1 Systematic Literature Search
	3.2 Developing the Protocol
	3.3 Searching for Evidence
	3.3.1 Visual Text Mining
	3.3.2 Artificial Intelligence (AI)
	3.3.3 Machine Learning

	3.4 Selecting Relevant Studies
	3.4.1 Text Mining/Visual Text Mining
	3.4.2 Sampling
	3.4.3 Machine Learning
	3.4.4 Other

	3.5 Extracting Data
	3.5.1 Extractive Text Summarization
	3.5.2 Regular Expressions
	3.5.3 Text Mining and Machine Learning

	3.6 Synthesizing the Evidence
	3.6.1 Visual Text Mining
	3.6.2 Association Rules

	4 Discussion
	4.1 Research Question Identification and Prioritization
	4.2 Automated Searching
	4.3 Snowballing
	4.4 Data Standardization
	4.5 Automated Data Extraction
	4.6 Refining the Inclusion/Exclusion Criteria
	4.7 Validation of Automation
	4.8 Development of an International Collaboration

	5 Recommended Further Reading
	6 Conclusion
	References

	Rapid Reviews in Software Engineering
	1 Introduction
	2 Background
	2.1 What Is a Rapid Review?
	2.2 Why Should One Use Rapid Reviews?
	2.3 Who Is Using Rapid Reviews?
	2.4 How Rapid Reviews Are Compared to Systematic Reviews?

	3 Examples of Rapid Reviews
	3.1 Improving Customer Collaboration
	3.2 Improving Team Motivation

	4 The Rapid Review Process
	4.1 Planning a Rapid Review
	4.1.1 Demand for a Rapid Review
	4.1.2 Defining the Problem
	4.1.3 Defining the Research Questions
	4.1.4 Defining the Stakeholders Roles
	4.1.5 Creating the Protocol

	4.2 Performing a Rapid Review
	4.2.1 Search Strategy
	4.2.2 Selection Procedure
	4.2.3 Quality Appraisal
	4.2.4 Extraction Procedure
	4.2.5 Synthesis Procedure

	4.3 Reporting a Rapid Review
	4.3.1 Evidence Briefings
	4.3.2 Dissemination of Rapid Reviews Results

	5 Further Discussions on the Feasibility of Rapid Reviews
	5.1 Research Community Viewpoints on Rapid Reviews
	5.2 Publishing Rapid Reviews in Scientific Peer Reviewed Venues
	5.3 On the Use of Grey Literature

	6 Recommended Further Reading
	7 Conclusion
	References

	Benefitting from the Grey Literature in Software Engineering Research
	1 Introduction
	2 The General Concept of Grey Literature
	2.1 What Is GL and What Are Its Types, in General?
	2.2 GL in Other Research Disciplines
	2.3 Usage and Analysis of GL in the CS Research

	3 Grey Literature in Software Engineering
	3.1 What Is GL in SE?
	3.2 Scale of the Software Engineering Community: Academia Versus Industry
	3.3 Process of Generating the GL Content in SE
	3.4 GL as a Source of Knowledge and Evidence in SE
	3.5 Types of GL in SE
	3.6 Scale of GL in SE
	3.7 Benefits of Utilizing the GL in SE Research
	3.8 Challenges of Using GL in SE Research
	3.9 Diversity in Quality and Degree of Evidence in GL Materials

	4 How GL Can Be Used/Analyzed in SE
	4.1 Review of How GL Has Been Used/Analyzed in SE Research
	4.1.1 Qualitative Analysis of GL Materials
	4.1.2 Quantitative Analysis of GL Materials

	4.2 Citations to GL in SE Papers
	4.3 Systematic Reviews Using GL Sources

	5 Recommended Further Reading
	6 Conclusion
	References

	Guidelines for Managing Threats to Validity of Secondary Studies in Software Engineering
	1 Introduction
	2 Classification Schema and Validity Checklist
	2.1 Classification Schema
	2.2 Checklist for Threats to Validity Identification and Mitigation

	3 Usage Scenario 1: How Authors Can Mitigate Threats
	3.1 Mitigating Threats to Study Selection Validity
	3.2 Mitigating Threats to Data Validity
	3.3 Mitigating Threats to Research Validity
	3.4 Mapping Mitigation Actions to Secondary Studies Activities

	4 Usage Scenario 2: How Reviewers Can Appraise Validity
	5 Recommended Further Reading
	6 Conclusions
	References

	Research Synthesis in Software Engineering
	1 Introduction
	2 Basic Definitions
	3 Synthesizing Research: Interpretation, Integration, or Both?
	3.1 Procedures for Interpreting and Integrating

	4 Current Research Synthesis Methods
	5 Integrating and Interpreting with the Structured Synthesis Method: A Small Introduction
	6 A Worked Research Synthesis Example with the SSM
	6.1 Planning and Definition
	6.2 Selection
	6.3 Quality Assessment
	6.4 Extraction and Translation
	6.5 Aggregation and Analysis
	6.6 Discussion

	7 Recommended Further Reading
	8 Conclusion
	References

	Part IV Knowledge Transfer
	Open Science in Software Engineering
	1 Introduction
	2 What Is Open Science?
	2.1 Open Access
	2.2 Open Data
	2.3 Open Source
	2.4 Preregistration of Studies
	2.5 Open Science Badges
	2.6 Open Peer Review

	3 Why Do We Need Open Science?
	4 How Do We Do Open Science?
	4.1 Exemplary Scenario
	4.2 Overall Data Analysis Process
	4.3 Exemplary Walk-Through

	5 Challenges, Pitfalls, and Guidelines
	5.1 General Issues
	5.2 Sharing Preprints
	5.3 Choosing Appropriate Licences
	5.4 Sharing Data and Materials
	5.5 Preparing Qualitative Data

	6 Conclusion
	References

	Third Generation Industrial Co-production in Software Engineering
	1 Introduction
	2 The Three Generations of Software Engineering Research
	3 The Model for Co-production in Software Engineering
	3.1 Step 1: What Is the Problem?
	3.1.1 Activity 1: Select an Overarching Area or Direction
	3.1.2 Activity 2: Plan and Execute the ``Assessment''
	3.1.3 Activity 3: Report and Collect
	3.1.4 Activity 4: Select

	3.2 Step 2: Is It Researchable?
	3.2.1 Activity 1: Problem Formulation
	3.2.2 Activity 2: Study State of the Art
	3.2.3 Activity 3: Formulate a Research Plan

	3.3 Step 3: Solution or Not Solution?
	3.4 Lab-Based (Static) Validation and Improvement in Academia
	3.5 Step 5: Static Validation in Industry
	3.6 Step 6: Dynamic Validation in Industry
	3.6.1 Activity 1: Sell-In, Buy-In, Finding the Right Production Instance
	3.6.2 Activity 2: Data Gathering
	3.6.3 Activity 3: Data Analysis and Data Reconstruction

	3.7 Step 7: Solution Release

	4 General Lessons Learned
	5 Recommended Further Reading
	6 Conclusion
	References

