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BARTs	 BamHI fragment A rightward 
transcripts

BHRF1	 BamHI-H rightward open reading 
frame 1

cHL	 Classic Hodgkin lymphoma
DDR1	 Discoidin domain receptor 1
EBER	 EBV-encoded small RNAs
EBNA	 EBV nuclear antigen
EBV	 Epstein-Barr virus
HHV	 Human herpesvirus
HL	 Hodgkin lymphoma
HLA	 Human leukocyte antigen
HPyV	 Human polyomavirus
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IHC	 Immunohistochemistry
LMP	 Latent membrane protein
MCHL	 Mixed cellularity Hodgkin 

lymphoma
MCPyV	 Merkel cell polyomavirus
miRNAs	 MicroRNAs
MV	 Measles virus
NSHL	 Nodular sclerosis Hodgkin 

lymphoma
ORF	 Open reading frame
PyV	 Polyomavirus
SNP	 Single nucleotide polymorphism
TSPyV	 Trichodysplasia spinulosa 

polyomavirus
TTMDV 	 Torque teno midi virus
TTMV 	 Torque teno mini virus
TTV	 Torque teno virus

2.1	 �Introduction

Hodgkin lymphoma (HL) is a heterogeneous con-
dition. Seminal papers published in 1957 and 
1966 suggested that HL in younger and older 
adults had different etiologies and further sug-
gested an infectious etiology for young adult HL 
[1, 2]. Subsequent epidemiological studies pro-
vide broad support for these hypotheses [3, 4]. 
Data linking young adult HL with a high standard 
of living in early childhood and lack of child-child 
contact suggest that delayed exposure to common 
childhood infections may be involved in the etiol-
ogy of these cases [5, 6]. There is now compelling 
evidence that a proportion of cases of HL are 
associated with the Epstein-Barr virus (EBV). 
Paradoxically, older adult and childhood cases of 
HL are more likely to be EBV-associated than 
young adult cases [7–9]. In this article, we review 
studies on viral involvement in HL with a focus 
on classic HL (cHL), since nodular lymphocyte-
predominant HL is considered a separate disease 
entity. The association with EBV will be dis-
cussed with an emphasis on findings that support 
a causal role for EBV in this malignancy. Studies 
investigating the direct involvement of other 
exogenous viruses will be summarized.

2.2	 �Hodgkin Lymphoma 
and Epstein-Barr Virus

EBV is a herpesvirus with a worldwide distribu-
tion [10–13]. Over 90% of healthy adults are 
infected by EBV, and, following primary infec-
tion, the virus establishes a persistent infection 
with a reservoir in memory B-cells [14]. Although 
EBV is an extremely efficient transforming 
agent, the virus is kept under tight control by cell-
mediated immune responses, and both primary 
and persistent infections are usually asymptom-
atic [10, 15].

EBV infection can be lytic or latent. Lytic 
infection is associated with expression of a large 
number of viral genes, production of progeny 
virus, and death of the infected cell; in contrast, 
latent infection is associated with expression of a 
small number of EBV genes, persistent infection, 
and growth transformation [10]. In B-cells trans-
formed by EBV in vitro, six EBV nuclear anti-
gens (EBNA1, 2, 3A, 3B, 3C, and LP, also called 
EBNA1–6) and three latent membrane proteins 
(LMP1, LMP2A, and LMP2B) are expressed 
[10]. In addition, noncoding viral RNAs are tran-
scribed in latently infected cells [16]. These 
include two small non-polyadenylated tran-
scripts, the EBERs, and over 44 viral microRNAs 
(miRNAs) located within introns of the BARTs 
(BamHI fragment A rightward transcripts) or 
around the coding region of the BHRF1 
(BamHI-H rightward open reading frame 1) gene 
[16–22]. Expression of the full set of latent genes 
is known as latency III [10, 13]. EBV gene 
expression in EBV-positive lymphomas occur-
ring in the context of immunosuppression fre-
quently follows this pattern, but more restricted 
patterns of EBV gene expression are observed in 
other malignancies, including cHL [10, 12, 13]. 
The EBNA3 family proteins are immunodomi-
nant, and the other latent antigens elicit only sub-
dominant or weak cell-mediated immune 
responses [23, 24]. The pattern of gene expres-
sion in EBV-associated malignancies most prob-
ably depends on both the lineage and stage of 
differentiation of the infected tumor cells and the 
host EBV-specific immune response.
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In EBV-associated cHL (also referred to as 
EBV-positive cHL), all of the tumor cells, the 
Hodgkin and Reed-Sternberg (HRS) cells, are 
infected by EBV [25–27]. The EBV infection 
within tumors is also clonal suggesting that all of 
the tumor cells are derived from a single infected 
cell [28, 29]. The HRS cells express EBNA1, 
LMP1, LMP2A, and 2B, but the remaining 
EBNAs are downregulated (Fig.  2.1); the non-
coding EBER RNAs and BART miRNAs are also 
expressed [25, 26, 30–33]. This pattern of gene 
expression is referred to as latency type II [10]. 
EBV infection of HRS cells can be readily 
demonstrated in sections of routinely fixed, 
paraffin-embedded material using either EBER 
in situ hybridization or LMP1 immunohisto-
chemistry (IHC) (Fig. 2.1) [25, 26]. Reagents for 
both assays are commercially available.

2.2.1	 �Epstein-Barr Virus 
and the Pathogenesis 
of Hodgkin Lymphoma

The molecular pathogenesis of cHL and the origin 
of the HRS cell are described in detail in Chap. 3. 
Briefly, HRS cells have clonally rearranged immu-
noglobulin genes with evidence of somatic hyper-
mutation, indicating a derivation from B-cells that 
have participated in a germinal center reaction [34, 

35]. A pathognomonic feature of these cells is the 
global suppression of B-cell signature genes and 
inappropriate expression of genes associated with 
other hematopoietic lineages [36, 37]. Importantly, 
HRS cells do not express B-cell receptors (BCRs). 
Survival of germinal center B-cells normally 
requires signaling through both BCRs and CD40; 
HRS cells must, therefore, have acquired a non-
physiological survival mechanism(s). Functional 
studies of EBV, and LMP1 and LMP2A, support a 
role for the virus in HRS cell survival, transcrip-
tional reprogramming, and immune evasion, as 
summarized below (Fig. 2.2).

Fig. 2.1  The latent membrane proteins of EBV contrib-
ute to the pathogenesis of classic Hodgkin lymphoma. 
Schematic diagram of LMP1 (left) and LMP2A (right) 
proteins in the cell membrane (gray bar). Both are trans-
membrane proteins that signal constitutively through the 
C-terminus in the case of LMP1 and the N-terminus in the 

case of LMP2A. The photomicrograph in the center shows 
the co-expression of LMP1 (red) and LMP2A (green) in 
the same Hodgkin and Reed-Sternberg cell in a tissue sec-
tion of classic Hodgkin lymphoma. The nucleus of the 
Hodgkin and Reed-Sternberg cell stained blue with DAPI 
is arrowed

LMP1 LMP2A

C-terminus activates signalling pathways
e.g. NF-ĸB, JAK/STAT, PI3-K/Akt
Induces chemokine/cytokine secretion
that promotes tumour microenvironment LMP1 LMP2

N-terminus activates signalling pathways
e.g. PI3-K/Akt
Contributes to survival of BCR-negative
B-cells

Fig. 2.2  EBV EBER in situ hybridization staining of 
EBV-positive Hodgkin and Reed-Sternberg cells. The 
characteristic staining pattern is observed in the nuclei of 
Hodgkin and Reed-Sternberg cells
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In 2005, three independent groups published 
data showing that germinal center B-cells lacking 
BCRs could survive and be immortalized by 
EBV [38–40]. In elegant experiments, Mancao 
and Hammerschmidt later showed that this sur-
vival function was dependent on LMP2A expres-
sion [41]. A series of in vivo and in vitro studies 
from the Longnecker laboratory further defined 
LMP2A function and showed that this viral pro-
tein could mimic an activated BCR and provide a 
survival signal to BCR-negative B-cells [42–44]. 
LMP2A expression in B-cells also results in 
downregulation of B-cell-specific genes and 
induction of genes associated with proliferation 
and inhibition of apoptosis, a gene expression 
profile similar to that seen in cHL-derived cell 
lines [45]. Constitutive activation of Notch1 by 
LMP2A, and subsequent inhibition of E2A and 
downregulation of EBF, two transcription factors 
that regulate B-cell development, appears to be 
involved in both survival signaling and transcrip-
tional regulation [44]. Although these data sug-
gest a role for LMP2A in the survival and 
reprogramming of HRS cells, many of the intra-
cellular molecules involved in BCR signaling are 
downregulated in HRS cells, and therefore the 
precise contribution of LMP2A in cHL is not 
clear.

CD40 signaling plays a critical role in the pos-
itive selection of germinal center B-cells express-
ing high-affinity immunoglobulin and their 
subsequent exit from the germinal center [46]. 
EBV LMP1 is an integral membrane protein 
which interacts with several signal transduction 
pathways to activate NF-κB, Jun N-terminal 
kinase (JNK), and p38 mitogen-activated protein 
kinase [47–51]. In this way, LMP1 mimics a con-
stitutively active CD40 molecule, although it pro-
vides a more potent and sustained signal. Many 
of the genes that are transcriptionally regulated 
by LMP1  in germinal center B-cells are also 
CD40 and NF-κB targets [52]. Activation of the 
NF-κB pathway, which is a feature of both EBV-
positive and EBV-negative HRS cells, leads to 
upregulation of anti-apoptotic genes and is 
thought to play a key role in HRS cell survival 
[53–55]. LMP1 expression in germinal center 
B-cells also leads to increased expression of Id2, 

an inhibitor of the E2A transcription factor men-
tioned above, and repression of B-cell signature 
genes [52]; therefore, LMP1 may also contribute 
to transcriptional reprogramming.

The EBV genome is maintained as an episome 
in infected cells; i.e., it does not normally inte-
grate. The EBNA1 protein is responsible for 
maintenance of the genome in episomal form, 
genome replication, and genome partitioning 
during mitosis [10, 56]. EBNA1 can also influ-
ence both viral and cellular gene expression and 
appears to confer a B-cell survival advantage, 
although the impact of EBNA1 on oncogenesis 
in vivo is controversial [10, 57–60]. Interestingly, 
in the context of cHL, overexpression of EBNA1 
in vitro leads to the appearance of multinucleated 
cells [57].

The EBV EBER RNAs are two small, non-
polyadenylated RNA pol III transcripts that are 
stably expressed in the nuclei of all latently 
infected cells, including HRS cells. The precise 
function of the EBERs remains unclear, and, 
although not essential for transformation, expres-
sion of these small RNAs is required for efficient 
EBV-induced B-cell growth and transformation 
[16, 61–63].

EBV-encoded miRNAs were identified first in 
2004, and their important role in EBV biology 
and oncogenesis is an area of intense study [16, 
17, 22, 64, 65]. Functional analysis of the BHRF1 
and BART miRNAs suggests roles in evading the 
immune response, promoting cell survival and 
proliferation, inhibiting viral reactivation, and 
fine-tuning gene expression [16, 22, 64, 65]. 
EBV-associated malignancies, including cHL, 
express BART miRNAs, but the BHRF1 miR-
NAs, which are associated with latency type III, 
are not expressed [33]. In vitro studies of knock-
out viruses lacking some or all of the miRNAs 
suggest that they have an important role in the 
initial stages of B-cell transformation by EBV; 
BHRF1 miRNAs play the predominant role with 
some contribution from BART miRNAs at low 
multiplicity of infection [22]. In contrast, in vivo 
studies in a murine huNSG model suggest that 
the main function of these miRNAs is to attenu-
ate the antiviral T-cell-mediated immune 
response, leading to increased numbers of EBV-
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infected B-cells at later time points [66]. Again, 
these effects appear to be mediated by the BHRF1 
miRNAs, as viruses deficient in only the BART 
miRNAs produced similar results to wild-type 
virus in this model system [66]. Ross et  al. 
reported that miRNA BART11-5p downregulates 
the B-cell transcription factor EBF1, suggesting a 
plausible role for this miRNA in cHL [67]. EBV 
also regulates the expression of host miRNAs; 
infection of primary B-cells leads to a conspicu-
ous downregulation of many miRNAs with the 
notable exception of mIR-155, which is highly 
expressed by both EBV-positive and EBV-
negative HRS cells [68, 69]. Analysis of host 
miRNAs in cHL is described in more detail in 
Chap. 4, but it has been reported that EBV status 
of tumors is associated with differences in expres-
sion pattern [70].

While most studies have investigated the 
effects of the latent genes in isolation, there is 
evidence that co-expression of the EBV latent 
genes is important. For example, it has been 
shown that LMP1 is transforming when 
expressed alone in transgenic mouse B-cells 
[71]. However, when LMP2A is expressed 
together with LMP1, the resulting mouse B-cells 
are normal [71]. Comparison of LMP1 and 
LMP2A in B-cells confirms they have both syn-
ergistic and counteracting transcriptional effects 
[72]. Furthermore, in another study it was shown 
that LMP1 and LMP2A co-expression in mouse 
B-cells resulted in tumors, but only if the ani-
mals were immunosuppressed suggesting that 
the combined expression of these latent genes is 
immunogenic in vivo [73].

There is evidence that the tumor microenvi-
ronment in EBV-positive and EBV-negative cHL 
is different. Thus, the T-helper cells present in 
EBV-positive cHL are enriched for functional 
Th1 cells [74]. EBV-positive cHL is also prefer-
entially infiltrated by regulatory Type 1 cells 
(Tr1), which express ITGA2, ITGB2, and LAG3 
and secrete IL-10 [75]. This Th1-biased infiltrate 
is consistent with previous reports of higher 
numbers of activated CD8+ T-cells in EBV-
positive cHL [76] and is also associated with the 
presence of predominantly M1-polarized macro-
phages [77]. There is evidence that the EBV 

latent genes are responsible, at least in part, for 
the recruitment and modification of this tumor 
microenvironment. LMP1, in particular, has been 
shown to induce expression of many of the che-
mokines and cytokines secreted by EBV-infected 
HRS cells [78, 79]. The cHL tumor microenvi-
ronment also contributes to the suppression of 
host anti-EBV-specific immunity. Thus, while 
LMP1 and LMP2A proteins are targets of CD8+ 
cytotoxic T lymphocytes, it is clear that immune 
effectors present in the tumor tissues of EBV-
positive cHL cannot kill the virus-infected cells 
[80, 81]. LMP1 probably also contributes to the 
suppression of EBV-specific immunity through 
its ability to induce expression of the immuno-
suppressive cytokines, including IL-10, and 
upregulate the immune checkpoint ligand, PD-L1 
[82, 83]. LMP1 also upregulates the collagen 
receptor, discoidin domain receptor 1 (DDR1), a 
receptor tyrosine kinase expressed by HRS cells 
[84]. Engagement of DDR1 by collagen leads to 
the increased survival of lymphoma cells, thus 
providing a link between the expression of LMP1 
and pro-survival signaling from the tumor 
microenvironment.

2.2.2	 �Risk Factors for Epstein-Barr 
Virus-Associated Hodgkin 
Lymphoma

It is clear that EBV is associated with only a pro-
portion of cHL cases. In industrialized countries 
around one third of cases are EBV-associated, 
whereas in Africa and Central and South America, 
this proportion is significantly higher [8, 9, 85, 86]. 
EBV-associated cHL cases are not randomly dis-
tributed among all cHL cases, and the demographic 
features and risk factors for the development of 
EBV-positive and EBV-negative cHL show distinc-
tive features [8, 9, 86]. Childhood (<10 years) and 
older adult (50+ years) cases are more likely to 
be EBV-associated than young adult cases 
(15–34 years) [7, 8, 86]. Among EBV-associated 
cases, males outnumber females by approximately 
2:1, whereas males and females are more evenly 
represented among EBV-negative cases [9, 86]. In 
developing countries, childhood cHL is more com-
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mon than in industrialized countries, resulting in a 
higher proportion of EBV-associated cases [9, 86, 
87]. Material deprivation is associated with an 
increased proportion of EBV-positive childhood 
cHL cases in industrialized countries, and there is 
some evidence that this also holds for older adult 
cases [85, 88].

EBV infection usually occurs in childhood, 
and in many parts of the world, there is almost 
universal infection by the age of 5 years [11, 89]. 
If infection is delayed until adolescence, as is 
increasingly observed in industrialized countries, 
primary EBV infection manifests as infectious 
mononucleosis in around 25% of individuals 
[90]. Infectious mononucleosis has been associ-
ated with an increased risk of EBV-associated 
cHL in some, although not all, studies [6, 91–93]. 
The increased risk appears relatively short-lived 
with a median time interval between infectious 
mononucleosis and cHL of approximately 
3–4 years (see Chap. 1: Epidemiology of Hodgkin 
Lymphoma) [92, 93]. Thus, in both developing 
and developed countries, there appears to be a 

period following primary EBV infection, proba-
bly lasting several years, in which risk of EBV-
associated cHL is increased. cHL occurring in 
the context of immunosuppression is almost 
always EBV-associated (see Chap. 1: 
Epidemiology of Hodgkin Lymphoma) [94, 95], 
and it is likely that the increased incidence of 
EBV-associated cHL that occurs in older adults is 
related to immune senescence. Based on these 
data, we have proposed an extension of 
MacMahon’s model of HL that divides cHL into 
four subgroups on the basis of tumor EBV status, 
age at diagnosis, and age at infection by EBV 
(Fig. 2.3) [2, 96].

Recent data also suggest that humoral and 
cell-mediated responses to EBV modulate risk of 
EBV-associated cHL.  Levin and colleagues 
examined anti-EBV antibody profiles in serum 
samples from military personnel (mainly young 
men) that had been collected several years before 
the diagnosis of cHL [97]. Individuals who sub-
sequently developed EBV-positive, but not EBV-
negative, cHL were more likely to have elevated 

1 2

3

4

Incidence

Age (years)

10 25 50

Fig. 2.3  The four-disease model of classic Hodgkin lym-
phoma. This model divides classic Hodgkin lymphoma 
into four subgroups based on EBV tumor status, age at 
diagnosis, and age at EBV infection. Three groups of 
EBV-associated disease are recognized: (1) a childhood 
disease, usually occurring below the age of 10  years, 
which is commoner in developing countries; (2) a disease, 
most commonly seen in young adults, which occurs fol-
lowing infectious mononucleosis; and (3) a disease asso-
ciated with poor control of EBV infection, which is 

typified by the older adult cases but can occur at other 
ages, particularly in the context of immunosuppression. 
(4) Superimposed on these is a single group of EBV-
negative classic Hodgkin lymphoma cases, which account 
for the young adult age-specific incidence peak seen in 
industrialized countries. The relative incidence of each of 
these four disease subgroups will determine the overall 
shape of the age-specific incidence curve in any geograph-
ical locale
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antibody titers to EBV viral capsid and early anti-
gens and an anti-EBNA-1/anti-EBNA2 antibody 
ratio ≤1.0 when compared to controls. Decreased 
anti-EBNA-1/anti-EBNA2 antibody ratios have 
been previously associated with EBV-associated 
cHL [98], and it has been suggested that a 
ratio ≤ 1.0, which persists for more than 2 years 
after infectious mononucleosis, indicates defec-
tive control of persistent EBV infection [99]. 
Variations in EBNA-1 titer are significantly asso-
ciated with polymorphisms in the human leuko-
cyte antigen (HLA) region [100], suggesting that 
titers may, in part, be genetically determined and 
relate to the findings described below.

Data from HLA association studies and 
genome-wide association studies (GWAS) show 
clear associations between cHL risk and both 
HLA alleles and single nucleotide polymor-
phisms (SNPs) in this region. Although some 
SNPs appear to be associated with all cHL, inde-
pendent of EBV status, most HLA associations 
differ between EBV-positive and EBV-negative 
subgroups [101–108]. Both HLA class I and II 
alleles are associated with EBV-positive cHL, 
whereas EBV-negative cHL is largely associated 
with class II alleles [102, 103, 105, 107]. Since 
class I and II alleles present peptides from 

pathogens to CD8- and CD4-positive T-cells, 
respectively, this suggests that genetically deter-
mined differences in the cell-mediated response 
to EBV influence disease risk. HLA-A∗01 is 
associated with an increased risk of EBV-
associated cHL, whereas HLA-A∗02, specifi-
cally A∗02:01, is associated with decreased risk 
[102, 103]. Associations with these alleles are 
independent, i.e., the increased risk associated 
with A∗01 is not simply due to lack of A∗02, and 
effects are dependent on the copy number of 
each of the alleles [103] (Fig. 2.4). As a result, 
there is an almost tenfold variation in odds of 
EBV-associated cHL between HLA-A∗01 
homozygotes and HLA-A∗02 homozygotes 
[103]. More recent data suggest that B∗37:01 is 
also associated with an increased risk of EBV-
positive cHL [105, 107]. Class II alleles have 
been less extensively studied, but Huang et  al. 
reported an increased frequency of DR10 alleles 
in patients with EBV-positive cHL compared to 
controls, and we have detected protective effects 
of DRB1∗15:01 and DPB1∗01:01 [105, 107]. In 
addition, the SNP rs6457715, which is located 
close to the HLA-DPB1 gene, is strongly associ-
ated with EBV-positive but not EBV-negative 
cHL [108].

0 2 4

Odds Ratio

Sex

Age group

A*01:01 add

A*02:01 add

A*02:01 x IM interaction

IM

6 8

Fig. 2.4  Risk factors for EBV-associated classic Hodgkin 
lymphoma in adults. Forest plot showing odds ratios and 
95% confidence intervals for development of EBV-
associated Hodgkin lymphoma from a case series analysis 
of HLA and non-HLA risk factors [103]. Increased risk is 
associated with male sex, older age (age ≥50 years versus 

15–34 years), possession of HLA-A∗01:01 alleles (add, 
additive effect), and prior history of infectious mononu-
cleosis (IM). Possession of HLA-A∗02:01 alleles is asso-
ciated with decreased risk, and abrogation of the increased 
risk associated with IM
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Cytotoxic T-cell responses, restricted through 
HLA class I, are critical for the control of EBV 
infection, and A∗02 is known to present a wide 
range of peptides derived from EBV lytic and 
latent antigens, including those expressed by 
HRS cells [23, 24]. In contrast, there are no 
well-characterized A∗01-restricted EBV epit-
opes [24], and EBV-specific T-cell responses 
restricted through A∗01:01 have not been 
described [109]. The observed associations with 
HLA-A, therefore, seem biologically plausible. 
However, HLA-A∗01 is in strong linkage dis-
equilibrium with HLA-B∗08, which is associ-
ated with immunodominant EBV-specific 
cytotoxic T-cell responses, and yet there is no 
protective effect associated with this allele 
[107]. The biological basis underlying associa-
tions between HLA alleles and EBV-associated 
cHL is therefore not clear. Further work is also 
necessary to determine whether the critical 
HLA-A-restricted cell-mediated immune 
responses are directed toward EBV-infected 
HRS cells or whether it is the control of persis-
tent EBV infection, i.e., the host-virus equilib-
rium, which is all-important. The increased risk 
associated with individual class I alleles favors 
the idea that failure to respond to a particular 
protein, or very restricted group of proteins, 
determines risk; this focusses attention on EBV 
proteins expressed by HRS cells. Consistent 
with this, no EBNA1, LMP1, or LMP2 epitopes 
restricted by B∗37:01 have been identified 
although a B∗37:01-restricted EBNA3C epitope 
has been described [24].

As mentioned above, prior infectious mono-
nucleosis has been associated with an increased 
risk of EBV-positive cHL [91–93, 110]. 
Infectious mononucleosis has also been associ-
ated with the same genotypic markers (micro-
satellites and SNPs) in the HLA class I region as 
EBV-positive cHL, albeit with lesser statistical 
significance [111]. These data raised the possi-
bility that the association between infectious 
mononucleosis and EBV-associated cHL 
resulted from shared genetic susceptibility. 
However, HLA-A typing of over 700 cHL cases 
with available self-reported history of infectious 

mononucleosis revealed that prior infectious 
mononucleosis was independently associated 
with EBV-associated cHL after adjusting for the 
effects of HLA-A alleles [103]. In addition, a 
statistically significant interaction between prior 
infectious mononucleosis and HLA-A∗02 was 
detected; the effect of this was to abrogate the 
increased risk of EBV-associated cHL following 
infectious mononucleosis in HLA-A∗02-
positive individuals [103]. These results suggest 
that the increased risk of EBV-associated cHL 
following infectious mononucleosis is modified 
by the EBV-specific cytotoxic T-cell response 
restricted through HLA-A∗02. Thus, it is possi-
ble that different HLA alleles exert their effects 
at different stages in the natural history of EBV-
associated cHL.

Associations with childhood cHL and infec-
tious mononucleosis suggest that there is a win-
dow of time following primary EBV infection 
when there is an increased risk of EBV-
associated cHL and that genetic factors, specifi-
cally HLA-A genotype, modify this risk. 
EBV-associated cHL patients have higher num-
bers of EBV-infected cells than patients with 
EBV-negative disease [112], and infectious 
mononucleosis patients have very high numbers 
of circulating EBV-infected B-cells, which 
decrease over time [113]. The number of EBV-
infected cells carried by an individual is there-
fore likely to influence the risk of EBV-associated 
cHL. It may, therefore, be possible to decrease 
the risk of EBV-positive cHL by EBV vaccina-
tion, even in the absence of sterilizing immunity 
[114], or by treatment of infectious mononucle-
osis with antiviral agents.

2.2.3	 �Epstein-Barr Virus 
and Hodgkin Lymphoma: 
A Causative Association?

In the absence of good animal models and the 
ability to prevent EBV infection, it is difficult to 
prove that the association between EBV and 
cHL is causal; however, consideration of the 
viral, molecular, and epidemiological data pro-
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vides support for this idea. (1) The EBV infec-
tion in EBV-positive cHL tumors is clonal 
indicating that all the tumor cells are derived 
from a single EBV-infected cell. (2) In EBV-
associated cases, all HRS cells are infected by 
the virus. Although EBNA1 facilitates both syn-
chronous replication of the viral episome with 
cellular DNA and genome partitioning, this pro-
cess is not 100% efficient [56]. If the virus were 
not required for maintenance of the transformed 
phenotype, a gradual loss of viral genomes from 
the tumor cells would be anticipated. (3) EBV is 
present in the tumor cells of a significant pro-
portion of cHL cases. Although most adults are 
infected by EBV, only 1–50 per million B-cells 
are EBV-infected in healthy individuals [115]. 
If EBV were simply a passenger virus, i.e., pres-
ent in a B-cell that was subsequently trans-
formed by other mechanisms, EBV-associated 
cHL would be a rare occurrence. (4) LMP1 and 
LMP2A have plausible biological functions in 
the pathogenesis of cHL, as described above. (5) 
Crippling mutations of immunoglobulin genes 
have been described in a quarter of cHL cases, 
and almost all of these cases are EBV-associated 
[116]. This is consistent with the idea that EBV 
rescues HRS cells (or precursors) that have 
destructive mutations of their immunoglobulin 
genes from apoptosis. (6) Recent studies show 
that EBV-positive cHL has significantly fewer 
cellular mutations, including chromosomal 
breakpoints and aneuploid autosomes than 
EBV-negative cHL [117, 118]. Deleterious 
mutations of the TNFAIP3 and NFKBIA genes, 
which are both negative regulators of NF-κB 
signaling, are also much more frequent in HRS 
cells from EBV-negative cases (see Chap. 3) 
[119–123]. (7) EBV-associated cHL cases share 
genetic risk factors for disease development, 
which are generally distinct from those associ-
ated with EBV-negative cHL [101–105, 107, 
108, 124, 125]. (8) In some cases, the develop-
ment of EBV-associated cHL is temporally 
related to primary EBV infection [92, 93, 95]. 
(9) Individuals who subsequently develop EBV-
associated cHL have abnormal EBV antibody 
profiles before diagnosis [97].

2.2.4	 �Epstein-Barr Virus 
and the Clinicopathological 
Features of Hodgkin 
Lymphoma

Although the above data indicate that EBV-
positive and EBV-negative cHL have distinct 
natural histories, the phenotypic expression of 
both processes appears remarkably similar. Gene 
expression profiling of HRS cells suggests that 
EBV has only a small influence on the transcrip-
tion profile of established HRS cells [126]. 
However, EBV status does show clear associa-
tions with histological subtype. In a meta-analysis 
of published studies of EBV and cHL, Lee et al. 
reported that 66% of MCHL cases are EBV-
associated, compared to 29% of NSHL cases 
[86]. Despite this difference, it is clear that “barn 
door” NSHL cases can be EBV-positive, and so 
the lack of a complete correlation between histo-
logical subtype and EBV status is not simply due 
to the criteria used in, and subjective nature of, 
histological subtyping. In industrialized coun-
tries, NSHL is much more common than MCHL, 
and in our experience, the majority (just) of EBV-
positive cases in the UK are, in fact, NSHL and 
not MCHL.

Early studies investigating clinical outcome in 
relation to EBV status in cHL appeared conflict-
ing, and the meta-analysis performed by Lee et al., 
which was not able to stratify patients by age, did 
not find any associations with survival. However, a 
consistent picture has emerged from population-
based studies with age stratification of patients 
[127–130]. In young adult patients, there appears 
to be no significant difference in overall survival 
by EBV status. In contrast, EBV positivity is asso-
ciated with inferior outcome among patients aged 
50 years and over. It is not clear whether this dif-
ference is related to the disease process itself or 
whether it reflects an underlying comorbidity or 
immune dysregulation that potentially predisposes 
to EBV-associated cHL.  EBV status is not rou-
tinely used in therapeutic decisions, but it is pos-
sible that this group of patients would benefit from 
alternative treatments, such as third-party cyto-
toxic lymphocyte infusions or novel therapies tar-
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geting EBV.  Biomarker levels may also vary by 
EBV status; for instance, CCL17 (TARC) levels 
are lower in patients with EBV-associated cHL, 
but monitoring of plasma EBV levels (a form of 
circulating tumor DNA) can be used to assess 
treatment response and detect relapse in these 
patients [131, 132]. Further studies investigating 
these issues are required.

2.3	 �Epstein-Barr Virus-Negative 
Hodgkin Lymphoma Cases

Adolescent and young adult cHL cases are the 
group least likely to be associated with EBV, 
and yet it is for these cases that there is most 
epidemiological evidence suggesting viral 
involvement. Early studies reported consistent 
associations between young adult HL and cor-
relates of a high standard of living in early 
childhood [133]. Many of these associations 
with social class variables have not been 
detected in recent studies, most probably reflect-
ing societal changes; however, an increased risk 
of young adult HL in individuals with less than 
1  year of preschool attendance has been 
observed [6, 93]. Collectively, the data suggest 
that diminished social contact in early child-
hood is associated with an increased risk of this 
disease. Interview and questionnaire data gener-
ally support the idea that young adult HL 
patients have experienced fewer common infec-
tions in childhood [91, 134]. This has led to 
speculation that young adult HL is associated 
with delayed exposure to one or more common 
childhood infections.

A frequent suggestion is that EBV is involved 
in all cases of cHL but uses a hit-and-run mecha-
nism in “EBV-negative” cases. This possibility is 
very difficult to exclude, but the available data 
indicate that it cannot account for all “EBV-
negative” cases. Importantly, not all cases are 
EBV-infected [98, 135]; in fact, we found that 
EBV-negative cHL cases in the 15- to 24-year 
age group were more likely to be EBV-
seronegative than age-matched controls [135]. 
Also, there is no evidence for integration of 

incomplete EBV genomes in “EBV-negative” 
cHL biopsies [135, 136].

Alternative hypotheses are that lack of expo-
sure to pathogens in early life shapes the microbi-
ome and immune defenses, leading to an 
increased risk of developing cHL in young adult-
hood [137], or that EBV-negative cHL is associ-
ated with delayed exposure to another common 
virus that is directly involved in disease patho-
genesis. Candidate viruses that are common and 
have transforming potential include herpesvi-
ruses and polyomaviruses. Any virus with a direct 
transforming role would be expected to be pres-
ent in all HRS cells within tumors.

2.3.1	 �Hodgkin Lymphoma 
and Herpesviruses Other Than 
Epstein-Barr Virus

At present, there are nine known human herpes-
viruses (HHVs), including EBV (officially HHV-
4). All are widespread in distribution, except 
herpes simplex virus 2 (HHV-2) and HHV-8. 
EBV and Kaposi sarcoma herpesvirus (KSHV, 
officially HHV-8) belong to the gammaherpesvi-
rus subfamily of herpesviruses; both infect lym-
phoid cells and are tumor viruses. KSHV causes 
Kaposi sarcoma and rare forms of lymphoma but 
is not associated with cHL [138–141]. There is 
also no evidence of involvement of the alpha-
herpesviruses, herpes simplex virus 1, and vari-
cella zoster virus [140]. In contrast, genomes of 
the betaherpesviruses, human cytomegalovirus, 
HHV-6A, HHV-6B, and HHV-7, have been 
detected in cHL tumors using sensitive molecular 
assays. Schmidt et al. detected human cytomega-
lovirus genomes by PCR in 8/86 HL biopsies 
[139], although smaller case series failed to iden-
tify this virus in tumor samples [140, 142–144]. 
HHV-7 has been detected in 20–68% of HL biop-
sies by PCR [139, 140, 144, 145]. However, neg-
ative results were obtained using Southern blot 
analysis, which is much less sensitive than PCR 
but would be expected to detect a virus present in 
all HRS cells [146], and there is no evidence that 
the virus is present in HRS cells [145]. There is, 
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therefore, no evidence for direct involvement of 
HHV-7 in cHL pathogenesis.

HHV-6 deserves special mention because this 
lymphotropic virus has been consistently linked 
with cHL. HHV-6 is now classified as two dis-
tinct viruses, HHV-6A and HHV-6B [147], rather 
than two variants, but until recently many studies 
have not distinguished between the two viruses. 
Serological studies have shown that HHV-6 anti-
body titers and, in some studies, seroprevalence 
are higher in HL cases than controls [148–150]. 
We also found that young adults with non-EBV-
associated HL had higher titers of HHV-6 anti-
bodies than age-matched cases with 
EBV-associated disease (unpublished results). 
HHV-7 antibody titers were similar in the two 
groups of cases suggesting a specific association 
between HHV-6 and cHL.

HHV-6 genomes have been consistently 
detected in HL biopsies using PCR although 
detection rates range from 8% to 79% [139, 140, 
144, 150–155], and some studies have reported 
similar detection rates in reactive lymph nodes 
[144, 152]. Differences in PCR assay sensitivity 
and the amount of DNA assayed most probably 
account for the differences in detection rate since 
viral genome copy numbers within biopsies are 
often low. Up to 87% of NSHL cases have been 
reported to be HHV-6-positive [155, 156], but it 
is clear that these PCR-positive cases include 
both EBV-associated and EBV-non-associated 
cases [140, 152, 155, 156]. Both HHV-6A and B 
have been detected within biopsies with four 
studies showing a clear bias toward HHV-6B 
[140, 151, 152, 155], one detecting a higher pro-
portion of HHV-6A-positive tumors [139], and 
one detecting HHV-6A and B as well as dual 
infections [156]. The low viral genome copy in 
many tumors suggests that the virus cannot be 
present in every HRS cell and raises the suspicion 
that the virus is in cells in the reactive component 
of tumors. Very high viral copy numbers must 
also be interpreted with caution since inherited 
chromosomally integrated HHV-6 (iciHHV-6) is 
transmitted in the germline in around 1% of indi-
viduals and gives rise to high viral loads since 
viral genomes are present in every nucleated cell 

in the body [157–159]. Following exclusion of 
cases with iciHHV-6, studies using the less sensi-
tive technique of Southern blot analysis have 
largely been negative suggesting a low viral copy 
number within tumors [138, 150, 152, 153, 160]. 
In contrast, in EBV-associated cHL, EBV 
genomes are almost always detectable using this 
technique [7, 20, 128]. The critical question is 
whether HHV-6 infects HRS cells and, if so, is 
the virus present in every HRS cell.

Early studies using in situ hybridization and 
IHC reported that the virus was present in cells in 
the tumor microenvironment, either exclusively 
[152, 161] or with occasional positive HRS cells 
[162, 163]. However, two recent studies described 
HHV-6-positive HRS cells [156, 164], and we 
detected HHV-6 transcripts in an RNAseq analy-
sis of HRS cells enriched from an EBV-negative 
cHL biopsy (unpublished data), thus renewing 
interest in cHL and HHV-6. Lacroix et al. made a 
polyclonal antiserum to the DR7 open reading 
frame (ORF) of HHV-6B (designated DR7B) to 
examine the cellular localization of the virus in 
PCR-positive cases [164]. They selected this par-
ticular ORF because the equivalent HHV-6A 
ORF has transforming properties and the trans-
lated protein binds p53 and inhibits p53-activated 
transcription [153, 165]. It is likely that the DR7 
ORF is expressed as the second exon of DR6, a 
larger nuclear protein [166, 167]. Using this anti-
serum, cytoplasmic staining of HRS cells was 
identified in 28/38 PCR-positive biopsies [164]. 
In 17 cases, positive staining was exclusive to 
HRS cells, and in further 17 cases, positive stain-
ing of cells in the microenvironment was noted. 
In 15 of the 38 biopsies, HRS cells were also 
positively stained using an antibody to the HHV-6 
gp116/64/54 glycoprotein. Further analyses sug-
gested that DR7B bound p53, upregulated NF-κB 
p105 and p65 promoters, significantly increased 
NF-κB activation, and induced upregulation of 
Id2. In the second study, Siddon et  al. investi-
gated biopsies from 21 NSHL cases, including 18 
that were HHV-6-positive by PCR, using multi-
ple approaches [156]. In ten cases, staining of 
HRS cells was demonstrated using a commer-
cially available monoclonal antibody raised 
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against virus lysate (Santa Cruz Biotechnology); 
scattered positive HRS cells were also demon-
strated using antibodies to the late viral proteins 
p41 and p98. Laser capture microdissection 
coupled with PCR confirmed the presence of 
HHV-6 DNA in pooled HRS cells from eight of 
the ten IHC-positive biopsies. This study pro-
vides the most convincing evidence to date that 
HHV-6 can infect HRS cells but does not show 
that the virus is present in every HRS cell. 
Furthermore, the IHC staining pattern suggests 
lytic replication (or abortive replication) rather 
than latent infection, and so the outcome of viral 
infection in these cells is not clear.

As mentioned above, some individuals 
inherit HHV-6 in the germline [157, 159]. The 
first study to demonstrate chromosomally inte-
grated HHV-6 investigated three patients with 
high viral loads in peripheral blood, including 
one with cHL [168, 169]. To determine whether 
iciHHV-6 is associated with cHL, we examined 
936 cHL cases and 563 controls but found no 
evidence that iciHHV-6 was overrepresented 
among cases [170].

Overall, the data do not support the idea that 
HHV-6 has a direct role in disease pathogenesis. 
However, it is possible that HHV-6 is frequently 
reactivated in cHL tumors. CD134 is the cellular 
receptor for HHV-6B [171], and it is possible that 
CD134-positive T-cells in the cHL microenviron-
ment [74] facilitate replication of HHV-6B. Robust 
in situ hybridization assays for HHV-6 are 
required to confidently rule out a direct role in 
cHL.

To search for novel members of the herpesvi-
rus family, we and others have designed degen-
erate PCR assays which amplify herpesvirus 
polymerase and glycoprotein B gene sequences 
[140, 172]. The primer sequences in degenerate 
assays are derived from well-conserved peptide 
motifs in amino acid sequences of proteins; 
therefore, these assays should have the ability to 
detect genomes from known and currently 
unknown viruses [173]. Using herpesvirus poly-
merase assays, we have not detected novel her-
pesviruses in cHL biopsies although the assays 
had sufficient sensitivity to detect EBV in EBV-

associated cases, as well as low-level HHV-6 
and HHV-7 infection [140] (and unpublished 
results).

2.3.2	 �Polyomaviruses and Hodgkin 
Lymphoma

There are now (at least) 14 human polyomavi-
ruses (HPyVs) [174–178]. JCV and BKV were 
discovered over 40 years ago, but the others have 
all been discovered since 2007 with the advent 
of modern molecular techniques for virus dis-
covery. Seroprevalence studies suggest that the 
majority of adults are infected by BKPyV, 
KIPyV, WUPyV, MCPyV, HPyV6 and 7, and 
TSPyV and a significant minority by JCPyV, 
HPyV9, and HPyV12 [176, 179–181]. Among 
this expanding list of HPyVs, only JCPyV, 
BKPyV, TSPyV (associated with trichodysplasia 
spinulosa in immunosuppressed persons), and 
MCPyV show clear disease associations. 
MCPyV is associated with Merkel cell carci-
noma and has been categorized by IARC as a 
group2A carcinogen (probably carcinogenic to 
humans) [175, 182, 183]. It is the only HPyV to 
be unambiguously linked with a specific malig-
nancy; however, other polyomaviruses have 
oncogenic potential.

Several laboratories have looked for evidence 
of HPyV genomes in cHL biopsies. Using sensi-
tive quantitative PCR assays, we found no evi-
dence of JCV or BKV genomes in 35 cHL 
biopsies [184]. Hernandez-Losa et  al. detected 
JCV in 1/20 and BKV in 2/20 cHL samples using 
a multiplex, nested PCR [144]. Robles et  al. 
reported that MCPyV seroprevalence was slightly 
higher in HL cases than controls, 84.4% com-
pared to 81.2%, but differences were not statisti-
cally significant [185]. Two quantitative PCR 
studies detected MCPyV genomes in a small pro-
portion (1/30 and 3/41) of cHL tumors [186, 
187]; viral copy numbers were low making it 
extremely unlikely that this virus is playing any 
role in disease pathogenesis. To date, there have 
been no reports on the prevalence of the more 
recently identified viruses in cHL.
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Degenerate PCR assays have also been applied 
to the study of PyVs and HL [184, 187]. Volter 
et al. examined five cases of HL using a degener-
ate PCR assay based on the viral VP1 protein but 
did not detect any evidence of polyomavirus infec-
tion [187]. We examined 35 cases of cHL, includ-
ing 23 EBV-negative cases, using 3 degenerate 
PyV assays based on the large T antigen, and also 
obtained negative results [184]. The latter assays 
were designed before 2006 and therefore before 
most HPyVs were discovered. Alignment of large 
T antigen amino acid sequences from the recently 
identified viruses suggests that our assays would 
be able to detect KIPyV, WUPyV, TSPyV, and 
HPyV9 and 10 but not MCPyV, HPyV6, and 
HPyV7; however, given the tropism of the latter 
viruses for skin, it is unlikely that they are involved 
in cHL [176]. Overall, these results provide no evi-
dence for HPyV involvement in the pathogenesis 
of cHL, but it remains possible that an unknown 
HPyV has escaped detection.

2.3.3	 �Measles Virus and Hodgkin 
Lymphoma

In 2003, Benharroch and colleagues reported an 
association between measles virus (MV) and cHL 
[188]. They subsequently reported that MV pro-
teins were detectable by IHC in HRS cells from 
most HL cases [189]. MV RNA was also detected 
by RT-PCR and in situ hybridization in a signifi-
cant minority of the cases examined [189]. 
Subsequent studies have failed to confirm these 
associations [190, 191]. Our group found no evi-
dence of MV in 97 cHL cases examined by IHC 
and 20 cHL cases investigated using RT-PCR 
[191]. Similarly, Maggio et al. found no evidence 
of MV genomes or transcripts in HRS cells micro-
dissected from biopsies from 18 German and 17 
Israeli HL cases [190]; the latter cases had previ-
ously scored positive for MV antigens [190]. 
Epidemiological studies have also failed to show 
that MV infection is a risk factor for the develop-
ment of cHL; on the contrary, the data suggest a 
mild protective effect of prior MV infection [91, 
134, 192].

2.3.4	 �The Virome, Anelloviruses, 
and Hodgkin Lymphoma

It is now recognized that the microbiome, which is 
thought to play an important role in shaping the 
immune system, includes a large number of viral 
species (the virome). Anelloviruses account for 
around 70% of these viruses [193]. The anellovi-
rus family includes a large number of genetically 
diverse viruses with small, circular, single-stranded 
DNA genomes, which are classified in the Torque 
teno virus (TTV), Torque teno midi virus 
(TTMDV), and Torque teno mini virus (TTMV) 
genera in humans. They are widely distributed, 
acquired early in life, and establish persistent 
infections, but have not yet been associated with 
any disease; however, it has been suggested that 
they can modulate both innate and adaptive 
immune responses [194]. In 2004, Jelcic et  al. 
reported the isolation of 24 novel TTVs from a 
spleen of an HL patient [195]. This led zur Hausen 
and de Villiers to suggest that TTVs could play a 
role in the development of leukemias and lympho-
mas that are associated with a “protected child-
hood environment” [196]. In their model, they 
postulated that TTVs and related anelloviruses 
increase the risk of chromosomal abnormalities 
and that anellovirus load is increased in individu-
als who have experienced fewer infections [196]. 
Increased TTV loads could also contribute to cHL 
through modulation of immune defenses. TTVs 
have also been identified in cHL tumor biopsies by 
other groups [197, 198], but these studies detected 
TTVs at a similar frequency in other lymphomas 
[197] and reactive nodes [198]. In a recent metage-
nomic analysis, Pan et al. analyzed the virome in 
blood samples from 19 HL patients, 252 non-
Hodgkin lymphoma patients, and 40 healthy con-
trols from China [199]. Eleven novel, but closely 
related, TTMVs were identified in three of the HL 
patients but not in the other patients or controls. 
The significance of these findings is currently 
unclear. Further investigation of the virome in both 
cHL patients and individuals with lack of social 
contact in early childhood is required to under-
stand the potential contribution of anelloviruses, 
the virome, and the microbiome to the risk of cHL.
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2.4	 �Conclusions

While the evidence suggesting a causal relation-
ship between EBV and a proportion of cHL cases 
appears strong, current data do not show a consis-
tent and specific association between any virus 
and EBV-negative cHL.  This does not exclude 
viral involvement since the difficulty of obtaining 
large numbers of highly enriched HRS cells has 
precluded the use of certain techniques, such as 
representational difference analysis, in the analy-
sis of cHL [137]. Next-generation sequencing 
methods have opened new avenues for virus dis-
covery and have led to the identification of 
numerous novel viruses in the last few years 
[139, 140, 156]. These techniques provide our 
best hope of discovering a new virus in EBV-
negative HRS cells. It is possible that cellular 
mutations substitute for the functions of EBV 
genes in EBV-negative HRS cells [126]. 
Deleterious mutations of inhibitors of the NF-κB 
pathway, including genes encoding A20 and 
IκBα, appear to be present in the HRS cells of 
many cases of EBV-negative cHL (see Chap. 3) 
[90–94], and it is possible that these mutations 
substitute for LMP1. However, there is no obvi-
ous link between these mutations and the epide-
miological features of cHL, and involvement of 
another virus(es) with either a direct or indirect 
role still appears attractive. Understanding the 
role of viruses in EBV-negative cHL could poten-
tially open up possibilities for disease prevention 
as well as novel therapeutic targets and is a goal 
worth pursuing.
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