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5.1	 �Introduction

A prominent pathological feature of cHL is the 
abnormal immune response represented by the 
abundant TME. It is thought that the majority of the 
immune cells in the TME are recruited by a variety 
of cytokines expressed by the HRS cells [1]. 

Cytokines are low-molecular-weight proteins with 
a wide variety of functions that work either in a 
paracrine manner to modulate the activity of sur-
rounding cells or in an autocrine fashion to affect 
the cells that produce them. Furthermore, it is a 
widely accepted concept that the overexpression of 
regulatory cytokines and TGFβ leads to a microen-
vironment that suppresses cell-mediated immunity 
and in return favors HRS cell survival highlighting 
the bidirectional crosstalk of cells involved in the 
pathogenesis of HL [2].

The recent advances in HRS cell genomics 
and profiling the tumor microenvironment have 
already led to better insight into the molecular 
underpinnings of the disease, and we are antici-
pating discovery of additional clues explaining 
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the unique crosstalk and symbiosis of the malig-
nant cells with the non-malignant cells in the 
TME. In the following, we will highlight recent 
advances and future directions in (1) HRS cell 
genomics (Fig.  5.1) and (2) gene expression 
profiling.

5.2	 �Genomics of Hodgkin and  
Reed-Sternberg Cells

5.2.1	 �Cytokine Signaling

Constitutive activation of cytokine signaling 
pathways is a long recognized molecular hall-
mark of HRS cells. A number of studies provided 

evidence that various molecular mechanisms, 
including gene mutations and chromosomal 
alterations, can converge along with deregulated 
surface receptor signaling to lead to exuberant 
activation of the Janus kinase-signal transducer 
and activator of transcription (JAK-STAT) path-
way [3–5].

Chromosomal aberrations of the JAK2 locus 
on 9p24.1  in HRS cells were reported in one 
study in the large majority of cHL cases, includ-
ing copy gain in 60% of cases, amplification in 
30%, and polysomy in 10% [5]. Almost ubiqui-
tous (∼90% of cases) are genetic alterations of a 
variety of other JAK-STAT pathway members, 
which goes beyond previous estimates based on 
the presence of copy number gains of JAK2. 
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Fig. 5.1  The mutational profile of newly diagnosed 
cHL.  The heatmap shows individual non-synonymous 
somatic mutations detected in three different cohorts 
(Spine et al., green; Tiacci et al., yellow; Reichel et al., 
blue). Each cohort has a different source of tumor DNA 
(i.e., circulating tumor DNA, DNA from laser microdis-
sected Hodgkin and Reed-Sternberg cells, and DNA from 

flow-sorted Hodgkin and Reed-Sternberg cells). Each row 
represents a gene and each column represents a primary 
tumor. The heatmap was manually clustered to emphasize 
mutational co-occurrence. Mutations are color-coded in 
red. The horizontal bar graph shows the gene mutation 
frequency found in each different cohort
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These include mutational disruption of the 
SOCS1 (40%) and PTPN1 (20%) negative path-
way regulators, activating mutations of JAK1 
(10%), and multiple STAT transcription factors 
(STAT6, 30%; STAT3, 10% STAT5B, 10%) [4].

The association between convergent and 
recurrent point mutations in genes coding for 
interacting proteins of the JAK-STAT pathway 
is a common mechanism shared by CD30+ 
lymphomas, in particular cHL and anaplastic 
large cell lymphoma. Concurrence of these 
multiple somatic events indicates that these 
synergistic mutations are strongly selected for 
beyond single alterations to sustain pathway 
activation [6].

The pervasive targeting of JAK-STAT signal-
ing genes in cHL, along with functional genomic 
studies, confirmed that JAK-STAT pathway acti-
vation represents a vulnerability of cHL and 
makes clinically available JAK or STAT inhibi-
tors an attractive therapeutic approach in this dis-
ease [4].

5.2.2	 �NF-κB Signaling

Overall, genetic lesions in the NF-κB pathway 
occur in most of cHL cases, confirming their 
important role in the pathogenesis of this dis-
ease. Genomic gains/amplifications of the 
NF-κB transcription factor REL have been 
described in about 70% of cHL cases causing 
protein overexpression [7].

Mutations in negative regulators of NF-κB 
constitute a second important mechanism of 
pathway activation. NFKBIA, encoding IκBα, an 
inhibitor that binds NF-κB factors and prevents 
their nuclear translocation, is mutated in about 
20% of cHL [8]. NFKBIE, encoding IκBε, an 
inhibitor that binds NF-κB factors and prevents 
their nuclear translocation, has been found in 
30% of cases [9]. TNFAIP3 the master negative 
regulator of NF-κB pathway is mutated in 30% of 
cases [3, 10].

Overall, NF-κB pathway mutations have 
been described in cHL with a higher frequency 
in EBV-negative cases, consistent with data 
establishing expression of the EBV-latent 

membrane protein 1 (LMP-1) as an indepen-
dent contributor to constitutive activation of 
NF-κB in cHL [11, 12].

5.2.3	 �PI3K/AKT/mTOR Signaling

Mutations within the PI3K/AKT/mammalian tar-
get of rapamycin (mTOR) pathway occur in 50% 
of cHL, consistent with the pre-clinical evidence 
that cHL is addicted to this actionable cellular 
program [13]. ITPKB is mutated in 25% of cases. 
ITPKB is a non-canonical antagonist of 
PI3K.  Physiologically, ITPKB dampens PI3K/
AKT signaling by producing IP4, a soluble 
antagonist of the AKT-activating PI3K-product 
PIP3.

ITPKB mutations are quite specific for cHL, 
being rare or absent in other lymphomas, and 
cause the subcellular delocalization of the 
mutated protein in primary HRS cells. Moreover, 
ITPKB mutations correlate with PI3K/AKT sig-
naling activation at both the gene expression and 
protein levels and, consistent with linkages to the 
downstream PI3K pathway, associate with resis-
tance to PI3K inhibitors [3, 4].

The Ga13  G-protein subunit encoded by 
GNA13 is mutated in 10% of cHL [3, 4]. By 
transmitting signals from the G-protein-
coupled receptors S1PR2 and P2RY8 that 
result in the inhibition of AKT phosphoryla-
tion, Ga13 ensures the proper confinement of 
proliferating germinal center (CG) B cells 
within secondary lymphoid follicles and at the 
same time constrains their expansion by facili-
tating apoptosis in this potentially dangerous 
niche. Inactivating GNA13 mutations promote 
altered GC B-cell migration within and beyond 
the GC, as well as impaired cellular adhesion, 
resulting in cells that may have a reduced abil-
ity to establish interactions with GC helper 
cells. Under normal conditions, a GC cell that 
is unable to form these helper cell interactions, 
due to either GC exit or ineffective cellular 
adhesion, would undergo apoptosis. However, 
GNA13-mutated GC B cells are resistant to 
programmed cell death by leading to elevated 
levels of pAKT [14].
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Importantly, the genomic studies of microdis-
sected HRS cells and ctDNA strongly suggest 
that mutations of STAT6, TNFAIP3, GNA13, and 
ITPKB are preferentially occurring in the ances-
tral clones, indicating that they are an early event 
in cHL pathogenesis [3, 4].

5.2.4	 �Immune Escape

Classical HL leverages multiple genetic mecha-
nisms to escape immunosurveillance. First, reduc-
tion or loss of antigen presentation through B2M 
inactivating mutations/deletion has been described 
in 30% of cases [4, 15]. B2M encodes β2 micro-
globulin, a key component of the major histocom-
patibility complex (MHC) class I which is 
required for its expression and antigen presenta-
tion on the cell surface. Consistently, genetic dis-
ruption of B2M results in the loss of MHC class I 
protein expression on lymphoma cells [16, 17].

Second, gene rearrangements involving the 
MHC class II transactivator CIITA were found in 
15% of cases. CIITA rearrangements result in the 
disruption of its transcriptional proprieties and 
loss of MHC class II expression on cHL cells. 
Both MHC class I and MHC class II losses are 
predicted to abrogate the interaction of the T-cell 
receptor (TCR) with a MHC-bound antigen pre-
sented on the cell surface, which is the first signal 
required to activate T-cell antitumor response [18]. 
Loss of both MHC I and II expression and related 
lack of neoantigen expression have been consis-
tently found to induce “cold” immune microenvi-
ronments in lymphoma and other cancers [19, 20].

Third, PD-L1 and PD-L2 overexpression 
driven by copy gain of 9p24.1 is a frequent event 
in cHL. Alterations of the PD-L1 and PD-L2 loci 
were reported to include polysomy in 5% of cHL, 
copy gain in 56%, and amplification in 36%. The 
9p24.1 amplification in cHL acts through two 
distinct mechanisms resulting in copy number-
dependent increases of PD-L1 and PD-L2 expres-
sion and increased JAK/STAT signaling promoted 
by JAK2 protein expression which is almost 
exclusively co-regulated with PD-L1 and 
PD-L2 in the 9p24.1 amplicon [21].

5.3	 �The Transcriptome  
of HRS Cells

Overall, gene expression profiling experiments 
have contributed substantially to an improved 
understanding of the disease with respect to the 
inherent phenotypic features of the malignant 
HRS cells and the specific composition of the 
tumor microenvironment. Furthermore, first 
steps could be made to establish outcome cor-
relations with the potential to improve treatment 
outcome prediction. However, many questions 
remain including often contradictory results 
derived from different patient cohorts. Focusing 
on HRS cells, the first major contribution of 
gene expression profiling was made by investi-
gating HL-derived cell lines. These pivotal stud-
ies first established a transcriptome-wide view 
of the malignant cell compartment describing a 
unifying gene signature for cHL [22]. Together 
with other important similar studies, this gene 
expression work helped to elucidate the loss of 
B-cell signature phenotypes and the deregulated 
expression of transcription factor networks in 
comparison to the normal germinal center B-cell 
counterparts [23–26]. Major advances have also 
been made examining microdissected HRS cells 
from clinical biopsy material that further char-
acterized transcriptional changes in primary 
cells [27–29]. Steidl and colleagues identified 
significant phenotypic heterogeneity within 
cHL and described for the first time genome-
wide association with treatment outcome [28] 
(Fig. 5.2). The second study by Tiacci and col-
leagues added significant texture to the primary 
HRS cell expression phenotype emphasizing the 
differences in comparison to HL-derived cell 
lines [29]. Furthermore, two molecularly dis-
tinct cHL subtypes were discovered related to 
the transcription factor activity of NOTCH1, 
MYC, and IRF4. Another study for the first time 
also focused on gene expression profiling of 
microdissected cells from nodular lymphocyte 
predominant Hodgkin lymphoma (NLPHL) 
describing a close relationship to classical 
Hodgkin lymphoma and T-cell-rich B-cell lym-
phoma [27].
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5.4	 �Microenvironment Profiling

Focusing on the HL microenvironment, a number 
of genome-wide gene expression studies have 
been published to date analyzing whole tissue 
lymph node biopsy material. Since the HRS cells 
are largely outnumbered by reactive cells in most 
biopsies, these studies on whole frozen biopsies 
are regarded as a reflection of the microenviron-

ment [30–33]. However, some of these data pro-
vide evidence that at least parts of the apparent 
signatures are derived from HRS cells [31, 33]. In 
one study a specific gene expression signature 
could be linked to EBV positivity with genes 
overexpressed indicative of an increased Th1/
antiviral response in comparison to the EBV-
negative cases [32]. In addition to a better charac-
terization of certain Hodgkin lymphoma subtypes 
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Fig. 5.2  Expression profiling of 29 samples of microdis-
sected Hodgkin and Reed-Sternberg cells. (a) Unsupervised 
hierarchical clustering of gene expression profiles is 
shown using high variance genes. Red indicates relative 
overexpression and green relative under-expression. 
Patient clusters, histological subtype, EBV positivity of 
HRS cells by EBER in situ hybridization, and sample type 
are shown. The average fold changes of genes representa-
tive of the three main signatures are shown in the bar 
plots. Representative immunohistochemistry images are 

depicted demonstrating cytoplasmic positivity of 
Granzyme B (GrB, black arrows) and RANK in HRS 
cells. (b) Unsupervised hierarchical clustering of the 
cohort using the most differentially expressed genes 
between primary treatment failure and success. Treatment 
outcome, histological subtype, EBV positivity of HRS 
cells by EBER in situ hybridization, and sample type are 
shown. Cases cluster according to the outcome groups 
(two main clusters)
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defined by specific gene signatures, these experi-
ments also allowed for the study of outcome cor-
relations using supervised analyses.

5.5	 �Biomarker-Driven 
Prognostication and Risk 
Stratification in cHL

The lack of extensive genotyping of microdis-
sected HRS cells from large cHL patient cohorts 
has so far limited the identification of mutations 
affecting cHL outcome. ctDNA has been estab-
lished as a source of tumor DNA for cHL muta-
tional profiling. By overcoming the major 
technical hurdles that have so far limited cHL 
genotyping, ctDNA technology will allow large-
scale assessment of mutations in different clini-
cal phases ranging from newly diagnosed to 
refractory disease, and longitudinally during dis-
ease treatment, which in turn can reveal yet 
unknown prognostic and predictive biomarkers 
for cHL [3] (Fig. 5.3).

Beside disclosing tumor mutation profiles, 
ctDNA can also provide an estimate of the lev-
els of residual disease during treatment in 
cHL.  Consistently, ctDNA quantification after 

two chemotherapy courses has prognostic impli-
cations. A drop of 100-fold or 2-log drop in 
ctDNA after two chemotherapy courses, a 
threshold proposed and validated also in 
DLBCL, associates with complete response and 
cure in advanced-stage cHL treated with ABVD 
[3]. Conversely, a drop of less than 2-log in 
ctDNA after two ABVD courses associates with 
progression and inferior survival. Quantification 
of ctDNA complements interim PET/CT in 
determining residual disease. Indeed, cured 
patients who are inconsistently judged as 
interim PET/CT positive have a >2-log drop in 
ctDNA, while relapsing patients who are incon-
sistently judged as interim PET/CT negative 
have a <2-log drop in ctDNA.  On this basis, 
incorporation of both PET/CT and ctDNA mon-
itoring into clinical trials should allow to pre-
cisely define their cumulative sensitivity and 
specificity in anticipating the clinical course of 
cHL patients. Indeed, though interim PET/CT 
response assessment is a novel approach to 
refine management strategies before completing 
treatment in cHL, meta-analyses demonstrated a 
certain degree of inaccuracy of this application. 
In order to fill this gap, an area of growing inter-
est is pairing interim PET/CT with biomarkers, 
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such as ctDNA or serum TARC, to enhance their 
cumulative predictive value.

The type of 9p24.1 chromosomal aberration 
affects cHL outcome in both chemotherapy and 
immunotherapy treatment settings. Among 
chemotherapy-treated cHL, 9p24.1 amplifica-
tion, but not polysomy or copy gain, associates 
with inferior progression-free survival [21]. 
Among patients treated with checkpoint block-
ade antibodies, those with higher-level 9p24.1 
alterations and PD-L1 expression on HRS cells 
had superior PFS [34]. These analyses highlight 
the importance of quantifying and specifically 
delineating PD-L1 expression in malignant HRS 
cells for prognostic purposes.

Beside genetics, the tumor/TME phenotype 
has been prominently involved in past and ongo-
ing biomarker considerations in cHL.  Studies 
have used dichotomized clinical data sets based 
on slightly different definitions of clinical 
extremes according to the outcome after systemic 
treatment (i.e., treatment success versus treat-
ment failure). However, these types of analyses 
have in part yielded conflicting results regarding 
the specific signatures that best define these clini-
cal extremes. While one study found overexpres-
sion of genes involved in fibroblast activation, 
angiogenesis, extracellular matrix remodeling, 
and downregulation of tumor suppressor genes to 
be linked with an unfavorable prognosis, another 
study found a correlation of fibroblast activation, 
fibroblast chemotaxis, and matrix remodeling 
with improved outcome [30, 31]. While small 
sample sizes in both studies might have ham-
pered interpretation, a more recent study investi-
gated gene expression profiles of 130 patients 
including 38 patients whose primary treatments 
failed [33]. This study validated previously 
reported outcome correlations and furthermore 
showed that a gene signature of macrophages 
was linked to primary treatment failure. In a 
number of immunohistochemistry-based follow-
up studies, multiple groups demonstrated that the 
enumeration of CD68+ macrophages in lymph 
node biopsies was a strong and independent pre-
dictor of disease-specific survival [35]. 
Specifically, an elegant retrospective study using 
Intergroup E2496 trial material (comparing 

ABVD to the Stanford V regimen) showed that 
high abundance of both CD68+ and CD163+ 
cells was correlated with shorter progression-free 
and overall survival independent of the IPS [36]. 
Importantly, the latter study used a computer-
based scoring algorithm (Aperio) and systemati-
cally derived scoring thresholds that were tested 
in an independent validation cohort. Maximizing 
the concept of combining markers for building 
outcome predictors, a recent study used the same 
E2496 trial material to train a predictive model 
using intermediate density digital gene expres-
sion profiling developed in and applicable to rou-
tinely collected formalin-fixed paraffin-embedded 
tissue [37]. In this study the authors developed a 
23-gene predictive model and associated thresh-
olds to distinguish high-risk from low-risk 
advanced-stage Hodgkin lymphoma using over-
all survival as the end point. Encouragingly, 
when applied to an independent cohort treated 
with ABVD chemotherapy, the model validated 
the results in the E2496 training cohort identify-
ing the patient at high risk of death. Follow-up 
studies are needed to further validate and imple-
ment biomarker assays for potential routine clini-
cal use, risk stratification, and assessment as a 
predictive biomarker possibly guiding initial 
treatment decisions.

To date, cHL research has been for the most 
part focused on primary specimens, and only a 
few studies have explored the biology of relapse. 
However recently, the feasibility of biomarker 
studies and assay development at the time point 
of relapse was demonstrated in the context of 
outcome prediction of salvage therapy and 
ASCT [38]. The authors demonstrated that gene 
expression patterns, reflecting TME composi-
tion, differ significantly between matched pri-
mary and relapse specimens in a subset of cHL 
patients. Based on the superior predictive prop-
erties of gene expression measurements in 
relapse specimens, a novel clinically applicable 
prognostic model/assay (RHL30) was devel-
oped that identifies a subset of patients at high 
risk of treatment failure following salvage ther-
apy and ASCT. Specifically, RHL30 identifies a 
high-risk group of patients with significantly 
inferior post-ASCT-FFS compared to the low-
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risk group (5-year: 23.8% high-risk vs. 77.5% 
low-risk) and also inferior post-ASCT-OS 
(5-year: 28.7% high-risk vs. 85.4% low-risk). 
Importantly, the prognostic power of RHL30 
was reproduced in two separate validation 
cohorts of relapse specimens, and the RHL30 
was statistically independent of all previously 
described prognostic markers in the validation 
cohorts, including post-salvage therapy response 
assessment by PET/CT [38].

5.6	 �Conclusions and Future 
Perspective

The advent of next-generation sequencing has 
significantly added to the armamentarium of 
genomics techniques interrogating tumor genet-
ics of cHL and elucidating the molecular under-
pinnings of the unique crosstalk of the malignant 
HRS cells with their immune microenvironment. 
The sequencing studies of ctDNA and enrich-
ment of HRS cells confirmed the importance of, 
and added texture to, the known molecular hall-
marks of NFκB, JAK-STAT, and PI3K signaling 
as well as immune privilege phenotypes. 
Moreover, gene expression profiling studies of 
the microenvironment have reached more matu-
rity in comprehensively describing cellular com-
partments in the TME and validated key 
correlations to pathologic and clinical outcome 
data. In particular, effective biomarker assay 
translation appears more and more realistic with 
the emergence of methods that are compatible 
with FFPE tissues that can be applied to relapse 
biopsies and are minimally invasive (e.g., serial 
peripheral blood draws) for dynamic biomarker 
testing. Despite these most recent advances, a 
number of challenges and open questions remain 
that need to be addressed in future studies. First, 
with respect to cHL biology, no unique and spe-
cific somatic gene mutations have been identi-
fied that would explain the unique histopathology 
of cHL in contrast to other lymphomas, leaving 
room for future discoveries. Second, systematic 
integration of HRS cell genomics with features 
and cellular components of the TME are lacking. 
Third, sample numbers for genomic landscape 
studies are still limited to be fully powered for 

mutational pattern analysis and robust outcome 
correlates in patients treated with standard of 
care. Finally, with the emergence of targeted 
therapies (e.g., brentuximab vedotin [39]) and 
modern immunotherapies (e.g., checkpoint 
inhibitors [40] or bispecific antibodies [41]), 
predictive biomarker development using genom-
ics has to be prioritized alongside the next gen-
eration of clinical trials and population-based 
outcome studies of patients receiving these novel 
therapies in the standard of care setting. 
Excitingly, novel cutting-edge genomics tech-
niques might also overcome some of the 
described obstacles, including HRS cell sequenc-
ing, to interrogate the non-coding space (e.g., 
whole genome sequencing), epigenetic profiling 
(e.g., ATAC-seq, bisulfite sequencing), and 
RNAseq at the single cell level to characterize 
the TME.  Integrating these novel genomics 
approaches for dynamic, multi-time point bio-
marker testing alongside existing and novel ther-
apeutic approaches holds the great promise to 
fully realize the benefits of precision medicine 
by genomics-driven clinical decision-making.
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