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Abstract. The next great leap toward improving treatment of cancer with
radiation will require the combined use of online adaptive and magnetic reso-
nance guided radiation therapy techniques with automatic X-ray beam orienta-
tion selection. Unfortunately, by uniting these advancements, we are met with a
substantial expansion in the required dose information and consequential
increase to the overall computational time imposed during radiation treatment
planning, which cannot be handled by existing techniques for accelerating
Monte Carlo dose calculation. We propose a deep convolutional neural network
approach that unlocks new levels of acceleration and accuracy with regards to
post-processed Monte Carlo dose results by relying on data-driven learned
representations of low-level beamlet dose distributions instead of more limited
filter-based denoising techniques that only utilize the information in a single
dose input. Our method uses parallel U-Net branches acting on three input
channels before mixing latent understanding to produce noise-free dose pre-
dictions. Our model achieves a normalized mean absolute error of only 0.106%
compared with the ground truth dose contrasting the 25.7% error of the under
sampled MC dose fed into the network at prediction time. Our model’s per-
beamlet prediction time is *220 ms, including Monte Carlo simulation and
network prediction, with substantial additional acceleration expected from bat-
ched processing and combination with existing Monte Carlo acceleration
techniques. Our method shows promise toward enabling clinical practice of
advanced treatment technologies.
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1 Introduction

Magnetic resonance guided radiotherapy (MRgRT) is an innovation that asserts
dominance over traditional CT-guided radiotherapy with respect to the offered soft
tissue contrast and imaging flexibility. Such innovations in the pre-treatment imaging
and the online image-guided contexts have enabled enhanced precision in the treatment
of inconspicuous and moving lesions. The difficulty of widespread adoption of MRgRT
is in part due to the complicating behavior of charged particles (electrons) in the
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presence of a moderate to strong magnetic field. The result is a non-negligible per-
turbation to the more typical dose distributions observed without a strong magnetic
field. Great effort has been invested in acceleration of deterministic dose calculation,
including the works of Chen [1], Neylon [2] and most recently Neph [3] which
emphasize efficient GPU implementation. However, the effects of a strong magnetic
field fundamentally invalidate the assumptions made by these heavily relied upon
deterministic dose calculation algorithms, leaving us instead with highly the accurate
and flexible, but comparably less efficient Monte Carlo (MC) dose simulation
technique.

The intersection of MRgRT with other advanced clinical techniques presents a
serious challenge with respect to the capabilities of existing MC dose calculation tools.
Online adaptive radiotherapy (OART) deviates from the clinical standard by both re-
imaging and re-optimizing RT treatment plans prior to each daily radiation delivery.
The outcome of OART is increased delivery precision and improved patient outcome
but is commonly rendered computationally intractable given the insufficient speed of
both the dose calculation and plan optimization stages. Additionally, the innovation of
beam orientation optimization (BOO) increases plan quality while simplifying the
planning effort. However, BOO imparts a substantial requirement on the compulsory
dose data that is calculated prior to the start of planning. Current clinical practice with
human pre-selection of around 10 static beams necessitates calculation of planning
dose distributions for a few thousand individual beamlets. By comparison, joint opti-
mization of beam orientations and their fluence maps performed by 4pi treatment
planning, considers 1162 candidate beam orientations and requires calculation of dose
for hundreds of thousands of beamlets consequently.

It is well understood that each of these techniques offer significant and comple-
mentary improvements to the treatment planning process and quality of patient care.
However, the convergence of their practice imposes formidable challenges on the dose
calculation component of the planning process; namely that we must simultaneously
pivot to using more accurate methods, which can handle EREs, while greatly
increasing the efficiency to handle significant increases to the amount of prerequisite
data. In summary, we must find a way to get the accuracy benefits of MC dose
simulation while accelerating its computation time beyond that which is possible using
any existing MC acceleration techniques.

Previous work on accelerating MC simulation has investigated the use of denoising
algorithms applied to under sampled (noisy) MC dose. Deasy [4] used a wavelet
coefficient thresholding approach to denoising on a slice-by-slice basis. Kawrakow [5]
presents a 3D implementation of locally adaptive Savitzky-Golay filtering that selects
the anisotropic filter window size by means of a locally supported chi-square test,
limiting the effect of systematic bias. Fippel [6] proposed an optimization approach
including both dose fidelity and smoothness regularization terms. Miao [7] investigated
the use of an adaptive denoising approach modeling the dose in terms of heat transport
and used anisotropic diffusion to achieve smoothed distributions. El Naqa [8] used a
hybrid median filtering approach which adapts the filter to the local content of the dose
distribution to more effectively tradeoff the benefits of mean- and median-based
denoising.
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This existing work places an emphasis on only moderately under sampled dose
suggesting their incapacity to robustly and accurately denoise dose with anything
beyond this modest level of noise or in heterogeneous geometries. El Naqa [9] judges
that “uncertainties of greater than 5% are probably too large” for producing clinically
usable treatment plans, and that “maximum error of denoised distributions can still be
large for raw MC uncertainties of 3%”, indicating observed errors up to 15% in these
cases.

Our contributions focus on meeting this need. We harness a successful Deep
Learning model architecture, U-Net [10], to perform concurrent denoising and pre-
diction of noise-free MR-guided beamlet dose from an extremely noisy (and cheap to
simulate) version of the MC beamlet dose for the given geometry. Additionally, we
show that our model performs well in previously unseen patient geometries for a given
anatomical region such as the head and neck, supporting our expectation of its gen-
eralizability for clinical use. We further note that while our model contributes a sig-
nificant level of acceleration to the task of very-large-scale (VLS) dose calculation, it
remains fully compatible with existing MC acceleration techniques such as GPU-based
simulation and variance reduction, reinforcing its promise for clinical application.

2 Methods

We present a novel technique for accelerated calculation of X-ray beamlet dose from
highly under sampled (noisy) Monte Carlo simulation. Our model incorporates the
widely successful U-NET CNN architecture to learn the actual dose distribution of an
X-ray beamlet, including perturbations resulting from EREs in the presence of an MR-
induced magnetic field.

Our model is composed of three independent U-Net branches, each with 4 hier-
archical levels, that learn a latent representation of each of 3 input channels: under
sampled dose, MC X-ray fluence, and CT geometry. Channel-specific latent

Fig. 1. Monte Carlo dose prediction network architecture. Parallel U-Net branches process each
input channel independently. Concatenation and mixing of latent representations produces
predicted residual dose. Residual and under sampled doses are summed, giving prediction of fully
sampled dose.
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representations are mixed in a series of fully convolutional layers which preserve the
original data dimensionality and produce a prediction of the residual between the input
(noisy) and ground-truth dose. Adding the residual and input dose gives the predicted
noise-free dose. A summary of the network architecture is shown in Fig. 1.

2.1 Monte Carlo Dose Simulation

A general purpose, CPU-based Monte Carlo particle simulation toolkit, Geant4 v10.4
[11, 12], was used obtain the under sampled and fully sampled beamlet dose distri-
butions as well as the X-ray fluence for each beamlet configuration. A single instance
of the fully sampled dose was simulated by tracking 18 million X-rays from a point
source 100 cm away from the beamlet’s isocenter in a uniformly diverging square field.
Ten under sampled doses were additionally simulated by instead tracking 500 X-rays
each in the same manner. Each beamlet was modeled with an identical histogram-based
energy distribution matching that of a clinical 6MV Bremsstrahlung spectrum. To
understand the applicability of our approach to MRgRT, we configured a static 1.5T
magnetic field, oriented in parallel to the rotation axis of the X-ray source around the
treatment isocenter; this geometry matches that of existing MRgRT treatment devices
such as the Elekta Unity©.

To standardize the amount of noise present in the under sampled MC dose distri-
butions, we incrementally simulated beamlet dose for 50 randomly selected beamlets in
the testing dataset, monitoring the normalized mean absolute error (NMAE) compared
with the fully sampled dose until it reached a threshold of 25%. For the fully sampled
dose, we selected an average statistical uncertainty during MC simulation of less than
0.1% as the threshold. To maintain these average qualities of dose, the under sampled
inputs and fully sampled ground truths were simulated using 500 and 18 million X-rays
as described earlier in this section.

2.2 Dataset Construction

Beamlets configurations consisted of beam azimuth (gantry angle), isocenter coordi-
nates, and beamlet position within the beam. The parameters of the beamlet configu-
ration were selected randomly to ensure diversity in both the training and testing
datasets. Ten head and neck (H&N) CT volumes were retrospectively collected from
UCLA’s database of radiation treatments and resampled to have an isotropic voxel size
of 2.5 mm3. Six of the patients were reserved for training and the remaining four for
unbiased testing of the trained model. We are careful to test on patients that are
previously unseen during the training process so an unbiased evaluation of the model
generalizability to new patients can be reported. For each training and testing patient,
an average of 865 and 415 beamlet configurations were randomly sampled,
respectively.

A single data example was created by pairing each three-channel input with the
fully sampled dose for a specific beamlet configuration. To augment the dataset with
extra data examples, rather than randomly generate additional beamlet configurations
and perform additional, and expensive, MC simulation of the fully sampled (ground-
truth) dose, we recognized that each under sampled simulation of dose is an
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independent and identically distributed (IID) stochastic observation of the fully sam-
pled dose. This allowed us to pair a single fully sampled dose with multiple (currently
10) independent under sampled inputs. This augmentation technique is like the addition
of zero-mean gaussian noise used more commonly in natural image domains, except
that we can sample directly from the true noise model by use of MC simulation. After
augmentation, our training and testing datasets contained 155,940 and 49,770 exam-
ples, respectively.

Our model was trained for 150 epochs (*183,000 iterations) in a data-parallel
manner across four NVIDIA GTX Titan X graphics processing units (GPUs). Training
time was approximately 18 h, though the greatest reduction to the loss function was
seen after just a few hours. Batch normalization and ReLU operations were used
between each convolutional layer.

2.3 Experiment Design

To assess the accuracy of the predicted beamlet dose results, we computed the NMAE
across every voxel of every beamlet in the testing dataset. To provide physical meaning
to this metric, each voxel of the predicted beamlet dose was normalized to the corre-
sponding beamlet-maximum dose, obtained from the fully sampled MC dose volume.
We also computed spatial gamma index maps, which indicate the dosimetric accuracy
of voxels by combining the dose difference and distance-to-agreement metrics, for each
of a pre-determined set of gamma criteria. Readers are referred to [13] for a complete
description of the gamma index. Voxels with a gamma index of less than or equal to
1.0, are regarded as passing the gamma test, while those with indices in excess of 1.0
are failing, which generally indicate regions of degraded dosimetric accuracy. Our
results show passing voxels in blue and failing voxels in red, with white indicating the
division between the two classifications. Gamma maps are provided for the 0.2%/
0.2 mm, 0.5%/0.5 mm, and 1%/1 mm gamma criteria. In our reporting of the results,
the NMAE was masked to reduce the bias of less-important voxels with very-low dose.
Our masking operation excludes those voxels having both ground truth and predicted
normalized dose under 10%, which ensures that both the actual dose and any possible
false predictions of dose are low enough to be ignored in most cases.

3 Results

In our experiment, where the accuracy of the under sampled MC dose and the deep
model predicted dose were compared with respect to the ground truth, a NMAE of
25.7% before prediction and 0.106% after were observed. Prediction time for a single
beamlet was approximately 220 ms, including both the MC simulation and network
prediction steps, while the time to produce a single fully sampled beamlet dose was
approximately 380 s on average. Figure 2 shows the under sampled (input), network
predicted, and fully sampled (ground truth) dose for a single beamlet passing through a
large air cavity within the patient’s mouth, where EREs are expected and observed.
Figure 3 additionally shows the gamma index maps for the beamlet shown in Fig. 2.
Darks blue voxels indicate those that easily pass the gamma test for the imposed criteria
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(index much less than 1.0). Dark red voxels conversely indicate dramatic failure by the
gamma criteria (index much greater than 1.0. Lighter shades of each color, and white
indicate voxels that lie near the threshold with index value equal to 1.0.

Fig. 2. Comparison of under sampled, predicted, and fully sampled (ground truth) dose for one
beamlet. Bottom row shows close-up of soft tissue-air interfaces where EREs are visible. (Color
figure online)

Fig. 3. Gamma maps for one under sampled and predicted beamlet dose distribution compared
to the ground truth (fully sampled dose). Red voxels indicate large disagreement while white and
blue indicate passing for the referenced gamma criterion. Close-up views given under each.
(Color figure online)
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4 Discussion

We observe from the analysis of dosimetric accuracy between the under sampled dose
and the deep network prediction that a substantial improvement in the beamlet dose
accuracy is achieved despite imparting less than 200 ms for the additional prediction
step. Indicated by the reduction of NMAE for the testing dataset, the accuracy
improvement between the under sampled dose and the predicted dose is greater than
two orders of magnitude. Without a dedicated analysis of the resulting effects on the
treatment planning process, it is difficult to conclude from this study whether the
observed accuracy is sufficient for clinical use. However, from the conclusions drawn
in [9] we show that our dose prediction model outperforms existing denoising methods
with NMAE below 0.2% (improvement ratio of 242) compared to the best performing
method of [4] achieving an improvement ratio of only 4.5, corresponding to a NMAE
of approximately 1.21% (MSE improvement ratio of 4.5 for the 6.6% uncertainty
input) for the H&N evaluation. This improvement is evident despite starting with much
noisier dose inputs (input NMAE of more than 25% in our case, compared with up to
6.6% MC uncertainty selected to evaluate the methods of [4] in [9]).

Furthermore, investigating the predicted dose distribution in Fig. 2 and the corre-
sponding gamma index maps in Fig. 3 clearly show the advantage of our deep
learning-based approach in both the global denoising and the local ERE prediction
tasks. For example, the under sampled dose in Fig. 2 displays a dose loop which is
commonly observed in noisy MR-guide MC results but is not representative of the
expectation obtained by full sampling to a low uncertainty. For these situations, where
local filtering approaches tend to fail to distinguish this low probability stochastic event
from the true beamlet structure, our model can disambiguate the two and harness the
information to produce a more realistic prediction. Moreover, the qualitative differences
in the gamma maps of Fig. 3 clearly demonstrate the global predictive performance of
our model, where the fraction of red voxels is substantially reduced between the under
sampled and predicted dose distributions.

Like the denoising methods presented in [4–8], our model also benefits from bat-
ched evaluation for both the MC simulation and especially the GPU-based model
prediction steps. The runtimes reported in Sect. 3 were limited to computation of a
single beamlet dose distribution without including the benefits of batched processing.
With even a modest availability of GPU hardware and GPU-enabled MC simulation
tools, we expect that parallel processing will greatly improve the average per-beamlet
processing time well beyond that which is required of online adaptive MRgRT. Further
investigation of the limits of acceleration that can be achieved and the benefits to the
actual process of treatment plan optimization using predicted beamlet dose distributions
are planned for future work.

5 Conclusions

We have demonstrated the success of our novel deep learning-based approach to
beamlet-scale Monte Carlo dose denoising in terms of the computational time and
accuracy improvements. Our technique differs from existing attempts at MC dose
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denoising in that it: has been evaluated for use in MRgRT where EREs induce local
perturbations to the simpler no-magnetic-field X-ray dose distribution, is applicable to
substantially noisier dose input resulting from fewer MC-simulated particles, and
benefits from efficient deep CNN prediction while maintaining compatibility with
existing MC acceleration techniques. By testing our model performance with patient
geometries that were not used during model training, our method shows generaliz-
ability to new patients, and normalized mean absolute beamlet dose errors of 0.106%
on average, compared with the 25.7% error observed by directly using the under
sampled dose. This performance is demonstrated while reducing the dose calculation
time by over two orders of magnitude compared with fully sampled MC beamlet dose.
Our method shows promise in enabling clinical use of adaptive online MRgRT for
automatically planned treatments.
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