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14.1	 �Treatment Choices 
and Individualized Care

Hodgkin lymphoma (HL) is one of the best cur-
able cancers, particularly when presenting as 
early-stage disease [1–3]. Although outcomes 
differ by age, cure rates exceed 80–85% across 
most stages and ages. Despite these overall excel-
lent outcomes, there is no clear consensus regard-
ing treatment recommendations across age 
groups, and individual patients, with regard to 
several treatment options, including which che-
motherapy regimen to use, the optimal number of 
chemotherapy cycles, and the role of sequential 
adjunctive radiation therapy (RT) [1, 2, 4–13]. 
Furthermore, choices and debate over therapeutic 
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options have further expanded to include if and 
how to integrate and use early/interim positron 
emission tomography (PET) therapy to guide 
treatment (i.e., response-adapted therapy), as 
well as the optimum integration of novel thera-
peutics into frontline therapy [6, 14–17].

14.2	 �Treatment-Related Late 
Effects and Associated 
Human Cost

Critically, because the majority of newly diag-
nosed HL patients are young (median age 35 
years) [18], curing disease can come at consider-
able “human cost,” including treatment-related 
toxicities and late effects (LE) (e.g., secondary 
malignant neoplasms [SMN], cardiovascular dis-
ease [CVD]) and potential loss of young lives. 
The incidence of CVD and SMN rises exponen-
tially >20–30 years after treatment. Results from 
analyses led by Dutch investigators and others 
have shown that the risk of SMNs do not appear 
to differ or be significantly lower over consecu-
tive time periods [19–21]. Both Ng et al. [15] and 
Castellino et al. [18] have highlighted increased 
mortality among long-term HL survivors, 
although both of these studies reflect the impact 
of historical treatment approaches, including 
extended field radiotherapy.

Additionally, cost-per-death analyses also 
have shown that HL has the second highest cost 
per death or lost productivity cost, behind only 
malignant melanoma [22]. Further, productivity 
analyses of cancer mortality have shown HL to 
be the second most costly cancer in terms of lost 
lifetime earnings [23]. In addition to economic 
consequences, HL survivors also experience sig-
nificantly compromised health-related quality of 
life (HRQL) due to LEs [24].

14.3	 �Risk, Impact, and Variability 
of Treatment-Related Late 
Effects

The risk of SMN depends on many clinical factors 
(e.g., age at exposure, sex, stage) as well as several 
treatment-related factors (e.g., chemotherapy [type 

and number of cycles] and RT [dose and field]). A 
recent Dutch analysis highlighted the impact of 
radiation dose and field, sex, and smoking on the 
risk of breast, lung, and other cancers [19]. Studies 
have investigated the impact of age and sex on the 
development of solid cancers after treatment for 
HL [25] and the impact of sex and type of treat-
ment (i.e., anthracycline chemotherapy ± radia-
tion) on the incidence of major cardiac disease [26, 
27]. However, it is not possible to use current pop-
ulation-level findings to reliably predict outcomes 
of alternative therapies for specific, individual 
patients and hence contribute to fully informed 
decision-making.

14.4	 �Paucity of Harmonized Data 
to Guide Providers 
and Patients Towards 
Individualized Treatment 
Choices

Helping clinicians assess and navigate alterna-
tive HL treatment options for individual patients 
poses substantial challenges. First, ideal infor-
mation is not available. Often, empirical data 
for contemporary therapies is limited to rela-
tively short-term follow-up with differences in 
initial risk and response criteria driving therapy 
and limited information about the risk and 
severity of treatment-related LEs. While follow-
up data from previous treatment eras offer 
insights [28], treatment changes and improve-
ments over time limit the relevance of existing 
information. Second, the benefits and risks of 
different therapies depend in part on individual 
characteristics, such as patient age and sex, 
among other factors. A recent HL position paper 
by Travis and Ng et al. recommended develop-
ment of comprehensive risk prediction models 
for LEs to customize treatment strategies [29].

There is a need to harmonize individual patient 
data across age groups from recent trials and 
existing datasets while establishing a data reposi-
tory that facilitates incorporation of future data. 
The past 15 years have seen publications of sev-
eral clinical trials involving many pediatric and 
adult HL patients with early-stage and advanced-
stage disease [3, 30]. However, each study exam-
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ined a slightly different HL question and most 
used different treatments. The result was a range 
of distinct findings and hence a wide range of 
therapeutic choices (Table 14.1).

Over the past 10 years, most HL studies world-
wide have integrated PET-response-adapted 
designs, an approach that directs the type and/or 
amount of therapy based on PET scan results (posi-
tive vs. negative) early during the patient’s treat-
ment course, usually after two chemotherapy 
cycles [16, 33]. These PET-response-adapted data 
have significantly expanded the range of treatments 
that providers and patients must consider in assess-
ing treatment options for individual HL patients.

Taken together, there remains a multitude of 
unanswered questions, especially for individual 
HL patients, as exemplified by the index case 
example above, including: (1) What is the effi-
cacy of alternative treatments, and how do indi-
vidual patient and disease characteristics 
influence efficacy? (2) What is the HRQL impact 
of each treatment option? (3) What are the inci-
dence and severity of LEs (absolute risk for dif-
ferent SMNs and/or CVD), and how do these 
outcomes depend on treatment, individual 
patient characteristics, and disease characteris-

tics? (4) How does “real-world” HL data inform 
treatment decisions in light of patient 
preferences?

14.5	 �Disease Classification 
and Prognostication

In adults, “early-stage” HL is often subdivided 
into two categories designated “favorable” and 
“unfavorable,” with the distinction made on the 
basis of clinical factors and blood test results [3]. 
However, there are several different classifications 
that have been developed and studied over the past 
20 years in prospective HL clinical studies. The 
criteria used by the German Hodgkin Study Group 
(GHSG) and the European Organization for 
Research and Treatment of Cancer (EORTC) dif-
fer with regard to several factors, such as number 
of nodal groups. Furthermore, the “nodal maps” 
differ, reflecting differences between GHSG and 
EORTC clinical studies [14, 15, 34, 35]. In addi-
tion, clinical studies conducted in North America 
have utilized different criteria to delineate early-
stage disease, and some HL clinical trials have not 
separated early-stage patients into different groups 
[4, 5]. These staging definition differences can 
influence the treatment patients receive and their 
outcomes. Advanced disease has generally been 
classified as Ann Arbor stage III and IV, but clini-
cal trials have often included patients with high-
risk stage II disease, such as those with 
B-symptoms, involvement at multiple sites, and/or 
bulky disease. The inclusion criteria have often 
varied on a study-by-study basis, leading to sub-
stantial patient heterogeneity across HL studies.

Pediatric oncology research groups in the 
United States and across the world have used dif-
ferent criteria than adult groups use to categorize 
HL patients [10, 36]. While both pediatric and 
adult groups rely on the Ann Arbor classification 
system for staging, risk stratification has varied 
within these risk groups. For example, some adult 
studies classify patients with stage IIB disease 
with bulk as having early-stage disease, while 
pediatric trials currently designate patients as hav-
ing advanced-stage disease based on inferior out-
comes. Similarly, application of adult criteria 
would classify pediatric patients with stage IIIA 
disease as having advanced disease even though 

Table 14.1  HL case example

A 29-year-old female presents with increasing size 
and number of lymph nodes and fatigue. Biopsy shows 
nodular sclerosis HL. PET staging shows non-bulky 
disease in right neck/supraclavicular, right hilum, and 
bilateral axillary (i.e., stage IIA unfavorable). Past 
family history includes father with myocardial 
infarction at age 50.
Based on HL clinical study results, multiple valid 
alternative treatment options exist for this common 
case presentation, including:
– � ABVD × 4–6 cycles (dependent on CT response) 

without RT (NCI-C) [4, 5]
– � ABVD × 3 with PET-based decision on RT  

(i.e., none for CR) (RAPID) [6]
– � ABVD × 4 cycles + RT based on PET (with 

escalation to escalated BEACOPP for PET-2 
positivity) (EORTC H10) [14, 15]

– � 2 ABVD + 2 escalated BEACOPP + RT (GHSG 
HD14) [15]

– � ABVD × 2 with PET-2 and then ABVD × 2 (PET 
negative) and BEACOPP × 2 (PET positive) 
CALGB 50604 [31]

– � 2 ABVD with PET-2 and then AVD × 6 (PET 
negative) or BEACOPP × 6 (PET positive)  
RATHL [32]
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these patients have had superior outcomes com-
pared to other pediatric subgroups (e.g., stage IIIB, 
IVA, IVB). Some pediatric trials do not include 
these patients in advanced-stage studies, but, 
rather, designate them to be at “intermediate” risk.

Prognosis in adult advanced-stage HL as 
defined by the International Prognostic Index 
(IPS) in 1998 includes measurements of albumin, 
hemoglobin, sex, ages >45 years, stage IV, and the 
presence of leukocytosis or lymphocytosis [37]. 
HL patients with higher IPS scores had inferior 
treatment outcomes and were thus identified as 
potentially requiring more intensive therapy. The 
British Columbia Cancer Agency (BCCA) con-
ducted an updated analysis of the IPS that showed 
that the utility of the IPS was altered [38]. In this 
analysis, the 5-year freedom from progression 
(FFP) ranged from 62% to 88% and 5-year OS 
ranged from 67% to 98% with a much narrower 
range of outcomes for patients ages <65 years 
(FFP ranging from 70% to 88% and 5-year OS 
ranging from 73% to 98%). Furthermore, in a 
multivariate regression analysis, which controlled 
for all IPS factors, only age and hemoglobin level 
retained independent significance.

Notably, no new and more comprehensive prog-
nostic models have been developed for HL (early 
stage or advanced stage) in more than 20 years. 
Because age is an integral component of the origi-
nal IPS, attempts have been made to develop and 
validate a child-specific prognostic score, known as 
CHIPS (Childhood Hodgkin International 
Prognostic Score) [39]. The original testing found 
that several factors were independent predictors of 
event-free survival (EFS), including stage IV, large 
mediastinal mass, low albumin, and fever. Further 
validation in other cohorts of children and adoles-
cents with advanced disease is underway.

14.6	 �Simulation Modeling

Statistical and simulation modeling offers a rig-
orous approach to systematically and explicitly 
incorporate assumptions and information based 
on multiple data sources to explore how alterna-
tive treatments affect outcomes of interest, 
including LEs, survival, and quality-adjusted sur-
vival. Collectively, harmonization of independent 
patient data from large, international prospective 

studies and prominent cancer registries, along 
with development of common data standards, 
will establish robust “patient-specific” disease 
progression and LE probabilities that may be har-
nessed for dynamic decision-making tools with 
the expectation of ultimately improving out-
comes across pediatric and adult HL.

Decision models have proved useful in con-
nection with other diseases when treatment 
options involve trade-offs, and the risks and ben-
efits can vary substantially, depending on patient 
characteristics. Here, we review the models 
developed to evaluate measures to either help 
prevent or treat two conditions: (1) lung cancer 
and (2) diffuse large B-cell lymphoma (DLBCL).

14.6.1	 �Low-Dose CT Scan for Lung 
Cancer

The National Lung Screening Trial (NLST) dem-
onstrated that for patients at high risk for lung 
cancer mortality, low-dose computed tomogra-
phy (LDCT) reduces lung cancer mortality by 20 
percent compared to screening by conventional 
chest X-ray [40]. Cost-effectiveness analysis 
revealed that compared to no screening, LDCT 
accrues 0.02 quality adjusted life years (QALYs) 
per person screened at an incremental cost of 
$1631 [41]. The corresponding cost-effectiveness 
ratio suggesting an outlay of $81,000 per QALY 
gained represents “good value” relative to con-
temporary benchmarks for the United States [42].

Nonetheless, there remains the possibility that 
more narrowly targeted selection of the popula-
tion to be screened would accrue even greater 
benefits and, hence, achieve a more favorable 
cost-effectiveness ratio. Kovalchik et  al. [43] 
reported that after ranking the NLST population 
by estimated lung cancer mortality risk, screening 
prevented one lung cancer death for every 5276 
individuals in the lowest-risk quintile, but that it 
achieved the same benefit for every 161 screened 
among the highest-risk quintile. The risk function 
developed by Kovalchik et al. therefore offers an 
approach for reducing the amount of screening 
needed to achieve the same mortality reduction.

Kumar et al. [44] investigated the efficiency of 
targeting individuals at even higher risk for lung 
cancer mortality than the NLST population as a 
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whole. Using a different risk model than Kovalchik 
et  al., Kumar et  al. reported similar efficiency 
gains for reducing lung cancer mortality. 
Screening top decile individuals yielded a nearly 
eightfold gain in averted deaths per person 
screened, compared to screening of individuals in 
the bottom decile. Assessment using other out-
come measures yielded less impressive efficiency 
gains. For life years gained, the benefit per person 
screened was 3.6 times greater for top mortality 
risk decile individuals, compared to the bottom 
decile. For quality-adjusted life year gains 
(QALYs), the corresponding ratio was 2.4. 
Finally, the cost-effectiveness of screening 
improved across the risk deciles by an even 
smaller relative margin, from $75,000 per QALY 
gained in the lowest-risk decile to $53,000 per 
QALY gained in the highest-risk decile, a ratio of 
approximately 1.4.

The broad range of efficiency gains for differ-
ent outcome measures illustrates both the 
strengths and limitations of risk targeting. When 
the targeting criterion—lung cancer mortality 
risk, in this case—matches the outcome measure, 
targeting vastly improves efficiency. On the other 
hand, when the outcome measure is less tightly 
related to the targeting measure, potential effi-
ciency gains can decrease. Kumar et al. note, for 
example, that in the NLST cohort, higher-risk 
individuals were older, had greater smoking expo-
sure, and were more likely to have a preexisting 
diagnosis of chronic obstructive pulmonary dis-
ease [44]. Because the characteristics making 
these individuals “high risk” also reduce life 
expectancy, targeting is less effective at maximiz-
ing life year gains. Likewise, mortality risk is 
inversely associated with future quality of life and 
positively associated with higher future care costs. 
Those factors further mitigate the efficiency gains 
from mortality risk targeting measured in terms of 
QALY gains and cost-effectiveness.

14.6.2	 �Diffuse Large B-Cell 
Lymphoma (DLBCL)

Because there are multiple treatments for patients 
with DLBCL, and because treatments vary in 
terms of their intensity and side effects, an accu-
rate prognosis is crucial to identifying a course of 

care that appropriately accounts for a patient’s 
risks and benefits.

In recent decades, clinicians have relied on the 
International Prognostic Index (IPI) to character-
ize risk [45]. The IPI produces a risk score rang-
ing from 0 to 5 based on a series of dichotomized 
risk factors, including age (less than 60 vs. 60 or 
older), number of extranodal sites (0–1 vs. 2 or 
more), Ann Arbor stage (I or II vs. III or IV), lac-
tate dehydrogenase levels (not elevated vs. ele-
vated), and Eastern Cooperative Oncology Group 
performance status (2 or less vs. greater than 2). 
Incorporation of additional prognostic character-
istics has improved the prognostic accuracy of 
the IPI, but limitations remain, including the 
dichotomous characterization of inputs and the 
tool’s semi-qualitative characterization of risk 
that does not specify probabilities for key out-
comes such as mortality.

To address these limitations, Biccler et al. [45] 
developed a model to predict overall survival and 
event-free survival as a function of both categori-
cal characteristics (e.g., sex, Ann Arbor stage, 
presence or absence of B symptoms, among oth-
ers) and continuous values (e.g., log leukocyte 
count, hemoglobin level, among others). The pre-
diction reflects a weighted average of statistical 
models, with weights selected to maximize pre-
diction accuracy.

The authors have made the model available on 
the Internet (https://lymphomapredictor.org/). 
The results show overall survival (compared to 
background survival) and event-free survival, 
both of which are projected over a period of five 
years. Because this model incorporates fine-
grained individual characteristics and reports 
outcome probabilities over time, it represents a 
substantial improvement over earlier prognostic 
tools. Nonetheless, it has two key limitations. 
First, its projections are limited to a period of five 
years. That limitation reflects the extent of the 
follow-up in the population data used to build the 
model. Second, the model does not describe how 
alternative treatments influence outcomes. While 
clinicians and patients may infer that higher risks 
warrant more intensive treatment, the model does 
not quantify the resulting trade-offs.

Altogether, trade-offs, in the form of adverse 
events and resource costs, are common. Typically, 
these downside impacts do not depend on the size 
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of the potential benefit. The size of the potential 
benefit, and hence the magnitude of the net ben-
efit, often depends on how big the baseline risk is. 
As a result, targeting individuals at highest risk 
for disease or severe outcomes often increases 
efficiency. The effectiveness of this strategy 
depends on the strength of the association 
between the risk stratification measure and the 
benefit measure. Prognostic risk models can help 
clinicians and patients weigh treatment alterna-
tives, but these models can be limited by their 
time horizon and the extent to which they incor-
porate the impact of alternative therapies.

14.7	 �Decision Models in Hodgkin 
Lymphoma (HL)

Given the varying treatment approaches and 
their trade-offs relative to disease control and 
LE risks and the impact of individual patient 
characteristics, such as gender and age at the 
time of exposure, there has been considerable 
interest in the development of decision models 
for newly diagnosed HL.  Our initial model of 

early-stage HL utilized published, group-level 
data from recent clinical trials to estimate simu-
lated short-term and long-term outcomes [46]. 
We began with the development of a detailed 
disease map (Fig.  14.1), which highlights the 
health states through which a patient can move 
once diagnosed with HL. Based on best avail-
able information, we estimated the probability 
of transitioning from one health state to the next 
and the HRQL of each health state in the form 
of utility weights.

To test the model, we created two hypothetical 
cases that differed with regard to gender, disease 
location, and extent of disease. We then com-
pared the projected outcomes (life expectancy 
and QALYs) for each patient for each of two 
treatment modalities—chemotherapy alone and 
combined modality therapy [46]. Sensitivity 
analyses explored the impact on projected clinical 
outcomes of age at diagnosis and the assumed 
incidence and severity of late effects. The pur-
pose of this initial model was not to identify 
which modality might be definitively superior to 
the other, but, rather, to illustrate that treatment 
recommendations should reflect patient factors, 
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disease characteristics, and the outcome prefer-
ences of the patient and his/her provider.

Decision models such as these can also be 
adapted as new information becomes available. 
For example, consider the use of early PET-based 
response. In the figure below, we have added the 
PET-adapted response as a new health state (that 
is, rapid early response or slow early response) 
(Fig. 14.2). Because addition of this new health 
state requires revision of the probabilities down-
stream, such as risk of relapse, the revised deci-
sion model can be run to estimate updated clinical 
outcomes.

To extend this one step further, one could uti-
lize this type of model as patients transition from 
one phase of care to another, namely, from active 
treatment to active surveillance or active surveil-
lance to survivorship. By incorporating emerging 
information, patients and their providers can 
refine ongoing care needs and clarify areas of 
likely risk and uncertainty.

The development of these types of dynamic 
decision models requires individual patient data 
from large numbers of patients to account for dif-
ferences across patients in terms of their demo-
graphic characteristics and disease factors. 
Moreover, model development depends on iden-
tifying data projecting the impact of contempo-
rary treatment on short- and long-term outcomes, 

including toxicity, death, relapse, and LEs. Data 
must also be updated, as additional information 
becomes available (e.g., from new trials, or from 
further follow-up of existing trials) and as new 
therapies are introduced.

Critical to the implementation and dissemina-
tion of these tools is an understanding of how 
patients, caregivers, and providers would use 
such models in the real world, what concerns 
they have, what kind of decision support they 
need, and what outcomes they are interested in. 
As noted, our first version of the model esti-
mated life expectancy and QALYs, but these out-
comes can be modified to reflect what is salient 
and/or accessible to different stakeholders.

14.8	 �Conclusion

Given the success of frontline treatments and the 
ability to salvage the majority of HL patients 
after disease progression or recurrence, the over-
all survival of HL is high. However, this survival 
comes at a cost to patients in the form of LEs, 
which can alter both the length and quality of sur-
vivorship. To reduce downstream LE risk, modi-
fications have been made in frontline therapy, 
including: changes in indications for radiation, 
reduction in radiation dose and field among those 
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receiving treatment, risk stratification to deter-
mine need for either dose reduction or dose esca-
lation to optimize outcomes, and incorporation of 
novel agents, initially in the salvage setting and 
more recently in frontline therapy.

Through data sharing and international col-
laboration, including across pediatric and adult 
specialties, we can create robust and nimble deci-
sion models to guide our patients and their fami-
lies, alongside their providers, to enhance and 
optimize the difficult decisions that affect acute 
and long-term outcomes.
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