
Using Graph Embedding to Improve
Requirements Traceability Recovery

Shiheng Wang, Tong Li(B) , and Zhen Yang

Beijing University of Technology, Beijing 100124, China
yeweimian21@163.com, {litong,yangzhen}@bjut.edu.cn

Abstract. Information retrieval (IR) is widely used in automatically
requirements traceability recovery. Corresponding approaches are built
based on textual similarity, that is, the higher the similarity, the higher
possibility of artifacts related. A common work of many IR-based tech-
niques is to remove false positive links in the candidate links to achieve
higher accuracy. In fact, traceability links can be recovered by differ-
ent kinds of information, not only the textual information. In our study,
we propose to recover more traceability links by exploring both textual
features and structural information. Specifically, we use combined IR
techniques to process the textual information of the software artifacts,
and extract the structural information from the source code, establish-
ing corresponding code relationship graphs. We then incorporate such
structural information into the traceability recovery analysis by using
graph embedding. The results show that combined IR techniques and
using graph embedding technology to process structural information can
improve the recovery traceability.

Keywords: Requirements traceability recovery · Graph embedding ·
Structural information

1 Introduction

Software projects usually consist of many software artifacts, such as require-
ments documents, source code. The traceability recovery can get the relation-
ships between these artifacts [5]. Traceability links is critical role for software
comprehension. Usually, it need to create and maintain traceability links in whole
software lifecycle. Unfortunately, in most cases, traceability links recovered from
current artifacts. The creation and maintenance of traceability links are primarily
manual. It consume lots of work and easy to make mistake. A completely man-
ual traceability approach is usually only applicable to small projects. Although
many researches attempt to automate the work, it has encountered a lot of diffi-
culties due to the poor accuracy and too many false positives traceability links.
Since most software artifacts contain textual data, many approaches are based
on IR techniques. This kind of approach considered that the artifacts have high
textual similarity are related. The source and target artifacts form candidate
c© Springer Nature Switzerland AG 2019
H. Florez et al. (Eds.): ICAI 2019, CCIS 1051, pp. 533–545, 2019.
https://doi.org/10.1007/978-3-030-32475-9_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32475-9_38&domain=pdf
http://orcid.org/0000-0002-8881-0037
https://doi.org/10.1007/978-3-030-32475-9_38

534 S. Wang et al.

links. The software engineer can discriminate the right or wrong links in the
candidate links [2].

If the word used in the source artifacts are same to the word used in the tar-
get artifacts, IR-based techniques will have a good performance. But researchers
often encounter the lexical mismatches problem due to artifacts developed by
different software engineers. Therefore, IR-based approaches suffer from the lex-
ical mismatches [1]. In addition, some artifacts usually are short, most IR tech-
niques cannot get the suitable similarity values between them. This leads to
many correct links fall to the end of the candidate list. These problems limit the
traceability recovery.

Some approaches [1] focus on lexical transformations to solve problem. While
others utilize different types of information to recover the links between arti-
facts [6], such as structural information of the code.

In our research, we propose to use textual information and structural infor-
mation of software artifacts in combination to enhance the traceability recovery.
We propose to utilize the structural information more effectively by using graph
embedding.

Specifically, the contributions of our research are as follows:

1. Embedding code relationship graph by using the graph embedding technology,
effectively expressing and utilizing the structural information of the code.

2. Analysis and extraction of various structural relationships such as inheritance,
implement, parameters, and return values between the source code.

3. Comprehensive use of textual information and structural information to
enhance the traceability recovery.

The paper is structured as follow. The second part discusses related work.
The third part describes the background information of traceability recovery.
The fourth part describes the approach we proposed. The fifth part describes
the evaluation of the experiment. The sixth part analysis the effectiveness of
the experiment. The seventh part summarizes the paper. The eighth part is
discussion and future work.

2 Related Work

Information retrieval is a widely adopted technology in traceability recovery. [7]
using the IR methods: vector space model (VSM), probabilistic Jensen and Shan-
non (JS) models, and relational topic modeling (RTM). [8] Statistically analy-
sis of widely used IR methods: JS, VSM, Latent Semantic Index (LSI) and
Latent Dirichlet Allocation (LDA). [4] proposes a simple method that only uses
the nouns in the artifacts to improve the accuracy of the traceability recovery
method. [5] proposed an automation technique that using machine learning tech-
niques for LDA. The approach saves traceability links and learns probabilistic
topic model. The learning model achieves semantic classification and visualiza-
tion themes. Although [4–7] continues to improve the IR method and extract

Using Graph Embedding to Improve Requirements Traceability Recovery 535

more semantic information, it is one-sided to focus on textual information only,
and the results in implementation are not ideal.

The structural information between source code is also very useful in trace-
ability recovery. [3] introduced a way for traceability recovery in requirement
document by using textual and structural information. [3] speculated that the
relevant requirements share relevant source code elements. Building Evolving
Interoperation Graph (EIG) using the JRipples [11] structural analysis tool. The
traceability link graph (TLG) is proposed that encodes requirements and source
code into nodes, and edges between nodes are recovery links. [1] proposed to use
the textual information of the verb-object phrase in the requirement and source
comments and the structural information of the source code to perform traceabil-
ity link recovery. They process the natural language text, such as requirements
and code comments, and source code separately. They use WordNet to handle
synonym problems. [2] proposed to use feedback from software engineers to clas-
sify links to enhance the effect structural information. Specifically, they utilize
structural information only when the engineer verifies the traceability link and
classifies it as the correct link. Although the results of [1–3] have improved,
structural information has not been fully explored.

There are other ways to come up. [6] proposed to use code ownership infor-
mation to capture the relationship of source code. [9] proposed a neural network
architecture that uses word embedding and RNN techniques to automatically
generate traceability links. [10] proposed a traceability recovery method called
Trustrace to identify traceability links by building VSM in the CVS/SVN change
log. [12,13] proposed to use closeness analysis of code dependency. These meth-
ods improve the results, but limited.

3 Background

This section outlines the techniques involved in the traceability recovery process.

3.1 IR-Based Traceability Recovery Process

The IR-based traceability recovery firstly indexes the artifacts by extracting
terms from their content. The text normalization phase is required before the
indexing process. The output of the indexing process is an m× n matrix (term-
by-document matrix). The widely used weighted mode is TF-IDF, which places
more emphasis on words appear many times in the document and contain in
minority documents, so it has high discriminative weight.

Engineers can use IR methods to compare artifacts after artifacts are indexed,
and sort the similarities of all artifacts.

3.2 Latent Dirichlet Allocation

LDA is a generative probabilistic model. Each document has multinomial distri-
bution over T topics, and each topic has multinomial distribution over the words
of the corpus.

536 S. Wang et al.

To compare the similarities of the documents, we use the Hellinger Distance,
which is a measure of symmetric similarity between two probability distribu-
tions. Previous research on topical modeling also used it as a means of capturing
similarities between documents. The Hellinger distance is defined as (1).

H(P,Q) =
∑

x∈X

(√
P (x) −

√
Q(x)

)2 (1)

The number of topics is key, and how to choice the correct number is unde-
cided.

3.3 Graph Embedding

Information networks are common in society. Analysis of large information net-
works has attracted more and more attention from academia and industry. Graph
embedding is a representation learning technique that maps nodes in a graph to
real number vectors, and expresses the relationship in the graph by the relation-
ship between the vectors.

The main purpose of Graph Embedding is to map the nodes to the vectors.
These vectors are used to represent the relationship in the original graph.

This paper uses the LINE (Large-scale Information Network Embed-
ding) [14]. After defining the objective function, LINE use a new edge-sampling
which samples according to the probabilities of the edges weight. The first-order
approximation can map directly connected nodes to closer distances, and the
second-order approximation can map nodes with the same neighbor to a closer
distance. Therefore, the first-order approximation can retain more local struc-
tural information, while the second-order approximation can retain more global
structural information. As shown in Fig. 1, the node 6 and node 7 have a very
high weight edge connection between them, and the node 5 and node 6 have
many identical neighbor nodes. Considering the two approximations, the nodes
5, 6, and 7 are all Map to a closer distance in the embedding space.

4 Approach

4.1 Overall Process

The overall process is as shown in the Fig. 2. We extracting the textual infor-
mation of the document and source code, and calculating the text similarity
between the software artifacts. In our case, the document is use case. For the
source code, we also analyses the structural information between the source
codes besides extracting the textual information, organizes the source code into
a graph, embeds it using the graph embedding algorithm, and the get the embed-
ding vector of the code nodes, calculates the distance between the code nodes.
The candidate links are generated based on the textual similarity and distance,
and we set a threshold to filter the candidate links.

Using Graph Embedding to Improve Requirements Traceability Recovery 537

Fig. 1. An example of information network

Fig. 2. The overall process

4.2 Process Textual Information

The software artifacts usually contain a large amount of semantic information,
so the text information of the software artifacts can be extracted and processed
by using the IR technology.

It need to preprocess the text of the software artifacts. All software artifacts
need to: Segmentation of words: Dividing words according to separator. (ii)
Morphological analysis: conversion of word case, conversion of nouns singular
and plural, recovery of abbreviations, extraction of stems. (iii) Deletion of stop
words, key words and most non-text marks.

The identifier of the source code, such as the class name, method name,
contains important information, so we must handle the identifier appropriately.
Identifiers often use Camel-Case and consist of several different words, distin-
guished by the case of the first letter of the word. So we need to split the source
code identifier into separate words based on the letter case.

Then indexing the processed document. The m×n matrix (term-by-document
matrix) will be gotten after the indexing process. The widely used weighted mode
is TF-IDF, which places more emphasis on words often appear in the document
and contain in minority documents.

538 S. Wang et al.

Then the engineers can use IR methods to compare artifacts and rank the
similarities.

Firstly, we use the TF-IDF and the LDA model to calculate the textual
similarity, and the similarities of the artifacts are sorted to generate the candidate
links. We use the use case and source code as source and target artifacts.

4.3 Process Structural Information

The Construction of the Code Graph. Source code artifacts not only
contain textual information, but also inheritance and other structural relation-
ships between source code, and such structural information between source code
is very valuable for recovering traceability links of software artifacts. There-
fore, we should not simply treat the source code as plain text, but rather
to discover the structural relationship between the source code to help recov-
ery traceability links of the software artifacts. The dataset software repository
selected in this paper is developed by Java. Therefore, we propose the follow-
ing six relationships between source code, namely inherit, implement, attribute,
parameter, return and exception, and represented by the set Relationship =
{Inherit, implement, attribute, parameter, return, exception}. The relationship
is shown in Table 1.

Table 1. Relationship between source code

Relationship Description Weight

Inherit Class A inherit class B 1

Implement Class A implement interface B 1

Attribute Class A has a class B type attribute 1

Parameter Class A has a method whose argument type is Class B 1

Return Class A has a method whose return type is Class B 1

Exception Class A has a method whose exception type is Class B 1

We can organize the source code as a graph. The nodes in the graph are
the source code classes, and the edges represent the relationships between the
code elements. The graph structure is a natural and effective representation of
the structural relationship of the source code. The code relational structure dia-
gram can fully reflect the relationship between the source code. For the software
project selected in this article, we can use existing tools to parse its source code.

There are many tools for parsing Java source code. These tools can parse
Java software projects and extract code elements and the relationship between
them. This article uses Eclipse JDT, a lightweight code analysis tool that can
quickly builds Java code to a DOM structure’s Abstract Syntax Tree (AST).
Each element in the code corresponds to a node on the AST. By traversing the

Using Graph Embedding to Improve Requirements Traceability Recovery 539

AST, you can get all the code elements and the relationships between them to
build a software code structure diagram.

We use Eclipse’s JDT tool to parse the source code, get the structural infor-
mation, and construct the corresponding relationship graph of the structural
information.

The graph G(C,E) a directed weighted graph that shows the relationship
between code classes, where the vertex set C = {c1, ..., cn} is a collection of code
classes, and the edge set E = {(ci, cj), the relationship between ci and cj} is a
collection of edges. The S is the collection of source artifacts. The List = {(s, c)}
is the candidate links.

In software projects, the closeness of relationship between different source
code classes is different, and there are more relationship types and relationship
numbers between source code classes with more closely related relationships.
Therefore, we believe that if there are multiple relationship types or multiple
relationships between two source code classes, the relationship between the two
source code classes should be closer. Therefore, the edges (ci, cj) in the code
graph G(C,E) are weighted, and the weights represent the closeness of the rela-
tionship between the source code classes. The specific definition of the weight
is as follows: for each relationship between two source code classes, the weight
of the edge between them is incremented by one. For example, if there is one
attribute relationship between the code nodes ci and cj , two parameter relation-
ships, and two return value relationships, the weight between the edges (ci, cj)
between them is 5.

Embedding the Code Graph. The main purpose of graph embedding is
mapping the nodes to low dimension vectors. The structural information here
can be different levels order. The first-order structural information can keep the
distance between the adjacent nodes in the embedding space is still very close,
and the higher-order structural information can keep the distance of the nodes
with similar contexts in the embedding space still very close.

In this paper, we use LINE which can work for any type of information
network: undirected, oriented, unweighted or weighted. This method optimizes
the objective function and preserves the network structure. The algorithm is
very efficient in practice.

We use the LINE graph embedding technology to embed the code nodes, and
map them into low-dimensional space. If the two source code classes have a close
relationship, the distance between the vectors of the two source code classes will
be closer. Therefore, the closeness of relationship between the source codes can
be expressed according to the distance between the vectors corresponding to
the code nodes, that is, if the two source code classes have closer distances, the
relationship between them is closer.

The reason why the graph is embedded in this paper is that when using the
structural information between the codes to calculate the similarity between use
case and source code, the distance between any two vertices on the graph needs
to be calculated. By using the graph embedding technique to obtain the vector

540 S. Wang et al.

corresponding to the source code node, the distance between the source code
nodes can be calculated. There are many kinds of distances between two vectors
in the representation space. In our study, the Euclidean distance (2) is used to
represent the distance between two source code nodes.

d(x, y) :=
√

(x1 − y1)2 + (x2 − y2)2 + · · · + (xn − yn)2 =

√√√√
n∑

i=1

(xi − yi)2 (2)

4.4 Calculate the Similarity by Combining the Textual and
Structural Information

We have calculated the textual similarity between artifacts and the distance
between nodes, and then we will update the candidate links with textual infor-
mation and structural information.

We proposed that if a text artifact d(use case) has a high similarity to the
source code ci, and the source code cj is associated with the source code ci
in the structural information, then the similarity between d and cj should be
improved. On the contrary, if a textual artifact d(use case) has a low similarity
to the source code ci, and the source code cj is associated with the source code
ci in the structural information, then the similarity between d and cj should be
reduced. Follow the same idea, we update the similarity between the text artifact
d and the source code cj according to the following formula (3), (4).

Sim(d, cj) = SimText(d, cj) +
SimText(ci, cj)
dist(ci, cj)

(3)

Sim(d, cj) = SimText(d, cj) − SimText(ci, cj)
dist(ci, cj)

(4)

Finally, we will filter the generated candidate connections. There are usually
two ways to do this. You can sort the generated candidate joins and pick the top
k links with the highest similarity. Instead, we set a threshold for the candidate
connection and filter out the links above the threshold.

5 Experiment Evaluation

In this section, we describe the evaluation the proposed method.

5.1 Dataset

The software repository of our research is eTour which is an electronic touristic
guide. It contains 58 Use Cases, 174 classes and 366 correct links. The artifact
language for the eTour systems is English. The correct traceability links which
called oracle is restored to analyze the proposed experimental method.

Using Graph Embedding to Improve Requirements Traceability Recovery 541

5.2 Research Questions

In our research, we have proposed questions:

1. Whether combining the textual information and structural information of the
software artifacts can improve the traceability link recovery work? Whether
the structural information contributes to traceability links recovery work?

2. Whether use graph embedding technology to indicate the structural informa-
tion of the source code can help the software artifact traceability recovery
work?

3. Whether the combination of different IR methods can improve the traceability
recovery method? Specifically, can a combination of different IR technologies
achieve better accuracy and recall than using only one IR technology?

In response to our research questions, we compared only using the IR-based
method with the combination of IR technology and graph embedding technology
in the traceability recovery. For obtaining the experimental results of traceability
recovery by combining different IR methods, we apply TF-IDF and LDA model
combination to the recovery of artifact traceability links.

5.3 Metrics

Our research uses precision and recall metrics to evaluate proposed approach
(5), (6).

precision =
|correct ∩ retrieved|

|retrieved| % (5)

recall =
|correct ∩ retrieved|

|correct| % (6)

We evaluate the result by comparing precision and recall.

5.4 Analysis of the Results

The Fig. 3 shows the number of correct links found in traceable link recovery.
It can be seen from the figure that the combination of TFIDF and LDA, and
using graph embedding technology for traceable link recovery can improve the
number of correct connections captured, thus indicating that the combination
of IR and graph embedding technology can improve traceability link recovery.

542 S. Wang et al.

Fig. 3. The retrieved correct links

Fig. 4. The correct links captured by each method

The Fig. 4 shows the correct links captured by each method. Using graph
embedding technology can capture more correct links. We also found that most
of the correct links are captured by the TF-IDF method, but the LDA method
also captures many correct links that ignored by TF-IDF.

The Fig. 5 shows the accuracy obtained in traceable link recovery. It can be
seen from the figure that the use of combined IR method and Graph Embedding
technology for traceable link recovery does not significantly improve accuracy,
even with LDA technology, the accuracy is slightly reduced.

The Fig. 6 shows the recall obtained in traceable link recovery. It can be
seen from the figure that using graph embedding technology for traceable link
recovery can greatly improve the recall. In the case of using TFIDF and Combine
TFIDF and LDA, the recall is significantly improved. In the LDA case, the recall
has also increased slightly. This shows that graph embedding technology can
significantly improve the recall of traceable links, and graph embedding helps
traceability link recovery.

Using Graph Embedding to Improve Requirements Traceability Recovery 543

Fig. 5. The precision of traceability recovery

Fig. 6. The recall of traceability recovery

In conclusion, using graph embedding technology can capture more correct
links and significantly increase the recall of traceability links, so graph embedding
technology is helpful. And using multiple IR technologies can achieve better
results than using one IR technology alone.

6 Threats to Validity

The repositories used in our research is difficult to compete with actual industrial
projects. But it is near to the repository used in other research. ETour has been
used as a benchmark repository for TEFSE 2011 traceability recovery challenges.
Nonetheless, we plan to use other artifact repositories to replicate the experiment
to confirm our findings.

Regarding the calculation of the distance between source code nodes, we
use the Euclidean distance. Although Euclidean distance is useful, it has limita-
tions. It treats the differences between the different properties of the sample as
equivalent, which sometimes does not satisfy the actual situation. Therefore, the

544 S. Wang et al.

Euclidean distance is applied to the case where the metrics of the components
of the vector are unified.

We use LDA to calculate the text similarity of software artifacts. Although
LDA is very useful, but it is very difficult to select the appropriate number of
topics T . The inappropriate number of topics T will reduce the result.

7 Conclusion

Maintaining the traceability links often is an time-consuming work. The research
strive for reducing manual work and increase productivity partly. The use of IR
technique for recovering links has achieved promising results. But it often suf-
fer the terms mismatch problem of artifacts developed by different people. In
addition, some data have a lot of noise. In this case, this problem suppresses
the IR technique to distinguish between related and unrelated artifacts. This
article combines the textual information of the software artifacts with the struc-
tural information to recover the traceability link. Textual information of the
software artifacts is processed by using different IR techniques, and the struc-
tural information of the source code is represented by using the graph embedding
technology. We Improve the traceability recovery by comprehensively utilizing
textual and structural information.

8 Discussion and Future Work

Our study uses the LINE model for graph embedding of source code nodes,
which is applicable to any type of information network. In the future, we will
use other graph embedding to embedding source code nodes.

Our study implementation on the eTour software repository. In the future
we will try to recover traceable links for more software repository.

Our research focuses on the inheritance, implement, class attributes, function
parameters, function return, and exceptions thrown by functions. These features
are crucial for program comprehension and traceability recovery. We plan to
utilize these and more features in other effective ways in the future.

Furthermore, the domain knowledge of software engineering is also significant
for traceability recovery according to our empirical research. Therefore, we plan
to utilize the logical reasoning to recover traceability links directly in the future.

Acknowledgement. This work is supported by National Key R&D Program of China
(No. 2018 YFB0804703), International Research Cooperation Seed Fund of Beijing Uni-
versity of Technology (No. 2018B2), and Basic Research Funding of Beijing University
of Technology (No. 040000546318516).

References

1. Zhang, Y., Wan, C., Jin, B.: An empirical study on recovering requirement-to-code
links. In: 2016 17th IEEE/ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD).
IEEE (2016)

Using Graph Embedding to Improve Requirements Traceability Recovery 545

2. Panichella, A., et al.:. When and how using structural information to improve IR-
based traceability recovery. In: European Conference on Software Maintenance and
Reengineering. IEEE (2013)

3. Mcmillan, C., Poshyvanyk, D., Revelle, M.: Combining textual and structural anal-
ysis of software artifacts for traceability link recovery. In: Workshop on Traceability
in Emerging Forms of Software Engineering. IEEE (2009)

4. Capobianco, G., De Lucia, A., Oliveto, R., Panichella, A., Panichella, S.: On the
role of the nouns in IR-based traceability recovery. In: IEEE International Confer-
ence on Program Comprehension. IEEE (2009)

5. Asuncion, H.U., Asuncion, A.U., Taylor, R.N.: Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - ICSE 2010 - Software Trace-
ability with Topic Modeling, Cape Town, South Africa, 1–8 May 2010, vol. 1, p.
95. ACM Press (2010)

6. Diaz, D., Bavota, G., Marcus, A., Oliveto, R., Takahashi, S., Lucia, A.D.: Using
code ownership to improve IR-based Traceability Link Recovery. In: IEEE Inter-
national Conference on Program Comprehension. IEEE (2013)

7. Gethers, M., Oliveto, R., Poshyvanyk, D., Lucia, A.D.: On integrating orthogonal
information retrieval methods to improve traceability recovery. In: IEEE Interna-
tional Conference on Software Maintenance, The College of William and Mary.
IEEE (2011)

8. Oliveto, R., Gethers, M., Poshyvanyk, D., Lucia, A.D.: On the equivalence of infor-
mation retrieval methods for automated traceability link recovery. In: 2010 IEEE
18th International Conference on Program Comprehension (ICPC). IEEE (2010)

9. Guo, J., Cheng, J., Cleland-Huang, J.: Semantically enhanced software traceability
using deep learning techniques. In: 2017 IEEE/ACM 39th International Conference
on Software Engineering (ICSE). IEEE Computer Society (2017)

10. Ali, N., Gueheneuc, Y.G., Antoniol, G.: Trust-based requirements traceability. In:
2011 IEEE 19th International Conference on Program Comprehension (ICPC).
IEEE (2011)

11. Buckner, J., Buchta, J., Petrenko, M., Rajlich, V.: JRipples: a tool for program
comprehension during incremental change. In: International Workshop on Program
Comprehension. IEEE Computer Society (2005)

12. Kuang, H., Nie, J., Hu, H., Lü, J.: Improving automatic identification of outdated
requirements by using closeness analysis based on source code changes. In: Zhang,
L., Xu, C. (eds.) Software Engineering and Methodology for Emerging Domains.
CCIS, vol. 675, pp. 52–67. Springer, Singapore (2016). https://doi.org/10.1007/
978-981-10-3482-4 4

13. Kuang, H., Nie, J., Hu, H., Rempel, P., Lü, J., Egyed, A., Mäder, P.: Analyzing
closeness of code dependencies for improving IR-based Traceability Recovery. In:
2017 IEEE 24th International Conference on Software Analysis, Evolution and
Reengineering (SANER), February 2017, pp. 68–78. IEEE (2017)

14. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale informa-
tion network embedding. In: Proceedings 24th International Conference on World
Wide Web (WWW 2015), pp. 1067–1077 (2015)

https://doi.org/10.1007/978-981-10-3482-4_4
https://doi.org/10.1007/978-981-10-3482-4_4

	Using Graph Embedding to Improve Requirements Traceability Recovery
	1 Introduction
	2 Related Work
	3 Background
	3.1 IR-Based Traceability Recovery Process
	3.2 Latent Dirichlet Allocation
	3.3 Graph Embedding

	4 Approach
	4.1 Overall Process
	4.2 Process Textual Information
	4.3 Process Structural Information
	4.4 Calculate the Similarity by Combining the Textual and Structural Information

	5 Experiment Evaluation
	5.1 Dataset
	5.2 Research Questions
	5.3 Metrics
	5.4 Analysis of the Results

	6 Threats to Validity
	7 Conclusion
	8 Discussion and Future Work
	References

