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Preface

We are pleased to present the proceedings to the First International Workshop for
Artificial Intelligence in Radiation Therapy (AIRT 2019), which took place on
October 17, 2019, and was held in conjunction with the 22nd International Conference
on Medical Image Computing and Computer Assisted Intervention (MICCAI 2019), in
Shenzhen, China, during October 13–17, 2019.

This workshop included 20 accepted presentations featuring the most recent work
focused on the application of artificial intelligence (AI) and automation technologies in
radiation therapy. With this workshop, we hope to open a discussion about the state of
radiation therapy, the state of AI and related technologies, and pave the way to
revolutionizing the field to ultimately improve cancer patient outcome and quality of
life. We believe that in working with the intelligent minds at MICCAI, the field of
radiation therapy will greatly benefit from the exposure of the latest cutting-edge
algorithms, and MICCAI will grow from tackling the unique challenges in radiation
therapy.

In particular, we will focus on the application and development of AI and related
technologies in two fronts: (1) image guided treatment delivery and (2) image guided
treatment strategy. Image guided treatment delivery will be focused on advancements
of technologies that are used during the delivery of the radiation to the patient for image
guided radiation therapy (IGRT), which includes developments in cone beam
computed tomography (CBCT), fluoroscopy, surface imaging, motion management,
and other modalities that are used for IGRT. Image guided treatment strategy will
involve technologies that are used in the clinical pipeline leading up to the delivery,
which include segmentation techniques and algorithms on CT, MRI, and/or PET,
treatment planning, dose calculation, quality assurance and error detection, etc.

CBCT, fluoroscopy, surface imaging, and related submissions for image guided
treatment delivery focus on the use of the imaging modalities for accurate and precise
delivery of the planned radiation dose onto the tumor and healthy tissue. Motion
management includes immobilization methods and imaging for motion verification or
prediction. Segmentation related submissions focus on the segmentation that is specific
to the radiotherapy pipeline, and may use CT, MRI, and/or PET images for algorithm
development. Treatment planning submissions focus on techniques and algorithms for
improving the plan quality and/or the planning efficiency. Dose calculation related
submissions focus on photon, electron, protons, or heavy ion, with applications to
radiation therapy. Quality assurance and error detection submissions relate to ensuring
that the calculated dose matches the delivered dose, identifying human mistakes during
treatment planning and delivery, incident learning, risk analysis, and process control.

We employed the EasyChair1 conference management system for our paper
submissions and peer review process. Any identifying information was redacted in the

1 https://easychair.org/

https://easychair.org/


submission prior to review to maintain an anonymous review process. In total, 24 full
submissions were received and the overall acceptance rate was 83.3%. The accepted
papers have been compiled into a volume of Lecture Notes in Computer Science
(LNCS) proceedings—Volume LNCS 11850.

We would like to thank everyone who contributed greatly to the success of AIRT
2019 and the quality of its proceedings, especially the authors, co-authors, students,
and supervisors, for submitting and presenting their exceptional work to the AIRT
workshop. We believe that this workshop for AI in radiation therapy is the perfect
platform for providing discussion of the state of radiation therapy, the state of AI and
related technologies, and will pave the way to revolutionizing the field to ultimately
improve cancer patient outcome and quality of life.

September 2019 Dan Nguyen
Lei Xing

Steve Jiang
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Using Supervised Learning and Guided Monte
Carlo Tree Search for Beam Orientation

Optimization in Radiation Therapy

Azar Sadeghnejad Barkousaraie, Olalekan Ogunmolu, Steve Jiang,
and Dan Nguyen(&)

Medical Artificial Intelligence and Automation (MAIA) Laboratory,
Department of Radiation Oncology, University of Texas Southwestern

Medical Center, Dallas, TX 75390, USA
{Azar.Barkousaraie,Olalekan.Ogunmolu,

Steve.Jiang,Dan.Nguyen}@utsouthwestern.edu

Abstract. In clinical practice, the beam orientation selection process is either
tediously done by the planner or based on specific protocols, typically yielding
suboptimal and inefficient solutions. Column generation (CG) has been shown
to produce superior plans compared to those of human selected beams, espe-
cially in highly non-coplanar plans such as 4p Radiotherapy. In this work, we
applied AI to explore the decision space of beam orientation selection. At first, a
supervised deep learning neural network (SL) is trained to mimic a CG gener-
ated policy. By iteratively using SL to predict the next beam, a set of beam
orientations would be selected. However, iteratively using SL to select the next
beam does not guarantee the plan’s quality. Although the teacher policy, CG, is
an efficient method, it is a greedy algorithm and still finds suboptimal solutions
that are subject to improvement. To address this, a reinforcement learning
application of guided Monte Carlo tree search (GTS) was implemented, coupled
with SL to guide the traversal through the tree, and update the fitness values of
its nodes. To test the feasibility of GTS, 13 test prostate cancer patients were
evaluated. Our results show that we maintained a similar planning target volume
(PTV) coverage within 2% error margin, reduce the organ at risk (OAR) mean
dose, and in general improve the objective function value, while decreasing the
computation time.

Keywords: Radiation therapy � Prostate cancer � IMRT � Beam orientation �
Monte Carlo Tree Search � Artificial intelligent � Deep neural network

1 Introduction

In intensity-modulated radiation therapy (IMRT), the optimal choice of beam orien-
tations has a significant impact on the treatment plan quality, influencing the final
treatment outcome. In current treatment planning workflow, the beam orientations are
either manually selected by the planner in a tedious fashion, or chosen based on
specific protocols, typically yielding suboptimal solutions. Beam Orientation Opti-
mization (BOO) methods are used to find the optimal beam directions. Due to the

© Springer Nature Switzerland AG 2019
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highly combinatorial nature of the BOO problem, many optimization algorithms have
employed heuristics to approximate its solution. One of the successful algorithms
specially for solving complex and highly non-coplanar problems such as 4p radio-
therapy [1] is Column Generation (CG). While efficient, CG is a greedy algorithm and
typically finds suboptimal solutions. In this work we first present the CG implemen-
tation for BOO problem, where CG iteratively solves a sequence of Fluence Map
Optimization (FMO) [2] problems by using GPU-based Chambolle-Pock algorithm.
Then a Monte Carlo Tree Search subsequently improves the quality of BOO solution.
However, CG is a time intensive operation, therefore we propose a deep neural network
that learns the decision process of the CG policy and is able to solve BOO problem in
less than one second for a 5-beam IMRT plan. Then we used this supervised deep
learning approach to guide the decision tree faster. The proposed beam orientation
optimization framework is capable of finding a superior solution over CG, in less
amount of time.

2 Methods

The proposed method has a reinforcement learning structure involving a supervised
learning network to guide Monte Carlo tree search to explore the beam orientation
selection decision space. This method, guided Monte Carlo tree search, consists of two
components: Monte Carlo Tree Search (MCTS) as the main structure of the method and
supervised learning network (SL) as a guidance policy network, to traverse the decision
tree search faster. In this section, brief description of key terms and algorithms in the
proposed method are provided.

• Patient Anatomical Features: include the images of cancer patients with contoured
structures and treatment planning weights assigned to each structure. The images of
70 prostate cancer patients are used for this research, each with 6 contours, PTV,
body, bladder, rectum, and left and right femoral heads. The weights assigned to the
structures are chosen randomly.

• State of the problem: include patient’s anatomical features and a set of selected
beam orientations (B). At the beginning of the planning, this set has no member, and
it is updated throughout the solution procedure.

• Actions: The selection of the next beam orientation to be added to set B, given the
state of the problem.

• Solution or terminal state: state of the problem in which the number of selected
beam orientations (size of B) is the same as a predefined number of beams, chosen
by user. At this point, a feasible solution for the problem is generated.

• Cost or objective function: min
x

1
2

P

s2S
w2
s Dsx� pk k22 s.t. x� 0, where ws is the

structure weight for structure s, Dsx the amount of dose received by structure s, and
p is the prescription dose.

• Beam fitness values: produced by the calculations of optimality conditions based on
the objective function. Fitness value of a beam ðbi) shows the possible improvement
in the objective function by adding bi to set B:

2 A. Sadeghnejad Barkousaraie et al.



2.1 Column Generation

The SL network learns from an optimization process (Column Generation) to find the
suitable beam orientation for each state of the problem. In the proposed Column
Generation (CG), after FMO of a given state of the problem is solved by the
Chambolle-Pock algorithm [3], CG calculates the fitness values of all candidate beams.
These values are generated by using Karush-Kuhn-Tucker (KKT) conditions for
optimality [4, 5]. Given a state of the problem, CG finds the next best beam to be added
to the current set of selected beam orientations B, such that adding this beam will
improve the cost function the most. The whole process of iteratively solving FMO,
calculating fitness values, selecting the next beam and updating the state of the
problem, is called CG in this paper.

Although CG is a powerful optimization tool, itis computationally expensive and
requires many resources (time, computational resources and calculation of dose
influence matrices of all candidate beams). Using SL network instead of Column
Generation (CG) helps to find a set of good beam orientations quickly, with limited
resources and available information. The structure of the supervised training process is
shown in Fig. 1. The beamlet dose data in this figure represents dose influence matrices
of each possible beamlet among all candidate beams for every structure of each patient,
which its calculation needs few hours at least. After SL is trained by CG solutions,
beamlet dose data is not required for solving beam orientation optimization. Note that
at the end to find the best arrangement of the selected beams, dose influence matrices of
the selected beams should be calculated and FMO problem should be solved. But in
this case, dose influence matrices of only those selected beam orientations is required,
for example in this project, the dose influence calculation of five beams is required
compared to the total 180 candidate beams available.

Fig. 1. Schematic of the Supervised Training Structure to predict Beam Orientation fitness
values. Column Generation (CG) as teacher and deep neural (SL) as Trainee.

Using Supervised Learning and Guided Monte Carlo Tree Search 3



2.2 Supervised Deep Learning Neural Network

The network architecture of the proposed SL is shown in Fig. 2, and designed as a
sequence of 3-D and 1-D convolutional (orange-colored in Fig. 2), max-pooling (Red),
flatten (yellow), fully connected (purple), concatenation (green) and up-sampling (light
blue) layers. The SL inputs are the anatomical structures, namely PTV and Organs at
Risk or OARs (pink and blue cubes), and set B (purple). The output (blue-green array)
is an array of size 180 (number of potential beam orientations) that represents the
fitness values or the probability of success in choosing a beam orientation.

The SL network has three blocks of layers. In the first block, the patient’s anatomy
is analyzed, while the set of already selected beams, or Input2 array, is fed into the
second and third blocks of layers as two arrays B and its complement1 BC. In second
block, arrays B and BC, are merged to the 1-dimensional convolution layer from first
block. In each stage of the third block of layers, max-polling layer of second input
arrays, are added to the up-sampled 1D convolutional layers. After the last convolution
layer, there is only one feature array of size 180. This array represents the fitness value
of each beam orientation, as the possible changes to the current objective function
(current solution) or probability of success.

The activation functions of all the layers in the proposed model are Scaled
Exponential Linear Unit (SELU). SELU is a self-normalizing activation function,
which is proven to converge to zero mean and unit variance even under the presence of

Fig. 2. Proposed deep learning neural network structure. (Color figure online)

1 x and y are complemented, if x _ y ¼ 1; x ^ y ¼ 0
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noises, and makes learning robust even for deep neural networks with so many layers
[6]. The loss function of the model is Mean Squared Error (MSE) with Adam optimizer
with learning rate of 10−5.

Algorithm 1.a: Iterative structure of CG to select N beams for one patient
1. Initialize B as an empty array 
2. Set current number of selected beam orientations in B as 0, 

= 0
3. Calculate for all beamlets (j) of all potential beams (i) 
4. While , do:

a. Solve FMO associated to B with Chambolle-Pock Algorithm
b. Calculate potential fitness values
c. Set as beam orientation with maximum fitness value
d. , = +1

5. Return B
Algorithm 1.b: Iterative structure of SL to select N beams for one patient
1. Initialize B as an empty array
2. Set current number of beam orientations in B as 0, = 0
3. While , do:

a. Use SL to predict the next beam (b*) 
b. , = +1

4. Return B

The trained SL is used to predict the solution of BOO. The iterative structure of CG
and SL are shown in and Algorithm 1a and b respectively, where differences are
highlited by red) The images of 70 prostate cancer patients, each with 6 contours, are
used to train and test the network. 57 patients are considered for training and validation
in a 6-fold cross validation technique and 13 paitent for test set. All six models are
trained over 400 epochs each with 2500 steps. From each fold, the trained model with
least validation loss function (Mean Squared Error) was selected and used for pre-
diction on the test set.

2.3 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) uses the decision tree to explore the decision space,
by randomly sampling from it [7]. The search process of MCTS consists of four steps,
node selection, expansion, simulation and backpropagation on the simulation result. In
this work, each node represents a beam orientation and each branch from root to its
leaves are the selected sets of beams. It means the depth of the tree is the same as the
number of beam orientations in the solution set. The details of each process and general
algorithm are presented in Algorithm 2.

The pretrained SL, probabilistically guides the traversal of the branches on the
Monte Carlo decision tree to add a new beam to the plan. A search of a plan starts from
root, as an empty set of beam, and contintues until it reaches the terminal state. After
the exploration of each complete plan, the fluence map optimization problem is solved

Using Supervised Learning and Guided Monte Carlo Tree Search 5



and based on that, the probability distribution to select next beam will be updated,
using the reward function, in backpropagation stage. Then starting from root again, the
exploring of the next branch will start, untill the stopping criteria is met.

3 Results and Discussion

More than 3000 input scenarios for training, validating and testing the SL network were
generated, by randomly assigning structure weights and image rotations. The average
and standard deviation of train, validation and test loss functions among all folds were
0.62 ± 0.09%, 1.04 ± 0.06%, and 1.44 ± 0.11% respectively. Trained model with
least validation loss function was used for final comparision. By using CG and SL, two
sets of beam orientations for each scenario in test set were selected, and their associated
FMOs were solved. In terms up just solving the BOO problem, SL took under 1.5 s for
a 5 beam prediction while column generation took more than 10 min to solve for its
beam orentations. Since SL only needs dose calculation on its 5 chosen beams, the
whole process takes an average of 5 min 20 s, as opposed to the 3 h CG needs to

6 A. Sadeghnejad Barkousaraie et al.



calculated the doses of all 180 candidate beams. The values of six metrics, which have
been used to compare treatment plans created by CG and SL, is presented in Table 1
(metrics definition in [8]). Bladder had the minimum average differences in dose
recieved by OARs (0.956 ± 1.184) and Right Femoral head had the maximum
(5.885 ± 5.515). The differences in the dose coverage of PTV between CG and SL
plans were 0.2%, while the average dose differences recieved by organs at risk were
between 1 to 6%, 0.10 ± 0.1% (body), 1.06 ± 1.42% (bladder), 2.44 ± 2.11% (rec-
tum), 6.03 ± 5.86% (L fem head), 6.38 ± 5.94% (R fem head).

Then the selected trained SL model was used as the guidance policy in GTS. On
average, the CG algorithm needed 700 s to solve FMO of an iteratively augmented
problem to select 5 beams, while the proposed GTS found solutions with higher

Table 1. Mean ± standard deviation for PTV Statistics, van’t Riet Conformation Number
(VR), and High Dose Spillage (R50) Metrics values of CG and SL beam set of test dataset.

CG results SL prediction Diff CG-SL

PTV D98 0.977 ± 0.011 0.976 ± 0.012 0.00 ± 0.003
PTV D99 0.961 ± 0.020 0.960 ± 0.020 0.001 ± 0.005
PTV Dmax 0.87 ± 0.059 0.87 ± 0.057 0.00 ± 0.031
PTV Homogeneity 0.069 ± 0.038 0.070 ± 0.038 −0.001 ± 0.004
VR 0.881 ± 0.083 0.879 ± 0.093 0.002 ± 0.021
R50 4.676 ± 0.888 4.555 ± 0.694 0.121 ± 0.372

CG 
Plan: 
Cost 
8.05 

GTS 
Plan: 
Cost 
7.56 

Fig. 3. CG generated plan (solid) vs GTS generated plan (dashed)

Using Supervised Learning and Guided Monte Carlo Tree Search 7



quality, with respect to the objective value, in 100 s on average. Scenarios of test
dataset (13 patients) were used to test the quality of GTS solution compare to CG.
Using GTS method, we were able to maintain a similar planning targe volume
(PTV) coverage within 2% error (D98 = 0.97 ± 0.01 and D99 = 0.95 ± 0.02), and
reduce the organ at risk (OAR) mean dose by 0.10 ± 0.08% (body), 2.44 ± 2.01%
(rectum), 4.94 ± 4.65% (L fem head), 6.40 ± 3.94% (R fem head), of the prescription
dose, but a slight increase of 1.31 ± 1.96% in bladder. A test patient’s plans generated
by CG and GTS is presented in Fig. 3. Although the presented method is good enough
but it still has room for improvement (e.g. bladder dose), and future more detailed study
to improve the algorithm is planned.

4 Conclusion

In this study, first we proposed a supervised deep neural network (SL) to learn column
generation (CG) decision-making process, and predict the fitness values of all candidate
beams, beam with maximum fitness value will be chosen to add to the solution. CG
although powerful, is a heuristic, greedy algorithm that cannot guarantee the optimality
of the final solution, and it leaves room for improvement, so a Monte Carlo guided tree
search (GTS) is proposed to see if finding a solution with better objective function in
reasonable amount of time is feasible. After SL is trained, it is used to generate the
beams fitness values for nodes in the decision tree, where each node represents a set of
selected beams. Fitness values in each node are normalized and used as probability
mass function (PMF) to help deciding decision tree extension. Later PFM will be
modified by reward function, which is based on the final objective values of solving
FMO for every five selected beams. GTS continues to explore the decision tree until at
least one of the resources (time, average improvement, etc.) is exhausted. We
demonstrate that suggested GTS method produces a superior plan to CG in reducing
the objective value, in less time than it takes to solve the CG algorithm. Considering the
success of GTS in reducing the objective function and its potential for further
improvement, we will continue exploring new methods and techniques to upgrade the
quality of treatment planning with the help of artificial intelligence.
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Abstract. Current radiotherapy planning workflows start with segmen-
tation of the organs at risk (OARs) together with target volumes (TVs)
in order to determine a patient specific optimal treatment plan and its
corresponding 3D dose distribution. This is a time-consuming optimiza-
tion process including many manual interventions. Despite strong resem-
blance between patients treated for the same indication, the optimiza-
tion is almost always performed without 3D prior knowledge. Automated
segmentation of OARs and TVs and automated generation of dose dis-
tributions are thus expected to be more time-efficient. We investigate
the feasibility of CT-only dose prediction and the profitability of addi-
tional isocenter and contour information. To evaluate the network’s per-
formance, a 5-fold cross-validation is performed on 79 prostate patients,
all treated with volumetric modulated arc therapy.

Keywords: Dose prediction · Isocenter · Convolutional neural
networks

1 Introduction

Radiotherapy (RT) is one of the main treatments for prostate cancer, which relies
on a patient specific treatment plan to deliver the prescribed radiation dose to
the target volume (TV), while minimizing the dose to the healthy tissue, i.e.
the organs at risk (OARs). Three main target volumes are defined in RT. The
gross tumour volume (GTV) is the tumour and extent of the tumour visible on
diagnostic images. The clinical target volume includes the GTV with an extra
margin for subclinical disease spread which is not fully visible on medical images.

c© Springer Nature Switzerland AG 2019
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Lastly, the planning target volume (PTV) adds a margin to the CTV to account
for uncertainties during treatment delivery.

Last decades, overall plan quality has improved, caused by recent evolution
in RT planning, such as intensity modulated radiotherapy (IMRT) and volu-
metric modulated arc radiotherapy (VMAT) [1,2]. Apart from quality benefits,
these treatment modalities enlarge planning time, hereby hampering the clinical
implementation of adaptive strategies, which proved to have a positive effect on
tumor control probability and post treatment complications [3–5].

The current RT planning workflow starts with the delineation of the TV
and OARs. Next a complex inverse optimization procedure including a prior
set of dose constraints identifies the optimal machine parameters required to
administer the appropriate dose to the TVs and OARs [6]. This semi-automatic
optimization process requires multiple adjustments of dose constraints and their
priorities in order to assure convergence towards an optimal treatment plan.
However, the manual interventions introduce interplanner variability, which may
result in suboptimal solutions [7].

Recently, the research focus of RT has shifted towards knowledge based plan-
ning strategies, which utilize historical patient information to more efficiently
generate RT treatment plans for newly diagnosed patients. More specifically deep
learning by convolutional neural networks (CNNs) has been applied successfully
in RT for segmentation tasks [8,9] and also for voxelwise dose prediction [10–13],
assuming availability of contours and learning the contour-dose relationship.

These CNNs are very successful but the impact of the different inputs is not
fully understood, e.g. the contours are implicitly present in the CT image. In
this work we explore the impact of the contours by comparing dose prediction
with and without contours as input. Additionally the potential impact of the,
in classic treatment planning, crucial information of the isocenter is compared
with the above scenarios.

2 Methods

2.1 Available Data and Preprocessing

The dataset consists of 79 patients diagnosed with prostate cancer [14]. All
patients were treated with VMAT, receiving a prescription dose of 77 Gy frac-
tionated over 35 treatment sessions, with 36 patients receiving a simultaneously
integrated boost (SIB). The planning CT image of each patient was made on
a multidetector-row spiral CT scanner (Somatom Sensation Open, 40 slice con-
figuration; Siemens Medical Solutions, Erlangen, Germany). Segmentations of
OAR and TV were performed manually by an experienced radiation oncologist
and radiologist. The patient specific treatment plans and corresponding 3D dose
distributions were created in clinical practice using Eclipse (Varian Medical Sys-
tems, Palo Alto, CA) and delivered with Clinac 2100C/D or TrueBeam (STx)
(Varian Medical Systems, Palo Alto, CA).

The planning CT image is resampled to a voxelsize of (2.5 × 2.5 × 3) mm3

and normalised to have zero mean and a standard deviation equal to 1. Dose
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distributions were normalised such that the mean dose within the PTV is equal
to one. A GTV mask is created to distinguish SIB and standard procedures and
contains the GTV delineation multiplied with a value of 95 if a SIB of 95 Gy is
delivered to the patient’s tumor and 0 if otherwise. Additional spatial context is
derived from the 3D position of the isocenter, i.e. the center of rotation of the
treatment gantry, located inside the prostate. For each voxel in the CT image, the
X, Y and Z coordinates with respect to the isocenter are calculated. This results
in 3 image grids for each CT image, containing either X, Y or Z coordinates
w.r.t. the isocenter that we provided to the network.

2.2 Model Architectures

The baseline network architecture (CT-only model) is based on UNET and con-
tains 4 pathways, see Fig. 1 [15]. Each pathway consist of 2 convolutional layers
followed by batch normalization and a parametric linear rectified unit (PRELU)
as non linear activation layer. Moreover each pathway contains extra residual
connections. The final layer is a linear layer to predict the dose value such that
the output represents a 3D dose distribution. The second model (CT+ISO)
receives isocenter information by concatenating additional X, Y and Z image
grids to the network after the upsampling part of UNET. Both the CT-only
and CT+ISO model contain only the CT image and a GTV mask to indicate
receival of a SIB as input. The third network (CT+C) and the fourth network
(CT+ISO+C) are similar to the CT-only and the CT+ISO model resp., but are
given all contours as extra input features to evaluate the effect of contours on
voxelwise dose prediction.

2.3 Sampling and Training

Training is performed using a 3D patch-based approach and samples of size
(156, 156, 78) are taken from the CT image using a weighted sampler. 50% of
the samples are taken from the high dose region (i.e. dose greater than 80%
of the prescription dose), 25% from the penumbra (i.e. dose between 20% and
80% of the prescription dose) and 25% from the low dose region (i.e. dose lower
than 20% of the prescription dose), to ensure all dose regions are present during
training. Adam optimizer is used for training with mean squared error as loss
function.

2.4 Validation Experiment

A 5-fold cross-validation is performed in order to asses the influence of the
isocenter information for CT-only dose prediction. These CT-only dose predic-
tions are further compared to models using contour information as input. The
predicted dose distributions of all four models (CT-only, CT+ISO, CT+C and
CT+ISO+C) are compared using the clinical dose constraints (dmax, d98, d50,
d2), derived from the dose volume histograms, which relate tissue volumes with
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Fig. 1. 3D UNET architecture for dose prediction using either CT, CT+ISO, CT+C
or CT+ISO+C as input features.

irradiated dose. The percentage error on these dose constraints relative to the
prescription dose is calculated as follows for each structure:

%ΔDCi = 100 ∗ |f(D̂i) − f(DT,i)
Dpr,i

| (1)

with f equal to the dose constraint (dmax, d99, d98, d50 or d2), D̂i and DT,i

representing the predicted dose resp. the ground truth dose in organ i for a
specific patient. Dpr,i defines the prescription dose for the organ of interest more
specifically 95 Gy for the SIB, and 77 Gy for all other organs.

Moreover the average dose volume histograms are established for all models
for the PTV using the available ground truth contours.

3 Results

The cross-validation results for the target volumes (SIB, PTV, CTV) for all
clinical indices are summarized in Table 1 for both the results before and after
normalization as a post processing step, which is a well known step within RT
for treatment plan optimization. The dose distribution is than multiplied with a
constant such that the mean dose within the PTV equals the prescription dose.
Overall the dose for the standard cases is better predicted than the dose for the
SIB cases before normalization. The CT+ISO model outperforms the CT-only
model on all clinical indices for both standard cases and the SIB cases. The
lowest error rates are observed for dmax, d2 and d50, while higher error rates
for d98 indicate lower dose conformity to the target volumes. The CT+C model
and the CT+ISO+C model show decreased error rates for d98 towards both
models without contour information, leading to a more conform dose distribution



14 S. Willems et al.

Table 1. Error rate on clinical dose indices for the target volumes before and after
dose normalization: PTV, CTV and SIB. Statistical significant differences are defined
using pairwise wilcoxon test with α = 0.05. Significant differences between the models
with and without isocenter are indicated in bold fonts. Significant differences between
models with and without contours are indicated with *.

Before Normalization
STAND SIB

Dmax D2 D50 D98 Dmax D2 D50 D98

CT-only
SIB 15.7±6.4
PTV 6.3±3.2* 7.4±2.8* 11.7±2.5* 26.5±11.6 18.5±6.8 13.7±4.7 12.7±4.1 25.1±12.5
CTV 6.3±3.2* 7.0±3.1* 10.5±2.6* 19.0±9.1 18.5±6.8 14.7±5.1 11.3±4.1 19.6±10.5

CT+ISO
SIB 7.2±4.8
PTV 3.0±1.8 3.1±1.9 5.7±2.9 21.1±15.9 8.7±5.4 5.7±3.4 6.0±2.8 18.3±10.9
CTV 2.8±1.6 2.9±1.7 4.1±2.6 12.3±11.1 8.8±5.4 6.6±3.7 4.8±2.5 12.8±9.3

CT+C
SIB 14.7±5.1
PTV 13.4±3.0 13.4±2.6 13.6±2.5 12.3±3.0* 18.8±5.4 16.2±3.2 13.4±2.9 12.4±3.8*
CTV 13.1±3.0 13.1±2.7 13.4±2.6 11.9±2.8* 18.8±5.4 17.0±3.6 13.2±3.0 12.4±5.1*

CT+ISO+C
SIB 4.8±4.0*
PTV 1.6±1.3 1.5±0.9* 1.8±1.1* 3.2±2.0* 6.8±4.0* 3.6±2.2* 2.0±1.7* 2.9±2.3*
CTV 1.7±1.3 1.5±1.1 1.6±0.9* 1.3±1.2* 6.9±4.0* 4.5±2.3* 1.7±1.7* 1.9±2.1*

After Normalization
STAND SIB

Dmax D2 D50 D98 Dmax D2 D50 D98

CT-only
SIB 6.1 ±5.2
PTV 8.6±4.5 6.8±3.5 1.5±1.3 16.8±11.5 6.5±6.1 4.4±4.4 1.8±1.5 14.2±12.7
CTV 8.7±4.5 7.2±3.5 2.9±2.0 7.9±8.2 6.6±6.1 4.7±4.4 3.6±2.2 7.3±9.9

CT+ISO
SIB 4.9±5.1
PTV 6.2±3.4 5.6±3.1 1.6±1.9 16.2±15.3 5.8±3.2 4.0±2.9 1.4±4.0 12.6±11.7
CTV 6.7±3.3 6.2±3.1 3.3±2.4 6.4±9.4 5.9±5.9 4.6±4.6 3.0±1.7 6.5±7.9

CT+C
SIB 5.3±4.0
PTV 1.3±1.3* 0.7±0.7* 0.3±0.2* 1.0±2.4* 6.1±4.3 3.0±2.2* 0.5±0.5* 1.6±2.0*
CTV 1.4±1.6* 1.0±1.1* 0.4±0.3* 1.4±1.2* 6.1±4.4 3.9±2.6* 0.8±0.8* 2.3±3.5*

CT+ISO+C
SIB 4.1±4.4
PTV 2.5±1.2* 2.0±0.8* 0.7±0.3* 1.6±2.7* 5.3±4.5 2.6±2.1* 0.6±0.6* 1.3±1.3*
CTV 2.9±1.3* 2.6±0.9* 1.2±0.5* 1.5±1.4* 5.5±4.4 3.2±2.3* 1.1±0.8* 1.6±1.3*

without a steep dose fall off at the border of the PTV. The best results are
observed for the CT+ISO+C model on all clinical indices for both the standard
and the SIB cases.

Normalization of the predicted dose distribution outcome of the CT-only,
CT+ISO and CT+ISO+C models slightly increase the error on the Dmax, while
the error of d50 decreases for the standard prostate cases. The error rates for
the CT+model are decreased drastically after post processing the outcomes. For
the SIB cases on the other hand, almost all error rates are improved compared
to no post processing.

The error rate on the maximum dose (dmax) is visualised in Fig. 2(A) for
both target volumes and OAR. The error rates are mainly negative, which indi-
cates that all models show some lower dose estimation than the ground truth
dose distributions created in Eclipse. Figure 2(B) shows the error rate on the
maximum dose after normalization of all output dose predictions such that the
mean dose within the PTV is equal to the prescription dose. Normalization of
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Fig. 2. Dmax error rate with respect to the prescription dose for standard cases for
the initial dose prediction (A) and normalised output prediction (B). CT-only (pink),
CT+ISO (blue), CT+C (green), CT+ISO+C (red) (Color figure online)

Fig. 3. Dmax error rate with respect to the prescription dose for SIB cases for the initial
dose prediction (A) and normalised output prediction (B). CT-only (pink), CT+ISO
(blue), CT+C (green), CT+ISO+C (red) (Color figure online)

dose distributions leads to higher dose to the target volume, but hereto results in
positive error rates for the OAR compared to the ground truth dose distribution,
which may exceeds the limiting dose constraint. The same trend is observed for
the SIB cases, see Fig. 3. The best results are observed for the CT+ISO+C model
before and after normalization, which slightly overstimates the target volumes,
but preserves a lower dose to the OAR, i.e. bladder and rectum. The average
dose volume histogram of the PTV over all patients for all previous discussed
situations are visualised in Fig. 4.

4 Discussion

We evaluated the impact of the different inputs for dose prediction including
isocenter and contour information. CT-only dose prediction including isocenter
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Fig. 4. Average Dose volume histograms (DVHs) for the PTV for all models before
and after normalization for both standard cases (left) and SIB cases (right)

information outperforms the model without isocenter information and achieves
reasonable results regarding maximum (Dmax) and median dose (d50) values.
However, both models learn a relationship from CT hounsfield units to dose
gray values without ever being forced to use the anatomy present in the CT
image due to the mean squared error loss function. While the CT-only model
underestimates the dose distribution for the TVs and OAR, isocenter information
improves the results slightly by enlarging spatial information in the form of
position restrictions. However a low d98 is observed which could be either due
to a low dose conformity or low dose homogeneity of the PTV. Normalization
of these dose distributions increases the dose in general but would still result in
cold and hot spots around the target volume, hereby increasing the error on the
maximum dose.

Providing contours as prior information, results in an overall better dose
conformity and dose homogeneity, while minimizing the overestimation of dose
to the OARs. The reason hereto is that the network receives anatomy information
from the beginning. Furthermore, normalization of the output dose distribution
has more benefits in this case, due to the higher conformity and homogeneity
of the dose distributions. Adding isocenter information additionally to contour
information, less dose normalization is necessary in order to obtain a good dose
distribution. Moreover the obtained results for the model using isocenter and
contour information are similar to those described in literature [10].

To be able to administer this dose in clinical practice, a treatment plan
containing the optimal machine parameters should be established using a tool
called ‘dose mimicking’. To define the overall benefits of the isocenter and contour
information, dose mimicking itself should be taken into account in future studies.
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5 Conclusion

We demonstrate that isocenter information has a dose normalization effect, while
contour information remains important to obtain more homogeneous dose dis-
tributions. Dose mimicking is necessary to define treatment parameters, which
may in turn also influence the final dose slightly.
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Abstract. Large nodal masses shrink during head-and-neck radiation
treatment. If the shrinkage is dramatic, nearby organs at risk (OARs)
may receive potentially harmful radiation dose. In an institutional IRB-
approved protocol, patients were monitored with weekly T2-weighted
MRIs. Gross tumor volumes (GTV) from pre-treatment MRI were prop-
agated to weekly MRIs via deformable image registrations (DIR) for
tracking the change of GTV nodal volume and detection of signifi-
cant shrinkage. This detection method, however, becomes problematic
when a significant amount of the nodal mass dissolves during treat-
ment, invalidating the assumption of correspondence between images for
accurate deformable registration. We presented a novel method using
image saliency to detect whether a involved nodal volume becomes sig-
nificantly small during the treatment. We adapted a multi-resolution
pyramid method and introduced symmetry in calculating image saliency
of MRI images. The ratio of mean saliency value (RSal) from the prop-
agated nodal volume on a weekly image to the mean saliency value of
the pre-treatment nodal volume was calculated to assess whether the
nodal volume shrank significantly. We evaluated our method using 94
MRI scans from 19 patients enrolled in the protocol. We achieved AUC
of 0.97 in detection of significant shrinkage (smaller than 30% of the
original volume) and the optimal RSal is 0.698.

Keywords: Image saliency · Nodal tumor shrinkage · Radiotherapy ·
Adaptive Radiation Therapy (ART)

1 Introduction

1.1 Clinical Background

Radiation therapy (RT) is one of the main treatment options for head-and-
neck (H&N) cancer patients. The most common type of radiation therapy is
called external-beam radiation (XRT) in which high-energy rays (or beams) are
c© Springer Nature Switzerland AG 2019
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delivered by a linear accelerator to deposit radiation dose from outside the body
into the tumor.

A specific type of external-beam radiation therapy is intensity-modulated
radiation therapy (IMRT) which uses advanced technology to modify the radi-
ation beam to match the precise contour of a gross tumor volume (GTV) and
minimize the damage to surrounding normal organs at risk (OARs). To achieve
this, a treatment plan is generated using a computed tomography (CT) scan
acquired prior to treatment delivery. The CT scan allows the team to capture
patient specific anatomical geometry for beam optimization and precise dose cal-
culations. The plan, however, does not consider potential changes to the patients’
anatomy during a treatment course. Therefore, the results of the dose distribu-
tion may deviate from initial plan during treatment. Occasionally, large GTV
nodal volumes demonstrate dramatic shrinkage [1,2] during 5–7 week treatment
course. With IMRT, the dosimetric consequences of such changes could be signif-
icant, particularly when the target is adjacent to critical OARs. Our observations
show that critical structures may move into sharp high dose areas created in the
original treatment plan. Adaptive radiotherpay (ART) [3,5,6] aims to observe
the anatomical changes during the treatment using repeating imaging during
treatment and adjust the initial plan accordingly.

1.2 Monitoring Volume Changes Using Deformable Image
Registration

Deformable image registration (DIR) has been widely used to automatically
propagate regions of interests (ROIs) from pre-treatment images to the most
recent images to identify anatomical deviations during a radiotherapy course.
For simplicity, Eq. 1 shows the cost function commonly used in DIR algorithms
to be minimized for obtaining a displacement vector field v.

C(v) = S(Ifixed, v(Imoving)) + R(v) (1)

S is a similarity term that penalizes differences between a fixed image Ifixed and
the deformed moving image v(Imoving). R is a regularization term to control
smoothness of the displacement vector field.

Studies have shown that while DIR performed well for OARs, DIR-
propagated GTVs still require expert correction [4]. In our study, although we
used T2-weighted MRI images for superior soft tissue contrast compared to CT,
the average Dice score for propagated nodal volumes dropped from 0.85 at week
1 to 0.72 at week 4. For the similarity term to work in DIR algorithms, the tissue
must exists on both fixed and moving images. Such assumption becomes invalid
at certain stages within the treatment course due to tissue loss, a resultant of
significant tumor regression. Figure 1 shows an example of substantial nodal
tumor regression. A majority of cancerous tissues visible on the pre-treatment
T2 MRI image disappeared on week 4 image taken during the treatment. The
nodal volume propagated from pre-treatment image to week 4 image could no
longer accurately detect the significant volume shrinkage.
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We propose a novel approach that analyzes salient regions of images along
with DIR-propagated volumes to accurately and automatically detect significant
tumor regression during the treatment to facilitate adaptive radiotherapy.

Fig. 1. The nodal volume (red) on the pre-treament T2-weighted MRI image (left)
was propagated to the week 4 image (right) which does not agree well with the ground
truth drawn by a physician (cyan). (Color figure online)

2 Methods

2.1 Image Saliency

On H&N T2-weighted MRI images, nodal GTVs often exhibit distinct percep-
tual quality which makes tumor tissue visually emerge from neighboring normal
tissues and attract our attention. Visual attention regions can be automatically
identified using an image saliency map. Figure 2 shows our proposed framework
to generate an image saliency map from an image by adapting a classic method
[7]. An intensity Gaussian pyramid is first generated from MRI images. We then
applied Gabor filters at 0, 45, 90 and 135◦ to generate orientation features at
each scale of the intensity Gaussian pyramid. In addition, we introduced a sym-
metry feature to highlight locations of the abnormal tissue. In H&N cancer,
malignancies often spread to lymph nodes on one side of the neck depending
on the location from which the primary tumor originated. In contrast, normal
H&N images are symmetrical. We define the symmetry feature as a point-wise
subtraction:

Sym(Y ) = |Y − FlipLR(Y )|, (2)
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where FlipLR(Y ) is the horizontally flipped image of Y in left-right direction.
Figure 2 shows our proposed framework to generate an image saliency map.

Fig. 2. Image saliency framework.

For each feature pyramid (intensity, orientation and symmetry), across-scale
difference, denoted “�”, between a finer scale s∈ {2, 3, 4} and a coarser scale
c = s + δ, δ ∈ {3, 4} was calculated by interpolation to the finer scale and point-
wise subtraction:

�I(s, c) = |I(s) − I↑s(c)|, (3)

�S(s, c) = |S(s) − S↑s(c)|, (4)

�O(s, c, θ) = |O(s, θ) − O↑s(c, θ)|, (5)

where I, S,O are the feature maps for intensity, symmetry and orientation
respectively, ↑s is interpolation to scale s, and θ is the degree of Gabor filter.

The resulting cross-scale difference maps then were normalized to eliminate
amplitude differences between feature maps and to elevate maps in which a
small number of strong peaks of activity stand out, while underplaying maps
containing numerous peaks that have similar activities. Given a map x, the
normalization operator ⊗ is defined as

⊗x(i) = (1 − mw(x[0...1], i))2x[0...1](i), (6)

where x[0...1] is the map normalized to range [0...1] and mw is the mean of local
maximums given a local window size w. The normalized cross-scale feature maps
are then resized and united to generate an feature-specific attention map using
point-wise addition.

I ′ = ⊕↑1
s∈{2,3,4},c=s+δ,δ∈{3,4} ⊗ (�I(s, c)), (7)
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S′ = ⊕↑1
s∈{2,3,4},c=s+δ,δ∈{3,4} ⊗ (�S(s, c)), (8)

O′ =
∑

θ∈{0◦,45◦,90◦,135◦}
⊗(⊕↑1

s∈{2,3,4},c=s+θ,θ∈{3,4} ⊗ (�O(s, c, θ))), (9)

The final saliency map is created from a linear and weighted combination of
the feature-specific attention maps:

Sal(x) = ⊕(I ′
x, S′

x, O′
x) = wII

′
x + wSS′

x + wOO′
x, (10)

Figure 3 shows the image saliency maps corresponding to Fig. 1. The involved
nodal volume (depicted by the arrow) shows high saliency in the map of the pre-
treatment image (left), comparing to low saliency at the same location on the
week 4 image (right) acquired during the treatment as the tumor regressed.

Fig. 3. The image saliency maps corresponding to Fig. 1.

2.2 Detection Metric for Significant Nodal Volume Shrinkage

While DIR may lose track of volumes should there be significant nodal volume
shrinkage during treatment as discussed in Sect. 1. The incorrectly deformed vol-
umes could still be useful in detecting significant volume shrinkage by analyzing
image information inside the deformed volumes. Given a nodal target structure
NGTV defined in the pre-treatment image Ypre, we define a ratio of saliency
metric (RSal) as

RSal(NGTV, t) = Salx,x∈NGTVt
(Yt)/Salx,x∈NGTV (Ypre), (11)

where NGTVt be the DIR-propagated volume on the image Yt acquired at time
point t during the treatment, and Salx is the mean saliency value of voxels inside
the structure.
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The idea of using a ratio is that the node’s un-treated volume and regressed
volume attract different attention levels. When the shrinkage is extensive, the
location where the original nodal volume was located (identified by NGTVt), is
most certainly occupied by normal tissues and fluid, therefore, should attract
much less attention compared to the original nodal target (NGTV ).

3 Experiments

3.1 Data Set

Our experiment data set included 94 pre-treatment and weekly T2-weighted fat-
suppression MRI image series from 19 patients recruited on an institutional IRB-
approved protocol. Pre-treatment nodal target volumes were manually delin-
eated by physicians and were approved for treatment planning. In addition,
weekly nodal volumes were manually delineated by physicians or senior planners
and served as ground truth to quantify nodal GTV shrinkage.

3.2 Volume Propagation

A DIR algorithm developed by MIM SoftwareTM (Beachwood, OH) was used
for deformable image registrations between pre-treatment and weekly images.
Pre-treatment volumes were propagated onto weekly images by applying the
displacement fields from DIR. The process was fully automated without human
intervention.

3.3 Evaluation

Studies [1,2] reported a mean relative shrinkage of nodal GTV to be 45–50%
after 20 treatment days. We evaluated our method (RSal) in the detection of
significant shrinkage: whether the weekly volume of nodal GTV is (1) smaller
than 40% and (2) smaller than 30% of the initial volume. For comparison, we
used shrinkage calculated from DIR-propagated volumes (Xform) as the con-
trol. In addition, we randomly sampled 5000 points inside each nodal GTV in
the pre-treatment images and transformed the points to weekly images using
the displacement vectors from DIR. We then calculated the normalized cross-
correlation (NCC) of the intensities from the sample points in the pre-treatment
image and transformed sample points in the weekly images as another metric
in the comparisons. We used ROC (receiver operating characteristic) for perfor-
mance measurement for the detection accuracy.

3.4 Results

In detecting volume of nodal GTV that is smaller than 40% of the initial volume,
Area under ROC curve (AUC) for RSal, NCC and XForm are 0.89, 0.85 and 0.86
respectively. RSal achieved specificity of 0.83 and sensitivity of 0.84 using the
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optimal threshold 0.799. In detecting volume of nodal GTV that is smaller than
30% of the initial volume, AUC for RSal, NCC and XForm are 0.97, 0.93 and
0.83 respectively. RSal achieved specificity of 0.92 and sensitivity of 0.90 using
the optimal threshold 0.698. Figures 4 and 5 show the ROC plots of performance
comparison in detecting significant shrinkage.

In terms of computation time, the saliency calculation is within 40 ms for a
256 × 256 MRI slice.

Fig. 4. ROC plot of performance in detecting the volume of nodal GTV smaller than
40% of the initial volume.

Fig. 5. ROC plot of performance in detecting the volume of nodal GTV smaller than
30% of the initial volume.
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4 Conclusion and Future Works

Tracking and detecting significant nodal volume shrinkage during the radiation
treatment can facilitate adaptive planning to avert potentially harmful dose to
nearby OARs. We propose a novel approach using image saliency to detect sig-
nificant volume shrinkage and introduced a symmetry feature in saliency calcula-
tion. The experiment results showed that our method can achieve high accuracy
in detection and is computationally inexpensive. We are currently increasing our
patient cohort, evaluating such patient cases for further investigation. In partic-
ular, we are looking at the dosimetric modifications resulting from GTV nodal
volume change to help develop a trigger that can alert physicians when a volume
change is significant enough to warrant the need for plan adaptation.
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Abstract. Four-dimensional computed tomography (4D-CT) has been used in
radiation therapy to allow for tumor and organ motion tracking throughout the
breathing cycle. It can provide valuable information on the shapes and trajec-
tories of tumor and normal structures to guide treatment planning and improve
the accuracy of tumor delineation. Respiration-induced abdominal tissue motion
causes significant problems in effective irradiation of abdominal cancer patients.
Accurate and fast deformable image registration (DIR) on 4D-CT could aid the
treatment planning process in target definition, tumor tracking, organ-at-risk
(OAR) sparing, and respiratory gating. However, traditional DIR methods such
as optical flow and demons are iterative and generally slow especially for large
4D-CT datasets. In this paper, we present our preliminary results on using a fast-
unsupervised generative adversarial network (GAN) to generate deformation
vector fields (DVF) for 4D-CT DIR to help motion management and treatment
planning in radiation therapy. The proposed network was trained in an unsu-
pervised fashion without the need of ground truth DVF or anatomical labels.
A dilated inception module (DIM) was integrated into the network to extract
multi-scale motion features for robust feature learning. The network was trained
and tested on 15 patients’ 4D-CT abdominal datasets using five-fold out cross
validation. The experimental results demonstrated that the proposed method
could attain an accurate DIR between any two 4D-CT phases within one minute.

Keywords: 4D-CT � Image registration � Unsupervised deep learning

1 Introduction

Respiration-induced abdominal tissue motion causes significant problems in treatment
planning and radiation delivery for abdominal cancer patients. 4D-CT has been used in
radiation therapy for treatment planning to reduce dose to healthy organs and increase
dose to the tumor target [1, 2]. Deformable image registration (DIR) could be used to
process the 4D-CT images and track internal organ movement. Accurate and fast DIR
on 4D-CT could facilitate multiple treatment planning processes such as target defi-
nition, tumor tracking, OAR sparing and respiratory gating. However, traditional DIRs
[3] such as optical flow and demons are iterative and generally very slow especially for
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large 4D-CT datasets. Therefore, it is necessary to develop a fast and accurate for 4D-
CT DIR to aid motion management and treatment planning process in radiation
therapy.

Deep learning-based image registration methods can be divided into three cate-
gories: deep iterative registration, supervised transformation estimation, and unsuper-
vised transformation estimation [4]. Deep iterative registration algorithms aim to
augment the performance of traditional, iterative, intensity-based registration methods
by using deep similarity metrics. Therefore, deep iterative registration algorithms have
the same limitation of slow processing speed as the traditional registration algorithms.
Supervised transformation estimation algorithms utilize either manually aligned image
pairs in the case of full supervision or manually defined anatomical structure labels in
the case of weak supervision. Manual preparation of large sets of training datasets is
laborious, subjective and error-prone. To avoid manual processes, synthetic images can
be generated by deforming the fixed image with an artificial DVF for the supervision of
the transformation estimation networks. However, the artificial DVF may lead to biased
training since the artificial DVF is unrealistic and can be very different from physio-
logical motion.

In this paper, we focused on unsupervised deep learning DIR methods. Ghosal
et al. proposed another unsupervised DIR for 3D MR brain images by optimizing the
upper bound of the sum of squared difference (SSD) between the fixed image and the
deformed image [5]. Their method outperformed the log-demons based registration. An
unsupervised feature selection framework for 7T MR brain images was proposed by
Wu et al. using a convolutional-stacked autoencoder network [6]. However, this
method still inherits the existing iterative optimization for DVF calculations, which is
computation slow. De Vos et al. trained a fully convolutional neural network (FCN)
using normalized cross correlation (NCC) to perform 4D cardiac cine-MR volume
registration [7]. They showed that their method has outperformed Elastix based reg-
istration [8]. These unsupervised methods were mainly focused on 2D/3D MR brain
images and cardiac images. Compared to MR brain images registration, abdominal 4D-
CT image registration is more challenging due to the poorer image contrast and sig-
nificant abdominal motion in 4D-CT. The large respiration-induced abdominal motion
poses additional difficulties in image registration and DVF regularization. To overcome
these challenges, we have developed a novel unsupervised generative adversarial
network (GAN)-based method to directly estimate the DVF from any two phases of
abdominal 4D-CT images in a single forward prediction. A dilated inception module
(DIM) was integrated into the network generator to extract multi-scale structural fea-
tures for robust feature learning. Nonlinear sparse regularization was used to enforce
sparseness of DVF within the small-motion or static regions. The gradient and bending
energy of the predicted DVF were penalized to ensure the smoothness and physical
fidelity of the deformation field.
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2 Methods

Section 2.1 provides a system overview of the proposed DIR model and the pre-
processing steps to prepare training datasets. In Sect. 2.2, we detail the network
architecture of the proposed model. The network losses and DIR regularizations are
described in Sect. 2.3.

2.1 4D-CT Training and Testing Data and System Overview

We trained our 4D-CT DIR model using data from a clinical database of 15 patients
undergoing radiation therapy. For each patient, the dataset contains 10 CT images,
which are binned according to the breathing cycle, that were acquired using a
Siemens CT scanner. The resolutions of the 4D-CT datasets range from 0.9 � 0.9 �
2.5 mm to 1.2 � 1.2 � 2.5 mm depending on the patient size. The proposed DIR
model was designed to perform DIR between any two phases of a 4D-CT dataset. The
proposed network was trained and tested using five-fold cross-validation.

Figure 1 illustrates our method’s model training and DIR workflow. Our model was
designed in a 3D patch-based fashion. The training data were collected via extracting
pairs of 3D patches from the moving and fixed images by sliding a window of 48� 48�
64 voxels. To enlarge the variety of training data, the overlap size between two
neighboring patches was set to 24 � 24 � 32 voxels, and any two different phases of
each training patient were regarded as moving and fixed CT images. The patch size in
the superior-inferior direction was set to be 64 instead of 48 since the respiration-
induced abdominal motion was larger in this direction than the other two directions.

The motion information of a pair of moving and fixed patches was first coarsely
learned by a DIM. Then, it was fed into a generator to learn deeper features and to map
to an equal sized DVF. The deformed patch was obtained by registering the moving
patch via a spatial transformer with DVF. To optimize the DIM and the generator, both
the regularization of DVF and the performance of generated DVF for registration were
taken into account. For unsupervised training, additional regularization is necessary

Fig. 1. The schematic flow diagram of the proposed method. The upper row shows the training
stage for DVF inference. The lower row shows the DIR procedure where one phase was
deformed to match another phase in a new 4D-CT.
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due to the lack of a ground truth DVF. Therefore, we incorporated an adversarial loss
term in the optimization to avoid unrealistic DVF prediction.

After training the model, a DVF between any two phases of a new patient was
obtained by feeding the moving and fixed patches into the trained model to estimate
DVF patches, then fusing the DVF patches together to whole image’s DVF. The
moving phase was deformed to fixed phase using the whole-image DVF.

2.2 Network Architecture

The proposed network has three separate sub-networks with a DIM and generator
dedicated for DVF inference and a discriminator dedicated to judge how realistic a
deformed patch looks. Figure 2 shows the architectures of these three sub-networks.

The proposed DIM was inspired by Google’s Inception Module (GIM) [9] which
consists of three convolutional kernels of different sizes and a same sized max-pooling,
The module attempts to compare and capture motion information from different scales
for later DVF estimation. However, the number of trainable parameters increases
significantly as the convolutional kernel size increases [10]. To reduce the computa-
tional cost, we proposed a dilated convolution with fixed kernel size and different
dilation rates in this study. Compared to GIM, the proposed dilated inception module
can achieve the same receptive field as that of the GIM with much fewer trainable
parameters. The dilated convolutional kernels with different dilation rates can extract
multi-scale information from the images [11]. 4D-CT provides high in-plane resolution
images with abundant information which require extensive computational resources
without yielding much benefit. The dilated convolutional kernels are more efficient than
the common inception module in skipping the redundant voxel-by-voxel information
and extracting only the representative multi-scale textures. We reported the number of
trainable parameters needed to achieve the same reception field for both the dilated
inception module and the common inception module in Table 1. For comparison, the
common inception module needs 31.8 times more parameters than the dilated inception
module to achieve same receptive filed.

The generator was implemented in an end-to-end U-Net fashion [12]. Residual
blocks [13], which aimed to learn the structural differences between the moving and
fixed patches, were used for the skip connections between same sized feature maps
extracted from encoding and decoding paths in generator.

Fig. 2. The architecture of proposed GANs including one generator and one discriminator.
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The discriminator is used to judge the realism of the deformed patch against the
fixed patch. As shown in the discriminator architecture, the discriminator is a typical
classification-based fully convolutional network (FCN), which consists of multiple
convolutional layers, each with a stride size of 2 [14]. The discriminator outputs a
reduced-size binary mask with1 denoting a real voxel and 0 denoting a fake voxel.

2.3 Loss Functions and Regularizations

The loss function consists of three parts: the image similarity loss, the adversarial loss,
and the regularization loss.

G ¼ argmin
G

1� CC I
�
movu; Ifix

� �þ a � GD I
�
movu; Ifix

� �

þ b � ADV I
�
movu; Ifix

� �þ c � R uð Þ
� �

ð1Þ

where u ¼ G Imov; Ifix
� �

represents the predicted deformation field for a fix and moving
image patch pair. The deformed image patch, I

�
movu; was obtained by warping the

moving image patch by the predicted deformation field using a spatial transformation.
CC �ð Þ denotes the cross-correlation loss, GD �ð Þ denotes the gradient difference loss
between the fix and moving image patches. The cross-correlation loss and gradient loss
of the images together represent the image similarity loss. ADV �ð Þ denotes the
adversarial loss, which is computed as the discriminator cross entropy loss of the
deformed and fixed patches after central cropping. The central cropping was utilized to
avoid boundary effects during registration. The cropped image patch size was
36 � 36 � 48. The discriminator is implemented using a conventional FCN. The
purpose of the adversarial loss was to encourage the deformed image to look like a
realistic image by penalizing implausible DVFs and unreasonably deformed images.
R uð Þ denotes the regularization term.

R uð Þ ¼ uk k2 þ l1 ruk k2 þ l2 r2u
�� ��

2 ð2Þ

The proposed regularization term includes weighted terms of a l2-norm of the
predicted DVF and its first and second derivatives. The l2-norms of the first and second
derivatives of DVF were used to enforce general smoothness of the predicted DVF. We
observed that the motion between any two phases of 4D-CT are very small for most of

Table 1. Comparison of the number of trainable parameters needed to achieve same reception
field between GIM and DIM.

Layers Kernel size # Feature maps # Parameters Total

GIM Conv1 6 � 6 � 6 8 1736 21408
Conv2 9 � 9 � 9 8 5840
Conv3 12 � 12 � 12 8 13832

DIM Conv1 r = 2 3 � 3 � 3 8 224 672
Conv2 r = 3 3 � 3 � 3 8 224
Conv3 r = 4 3 � 3 � 3 8 224
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the background region. Therefore, we aimed to enforce the sparsity of the predicted
DVF to register regions with minor motion. Adam gradient optimizer with learning rate
of 1e−5 was used for optimization.

3 Results

Five-fold cross-validation testing was performed on 15 4D-CT abdominal patients’
datasets. We randomly partitioned the 15 patients 4D-CT images into five equal sized
subgroups. One subgroup was retained as the validation data for testing the model, and
the remaining four subgroups were used as the training data. Mean absolute error
(MAE), peak signal-to-noise ratio (PSNR) and normalized cross correlation
(NCC) were calculated between the deformed and fixed images for quantitative eval-
uations. At least three fiducial markers were placed inside patient for pancreas tumor
localization. Target registration errors (TREs) were calculated based on these fiducial
markers for the proposed method.

Figure 3 shows a comparison of the proposed method with and without DIM. Part
of the images shown in (b3) look unrealistic, suggesting an inaccurate deformation field
around this region. In comparison, the image in (b5) shows significant improvement
over (b3), indicating the importance of the dilated inception module. The comparison
between (b4) and (b6) also suggests that using the dilated inception module could
largely improve the registration accuracy. Similar phenomena were observed on the
sagittal views, i.e. (d3–d6) and coronal views i.e. (f3–f6).

Fig. 3. Comparison between results computed with and without DIM. Images from left to right
are the moving, fixed, deformed image without using DIM, difference image between the
deformed image without using DIM and fixed image, deformed image using DIM, and the
difference image between the deformed image using DIM and the fixed image.
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Figure 4 shows an example of deformed CT image from moving image to fixed
(reference) image. This deformed CT is close to fixed CT images. Table 2 shows the
numerical results between the deformed and fixed CT for each patient. Overall, the
mean MAE, PSNR, NCC and TRE were 15.6 ± 4.6 HU, 38.0 ± 3.3 dB,
0.996 ± 0.002 and 2.48 ± 0.98 mm, which demonstrated the deformation accuracy of
the proposed method.

4 Conclusion and Discussion

The method proposed can be used for lung and abdominal 4D-CT DIR, which in turn
can be used as a promising tool for lung and abdominal motion management and
treatment planning during radiation therapy. The proposed method allows accurate DIR
between any two 4D-CT phases within one minute. For this preliminary study, we used
cross correlation and gradient difference as image similarity loss function to optimize
the network. Other image similarity metrics such as mean absolute error and mutual
information could be used together with the cross correlation to improve the perfor-
mance. Since the network was trained in an unsupervised manner without any prior
knowledge about the correct physiological motion patterns, the DVF regularization was
especially important for accurate DVF predictions. In this study, only spatial
smoothness and DVF sparsity were used for regularization, which might not be suf-
ficient. The DVF sparsity constraint worked well in regions where motion was mini-
mal, i.e. the bone. It does not work very well in regions where both poor image contrast

Fig. 4. 4D CT registration results. Images from left to right are the fixed, moving and fusion
image between the fixed and moving images before registration, deformed images, fusion image
between the fixed and deformed images after registration.

Table 2. Numerical evaluation of the proposed method.

MAE (HU) PSNR (dB) NCC TRE

Proposed 15.6 ± 4.6 38.0 ± 3.3 0.996 ± 0.002 2.48 ± 0.98
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and large motion are present, i.e. within the liver. Future work will incorporate prior
DVF knowledge to the regularization.
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Abstract. Current image-guided prostate radiotherapy often relies on
the use of implanted fiducial markers (FMs) or transducers for target
localization. Fiducial or transducer insertion requires an invasive proce-
dure that adds cost and risks for bleeding, infection and discomfort to
some patients. We are developing a novel markerless prostate localization
strategy using a pre-trained deep learning model to interpret routine pro-
jection kV X-ray images without the need for daily cone-beam computed
tomography (CBCT). A deep learning model was first trained by using
one thousand annotated projection X-ray images. The trained model
is capable of identifying the location of the prostate target for a given
input X-ray projection image. To assess the accuracy of the approach, six
patients with prostate cancer received volumetric modulated arc therapy
(VMAT) were retrospectively studied. The results obtained by using the
deep learning model and the actual position of the prostate were com-
pared quantitatively. Differences between the predicted target positions
using DNN and their actual positions are (mean ± standard deviation)
1.66 ± 0.41 mm, 1.63 ± 0.48 mm, and 1.64 ± 0.28 mm in anterior-
posterior, lateral, and oblique directions, respectively. Target position
provided by the deep learning model for the kV images acquired using
OBI is found to be consistent that derived from the implanted FMs. This
study demonstrates, for the first time, that highly accurate markerless
prostate localization based on deep learning is achievable. The strat-
egy provides a clinically valuable solution to daily patient positioning
and real-time target tracking for image-guided radiotherapy (IGRT) and
interventions.

Keywords: Image-guided radiation therapy · Deep learning ·
Markerless tracking

1 Introduction

Radiotherapy is an effective, targeted therapy for the management of clinically-
localized prostate cancer, which accounts for over 28% of total cancer cases in the
United States. Recent advance of highly conformal external-beam radiotherapy,
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Fig. 1. External-beam radiotherapy. a. Clinical radiation treatment machine with
imaging guidance using on-board flat-detector imager. b. Pipeline of radiotherapy. c.
Implanted gold fiducial markers used for daily positioning and real-time tracking in
image-guided radiotherapy.

such as volumetric modulated arc therapy (VMAT), has greatly augmented our
ability to shape the toxicity profile by conforming radiation dose to the tumor
target while sparing the normal tissue. However, just being able to produce
conformal dose distributions is not enough as it only fulfills part of the require-
ments of precision radiotherapy. This is because the position of prostate may
change from both inter-fraction and intra-fraction motion. For patients to truly
benefit from the advanced planning and dose delivery techniques, we must also
ensure that the planned dose is delivered to the right location and at the right
time [5,7,15]. Hence, an effective imaging method for real-time tumor localiza-
tion is very important for precision radiotherapy.

However, there are limited real-time image guidance strategies for radiother-
apy. The recently developed and released on-board magnetic resonance imaging
(MRI) technique requires huge amount of hardware support and cost [1], which
poses a significant burden for most radiotherapy treatment sites. Intra-fraction
monitoring using ultrasound is possible, but its tracking accuracy is inferior and
thus it is still at early stage of development [10]. Instead, the use of stereoscopic
or monoscopic kV X-ray imaging with on-board imager (Fig. 1a) amounted on
the most of the currently available radiotherapy facilities can provide high accu-
racy and it is more practicable [15]. While using this method, the low prostate
contrast makes it difficult to see the prostate on the projection X-ray images.
Thus, metallic fiducial markers (FMs) are often implanted into the prostate to
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facilitate the patient setup and real-time tumor tracking [3,13], as shown in
Fig. 1c. However, the implantation of the FM is an invasive procedure which
may introduce bleeding, infection and discomfort to the patient. It also requires
the service of an interventional radiologist or other specialist and prolongs the
treatment procedure. Besides, studies have shown FM can migrate within the
patient and the prostate exhibits random deformation leading to uncertainty to
target localization [9].

As a part of machine learning, deep learning has been leveraged in the whole
radiotherapy pipeline except beam delivery, which includes tumor diagnosis and
staging [2], treatment planning [6,16], and follow up studies [4], as shown in
Fig. 1b. However, no prior efforts have been devoted to the key component, beam
delivery. Here, we report the development and validation of a patient-specific
deep-learning model, based on a realistic training data generation scheme, to
achieve marker-free location of treatment target for prostate IGRT. We validate
the localization accuracy using independent validation datasets on orthogonal
directions to show the feasibility of daily positioning, and an oblique direction to
show the feasibility of real-time tracking. Validation using positioning kV images
acquired with OBI is also included. We believe this is a major step forwards for
deep learning in IGRT and is essential for fully machine intelligence powered
external-beam radiotherapy.

2 Materials and Methods

2.1 Deep Learning for Tumor Target Localization

The workflow of the proposed deep learning-based target localization process for
prostate IGRT include three steps. The first step is to generate training datasets
of kV projection X-ray images reflecting various situations of the anatomy,
including different level of rotation, organ deformation, and translation of the
patient. For this purpose, robust deformable models described by motion vector
fields (MVFs) are used to deform simulation CT to different clinical scenar-
ios. The second step is to generate digitally reconstructed radiographs (DRR)
for each deformed CT dataset in a predefined direction. Finally, the annotated
samples are used to train a deep learning model for subsequent localization of
the prostate target. Validation tests using both simulated DRR and clinical on-
board imager (OBI) daily positioning images were performed. More details are
described in the following subsections.

2.2 Generation of Labeled Training Datasets for Deep Learning

Due to the low contrast of the prostate, we propose to generate kV projec-
tion images for different anatomical positioning scenarios from augmented pCT
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for a specific patient. In order to obtain the labeled DRR images which incor-
porate numerous possible clinical statuses (such as positioning and shapes) of
the involved anatomical structures to train the deep learning model for a spe-
cific patient at specific direction, a well validated deformable image registration
method [14] is employed to extract the general MVFs which are used to deform
the planning CT data. The deformations are performed together with other
possible transformations (rotation and random translation) in clinical scenarios.
Specifically, for the pCT images of each patient, we first introduce rotations
(from −4◦ to 4◦ with 2◦ interval) to the images around superior-interior direc-
tion. Then, to deform the high-quality planning CT data, we extract MVFs by
registering pre-treatment daily positioning cone-beam CT (CBCT) data from
different courses of treatment with respect to the well-defined pCT. After apply-
ing the MVFs to the rotation incorporated pCT images, a series of 250 CT data
that cover different clinical scenarios are generated and these data are used to
mimic the specific patient in different positions and statuses. The deformed CT
datasets are then divided into two parts, where 225 deformed CT datasets are
used for model training and the other 25 deformed CT datasets are used for
model testing.

The corresponding DRRs along the directions of anterior-posterior (AP), left-
right (LR), and oblique degree (135◦) are then generated for each deformed CT
data using accurate X-ray reprojection model. In the reprojection calculation, we
use the realistic OBI geometry with the source to detector distance of 1500 mm
and the source to patient distance of 1000 mm. The projection pixel size and
array size are the same as the OBI. The DRR calculation is implemented using
CUDA C with graphics processing unit (Nvidia GeForce GTX Titan X, Santa
Clara, CA) acceleration. Each of the DRR is then randomly shifted 4 times to
further increase the sample sizes. Hence, a total of 900 DRRs are generated for
each projection direction for the training of deep learning model for the specific
patient, and 100 DRRs are used for testing. To annotate the DRRs, for each
patient, we extract the delineated prostate contour used for treatment planning.
The prostate is applied to the same changes (deformations, rotations, transla-
tions) as the pCT data. The prostate after change is reprojected using consistent
OBI geometry to produce prostate-only projection for the corresponding simu-
lated kV projection. The bounding box of the prostate for the prostate-only pro-
jection is then calculated and is regarded as an annotation of the corresponding
simulated kV image (DRR). The DRRs and the corresponding bounding box
information (top-left corner, width, height) are used to train a deep learning
model.

2.3 Deep Learning Model

With the annotated datasets, we are able to train a deep learning model to
localize the prostate for IGRT without implanted FMs. In our deep learning
model, the input is either a DRR image or a monoscopic X-ray projection image



38 W. Zhao et al.

AP(0º) LR(90º) Oblique(135°)

Pa
en

t 1

Ground truth Predicted

Pa
en

t 2
Pa

en
t 3

Fig. 2. Examples of the prostate boundary boxes derived from the deep learning model
(yellow dashed box) and their corresponding annotations (blue box), overlaid on top
of the patients DRRs. The first, second and third columns show the results in AP,
oblique and L-Lat directions, respectively. In all directions, the predicted prostate
position agrees with the known position better than 3 mm. (Color figure online)

acquired by the OBI system from a given direction, and the output is the location
of the treatment target. In this study, we train a faster-rcnn model to localize
the prostate. The model includes a region-proposed network and a region-based
convolutional neural network and these two networks can share the feature hier-
archies to achieve real-time detection [12]. Hence, it is desirable for target track-
ing in radiotherapy. We use VGG16 ConvNet as the feature extractor and 10
epochs to train the network. The learning rate is set to 0.001. For efficient train-
ing of the deep learning model, the annotated samples are cropped into the size
of 700 × 1000. Before training, all training samples are randomly permuted.

2.4 Validation of the Prostate Localization Model

In this institutional review board-approved HIPPA-compliance study, the deep
learning-based prostate localization model is validated by retrospective analysis
of 6 VMAT patients. Patients have a median age of 77 (range, 70–85). For each
patient, the pCT images along with the structure file for treatment planning
and patient setup images (CBCT images or orthogonal kV fiducial images) were
retrieved from Varian External Beam Planing system (Eclipse, Varian Medical
System, Palo Alto, CA). A set of 900 synthetic DRRs was generated for each of
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Table 1. Mean absolute difference and Lin’s concordance correlation coefficients
between the predicted and annotated prostate positions in anterior-posterior, left-right,
and oblique directions. Data are shown as means ± standard deviations.

Patient index Anterior-posterior Left-lateral Oblique

Deviations (mm) ρc Deviations (mm) ρc Deviations (mm) ρc

1 Δx 1.78± 1.77 0.95 2.16± 1.43 0.93 1.63± 1.26 0.96

Δz 0.98± 0.64 0.97 1.15± 0.78 0.92 1.28± 0.97 0.93

2 Δx 2.07± 1.22 0.96 1.50± 1.20 0.96 1.79± 1.22 0.95

Δz 2.48± 2.32 0.91 1.19± 0.80 0.89 1.69± 1.05 0.91

3 Δx 1.50± 1.08 0.95 2.37± 1.70 0.93 1.50± 1.06 0.96

Δz 1.82± 1.28 0.90 1.70± 0.71 0.91 1.36± 1.13 0.89

4 Δx 1.58± 1.10 0.97 2.51± 1.83 0.94 1.93± 1.65 0.96

Δz 1.03± 0.69 0.93 1.49± 1.10 0.91 1.33± 0.93 0.93

5 Δx 1.78± 1.49 0.97 1.73± 1.28 0.96 2.16± 1.64 0.94

Δz 1.45± 1.02 0.98 1.08± 0.78 0.94 1.81± 1.24 0.98

6 Δx 1.69± 1.51 0.96 1.48± 1.15 0.96 1.87± 1.86 0.97

Δz 1.76± 1.58 0.94 1.27± 0.95 0.91 1.41± 1.31 0.94

Mean± Std 1.66± 0.41 1.63± 0.48 1.64± 0.28

three directions (AP, LR, and an oblique direction 135◦) for each patient. These
DRRs are employed to train a deep learning model, which was then tested using
100 independent DRRs. A patient whose prostate implanted FMs and was setup
using the kV fiducial images acquired using OBI was also examined to directly
show the potential of the method for prostate localization. Mean absolute differ-
ence (MAD) and Lin’s concordance correlation coefficient (ρc) [8] was calculated
to assess the results along with the difference between the annotated position
and DNN predicted position of the prostate.

3 Results

Examples of the prostate bounding boxes (dashed yellow lines) predicted for
three patients in AP, LR and oblique directions using the deep learning app-
roach are shown in Fig. 2. Here the blue lines show the annotated bounding box
obtained from the raw pCT images of the specific patients. It is seen clearly
that the predicted bounding box positions match the annotated positions very
well in all three directions for all patients. Table 1 summarizes the results of the
Lin’s concordance correlation coefficients and MADs between the model pre-
dicted positions and the annotated positions for all 6 patients. For all cases, the
MADs are smaller than 3 mm and ρc values are greater than 0.89, suggesting
the predicted positions and the annotated positions agree each other well.
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Course 1 Course 2 Simulated projec on

Fig. 3. Predicted and actual positions of the prostate target overlaid on top of the
anterior-posterior simulated projections (3rd column) as well as the OBI images (1st
and 2nd columns) for two different treatment courses of a patient who was setup using
kV fiducial imaging. OBI = on-board imager.

It took about 2 h to train a specific model for a given direction for a patient.
The training was performed on a server with configuration of Intel Core i7-6700K
RAM 32 GB and Nvidia GeForce GTX Titan X GPU. Once the model is trained,
it took less than 200 ms for prediction, which is very desirable for real-time tumor
tracking during radiotherapy dose delivery, showing the merit of the proposed
method.

Figure 3 shows the predicted prostate positions (the dashed yellow bounding
box) in a simulated projection (DRR) and two kV fiducial images for two treat-
ment courses. The kV fiducial images were acquired for daily positioning before
the radiotherapy treatment. As can be seen, the predicted prostate position in
the simulated projection is highly consistent with the annotated position, which
is also consistent with the predicted positions in the kV fiducial images for the
two courses. The patient has four implanted FMs and analysis of the positions
of these markers relative to the corresponding bounding boxes afford additional
assurance of the correctness of our deep learning model. In all these courses, the
predicted prostate position is also found to be consistent with that indicated by
the FMs, suggesting the proposed method can provide accurate prediction of
prostate position for precision radiotherapy.

4 Summary

Normally, training a deep learning model require a large amount of annotated
dataset which is very time-consuming for the data annotation. Hence, most of
object detection algorithms, especially the newly developed algorithms are val-
idated using public datasets which are well-annotated. While computer vision
deal with existing natural images which are relatively easy to annotate, object
detection in medical applications are mainly hindered by the data annotation,
which requires well-trained clinicians and involves huge manpower, especially for
the task in this study, i.e., X-ray imaging. Due to the low soft-tissue contrast,
most of time, it is impossible to label the tumor target in the X-ray projection
image without the implanted FMs, and deep learning-based tumor detection has
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only been applied to chest X-ray until now [11]. For other treatment sites, such
as prostate, even a well-trained clinician can not identify the target.

This study is tackling the highly challenging problem by proposing a realistic
training data generation scheme, which is then used to train a deep learning
model for localization of prostate based on projection images acquired prior or
during therapy for IGRT. The results on clinical prostate IGRT cases show the
proposed approach can provide highly accurate prostate position. This is an
attempt of applying deep learning to IGRT for the first time. Two novelties of
the proposed approach are: (1) a realistic model training scheme by using the
motion incorporated synthetic DRRs derived from the pCT images; and (2) a
deep learning approach for nearly real-time localization of the prostate.

References

1. Acharya, S., Fischer-Valuck, B.W., Kashani, R., et al.: Online magnetic resonance
image guided adaptive radiation therapy: first clinical applications. Int. J. Radiat.
Oncol. Biol. Phys. 94(2), 394–403 (2016)

2. Bejnordi, B.E., Veta, M., Van Diest, P.J., et al.: Diagnostic assessment of deep
learning algorithms for detection of lymph node metastases in women with breast
cancer. JAMA 318(22), 2199–2210 (2017)

3. Campbell, W.G., Miften, M., Jones, B.L.: Automated target tracking in kilovoltage
images using dynamic templates of fiducial marker clusters. Med. Phys. 44(2), 364–
374 (2017)

4. Cha, K., Hadjiiski, L., Chan, H., et al.: Bladder cancer treatment response assess-
ment in CT using radiomics with deep-learning. Sci. Rep. 7(1), 8738 (2017)

5. Cui, Y., Dy, J.G., Sharp, G.C., Alexander, B., Jiang, S.B.: Multiple template-based
fluoroscopic tracking of lung tumor mass without implanted fiducial markers. Phys.
Med. Biol. 52(20), 6229 (2007)

6. Ibragimov, B., Xing, L.: Segmentation of organs-at-risks in head and neck CT
images using convolutional neural networks. Med. Phys. 44(2), 547–557 (2017)

7. Jaffray, D.A.: Image-guided radiotherapy: from current concept to future perspec-
tives. Nat. Rev. Clin. Oncol. 9(12), 688 (2012)

8. Lawrence, I., Lin, K.: A concordance correlation coefficient to evaluate repro-
ducibility. Biometrics 255–268 (1989)

9. Nichol, A.M., Brock, K.K., Lockwood, G.A., et al.: A magnetic resonance imaging
study of prostate deformation relative to implanted gold fiducial markers. Int. J.
Radiat. Oncol.* Biol.* Phys. 67(1), 48–56 (2007)

10. O’Shea, T., Bamber, J., Fontanarosa, D., et al.: Review of ultrasound image guid-
ance in external beam radiotherapy part II: intra-fraction motion management and
novel applications. Phys. Med. Biol. 61(8), R90 (2016)

11. Rajpurkar, P., Irvin, J., Zhu, K., et al.: ChexNet: radiologist-level pneumonia detec-
tion on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225 (2017)

12. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell.
6, 1137–1149 (2017)

13. Shirato, H., Shimizu, S., Shimizu, T., Nishioka, T., Miyasaka, K.: Real-time
tumour-tracking radiotherapy. Lancet 353(9161), 1331–1332 (1999)

http://arxiv.org/abs/1711.05225


42 W. Zhao et al.

14. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons:
efficient non-parametric image registration. NeuroImage 45(1), S61–S72 (2009)

15. Xing, L., Thorndyke, B., Schreibmann, E., et al.: Overview of image-guided radi-
ation therapy. Med. Dosim. 31(2), 91–112 (2006)

16. Zhen, X., Chen, J., Zhong, Z., et al.: Deep convolutional neural network with
transfer learning for rectum toxicity prediction in cervical cancer radiotherapy: a
feasibility study. Phys. Med. Biol. 62(21), 8246 (2017)



A Two-Stage Approach for Automated
Prostate Lesion Detection and Classification
with Mask R-CNN and Weakly Supervised

Deep Neural Network

Zhiyu Liu1, Wenhao Jiang1, Kit-Hang Lee1, Yat-Long Lo1,
Yui-Lun Ng1, Qi Dou2, Varut Vardhanabhuti3,

and Ka-Wai Kwok1(&)

1 Department of Mechanical Engineering, The University of Hong Kong,
Pok Fu Lam, Hong Kong

kwokkw@hku.hk
2 Department of Computing, Imperial College London, London, UK

3 Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine,
The University of Hong Kong, Pok Fu Lam, Hong Kong

Abstract. Early diagnosis of prostate cancer is very crucial to reduce the
mortality rate. Multi-parametric magnetic resonance imaging (MRI) can provide
detailed visualization of prostate tissues and lesions. Their malignancy can be
diagnosed before any necessary invasive approaches, such as needle biopsy, at
the risk of damage to or inflammation of the periprostatic nerves, prostate and
bladder neck. However, the prostate tissue malignancy on magnetic resonance
(MR) images can also be difficult to determine, with often inconclusive results
among the clinicians. With the progress in artificial intelligence (AI), research
on MR image-based lesion classification with AI tools are being explored
increasingly. So far, existing classification approaches heavily rely on manually
labelling of lesion areas, which is a labor-intensive and time-consuming process.
In this paper, we present a novel two-stage method for fully-automated prostate
lesion detection and classification, using input sequences of T2-weighted ima-
ges, apparent diffusion coefficient (ADC) maps and high b-value diffusion-
weighted images. In the first stage, a Mask R-CNN model is trained to auto-
matically segment prostate structures. In the second stage, a weakly supervised
deep neural network is developed to detect and classify lesions in a single run.
To validate the accuracy of our system, we tested our method on two datasets,
one from the PROSTATEx Challenge and the other from our local cohort. Our
method can achieve average area-under-the-curve (AUC) of 0.912 and 0.882 on
the two datasets respectively. The proposed approach present a promising tool
for radiologists in their clinical practices.
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learning

© Springer Nature Switzerland AG 2019
D. Nguyen et al. (Eds.): AIRT 2019, LNCS 11850, pp. 43–51, 2019.
https://doi.org/10.1007/978-3-030-32486-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32486-5_6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32486-5_6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32486-5_6&amp;domain=pdf
https://doi.org/10.1007/978-3-030-32486-5_6


1 Introduction

Prostate cancer is the second leading cancer-related cause of death in the male popu-
lation [1], with the estimate that 1 in 9 men in the US will be diagnosed with prostate
cancer in their lifetime [2]. The prostate-specific antigen (PSA) test is mainly used as an
upfront screening test for men without symptoms. Men with PSA level >4 would have
an increasing chance of prostate cancer, and will be followed-up by further tests, such
as MRI. mpMRI is commonly employed before tissue biopsy. Diagnosis with MRI
would reduce unnecessary biopsy by 70%. Daniel et al. [3] reported 486% increased
use of mpMRI from Oct 2013 to Dec 2015. Thus, a lot of prostate magnetic resonance
(MR) images require radiologists to interpret in current clinical routine. Recently, the
Prostate Imaging Reporting and Data System [4] guidelines were established to stan-
dardize and minimize the variation in interpreting prostate MRI. Geoffrey et al. [5]
observed variability in cancer yield across radiologists, with 24% of males who were
assigned a score of having a benign lesion turned out to have clinically significant
prostate cancer on biopsy. This false negative rate could vary from 13% to 60% among
radiologists. With the advances of deep learning in medical imaging, our goal is to
automate the diagnosis process by detecting and classifying prostate lesions with high
accuracy in a single framework.

There have been several works on prostate lesion classification with multi-
parametric MRI. Karimi et al. [6] proposed to combine hand-crafted features and
learned features for classifying malignancy of prostate lesions mpMRI images, which
led to an area-under-the-curve (AUC) of 0.87. Liu et al. [7] proposed XmasNet that
reformulates 3D mpMRI images as a 2D problem. To incorporate 3D information when
learning from 2D slices, they employed data augmentation through 3D rotation and
slicing. The approach attained a performance of 0.84 AUC.

However, these methods require labeling of lesion centroid, which is necessarily
done by clinicians. In a related research on prostate lesion detection and classification
in MRI, Kiraly et al. [8] used a deep convolutional encoder-decoder architecture to
simultaneously detect and classify prostate cancer, and they reached an average clas-
sification performance of 0.834 AUC. However, they applied a region of interest
(ROI) of roughly the same size to ensure only the prostate and its surrounding areas
were considered. Such simplification may lead to imprecision.

In this paper, we propose a novel two-stage framework for fully-automated prostate
lesion detection and diagnosis. In the first stage, prostate zone/contour in MR images is
automatically segmented. Secondly, an analytical framework is implemented to detect
and classify malignancy of prostate lesions. The major work contributions are: (i) A
Mask R-CNN [9] model is trained to segment/pinpoint a smaller ROI that contains all
the lesion candidates. (ii) A weakly supervised deep neural network is developed to
process the detection/classification in a single run. (iii) Detailed validation is conducted
on two datasets, namely PROSTATEx Challenge [10] dataset and our local cohort.
Classification performance is also compared with the state-of-the-art approaches.
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2 Methods

Figure 1 illustrates our proposed two-stage automatic framework. We applied an object
detection method, Mask R-CNN, to train a prostate segmentation model for T2-
weighted images that show tissues in high contrast and brightness. The model outputs a
smaller size image that contains the prostate ROI. With coordinate transformation,
prostate regions in ADC maps and high b-value diffusion-weighted images become
available. Next, the prostate ROI will act as input to a deep neural network (DNN),
outputting lesion areas and classification results in one single feedforward pass.
Malignancy of the classified lesions will then be determined through the ensemble
learning of images of different input sequences.

2.1 Mask R-CNN for Automated Prostate Structures Segmentation

Prostate lesions detection can be difficult, as the lesions are small relative to the entire
image size. Thus, identifying the prostate ROI is crucial to enable more accurate and
effective lesion detection. Mask R-CNN object detection approach relies on generated
region proposals, each of which outputs a class, bounding box, and a mask. Multi-scale
features are extracted from various layers, which provide more powerful information to
segment specific objects at various scales. These are particularly useful for our case, as
the prostate sizes among patients can vary. To train this Mask R-CNN model, we
employ an online prostate segmentation dataset, along with well labelled masks, which
were released by the Initiative for Collaborative Computer Vision Benchmarking
(I2CVB) [11]. The trained model can narrow the entire MR images down to the
prostate ROI only, thus facilitating the subsequent detection and classification process.

Fig. 1. Schematics of the proposed automated prostate lesion detection/classification.
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2.2 Weakly Supervised Deep Neural Network for Prostate Lesion
Detection and Classification

In the prostate classification datasets used by existing approaches, only lesion centroids
are located, but not their exact outlines. Previous work [8] attempted to resolve this
issue by applying lesion labels with identical gaussian distribution at each lesion point.
However, this approach could not account for variations in lesion sizes. To this end, we
employ a distance regularized level set evolution [12] to generate weak lesion labels.
Provided with the lesion centroids, this method can be applied to edge-based active
contour model for weak lesion labels.

Given the prostate region identified at stage one, we employed our novel weakly
supervised DNN for simultaneous lesion detection and classification based on the weak
masks and classification labels. The network comprises three key components, namely
encoder, decoder and classifier. The encoder consists of five groups of convolutional
layers and max-pooling layers while the decoder contains five upsampling layers. The
encoder and decoder are linked with skip connections between their corresponding
layers. The decoder is trained to produce lesion masks, indicating the location of pre-
dicted lesions. The predicted weak lesion mask, together with prostate region and
features extracted from the encoder are then reused by the classifier. We hypothesize that
the additional lesion and prostate structure masks can act as a form of attention map to
guide the classifier, leading to the improved classification performance. To predict the
malignancy of lesions, the classifier itself also contains five groups of convolutional and
max-pooling layers with two fully connected layers. A composite loss function is
applied, which combines the lesion segmentation loss and classification loss, to train the
entire network. For each sample, the classification loss LC can be designed as:

LC¼� y log cðxÞ � ð1� yÞ log 1� cðxÞ½ � ð1Þ

where x 2 R
w�h, y 2 R

1 and cðxÞ 2 R
1, respectively, denotes input, label and output of

the data sample; w and h are the width and height of input images. Lesion segmentation
loss LS can be described as:

LS ¼ 1�
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where, M 2 R
w�h and SðxÞ 2 R

w�h, respectively, denote mask label and output mask
of the lesion; Mi;j and Si;jðxÞ represent pixel values of their corresponding masks in the
ith column and jth row of matrix. The parameter e is a numerical constant to avoid
division of zero and ensure numerical stability. The total loss function LT is also
weighted with two coefficients, kC and kS as below. Note that the Adam [13] optimizer
is applied to train the network with a learning rate of 10�6.

LT ¼ kCLC þ kSLS ð3Þ
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3 Experimental Results

3.1 Prostate Structures Segmentation

In the first stage, 646 slices of T2-weighted images from 21 patients scanned with 1.5-
T (GE) scanner and 15 patients scanned with 3.0-T (Siemens) scanner were extracted
to train and validate our prostate segmentation model. We used a 7:2:1 split ratio for the
slices extracted from the I2CVB dataset for training, validation and testing. Data
augmentation was performed on the training sets by random rotation of
[±30°, ±60°, ±90°]. All the inputs were resized to 512 � 512 pixels before feeding in
the Mask R-CNN model. Learning rate is set to 10−3. We trained on two GPUs with a
batch size of 4 for 200 epochs. The model with the best dice coefficient on the
validation set is chosen as final model, with results on the test split reported. Figure 2a
shows a sample of segmentation result. As shown in Table 1, we have compared our
results with other methods using mean intersection over union (IoU). These show that
Mask R-CNN can achieve higher IoU in segmenting prostate and central gland. Our
segmentation model can obtain prostate regions on T2 sequences of the two datasets
(Fig. 2b and c).

Fig. 2. Samples of automated prostate segmentation with Mask R-CNN. (a) Results for test split
of I2CVB dataset. The ground truth is indicated in green, and the predicted area is in yellow.
Predicted prostate area of PROSTATEx Challenge dataset (b) and our local cohort (c). (Color
figure online)
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3.2 Prostate Lesion Detection and Classification

In the second stage, our proposed weakly supervised network is trained and validated
on PROSTATEx Challenge dataset (330 lesion samples, 76 malignant and 254 benign)
and our local cohort (74 lesion samples, 51 malignant lesions and 23 benign lesions).
We used GLEASON score (malignant for values � 7) to label lesion malignancy on
both datasets. We trained two sets of models on these two datasets. Each set of models
consists of models trained on three sequences, namely T2-weighted images, ADC maps
and high b-value diffusion-weighted images. All the segmented prostate regions were
prepared for both datasets in stage one. Data augmentation was applied to the training
data with random rotation of [±3°, ±6°, ±9°, ±12°, ±15°]. The image sizes were
then scaled to 224 � 224 pixels for training. We conducted 5-fold cross validation
experiments on both datasets. Through repeated experimental trials, parameters weights
kC and kS were both set to 1, with e set to 10−5. The final classification results and
AUC were obtained through ensemble learning from all three sequences.

Table 1. Comparison of Mean IoU on I2CVB dataset with other methods.

Methods Prostate Central gland Peripheral zone Lesion

Ruba Alkadi - M1 [14] – 0.673 0.563 0.677
Ruba Alkadi - M2 [14] – 0.657 0.599 0.679
Mask R-CNN (ours) 0.843 0.781 0.516 0.405

Fig. 3. Samples of result for lesion detection of T2-weighted images. Green spots indicate the
given lesions centroid. (a) Input of raw prostate region. (b) Weak lesion mask obtained from level
set method. (c) Predicted lesion area contoured by yellow. (Color figure online)
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Figure 3 shows the results of lesion detection in T2 sequences. Figure 4a and b
illustrate the final average receiver operating characteristic curve (ROC curve) on the
two prostate lesion datasets with our proposed approach. For PROSTATEx Challenge
dataset, our model outputs the average AUC of 0.912 with ensembled input sequences
of ADC maps and T2-weighted images, outperforming the other two existing methods
that individually combine hand-craft features and learned features (AUC of 0.870) [6],
and encoder-decoder architecture (AUC of 0.834) [8]. For our local cohort, the average
AUC of 0.882 is obtained with ensemble learning over input sequences. Moreover, we
compare the results without pre-segmentation. Figure 4c and d indicate significantly
lower AUC on the two datasets with the non-segmented/cropped image as input,
showing the crucial role of pre-segmentation in this detection/classification framework.

Fig. 4. Average AUC results on the two datasets: PROSTATEx Challenge (Left column) and
our local cohort (Right column). AUC results (a) and (b) are input with prostate region segmented
by Mask R-CNN models. Lower AUC can be observed in (c) and (d) without the segmentation.
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4 Conclusion

This paper proposes a novel framework for fully-automated prostate lesion detection and
diagnosis in MR images. Experiments on PROSTATEx Challenge dataset and our local
cohort achieve a promising average AUC of 0.912 and 0.882 on their validation set
respectively. The resultant efficacy is comparable to the first (champion) and second
highest in AUC in PROSTATEx challenge [7], which achieved 0.87 and 0.84 on the test
set, respectively. Our proposed method is extensible to other structures demanding for
similar lesion diagnosis using MRI. For future work, we will extend the framework 3D
MRI. To improve robustness, we will also attempt to consider using specific regions,
such as segmented central gland and peripheral prostate zones for classification.
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Abstract. When organs at risk (OARs) are contoured in computed tomography
(CT) images for radiotherapy treatment planning, the labels are often incon-
sistent, which severely hampers the collection and curation of clinical data for
research purpose. Currently, data cleaning is mainly done manually, which is
time-consuming. The existing methods for automatically relabeling OARs
remain unpractical with real patient data, due to the inconsistent delineation and
similar small-volume OARs. This paper proposes an improved data augmen-
tation technique according to the characteristics of clinical data. Besides, a novel
3D non-local convolutional neural network is proposed, which includes a
decision making network with voting strategy. The resulting model can auto-
matically identify OARs and solve the problems in existing methods, achieving
the accurate OAR re-labeling goal. We used partial data from a public head-and-
neck dataset (HN_PETCT) for training, and then tested the model on datasets
from three different medical institutions. We have obtained the state-of-the-art
results for identifying 28 OARs in the head-and-neck region, and also our model
is capable of handling multi-center datasets indicating strong generalization
ability. Compared to the baseline, the final result of our model achieved a
significant improvement in the average true positive rate (TPR) on the three test
datasets (+8.27%, +2.39%, +5.53%, respectively). More importantly, the F1
score of small-volume OAR with only 9 training samples increased from
28.63% to 91.17%.

Keywords: Deep learning � Data cleaning � Organ labeling � Voting

1 Introduction

During radiotherapy treatment planning, organs and risk (OARs) are delineated and
labeled. Due to the inconsistency of nomenclature even within the same institution,
either caused by differences in physician preferences, treatment plans, vendors and
different language environments, the existing large amounts of radiotherapy data are
unable to be accessed and shared directly. Table 1 demonstrates an example of
inconsistency in nomenclature. Although these are 3 patients’ data from the same
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dataset, labels for the same structure are very different. Researchers always spend a lot
of time on standardizing labels before the data can be analyzed or modeled [16]. To
advance the process of standardization of radiation therapy (RT) data, our community
has recently proposed standard [7] for radiotherapy data nomenclature. A re-naming
tool that automatically standardizes multi-center RT data not only reduces labor and
time required for data standardization but also makes it possible to reuse existing large
amounts of medical data.

The related works can be roughly divided into two sets, semi-automatic algorithms
and fully automatic algorithms. Mayo et al. [6] developed a software containing
structural templates that would help physicians standardizing structures interactively.
Recently, Schuler et al. [10] proposed a framework for re-labeling radiotherapy organs
by constructing a look-up dictionary that mapping the original labels to standardized
labels. The other type of related work, which is based on the invariance of medical
image semantics, are learnable automatic recognition method. Rozario et al. [9] used
weighted mask of OARs to construct composite mask as 2D input, and trained on a 5-
layer convolutional neural network (CNN), which was initial effort towards automated
RT data standardization using deep learning (DL).

Simply fixed template or string matching algorithms cannot handle multi-center
datasets, there is still a need for manual intervention by physicians. The 5-layer CNN
[9] with composite mask as input is not robust enough and does not take into account
the problems caused by inconsistent delineation and similar small-volume OARs (see
Fig. 1). Hence, these methods still do not meet the application requirements. To
improve accuracy and recognition efficiency in multi-center datasets, we proposed a
framework based on non-local neural network to automate RT data label standard-
ization, 3DNNV. In the case of limited computational resource, it’s capable of over-
coming imbalance in training data and efficiently standardizing multi-center RT data
with nomenclature recommended in AAPM TG 263 [7].

Table 1. Labels in different patients’ data.

Patient 1 Patient 2 Patient 3

Parotide D RT Parotid PAROTIDE D

GTVggIIID Mandible MANDIBULES

Ext 0.5 LT Eye PLEXUS BR D

nerf opt drt Cord NOD

Moelle LT SUBMANDIBULAR GL LACR D

Oeil gche GTV CERVEAU-

Cerveau CTV1 NUQUE

External EXTERNAL CONF_I PTV3

pt pr Midline 5412(1DMPO1.1)_1

Tronc cerebral Brainstem PEAU

Cristallin G LT Parotid CRISTAL G

Fig. 1. Delineation in RT. (a) and
(b) indicate the similarity of some-
volume OARs, (c) and (d) are examples
for inconsistent delineation for same
OAR.
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3D ResNet50 [5] was utilized as the backbone network to enhance the recognition
performance of OARs. Compared to other state-of-the-art architectures [1, 11], ResNet
[5] requires less computation resource and be capable of achieving higher recognition
accuracy on classification task. Then, we added non-local blocks [15] to enhance the
representation of global semantic features and ensure the recognition performance of
the network. Limited to the size of OARs and computation ability, we proposed a
strategy, which performs adaptive sampling and adaptive cropping (ASAC) to generate
multi-scale samples, to augment and sampling raw data. In order to make full use of
these multi-scale samples and make robust identification, we combined the voting
decisions of all scales input of a single sample in inference phase.

In this paper, we highlight our work as followed:

1. An easy and effective data augmentation strategy was applied to improve the
accuracy of identifying OARs.

2. We adopt non-local network to construct a novel framework, 3DNNV, with voting
strategy to standardize labels in RT data.

3. We tested 3DNNV on multi-center datasets to prove its generalization ability.

2 Materials and Methods

2.1 Dataset

HN_PETCT [12, 13] is an open-source head-and-neck RT dataset released on TCIA
[4] with data collected from 4 different French medical institutions containing 298
patient data. In out experiments, 28 categories of organs at risk (OARs) in the head-
and-neck area were selected based on [3]. In total, 4372 samples of 28 OARs

Fig. 2. Architecture of 3DNNV.
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(Lens_L/R, Eye_L/R, Glnd_Lacrimal_L/R, Parotid_L/R, Glnd_Submand_L/R, Cav-
ity_Oral, Lips, Bone_Mandible, Cochlea_L/R, Musc_Constrict, Larynx, Esophagus,
BrachialPlex_L/R, Thyroid, Brain, Brainstem, Pituitary, OpticChiasm, OpticNrv_L/R
and SpinalCord) were collected, and samples were divided into three dataset for
training, validation and test in a ratio of 3:1:1. For lacrimal gland and pituitary, only 9
samples are used as training data.

The PDDCA is an open-source RT dataset containing 48 patient data, released by
the MICCAI 2015 Segmentation Challenge [8]. This dataset contains only 9 categories
of the head-and-neck OARs (Parotid_L/R, Glnd_Submand_L/R, Bone_Mandible,
Brainstem, OpticChiasm, and OpticNrv_L/R). All masks are relabelled by trained
radiologists. 405 samples of 9 OARs were collected totally, all of which were used as
test set.

HN_MAIA is a RT dataset collected by our team and contains data for 406
patients. We collected a total of 5,153 samples of 28 OARs, all of these were used for
test.

2.2 Preprocessing

For each given RT data, 3D CT volume and the corresponding masks will be extracted,
and then normalize the voxel size in ratio of vertical voxel size: horizontal voxel
size = 0.7680098:1. We performed trilinear interpolation in resizing. Due to the variety
of HU value, we first truncated the HU value to [−1000, 2500] and then normalize it to
[0, 1]. For the mask, binary [0, 1] matrix was used to represent it directly. In general,
mask should be continuous on the vertical axis, but there is a lack of intermediate mask
in some training samples, in this case, we will use the nearest mask to fill the missing
slice.

2.3 3DNNV

ASAC. In head-and-neck region, the size of OARs are very different (such as ‘Brain’,
‘Pituitary’, and ‘SpinalCord’), and if the entire CT and mask volumes are directly fed
into neural network, will bring a huge cost of computation and storage. ASAC is a way
to unify input data under conditions of limited computation resource and imbalanced
training dataset. For each pair of pre-processed 3D CT and mask volumes, the same
processing steps were adopted, a sliding window was set to slide in the vertical axis,
and a cube of size n � m � m were adaptively and intermittently cropped. Five scales
for this work, 12 � 128 � 128, 18 � 192 � 192, 24 � 256 � 256, 30 � 320 � 320
and 36 � 384 � 384. Set the sampling interval distance between slices as interval =
n /3 � 2, and slide to extract the samples vertically. Resized all of samples into
12 � 128 � 128, which were the final input for 3DNNV. The process of ASAC is
shown in Fig. 2.

Non-local Network. Vanilla ResNet50 was used as the backbone network also the
baseline model mentioned in Table 2. Next, we added non-local blocks to backbone
network to form the final 3D non-local network, as shown in Fig. 2. Inspired by the
self-attention mechanism [14], the non-local block was proposed by Xiaolong et al.
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[15], able to capture the global dependence in semantic features. It’s designed to handle
sequential data. In this experiment, the pairwise function f implemented by using the
concatenation form. The non-local block in our network is defined as follows:

yi ¼ 1
C xð Þ

X
8j f xi; xj

� �
/ xj
� � ð1Þ

f xi; xj
� � ¼ ReLU W>

f h xið Þ; l xj
� �� �� �

ð2Þ

zi ¼ r yið Þþ xi ð3Þ

Set x and z as the input and output of non-local block, both of them are the same size of
B � C � D � H � W. B denotes batch size of input, C represents the number of
channel. D, H, W are depth, height and width respectively. Here i is the index of an
output position whose response is to be computed, j is the index of all possible
positions, and y is intermediate output with the same size as x. All of u, h, l, and r are
1 � 1 � 1 convolution layers. Operator [.,.] indicates the concatenation operation, Wf

is the mapping matrix and converts the concatenated vector to the scalar output. ‘þ xi’
indicates identity mapping, the input xi is added to the transformed y to get the final
output z of the non-local block. C(x) is a regularization term, C(x) = D � H � W.

Voting Strategy. Voting strategy in deep learning is mostly applied in ensemble
networks [2], which combines multiple networks to optimize the final decision and
needs extra time to train multiple networks. In our proposed framework, we leveraged
ASAC to generate multi-scale input data. To make full use of the multi-scale/multi-
position information in input data, we combined all the multiscale input of the same
sample to vote for a final recognition result in inference phase.

3 Experimental Results

3.1 Setting

Oversampled the minority of OARs to reduce the impact of imbalanced training data
and performed affine transformation to augment the training data, includes randomly
translate, rotate, shear, and scale, and then cropped the central cube of sample as input
data, all of these were implemented on the fly. The final input sample size is
2 � 12 � 96 � 96, which is two-channel 3D data, includes 3D CT volume and cor-
responding mask on the same slices. 3DNNV was implemented on the PyTorch 1.0
framework and trained on single GPU NVIDIA Tesla K80. We adopt Adam [17] to
optimize the networks with initial learning rate 1e−4. Batch size is set to 16. For the
experiments using the samples generated by ASAC, epoch is 20, and the learning rate
drops by a factor of 10 after 2, 5, 10 epochs. For other experiments, we set the total
number of epoch to 200, and the learning rate decrease by a factor of 10 after 10, 20, 30
epochs. Here, we use cross-entropy loss as the optimization objective function.
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3.2 3DNNV vs. Baselines

In the dataset generate by ASAC, the samples collected at the scale of 12 � 128 � 128
are marked as local samples (LS), and the samples collected at the scale of
36 � 384 � 384 are marked as global samples (GS). As shown in Table 2, the nor-
malization of voxel size can reduce the geometric variance of the same category of
OAR in different patient data and improve model recognition performance. Baseline
(VN-GS) is compared to the baseline (VN-LS), which indicates that local samples are
beneficial for identifying small-volume OARs. However, as shown in Fig. 3, the
baseline (VN-LS) model exhibits severe confusion in identifying BrachyalPlex_L
(BP_L) and BrachyalPlex_R (BP_R), and the confusion is not present in experiments
by using global samples. These results indicate that the detailed information in the local
sample helps identify small-volume OARs (such as lens, lacrimal glands, etc.), while
the information in the global sample helps capture global location relationship and
avoids confusing the left and right organs. A non-local network NN (VN-GS) is applied
to enhance the representation of high-level semantic features.

In this task, there is a serious deviation in the size of OARs and the number of
sample on each category, which requires a trade-off between global location and local
detail. Samples that generated by ASAC were used to train the model, while using only
global samples to test in NN (ASAC /VN-GS). Figure 4 indicates that model trained
with multi-scale samples has improved on identifying some small-volume OARs.

Table 2. Results of 3DNNV test on three datasets. Baseline (GS) for using global samples (GS),
Baseline (VN-GS) and Baseline (VN-LS) are using voxel normalized global samples and local
samples.

Architectures Datesets TPR F1-Score AUC

Baseline (GS) HN_PETCT 91.54 ± 17.13 91.61 ± 15.96 95.72 ± 8.59
PDDCA 97.61 ± 5.02 98.51 ± 3.22 98.79 ± 2.55
HN_MAIA 93.36 ± 9.61 91.81 ± 13.28 96.60 ± 4.82

Baseline (VN-GS) HN_PETCT 95.33 ± 10.71 95.83 ± 9.00 97.64 ± 5.36
PDDCA 99.04 ± 2.08 99.43 ± 1.10 99.51 ± 1.03
HN_MAIA 96.54 ± 5.29 95.75 ± 7.13 98.23 ± 2.65

Baseline (VN-LS) HN_PETCT 98.56 ± 2.49 98.72 ± 1.93 99.26 ± 1.25
PDDCA 97.79 ± 6.40 98.69 ± 3.73 98.89 ± 3.20
HN_MAIA 96.03 ± 6.04 93.96 ± 12.18 97.96 ± 3.07

NN (VN-GS) HN_PETCT 96.07 ± 7.97 96.27 ± 7.36 98.00 ± 3.99
PDDCA 98.96 ± 3.12 99.45 ± 1.65 99.48 ± 1.56
HN_MAIA 96.56 ± 5.15 96.53 ± 4.05 98.24 ± 2.58

NN (ASAC/VN-GS) HN_PETCT 98.18 ± 4.14 98.59 ± 2.76 99.07 ± 2.06
PDDCA 99.19 ± 2.29 99.57 ± 1.20 99.59 ± 1.15
HN_MAIA 98.32 ± 2.26 97.42 ± 5.57 99.13 ± 1.12

3DNNV HN_PETCT 99.81 – 0.63 99.82 – 0.39 99.90 – 0.31
PDDCA 100 – 0 100 – 0 100 – 0
HN_MAIA 98.87 – 2.37 98.90 – 1.91 99.42 – 1.19
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How-
ever, that’s still not enough to distinguish Pituitary and

OpticChiasm (Shown in Table 3). To further optimize the model and make full use of
multi-scale samples, we used voting strategy to optimize the decision-making process
to make the recognition results more reliable. Finally, a new framework, 3DNNV, is
proposed. Table 3 indicates that the 3DNNV model performed well in identifying
small-volume OARs, even they are similar in shape, size and location, after learning
scale invariance, global position and local details in the samples.

3.3 3DNNV vs. Other Methods

We performed fuzzy string matching algorithm and 5-layer CNN with composite mask
to identify the OARs, and compared the performance with 3DNNV. All methods
shown in Table 4, were used the same datasets for training and test, except Fuzzy-
wuzzy [18], which is not learnable string matching algorithm used all the samples to
test. Due to different language environments, only 40.98% on accuracy to map the
original labels in HN_PETCT to standardized labels by using string matching method.
It turns out that our method are applicable with higher accuracy and generalization
ability in multi-center datasets.

Table 3. F1-Score (%) of Pituitary and OpticChiasm on HN_MAIA

Methods Pituitary OpticChiasm

Baseline (GS) 28.63 ± 8.33 86.35 ± 4.06
Baseline (VN-GS) 61.87 ± 18.73 96.83 ± 1.91
Baseline (VN-LS) 42.61 ± 10.87 90.41 ± 2.38
NN (VN-GS) 82.05 ± 15.77 98.32 ± 0.97
NN (ASAC/VN-GS) 69.67 ± 5.29 97.15 ± 0.67
3DNNV 91.17 – 3.18 99.47 – 0.18

Fig. 4. Some results of OARs in HN_MAIA.Fig. 3. Confusion matrix
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4 Conclusions

In this paper, we propose a novel framework, combined with an improved data aug-
mentation method and voting decision-making, which overcoming inconsistent delin-
eation and similar small-volume OARs in imbalanced dataset, to relabel OARs with
high accuracy.
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Abstract. Stereotactic radiosurgery (SRS), which delivers high doses of
irradiation in a single or few shots to small targets, has been a standard
of care for brain metastases. While very effective, SRS currently requires
manually intensive delineation of tumors. In this work, we present a deep
learning approach for automated detection and segmentation of brain
metastases using multimodal imaging and ensemble neural networks. In
order to address small and multiple brain metastases, we further pro-
pose a volume-aware Dice loss which optimizes model performance using
the information of lesion size. This work surpasses current benchmark
levels and demonstrates a reliable AI-assisted system for SRS treatment
planning for multiple brain metastases.

Keywords: Brain metastases · Radiosurgery · Deep learning

1 Introduction

Brain metastases (BMs) are the most common intracranial tumors in adults (10
times more common than primary brain tumors) and occur in around 20% of
all patients with cancer [5]. The treatment options for brain metastases include
craniotomy, chemotherapy, whole brain radiation therapy, and stereotactic radio-
surgery (SRS). Among all the options, SRS has been playing a critical role in
the treatment of brain metastases as recent studies have shown that SRS leads
to better treatment outcomes [10]. By delivering high doses of irradiation in a
single or few shots to small targets, SRS effectively destroys tumors without
damaging surrounding tissues and has been proved to be beneficial in the local
tumor control and post-operative neurocognitive function [3].
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As SRS requires precise delineation of tumor margins, target segmentation
(contouring) for BMs is performed manually by the radiation oncologist or neuro-
surgeon on magnetic resonance images (MRI) and computed tomography (CT)
images of the brain. However, such manually contouring process can be very
time-consuming and suffer from large inter and intra-reader variability [11].
Driven by the ever-increasing capability of deep learning, automated segmen-
tation of BMs using neural networks has been recently proposed [1,6]. Previous
works on computer-aided segmentation of BMs used only MRI as an imaging
input. While MRI provides superior ability to characterize neural tissue and
the brain structure, MRI is prone to have the problems of spatial distortion
and motion artifacts, which can lead to inaccuracy in SRS. CT, on the other
hand, is lack of soft tissue contrast but provides a direct measurement of elec-
tron densities for radiation dose calculations and has excellent spatial fidelity.
Consequently, co-registration between MRI and CT modalities is recommended
for precise stereotactic applications [9].

Many previous works on automated segmentation of brain tumors focused
on multiforme glioblastoma and glioma, such as BraTS dataset [7], and aims to
optimize Dice similarity coefficient (DSC) [8]. Segmentation of brain metastases
is more challenging as metastatic lesions can be very small (< 1000 mm3) and a
large brain metastasis can coexist with multiple small lesions. Conventional DSC
is thus not an ideal metric to evaluate brain metastases segmentation because
it would be dominant by the large lesion but ignore small metastases. Unfor-
tunately, small BMs are much crucial to SRS since they are more likely to be
missed by clinicians.

In this paper, we aim to utilize deep neural networks for automated detection
and segmentation of brain metastases. Specifically, we present a deep learning-
based system for brain metastases detection and segmentation using multimodal
imaging (MRI+CT) and ensemble neural networks, which produces a more reli-
able result than that would be achieved by a single image modality and/or a
single neural network. To address the challenge of small BMs, we further propose
a volume-aware Dice loss (�vol-dice), which leverages the information of lesion size
to optimize overall segmentation.

2 Methods

2.1 Volume-Aware Dice Loss

The Dice loss (�dice), which aims to optimize DSC, has been widely used as a
loss function in medical image segmentation task [8] and can be expressed as:

�dice (g,p) = − 2g�p + ε

p�p + g�g + ε
, (1)

where p ∈ [0, 1]N and g ∈ {0, 1}N are the predicted probability vector and the
ground truth binary vector for N voxels, respectively. ε is a smoothing constant
to avoid the denominator being zero.
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For binary segmentation problems with similar sizes of lesions, using �dice
as the objective function is a fair option as it is normalized by the number of
foreground pixels. However, �dice is not an ideal choice when multiple targets are
present with the same label but with different sizes, since the loss will be dom-
inant by the larger targets. To address the issue, we proposed a Volume-Aware
Dice Loss (�vol-dice) that optimizes the overall segmentation using the information
of lesion size. �vol-dice can be formulated as:

�vol-dice (g,p | W ) = − Cg�Wp + ε

p�p + g�Wg + ε
, (2)

where W ∈ R
N×N is a diagonal matrix that Wii is a weight related to the

volume of the tumor containing the i-th voxel in the ground truth, denoted
by volume (i). C := 1 + g�g/g�Wg is a normalization constant such that the
maximum of �vol-dice is one. In this paper, we consider the form:

Wii =

⎧
⎨

⎩

(
λ

volume(i)

)1/2

volume (i) �= 0,

0 otherwise
,

where λ is a reweighting hyper-parameter and can be defined as follows.

1. Constant Reweight (CR): λ is a constant (λc), such that the weights are
simply proportional to the inverse of the square root of tumor volume.

2. Batch Reweight (BR): λ is the largest tumor volume in each batch (λl);
e.g. if the largest tumor in one batch has 1500 voxels, another small tumor
with 60 voxels will have a weight of

√
1500/60 = 5.

To demonstrate the effects of �vol-dice, assume a brain image volume with
three ground-truth tumors, each with 1800, 450 and 200 voxels. Using the batch
reweight �vol-dice, each tumor will have weights 1, 2 and 3, respectively. Suppose
the model perfectly predicts the two larger tumors but fails to detect the smallest
one. Under such a scenario, �dice is calculated as − 2× (1800+ 450)

(1800+ 450+ 200)+ (1800+ 450) =

−0.957 and �vol-dice is − C×(1800+ 450×2)
(1800+ 450×2+ 200×3)+ (1800+ 450) = −0.847, where C =

1 + 2450
3300 . It illustrates that �vol-dice is more sensitive to the small structures.

2.2 Deep Learning Framework

While the current benchmark for brain metastases segmentation employs MRI
imaging only [1,6], CT imaging is an essential reference for clinical treatment
planning due to its spatial accuracy. We thus proposed a deep learning framework
using multimodal imaging (MRI+CT) and ensemble neural networks for brain
metastases detection and segmentation. The framework is shown in Fig. 1. For
the ensemble model, we explored two different architectures—3D U-Net and
DeepMedic.
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Fig. 1. Proposed deep learning framework with multimodal imaging and ensemble
networks.

3D U-Net. 3D U-Net [2] is an extension of the original U-Net by replacing
all the 2D operations with 3D counterparts. We added one block in addition to
the original implementation (number of feature maps: 32, 64, 128, 256, 512 with
convolution kernel size 3× 3 × 3 and max-pooling size 2× 2 × 1). We took a full
size of the axial-view images and randomly sampled 8 consecutive slices on the
vertical axis, resulting in input images size of 512× 512 × 8 × 2 (height × width
× number of slices × number of imaging modality). We set a limit to ensure
that in each epoch, at least 70% of the samples should contain tumor labels.
All the 3D U-Net models were trained using a rmsprop optimizer, with learning
rate 10−3, batch size of 1, over 300 epochs on an NVIDIA V100 GPU. The best
weights on the validation set was used to evaluate the final results on the test
set.

DeepMedic. DeepMedic [4] is originally designed for brain tumor segmenta-
tion on multi-channel MRI and also had been applied to BMs [1,6]. It consists of
multiple parallel pathways—one branch takes small patches from full resolution
images as input and the others utilizes subsampled-version of the images. Dif-
ferent from the original paper, the DeepMedic architecture we used contained 3
parallel convolutional pathways, one of which was with normal image resolution
and the other two of which were with low resolution using down-sampling fac-
tors of 3 and 5. There were 11 layers in the network, the first 8 of which were
convolutional layers (number of feature maps: 30, 30, 40, 40, 40, 40, 50, 50 with
3 × 3 × 3 kernels) and the last 3 of which were fully connected layers (with 250
feature maps per layer). The network was trained using a rmsprop optimizer,
with learning rate 10−3, minimizing the cross-entropy loss over 35 epochs.

Ensemble Model. 3D U-Net and DeepMedic were trained separately with dif-
ferent hyperparameters and different objective functions to maximize the capa-
bility of the ensemble model. While U-Net utilized the full field of view for
each image slice and addressed overall tumor segmentation, DeepMedic lever-
aged image segments during model training and focused on small metastases.
Furthermore, U-Net was trained to optimize DSC and DeepMedic was set to
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minimize cross-entropy loss. At testing time, each model individually generated
probability maps of brain metastases. An ensemble confidence map was then
created by calculating the average of the predictions of both models.

3 Experiments and Results

Data
The primary cohort for model training and testing consists of 305 patients with
864 brain metastases (median volume 760 mm3, range 3–110,000 mm3) treated
by CyberKnife G4 system in a single medical center. Each case contains vol-
ume masks of brain tumors delineated by an attending radiation oncologist or
neurosurgeon on associated CT and T1-weighted MRI scan with contrast. The
dataset was split into training (80%), validation (10%), and test set (10%) ran-
domly. To evaluate the model robustness and generalizability, we collected an
additional batch of test set from the same institution, containing 36 patients
with 96 metastases (median volume 829 mm3). The results presented in this
paper are the average of the two test sets.

For each case, after rigid image registration between CT and MRI image vol-
umes, each slice was resized into 512 × 512 pixels with the resolution of 0.6 mm ×
0.6 mm, while slice thickness was resampled to 2 mm. Brain window and adaptive
histogram equalization were applied to the CT and MRI images slice-by-slice,
respectively. All the image volumes were then standardized with zero-mean and
unit-variance normalization.

3.1 Volume-Aware Dice Loss

�vol-dice with Different Reweight Strategies. We evaluated the efficacy of
�vol-dice on the 3D U-Net. A standard 3D U-Net using the multimodal learning
(MRI+CT) and conventional �dice was trained as the baseline model. Then we
compared the relative change of DSC, precision and recall using different settings
of �vol-dice. In the combination of two test sets, the tumors has median 1322 voxels
(949 mm3) and mean 4721 voxels (3389 mm3). We tested the λc of 500, 1000,
2500, 5000 for the CR strategy.

Our baseline model achieves a DSC of 0.669, precision 0.689 and recall 0.700.
Table 1 lists the results of applying �vol-dice relative to the baseline. Overall, using
the �vol-dice with BR (λl) yields the best performance, improving 8.57% of DSC
and 24.14% of recall compared to the baseline. The performance of �vol-dice with
CR largely depends on the constant value; the higher the constant, the better the
recalls. Such an observation is consistent with our expectation that the �vol-dice
focuses more on easily neglected small structures and has a higher sensitivity.
However, in our dataset, the tumor sizes are highly diverse, therefore making it
challenging to determine a value that can generalize to all the tumors. On the
other hand, the BR approach has more flexibility using a dynamic weighting
strategy, which provides a balance between precision and recall.
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Table 1. Performance of different configurations with �vol-dice. All the models were
trained on 3D U-Net with CT and MRI.

�vol-dice configuration Metric Change over �dice loss (%)

Reweight method λ DSC Precision Recall

Batch-reweight - +8.57% +2.62% +24.14%

Const-reweight λc = 500 –52.11% +2.78% –70.08%

Const-reweight λc = 1000 –7.67% +13.15% –18.83%

Const-reweight λc = 2500 +2.22% –5.55% +23.04%

Const-reweight λc = 5000 –8.60% –31.68% +25.46%

Table 2. Pixel-wise and metastasis-wise recall

Tumor Numbers Median
size

Loss Pixel-wise
recall

Metastasis-wise
recall

Small
(≤1500 mm3)

113 368 �dice 0.466 0.619

�vol-dice 0.633 0.672

Large
(>1500 mm3)

78 4114 �dice 0.826 0.987

�vol-dice 0.828 0.974

�vol-diceon Small Tumors. To evaluate the effectiveness of �vol-dice on different
sizes of lesions, we further divided the lesions into large and small tumor groups
at a cut-off point of 1500 mm3. We calculated (1) pixel-wise recall, and (2)
tumor-wise recall, where a positive tumor prediction is defined as detected if
there is at least one pixel being predicted; noted that we did not measure the
DSC and the precision because the false positive pixels can’t be categorized into
either small or large tumors easily. The results are shown in Table 2. �vol-dice
shows a more significant improvement in the small tumor groups, increasing the
recall from 0.466 to 0.633 and detection rate from 0.619 to 0.672; while in the
large tumor groups, the performances of the two settings are almost identical.
The results indicate that the �vol-dice effectively improve the recall in the small
tumors.

3.2 Deep Learning Framework

In our final proposed deep learning framework, we used (1) multimodal learning
adopting MRI+CT, (2) ensemble learning considering 3D U-Net and DeepMedic,
and (3) optimization using �vol-dice.

As shown in Table 3, 3D U-Net and DeepMedic obtain a DSC of 0.669 and
0.625 respectively. DeepMedic utilizes a patch-based training method, which
makes the network focusing on smaller regions and contributing to a higher
recall; on the other hand, 3D U-Net takes full resolution as inputs. The advantage
of seeing the complete brain structure leads to higher precision. The ensemble
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Table 3. Model performance of different configurations of loss functions, image modal-
ities, and neural network models. The values are represented as median (std).

Model �vol-dice DSC Precision Recall

3D U-Net 0.669 (0.006) 0.689 (0.001) 0.700 (0.015)

DeepMedic 0.625 (0.013) 0.631 (0.004) 0.734 (0.035)

3D U-Net + DeepMedic 0.719 (0.004) 0.788 (0.002) 0.713 (0.023)

3D U-Net + DeepMedic � 0.740 (0.022) 0.779 (0.010) 0.803 (0.001)

Fig. 2. Examples of the prediction results overlaying with MRI.

of the two models improves the DSC to 0.719. Further applying the �vol-dice
(with BR) on 3D U-Net, we achieve the best DSC of 0.740 and recall of 0.803.
The results indicate that our deep learning approach effectively increases the
DSC, precision, and recall. The performance surpasses the current benchmark
methods. Examples of prediction results are shown in Fig. 2.

3.3 Limitation

As the annotations were carried out by the neurosurgeon or radiation oncologist
during SRS treatment planning, the ground truth labels represent the area for
the treatment rather than the actual tumor extent, which leads to imperfect
annotations for tumor segmentation. Based on the clinician’s experience and the
patient’s disease status, these annotations can be delineated more aggressively
or conservatively. Figure 3(a) illustrates an example of an aggressive treatment
planning, which shows a broader area than the lesion. Also,the clinician would
ignore previously treated tumors (Fig. 3(b)). Last, some difficult cases, such as
Fig. 3(c) and (d), are highly subjective and should be determined through clinical
manifestations or the series change of MRI. The cases mentioned above can
underestimate our model performance and lead to a higher variance.
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Fig. 3. Examples of failed cases overlaying with MRI.

4 Conclusion

In this paper, we have achieved high performance for automated detection and
segmentation of brain metastases, utilizing multimodal imaging (MRI+CT) as
inputs and ensemble neural networks. We have also addressed the challenge of
lesion size variance in multiple metastases by introducing a volume-aware Dice
loss, which leverages the information of lesion size and significantly enhances
the overall segmentation and sensitivity of small lesions, which are critical in the
current SRS contouring workflow. It is expected that the proposed solution will
facilitate tumor contouring and treatment planning of stereotactic radiosurgery.
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Abstract. Radiotherapy treatment planning often demands substan-
tial manual adjustments to achieve maximal dose delivery at the plan-
ning target volumes (PTVs) and protecting surrounding organs at risk
(OARs). Automatic dose prediction can reduce manual adjustments by
providing close to optimal radiotherapy planning parameters, which is
studied in this work. We developed a voxel-level dose prediction frame-
work based on an end-to-end trainable densely-connected network. We
designed a four-channel map to record the geometric features of PTVs,
OARs, and the prescription dose of each patient. The densely connected
block was modified with dilated convolutions to catch multi-scale fea-
tures, which can result in accurate dense prediction. 90 esophageal radi-
ation treatment plans from 90 patients were used in this work (72 plans
used for training and the remaining 18 plans for testing). Average value
of mean absolute error of dose volume histogram (DVH) and voxel-based
mean absolute error were used to evaluate the prediction accuracy, with
[0.9%, 1.9%] at PGTV, [1.1%, 2.8%] at PTV, [2.8%, 4.4%] at Lung,
[3.5%, 6.9%] at Heart, [4.2%, 5.6%] at Spinal Cord, and [1.7%, 4.8%] at
Body. These encouraging results demonstrated that the proposed frame-
work could provide accurate dose prediction, which could be very useful
to guide radiotherapy treatment planning.

Keywords: Radiation therapy · Dose prediction · Convolutional
neural networks · Dilated convolution · Densely-connected network
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1 Introduction

Radiotherapy is one of the major cancer treatment approaches. Radiotherapy
treatment planning is a process of adjusting optimization planning parameters,
which are highly dependent on the physicists experience. It could potentially
demand extensive adjustment and time consumption. One solution is to predict
these optimization parameters by extracting knowledge of radiotherapy dose
maps (as shown in Fig. 1) from existing plans. The predicted parameters could
be a useful reference for physicists to reduce planning time.

The last decade has seen substantial progress in radiotherapy dose predic-
tion. The majority of these work is focusing on the prediction of dose volume
histogram (DVH). Principal component analysis and support vector regression
were utilized to predict DVH of prostate and head-and-neck radiotherapy based
on the observation that DVH is highly correlated with distance between PTVs
and OARs [1]. In DVH prediction, spatial features of organs-at-risk (OARs),
shape of planning target volumes (PTV), distance-to-target histograms (DTH),
overlapping volume histograms (OVHs), etc, are extracted to analyze the rela-
tionships between optimal plans. The major limitation of DVH prediction is
lacking the prediction of three-dimensional dose distributions. To address this
problem, artificial neural network was employed to predict voxel-level dose dis-
tribution for pancreatic and prostate patients, which learned more complex rela-
tionships between the handcrafted features mentioned above [2]. However, it
is remained to be discussed which features infect dose distribution most, and
whether other features infect dose distributions are ignored. Recently, convo-
lutional neural network (CNN) based approaches show superior performance in
prediction accuracy and training complexity. U-like convolutional neural network
was utilized to predict dose distribution of head and neck cancer patients, where
labeled PTVs and OARs were sent to the network and three-dimensional dose
prediction was generated [3]. In U-like convolutional neural network, a stack of
down-sampling operations were used to reduce the resolution of feature maps
and achieve larger receptive field, which poses serious challenges to preserve the
details of small objects such as spinal cord.

Fig. 1. Examples of some planning regions and their corresponding dose distributions.
Top: Planning regions, where the anatomy of planning target volumes (PTVs) and
organ-at-risks (OARs) are annotated. Bottom: Dose maps where the value of each
pixel records the dose value of a certain voxel by the unit of Gary (Gy).
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In this paper, we provide a novel approach for voxel-level dose prediction.
Specifically, a four-channel map was develop as the input to the system, where
the information of PTVs, OARs, and the prescription from doctors are recorded.
Then, we used a improved U-like architecture with a adapted dense block [4]. To
effectively enlarge the receptive field, which could catch more details and result
in accurate dense prediction. Our contributions could be summarized as follows:
(1) We introduce a novel four-channel input to dose prediction task, which could
preserve the factors which may infect dose distribution in the maximum degree.
(2) We specially design a convolutional neural network for dose prediction task.
We drop most of the down-sampling operations and employ an improved dense
block with dilated convolutions to catch multi-scale features and achieve accurate
dense prediction. (3) The entire network is end-to-end trainable. Dose maps (such
as Fig. 1) could be generated slice by slice without any manual intervention,
where the value of each pixel records the dose value of a certain voxel.

2 Method

2.1 Input to the System

The prescription dose of each target volume, spatial information of PTVs and
OARs are transformed to a four-channel map (analogous to how RGB images
are treated as three separate channels).

Fig. 2. (A) Planning gross target volume (PGTV) and planning target volume (PTV)
fixed with their corresponding prescription dose. (B) Organs-at-risk signed with unique
labels, form 1 to 4. (C) CT scans. (D) D-img where the value of each pixel records its’
distance to PTV boundary.

In order to describe the prescriptions from doctors and the spatial infor-
mation of PTVs, we fixed the areas of PTVs with their prescription dose (see
Fig. 2A), which could be described as P1A + P2(A − B), where A,B are the
binary mask of planning gross target volume (PGTV) and planning target vol-
ume (PTV), and P1, P2 are their corresponding prescription dose. In Fig. 2B, the
organ-at-risks is distinguished by labeling various numbers (from 1 to 4). These
labels of organs are used to help recognize the geometric features such as their
location, shape, size, spatial association to target volume, etc, which are supple-
mentary to conventional features from CT scans. The CT scans were also sent
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to the networks to provide more details (see Fig. 2C). Since dose distributions
outside beam field drops fastly, we use a distance image(named D-img for short)
to supplement details for distinguishing the locations of each voxel. In D-img,
the value of each pixel records the distance from each voxel to the boundary
of PTV(as shown in Fig. 2D). Considering the in-plane resolution of CT scans
varies between 0.90 mm and 1.37 mm per pixel, adding D-img to input could also
help retain this information. Generally, the value of pixel (x,y,z) in D-img is :

f(x, y, z) = min
Ci⊂Ωc

‖(x, y, z), Cj‖ (1)

while Ωc is the contour set of the planned target volumes (PTVs).

2.2 Model Architecture

Our model architecture is adapted based on U-Net, which is shown in Fig. 3.
It employed classic encode-decode architecture. The encoding stage used some
similar blocks, which consist of two 3 × 3 convolutions, a rectified linear unit
(ReLU) and a 2 × 2 max pooling operation. Different from standard U-Net, we
only employed two max pooling operations to reduced the resolution of feature
maps, which means the size of feature maps are at least 64 × 64. We double
the number of feature channels after down-sampling operation. After a dense
block, The decoding stage gradually up-sampling the feature maps to the original
resolution by 2 × 2 deconvolutions with stride of 2. At the final layer a 1 × 1
convolution is used to reduce the channels of features to 1 and generate predicted
dose map. In practice, We chose 32 as the basic number of channels, which is
suitable for our data size (90 cases).

Fig. 3. Schematic of an example architecture used for dose prediction, which consist
of convolution layers, deconvolution layers, max pooling layers, and a dense block. The
numbers in dense block represent the dilation rate of each convolution operation. The
input to the network is a four-channel map we introduced in Sect. 2.1, while the output
of the network is the dose map.
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Multi-scale Features Aggregation. In order to effectively enlarge the recep-
tive field and catch multi-scale features, we employed dilated convolutions, a
powerful tool in dense prediction tasks, as the basic unit of dense block. We
followed the idea of Yang et al. to avoid gridding issue [5]. When we designed
the block with hybrid dilated convolutions. The dilation rates of 3×3 convolu-
tions are repeated by a sequence of 1, 2, 5, and 9, their corresponding receptive
field could varies to 3 × 3, 5 × 5, 11 × 11, 19 × 19. This mechanism allows us to
effectively enlarge the receptive field without down-sampling operations. Besides,
dilated convolutions have the same number of parameters as the original 3 × 3
convolutions. Let denote the 3× 3 convolution kernel that related to layer L� by
K�, then dilated convolutions could describes as follow:

(L� ∗d K�)(p) =
∑

a+db=p

L�(a)K�(b) (2)

where p is the domain of feature maps in L�, ∗d is the discrete convolution
operator with dilation rate of d.

Design of Dense Block. To ensure maximum information flow, all layers are
directly connected with their frontal layers in our dense block. Our dense block
composed of 8 dilated convolution layers. Generally, let denote the output of �th

layer in dense block by X �, specially X 0 is the input of dense block, and denote
H(�) as a non-linear transformation, which composed of convolution operations
and point-wise truncations max(�, 0). Then the output of each layer in dense
block could be represented as:

X � = H([X0,X1, . . . , X�−1]), � = 1, 2, . . . , 8. (3)

Thanks to the dense connections, the whole network is easy to train and have
highly efficient parameters [4].

2.3 Optimization

Mean square error calculated according to Eq. 4 is employed as the loss function.

L =
1
N

N∑

i

1
2
(yi − ŷi)2 (4)

where N is the total voxel of target structure, yi is the predicted dose value of
ith voxel, ŷi is the clinical dose value.

Training was conducted in two stages, we found it is beneficial to warm up
the framework with some similar slices Q = {z | zk − 10 ≤ z ≤ zk + 10} of
each patient for the first 1000 iterations, where zk is the approximate sequence
number of the slice which located on the middle of chest. Then, we trained the
network with all the slices for 100 epochs. Standard stochastic gradient descent
(SGD) with batch size 1, momentum β = 0.99 and weight decay ω = 0.0005 was
used for optimization. All the experiments were running with Caffe library.
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2.4 Data Collection and Validation Methods

A total of 90 plans of esophagus cancer patients treated with single arc volumetric
modulated arc therapy at 6 MV were collected in our research, all treatment
plans are optimized and clinical accepted. The size of planning target volumes
varying between 88.3 cm3 and 1051.4 cm3, the median size is 516.9 cm3. The in-
plane resolution of CT scans varying between 0.90 mm and 1.37 mm per pixel,
and slice thickness is 5 mm.

In order to evaluate the general level of prediction accuracy, we employed
mean absolute error of dose volume histogram (MAED) calculated according to
Eq. 5, voxel-based mean absolute error (MAEV ) calculated according to Eq. 6,
as the evaluation materials.

MAED =
1
99

99∑

i=1

|d(i) − d̂(i)|/prescription dose × 100% (5)

MAEV =
1
n

n∑

j=1

|v(j) − v̂(j)|/prescription dose × 100% (6)

Dn is denoted as the dose that n% of the volume of a region of interest is at least
receiving, d(i) is the predicted Di while d̂(i) is the true Di, n is the number of
total voxel, v(j) is the predicted dose value of jth voxel while v̂(j) is the true
dose of jth voxel.

We employed 5-fold cross-validation procedure (72 cases for training and 18
cases for testing) in the evaluation stage and calculate the mean value as the
final score.

3 Experimental Results

Considering patients’ data and treatment modalities are diverse, we reproduce
U-net dose prediction approach on our dataset for comparison. Besides, we also
evaluate the performance of the situations with or without D-img to stress its’
importance.

Table 1. The average scores of MAED of different structures (include PGTV, PTV,
lung, heart, spinal cord).

Method MAED MAED MAED MAED MAED MAED

(PGTV)(%) (PTV)(%) (Lung)(%) (Heart)(%) (Cord)(%) (Body)(%)

U-net 0.9±0.9 1.2±0.6 3.5±2.8 4.4±4.1 6.2±3.9 2.3±1.8

Ours 1.1±1.3 1.4±1.2 2.8±3.6 3.7±4.5 5.5±7.5 1.8±1.6

Ours+D-img 0.9±0.8 1.1±0.7 2.8±2.7 3.5±4.5 4.2±6.5 1.7±1.3

Overall, as showed in Tables 1 and 2, our predictions show high accuracy.
As a typical prediction example, Fig. 4 shows an intuitive comparison of DVH
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Table 2. The average scores of MAEV of different structures (include PGTV, PTV,
lung, heart, spinal cord).

Method MAEV MAEV MAEV MAEV MAEV MAEV

(PGTV)(%) (PTV)(%) (Lung)(%) (Heart)(%) (Cord)(%) (Body)(%)

U-net 2.0±0.6 3.0±0.5 5.6±2.8 8.7±6.0 8.3±4.3 5.8±2.5

Ours 2.2±0.8 3.1±0.5 4.9±4.3 8.3±3.8 7.5±3.2 5.5±2.4

Ours+D-img 1.9±0.3 2.8±0.7 4.4±3.6 6.9±5.1 5.6±5.6 4.8±2.7

Fig. 4. Example of a typical dose volume histogram (DVH) comparing true dose and
predicted dose for one patient, solid lines are the dose volume histogram calculated
form clinical dose distribution while dashed line are calculated from our prediction.

Fig. 5. Examples of dose predictions of several slices with vastly different location. (A)
The planning regions. (B) The prediction of our framework without combination. (C)
The Prediction of our framework with D-img. (D) Their corresponding clinical dose
distributions.
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between prediction and the true one. Although the prediction error of the spinal
cord expresses a slight increase when compared to other structures, the pre-
dicted error of the max dose value of spinal cord (Cordmax), the main quality
index to evaluate the dose distributions of spinal cord, is small (1.2%). It means
our designing of model architecture and transforming of clinical information are
efficient and still clinical acceptable.

Visually on Fig. 5, for those slices which do not contain PTVs but still have
complex dose distribution, the model without D-img shows limited ability. The
predictions of these edge slices are inaccurate, while adding D-img as input can
notably alleviate this issue. According to Tables 1 and 2, the employment of
D-img also makes our predictions much more accurate.

4 Conclusion and Future Work

In this study, we proposed a new approach for dose distribution task, which
could provide voxel-level dose predictions. The proposed model shows significant
improving in prediction accuracy of OARs while achieves comparable or better
performance in prediction accuracy of PTVs. The design of the input to the
system, especially the design of D-img, was proved to be beneficial for more
accurate dose prediction. Overall, using proposed approaches, we are able to
accurately predict the dose distribution of all structures within 7% average mean
error. These encouraging results demonstrated that the proposed framework
could provide accurate dose prediction, which could be very useful to guide
radiotherapy treatment planning. In the future, we plan to extend our research
by building a beam-filed-attentioned network for automatic treatments planning.
Besides, automatic segmentation of organs-at-risks (OARs), detection of plan-
target volumes (PTVs), and dose prediction may integrated together in one
framework. We expect this research will further provide convenience for clinical
planning and research.
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Abstract. In radiotherapy it is critical to have access to real-time
volumetric information to support online dose calculation and motion
management. MRI-guidance offers an online imaging platform but is
restricted by image acquisition speed. This work alleviates this limita-
tion by integrating processing techniques with an interlaced 2D real-time
acquisition protocol. We characterize the volumetric anatomical states as
samples on a manifold, and consider the alternating 2D slice acquisition
as observation models. We infer sample locations in the manifold from
partial observations and extrapolate on the manifold to generate real-
time target predictions. A series of 10 adjacent images were repeatedly
acquired at three frames per second in an interleaved fashion using a
0.35 T MRI-guided radiotherapy system. Eight volunteer studies were
performed during free breathing utilizing normal anatomical features as
targets. Locally linear embedding (LLE) was combined with manifold
alignment to establish correspondence across slice positions. Multislice
target contours were generated using a LLE-based motion model for each
real-time image. Motion predictions were performed using a weighted
k-nearest neighbor based inference with respect to the underlying vol-
ume manifold. In the absence of a 3D ground-truth, we evaluate the
part of the volume where the acquisition is available retrospectively. The
dice similarity coefficient and centroid distance were on average 0.84 and
1.75 mm respectively. This work reports a novel approach and demon-
strates promise to achieve volumetric quantifications from partial image
information online.

Keywords: Dimensionality reduction · Motion modeling ·
Motion prediction

1 Introduction

Motion is a critical consideration in radiotherapy. Online MR imaging provides
the opportunity to monitor tumor motion during treatment, but imaging tech-
niques are not currently able to acquire volumetric images fast enough to monitor
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the motion of the entire tumor in real-time. Only a portion of the target is visible
at each time point and there is no standardized or justified optimization method
to select the physical location or cross section of the target that should be mon-
itored during treatment. In addition to obtaining volumetric characterization, it
is particularly important to perform prediction to compensate for computational
and mechanical latencies to make adaptive adjustment.

Endeavors have been made to use motion models to obtain 3D motion in
real-time. Proposed methods include use of a motion lookup table, fitting prior
4D MRI motion to match newly acquired 2D images, manifold learning and use
of a bilinear motion model with a respiratory surrogate [1–3,7]. Other relevant
works have restricted prediction to 2D setups using autoregressive linear mod-
els, support vector machines and kalman filters [7,9]. To our knowledge, only
one existing work addressed both limitations simultaneously, predicting motion
across multiple slice positions using a respiratory surrogate and lookup table [7].

In this study we propose a unified framework to provide volumetric motion
information and perform motion prediction. We utilize a locally linear embed-
ding and manifold alignment technique to simultaneously model motion across
multiple imaging planes [2]. We extract and estimate the underlying nonlinear
manifold structure of anatomical motion across multiple slice positions and infer
the volumetric target descriptor using the manifold for each acquired 2D image
to obtain its 3D counterpart and perform real-time volumetric prediction.

2 Methods and Materials

2.1 State Embedding and Manifold Alignment from 2D Images at
Different Acquisition Locations

Let X indicate samples in the ambient space (i.e., 2D images, possibly from
different locations), Y the low-dimensional embedding, W the weights. Further,
we will use subscript l to index slice location, so that Xl Yl indicate the collection
of ambient samples collected at location l and their corresponding embedding.
We utilize an estimation scheme to obtain Yl, l = 1, 2, . . . , L by performing
manifold alignment during local linear embedding [1].

As a preprocessing step, for any specific image location l, and each sample i,
the K most similar images under the same acquisition condition l are identified
and their weights estimated by minimizing

arg min
W

N∑

i=1

∣∣∣∣∣∣
Xi −

∑

j∈Ω(i)

WijXj

∣∣∣∣∣∣

2

. (1)

Where Ω(i) is the index set for the neighborhood, and Wij are the reconstruction
weights associated with each nearest neighbor.

Subsequently, we consider a process to generate the embedding by considering
both point-wise embedding accuracy and manifold alignment simultaneously. We
minimize the objective
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Φtot ({Yl}l=1,2,...,L) =
L∑

l=1

Φl (Yl) + μ

L−1∑

l=1

Ψl,l+1 (Yl,Yl+1) . (2)

The first term enforces intra-slice embedding quality and the second term
encodes the manifold alignment objective.

The intra-position embedding objective Φ quantifies distance preservation
upon embedding, with all embedding derived from ambient samples of images
acquired at the same location l:

Φl (Yl) =
N∑

i

∣∣∣∣∣∣
Y i,l −

∑

j∈Ω(i)

WijY j,l

∣∣∣∣∣∣

2

(3)

Where W are the same reconstruction weights defined in 1 based on the corre-
sponding ambient Xl high-dimensional neighbors. Minimizing Φ alone amounts
to the standard locally linear embedding (LLE) method [8].

The inter-position objective drives the alignment of the embeddings across
the submanifolds from different imaging locations.

Ψl,l+1 (Yl,Yl+1) =
∑

i1,i2

∣∣∣Y (l)
i1

− Y
(l+1)
i2

∣∣∣
2

Ui1,i2 (4)

Where Y l and Y l+1 are the set of embeddings corresponding to acquisitions at
two different slice positions. For embeddings Y

(l)
i1

and Y
(l+1)
i2

, their relevance is
assessed with kernel Ui1,i2 , defined as

Ui1,i2 = exp

(
− 1

2σ2

∥∥∥X(l)
i1

− X
(l+1)
i2

∥∥∥
2

L̃2

)
(5)

Where σ is a kernel parameter and L̃2 is the normalized intensity distances.
Finally, a one-to-one correspondence across different imaging locations l is

established while minimizing the matching differences [6].
When a new sample is acquired, its embedding is derived using an out-of-

sample extension for LLE [8]. Specifically, reconstruction weights were derived
using the K most similar training images acquired at the same spatial location
from (1). Embeddings are derived by applying the same weights to the embedding
vectors associated with each involved neighbor

Ŷ =
K∑

j=1

WjY j (6)

where Wj are the weights derived from the high-dimensional images and Y j are
the out-of-sample embeddings.
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2.2 Population of Motion and Contours

Similarly, the motion vector, characterized by a deformation vector field (DVF)
can be propagated using the derived weights:

D =
∑

j∈Ω

WjDj , (7)

where Dj are the DVFs corresponding to each nearest neighbor.
The DVFs can then be used to populate target definition in all slices. Figure 1

shows a schematic describing embedding a newly acquired 2D image in the under-
lying nonlinear manifold and automatically generating target contours.
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Y(2)

Y(1) w1

w2

w3
w4
w5

Slice 1
Slice 2
New

Y(2)

Y(1) w1

w2

w3
w4
w5

Slice 3
Slice 2
Est

Y(2)

Y(1) w1

w2

w3
w4

w5
Slice 3
Slice 4
Est

Y(2)

Y(1)

Embedding

Autocontour

Slice 1 Slice 2 Slice 3 Slice 4

5∑

j=1
wjYj

5∑

j=1
wjYj

Fig. 1. The embedding process for a newly acquired image at slice 1, transferring the
embedding across the aligned manifolds to all other slice positions and automatically
contouring the target in the other slice positions.

In this specific implementation, we used N = 100 training images and neigh-
borhood sizes of |Ω| = K = 25 at each slice position to derive a embedding of
dimension 3. The inter-slice parameters included a μ of 5 and σ of 1. Manifold
learning was repeated to update the low dimensional embeddings using the most
recent images after every 10 new images were acquired at each slice position. The
images were convolved with a 6 × 6 averaging filter to reduce the influence of
noise and cropped prior to manifold learning to avoid distraction from irrelevant
state changes, such as gas in the bowel.

2.3 Target Prediction

Out-of-Sample Based Prediction. For the purpose of prediction, the state is
defined as two consecutive 3D contours S = [Ci,Ci−1], where C is the 3D binary
contour and the index indicates the relative time the contour was generated.

To perform prediction at state S, we apply the out-out-sample rationale to
identify similar states in the past and estimate their relevance to the current
state by finding the simplex W
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arg min
W

∥∥∥∥∥∥
S −

K∑

j=1

wjSj

∥∥∥∥∥∥

2

subject to
∑

wj

= 1, wj ≥ 0, j = 1, . . . , K.

(8)

The simplex weights are then used to combine the succeeding volumes Č’s
from training set to provide an probabilistic estimate for the predicted volume,
similar to an atlas-based approach. In this work, we use a simple threshold of
0.5 to generate the predicted volumetric mask estimate.

Figure 2 illustrates this coherent approach for both volumetric inference and
prediction.

Image Position

2D Acquisition

3D Model

Time

1 2 3 4 5

Inference Prediction

S1

S2

S3
S4
S5

Sj
S

Y(2)

Y(1)

S

Fig. 2. Volumetric inference and prediction based on embedding.

Benchmark Prediction Methods. The proposed method was compared
against four benchmark methods: a nearest neighbor prediction model derived
from image similarity (IS), an autoregressive prediction method (AR), linear
extrapolation (Extrapolation) and assuming the target will remain static until
another image is acquired again at the same position (None).

The IS method considers two consecutive images as state S, and uses only
the images acquired at the same slice locations as the current images to train
the prediction, using the same method as in (8) for prediction. Note that this
prediction only generates a contour on a single slice.

The linear AR method generates prediction as a linear combination of pre-
vious motion values by minimizing

arg min
β

N∑

i=1

∣∣∣∣∣Di − β0 −
p∑

q=1

βqDi−q

∣∣∣∣∣

2

(9)

where β are the fitting coefficients. The regression coefficients are then applied
to the recent motion state Di,Di−1, ...,Di−p+1 to generate the prediction. We
used N = 90 samples and p = 7 trajectory points to fit the model. The model
was updated with each newly acquired image.
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Extrapolation assumes constant target velocity to extrapolate the future
position from two most recent samples. Motion values acquired at the same
position as the currently imaged slice were used to perform motion extrapola-
tion.

No commercially available MRI-guided radiotherapy systems provide the
option to perform motion prediction. The target is implicitly assumed to be
static until the next image is acquired. The “None” benchmark reflects this
behavior.

3 Method

3.1 Studies and Evaluation

A total of eight healthy volunteers were recruited to evaluate the proposed
method. Images were acquired repeatedly in an interleaved fashion across 10
slice positions using a 0.35 T MRI-guided radiotherapy system. Images were
acquired at approximately 3 frames per second until 200 images were acquired
at each slice position using a balanced steady state free precession sequence with
a 2 × 2 mm2 in-plane resolution and 4.5 mm slice thickness. All predictions were
performed one image frame (0.33 s) into the future, which falls into the range
of 200–500 ms [5] system latency for MRI-guided radiotherapy systems. Normal
anatomical features were contoured on the reference image at each slice location.
All motion vector fields were derived using a 2D multi-resolution B-Spline based
deformable registration to a reference image of the same slice location to enable
contour generation [4].

Since at the imaging frequency of 3 Hz we only have access to a single 2D
image slice at one of the 10 slice locations, there is no access to the ground-
truth volumetric target definition. Quantitative evaluation was performed by
retrospectively evaluating the intersection between the target volume prediction
and the ground-truth image at the specific slice where the image was acquired.
Dice similarity coefficient (DSC) and contour distance were used as performance
metrics. A t-test was used to compare performance between the proposed method
and the benchmark approaches. We call this “conditional 2D performance” to
differentiate it from a truly 3D assessment.

The proposed embedding approach is the only method that generated volu-
metric predictions. To evaluate the performance of the 3D prediction, the dice
similarity was compared between the predicted and retrospectively inferred 3D
contour volume generated by the embedding approach, referred to as the “3D
performance” quantification.

3.2 Results

Examination of the conditional 2D performance shows that the proposed pre-
diction method resulted in an average dice similarity of 0.84 and mean centroid
prediction error of 1.74 mm across all healthy volunteer studies. Figure 3 reports
comparison of the proposed method to the benchmarks for these two metrics.
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Fig. 3. Performance comparison in DSC and centroid distance prediction error for each
healthy volunteer study. The average result and the companion p-value from t-test (in
bracket) are reported.

In the conditional 2D performance assessment, the IS method performs best.
The proposed 3D method comes in a close second, possibly due to the smoothing
introduced in embedding and manifold alignment. In the 3D performance assess-
ment, the proposed method achieves an average DSC of 0.87. Table 1 reports the
mean and standard deviation of DSC for each subject.

Table 1. The average and standard deviation of the dice similarity between the 3D
predicted and 3D observed target contours for each healthy volunteer study along with
the in-plane target area

Volunteer 1 2 3 4 5 6 7 8

Average 0.89 0.92 0.89 0.86 0.84 0.80 0.89 0.84

Standard deviation 0.13 0.07 0.09 0.11 0.15 0.14 0.08 0.14

In-plane target area (mm2) 1144 1080 632 452 1076 1584 1656 1364

4 Discussions and Outlook

We have demonstrated the proposed method of simultaneous manifold embed-
ding and alignment can be used to provide complete volumetric target pre-
dictions in real-time during MRI-guided radiotherapy for treatment guidance.
Importantly, the proposed method provides 3D target contours in a unified geo-
metrical space at the native 2D image acquisition frame rate, bridging the gap
between the desire to drive treatment decisions using full 3D information and
limited imaging speed.

In the conditional 2D assessment, the proposed method comes as a close sec-
ond to the IS prediction, and outperforms all other benchmarks investigated.
The reduction in prediction performance compared to the IS method may be
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attributable to the smoothing during embedding and alignment, and could pos-
sibly be addressed with further investigation of embedding parameters. Addi-
tionally, the proposed method derives prediction weights from the 3D binary
target masks whereas the IS method derives prediction weights from image sim-
ilarity. It is possible that either texture within the target, the surrounding con-
text, or both may help inform prediction. The proposed approach is amicable
to such modifications by changing the definition of state to ROI-intensity. All
other benchmarks rely upon repeated sampling of the same motion information
at the same spatial location, resulting in a long effective look-ahead length that
was 10 times the imaging interval under the interleaved acquisition protocol.

The proposed prediction performance was lowest in volunteer study 6. This
particular volunteer’s breathing motion was irregular as the subject changed
their way of breathing, switching between chest and abdominal breathing during
the recording. This type of switching poses challenges for the IS method as
well, though not as severe. It is possible to expand the current method to a
hybrid scheme by incorporating a pattern change detection module to adapt the
estimation of the underlying manifold more rapidly once a switching behavior is
identified.

Finally, our method was motivated by the interleaved image acquisition in
MRI guided radiotherapy, to utilize 2D images of varying slice location as input
and provide real-time 3D volumetric characterization as output. The same ratio-
nale applies to other scenarios where partial, limited observation is acquired
online, such as in fluoroscopic settings for adaptive radiotherapy.
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Abstract. Dose volume histogram (DVH) is an important dosimetry
evaluation metric and it plays an important role in guiding the devel-
opment of esophageal ra-diotherapy treatment plans. Automatic DVH
prediction is therefore very use-ful to achieve high-quality esophageal
treatment planning. This paper studied stacked denoise auto-encoder
(SDAE) to compute correlation between DVH and distance to target his-
togram (DTH) based on the fact that the geometric information between
PTV and OAR is closely related to DVH, this study aims to establish a
multi-OAR geometry-dosimetry model through deep learning to achieve
DVH prediction. Distance to target histogram (DTH) is chosen to mea-
sure the geometrical relationship between PTV and OARs. In the pro-
posed method, stacked denoise auto-encoder (SDAE) is used to reduce
the dimension of the extracted DTH and DVH features, and then one-
dimensional convolutional network (one-DCN) is used for the correlation
modeling. This model can predict the DVH of multiple OARs based on
the individual patient’s geometry without manual removal of radiation
plans with outliers. The average prediction error of the measurement
focusing on the left lung, right lung, heart, spinal cord was less than 5%.
The predicted DVHs could thus provide accurate optimization parame-
ters, which could be a useful reference for physicists to reduce planning
time.
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1 Introduction

Radiotherapy treatment planning is a complicated process, which attempts to
compromise the high dosage delivery at the planned target volume while min-
imizing dosing amount at organs-at-risk (OARs) [1]. To achieve this goal, the
dose-volume histogram (DVH) is often used to guide the physicists to manually
adjust the cumbersome parameters. Therefore, DVH prediction would be clini-
cally useful for treatment plan design, which is empirically proved to be highly
cor-related with the distance between OARs and PTVs. Modeling DVHs with
the geometrical distance between PTVs and OARs is thus the main theme in
this work.

In recent years, many research teams have used knowledge-based planning
(KBP) to model such correlation. Distance to target histogram (DTH) was uti-
lized by Zhu et al. [2] to represent the geometrical relationship by computing
the volume fraction of an OAR controlled by different distances to PTV. The
correlation between DTH and DVH was modeled by principal component anal-
ysis (PCA) and linear regression. Yuan [3] extensively explored different types
of features to describe the geometrical relationship and systematically analyzed
their correlation with DVH. Deep belief network (DBN) was used to model the
correlation between DTH and DVH after dimensional reduction by auto-encoder
[4]. However, due to the existence of the anisotropy of radiotherapy plans, out-
liers in the data also become one of the factors affecting the accuracy of the
predicted DVH model [5]. The common auto-encoder cannot avoid the effects
of outliers, and the ability to fit nonlinearities of DBN is not as good as that of
convolutional networks.

The development of deep learning [6] in recent years has opens a new avenue
to compute correlation, which is the main scope of this paper. In this paper, stack
denoise auto-encoder (SDAE) [7] is utilized to reduce the feature dimension for
DVH and DTH, and one-dimensional convolution network (one-DCN) is then
adapted to model their correlation. Such correlation can be used to predict DVH
for new patients. Validation results showed that the predicted and clinical DVHs
were close to each other, and the predicted model has a significant robustness
to the outliers of the data, which can significantly reduce the planning time by
predicting the DVH to quickly approach the near-optimal parameter settings.

2 Methods and Materials

Figure 1 depictures the proposed framework. First, the CT image and the
required structural contour image, that is, the structure of PTV and each OAR,
are extracted from the original data of the DICOM data format. Next, it included
of a modeling process (solid frame) that compute the correlation between DTH
and DVH and a prediction process (dashed frame) that exploits the correlation
model to predict DVH for new patients. Both processes contain data preprocess
to ex-tract the geometrical relationship between PTV and OARs, stack denoise
auto-encoder to reduce feature dimension, and one-dimensional convolution net-
work to model the correlation.
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Fig. 1. The proposed framework contains a modeling process (solid frame) that com-
putes the correlation between DVH and DTH and a prediction process (dashed frame)
that predicts DVH based on the modeled correlation. Both processes involve three
main steps: (1) data preprocessing to compute dose information (DVH) and geometri-
cal information (DTH), respectively, (2) stack denoise auto-encoder to reduce feature
dimension, and (3) one-dimensional convolution network to model the correlation.

2.1 Patient Data

We collected 182 intensity-modulated radiation therapy (IMRT) esophageal
plans and 88 volume modulated arc therapy (VMAT) esophageal plans. All
IMRT plans share the same configuration of seven-field 6 MV photon beams,
with the gantry angles at 135◦, 165◦, 195◦, 0◦, 30◦, 225◦, and 330◦. The pre-
scription dose (Rx = 78 Gy) covers at least 95% of the PTV volume. And selected
VMAT plans used two 6MV coplanar arcs with a prescription dose of 61.02 Gy.
We only predicted left lung, left lung, heart, and spine cord in this study.

2.2 Data Preprocessing

This step aims to develop a feature descriptor to describe the geometrical rela-
tionship between PTV and OARs. An array of geometric features was analyzed
to study their contributions to OAR dose sparing. In an esophageal radiation
treatment plan, PTV and OAR contours are put in structure images, as illus-
trated in the top images of Fig. 1. We use DTH to measure the geometrical
relationship among all these contours. DTH refer to cumulative OAR volumes
within a certain distance from the PTV surface. Specifically, DTH can be defined
as:

DTH(r) =
|V r

OAR ∩ VPTV |
|VOAR| (1)

Where VOAR and VPTV represent the voxel sets of OAR and PTV, respectively.
V r

OAR represents the voxel sets of OAR with a maximum distance r from the
surface of the PTV. Where r is the Euclidean form of the distance function
r(V i

OAR, PTV ) from the OAR voxel to the PTV surface. Supposing SPTV be
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the set of surface points in PTV, the distance between an OAR voxel V i
OAR to

the PTV is given by

r(V i
OAR, PTV ) = mink

{∥
∥V i

OAR − V k
PTV

∥
∥ |V k

PTV ∈ SPTV

}
(2)

Negative r(V i
OAR, PTV ) indicates that the voxel VOAR is inside the PTV bound-

ary and positive means outside. So intuitively, the meaning of DTH is the OAR
voxel at a certain distance from the surface boundary of the PTV.

In this study, we select 50 points with equal spacing from the DTH curve
as a discretized high-dimensional representation of the distance-dose continuous
function curve. Each point contains a volume fraction value and a distance value.
We hold all the discrete distance values and only select the corresponding volume
score values to construct a 50-dimensional DTH feature vector. In the modeling
process, we also compute DVH based on the dose values received by the corre-
sponding OAR in the dose image. Another 50-dimensional DVH feature vector
can be constructed by combining dose values of 50 points in the DVH curve.

2.3 Feature Dimension Reduction by Stacked Denoise Auto-encoder

DTH and DVH feature vectors from the previous step often contain noise, and
high dimensional feature vectors also leverage the computational cost. So the
purpose of this step is to extract the main components of DVH and DTH from
multiple OARs.

In previous research work, principal component analysis (PCA) often used as
a common dimensionality reduction method to reduce the DTH and DVH feature
vectors. Nevertheless, PCA also has some drawbacks. For example, PCA only
performs well if the sample distribution obeys the standard gaussian distribution,
and the existence of outliers often leads to the inapplicability of PCA. Self-
supervised neural networks usually perform better for nonlinear dimensionality
reduction. Self-supervised layer-by-layer training makes more attention to the
feature distribution of the original data in the dimension reduction process,
while avoiding the gradient disappearance caused by back propagation (BP).
Therefore, auto-encoder (SDAE) is used to nonlinear reduction of dimension
and principal component extraction in our work.

SDAE is a self-supervised learning method. By adding noise into the orig-
inal data and layer-by-layer unsupervised learning, SDAE effectively achieves
the dimensionality reduction. The SDAE contains eight encoding layers (64-128-
256-128-64-32-16-5) and eight decoding layers (16-32-64-128-256-128-64-50). As
shown in Fig. 2, encoder and decoder are structurally symmetric, the random
noise is subject to a Gaussian distribution and matches the original data dimen-
sion.

It should be noted that unlike the DVH distribution, the difference in the
discrete distribution of the start and end of all DTH distributions is very small,
so the gaussian kernel function is assigned to the loss function to weigh each
sampling point when fine-tuning SDAE. This approach allows the network to
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Fig. 2. Overview of the SDAE structure for reducing DVH and DTH feature vector
dimensions. The SDAE contains eight encoding layers and eight decoding layers. Here,
the blue box represents the original input 50-dimensional feature vector, the gray box
represents the 50-dimensional feature vector with the random noise, the coding layer
is shown in black boxes, and the decoding layer is shown in white boxes. The number
below the box represents the number of neurons in each layer, and Lθ(X,Z) represents
the loss function between the reconstructed feature vector and the original input feature
vector. (Color figure online)

better capture the important features of the DTH curve, that is, the part with
the largest change rate in DTH curves. The improved loss function is similar to
the local weighted regression loss function, which is given by

L(θ) =
m∑

i=1

wi(hθ(xi) − xi)2 (3)

Where x represents one of the elements of the input feature vector, and m is
total the number of neurons in the feature vector.hθ(xi) indicates that the i-th
neuron has been reconstructed by SDAE. The weight wi here obeys the standard
gaussian distribution. According to experience, the mean value of this distribu-
tion is generally located at the median point of 50 sampling points due to the
rate of change of DTH curves here is the largest.

By layer-by-layer pre-training of each layer, the SDAE can gradually reduce
a 50-dimensional feature vector either from DVH or DTH into a 5-dimensional
one, Here, 5-dimensional output feature was empirically determined because it
only has less than 3% information loss from the original input.

2.4 Correlation Modelling Using One-Dimensional Convolution
Network

According to Yuan’s study, dosimetric goals of one OAR dose sparing is affected
by multi-OAR geometries. This step exploits the reduced feature vectors from the
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Fig. 3. Overview of the one-DCN structure. Each blue box represents a multi-channel
feature vector, and channel number is put on its top. The Feature vector size is list at
the lower left edge of each box. Arrows denote different operations, and their meanings
are put in the legend. (Color figure online)

previous step to nonlinearly model the correlation between multi-OAR geomet-
ric features and DVH. The one-dimensional convolutional network (one-DCN)
can extract the translation features of one-dimensional data better than the
traditional regression method or the common neural network (such as DBN).
Therefore, one-DCN is adopted to model the nonlinear correlation between geo-
metric features and DVH. As shown in Fig. 3, small (3 × 3) convolution filters
were used in all layers, and all convolution layers are equipped with the rectifi-
cation (ReLU) non-linearity. An L2-regularization term and a smoothing term
are added to the objective function in ONE-DCN model. The final regularized
solution objective function can be expressed as Eq. (4):

W = argminθ

{
‖F (X|W ) − Y ‖22 + λ1 ‖W‖22 + λ2 ‖�W‖22

}
(4)

Where F (X|W ) represents the output feature vector computed by the input
feature vector X through the one-DCN model. λ1 ‖W‖22 represents the L2-
regularization term, and λ2 ‖�W‖22 represents an additional smoothing regu-
larization term which can ensure that contributions from adjacent DTH reduced
dimension components within one OAR to the DVH components vary smoothly.

In this experiment, the geometric features include all OAR and PTV volume
feature vectors and each reduced to a 5-dimensional DTH feature vector of one
OAR by the SDAE. Accordingly, the dose features include reduction to a 5-
dimensional DVH feature vector by the SDAE. Note that each ONE-DCN model
here corresponds to an OAR DVH prediction.

When predicting DVH for an OAR from new patients, the DTH of the OAR
is first computed. A 50-dimensional DTH feature vector can be established by
sampling DTH curve and this feature vector is then reduced to a 5-dimensional
feature vector by the SDAE. Its corresponding 5-dimensional DVH feature vector
can be reconstructed in terms of the established ONE-DCN model. Finally, we
can use the decoding layers in the SDAE to reconstruct a DVH feature vector,
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which can be used to predict DVH for the current OAR. Therefore, we can use
the same procedure to model and predict DVHs of all OARs for esophageal
patients.

3 Results

Table 1 show the mean error values of the dose endpoint values for the left lung
and spinal cord of the two models for predicting DVH, in two different experi-
ments, respectively. From the quantitative average error analysis in Table 1, the
proposed prediction model is compared with the traditional prediction model,
the proposed prediction model has stronger robustness (p = 0.012) and better
prediction effect (p < 0.001) under different outlier environments.

The comparison of DVHs for a subset of the validation plans are shown in
Fig. 4. The figure shows that all OAR DVH curves can be achieved by the pro-
posed model to achieve a better prediction. The experiment results mean that the
proposed model can accurately predict DVH and provide near-optimal parame-
ters to reduce manual parameter adjustment in radiation treatment planning.

Table 1. Average prediction volume fractions errors of the left lung and right lung
between predicted and clinical DVHs at 5% (V5), 10% (v10), 20% (v20), and 30%
(v30) prescription dose.

OARs Methods Dose Endpoint error (Left Lung)

V5 V10 V20 V30

Left lung PCA+SVR 5.9± 3.5% 7.84± 4.1% 6.86± 5.7% 6.43± 4.8%

Left lung SDAE+one-DCN 2.33± 1.2% 2.68± 2.8% 3.45± 2.7% 2.91± 3.3%

Right lung PCA+SVR 2.69± 1.8% 5.12± 3.7% 4.36± 1.9% 5.81± 3.6%

Right lung SDAE+one-DCN 2.02± 0.9% 3.27± 1.3% 4.53± 1.5% 3.02± 2.7%

Fig. 4. Comparison of predicted and clinical DVHs of left lung (a), right lung (b),
heart (c), and spine cord (d) using the proposed model. the solid black line indicates
the DVH in the esophageal radiotherapy clinical plan, and the red dotted line indicates
the DVH generated by the model prediction.
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4 Conclusion

We developed a model to automatically predict dose volume histograms at OARs
based on their geometrical relationship with PTV for esophageal radiation treat-
ment planning. This model is designed for reaching a personalized treatment
goal by (1) Time-consuming optimization of artificial optimization parameters
(2) The traditional prediction model is not robust to environmental performance
with outliers. Such a model can be used to predict DVHs of different OARs for
new patients. Experiments show that our model has strong robustness and high
prediction accuracy under different outlier environments. The average predic-
tion error of the measurement focus of the left lung, right lung, heart, spinal
cord is not higher than 5%. Accurate DVH prediction can provide near-optimal
parameters for esophageal treatment planning, which can significantly reduce
the planning time. In the future, we are planning to expand our predicted model
to simultaneously predict DVHs for all OARs instead of predicting them sequen-
tially in this work.
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Abstract. In this work, we investigate approaches to generating syn-
thetic Computed Tomography (CT) images from the real Magnetic
Resonance Imaging (MRI) data. Generating the radiological scans has
grown in popularity in the recent years due to its promise to enable
single-modality radiotherapy planning in clinical oncology, where the co-
registration of the radiological modalities is cumbersome. We rely on the
Generative Adversarial Network (GAN) models with cycle consistency
which permit unpaired image-to-image translation between the modali-
ties. We also introduce the perceptual loss function term and the coor-
dinate convolutional layer to further enhance the quality of translated
images. The Unsharp masking and the Super-Resolution GAN (SRGAN)
were considered to improve the quality of synthetic images. The proposed
architectures were trained on the unpaired MRI-CT data and then eval-
uated on the paired brain dataset. The resulting CT scans were gen-
erated with the mean absolute error (MAE), the peak signal-to-noise
ratio (PSNR) and the structural similarity (SSIM) scores of 60.83 HU,
17.21 dB, and 0.8, respectively. DualGAN with perceptual loss function
term and coordinate convolutional layer proved to perform best. The
MRI-CT translation approach holds potential to eliminate the need for
the patients to undergo both examinations and to be clinically accepted
as a new tool for radiotherapy planning.

Keywords: Deep learning · Image translation · Radiotherapy

1 Introduction

Cancer is one of the major causes of death across the Globe [15]. In 50% of hospi-
talisations related to oncology, the patients are prescribed radiation therapy [6],
the goal of which is to destroy the malignant neoplasms. Ionising radiation is
delivered to a patient according to a dose plan derived from MRI and CT exam-
inations [4]. The MRI is used to locate the tumour with high fidelity thanks to
c© Springer Nature Switzerland AG 2019
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its superior soft-tissue contrast [10], whereas the CT scan effectively measures
the density of the tissues and determines the dose of necessary radiation [1].

Prior to radiotherapy, a patient has to undergo two different imaging proce-
dures in two different scanners. This always leads to a misplacement of the body
position, to large shifting errors, and to a misalignment of the targeted organs
on the MRI and CT images. Consequently, an inadequate calculation of a radia-
tion dose frequently occurs [2]. Carrying out both procedures also involves extra
financial burden and extra X-ray radiation exposure in the CT machine.

The MRI-only radiotherapy approach can eliminate the aforementioned dis-
advantages [9]. The radiotherapy plan can instead be derived from the MRI scan
combined with a perfectly co-aligned synthetic CT volume generated from the
MRI itself. As a result, the patient can skip the CT examination.

In this work we focus on MRI-to-CT image translation by CNNs. Zhu et al.
[24] introduced the CycleGAN with cycle consistency to address the unpaired
aspect of the image-to-image translation problem. Each half of the cycle trans-
lates an image from one domain to the other, while the whole cycle performs
the image translation to the initial domain. The approach was directly applied
to MRI-CT image translation by Wolterink et al. [21]. Yi et al. [22] proposed a
similar DualGAN model with the cycle consistency and more flexible cycle loss
function (see Eq. 1 below).

Liu et al. [13] proposed unsupervised image-to-image translation network
(UNIT) with a similar idea of translation between two domains. The UNIT
model takes advantage of cycle consistency as well, but the translation is done
via a shared latent invariant space, where images from the both domains have
identical representations.

Zhang et al. [23] proposed HarmonicGAN that bidirectionally translates
images between the source and the target domains. Its objective is also built
on the cycle consistency, but it was upgraded with smooth regularisation.

Here, we study the cycle consistency architecture with perceptual loss func-
tion term [8] and coordinate convolutional layer [7,14,17]. In addition, we report
application of Super-Resolution GAN [11] and Unsharp masking [16] filters to
improve both the training and the generated images.

2 Methods

In this work, we chose DualGAN [22] as a baseline in application to MRI-CT
image translation. The perceptual loss function term [8] and coordinate convo-
lutional layer [14] were embedded to DualGAN to improve the quality of the
translation. The SRGAN [11] and Unsharp masking [16] were incorporated to
pipeline as image post-processing and pre-processing methods.

The DualGAN architecture [22] consists of two image generators and
two patch discriminators, see Fig. 1. The first generator GMRI→CT is trained
to translate an MRI scan IMRI to CT image GMRI→CT (IMRI); the second
generator GCT→MRI translates image from a CT domain ICT to MRI image
GCT→MRI(ICT ). These two generators form a cycle, which allows comparing
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Fig. 1. DualGAN architecture.

the reconstructed image with the original. The cycle loss function (1) consists
of two terms, which are mean absolute errors between MRI image and MRI
reconstruction and between CT image and CT reconstruction, respectively, with
adjustable parameters λMRI and λCT .
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The patch discriminators distinguish generated images from real ones. They
force generators to perform more realistic translation. The output of each dis-
criminator estimates the realness of the input image, which is used in learning
as an adversarial term (2) with an adjustable parameter of λD.
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The perceptual loss function was introduced as a part of super-resolution
problem and style transfer problem [8]. The objective builds on the idea of fea-
ture matching: high-level representations of two images are compared by mean
squared error. The pre-trained VGG-16 model provides high-level representa-
tions - the outputs of the intermediate level, see Fig. 2. Although VGG-16 is
not optimised for tomographic images, its use is still relevant: the features are
extracted in an identical way for both images. The result of the comparison
makes loss function more sensitive to an image context leading to a more real-
istic image generation.

The coordinate convolutional layer was proposed by Liu et al. [14] to
take into account spatial information of the image. Two additional slices with i
and j coordinates are concatenated with the tensor representation of the image,

Fig. 2. 8th output of VGG-16. Fig. 3. Coordinate convolutional layer.
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see Fig. 3. The new tensor with coordinates is passed to the usual convolutional
layer. The coordinate convolutional layer helps to distinguish black pixels of MRI
T1-weighted images, which could represent either a bone or air.

Super-Resolution GAN and Unsharp masking were used to improve
the quality of image appearance. Super-Resolution GAN is capable of inferring
photo-realistic natural images with 4x upscaling factor [11]. Unsharp masking
enables creating sharp images combining negative blurred images with the origi-
nal ones [16]. SRGAN and Unsharp were applied as post-processing for synthetic
images generated by considered architectures, and as pre-processing before train-
ing.

3 Data

Three medical datasets were obtained to work with the considered methods of
unpaired MRI to CT translation.

MRI T1-weighted volumes of 7 patients were obtained from CPTAC Phase 3
dataset [3,5]. CT volumes of 61 patients were used from Head-and-neck cancer
dataset [19,20]. The private dataset consists of paired CT, MRI T1-weighted
and mask volumes of 10 patients.

The MRI images were initially pre-processed. The initial pixel values were
linearly scaled to [0, 1] range. The CT scans were clipped from the [−1000, 3000]
HU range to a narrower [−155, 295] HU. New range was linearly scaled to [0, 1].

All models were trained on CPTAC/Head-and-neck sets and the training part
of the private dataset. The qualitative and quantitative results were obtained on
the test part of the private dataset.

4 Experiments

In this work, four different architectures were considered: DualGAN, DualGAN
with the coordinate convolutional layer (DualGAN, CC), DualGAN with per-
ceptual loss function term (DualGAN, VGG) and DualGAN with perceptual
loss function term and coordinate convolutional layer (DualGAN, VGG, CC).
The synthetic MRI or CT images were compared with original paired scans from
the private dataset. Besides, outputs from pre-trained DualGAN and DualGAN
with perceptual loss function term and coordinate convolutional layer genera-
tors were enhanced by SRGAN or Unsharp masking to obtain better quality.
The same two models were trained from scratch on training data enhanced by
SRGAN or Unsharp masking.

The DualGAN with perceptual loss function term and DualGAN with coordi-
nate convolutional layer resulted in decreased quality of translation, see Table 1.
However, the configuration, which combines both upgrades, outperformed the
others. The MAE dropped to 60.83 HU; PSNR and SSIM rose up to 17.21 dB
and 0.8 respectively. The comparison with original CT scans in the full range
of HU resulted in MAE: 182.07 ± 20.17 HU, PSNR: 16.40 ± 0.51 dB, and SSIM:
0.79 ± 0.02.
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Table 1. Performance comparison of different translation configurations.

Configuration MAE, HU ↓ PSNR, dB ↑ SSIM ↑
Synthetic CT image generation

DualGAN 62.95 ± 1.17 16.82 ± 0.83 0.79 ± 0.02

DualGAN, CC 63.27 ± 2.00 16.96 ± 0.71 0.78 ± 0.03

DualGAN, VGG 66.52 ± 3.74 16.74 ± 1.08 0.78 ± 0.03

DualGAN, VGG, CC 60.83 ± 2.20 17.21 ± 1.00 0.80 ± 0.03

Synthetic MRI image generation

DualGAN 45.70 ± 1.71 21.98 ± 0.51 0.76 ± 0.04

DualGAN, CC 40.04 ± 2.52 22.91 ± 0.48 0.77 ± 0.03

DualGAN, VGG 42.11 ± 2.15 22.37 ± 0.59 0.77 ± 0.03

DualGAN, VGG, CC 37.99 ± 4.92 23.31 ± 0.19 0.78 ± 0.03

Even though the main purpose of the network was to generate synthetic
CT images; the architecture allows generating synthetic MRI images too. The
combination with both improvements surpassed other models with MAE, PSNR
and SSIM equal 37.99, 23.31 dB and 0.78 respectively.

Qualitative results are presented in Figs. 4 and 5. The considered methods
can create MRI and CT images retaining the right form and shape of a head
and the inner brain structure. The models can partly distinguish the air and
bone pixels, the borders between other different types of tissues are shifted and
blurred. The worst results concentrate on the complex structures of the nose and
jaw parts.

Fig. 4. Synthetic CT image generation
by DualGAN, VGG, CC.

Fig. 5. Synthetic MRI image genera-
tion by DualGAN, VGG, CC.
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Figures 6 and 7 show the results of SRGAN and Unsharp masking applica-
tions in relation to the DualGAN baseline. The Unsharp masking was performed
by Gaussian blur with σ of {1, 2, 5, 10, 20} and kernel size of 9. Pre-trained
SRGAN [18] was used with a 4x upscale factor. The considered variations led to
worse quality of generated synthetic images comparing to corresponding initial
results of the DualGAN and DualGAN, VGG, CC architectures. The DualGAN,
VGG, CC architecture creates the highest quality synthetic images than the same
configurations with additional image enhancement, see Tables 2 and 3. We sup-
pose that SRGAN specifically trained for MRI and CT images could lead to the
greater quality of generated tomographic images.

Fig. 6. Comparison of methods to
post-process sCT.

Fig. 7. Comparison of methods to pre-
process training data. CT generation.

Table 2. Performance comparison of
configurations with post-processing.

Configuration MAE, HU ↓ PSNR, dB ↑ SSIM ↑
Synthetic CT image generation, post-processing case

DualGAN 62.95 ± 1.17 16.82 ± 0.83 0.79 ± 0.02
DualGAN, σ = 1 63.63 ± 1.11 16.69 ± 0.81 0.79 ± 0.02
DualGAN, σ = 2 64.46 ± 1.29 16.55 ± 0.80 0.78 ± 0.02
DualGAN, σ = 5 65.43 ± 1.45 16.43 ± 0.80 0.78 ± 0.02
DualGAN, σ = 10 65.67 ± 1.53 16.41 ± 0.79 0.78 ± 0.02
DualGAN, σ = 20 65.68 ± 1.50 16.41 ± 0.79 0.78 ± 0.02
DualGAN with SRGAN 63.85 ± 1.17 16.80 ± 0.81 0.78 ± 0.02
DualGAN, VGG, CC 60.83 ± 2.20 17.21 ± 1.00 0.80 ± 0.03
DualGAN, VGG, CC, σ = 1 61.69 ± 2.03 17.06 ± 0.98 0.79 ± 0.03
DualGAN, VGG, CC, σ = 2 62.51 ± 1.85 16.90 ± 0.96 0.79 ± 0.03
DualGAN, VGG, CC, σ = 5 63.20 ± 1.67 16.79 ± 0.96 0.79 ± 0.03
DualGAN, VGG, CC, σ = 10 63.35 ± 1.62 16.77 ± 0.96 0.79 ± 0.03
DualGAN, VGG, CC, σ = 20 63.38 ± 1.60 16.77 ± 0.95 0.79 ± 0.03
DualGAN, VGG, CC, SRGAN 61.87 ± 2.18 17.18 ± 0.98 0.79 ± 0.03

Table 3. Performance comparison of
configurations with pre-processing.

Configuration MAE, HU ↓ PSNR, dB ↑ SSIM ↑
Synthetic CT image generation, pre-processing case

DualGAN 62.95 ± 1.17 16.82 ± 0.83 0.79 ± 0.02
DualGAN, σ = 1 83.62 ± 8.13 15.55 ± 1.14 0.75 ± 0.03
DualGAN, σ = 2 77.39 ± 7.63 15.54 ± 1.21 0.74 ± 0.04
DualGAN, σ = 5 77.34 ± 6.65 15.79 ± 1.26 0.75 ± 0.04
DualGAN, σ = 20 77.16 ± 7.18 15.53 ± 1.27 0.74 ± 0.04
DualGAN with SRGAN (MRI) 71.37 ± 0.29 16.19 ± 0.78 0.76 ± 0.03
DualGAN with SRGAN (CT) 71.99 ± 3.86 16.68 ± 0.92 0.77 ± 0.03
DualGAN with SRGAN (MRI & CT) 65.66 ± 2.30 16.79 ± 0.90 0.78 ± 0.02
DualGAN, VGG, CC 60.83 ± 2.20 17.21 ± 1.00 0.80 ± 0.03
DualGAN, VGG, CC, σ = 1 71.46 ± 6.15 16.51 ± 1.32 0.77 ± 0.03
DualGAN, VGG, CC, σ = 2 69.31 ± 6.75 16.29 ± 1.14 0.76 ± 0.04
DualGAN, VGG, CC, σ = 5 75.67 ± 6.07 16.06 ± 1.20 0.75 ± 0.04
DualGAN, VGG, CC, σ = 20 70.06 ± 1.17 16.03 ± 0.64 0.76 ± 0.03
DualGAN, VGG, CC, SRGAN (MRI) 63.72 ± 2.39 17.11 ± 0.90 0.78 ± 0.03
DualGAN, VGG, CC, SRGAN (CT) 64.81 ± 2.22 17.26 ± 1.15 0.78 ± 0.02
DualGAN, VGG, CC, SRGAN (MRI & CT) 63.75 ± 1.93 17.09 ± 1.05 0.80 ± 0.02

The comparison of the DualGAN, VGG, CC and models presented in litera-
ture can be seen in Table 4. The values were obtained from similar experiments
on radiology translation tasks [12,21,23]. The proposed in this paper architec-
ture has the lowest PSNR: 17.21 dB. Nevertheless, it outperforms other methods
by structure similarity - 0.8 and MAE - 60.83 HU. However, the visual quality
of the generated images by DualGAN seem to be worse than the original results
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of CycleGAN translation [21] likely because our datasets contain fewer images
of the same anatomical regions in both MRI and CT domains and samples with
non-completely overlapping regions.

Table 4. Comparison of synthesis by DualGAN, VGG, CC with other works.

DualGAN, VGG, CC CycleGAN [21] RF [12] UNIT [23] Harmonic [23]

MRI → CT Flair → T1

MAE, HU ↓ 60.83 ± 2.20 74.44 ± 1.80 60.87 ± 15.10 - -

PSNR, dB ↑ 17.21 ± 1.00 15.96 ± 0.89 24.63 ± 1.73 25.11 27.22

SSIM ↑ 0.80 ± 0.03 0.77 ± 0.03 - 0.76 0.76

5 Conclusion

The DualGAN, VGG, CC model achieved MAE of 60.83 HU, PSNR of 17.21 dB
and SSIM of 0.8, which is comparable to scientific literature. Our architecture
retains structural information in an image and works with unpaired MRI-CT
data. While the DualGAN, VGG and the DualGAN, CC combos are not them-
selves superior to the DualGAN model, their combination proved to be the
best performing architecture. The SRGAN and Unsharp masking, either for
pre-processing or for post-processing, did not improve the quality of the gener-
ated images. Visual examination by experts confirmed that the perceptual loss
term and the coordinate convolutional layer enhanced the appearance of the
synthetic images. The translation error was found to depend on the complex-
ity of the head features. The MRI-CT translation approach holds potential to
eliminate the need to conduct both imaging procedures and can streamline the
workflow of radiotherapy planning.
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Abstract. Functional avoidance radiation therapy for lung cancer patients aims
to limit dose delivery to highly functional lung. However, the clinical functional
imaging suffers from many shortcomings, including the need of exogenous
contrasts, longer processing time, etc. In this study, we present a new approach
to derive the lung functional images, using a deep convolutional neural network
to learn and exploit the underlying functional information in the CT image and
generate functional perfusion image. In this study, 99mTc MAA SPECT/CT
scans of 30 lung cancer patients were retrospectively analyzed. The CNN model
was trained using randomly selected dataset of 25 patients and tested using the
remaining 5 subjects. Our study showed that it is feasible to derive perfusion
images from CT image. Using the deep neural network with discrete labels, the
main defect regions can be predicted. This technique holds the promise to
provide lung function images for image guided functional lung avoidance
radiation therapy.

Keywords: Perfusion imaging � Functional avoidance radiation therapy � Deep
learning

1 Introduction

Lung cancer is the most common occurring cancer among adults worldwide, with the
most common cancer-related death (1.7 million in 2018) [1]. Approximately 85% of
lung cancer patients were diagnosed with non-small cell lung cancer (NSCLC), of
which 30%–50% were locally advanced (Stage III) NSCLC with median survival of 29
months [2, 3]. The standard treatment for locally advanced NSCLC is concurrent
chemoradiotherapy, but the long-term survival is impaired by a high rate of local failure
[4]. The clinical practice to achieve local control is dose-escalation above the standard
60 Gy. However, giving more dose to the functional lung would increase the risk of
radiation-induced lung injury, which involves radiation pneumonitis in the acute term
and pulmonary fibrosis in the long term [5].
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To avoid these side effects, functional avoidance radiation therapy for lung cancer
patients was brought out to limit dose delivery to highly functional lung [6]. In this
process, images with lung functional information was needed to differentiate function
and non-function regions. In clinical practice, the standard test of regional lung
function were ventilation and perfusion imaging [7]. Clinical ventilation imaging, such
as 99mTc SPECT [8], 68Ga PET [9], and hyperpolarized 3He gas MRI [10] are generally
of low accessibility for the radiation oncology departments, invasive techniques, high
cost. Therefore, clinical practice of these three modalities are limited. Deriving ven-
tilation map from 4DCT deformation fields also suffer from large variance from dif-
ferent registration algorithms [11].

Perfusion SPECT/CT imaging has been commonly utilized as a predictor of pul-
monary function after surgery [12]. It also has potential for treatment planning in
functional lung avoidance radiation therapy. Technetium-99m-labeled macro-
aggregated albumin (99mTc MAA) provides a quantitative measure of regional varia-
tion in pulmonary perfusion. Besides perfusion SPECT imaging, a more convenient
method is to derive the perfusion map from the CT images, which is a routinely utilized
for radiation treatment planning. CT-based perfusion imaging does not require
exogenous contrast anymore. This method is based on image processing of lung CT
images acquired during tidal breathing or breath-hold procedures, and it should be able
to transform CT from purely anatomic modality into one that can image and quantify
lung perfusion. Since the CT Hounsfield Unit (HU) values is a function of the fractional
air/tissue ratio [13], a deep learning model could hold the promise to extract the
underlying information of translating the HU values into functional perfusion images.
In the field of radiation therapy, deep learning-based convolutional neural network
(CNN) has been successfully applied in low-dose CT image correction [14, 15], MR-
to-CT image synthesis [16], image segmentation [17, 18], and so on. CNN has been
found to be able to learn and exploit the underlying features that cannot be extracted by
conventional image-processing methods [19]. CNN-based CT perfusion imaging has
great promise to improve the toxicity outcomes of lung cancer radiation therapy by
enabling perfusion-guided treatment planning that minimizes irradiation of functional
lung.

This study aims to explore the feasibility of using deep neural network to derive
perfusion-based pulmonary functional images from lung CT images. The proposed
method utilized CNN to extract the air/tissue ratio information in the CT images and
then used the underlying information to generate functional perfusion images. Our
study showed that it is feasible to drive perfusion images from CT image. The per-
formance of CNN with data discretization was superior over the CNN with data
reduction by testing on our dataset. Given the performance of the preliminary study and
computational efficiency of this method, the proposed deep learning method could hold
significant value for future functional avoidance radiation therapy.
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2 Materials and Methods

2.1 Patients and Image Acquisition

In this study, 99mTc MAA SPECT/CT scans of 30 lung cancer patients were retro-
spectively analyzed. The use of the scan data and waivers of onset were approved by
the Queen Mary Hospital (Hong Kong). Patients were immobilized in the supine
position with the normal resting breathing. Each scan covered the whole lung volume.
The CT images were reconstructed in 512 � 512 matrix with 0.977 � 0.977 mm2

pixel spacing, and 1.25 mm slice spacing. The SPECT images were reconstructed in
128 � 128 � 128 matrix with 4.42 � 4.42 � 4.42 mm3 voxel size. SPECT images
were anatomically registered with the CT images.

2.2 Data Preprocessing

Image Preparation. Initially, SPECT images were resampled at the CT geometry. We
built a lung mask to represent the lung parenchyma tissue. This mask included voxels
of CT values <−300 HU growing from the lung region, and the trachea was manually
excluded from the lung mask. For all cases, the primary lung tumor volume was not
included from the lung mask. The lung mask was subsequently applied on the SPECT
and CT images to segment the parenchyma volume. The segmented images were
further cropped to include only the lung and resized to 128 � 128 � 64 matrix to
reduce the consumption of the computation power. For both the SPECT and CT
images, a 3D median filter within a cubic region of dimension 6 � 6 � 6 (cube width
*18 mm) was applied around each lung voxel for better feature selection.

Data Labelling. To normalize the SPECT values in different patients, all voxels
values were divided by the 90th percentile value in the lung. Voxels with value of
outlier were set with the threshold values. Our CNN was trained to derive the low
function regions from the processed CT images so that the normal regions can be
derived. Hence, we first obtained the training datasets consisting of paired input and

Fig. 1. Diagram of data preprocessing workflow.
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output data. Since the purpose of this study was to predict the non-functional lung
region.

Then, two labelling approaches were used to compare the performance of the net-
work with different processed data. For the first scenario, voxels with values over 0.5
were excluded from the label map. The rest of the voxels were rescaled from 0 to 1.
This method selected only a subset of the most important information from the SPECT
images. For the second scenario, continuous values of the SPECT images were con-
verted into 11 intervals with range of [0, 0.1, 0.2, … 1].

2.3 Neural Network Architecture

We used a 3D U-net [20] based CNN to learn underlying information in the training
phase and translate CT images into lung perfusion images in the testing phase.
This CNN includes 2 sequential paths (see Fig. 1). The contraction path, which cap-
tures the context in CT images, has 5 sequential layers. Each layer consists of a leaky
rectified linear unit (leaky ReLU) as an activation function, followed by 3 � 3 � 3
convolution for detecting features, and 2 � 2 � 2 stride convolution for down-
sampling. The expansion path, which enables precise localization, consists of the leaky
ReLU, 3 � 3 � 3 convolution, 1 � 1 � 1 convolution, and 2 � 2 � 2 transpose
convolution. The element-wise sum array layer was used before the Sigmoid activation
function to sum 3 � 3� 3 convolution results of the previous layers. The predicted
values are in the range of [0, 1]. Symmetric skip connections was used to translate the
local details captured in the feature maps from the contraction path into the expansion
path. The dropout and early stopping were used to avoid overfitting. This network was
implemented using the Pytorch 1.1 framework (Fig. 2).

2.4 Network Training

The network was trained using randomly selected dataset of 25 patients and tested
using data from the remaining 5 subjects. Image flip was randomly applied to augment
the training datasets during training. The processed CT and SPECT images were used

Fig. 2. CNN architecture. The blue indicates the feature map. Blue arrows represent three-
dimensional (3D) convolutional layers with 3 � 3 filter. Red and green arrows indicate 3D max
pooling and transposed convolution respectively. Orange arrow indicate sigmoid layer. The
numbers on the top of the box indicate the number of channels. (Color figure online)
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for network training and validation. All the input and output datasets were in 3D
volume format. The mean square error was used as the loss function. Each layer was
updated using error back-propagation with adaptive moment estimation optimizer
(ADAM). The loss function used in this study was binary cross entropy. The learning
rate for determining to what extent the newly acquired information overrides the old
information was initially 10E−5. The number of epochs was 10000 and each epoch
includes 2 iterations. The network was trained on one GTX 2080 TI GPU.

2.5 Evaluation

The generated perfusion images were compared with the perfusion label images from
the testing groups. In this study, the correlation coefficient (Spearman’s r) metric was
used to compare the two images. The Spearman correlation coefficient r was defined
using the following equation:

r ¼
P

i Ii � �Ið Þ I�i � �I�
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

i Ii � �Ið Þ2Pi I
�
i � �I�ð Þ2

q ð1Þ

where the notation I denotes the generated perfusion obtained using the network. I*

denotes perfusion label. The r values were in the range [−1, 1] and represent the
intensity monotonicity of spatially correlated voxels.

3 Results

For each testing case, we calculated the correlation coefficients of scenario 1 and
scenario 2. Table 1 shows the correlation values of the prediction and labels. The
average correlation value of scenario 1 is 0.53, which is larger than the average of
scenario 2. Scenario 1 and scenario 2 have the same deviation. Considering that sce-
nario 2 only predicts the functional lung regions, the correlation values is expected to
be larger than those in scenario 1, which predicts the whole lung volume. This suggests
the performance of CNN with data discretization is superior over the CNN with data
reduction by testing on our data set. The correlations between the label and prediction
demonstrated a moderate positive correlation for both scenarios.

Table 1. Correlation values between predicted and label images in 5 testing cases.

Case 1 2 3 4 5 Average ± S.D.

Scenario 1 0.45 0.65 0.32 0.63 0.62 0.53 ± 0.14
Scenario 2 0.18 0.43 0.37 0.51 0.42 0.39 ± 0.14
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We also visualized two cases for qualitative analysis using the procedure mentioned
in scenario 1. As shown in Figs. 3 and 4, most regions of the defects on the upper lobe
of right lung were correctly labelled (red arrows). These images demonstrate good
correspondence in the low/high function regions between the label and predicted
image. For the data reduction case (Fig. 5), the defects on the lower lobe of right/left
lung were not predicted. The result from qualitative analysis is in consistent with the
correlation values, suggesting data discretization is superior over the data reduction by
testing on our data set.

Fig. 3. Comparison of the discrete label and output of case 4 in scenario 1. All images have
been normalized using the procedure mentioned in the method section. Red arrows indicate the
correctly prediction. Yellow arrows indicate the incorrect prediction. (Color figure online)

Fig. 4. Comparison of the label and output of case 5 in scenario 1. All images have been
normalized using the procedure mentioned in the method section. Red arrows indicate the
correctly prediction. Yellow arrows indicate the incorrect prediction. (Color figure online)
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4 Summary

Our preliminary study successfully demonstrated the feasibility to derive perfusion
images from CT image. Using the deep neural network with discrete label, the main
defect regions can be predicted. This technique holds the promise to provide lung
functional images for functional lung avoidance radiation therapy.
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Abstract. In cancer radiotherapy, inverse treatment planning is a multi-
objective optimization problem. There exists a set of plans with various trade-
offs on Pareto surface which are referred as Pareto optimal plans. Currently
exploring such trade-offs, i.e., physician preference is a trial and error process
and often time-consuming. Therefore, it is desirable to predict desired Pareto
optimal plans in an efficient way before treatment planning. The predicted plans
can be used as references for dosimetrists to rapidly achieve a clinically
acceptable plan. Clinically the dose volume histogram (DVH) is a useful tool
that can visually indicate the specific dose received by each certain volume
percentage which is supposed to describe different trade-offs. Consequently, we
have proposed a deep learning method based on patient’s anatomy and DVH
information to predict the individualized 3D dose distribution. Qualitative
measurements have showed analogous dose distributions and DVH curves
compared to the true dose distribution. Quantitative measurements have
demonstrated that our model can precisely predict the dose distribution with
various trade-offs for different patients, with the largest mean and max dose
differences between true dose and predicted dose for all critical structures no
more than 1.7% of the prescription dose.

Keywords: Deep learning � Treatment planning � Trade-offs � Dose prediction

1 Introduction

Inverse IMRT treatment planning is a multi-objective optimization problem and
mathematically can be expressed as the multi-objective weighted least squares function
[1]. Various organ weight combinations denoted by trade-offs would lead to a set of
plans for a certain patient subject to Pareto surface which are referred as Pareto optimal
plans. Currently exploring such trade-offs is a trial and error process and often time-
consuming, so it is desirable to predict desired Pareto optimal plans in an efficient way
before treatment planning. The predicted plans can be used as references for dosime-
trists to rapidly achieve a clinically acceptable plan. Although some approaches have
been proposed to work on Pareto optimal plan prediction to guide clinical treatment
planning, there are still some deficiencies. The weighted sum methods [2–4] calculate
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the distance between inner and outer approximations of the Pareto surface to minimize
the non-negative weighted sum of the objectives, however, they can only work on
convex formulations. The epsilon constraint approaches [5–7] firstly apply a single
minimization with some constraints to determine a point within a certain region of
Pareto surface, and then duplicate the first step using different constraints to seek out a
set of points on the Pareto surface. These constraint methods can handle non-convex
objective function problem but call for much more time and effort.

In the past few years, deep learning technique has made a great progress and
become a research hotspot benefiting from the advancement of graphics cards and
theoretical algorithms [8–11]. The fully convolutional network (FCN) [10] adopts the
convolutional layers to replace the last several fully-connected layers of traditional
CNN for semantic segmentation, and firstly connect deep layers and shallow layers to
preserve both global and local features. These innovative ideas make FCN exceed the
state-of-the-art in many imaging tasks and many other modified networks are subse-
quently based on it. In particular, a model known as U-net [11] is proposed for
biomedical image segmentation. The U-net consist of two parts: the first part similar to
the contracting path of the FCN is designed to extract global features while the second
part aims to make a pixel-wise prediction by combining deconvolution output and
high-resolution information from the first part, Therefore, the U-net is desired to deal
with the challenge of dose distribution prediction. Nguyen et al. [12] firstly explores the
feasibility of dose distribution prediction from contours utilizing a modified U-net
model. Due to the powerful ability of learning features, they tend to make the model
automatically abstract critical features from patient’s anatomy without any handcrafted
parameters to precisely predict the dose distribution and obtained a remarkable
achievement. However, their model just can generate an average conformal dose dis-
tribution and cannot account for the physician preference, i.e., different trade-offs. In
radiation therapy, the dose volume histogram (DVH) is a useful tool that can visually
indicate the specific dose received by each certain volume percentage, the OARs and
PTV are denoted by every curve which is supposed to describe different trade-offs for
clinical requirements. Therefore, inspired by Dan’s groundbreaking work, we’d like to
construct a 3D model to focus on the different trade-offs based on patient’s anatomy
and DVH information. Qualitative and quantitative results demonstrate that our model
is promising in individualized dose distribution prediction.

The remainder of this paper is organized as follows. Section 2 firstly introduces the
framework of our method and the network architecture. Then, it describes the dataset
and the training parameter setting. The performance of dose prediction model is val-
idated in Sect. 3. Section 4 discusses and summarizes the strengths and drawbacks of
our model.

2 Methods and Materials

As shown in Fig. 1, the framework of our method consists of two stages: training phase
and testing phase. For training dataset (data details seen in Sect. 2.2), each patient
possesses multiple Pareto optimal dose distributions and corresponding DVHs which
are called feasible DVHs, the DVHs from other patients are considered as infeasible

Individualized 3D Dose Distribution Prediction Using Deep Learning 111



DVHs. In training phase, the model takes arbitrary (infeasible or feasible) DVHs which
are randomly chosen among all training patients and contours as inputs to predict dose
distribution. When DVH is feasible, the corresponding dose distribution will be
selected as ground truth for supervised learning. If DVH is infeasible, it will be firstly
projected to a feasible DVH using a projection method, then the dose distribution
corresponding to the feasible DVH is supposed to be true dose distribution as label.
The projection method is a l1 norm which is used to measure the distance between
infeasible and feasible DVHs to find most similar true dose distribution. In testing
phase, any DVHs and contours will be fed into model for dose distribution prediction.
The contour image including rectum, bladder, body, and PTV is divided into 4 separate
contours which are considered as its own channel, respectively. In this work, we utilize
the vector to denote each DVH curve. As we all know, the DVH possesses the
properties of dose and corresponding cumulative volume, therefore the critical step is to
employ which property of the DVH as the vector value. We have tested both two
properties and found that the cumulative volume can represent DVH curve effectively.
4 contour images are encoded with convolution and max-pooling to obtain global
feature maps and reduce the feature map size down to the size which can match DVH
vector size properly. Meanwhile each DVH curve is converted into a vector whose
value is cumulative volume and index represents dose, given that each element in
vector indicates a specific dose volume point which can express clinical dose volume
constraint, we treat each vector element as a channel. Then DVH vectors and feature
maps from contours are concatenated along channel-axis. Finally, the feature fusion
maps containing both contour information and DVH information is decoded with
deconvolution and convolution to acquire dose distribution. The detailed architecture
of encoding and decoding is shown in Fig. 2.

2.1 Architecture

In this study, the modified 3D U-net architecture with encoding (left half) and decoding
(right half) is illustrated in Fig. 2. A 3 � 3 � 3 convolutional kernel is applied except
for the last two level convolutional layers which use 1 � 1 � 1 kernel instead due to

Fig. 1. The workflow of our method
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the limitation of the feature map size. Zero padding is applied to keep feature size
invariant in the convolution process. 6 max-pooling operations with 2 � 2 � 2
pooling size are employed to reduce the input size from 256 � 256 � 64 to
2 � 2 � 1, and then 1 max-pooling with 2 � 2 � 1 pooling size is utilized to obtain
the feature maps with 1 � 1 � 1 size which is equal to the element size in DVH
vector. The black dashed rectangle consisting of 4 different color blocks which denote
4 corresponding DVH vectors are concatenated with feature maps from contours along
channel-axis. The channel numbers of feature maps from contours and DVHs are
equivalent to make them possess same contribution to the final results. Batch nor-
malization [13] is a very efficient way to prevent the gradient from disappearing and
accelerate convergence, thus we add batch normalization after the rectified linear unit
(ReLU) activated in all layers. Besides, dropout [14] is applied at each convolutional
layer to reduce overfitting with randomly deactivating nodes from the network with a
certain probability.

2.2 Data and Training Setting

To validate the performance of the model, 97 clinical prostate patients are used here.
10 optimal treatment plans for each patient are generated via a shape-based dose
calculation tool which can produce full dose for a given set of fluence maps or calculate
a dose matrix for many modalities [15], thus the case amount is 970. Each patient with
4 critical structures comprising rectum, bladder, body, and PTV is subject to a standard
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7 beam protocol. The training data contains 77 patients while 20 patients are chosen as
testing data. The dimension of contour and dose distribution is 128 � 128 � 64, and
each DVH vector contains 32 elements so that the total number of DVH elements is
128 which is also the channel number of contours at the bottom of the network. That is,
the input channel of contours is 4 while DVH has 128 input channels. All dose
distributions are normalized by PTV mean dose to generate a uniform dataset to benefit
training robustness.

As is known to all, the parameters of different networks for various purposes need
to be determined manually and empirically. With trial-and-error and fine-tuning, the
parameters for our architecture are set as follows. The mean square error (MSE) ex-
pressed as Eq. (1) is employed as the loss function to describe the gap between the true
dose and the predicted dose.

MSE ¼ 1
N

XN

i¼1
Dtrue ið Þ � Dpred ið Þ� �2 ð1Þ

where i is the i th voxel in the 3D dose distribution with the total number of voxels
N. Dtrue denotes true dose and Dpred represents predicted dose.

We adopt the Adam [16] optimization algorithm to minimize the loss function
while the initial learning rate is 1 � 10−3. Considering that big batch size can lead to
out of memory error and make the network fall into the local minima, we set the batch
size to 3 while it is generally 64 or 128 in the field of image classification and
recognition. In this work, we utilized 6 NVIDIA Tesla K80 GPUs to implement our
network in Keras library with TensorFlow [17] backend. As shown in Fig. 3, the
training loss value can be reduced down to *1.1618 � 10−4 after 300 epochs at the
cost of approximately 4 days, more epochs consume much time but achieve very little
improvement meanwhile.

3 Results

Figure 3 shows the individualized dose distribution prediction for one patient where
each row represents one plan within the same patient. As we can see from the third
column, the results predicted a similar dose distribution compared to the true dose,
which demonstrated that the model has been capable of characterizing a conformal
dose based on patient’s anatomy including the shape, size, and location of critical
structures. The difference maps between predicted dose and true dose for different plans
showed an insignificant gap which meant the model can predict an accurate result.
The DVH was generated from the true dose (solid line) and predicted dose distribution
(dashed line) where different colors denote different OARs and PTV. Although dif-
ferent DVHs had different trade-offs, the predicted results can still generate a similar
trend that covered the curves from true dose well.
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To clinically evaluate the results, the prescription dose referring to the dose that
95% PTV volumes receive is introduced in the dose difference equation which can be
expressed as follows:

dosedifference ¼ dosetrue � dosepred
doseprescription

� 100 ð2Þ

where dosetrue denotes the dose of the true dose and dosepred is the predicted dose. The
dose difference refers to mean or max dose difference corresponding to dosetrue and
dosepred are denoted by mean dose value or max dose value.

As illustrated in Fig. 4, the boxplot of the mean and max dose differences calcu-
lated by the Eq. (2) is plotted for each OAR and PTV across all testing patients
including all plans for each patient. The median value denoted by the black line in the
box were mildly negative which implied the model slightly over-predicted a dose for
the OARs and PTV. To facilitate interpretation, the absolute dose difference statistics
(mean value ± standard deviation) were enumerated in Table 1. The max dose dif-
ferences of body, bladder, rectum, and PTV were 1.22%, 1.59%, 1.13%, and 1.69% of
the prescription dose, respectively. The mean dose errors for each critical structure
were basically lower than the corresponding max dose errors, ranging from 0.12% for
body to 1.58% for PTV. Overall, the absolute dose difference statistics between true
dose and predicted dose for all 4 critical structures was no more than 1.7% of the
prescription dose.

Fig. 3. One example of individualized dose distribution prediction within one patient. From left
column to right column: contours, true dose, predicted dose, difference map (true – prediction),
and DVH comparing true dose and predicted dose. Each row represents one plan for the same
patient.
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4 Discussion

In this work, a modified 3D U-net architecture is constructed to predict the individu-
alized dose distribution for different trade-offs. 3D network is suitable for learning
essential features of patient’s anatomy because the geometry of patient is supposed to
be 3D, in contrast, 2D network need to avoid non-coplanar problem by selecting
coplanar cases manually. The DVH containing different trade-offs is utilized to guide
the network to predict diverse physician preferences for the same patient’s anatomy and
the contour can lead to a conformal dose, therefore our model integrating them as
inputs can yield an individualized conformal dose distribution while the previous work
just generates an average dose distribution which cannot handle the different trade-offs.
The experimental results have demonstrated that our model can generate a desired
result with maintaining the details of dose distribution for different patients as shown in
Fig. 3. Dose difference statistics (Fig. 4 and Table 1) show that the model trends to
predict an over dose. However, the error is minor where the largest max dose difference
is *1.69% of the prescription dose and the biggest error in the mean dose is *1.58%.
Although our model can yield a superior output, there are still some limitations to be
solved further. Firstly, patient’s anatomy, trade-off, and beam angle are three critical
factors for the dose distribution. In this work, the beam angles of the dataset are fixed
because our current model cannot account for diverse beam angles, which restricts its
scope of application. This is another significant project needs to be solved. Secondly,
we just used 10 plans within the same patient to train the model. In other words, our
model just has learned a limited range of trade-offs which implies that the model may

Table 1. Absolute dose difference statistics ( dosetrue � dosepred
doseprescription

���
���� 100) for OARs and PTV (mean

value ± standard deviation).

Mean dose difference Max dose difference

Body 0.12 ± 0.32 1.22 ± 1.24
Bladder 0.83 ± 2.23 1.59 ± 0.90
Rectum 0.90 ± 2.81 1.13 ± 1.43
PTV 1.58 ± 0.25 1.69 ± 0.78
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Fig. 4. Boxplot of mean dose difference (a) and max dose difference (b) for all testing patients.
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not predict a satisfied result when the trade-off exceeds the range using in the training
phase. Naturally, a method of dealing with this shortcoming is to train the model using
more number of treatment plans in order to cover an almost infinite range to yield any
trade-off accurately. However, it would spend much more computational time which
may be impractical. Furthermore, the clinical region of interest (ROI) actually calls for
a limited set of candidates where 10 optimal plans with different trade-offs are enough
for physicians.

5 Conclusion

We have proposed a deep learning method based on a modified 3D U-net with patient’s
anatomy and different trade-offs for treatment planning as inputs to predict an indi-
vidualized dose distribution. Qualitative measurements have showed analogous dose
washes and DVH curves compared to the true dose distribution. Quantitative mea-
surements have demonstrated our model can precisely predict the dose distribution with
various trade-offs for different patients, with the largest mean and max dose errors
between true dose and predicted dose for the OARs and PTV no more than 1.7% of the
prescription dose. In summary, our proposed method has great potential to possess the
capability of capturing different trade-offs and patient’s anatomy and can provide a
guidance for the automatic individualized optimal treatment planning.

References

1. Craft, D.: Multi-criteria optimization methods in radiation therapy planning: a review of
technologies and directions. arXiv preprint arXiv:1305.1546 (2013)

2. Rennen, G., van Dam, E.R., den Hertog, D.: Enhancement of sandwich algorithms for
approximating higher-dimensional convex Pareto sets. INFORMS J. Comput. 23, 493–517
(2011)

3. Bokrantz, R., Forsgren, A.: An algorithm for approximating convex Pareto surfaces based on
dual techniques. INFORMS J. Comput. 25, 377–393 (2013)

4. Bokrantz, R.: Distributed approximation of Pareto surfaces in multicriteria radiation therapy
treatment planning. Phys. Med. Biol. 58, 3501 (2013)

5. Miettinen, K.: Nonlinear Multiobjective Optimization, vol. 12. Springer, Heidelberg (2012)
6. Messac, A., Ismail-Yahaya, A., Mattson, C.A.: The normalized normal constraint method for

generating the Pareto frontier. Struct. multidisciplinary Optim. 25, 86–98 (2003)
7. Chen, W., Craft, D., Madden, T.M., Zhang, K., Kooy, H.M., Herman, G.T.: A fast

optimization algorithm for multicriteria intensity modulated proton therapy planning. Med.
Phys. 37, 4938–4945 (2010)

8. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., et al.:
Backpropagation applied to handwritten zip code recognition. Neural Comput. 1, 541–551
(1989)

9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105
(2012)

Individualized 3D Dose Distribution Prediction Using Deep Learning 117

http://arxiv.org/abs/1305.1546


10. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmen-
tation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3431–3440 (2015)

11. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image
segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015.
LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24574-4_28

12. Nguyen, D., Long, T., Jia, X., Lu, W., Gu, X., Iqbal, Z., et al.: Dose prediction with U-Net: a
feasibility study for predicting dose distributions from contours using deep learning on
prostate IMRT patients. arXiv preprint arXiv:1709.09233 (2017)

13. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing
internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

14. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a
simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958
(2014)

15. Folkerts, M., Long, T., Radke, R., Tian, Z., Jia, X., Chen, M., et al.: WE-AB-207B-07: dose
cloud: generating “Big Data” for radiation therapy treatment plan optimization research.
Med. Phys. 43, 3805 (2016)

16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:
1412.6980 (2014)

17. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., et al.: TensorFlow:
large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:
1603.04467 (2016)

118 J. Ma et al.

http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://arxiv.org/abs/1709.09233
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1603.04467


Deep Generative Model-Driven
Multimodal Prostate Segmentation

in Radiotherapy

Kibrom Berihu Girum1(B), Gilles Créhange1,2, Raabid Hussain1,
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Abstract. Deep learning has shown unprecedented success in a vari-
ety of applications, such as computer vision and medical image analysis.
However, there is still potential to improve segmentation in multimodal
images by embedding prior knowledge via learning-based shape modeling
and registration to learn the modality invariant anatomical structure of
organs. For example, in radiotherapy automatic prostate segmentation is
essential in prostate cancer diagnosis, therapy, and post-therapy assess-
ment from T2-weighted MR or CT images. In this paper, we present a
fully automatic deep generative model-driven multimodal prostate seg-
mentation method using convolutional neural network (DGMNet). The
novelty of our method comes with its embedded generative neural net-
work for learning-based shape modeling and its ability to adapt for dif-
ferent imaging modalities via learning-based registration. The proposed
method includes a multi-task learning framework that combines a con-
volutional feature extraction and an embedded regression and classifi-
cation based shape modeling. This enables the network to predict the
deformable shape of an organ. We show that generative neural network-
based shape modeling trained on a reliable contrast imaging modality
(such as MRI) can be directly applied to low contrast imaging modality
(such as CT) to achieve accurate prostate segmentation. The method
was evaluated on MRI and CT datasets acquired from different clinical
centers with large variations in contrast and scanning protocols. Experi-
mental results reveal that our method can be used to automatically and
accurately segment the prostate gland in different imaging modalities.

Keywords: Prostate segmentation · Convolutional neural network ·
Transfer learning · Deep learning · CT · MRI

1 Introduction

Automatic segmentation of anatomical structures in medical images has vari-
ous medical applications. For example, in radiotherapy prostate segmentation is
c© Springer Nature Switzerland AG 2019
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essential in the diagnosis, therapy, and post-therapy analysis of prostate cancer.
It is critical in selecting patients for a specific treatment, to guide source delivery
and in computing dose distribution [1,2]. T2-weighted MRI is the modality of
choice for prostate segmentation. However, CT and US are also routinely used
because: (1) CT image is used to calculate the dose distribution due to its char-
acteristics of relating the density of tissues with the voxel intensity, and (2) US
imaging is suitable for real-time image guided radiotherapy. Despite the need
for accurate segmentation of the prostate in radiotherapy, manual segmenta-
tion is subjective to inter and intra-observer variabilities, time-consuming, and
depends on the experience of the physician. Automatic and reliable segmentation
of the prostate on these images is thus an important but difficult task due to the
inhomogeneous and inconsistent contrast of prostate boundary and large shape
variations. This is particularly complicated on CT images because of the inher-
ent low-contrast imaging characteristics of CT for soft tissues (such as prostate
boundary) as can be seen from Fig. 1(b).

Recently, organ boundary detection through modeling and incorporating the
organ shape as prior information has been successfully used for automatic and
reliable anatomical structure segmentation (such as prostate [1], brain [3], and
heart [4]). The prior prostate shape has been modeled using principal compo-
nent analysis from labeled prostate CT scans. The modeled shape was then used
to guide the segmentation of prostate gland on CT images [1]. A deep learning
approach followed by a multi-atlas based feature extraction has also been pro-
posed [5]. Distinctive curve guided fully convolutional neural network has also
been employed for the pelvic organ segmentation on CT images [6]. Kazemifar
et al. [7] used convolutional networks (U-net architecture [8]) to segment both
the prostate and organs at risk in male pelvic CT images. Guo et al. [9] have also
used deep features and sparse patch matching approach to segment the prostate
on MR images. Although atlas and shape-prior based methods demonstrated
promising performance, they might not be generic. This lack of generalization
ability is due to the possibility of statistical shape or atlas of an organ being
different for a new patient. It then requires a robust modeling and registration
algorithm. However, robust feature extraction is still a challenging task to obtain
an optimal shape model. Indeed in medical images, image contrast, organ shape,
acquisition protocol and deformable characteristics of an organ can vary widely.

Deep convolutional neural networks (CNN) have shown promising perfor-
mances in various medical applications [10]. For example, U-net architecture has
been often used for medical image segmentations [8]. Adversarial neural network
has also been proven to improve medical image segmentation (e.g. for liver [11]).
Thus, our hypothesis is that by combining CNN-based feature extraction and
learning-based anatomical structure modeling (through generative neural net-
work) from reliable contrast images (such as T2-weighted MRI for soft tissues),
we can predict accurately an organ boundary in low-contrast imaging modalities
(e.g. prostate segmentation on CT).

In this paper, we present a new deep generative model-driven anatomical
structure segmentation (named DGMNet), specifically designed for multimodal
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(CT and MR) prostate segmentation. The proposed method employs a convo-
lutional feature extraction with an embedded generative CNN [8,12]. The gen-
erative CNN is designed for learning-based modeling of prior organ shape from
MRI and applied to low-contrast CT images. It also involves a learning-based
registration with a given raw input image. Experimental results on MRI and CT
datasets reveal that our method can fully automatically segment the prostate
robustly and accurately regardless of the difference in contrast, size, and imaging
modality.

Fig. 1. Prostate image examples showing image contrast variations in: (a) T2-weighted
MRI, and (b) CT images with seeds from low-dose-rate brachytherapy.

2 Methodology

We aim at detecting the boundary of the prostate volume in a given 3D raw
input image I of size W × H × C. Here W , H, and C are width, height and
depth of the image, respectively. We use a deep CNN which outputs a label
map of size W × H × C whose voxels v = (x, y, z) contain a label 1 for prostate
volume and 0 otherwise. This is done by combining a predicted label mask from
a decoder and a predicted shape from an embedded shape-model generator (see
Fig. 2(a)).

2.1 Network Architecture

The network architecture is illustrated in Fig. 2. It consists of feature extraction,
generative shape modeling, and feature map upsampling. The feature extrac-
tion (encoder) resides on a convolutional neural network [12]. It consists of a
repeated application of 3× 3 convolution, Rectified Linear Unit (ReLU) activa-
tion, batch normalization, followed by squeeze-and-excitation network (SE-Net)
[12](see Fig. 2(b)), and a 2× 2 max pooling operation with stride 2 for downsam-
pling. From the extracted feature maps, two paths named as model and decoder
path are applied. We also used dropout regularization at the bottleneck layer
to have a better generalization by reducing over-fitting during the training. The
decoder path is composed of a 2 × 2 up-convolution and concatenation layer, fol-
lowed by the same block as the encoder (Fig. 2(b)). Generative path (i.e. Model
in Fig. 2(a)) is composed of average max pooling followed by fully connected
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layers (FC). The output of these FC layers (corresponding to surface bound-
ary coordinates) are feed to the generative model where it generates the shape
of a given organ (in our case, prostate gland). It consists of a projection and
a reshape block followed by repeated Leaky ReLU activation (except the last
activation which was sigmoid), batch normalization, and up-convolution (simi-
lar to the one proposed in [13]). The model-generator and decoder outputs are
merged using addition and further a convolutional block is applied. The output
layer is a 1 × 1 convolutional layer with sigmoid activation function. It is worthy
to mention here that the proposed network involves only 1.5 million trainable
parameters while the U-net architecture has 31.024 million [8].

Fig. 2. Proposed architecture: (a) The overall framework (DGMNet), and (b) the
schema of a single block in the encoder and decoder.

Generator: We formulate the model generator to predict the prostate volume
given a few sampled prostate surface boundary coordinates, Iu = (xu, yu, zu). To
this end, the voxel depth (z, for a given slice u) is taken as classification task (0
or 1) and the remaining (x and y) as regression task. Given the surface boundary
coordinates, Iu = (xu, yu, zu), it is trained to predict a labeled model W ×H×C,
in which the prostate volume is 1 and 0 otherwise, i.e. G(Iu) �→ W ×H ×C. We
automatically extracted four surface boundary landmark coordinates (left, right,
top, and bottom) per-slice from the given labeled ground truth (from MRI) and
repeated over the whole volume of the prostate (Iu).

2.2 Loss Function

To train the proposed network, we define a multi-task loss function as a combined
weighted sum loss:

Ltotal = Lmask + λLclsLnd , (1)

in which the segmentation (final mask) loss, Lmask, is calculated as a combina-
tion of Dice and cross entropy loss (Lmask = Ldice + LCE).
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Given ground truth surface voxel coordinates Iu = (xu, yu, zu), where zu = 1,
and predicted values, Iv = (xv, yv, zv = p), the joint classification and regression
loss can be calculated as:

LclsLnd(Iu, Iv) = Lcls(p, zu) + [zu = 1]Llnd(tu, tv) , (2)

in which the classification loss, Lcls(p, zu), is the cross entropy loss. The likeli-
hood of a given raw input image slice (Iu), being part of the organ is p. The
ground-truth label, zu, is 1 if the image slice consists of the prostate, and is 0
otherwise. The second loss, Llnd(Iu, Iv), is thus defined over the surface land-
marks where the ground truth is 1 and 0 otherwise. For positive ground truth
(i.e. zu = 1), we use smooth L1 loss between corresponding voxels, which is
considered as robust loss to outliers [14], as:

Llnd(tu, tv) =
∑

i∈{x,y,z=1}
smoothL1(tui − tvi ) , (3)

in which

smoothL1(Δt) =
{

0.5(Δt)2 if |Δt| < 1
|Δt| − 0.5 otherwise ,

(4)

where tu = (xu, yu) and tv = (xv, yv) are the ground truth and predicted surface
boundary coordinates, respectively, for given zu = 1. The hyper-parameter λ
controls the losses contributed from the segmentation and surface boundary
coordinates.

3 Experimental Setup and Results

3.1 Datasets

The proposed method was trained and evaluated on T2-weighted MRI and CT
prostate images with vast variability in organ size, shape, scanning protocol,
and from multiple clinical centers. Firstly, it was trained and evaluated on 60
T2-weighted MR exams. These datasets were acquired with an in-plane resolu-
tion ranging from 0.312 × 0.312 mm2 to 0.676 × 0.676 mm2 with a slice thickness
between 1.250 mm and 2.722 mm. Similarly, we also trained and evaluated on 40
CT patient datasets (who underwent permanent prostate brachytherapy with
125I for localized prostate cancer treatment). These CT exams were acquired
from two clinical centers. The in-plane resolution of these CT data varies from
0.4 × 0.4 mm2 to 0.58 × 0.58 mm2 with a slice thickness between 1.5 mm and
2.5 mm (helical mode, 120 kVp, 172 mm FOV, and 440 mAs/slice). We looked
for conversions of the datasets into the same voxel size of 0.5 × 0.5 × 1.25 mm3

and 0.7 × 0.7 × 1.25 mm3 for CT and MRI respectively. The prostate was man-
ually delineated by experienced radiologists.
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Pre-processing: The input images (MR and CT) were pre-processed by zero-
centering the intensity values and normalizing them by the standard deviation
of all images before feeding to the network. All images were also center cropped
and resized to have an image resolution of 256× 256.

Training and Testing Details: We trained the system by minimizing the loss
Ltotal (Eq. 1). The proposed system is trained as follows: (1) Firstly, we train the
generative model with the inputs from a few sampled surface boundary land-
marks of the prostate volume, specifically from only T2-weighted MRI labels. We
used a binary cross entropy loss for training. We conducted five-fold cross valida-
tion experiment. (2) Secondly, the whole system is trained except the generator
in which it only predicts the model shape given the predicted surface coordinate
values from FC network. We use a batch size of 10 images for both MRI and
CT. It is important to mention here that we feed the network with 2D instead of
3D as we have small datasets. Then, predicted image labels are stacked to create
a 3D volume. The model is trained using Adam optimizer with a learning rate
of 0.001. The whole ensembled architecture (except the generator) was trained
from scratch considering 10 patients (25% of the datasets which were selected
randomly) for validation.

Ablation Study: We conducted ablation experiments (Table 1) to investigate
the effect of individual components in the proposed network. All ablation experi-
ments were done on CT images under similar settings: (1) Unet architecture; (2)
ResUnet (residual-based Unet); (3) SE-ResUnet (residual block with squeeze-
and-excitation network based Unet [12]); (4) SE-Unet (the proposed method
without the generator and the FC network (Fig. 2(b))).

Evaluation Metrics: All experiments were evaluated using Dice Similarity
Coefficient (DSC), Sensitivity (Sen), positive predicted value (PPV), and average
surface distance (ASD) (in mm) [15].

3.2 Experimental Results

The generator was trained using a five-fold cross validation method using T2-
weighted MRI. It was then kept as a shape predictor by freezing its weights
during training of the proposed method. As this is an intermediate output of the
method, it can be considered as a region proposal (or as instantaneous shape
generator) to be further refined by merging with the encoder-decoder output.
Indeed, the model-generator can learn from good contrast images (MRI) and
used directly (transfer without fine tuning by freezing) for low contrast images
(CT), while the encoder-decoder extracts additional features. As one can see from
the qualitative prostate segmentation results in Fig. 3, the proposed method can
segment accurately the prostate on both T2-weighted MR and CT images.

In almost all evaluation metrics (with and without the generator, Table 1),
the proposed method with the shape model generator outperforms the state of
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Fig. 3. Qualitative evaluation of prostate segmentation on 2D: (a) T2-weighted MRI,
and (b) CT images with seeds from low-dose-rate brachytherapy. The ground truth
labels are shown in red and segmentation results in green. (Color figure online)

the art methods. Since the implanted radioactive seeds were not uniformly placed
over the volume of the prostate gland, it was observed to influence the segmen-
tation quality (particularly the state of the art methods). However, they might
perform better on CT images without the implanted radioactive seeds. Combin-
ing CNN-based extracted features with prior shape knowledge of the organ can
improve time, reproducibility, and accuracy in fully automatic segmentation of
the prostate in radiotherapy.

Table 1. Quantitative segmentation results. Values are expressed as mean ± std.

Data Method DSC Sen ASD PPV

CT Unet 0.83 ± 0.04 0.76 ± 0.08 0.16 ± 0.08 0.93 ± 0.03

ResUnet 0.82 ± 0.03 0.73 ± 0.03 0.16 ± 0.10 0.93 ± 0.03

SE-ResUnet 0.84 ± 0.03 0.88 ± 0.05 0.84 ± 0.53 0.82 ± 0.06

SE-Unet 0.85 ± 0.03 0.78 ± 0.07 0.17 ± 0.15 0.93 ± 0.04

DGMNet 0.89 ± 0.02 0.92 ± 0.03 0.28 ± 0.09 0.87 ± 0.03

MRI DGMNet 0.93 ± 0.12 0.92 ± 0.15 0.11 ± 0.22 0.96 ± 0.07

4 Conclusion

In this paper we proposed DGMNet, a new CNN approach for feature-model
learning based anatomical structure segmentation. It is an encoder-decoder
architecture and an embedded deep generative neural network based model-
generator that enables training on limited data. The model-generator is used
for embedding prior shape knowledge via learning based shape modeling and
registration from high contrast images (such as MRI) and directly applied (by
freezing) to low contrast images (such as CT). Further, we demonstrated that
combining shape-model with a CNN-based feature extraction improves segmen-
tation accuracy. We extensively evaluated models trained with and without prior
shape generator on CT images with different metrics to verify the effect of the
embedded shape generator. Experimental results, on MR and CT datasets, reveal
that this method can be used to fully-automatically segment prostate gland in
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different imaging modalities. In the future, we plan on generalizing the proposed
method to other modalities such as US images (for intra-operative radiother-
apy) as well as to other organs (such as rectum, brain, and heart). In the case
of US images, we shall propose to train the model-generator from MRI with an
endorectal coil to consider the deformation characteristics of the prostate gland
from the coil.
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Abstract. In Intensity-modulated radiation therapy, the planning of
the optimal dose distribution for a patient is a complex and time-
consuming process. This paper proposes a new automatic method for
predicting of dose distribution of Nasopharyngeal carcinoma (NPC) from
contoured computer tomography (CT) images. The proposed method
consists of two phases: (1) predicting the 2D optimal dose images of
each beam from contoured CT images of a patient by convolutional deep
neural network model, called OTNet, and (2) integrating the optimal
dose images of all the beams to predict the dose distribution for the
patient. From the experiments using CT images of 80 NPC patients, our
proposed method achieves a good performance for predicting dose distri-
bution compared with conventional predicted dose distribution methods.

Keywords: Convolutional neural network · Dose distribution
prediction · Nasopharyngeal carcinoma · Intensity-modulated radiation
therapy

1 Introduction

Intensity-modulated radiation therapy (IMRT) has been a common method for
an external beam radiation treatment for cancers. In IMRT, radiation oncologists
can control the intensity of the radiation beam according to the size, shape and
location of a target tumor. Owing to this, IMRT enables to achieve adaptive
radiotherapy, that is, IMRT destroys tumors with complex shapes by delivering
more focused radiation to the tumor or specific areas within the tumor. At the
same time, IMRT avoids the exposure of healthy tissues by reducing the radiation
dose to the healthy tissues. Therefore, IMRT is recommended for over 50% of all
cancers such as nasopharyngeal carcinoma (NPC) to eradicate cancer cells [1].

In IMRT, a patient is irradiated by beams of high energy X-rays (4-20 MV)
or electrons (4-25 MeV) from multiple directions. Since the beam damages both
c© Springer Nature Switzerland AG 2019
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healthy and cancerous tissue, to minimize the effect of damaging healthy tissue,
the prescribed dose of radiation (70 Gy) is usually delivered to a target tumor
for 35 days with 2 Gy per day.

Before starting the treatment, radiation oncologists plan a IMRT treatment
by using treatment planning systems. Using computed tomography (CT) images
of the patient, a set of dose objectives for the tumor and organs at risk (OARs)
[2], the treatment planning systems determine a treatment plan including the
optimal parameters of each beam and the delivered dose from each aperture.
As mentioned above, the optimal IMRT treatment is to deliver more focused
radiation to the tumor while reducing the radiation dose to the healthy tissues
in order to eradicate all cancer cells without any complications. However, since
the current planning systems don’t always provide the optimal treatment for a
patient, radiation oncologists need to modify the treatment plan repeatedly to
obtain a desired dose distribution. This modification process is time-consuming,
from several hours to a week. Moreover, the quality of the determined treat-
ment plan highly depends on the knowledges and experiences of the radiation
oncologists [3].

Recent researches have been developing optimal IMRT planing techniques
[4,5]. Among them, objective-based planning (OBP) [4] uses pre-set objectives of
dose to achieve desirable IMRT treatment. As another IMRT planning method,
knowledge-based planning (KBP) [5] predicts the dose distribution of a new
patient by using a set of previous plans of treated patients. However, these
methods require radiation oncologists much effort and time to determine the
suitable handcrafted features such as spatial information of OARs and tumors,
number of beams and distance to the tumor to obtain a good dose distribution.

Here, deep learning methods using convolutional neural networks (CNNs)
have achieved successes in radiotherapy such as automatic segmentation [6] and
toxicity prediction of radiotherapy plan [7]. Inspired by this success, CNN is
applied to predict radiotherapy plans [8,9]. Mahmood et al. [8] introduced a
generative adversarial network (GAN) model to construct the U-net-based gen-
erator which predicts the dose distributions from 2D contours of tumor and
OARs in CT images. Chen et al. [9] constructed dose distribution prediction
system for NPC using ResNet101 whose inputs are CT images with tumors and
OARs regions. Although the radiation beam geometry influences on the dose
distribution, the two methods [8,9] don’t consider the radiation beam geome-
try. Therefore, the methods in [8,9] strongly depend on the quality of the dose
distribution images used in the system construction.

In this paper, we propose a new system for predicting the dose distribu-
tion from contoured CT images, called contoured CT images, that contains the
countours and regions of tumors and OARs. The proposed system consists of
two main processes. Firstly, for each beam, the proposed system estimates a 2D
dose image of the beam which shows the dose distribution delivered from the
beam orientation. Next, using the dose images of all the beams, the system pre-
dicts the dose distribution for a patient by integrating all the dose images. As
a result, a 3D dose distribution image is created after the prediction of 2D dose
distribution images from CT images of a patient. Through the two processes, the
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Table 1. Detailed information of contoured regions and its labels.

Contours Dose constraint Label Contours Dose constraint Label

L/R temporomandibular

joint (TMJ)

Dmax ≤ 55 Gy 1/2 L/R parotid gland D50 < 26 Gy 12/13

Optic chiasma Dmax ≤ 54 Gy 3 Brainstem D1cc < 54 Gy 14

L/R Lens Dmax ≤ 7 Gy 4/5 Spinal cord D1cc ≤ 40 Gy 15

Larynx Dmax ≤ 66 Gy 6 PTV (70 Gy) D95% ≥ 66.5 Gy 16

Temporal lobe D2% < 60 Gy 7 GTV (70 Gy) D98% ≥ 70 Gy 17

L/R Mandible Dmax ≤ 65 Gy 8/9 CTV (70 Gy) D95% ≥ 70 Gy 18

L/R optic nerve Dmax ≤ 55 Gy 10/11

L/R: Left/Right; Dmax: maximum dose; D50: 50% of the dose, D2%, D95%, D98%: 2%, 95%, 98%

of the dose, respectively; D1cc: 1 cubic centimeter of the dose.

proposed method predicts the dose distribution for the patient considering the
radiation beam geometry. Because of this advantage, the proposed method can
improve the dose prediction accuracy compared with the previous works that
don’t consider the beam geometry.

2 Methods

2.1 Materials

The dataset used in our method consists of the data of 80 NPC patients diag-
nosed at Radiotherapy department of Habib Bourguiba Hospital of Sfax-Tunisia.
The data of each patient include two components: (1) axial section CT images
with 256 × 256 [pixels] trimmed from 512 × 512 [pixels] and (2) real dose distri-
bution images for the patient. From each CT image, two radiation oncologists
manually extract the regions of the gross tumor volume of the NPC (GTV),
clinical target volume (CTV), planning target volume (PTV) and OARs. All
pixels in the extracted regions are assigned a unique teaching label to use as the
training data for constructing the proposed system. Table 1 show the detailed
information of all contours with its teaching label value and dose constraints.
Here, there are five dose constraints for the IMRT: the maximum dose value
(Dmax), 1 cubic centimeter (D1cc) of the dose, and 2%, 50% , 95% and 98%
(D2%, D50, D95% and D98% ) of the dose.

The IMRT for NPC treatment uses 7 dynamic beams whose orientations
are 0, 51, 102, 153, 204, 255 and 306 [deg] around a patient. Each beam has 6
[MeV] energy. The target dose prescription was 70 Gy in 33 fractions (2.12 Gy
per fraction and between 0.27 and 0.34 Gy for each beam). The 2D real dose
image of each beam was constructed by using the parameters obtained from a
radiotherapy treatment plan. Figure 1 shows an example of the real dose of each
beam. The spatial resolution of the final dose distribution was 0.25 × 0.25 [cm].

2.2 System

Figure 2 shows the overview of the proposed system. The first phase of
the proposed system is to predict the dose distribution delivered from each
beam. The prediction system consists of seven modified U-net network, called
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Fig. 1. An exemple of the dose of each beam.

Fig. 2. The architecture of the proposed method.

“Optimal Treatment Networks (OTNets)” shown Fig. 3. Each OTNet is an
encoder-decoder network. The encoder is composed of two networks which have
the same architecture. The input of the first encoder network is the combination
of the contours of tumors, that is, PTV, CTV and GTV while the second encoder
is the contours of all OARs. The use of the two different networks aims to obtain
more detailed features about tumor and OARs separately. Each network includes
42 convolutional layers for extracting the features of its target regions. The out-
put of the encoder is the feature map of the input data. From the two feature
maps of the tumors and OARs, the decoder network with deconvolutional layers
generates the image of the 2D image of the optimal dose distribution delivered
from the beam.

In the second phase, from multiple 2D dose images obtained from the seven
OTNets, 2D dose distribution image for a patient is constructed by integrating
all the dose images. Each pixel value of the predicted dose distribution image
is the sum of all dose values obtained from multiple 2D dose images of the
corresponding pixel. As a result, from all CT images of a patient, a 3D dose
distribution image is created from all predicted 2D dose distribution images.
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Fig. 3. The architecture of OTNet.

3 Experimental Results

To validate the applicability of the proposed method, we made experiments for
predicting the dose distribution using our dataset composed of 80 patients. In
the experiments, our dataset is divided into eight sub-datasets, each of which has
10 patient images. Using the sub-datasets, 8 fold cross validation is applied to
evaluate the proposed system: 7 sub-datasets are used for training the proposed
system while the rest sub-dataset is employed as a test data. Moreover, we use
the manual dose distribution by radiation oncologists (MD) to compare it with
the three methods.

3.1 Results

In the experiments, OTNet is compared with Mahmood et al. [8] (GAN) and
Chen et al. [9] (ResNet101) methods. We downloaded and used directly the
methods in [8,9] by using our database. The two networks predict the 2D optimal
treatment images from contoured CT images.

When the contoured CT image in Fig. 4(a) is given as an input data, we
obtain the dose distribution from the image predicted by OTNet (Fig. 4(c)),
GAN (Fig. 4(d)) and ResNet101 (Fig. 4(e)), respectively. Figure 4(b) shows the
manual dose distribution image obtained by radiation oncologists.

To compare with the three methods, a global 3D gamma analysis with
3%3mm and 4%4mm for γ ≤ 1 was applied to evaluate the accuracy of OARs
and tumor regions in the predicted dose distribution by the three methods. The
calculated values of the mean pass rates of 3D gamma analysis are presented in
Table 2.
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Fig. 4. Examples of (a) countoured CT image and its dose distribution obtained by
(b) MD, (c) OTNet, (d) GAN and (e) ResNet101.

Table 2. Mean pass rates of 3D gamma analysis with 3%3mm and 4%4mm of OTNet,
GAN and ResNet101.

3%/3 mm (%) 4%/4 mm (%)

OTNet GAN p ResNe101 p OTNet GAN p ResNe101 p

L/R TMJ 90.2 ± 1.7 88.5 ± 0.4 0.234 89.4 ± 1.1 0.147 97.1 ± 0.6 94.9 ± 0.3 0.193 95.2 ± 0.6 0.118

Optic

chiasma

82.1 ± 0.9 86.4 ± 1.7 0.436 88.0 ± 2.1 0.247 93.6 ± 1.1 95.9 ± 2.3 0.294 96.1 ± 0.7 0.138

L/R Lens 92.0 ± 4.8 87.6 ± 1.7 0.449 89.1 ± 1.6 0.268 98.1 ± 0.5 94.1 ± 1.3 0.198 95.9 ± 2.9 0.165

Larynx 79.1 ± 3.4 76.1 ± 1.1 0.332 77.4 ± 2.1 0.141 88.1 ± 1.7 85.3 ± 1.2 0.302 86.9 ± 1.3 0.408

Temporal

lobe

85.5 ± 1.6 82.7 ± 2.3 0.419 83.9 ± 0.3 0.231 93.5 ± 0.6 92.7 ± 1.6 0.118 93.1 ± 0.3 0.165

L/R

Mandible

80.1 ± 0.9 77.3 ± 2.5 0.478 78.7 ± 1.2 0.114 92.0 ± 0.4 87.1 ± 2.0 0.271 86.2 ± 0.7 0.396

L/R optic

nerve

93.7 ± 4.6 91.4 ± 5.1 0.314 91.8 ± 0.3 0.146 97.8 ± 2.1 93.9 ± 4.9 0.209 95.1 ± 1.0 0.343

L/R parotid

gland

88.4 ± 2.6 86.7 ± 1.2 0.231 87.0 ± 0.5 0.117 95.4 ± 2.8 93.1 ± 0.6 0.191 93.8 ± 0.6 0.417

Brainstem 82.4 ± 2.1 83.1 ± 0.7 0.054 80.7 ± 0.8 0.124 89.9 ± 4.3 91.2 ± 0.2 0.115 88.9 ± 1.6 0.197

Spinal cord 84.3 ± 5.2 80.1 ± 2.3 0.429 80.9 ± 1.6 0.447 94.2 ± 3.2 91.2 ± 2.8 0.237 91.8 ± 0.9 0.232

PTV 92.5 ± 7.3 92.2 ± 4.1 0.105 92.2 ± 0.8 0.224 99.7 ± 7.3 98.1 ± 4.1 0.105 98.7 ± 0.8 0.093

GTV 96.4 ± 3.5 95.0 ± 1.4 0.290 95.5 ± 1.8 0.147 97.8 ± 0.9 95.0 ± 1.4 0.290 96.1 ± 2.8 0.143

CTV 95.7 ± 3.9 94.2 ± 2.1 0.184 94.5 ± 1.1 0.228 99.0 ± 1.6 98.7 ± 1.4 0.184 98.9 ± 4.1 0.367

Table 3. MAEDV H of each region by OTNet, GAN and ResNet101.

Contours OTNet GAN ResNet101 Contours OTNet GAN ResNet101

L/R TMJ 1.2 ± 0.5 1.4 ± 0.6 1.4 ± 0.2 L/R parotid gland 1.4 ± 1.5 1.8 ± 0.3 1.7 ± 0.8

Optic chiasma 1.7 ± 0.3 1.9 ± 0.6 1.3 ± 1.1 Brainstem 1.5 ± 1.1 1.2 ± 0.9 1.6 ± 0.2

L/R Lens 1.4 ± 0.8 1.9 ± 0.4 1.6 ± 0.7 Spinal cord 1.3 ± 0.6 1.4 ± 1.2 1.4 ± 0.7

Larynx 1.9 ± 0.7 2.6 ± 0.8 2.2 ± 1.3 PTV 0.9 ± 0.5 1.2 ± 1.0 1.1 ± 1.3

Temporal lobe 0.9 ± 0.4 1.7 ± 0.1 1.2 ± 0.6 GTV 0.8 ± 0.7 1.0 ± 0.7 1.0 ± 0.8

L/R Mandible 1.2 ± 0.9 1.3 ± 0.8 1.3 ± 0.9 CTV 0.7 ± 0.9 1.2 ± 0.8 0.9 ± 1.4

L/R optic nerve 1.0 ± 0.6 1.5 ± 0.2 1.4 ± 0.5
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Fig. 5. DVH of OTNet vs MD

In addition, we calculated the difference between the predicted cumulative
dose volume histograms (DVHs) of each method and MD. Here, DVH indicates
the dose value per fractional volume of the target region. Moreover, the difference
between two DVHs is formulated by mean absolute error of DVH:

MAEDVH =
1
m

m∑

k=1

1
n

n∑

j=1

|Dp(j)k% − Dg(j)k%|, (1)

where m is the number of DVH bins separated by 0.01 Gy, k is the dose volume
index of DVH, j is the 2D dose distribution image of the target region, n is the
total number of images. Dp(j)k% and Dg(j)k% are the predicted and MD doses
value at k% volume of the pixel of the jth image, respectively.

Figure 5 shows the examples of the predicted DVHs for CTV and Larynx of
OTNet and MD to which the differences to MD are the minimum and maximum
among other contours.

3.2 Discussion

As shown in Table 2, except the brainstem and optic chiasma, the mean pass
rates of 3D gamma of OTNet is higher than those of GAN and ResNet101 for
most of OARs. Similarly, from Table 3, MAE of OTNet is the smallest among the
three methods except brainstem and optic chiasma. In addition, in the both cases
of the global 3D gamma analysis with 3%/3mm and 4%/4mm, the mean pass
rates of all regions with OTNet is the highest among three methods. To compare
OTNet with the other two methods, the statistical analysis is performed with
paired t-tests (p-value(P)< 0.05). However, the t-test indicates that OTNet is
not significantly different from the two comparison methods for all OARs. From
the 3D gamma analysis, OTNet predicts almost the same dose distribution as
MD compared with the two comparison methods.

From these results, we conclude that our proposed method, especially OTNet,
can predict the dose distribution with a good performance. In addition, we find
that OTNet results a high accuracy for small volume of OARs, such as left
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and right Lens, except the brainstem and optic chiasma. This may due to the
strategy that we used in our network OTNet. By training Tumors and OARs
regions separately, the network train the dataset with more detailed information.
However, due to the shape of optic chiasma and brainstem, its proximity to
the tumor regions and high dose value, OTNet predict these regions with low
performance compared to the other methods. Since our network is a simple
network, a deeper and complex architecture, like ResNet101 and GAN, is needed
to improve the results of complex volume regions.

4 Conclusion

In this paper, we proposed a new CNN, OTNet, which predicts the dose distri-
bution for a patient from contoured CT images. In the proposed method, the
optimal dose distribution of each beam is estimated from contoured CT images.
The dose distribution for a patient is obtained by integrating the dose images
of all the beams. From the experimental results, our proposed network, OTNet,
can predict the dose distribution reliably and accurately compared with the
conventional methods.

In this work, we focused on the prediction of dose prediction without consid-
ering dose constraints of OARs and tumor regions. One of our future works is
to train OTNet with an optimization function of dose to improve the prediction
accuracy of dose constrain of predicted dose distribution.
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Abstract. The next great leap toward improving treatment of cancer with
radiation will require the combined use of online adaptive and magnetic reso-
nance guided radiation therapy techniques with automatic X-ray beam orienta-
tion selection. Unfortunately, by uniting these advancements, we are met with a
substantial expansion in the required dose information and consequential
increase to the overall computational time imposed during radiation treatment
planning, which cannot be handled by existing techniques for accelerating
Monte Carlo dose calculation. We propose a deep convolutional neural network
approach that unlocks new levels of acceleration and accuracy with regards to
post-processed Monte Carlo dose results by relying on data-driven learned
representations of low-level beamlet dose distributions instead of more limited
filter-based denoising techniques that only utilize the information in a single
dose input. Our method uses parallel U-Net branches acting on three input
channels before mixing latent understanding to produce noise-free dose pre-
dictions. Our model achieves a normalized mean absolute error of only 0.106%
compared with the ground truth dose contrasting the 25.7% error of the under
sampled MC dose fed into the network at prediction time. Our model’s per-
beamlet prediction time is *220 ms, including Monte Carlo simulation and
network prediction, with substantial additional acceleration expected from bat-
ched processing and combination with existing Monte Carlo acceleration
techniques. Our method shows promise toward enabling clinical practice of
advanced treatment technologies.

Keywords: Radiation dose prediction � Deep learning � CNN � Monte Carlo

1 Introduction

Magnetic resonance guided radiotherapy (MRgRT) is an innovation that asserts
dominance over traditional CT-guided radiotherapy with respect to the offered soft
tissue contrast and imaging flexibility. Such innovations in the pre-treatment imaging
and the online image-guided contexts have enabled enhanced precision in the treatment
of inconspicuous and moving lesions. The difficulty of widespread adoption of MRgRT
is in part due to the complicating behavior of charged particles (electrons) in the
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presence of a moderate to strong magnetic field. The result is a non-negligible per-
turbation to the more typical dose distributions observed without a strong magnetic
field. Great effort has been invested in acceleration of deterministic dose calculation,
including the works of Chen [1], Neylon [2] and most recently Neph [3] which
emphasize efficient GPU implementation. However, the effects of a strong magnetic
field fundamentally invalidate the assumptions made by these heavily relied upon
deterministic dose calculation algorithms, leaving us instead with highly the accurate
and flexible, but comparably less efficient Monte Carlo (MC) dose simulation
technique.

The intersection of MRgRT with other advanced clinical techniques presents a
serious challenge with respect to the capabilities of existing MC dose calculation tools.
Online adaptive radiotherapy (OART) deviates from the clinical standard by both re-
imaging and re-optimizing RT treatment plans prior to each daily radiation delivery.
The outcome of OART is increased delivery precision and improved patient outcome
but is commonly rendered computationally intractable given the insufficient speed of
both the dose calculation and plan optimization stages. Additionally, the innovation of
beam orientation optimization (BOO) increases plan quality while simplifying the
planning effort. However, BOO imparts a substantial requirement on the compulsory
dose data that is calculated prior to the start of planning. Current clinical practice with
human pre-selection of around 10 static beams necessitates calculation of planning
dose distributions for a few thousand individual beamlets. By comparison, joint opti-
mization of beam orientations and their fluence maps performed by 4pi treatment
planning, considers 1162 candidate beam orientations and requires calculation of dose
for hundreds of thousands of beamlets consequently.

It is well understood that each of these techniques offer significant and comple-
mentary improvements to the treatment planning process and quality of patient care.
However, the convergence of their practice imposes formidable challenges on the dose
calculation component of the planning process; namely that we must simultaneously
pivot to using more accurate methods, which can handle EREs, while greatly
increasing the efficiency to handle significant increases to the amount of prerequisite
data. In summary, we must find a way to get the accuracy benefits of MC dose
simulation while accelerating its computation time beyond that which is possible using
any existing MC acceleration techniques.

Previous work on accelerating MC simulation has investigated the use of denoising
algorithms applied to under sampled (noisy) MC dose. Deasy [4] used a wavelet
coefficient thresholding approach to denoising on a slice-by-slice basis. Kawrakow [5]
presents a 3D implementation of locally adaptive Savitzky-Golay filtering that selects
the anisotropic filter window size by means of a locally supported chi-square test,
limiting the effect of systematic bias. Fippel [6] proposed an optimization approach
including both dose fidelity and smoothness regularization terms. Miao [7] investigated
the use of an adaptive denoising approach modeling the dose in terms of heat transport
and used anisotropic diffusion to achieve smoothed distributions. El Naqa [8] used a
hybrid median filtering approach which adapts the filter to the local content of the dose
distribution to more effectively tradeoff the benefits of mean- and median-based
denoising.
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This existing work places an emphasis on only moderately under sampled dose
suggesting their incapacity to robustly and accurately denoise dose with anything
beyond this modest level of noise or in heterogeneous geometries. El Naqa [9] judges
that “uncertainties of greater than 5% are probably too large” for producing clinically
usable treatment plans, and that “maximum error of denoised distributions can still be
large for raw MC uncertainties of 3%”, indicating observed errors up to 15% in these
cases.

Our contributions focus on meeting this need. We harness a successful Deep
Learning model architecture, U-Net [10], to perform concurrent denoising and pre-
diction of noise-free MR-guided beamlet dose from an extremely noisy (and cheap to
simulate) version of the MC beamlet dose for the given geometry. Additionally, we
show that our model performs well in previously unseen patient geometries for a given
anatomical region such as the head and neck, supporting our expectation of its gen-
eralizability for clinical use. We further note that while our model contributes a sig-
nificant level of acceleration to the task of very-large-scale (VLS) dose calculation, it
remains fully compatible with existing MC acceleration techniques such as GPU-based
simulation and variance reduction, reinforcing its promise for clinical application.

2 Methods

We present a novel technique for accelerated calculation of X-ray beamlet dose from
highly under sampled (noisy) Monte Carlo simulation. Our model incorporates the
widely successful U-NET CNN architecture to learn the actual dose distribution of an
X-ray beamlet, including perturbations resulting from EREs in the presence of an MR-
induced magnetic field.

Our model is composed of three independent U-Net branches, each with 4 hier-
archical levels, that learn a latent representation of each of 3 input channels: under
sampled dose, MC X-ray fluence, and CT geometry. Channel-specific latent

Fig. 1. Monte Carlo dose prediction network architecture. Parallel U-Net branches process each
input channel independently. Concatenation and mixing of latent representations produces
predicted residual dose. Residual and under sampled doses are summed, giving prediction of fully
sampled dose.
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representations are mixed in a series of fully convolutional layers which preserve the
original data dimensionality and produce a prediction of the residual between the input
(noisy) and ground-truth dose. Adding the residual and input dose gives the predicted
noise-free dose. A summary of the network architecture is shown in Fig. 1.

2.1 Monte Carlo Dose Simulation

A general purpose, CPU-based Monte Carlo particle simulation toolkit, Geant4 v10.4
[11, 12], was used obtain the under sampled and fully sampled beamlet dose distri-
butions as well as the X-ray fluence for each beamlet configuration. A single instance
of the fully sampled dose was simulated by tracking 18 million X-rays from a point
source 100 cm away from the beamlet’s isocenter in a uniformly diverging square field.
Ten under sampled doses were additionally simulated by instead tracking 500 X-rays
each in the same manner. Each beamlet was modeled with an identical histogram-based
energy distribution matching that of a clinical 6MV Bremsstrahlung spectrum. To
understand the applicability of our approach to MRgRT, we configured a static 1.5T
magnetic field, oriented in parallel to the rotation axis of the X-ray source around the
treatment isocenter; this geometry matches that of existing MRgRT treatment devices
such as the Elekta Unity©.

To standardize the amount of noise present in the under sampled MC dose distri-
butions, we incrementally simulated beamlet dose for 50 randomly selected beamlets in
the testing dataset, monitoring the normalized mean absolute error (NMAE) compared
with the fully sampled dose until it reached a threshold of 25%. For the fully sampled
dose, we selected an average statistical uncertainty during MC simulation of less than
0.1% as the threshold. To maintain these average qualities of dose, the under sampled
inputs and fully sampled ground truths were simulated using 500 and 18 million X-rays
as described earlier in this section.

2.2 Dataset Construction

Beamlets configurations consisted of beam azimuth (gantry angle), isocenter coordi-
nates, and beamlet position within the beam. The parameters of the beamlet configu-
ration were selected randomly to ensure diversity in both the training and testing
datasets. Ten head and neck (H&N) CT volumes were retrospectively collected from
UCLA’s database of radiation treatments and resampled to have an isotropic voxel size
of 2.5 mm3. Six of the patients were reserved for training and the remaining four for
unbiased testing of the trained model. We are careful to test on patients that are
previously unseen during the training process so an unbiased evaluation of the model
generalizability to new patients can be reported. For each training and testing patient,
an average of 865 and 415 beamlet configurations were randomly sampled,
respectively.

A single data example was created by pairing each three-channel input with the
fully sampled dose for a specific beamlet configuration. To augment the dataset with
extra data examples, rather than randomly generate additional beamlet configurations
and perform additional, and expensive, MC simulation of the fully sampled (ground-
truth) dose, we recognized that each under sampled simulation of dose is an
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independent and identically distributed (IID) stochastic observation of the fully sam-
pled dose. This allowed us to pair a single fully sampled dose with multiple (currently
10) independent under sampled inputs. This augmentation technique is like the addition
of zero-mean gaussian noise used more commonly in natural image domains, except
that we can sample directly from the true noise model by use of MC simulation. After
augmentation, our training and testing datasets contained 155,940 and 49,770 exam-
ples, respectively.

Our model was trained for 150 epochs (*183,000 iterations) in a data-parallel
manner across four NVIDIA GTX Titan X graphics processing units (GPUs). Training
time was approximately 18 h, though the greatest reduction to the loss function was
seen after just a few hours. Batch normalization and ReLU operations were used
between each convolutional layer.

2.3 Experiment Design

To assess the accuracy of the predicted beamlet dose results, we computed the NMAE
across every voxel of every beamlet in the testing dataset. To provide physical meaning
to this metric, each voxel of the predicted beamlet dose was normalized to the corre-
sponding beamlet-maximum dose, obtained from the fully sampled MC dose volume.
We also computed spatial gamma index maps, which indicate the dosimetric accuracy
of voxels by combining the dose difference and distance-to-agreement metrics, for each
of a pre-determined set of gamma criteria. Readers are referred to [13] for a complete
description of the gamma index. Voxels with a gamma index of less than or equal to
1.0, are regarded as passing the gamma test, while those with indices in excess of 1.0
are failing, which generally indicate regions of degraded dosimetric accuracy. Our
results show passing voxels in blue and failing voxels in red, with white indicating the
division between the two classifications. Gamma maps are provided for the 0.2%/
0.2 mm, 0.5%/0.5 mm, and 1%/1 mm gamma criteria. In our reporting of the results,
the NMAE was masked to reduce the bias of less-important voxels with very-low dose.
Our masking operation excludes those voxels having both ground truth and predicted
normalized dose under 10%, which ensures that both the actual dose and any possible
false predictions of dose are low enough to be ignored in most cases.

3 Results

In our experiment, where the accuracy of the under sampled MC dose and the deep
model predicted dose were compared with respect to the ground truth, a NMAE of
25.7% before prediction and 0.106% after were observed. Prediction time for a single
beamlet was approximately 220 ms, including both the MC simulation and network
prediction steps, while the time to produce a single fully sampled beamlet dose was
approximately 380 s on average. Figure 2 shows the under sampled (input), network
predicted, and fully sampled (ground truth) dose for a single beamlet passing through a
large air cavity within the patient’s mouth, where EREs are expected and observed.
Figure 3 additionally shows the gamma index maps for the beamlet shown in Fig. 2.
Darks blue voxels indicate those that easily pass the gamma test for the imposed criteria
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(index much less than 1.0). Dark red voxels conversely indicate dramatic failure by the
gamma criteria (index much greater than 1.0. Lighter shades of each color, and white
indicate voxels that lie near the threshold with index value equal to 1.0.

Fig. 2. Comparison of under sampled, predicted, and fully sampled (ground truth) dose for one
beamlet. Bottom row shows close-up of soft tissue-air interfaces where EREs are visible. (Color
figure online)

Fig. 3. Gamma maps for one under sampled and predicted beamlet dose distribution compared
to the ground truth (fully sampled dose). Red voxels indicate large disagreement while white and
blue indicate passing for the referenced gamma criterion. Close-up views given under each.
(Color figure online)
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4 Discussion

We observe from the analysis of dosimetric accuracy between the under sampled dose
and the deep network prediction that a substantial improvement in the beamlet dose
accuracy is achieved despite imparting less than 200 ms for the additional prediction
step. Indicated by the reduction of NMAE for the testing dataset, the accuracy
improvement between the under sampled dose and the predicted dose is greater than
two orders of magnitude. Without a dedicated analysis of the resulting effects on the
treatment planning process, it is difficult to conclude from this study whether the
observed accuracy is sufficient for clinical use. However, from the conclusions drawn
in [9] we show that our dose prediction model outperforms existing denoising methods
with NMAE below 0.2% (improvement ratio of 242) compared to the best performing
method of [4] achieving an improvement ratio of only 4.5, corresponding to a NMAE
of approximately 1.21% (MSE improvement ratio of 4.5 for the 6.6% uncertainty
input) for the H&N evaluation. This improvement is evident despite starting with much
noisier dose inputs (input NMAE of more than 25% in our case, compared with up to
6.6% MC uncertainty selected to evaluate the methods of [4] in [9]).

Furthermore, investigating the predicted dose distribution in Fig. 2 and the corre-
sponding gamma index maps in Fig. 3 clearly show the advantage of our deep
learning-based approach in both the global denoising and the local ERE prediction
tasks. For example, the under sampled dose in Fig. 2 displays a dose loop which is
commonly observed in noisy MR-guide MC results but is not representative of the
expectation obtained by full sampling to a low uncertainty. For these situations, where
local filtering approaches tend to fail to distinguish this low probability stochastic event
from the true beamlet structure, our model can disambiguate the two and harness the
information to produce a more realistic prediction. Moreover, the qualitative differences
in the gamma maps of Fig. 3 clearly demonstrate the global predictive performance of
our model, where the fraction of red voxels is substantially reduced between the under
sampled and predicted dose distributions.

Like the denoising methods presented in [4–8], our model also benefits from bat-
ched evaluation for both the MC simulation and especially the GPU-based model
prediction steps. The runtimes reported in Sect. 3 were limited to computation of a
single beamlet dose distribution without including the benefits of batched processing.
With even a modest availability of GPU hardware and GPU-enabled MC simulation
tools, we expect that parallel processing will greatly improve the average per-beamlet
processing time well beyond that which is required of online adaptive MRgRT. Further
investigation of the limits of acceleration that can be achieved and the benefits to the
actual process of treatment plan optimization using predicted beamlet dose distributions
are planned for future work.

5 Conclusions

We have demonstrated the success of our novel deep learning-based approach to
beamlet-scale Monte Carlo dose denoising in terms of the computational time and
accuracy improvements. Our technique differs from existing attempts at MC dose
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denoising in that it: has been evaluated for use in MRgRT where EREs induce local
perturbations to the simpler no-magnetic-field X-ray dose distribution, is applicable to
substantially noisier dose input resulting from fewer MC-simulated particles, and
benefits from efficient deep CNN prediction while maintaining compatibility with
existing MC acceleration techniques. By testing our model performance with patient
geometries that were not used during model training, our method shows generaliz-
ability to new patients, and normalized mean absolute beamlet dose errors of 0.106%
on average, compared with the 25.7% error observed by directly using the under
sampled dose. This performance is demonstrated while reducing the dose calculation
time by over two orders of magnitude compared with fully sampled MC beamlet dose.
Our method shows promise in enabling clinical use of adaptive online MRgRT for
automatically planned treatments.
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Abstract. Accurate MR-to-CT synthesis plays an important role in MRI-only
radiotherapy treatment planning. In medical image synthesis, the cycle-
generative adversarial network (CycleGAN) is becoming an influential
method, however, its image quality of synthesis is not optimal yet. In this study,
we proposed a new learning method named U-Net-CycleGAN (UC-GAN) to
generate synthetic CT (sCT) image for MRI-only radiation treatment planning,
which integrated an improved U-Net concept into the original CycleGAN
framework. After experimental comparison, The MAE value and PSNR of our
UC-GAN model are 76.7 ± 4.5 and 46.1 ± 1.5, respectively, which are
statistics significantly better than the 94.0 ± 4.3 (MAE) and 45.1 ± 1.5 (PSNR)
of the original CycleGAN model. The results of our quantitative evaluation
show that the UC-GAN model can synthesize a CT image closer to the reference
real CT image with better performance.

Keywords: U-Net � CycleGAN � Image synthesis � MR-to-CT

1 Introduction

Radiotherapy treatment planning requires a magnetic resonance (MR) volume for
segmentation of tumor volume and organs at risk (OAR), as well as a spatially cor-
responding computed tomography (CT) volume for dose planning. Separate acquisition
of these volumes is time-consuming, costly, and a burden to the patient. Furthermore,
voxel-wise spatial alignment between MR and CT images may be compromised,
requiring accurate registration of MR and CT volumes. Hence, to circumvent separate
CT acquisition, a range of methods have been proposed for MR-only radiotherapy
treatment planning in which a substitute or synthetic CT image is derived from the
available MR image [1].

Medical image synthesis is defined as the generation of realistic images through
learning models. From a technical perspective, image synthesis can be achieved from a
generative model (e.g., from noise) or a cross-modality adaptation model (e.g., from
MRI to CT) [2]. Our work is mostly related to the cross-modality image synthesis
approaches, in which a synthetic image in target imaging modality is synthesized from
a real image in source imaging modality. Historically, cross-modality image synthesis
methods can be ascribed to three categories (1) atlas-based methods, (2) voxel-based
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methods, and (3) deep learning based methods. In atlas-based methods, a set of one or
multiple co-registered MR-CT images are deformably registered to a patient’s MR
image [3]. The resulting transformation can then be applied on the CT-atlas to generate
the sCT image. Atlas-based approaches can be time-consuming, particularly when the
atlases are large, and often fail if the patient has very different anatomy from what is
represented by the atlas [2].

Voxel-based methods convert individual MR voxel intensities to HU values using
bulk density assignments or machine learning models. Bulk density techniques assign
the patient’s electron density either to water or to pre-defined electron densities within
selected MR-segmented tissue types [4]. These methods may lead to dose discrepancies
and often have limited value in generating positioning reference images. Machine
learning methods use paired MR-CT images to train models that associate MR
intensities with HU values. It is challenging for models to distinguish air from bone in
conventional MR images as both tissues exhibit weak signals due to their small T2
values. Some learning methods required manual bone segmentation [6] in conventional
MR images or require acquisition of specialized MR sequences like ultrashort echo
time sequences [7] for separating bone and air. Some methods used multiple MR
images acquired with additional sequences designed to distinguish different tissue types
[8]. Adding sequences can increase workload and extend scan time [2].

Herein, we focus on the third family - deep learning based image synthesis
methods. Van Nguyen et al. proposed a location-sensitive deep synthesis method to
utilize the both intensity and spatial information between modalities during training
stage [5]. Sevetlidis et al. proposed a deep encoder-decoder network using a patch-
based learning fashion [9]. Xiang et al. proposed a deep embedding convolutional
neural network (CNN), which utilize the intermediate feature maps between MR and
CT scans [10]. The generative adversarial network (GAN) [11] was improved by Nie
et al. to deal with context-aware information in generating CT images from MR images
[12].

Recently, many methods have been proposed to train image-to-image translation
CNNs with unpaired natural images, namely DualGAN [13] and CycleGAN [14]. Like
the methods proposed in [12, 15, 16], these CNNs translate an image from one domain
to another domain. Different from these methods, the loss function in the training
process is completely dependent on the overall quality of the integrated image, and the
quality of the integrated image is determined by a network of confrontation discrimi-
nators. In order to prevent synthetic CNN from generating images that look real but are
almost indistinguishable from the input image, it is necessary to enhance the loop
consistency. That is, an additional CNN is trained to convert the synthesized image
back to the original domain, and the difference between the reconstructed image and
the original image is added as a regular term during training.

In this paper, we propose a new approach that combines an improved U-Net
network [15] with a conventional CycleGAN model [14], and experiments have shown
that our method got better synthesis performance. We have proved that the current deep
learning model can continue to improve in the field of image synthesis.
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2 Method

The proposed UC-GAN model consists of a generation phase and a discriminating
phase (as shown in Fig. 1). For a given pair of MRI images and their corresponding CT
images, CT images are used as deep learning targets for MRI images. Intra-subject
registration was performed for each pair of CT and MRI images. Due to the small
mismatch between the rigidly registered MRI and CT, and the difference in image
properties between the two modalities, the constraints imposed on the MRI-to-CT
conversion model are very low. In order to solve this problem, a CycleGAN containing
inverse transform is introduced to capture the relationship between CT and MRI
images, and the MRI-CT conversion model is inversely supervised. Due to the contrast
between MRI and CT, high frequency features can be easily extracted from previous
hidden layers. At the same time, the structural information of the MRI does not nec-
essarily correspond to the structural information of the CT. Therefore, the MR-to-CT
conversion is full shot. To further modify this to a bijective mapping, we introduced a
U-Net architecture to combine and refine the high frequency features of the previous
hidden layer and the anatomical (low frequency) features of the deep hidden layer. In
the generation phase, the extracted training MRI patch slice is input into the generator
(MRI-to-CT) to obtain a prediction CT of the same size, called sCT (fake CT).

The adversarial goals of the synthesis and discriminator networks are reflected in
their loss functions. The discriminator DisCT aims to predict the label 1 for real CT
images and the label 0 for synthesized CT images. Hence, the discriminator DisCT tries
to minimize

LCT ¼ ð1� DisCT ICTð ÞÞ2 þDisCTðSynCT IMRð ÞÞ2 ð1Þ

for MR images IMR and CT images ICT . At the same time, synthesis network SynCT tries
to maximize this loss by synthesizing images that cannot be distinguished from real CT
images [17].

Fig. 1. The CycleGAN model consists of a forward loop and a backward loop. In the forward
loop, SynCT synthesizes the CT image from the input MR image, SynMR reconstructs the input
MR image from the synthesized image, and DisCT discriminates the real and synthesized CT
images. In the reverse loop, SynMR synthesizes the MR image from the input CT image, SynCT
reconstructs the input CT image from the synthesized image, and DisMR discriminates the real
and synthesized MR images.
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Similarly, the discriminator DisMR aims to predict the label 1 for real MR images
and the label 0 for synthesized MR images. Hence, the loss function for MR synthesis
that DisMR aims to minimize and SynMR aims to maximize is defined as

LMR ¼ ð1� DisMR IMRð ÞÞ2 þDisMRðSynMR ICTð ÞÞ2 ð2Þ

To enforce bidirectional cycle consistency during training, additional loss terms are
defined as the difference between original and reconstructed images,

LCycle ¼ SynMR SynCT IMRð Þð Þ � IMRk k1 þ SynCT SynMR ICTð Þð Þ � ICTk k1 ð3Þ

During training, this term is weighted by a parameter k and added to the loss
functions for SynCT and SynMR [17].

2.1 Generator

The whole structure of the generator is based on the 2D DCNN model proposed by Han
et al. [15]. The model can be seen as consisting of two main parts: an encoding part
(left half) and a decoding part (right half). The encoding part behaves as traditional

Fig. 2. The overall structure of the generator network. Each yellow arrow represents a (3 � 3)
convolutional operation (with a rectified linear unit as the activation function). Each green arrow
represents a Maxpooling operation, and each black arrow represents a unpooling operation. Each
white arrow represents a duplicate operation. The top of each blue box provides the 2D image
size and depth (number of channels) from the feature map for each convolutional operation. The
red arrow indicates the last 1 � 1 convolution operation that generated the output sCT
prediction. (Color figure online)
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CNNs that learn to extract a hierarchy of increasingly complex features from an input
MR image [15]. The decoding part transforms the features and gradually reconstructs
the sCT prediction from low to high resolution. The final output of the network is a 2D
image with the same size as the input image. A key innovation from Ronneberger et al.
[18] that we borrow here is to introduce direct connections (shown as white arrows in
Fig. 2) across the encoding part and the decoding part so that high resolution features
from the first part can be used as extra inputs for the convolutional layers in the second
part [15].

2.2 Evaluation

Real and synthesized CT images were compared using the mean absolute error (MAE)

MAE ¼ 1
N

PN
i¼1 jICT ið Þ � SynCT IMR ið Þð Þj; ð4Þ

where i iterates over aligned voxels in the real and synthesized CT images. Note that
this was based on the prior alignment of IMR and ICT . In addition, agreement was
evaluated using the peak-signal-to-noise-ratio (PSNR) as proposed in [12, 15] as

PSNR ¼ 20log10
4095
MSE ; ð5Þ

Where MSE is the mean-squared error, i.e. 1
N

PN
i¼1 ðICT ið Þ � SynCTðIMR ið ÞÞÞ2.

The MAE and PSNR were computed within a head region mask determined in both the
CT and MR that excludes any surrounding air [17].

3 Experiments and Results

In order to test our synthesis method, we applied the proposed method to brain MR and
CT images. We collected the paired brain MR and CT data from 6 patients. Each CT or
MR volume involved more than 222 2D axial image slices. These were resampled to
256 � 256 in 256-grayscale and uniformly distributed by [−1000, 1000] HU for CT
data and whole HU for MR data. For each patient we obtained 222 2D slices of MR
and CT.

For training, we augmented each patient’s slices data with random transforms [19]:

• Flip: Batch data were horizontally flipped with 0.5 probability.
• Translation: Batch data were randomly cropped to size 256 � 256 from

padded 286 � 286.
• Rotation: Batch data were rotated by r 2 [−5, 5] degrees.

We choose the leave-one-out method for experiments. Each experiment five
patient’s data-augmentation dataset were selected to be the training set, and the
remaining patient’s original dataset was used as the test set, and the experiment was
performed using the conventional CycleGAN and our proposed method separately. We
use the default value of k = 10 to weigh cycle consistency loss. The model was trained
using Adam [20] for 100 epochs with a fixed learning rate of 0.0002, and 100 epochs in
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which the learning rate was linearly reduced to zero. Model training took 120 h on a
single NVIDIA Tesla V100 GPU. MR to CT synthesis with a trained model took
around 10 s.

We compared the proposed method to the conventional CycleGAN. The results are
shown in Table 1.

A paired t-test on the results in Table 1 shows that for images obtained using the
conventional CycleGAN model, the consistency with the reference CT image is sig-
nificantly lower than that obtained with our proposed UC-GAN model (p < 0.01).
Figure 3 shows a visual comparison of the results obtained using CycleGAN and UC-
GAN. Images obtained using CycleGAN are more blurred and less effective in
reconstructing the internal bone structure of the brain.

4 Conclusion and Discussion

In this paper, we combine an improved U-Net network with the CycleGAN model, and
improve the image synthesis performance of the CycleGAN architecture, which proves
that the performance of CycleGAN model can be further improved.

Table 1. Mean absolute error (MAE) values in HU and peak-signal-to-noise ratio (PSNR)
between synthesized and real CT images when using CycleGAN and UC-GAN model.

MAE PSNR
CycleGAN UC-GAN CycleGAN UC-GAN

Patient 1 89.7 75.4 45.2 46.1
Patient 2 96.8 81.5 44.1 44.6
Patient 3 94.5 76.7 46.6 47.6
Patient 4 98.9 72.5 45.3 46.1
Patient 5 90.4 78.2 45.0 45.8
Patient 6 93.8 75.6 44.6 46.3
Average ± SD 94.0 ± 4.3 76.7 ± 4.5 45.1 ± 1.5 46.1 ± 1.5

Fig. 3. From left to right input MR image, synthesized CT image using CycleGAN, synthesized
CT image using UC-GAN, reference real CT image.
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In our experiments, the parameters were random for each data augmentation,
therefore, the data we used for training was actually unpaired. In practical clinical
applications, patients typically only accept one scan of a single anatomical region. In
this case, there is very little paired data, but there are many different forms of single
scan data, which are usually unpaired. Our experimental results show that the proposed
model is able to be well applied to the case of unpaired data sets and has practical
value.

Although the current synthetic effects have surpassed state-of-the-art method, there
is still much room for improvement in the model. For instance, in our model, 2D slices
were used for training, and the image’s 3D structure information was not used at all,
which can be improved in the future work. Also, in practical applications, we tend to
pay attention to the specific structure of the image, such as plastic surgeons, will pay
more attention to the bone structure of the patient, which requires us to have higher
synthetic precision for specific structures. Either we adjust the weight of the corre-
sponding voxel in the image, or we just add the specific structure we want to the model
training while setting the other structure of the image as the background.

A combination of U-Net and CycleGAN was proposed to improve the image
synthesis performance. Further work will be put on improve critical bone tissue syn-
thesis performance.
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Abstract. Cone-beam computed tomography (CBCT) has been widely used in
image-guided radiation therapy for patient setup to improve treatment perfor-
mance. However, the low soft tissue contrast on CBCT may limit its utility when
soft tissue alignment is of interest. Moreover, the potential application of CBCT
in adaptive radiation therapy also requires superior soft tissue contrast for online
target and organ-at-risk delineation and localization. The purpose of this study is
to develop a deep learning-based approach to generate synthetic MRI (sMRI)
from CBCT to provide a high soft tissue contrast on CBCT anatomy. The
proposed method integrates a dense block and self-attention concept into a
cycle-consistent adversarial network (cycleGAN) framework, called attention-
cycleGAN, to learn a mapping between CBCT images and paired MRI. Com-
pared with a GAN, a cycleGAN includes an inverse transformation from CBCT
to MRI, which constrains the model by forcing a one-to-one mapping. A fully
convolution neural network (FCN) with U-Net architecture is used in the gen-
erator to enable end-to-end CBCT-to-MRI transformations. Dense blocks and
self-attention strategy are used to learn the information to well represent the
CBCT image and to map to the specific MRI structure. The experimental results
demonstrated that the proposed method could accurately generate sMRI with a
similar soft-tissue contract as real MRI.

Keywords: Cone-beam computed tomography � Synthetic MRI � Deep
learning

1 Introduction

Cone-beam computed tomography (CBCT) has been widely used in image-guided
radiation therapy for prostate cancer patients to improve treatment performance [1, 2].
In current clinical practice, a CBCT is acquired before treatment delivery and provides
detailed anatomic information in the treatment position [3, 4]. The displacement of
anatomic landmarks between CBCT images and the treatment planning CT images are
then measured to quantitatively determine the error in patient setup [5].

In recent years, adaptive radiation therapy has been shown as a promising strategy
to improve clinical outcomes by accommodating the inter-fraction variations [6]. In an
adaptive radiation therapy workflow, CBCT plays an important role in providing the
latest three-dimensional information of patient position and anatomy [7]. More
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demanding applications of CBCT have been proposed, such as daily estimation of
target coverage and organs-at-risk (OARs) sparing for real-time CBCT-based treatment
replanning [8, 9].

These potential uses of CBCT require accurate and fast delineation of targets and
OARs. Experienced physicians are able to manually contour multiple organs on CBCT
images, but this is impractical in adaptive radiation therapy due to time constraints.
Alternatively, it has been proposed that contours on planning CT images can be
propagated to CBCT images by image registration [10]. However, large local variations
in patient anatomy and image content between CBCT and CT images is common, e.g.
changes in bladder/rectum filling status in prostate cancer patients, and swelling or
tumor shrinkage in head-and-neck cancer patients. Such variations are not readily
handled by rigid image registration, and not by deformable image registration because
of the lack of an exact correspondence of image content between the two image sets.
The suboptimal registration result would lead to degraded accuracy of the propagated
contours.

Automatic segmentation solely based on CBCT can avoid registration to the
planning CT, but very few studies have been published. The contrast of some organs,
such as the prostate, is poor on CBCT images. Furthermore, CBCT artifacts caused by
scatter contamination degrade image quality [2]. Recently, MRI has been used to aid
prostate delineation due to its superior soft tissue contrast, but the corresponding
prostate contour needs to be registered to CT images for dose calculation [11–16]. In
this study, we propose a novel method to synthesize sMRIs from CBCT images to
provide superior soft-tissue contrast. The method includes a deep attention network and
several dense blocks to automatically capture the significant features to well represent
the CBCT image and to map the MRI. With this sMRI-aided strategy, we can further
develop an automated and accurate segmentation method benefiting from the high soft-
tissue contrast of MRIs. Our method was evaluated in a retrospective study with 25
head-and-neck patients and 25 pelvic patients.

2 Methods

Section 2.1 begins by describing a system overview of the proposed attention-
cycleGAN model and the pre-processing steps to prepare training datasets. In Sect. 2.2,
we detail the network architecture of the proposed model. The network losses were
described in Sect. 2.3.

2.1 Training and Testing Data and System Overview

The CBCT images of pelvic patients were acquired using the Varian On-Board
Imager CBCT system, with voxel size of 0.908 mm � 0.908 mm � 2.0 mm. The MR
images of pelvic patients were acquired using a Siemens standard MRI scanner with 3D
T2-SPACE sequence and 1.0 � 1.0 � 2.0 mm3 voxel size (TR/TE: 1000/123 ms).
The CBCT images of head and neck patients were acquired using the Varian On-Board
Imager CBCT system, with imaging spacing of 0.57 mm � 0.57 mm � 2.0 mm.
The MR images of head and neck patients were acquired using a Siemens MRI scanner
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with standard T1-weighted SE sequence and 1.2 � 1.2 � 2.0 mm3 voxel size (TR/TE:
7.3/2.3 ms). Five-fold cross-validation experiment was used to evaluate the proposed
method’s performance. The training MR and CBCT images were rigidly registered
using commercial software, Velocity AI 3.2.1 (Varian Medical Systems, Palo Alto,
CA).

Figure 1 illustrates our method’s training and synthesis workflow. The proposed
algorithm consists of a training stage and a synthesis stage. The deformed MRI was
used as the learning-based target of the planning CBCT image for our proposed sMRI-
aided strategy. Since the CBCT image is often contaminated with artifacts and small
mismatches between MRI even after rigid registration, training a CBCT-to-MRI
transformation model is highly under-constrained, meaning small data errors will be
amplified during the transformation. In addition, because the two image modalities
have fundamentally different properties, training a CBCT-to-MRI transformation
model is difficult. To cope with this challenge, 3D cycleGAN architecture was used to
learn this transformation model [1, 17]. A cycleGAN framework was used due to its
ability to enforce the model to mimic the target data distribution by incorporating an
inverse transformation. This helps enforce both anatomical and quantitative accuracy as
well as enhancing image contrast. In order to accurately predict each voxel in the
anatomic region, we introduced several dense blocks to capture multi-scale information
(including low-frequency structural information and high-frequency textural informa-
tion) by extracting features from previous and following hidden layers. Attention gates
(AGs) were used to capture the significant features to well represent the CBCT image.

The proposed attention-cycleGAN model was designed in a 3D patch-based
fashion. The training data were collected via extracting pairs of 3D patches by sliding a
window with size of 64 � 64 � 64 voxels from paired CBCT and MRI. To enlarge the
variety of training data, the overlap between two neighboring patches was set to

Fig. 1. The schematic flow diagram of the proposed method. The upper row shows the training
stage for synthetic MRI inference. The lower row shows the synthesis stage of a new arrival
CBCT image.
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32 � 32 � 32 voxels. This overlap ensures that a continuous whole-image output can
be obtained and allows for increased training data for the network.

After training the model, a sMRI of a new patient was obtained by feeding its
CBCT patches into the trained model to estimate the sMRI patches, then fusing the
sMRI patches together to reconstruct the whole sMRI image. In regions of patch
overlap, the final reconstructed voxel value was obtained by averaging the voxel values
between the two patches.

2.2 Network Architecture

The proposed network has four separate sub-networks with two generators dedicated
for MRI and CBCT synthesis and two discriminators dedicated to measuring whether
images it sees are real or synthetic. Figure 2 shows the architectures for these networks.

The basic architecture of the generator is a U-Net architecture with several dense
blocks and AGs incorporated at the long skip connection. The U-Net architecture
consists of an encoding path and a decoding path; the two paths are connected by
several long skip connections. In our study, the long skip connection concatenated the
feature maps from the current two decoding deconvolution operators and one previous
encoding convolution operator by using AGs. Such concatenation with AGs encour-
aged the network to identify the most relevant semantic contextual information without
a requirement to enlarge the receptive field, which might be beneficial for organ
localization.

AGs have been explored in the context of semantic segmentation. Previous works
demonstrated that the most relevant semantic contextual information can be captured
by integrating AGs into a standard U-Net without the need to use a very large reception
field. In this study, we incorporated AGs into the design of our generator. Figure 2
shows that AGs were used to implement the skip connection between layers of the
encoding path and decoding path. Instead of connecting feature maps with same matrix
sizes, as in a standard U-Net, AGs connect feature maps of adjacent layers from
different pathways to learn the differences between feature maps. The AGs act

Fig. 2. The architecture of proposed attention cycleGANs including generator and
discriminator.

CBCT-Based Synthetic MRI Generation 157



immediately prior to the concatenation in order to retain only relevant activations and
remove irrelevant/noisy responses. Additionally, AGs filtered the neuron activations
during both the forward and backward passes. Gradients originating from image
background regions were down weighted during the backward pass. This allows model
parameters in shallower layers to be updated based on spatial regions that are most
relevant to a given task. AGs also highlighted the most salient features from the
encoding path and passed those features through the bridge path.

Several dense blocks were also used for the long skip connection. Dense blocks
were used to capture multi-scale information (including low-frequency and high-
frequency) by extracting features from the previous and the successive hidden layers
and combined these features by short term skip connections between these hidden
layers. The dense block is implemented by six convolution layers. A first layer is
applied to the input to create k feature maps, which are concatenated to the input.
A second layer is then applied to create another k feature maps, which are again
concatenated to the previous feature maps. The operation is repeated five times. Then
the output of these layers goes through the last layer to shorten the feature maps to k.

The discriminator is used to judge the realism of synthetic image patch against the
real image patch. As shown in the discriminator architecture, the discriminator is a
typical classification-based FCN, which consists of multiple convolution layers, each of
which has a stride size of 2. The discriminator outputs a reduced size patch with
element 1 denoting a real voxel and element 0 denoting a fake voxel.

2.3 Loss Functions

As described above, the network relies on continuous improvement of a generator
network and a discriminator network. The accuracy of both networks is directly
dependent on the design of their corresponding loss functions.

The generator loss function in this study consists of two losses: one is the adver-
sarial loss to distinguish real images from synthetic images; the other is the distance
loss to measure the distance between real and synthetic images or between real and
cycle images. A weighted summation of the two losses forms the compound loss
function for the proposed method:

G ¼ argminG kadvLadv G Yð Þð Þþ kdistanceLdistance G Yð Þ; Yð Þf g ð1Þ

where Ladv and Ldistance are the adversarial loss and the distance loss, kadv and kdistance
are balancing parameters of these two losses, Y is the target image and Z ¼ G Yð Þ is the
synthetic image. Distance loss Ldistance Z; Yð Þ consists of lp-norm of the difference image
between Z and Y , and the gradient difference (GD) between the two images. The lp-
norm (p ¼ 1:5) distance, termed mean p distance (MPD) was introduced to overcome
the limitations of the l1-norm and l2-norm distance loss such as misclassification by
mean absolute distance (MAD) and blurry images by mean squared distance (MSD).
Our method can retain image sharpness through minimizing the difference in the
magnitude of the gradient between the estimated image and the ground-truth MRI. In
this way, the sMRI will try to keep zones with high soft-tissue contrast, such as edges,
effectively compensating for the distance loss term.
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3 Results

Five-fold cross-validation testing was performed on 25 head and neck and 25 pelvic
patients’ CBCT/MRI datasets. We randomly partitioned the 25 patient images into five
equal sized subgroups. One subgroup was retained as the validation data for testing the
model, and the remaining four subgroups were used as the training data. Normalized
mean absolute error (NMAE), peak signal-to-noise ratio (PSNR) and normalized cross
correlation (NCC) were calculated between the deformed and fixed images for quan-
titative evaluations.

Figure 3 shows axial views of the pelvic CBCT image, MRI and sMRIs, and
deformed prostate manual contours at two axial levels for a patient. To better illustrate
the contrast enhancement of sMRI-aided strategy, Fig. 3 (a5) compare the profiles of
the dashed blue line in subfigures (a4) for CT image, MRI and sMRIs. The dashed line
passing through the bladder, prostate, and rectum manual contours was set to 0 if the
voxel was outside of one of the contours, and 1.1 for the voxels within the organs.
Thus, the boundary of the prostate is the discontinuity on the plot profile. To provide a

meaningful comparison, we use a x�min Xð Þ
max Xð Þ�min Xð Þ normalization to scale voxel inten-

sities on the dash line to [0, 1], where x denotes a voxel′s intensity on dash line, X
denotes the all voxels’ intensity appeared on dashed line. As is shown in subfigure (a5),
sMRI provides superior bladder and prostate contrast to CBCT image, similar to that of
conventional MR image. Figure 4 shows the axial views of sMRI result for a head and
neck patient. As can be seen from Fig. 4, the contrast around spinal cord region was
enhanced. Overall, the mean NMAE, PSNR and NCC were 0.06 ± 0.03,
19.8 ± 2.6 dB and 0.85 ± 0.09 for pelvic site, and were 0.05 ± 0.02, 20.2 ± 3.7 dB
and 0.87 ± 0.07 for head and neck site (Table 1).

Fig. 3. Visual results of generated sMRI. (a1) shows the original CBCT image at axial level,
(a2) shows the corresponding MR image, (a3) shows the generated sMRI, (a4) shows the
deformed manual contour, (a5) shows the plot profile of CT, MRI, sMRI, and manual contour of
the blue dashed line in (a1), respectively. (Color figure online)
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4 Conclusion and Discussion

The method proposed can be used for generating sMRI from daily CBCT. This study
demonstrated that the proposed methods are capable of reliably generating sMRI with
high soft-tissue contrast, which could be helpful for accurate target and OAR delin-
eation and localization for adaptive dose planning, then warrant further development of
a CBCT-guided adaptive radiotherapy workflow. The utilization of sMRI can also be
used for CBCT/MRI cross modality registration.
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Abstract. Radiotherapy doses to some cardio-pulmonary substructures
may be critical factors in the observed early mortality following radio-
therapy for nonsmall cell lung cancer patients. Our goal is to provide
an open-source tool to automatically segment cardio-vascular substruc-
tures for consistent outcomes analyses, and subsequently for radiation
treatment planning of thoracic patients. Here, we built and validated a
multi-label Deep Learning Segmentation (DLS) framework for accurate
auto-segmentation of cardio-pulmonary substructures. The DLS frame-
work utilized a deep neural network architecture to segment 12 cardio-
pulmonary substructures from Computed Tomography (CT) scans of
217 patients previously treated with thoracic RT. The model was robust
against variability in image quality characteristics, including the pres-
ence/absence of contrast. A hold-out dataset of additional 24 CT scans
was used for quantitative evaluation of the final model against expert
contours using Dice Similarity Coefficients (DSC) and 95th Percentile of
Hausdorff Distance (HD95). DLS contours of an additional 10 CT scans
were reviewed by a radiation oncologist to determine the number of slices
in need of adjustment for each of the non-overlapping substructures.
The DLS model reduced segmentation time per patient from about one
hour of manual segmentation to 10 s. Quantitatively, the highest accu-
racy was observed for the Heart (median DSC = (0.96(0.91 − 0.93)) and
HD95 = (4.3 mm(3.8 mm− 5.5 mm)). The median DSC for the remaining
structures was 0.80 − 0.92. The expert judged that, on average, 85% of
the contours were equivalent to state-of-the-art manual contouring and
did not require any modifications.
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1 Introduction

Various studies have shown that doses to some cardio-vascular substructures
may be critical factors in the observed heart toxicity and early mortality fol-
lowing radiotherapy (RT) for nonsmall cell lung cancer (NSCLC) [10,14–16].
This may be attributed to irradiation of particular constituents of the cardio-
pulmonary system. Currently, segmentation of cardio-pulmonary organs other
than the whole heart and lung has been overlooked, and only these two organs
are routinely defined as part of the treatment planning process. RT planning
requires robust and accurate segmentation of organs-at-risk in order to maxi-
mize radiation to the disease location and to spare the normal tissue as much
as possible. The introduction of a new set of organs puts requirements on both
segmentation accuracy and segmentation time that would result in an overhead
of several hours of manual segmentation and contour refinement in the clinic.

We built and validated a multi-label Deep Learning Segmentation (DLS)
framework for accurate auto-segmentation of cardio-pulmonary substructures.
The DLS framework utilized a deep convolutional neural network architecture
to segment 12 cardio-pulmonary substructures [4] from Computed Tomography
(CT) scans of 217 patients previously treated with thoracic RT. The segmented
substructures are: Heart, Pericardium, Atria, Ventricles, Aorta, Left Atrium
(LA), Right Atrium (RA), Left Ventricle (LA), Right Ventricle (RV), Inferior
Vena Cava (IVC), Superior Vena Cava (SVC) and Pulmonary Artery (PA). We
evaluate our framework using a hold-out dataset of 24 CT scans by calculat-
ing quantitative as well as qualitative validation metrics. A radiation oncologist
qualitatively evaluated auto-generated contours for an additional set of 10 CT
scans to determine that, on average, 85% of the non-overlapping substructure
contours required no modifications and were acceptable for clinical use.

2 Methodology

Our approach utilizes deep neural network for 2D segmentation of contrast as
well as non-contrast enhanced thoracic CT images. The network auto-crops input
CT scans around the lungs to extract the region of interest. The network is
trained to perform multi-label prediction of eight non-overlapping, contiguous
substructures, which are: aorta, LA, LV, RA, RV, IVC, SVC and PA. Addi-
tionally it is individually trained to segment the overlapping structures such as
the heart, the atria, pericardium and ventricles. Output label predictions for
the multi-label segmentation network and overlapping structures were combined
for each input scan, resulting in auto-segmentation of 12 cardio-pulmonary sub-
structures.

2.1 Experimental Datasets

Experimental data consisted of CT scans of 241 patients obtained from our insti-
tutional clinic. This data consisted of contrast as well as non-contrast enhanced
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images of varying imaging quality and resolution across different scanners. Man-
ual expert segmentation for 12 organs-at-risk cardio-pulmonary structures was
considered ground truth and used for model training, testing and validation.
192 CT scans were utilized for model training, 24 CT scans were used for model
testing and the remaining 24 CT scans were used for hold-out validation respec-
tively. These scans were auto-cropped around the lungs to extract the volume
of interest around the heart substructures. 2D axial slices pertaining to each
patient image volume were resized to 512 × 512 and normalized, resulting in a
total of 10,284 training images. Network input data was augmented per batch
and consisted of random cropping, random horizontal and vertical flipping and
rotation by ten degrees. Resulting auto-segmented 2D axial images were stacked
back together to generate 3D segmentations without further post-processing.

An additional dataset of 10 RT planning thoracic CT scans, for which no
expert contours were available, was used for qualitative contour evaluation by a
radiologist to determine auto-generated contour acceptability for clinical use.

2.2 Network Architecture

Our approach, as depicted in Fig. 1 leveraged the deep neural network archi-
tecture of [1]. Convolutional neural networks (CNNs) and encoder-decoder neu-
ral networks have been successfully employed for medical image segmentation
tasks [6,7,12,13]. The Deeplab encoder-decoder network architecture with atrous
separable convolutions consists of spatial pyramid pooling that encodes multi-
scale contextual information to capture spatial anatomical information of con-
tiguous structures. Dense feature maps extracted in the last encoder network
path consist of detailed semantic information. The decoder network was able
to robustly recover structure boundaries through bilinear upsampling at a fac-
tor of 4 while applying atrous convolutions to reduce features before semantic
labeling. We trained the network using ResNet-101 [5] as the encoder network
backbone with learning rate = 0.01 using “policy” learning rate scheduler [8],
crop size = 513 × 513, batch size = 8, loss = cross-entropy, output stride = 16 for
50 epochs for dense label prediction. Our approach has been implemented using
the Pytorch DL framework.

We also investigated the performance of various network loss functions and
their influence on correct multi-label prediction. We trained our network with
various segmentation losses on the same architecture backbone to account for
varying structure sizes and class imbalance during training and determine the
efficacy of modifying label prediction probabilities during back propagation for
multi-label segmentation. The network was trained using cross entropy (CE),
Multi-class Dice Loss (M-DSC), Generalized Dice Loss (G-DSC) [11] and a
weighted combination of (0.5G-DSC + 0.5CE) which pixel-wise CE resulting in
superior segmentation performance. Cross entropy loss can be described as

L(χ; θ) = −
∑

x∈χ

log p(ti|xi; θ), (1)
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Fig. 1. Schematic overview of the proposed deep learning multi-label segmentation
scheme. The network is trained on 2D CT images that are auto-cropped around the
lung region of interest, augmented and batch normalized for dense label prediction.

where X denotes the input images, p(ti|xi; θ) is the pixel probability of the target
class xi ∈ χ that is being predicted with network parameters θ. A quantitative
comparison of auto-segmentation results using the aforementioned various net-
work losses can be found in Table 3.

2.3 Model Evaluation

We quantitatively evaluated the auto-generated segmentations by comparing the
Dice Coefficient (DSC) and 95th Percentile Hausdorff Distance (HD95 (mm)) of
24 patients against expert clinical segmentations. Additionally, an expert qual-
itatively evaluated the auto-generated multi-label segmentations for an addi-
tional cohort of 10 thoracic CT scans to validate the clinical usability of the
auto-contours. No expert contours were present for this additional validation
dataset. The expert reviewed substructure contours on axial slices of the CT
images and rated them on a four-grade score: Good (requiring no adjustments),
Acceptable (acceptable auto-contour deviations), Need of Adjustments (NOA)
and Poor (requiring larger number of slice adjustments). Rating was performed
by listing the number of slices requiring contour adjustments in relation to the

Table 1. Criteria for scoring each cardiac substructure contour in clinical scoring,
showing the number of CT image slices, and percentage of extended structures, that
need to be unapproved due to minor modifications for each grade. NOA: Need of
Adjustments.

Scoring IVC SVC, PA, LA, LV, RA, RV Aorta

Good 0 slices (0%) 0 slices (0%) 0 slices (0%)

Acceptable 1–3 slices (up to 18%) 1–5 slices (up to 17%) 1–10 slices (up to 16%)

NOA 4–5 slices (up to 29%) 6–8 slices (up to 27%) 11–14 slices (up to 22%)

Poor >5 slices (>29%) >8 slices (>27%) >14 slices (>22%)
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average number of slices spanning each substructure. Criteria for the clinical
contour scoring is presented in Table 1.

3 Results and Discussion

Table 2 compares the DSC evaluation metric for segmentations using the net-
work training loss cross-entropy (CE) against other network training losses.
Our experiments demonstrated that pixel-wise target class loss calculation using
CE resulted in improved multi-label segmentation predictions when compared
against Multi-class Dice Loss (M-DSC), Generalized Dice Loss (G-DSC) and
a weighted combination of (0.5CE + 0.5G-DSC). Although the DSC score for
Aorta, which is the largest substructure during multi-label segmentation, is
improved as expected using the G-DSC loss, the accuracy of smaller, tubular
substructures was reduced.

Table 2. Multi-label segmentation comparison of eight cardio-pulmonary substruc-
tures between various network training loss configurations using the DSC evaluation
metric. All training losses were implemented using the same network architecture and
hyperparameters. Highest achieved accuracies are highlighted in bold.

Network training loss Aorta LA LV RA RV IVC SVC PA

Gen. Dice Loss (G-DSC) 0.90 0.86 0.92 0.85 0.81 0.61 0.82 0.87

Multi-class Dice Loss (M-DSC) 0.82 0.86 0.92 0.84 0.86 0.76 0.79 0.86

Combined Loss (G-DSC + CE) 0.81 0.83 0.91 0.81 0.85 0.76 0.80 0.86

Cross Entropy (CE) 0.83 0.86 0.92 0.85 0.86 0.81 0.84 0.88

Figure 2 displays the DSC Score results for the 24 hold-out validation CT
images for all 12 substructures segmented using the CE loss. Our achieved
DSC accuracies are comparable to the state-of-the-art multi-atlas [9] and deep
learning methods [3] for segmenting cardio-pulmonary substructures from CT
images. The highest segmentation accuracy was observed for the heart (median
DSC = 0.96, median HD95 = 3.48 mm), while the remaining structures achieving
median accuracy (0.81 ≤ DSC≤ 0.94) and (6 mm≤ HD95 ≤ 3 mm), with highest
HD95 surface distance accuracy observed for Aorta. Figure 3 display the quali-
tative contour results comparing the DLS contours against expert contours.

Table 3 displays the clinical contour evaluation scores of the auto-generated
contours for 10 thoracic RT CT scans using the grading criteria described
in Table 1. The expert identified all need for adjustments as minor modifica-
tions, with contours in acceptable ranges for the IVC, SVC, PA, LA and LV
(median adjustments ranging between 5 to 15%). Most required adjustments
were observed in the RV, with median 24% contours requiring modifications.
Most of the minor adjustments were observed near the superior portion of the
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Fig. 2. Dice Similarity Coefficient (DSC) Score results of the 24 thoracic RT CT images
comparing the auto-generated DLS contours against the manually segmented expert
contours for 12 cardio-pulmonary substructures.

Fig. 3. Comparison of the auto-generated DLS contours (depicted in blue) against the
expert delineations (depicted in green) for two patients (a) and (b) in axial, sagittal
and coronal plane views. The Aorta, PA and SVC are visible in Axial Slice 1, whereas
the four chambers: LA, LV, RA and RV, and the Aorta are visible in Axial Slice 2. A:
aorta. (Color figure online)

Table 3. Qualitative evaluation of auto-generated segmentations of 10 thoracic RT
patient CT scans. A radiation oncologist expert determined the percentage of each
auto-generated structure segmentation in Need of Adjustments (NOA). Expert iden-
tified all required changes as minor modifications. Least and most adjustments were
required for SVC and RV structures, respectively, for clinical acceptance and use.

% NOA Aorta IVC SVC PA LA LV RA RV

Min 13 0 0 0 0 3 8 7

Max 27 59 13 45 34 29 43 47

Median 19 15 5 12 15 8 20 24

structures between CT image contour transitions. This may be attributed to the
image artifacts introduced due to heart motion and image acquisition.

The qualitative scoring and quantitative evaluation for the aorta and IVC
is lower than expected because both these substructure segmentations were
extended on image slices beyond the clinical contouring protocol. According to
the clinical contour guidelines, these two substructures should not be contoured
beyond two slices below the last contoured image slice of the heart in the axial
plane. However, due to lack of training on a large set of background CT images
in the posterior portion of the heart contour during network training, our model
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continued to segment the aorta and IVC because of the presence of the substruc-
ture edges beyond the heart contour. This highlighted the consideration towards
additional spatial input data requirements during network training for gener-
ating clinically acceptable auto-segmentations as input to radiation treatment
planning.

4 Conclusion

We propose a model for auto-segmentation of cardio-pulmonary substructures
from contrast and non-contrast enhanced CT images. The proposed model
reduced substructure segmentation time for a new patient from about one hour of
manual segmentation to approximately 10 s. We demonstrated that the model is
robust against variability in image quality characteristics, including the presence
or absence of contrast. We validated our approach by quantitatively comparing
resulting contours against expert delineation. An expert concluded that over-
all 85% of the auto-generated contours are acceptable for clinical use without
requiring adjustments. The resulting segmentations can effectively be utilized to
study the effect of heart toxicity and clinical outcomes, as well as used as input
to radiation therapy treatment planning. We have applied our approach to auto-
segment an additional 283 treatment planning CT scans to study heart toxicity
outcomes for lung cancer. The developed cardio-pulmonary segmentation mod-
els have being integrated into deep learning tools within the open-source CERR
[2] platform.

Acknowledgments. This research is partially supported by NCI R01 CA198121.

References

1. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder
with atrous separable convolution for semantic image segmentation. In: Ferrari, V.,
Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp.
833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2 49

2. Deasy, J., Blanco, A., Clark, V.: CERR: a computational environment for radio-
therapy research. Med. Phys. 30(5), 979–85 (2003)

3. Dormer, J.D., et al.: Heart chamber segmentation from CT using convolutional
neural networks. In: Proceedings of SPIE - The International Society for Optical
Engineering (2018)

4. Feng, M., Moran, J., Koelling, T., et al.: Development and validation of a heart
atlas to study cardiac exposure to radiation following treatment for breast cancer.
Int. J. Radiat. Oncol. Biol. Phys. 79(1), 10–18 (2010)

5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 770–778, June 2016. https://doi.org/10.1109/CVPR.2016.90

6. Isensee, F., et al.: nnU-Net: self-adapting framework for U-Net-based medical image
segmentation. CoRR abs/1809.10486 (2018). http://arxiv.org/abs/1809.10486

https://doi.org/10.1007/978-3-030-01234-2_49
https://doi.org/10.1109/CVPR.2016.90
http://arxiv.org/abs/1809.10486


Cardio-Pulmonary Substructure Segmentation 169

7. Jin, Q., Meng, Z., Sun, C., Wei, L., Su, R.: RA-UNet: a hybrid deep attention-
aware network to extract liver and tumor in CT scans. CoRR abs/1811.01328
(2018). http://arxiv.org/abs/1811.01328

8. Liu, W., Rabinovich, A., Berg, A.C.: ParseNet: looking wider to see better. CoRR
abs/1506.04579 (2015). http://arxiv.org/abs/1506.04579

9. Luo, Y., et al.: Automatic segmentation of cardiac substructures from noncontrast
CT images: accurate enough for dosimetric analysis? Acta Oncol. 58(1), 81–87
(2019)

10. McWilliam, A., Kennedy, J., et al.: Radiation dose to heart base linked with poorer
survival in lung cancer patients. Eur. J. Cancer 85, 106–113 (2017)

11. Milletari, F., Navab, N., Ahmadi, S.: V-Net: fully convolutional neural networks
for volumetric medical image segmentation. CoRR abs/1606.04797 (2016). http://
arxiv.org/abs/1606.04797

12. Oktay, O., et al.: Anatomically constrained neural networks (ACNNs): applica-
tion to cardiac image enhancement and segmentation. IEEE Trans. Med. Imaging
37(2), 384–395 (2018)

13. Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas. CoRR
abs/1804.03999 (2018). http://arxiv.org/abs/1804.03999

14. Dess, R.T., Sun, Y., et al.: Cardiac events after radiation therapy: combined analy-
sis of prospective multicenter trials for locally advanced non-small-cell lung cancer.
J. Clin. Oncol. 35, 1395–402 (2017)

15. Thor, M., Deasy, J., et al.: The role of heart-related dose-volume metrics on overall
survival in the RTOG 0617 clinical trial. Int. J. Radiat. Oncol. Biol. Phys. 102,
S96 (2018)

16. Vivekanandan, S., Landau, D., Counsell, N., Warren, D., Khwanda, A., et al.:
The impact of cardiac radiation dosimetry on survival after radiation therapy for
non-small cell lung cancer. Int. J. Radiat. Oncol. 99, 51–60 (2017)

http://arxiv.org/abs/1811.01328
http://arxiv.org/abs/1506.04579
http://arxiv.org/abs/1606.04797
http://arxiv.org/abs/1606.04797
http://arxiv.org/abs/1804.03999


Author Index

Apte, Aditya 162

Bagshaw, Hilary 34
Bai, Ti 110
Buyyounouski, Mark 34

Cai, Jing 102
Chao, Hongyang 52
Cheng, Yueh-Hung 61
Créhange, Gilles 119
Crijns, Wouter 10
Curran, Walter J. 26, 154

Daoud, Bilel 128
Daoud, Jamel 128
Deasy, Joseph O. 162
Dong, Xue 154
Dou, Qi 43
Du, Chi 70, 86
Dylov, Dmitry V. 94

Farhat, Leila 128
Folkerts, Michael 110
Fu, Yabo 26, 154

Ginn, John 78
Girum, Kibrom Berihu 119

Han, Bin 34
Hancock, Steven L. 34
Haq, Rabia 162
Harms, Joseph 26, 154
Haustermans, Karin 10
Higgins, Kristin 26
Ho, Wai Yin 102
Hotca, Alexandra 162
Hsu, Feng-Ming 61
Hu, Szu-Yeu 61
Hu, Yu-chi 18
Huang, Yangsibo 137
Hunt, Margie 18
Hussain, Raabid 119

Jia, Fucang 146
Jia, Xun 110
Jiang, Dashan 86
Jiang, Steve 1, 52, 110
Jiang, Wenhao 43
Jiang, Xiling 146

Kurazume, Ryo 128
Kwok, Ka-Wai 43

Lalande, Alain 119
Lamb, James 78
Lee, Kit-Hang 43
Lei, Yang 26, 154
Li, Teng 70, 86
Liu, Jianfei 70, 86
Liu, Shuolin 70, 86
Liu, Tian 26, 154
Liu, Yongbin 86
Liu, Zhiyu 43
Lo, Yat-Long 43
Lu, Jen-Tang 61
Lu, Shao-Lun 61
Lu, Weiguo 110

Ma, Jianhui 110
Maes, Frederik 10
Mao, Ronghu 70, 86
Miyauchi, Shoko 128
Mnejja, Wafa 128
Morooka, Ken’ichi 128

Neph, Ryan 137
Ng, Yui-Lun 43
Nguyen, Dan 1, 52, 110

Ogunmolu, Olalekan 1

Polvorosa, Cynthia 18
Prokopenko, Denis 94

Qin, Jing 102



Ren, Ge 102
Renisch, Steffen 94
Rimner, Andreas 162
Ruan, Dan 78

Sadeghnejad Barkousaraie, Azar 1
Schulz, Heinrich 94
Sheng, Ke 137
Stadelmann, Joël Valentin 94
Sterpin, Edmond 10

Thor, Maria 162
Tsai, Chiaojung Jillian 18

Vardhanabhuti, Varut 43

Walker, Paul Michael 119
Wang, Tonghe 26, 154
Weng, Wei-Hung 61
Willems, Siri 10
Wu, Haitao 146

Xiao, Furen 61
Xing, Lei 34

Yang, Qiming 52
Yang, Xiaofeng 26, 154
Yang, Yong 34
Yang, Youming 137

Zhang, Jingjing 70
Zhao, Wei 34
Zhou, Linghong 110

172 Author Index


	Preface
	Organization
	Contents
	Using Supervised Learning and Guided Monte Carlo Tree Search for Beam Orientation Optimization in Radiation Therapy
	Abstract
	1 Introduction
	2 Methods
	2.1 Column Generation
	2.2 Supervised Deep Learning Neural Network
	2.3 Monte Carlo Tree Search

	3 Results and Discussion
	4 Conclusion
	References

	Feasibility of CT-Only 3D Dose Prediction for VMAT Prostate Plans Using Deep Learning
	1 Introduction
	2 Methods
	2.1 Available Data and Preprocessing
	2.2 Model Architectures
	2.3 Sampling and Training
	2.4 Validation Experiment

	3 Results
	4 Discussion
	5 Conclusion
	References

	Automatically Tracking and Detecting Significant Nodal Mass Shrinkage During Head-and-Neck Radiation Treatment Using Image Saliency
	1 Introduction
	1.1 Clinical Background
	1.2 Monitoring Volume Changes Using Deformable Image Registration

	2 Methods
	2.1 Image Saliency
	2.2 Detection Metric for Significant Nodal Volume Shrinkage

	3 Experiments
	3.1 Data Set
	3.2 Volume Propagation
	3.3 Evaluation
	3.4 Results

	4 Conclusion and Future Works
	References

	4D-CT Deformable Image Registration Using an Unsupervised Deep Convolutional Neural Network
	Abstract
	1 Introduction
	2 Methods
	2.1 4D-CT Training and Testing Data and System Overview
	2.2 Network Architecture
	2.3 Loss Functions and Regularizations

	3 Results
	4 Conclusion and Discussion
	Disclosure
	References

	Toward Markerless Image-Guided Radiotherapy Using Deep Learning for Prostate Cancer
	1 Introduction
	2 Materials and Methods
	2.1 Deep Learning for Tumor Target Localization
	2.2 Generation of Labeled Training Datasets for Deep Learning
	2.3 Deep Learning Model
	2.4 Validation of the Prostate Localization Model

	3 Results
	4 Summary
	References

	A Two-Stage Approach for Automated Prostate Lesion Detection and Classification with Mask R-CNN and Weakly Supervised Deep Neural Network
	Abstract
	1 Introduction
	2 Methods
	2.1 Mask R-CNN for Automated Prostate Structures Segmentation
	2.2 Weakly Supervised Deep Neural Network for Prostate Lesion Detection and Classification

	3 Experimental Results
	3.1 Prostate Structures Segmentation
	3.2 Prostate Lesion Detection and Classification

	4 Conclusion
	Acknowledgements
	References

	A Novel Deep Learning Framework for Standardizing the Label of OARs in CT
	Abstract
	1 Introduction
	2 Materials and Methods
	2.1 Dataset
	2.2 Preprocessing
	2.3 3DNNV

	3 Experimental Results
	3.1 Setting
	3.2 3DNNV vs. Baselines
	3.3 3DNNV vs. Other Methods

	4 Conclusions
	References

	Multimodal Volume-Aware Detection and Segmentation for Brain Metastases Radiosurgery
	1 Introduction
	2 Methods
	2.1 Volume-Aware Dice Loss
	2.2 Deep Learning Framework

	3 Experiments and Results
	3.1 Volume-Aware Dice Loss
	3.2 Deep Learning Framework
	3.3 Limitation

	4 Conclusion
	References

	Voxel-Level Radiotherapy Dose Prediction Using Densely Connected Network with Dilated Convolutions
	1 Introduction
	2 Method
	2.1 Input to the System
	2.2 Model Architecture
	2.3 Optimization
	2.4 Data Collection and Validation Methods

	3 Experimental Results
	4 Conclusion and Future Work
	References

	Online Target Volume Estimation and Prediction from an Interlaced Slice Acquisition - A Manifold Embedding and Learning Approach
	1 Introduction
	2 Methods and Materials
	2.1 State Embedding and Manifold Alignment from 2D Images at Different Acquisition Locations
	2.2 Population of Motion and Contours
	2.3 Target Prediction

	3 Method
	3.1 Studies and Evaluation
	3.2 Results

	4 Discussions and Outlook
	References

	One-Dimensional Convolutional Network for Dosimetry Evaluation at Organs-at-Risk in Esophageal Radiation Treatment Planning
	1 Introduction
	2 Methods and Materials
	2.1 Patient Data
	2.2 Data Preprocessing
	2.3 Feature Dimension Reduction by Stacked Denoise Auto-encoder
	2.4 Correlation Modelling Using One-Dimensional Convolution Network

	3 Results
	4 Conclusion
	References

	Unpaired Synthetic Image Generation in Radiology Using GANs
	1 Introduction
	2 Methods
	3 Data
	4 Experiments
	5 Conclusion
	References

	Deriving Lung Perfusion Directly from CT Image Using Deep Convolutional Neural Network: A Preliminary Study
	Abstract
	1 Introduction
	2 Materials and Methods
	2.1 Patients and Image Acquisition
	2.2 Data Preprocessing
	2.3 Neural Network Architecture
	2.4 Network Training
	2.5 Evaluation

	3 Results
	4 Summary
	References

	Individualized 3D Dose Distribution Prediction Using Deep Learning
	Abstract
	1 Introduction
	2 Methods and Materials
	2.1 Architecture
	2.2 Data and Training Setting

	3 Results
	4 Discussion
	5 Conclusion
	References

	Deep Generative Model-Driven Multimodal Prostate Segmentation in Radiotherapy
	1 Introduction
	2 Methodology
	2.1 Network Architecture
	2.2 Loss Function

	3 Experimental Setup and Results
	3.1 Datasets
	3.2 Experimental Results

	4 Conclusion
	References

	Dose Distribution Prediction for Optimal Treamtment of Modern External Beam Radiation Therapy for Nasopharyngeal Carcinoma
	1 Introduction
	2 Methods
	2.1 Materials
	2.2 System

	3 Experimental Results
	3.1 Results
	3.2 Discussion

	4 Conclusion
	References

	DeepMCDose: A Deep Learning Method for Efficient Monte Carlo Beamlet Dose Calculation by Predictive Denoising in MR-Guided Radiotherapy
	Abstract
	1 Introduction
	2 Methods
	2.1 Monte Carlo Dose Simulation
	2.2 Dataset Construction
	2.3 Experiment Design

	3 Results
	4 Discussion
	5 Conclusions
	References

	UC-GAN for MR to CT Image Synthesis
	Abstract
	1 Introduction
	2 Method
	2.1 Generator
	2.2 Evaluation

	3 Experiments and Results
	4 Conclusion and Discussion
	Acknowledgments
	References

	CBCT-Based Synthetic MRI Generation for CBCT-Guided Adaptive Radiotherapy
	Abstract
	1 Introduction
	2 Methods
	2.1 Training and Testing Data and System Overview
	2.2 Network Architecture
	2.3 Loss Functions

	3 Results
	4 Conclusion and Discussion
	Acknowledgements
	References

	Cardio-Pulmonary Substructure Segmentation of CT Images Using Convolutional Neural Networks
	1 Introduction
	2 Methodology
	2.1 Experimental Datasets
	2.2 Network Architecture
	2.3 Model Evaluation

	3 Results and Discussion
	4 Conclusion
	References

	Author Index



