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Abstract. Software traceability is a necessary process to carry out source code
maintenance, testing and feature location tasks. Despite its importance, it is not a
process that is strictly conducted since the creation of every software project.
Over the last few years information retrieval techniques have been proposed to
recover traceability links between software artifacts in a coarse-grained and
middle-grained level. In contexts where it is fundamental to ensure the correct
implementation of regulations and constraints at source code level, as in the case
of HIPAA, proposed techniques are not enough to find traceability links in a fine-
granular way. In this research, we propose a fine-grained traceability algorithm to
find traces between high level requirements written in human natural language
with source code lines and structures where they are implemented.

Keywords: Software traceability � Information retrieval � Static code analysis �
Software maintenance � Program slicing � Natural language processing �
Healthcare

1 Introduction

Software traceability is a research area in software engineering that aims to recover
traces and links between high-level artifacts (e.g. documentation, use case diagrams,
requirements specifications) and source code artifacts (e.g. classes and methods) [12,
26]. Due to its nature, the traceability of the code constitutes an imperative role in code
comprehension and helps to perform a wide variety of tasks such as bug tracking,
feature location, and software testing. Traceability focuses on making easier the
assurance of stakeholder’s needs and the correct implementation of functional and non-
functional requirements in any software system [33].

Although traceability should be carried out from the beginning of any software
project [37], in practice, it is an unusual activity. Developers usually center their efforts
more on building the software system than on making documentation artifacts. Simi-
larly, it is a common practice of developers to face the documentation of the system in
the final stages of any project to fulfill deadlines [37]. These practices may cause
serious problems when assuring the quality of the constructed artifacts as well as the
verification of the compliance of final products with the initial requirements and needs
of stakeholders.
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In the context of critical software systems, it is crucial that the software products
comply with security, privacy, and safety regulations (e.g., HIPAA law for healthcare
information systems). Software companies and regulatory entities, such as the HHS (U.
S. Department of Health and Human Services) Office for Civil Rights, must assure
regulatory compliance of software systems [3]; typically, regulators conduct manual
inspection of the source code to achieve such purposes [14, 17, 35]. To support people
on critical mandatory constraint’s verification (which is a difficult and error-prone
traceability task), research has devoted to develop automated techniques on traceability
links recovery. However, existing techniques only go down to link classes and methods
with high-level constraints. Mandatory constraint’s compliance requires going to
deeper granularity levels in order to confirm and assure that software systems imple-
ment mandatory regulations and requirements.

Fine-grained traceability link recovery is intended to fully support requirement
compliance of software, by linking critical mandatory constraints to specific code
structures such as statements, conditions, variable assignments and basic code blocks.
To accomplish such objective, we developed a software traceability technique which
based on heuristics, IR techniques and static software code analysis, is able to identify
traces between software mandatory constraints and source code structures.

2 Related Work

Requirement mapping is an expensive task that is required to ensure the software
compliance of constraints and features given by stakeholders and organizations [14]. In
the particular case of HIPAA [1], there are several studies conducted to classify the
statutes by topology in order to make the validation process a more comprehensive
task. HIPAA law is divided in three principal sets of regulatory constraints, in the
particular case of healthcare software systems, HIPAA establish a set of standards and
rules that must be covered and taken into account in order to protect the security and
confidentiality, and ensure the correct management of all patients’ data [3]. Breaux
[15, 17], defined a semantic model by identifying language patterns to extract rights
and obligations from HIPAA statutes, the requirement classification was conducted for
privacy rules on HIPAA regulations. Based on the Breaux methodology, two frame-
works were constructed and evaluated [16, 27, 38]. Alshugran et al., proposed as well a
process to extract privacy requirements from HIPAA, since the law regulations are
written in a complex and dense format, authors proposed a set of methods to analyze,
extract and model privacy rules [9]. There are also studies that intend to find the best
way to evaluate the legal compliance of HIPAA requirements in software healthcare
systems. Maxwell et al. proposed a production rule model to encourage requirement
engineers to keep trace between law and high level artifacts across every development
process [30], authors validated the proposed technique against iTrust, an HIPAA
compliant healthcare system.
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2.1 Traceability Links Recovery

Most techniques for traceability link recovery between software requirements and
source code operate at coarse-grained and middle-grained levels of granularity [2, 10,
11, 13, 18, 21, 24, 28, 29, 31]. Fasano [24] proposes ADAMS, a tool for automatic
traceability management; the recovery link technique proposed, uses Latent Semantic
Indexing (LSI) as an improvement of the Vector Space Model technique [20, 23],
under the assumption that almost every software system has high level software arti-
facts with well-defined hierarchical structure. ADAMS is able to recover traceability
links between software high level documentation and classes in the source code.

Marcus and Maletic [29] address the problem of recovering traceability links
between methods and documentation, using LSI, which extract the meanings (i.e.,
semantics) of the documentation and source code, using all the comments and identifier
names presents in the source code.

Paloma et al. [31] designed a tool called CRYSTAL (Crowdsourcing RevIews to
SupporT App evoLution) to create traceability links between commits, issues (given a
software release) and user reviews, using IR techniques with some adaptations to
remove useless words, calculate the textual similarity of the artifacts, and select the
candidate links according to a criterion (i.e., a threshold value).

De Lucia et al. [28] adopt the use of smoothing filters to reduce the effects of noise
in software artifacts. By an empirical study, the authors describe a significant
improvement of the IR techniques Vector Space Model and Latent Semantic Indexing.

Diaz et al. [21] proposed the usage of code ownership to improve the candidate links
generation under the assumption that if a developer authored code that is linked to a
particular high level artifact, then other code developed by the same author is likely to be
associated with the same artifact. This technique was adopted to tackle the problem of
vocabulary mismatch present in the associated artifacts. Their solution was named
TYRION (TraceabilitY link Recovery using Information retrieval and code OwNership).

2.2 Alternative Methods and Improvements for Traceability Link
Recovery Techniques

There are also approaches that aim to produce results at a fine-grained granularity level,
between features and specific source code structures like statements, decisions and
basic blocks [22]. Those strategies, mainly take advantage of the execution traces of
defined features in a software system, heuristics, and source code static analysis
techniques [19, 32, 34–36]. Wong et al. [36] propose a technique based on execution
slices, which takes as an input set of test cases that exercise and a set of test cases that
do not exercise the feature of interest. Using dynamic information extracted by running
the instrumented software system (i.e., list of statements executed), the technique is
able to distinguish between code that is unique to a feature, and code that is common to
several features.

Dagenais and Robillard [19] propose a model based on heuristics and source code
static analysis, to recover traceability links between the software documentation, and
the software API documentation. The authors designed a meta-model representation of
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the involved artifacts (i.e., documentation, source code and support channels) to
understand the context in which a code-like term is used.

Sharif and Maletic [5, 34] developed an approach to support the evolution of
traceability links. The process to update and evolve traceability links is supported by
the differentiation between versions of the involved artifacts in a traceability link. The
authors compare XML tags to address the new locations and evolve the links.

2.3 Limitations of Adopted Strategies

Current IR-based techniques for recovering traceability links, designed to associate
software requirements to code, have focused on coarse-grained granularity (i.e., files
and classes), they trace high-level software artifacts to files, classes, up to methods. The
reason for this is that granular source code structures (e.g., if-statements or exception
handling statements) usually do not contain enough textual information that matches
the vocabulary of high-level artifacts [23]. This leads to low accuracy of IR-based
techniques. Therefore, it is necessary to define new techniques or improve the existing
ones if we want to generate traceability links between high-level documents (such as
software mandatory constraints) and code structures (e.g., conditionals, assignations,
method calls).

3 Dataset Description

In order to trace high level constraints into source code by using a software traceability
technique, we define a taxonomy to classify HIPAA statutes that are more concerned
with software implementation standards and regulations. Not all sections written in the
HIPAA rules are related to software healthcare management systems; since in this
study we aim to trace regulations related to software implementations, we filtered the
most related HIPAA statutes and user data security regulations (as stated in the privacy
rule); then, we extracted a set of law statutes that apply for our particular problem.
Table 1 summarizes the HIPAA administrative simplification, in this study we decided
to analyze the Security and Privacy rule of HIPAA since it contains the major part of
regulations related to the implementation of healthcare management systems.

We take as input those statutes derived from HIPAA security and privacy rules as
were defined in the administrative simplification; then we identified those that are
suitable to associate with source code implementations and configurations in healthcare
systems. As a result, we defined a taxonomy of rules in which we classified the law
constraints according to three categories.

The first category (A) defines the rules that could be easily traced into code. It
consists of regulations that mainly refer to functional requirements that must be
implemented in every HIPAA compliant healthcare system. The second category
(B) has those statutes that define constraints related to software implementation and
non-functional requirements, still suitable to be traced to code. Finally, the third cat-
egory (C) groups statutes and standards related to the way in which organizations and
health care providers assume practices and methods to interact with healthcare systems
in order to protect the private information of patients, and that therefore are unsuitable
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to be traced to code. Table 1 shows a summary of the HIPAA taxonomy from privacy
and security rules that we considered in this study.

3.1 Healthcare Systems

In order to design a fine-grained traceability algorithm with the ability to trace and
associate links between high level artifacts and software source code structures, we
identify healthcare software systems whose source code is available. Thus, we focused
in java open source healthcare systems with available documentation (e.g. use cases,
user stories, user manuals). It is also important to mention that such health care systems
were explicitly defined as HIPAA compliant in official pages.

Our search process identified four candidates: iTrust [5, 7], OpenMRS [4], OSCAR
[6] and TAPAS [8]. These open source projects have available documentation that
describes in different ways the features and characteristics implemented by each sys-
tem. Table 2 summarizes the main characteristics of these four health care systems.

Table 1. Taxonomy of HIPAA Security and Privacy regulations.

ID Category Subpart Statutes samples

A Potentially suitable to trace into
code

Security
Standards:
General Rules
Administrative
safe guards
Technical
safeguards

164.306(a)(1), 164.306(a)(2),
164.306(a)(3),
164.308(a)(1)(ii)(D),
164.308(a)(5)(ii)(C),
164.308(a)(5)(ii)(D)

B Moderate suitable to trace into
code

Administrative
safe guards

164.308(a)(1)(i),
164.308(a)(1)(ii),
164.308(a)(4)(ii)(A),
164.308(a)(4)(D)(B)

C Indirectly related to health care
software systems

Security
Standards:
General Rules
Administrative
safe guards
Physical
safeguards

164.306(a)(1), 164.306(a)(2),
164.306(a)(3), 164.306(c),
164.306(d),
164.306(d)(1), 164.306(d)(2),
164.306(d)(3)

Table 2. Summary of open source health care systems chosen to analyze in this study.

Name Repository Version

TAPAS https://sourceforge.net/projects/tap-apps/ v. 0.1
iTrust https://sourceforge.net/projects/it v. 21
OSCAR https://sourceforge.net/projects/scarmcmaster v. 14.0.0
OpenMRS https://github.com/openmrs v. 1.12.x
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Each of the health care systems have conventional features that implement stan-
dards defined in HIPAA law. The features that we could evidence in all systems by
observing the deployed applications include user authentication, patient historical data
management, appointments definitions, diseases reports, audit controls and data
encryption.

We observed the extension of files that interact with the source code in some way
from each system, as described in Table 3. For source code analysis we took into
account .java .js and .jsp extensions. Such files contain statements written in java and
javascript, and also html and custom tags; .xml and .properties files have relevant
information about constants and variables that are used within the source code, hence
were also relevant for our purpose. Finally, .sql files contain sql sentences with sig-
nificant information about data and entities related to the application domain and are
referenced in the source code.

3.2 Extracting Requirements from High Level Artifacts

Since we want to associate high level requirements with source code, one of the
problems that we had to face is the extraction of specific requirements from the
available documentation on each health care system.

We setted apart several phrases and paragraphs from requirements explicitly
declared in the software high level artifacts (query of our algorithm). Then, we
extracted software requirements embedded in sentences from the documentation of all
four systems, according to the next format:

Article½ � þ Subject½ � þ ObligationVerb½ � þ Complement½ �

The extracted requirements were textually taken from documentation without any
modification. In some cases, following the precise definition of the format leads to the
extraction of phrases with no sense or context. For that reason, in such particular cases,
we included in the extraction additional information (i.e. terms that were not taken into
account when the filter was applied) from the surrounding text of such phrases com-
plete them. Table 4 shows some examples of specific requirements extracted from
artifacts of each system.

Table 3. Summary of source code artifacts that were taken as the corpus of the traceability
algorithm

iTrust OpenMRS OSCAR TAPAS

JAVA 936 1545 3810 221
JSP 266 447 1655 0
JS 3636 416 875 0
XML 14 820 193 14
SQL 192 2 711 0
PROPS 7 39 39 2
TOTAL SC ARTIFACTS 5051 3269 7283 237
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Finally, we selected all the extracted requirements that were more suitable to trace
into code according to the proposed taxonomy of HIPAA Security and Privacy regu-
lations. To put it another way, we associated each extracted requirement with a HIPAA
statute and focused on those in the categories (A) and (B) of the proposed classification
(Table 2).

4 Fine Grained Traceability Algorithm

Different approaches have been adopted to conduct a traceability link recovery process.
In order to support regulatory compliance verification at a granular level, we proposed
a technique that involve information retrieval (IR) techniques, static code analysis and
heuristics derived from observations after a process of manual analysis of source code
implementations.

The proposed algorithm takes advantage of search algorithms developed in infor-
mation retrieval techniques as well as heuristic derived from observations and static
analysis of source code. Figure 1, shows a summary of our proposed technique.

4.1 A1: Call Graph Construction from Source Code Files

The files and artifacts that contain the source code and relevant structures present in the
implementation of a system are all of a very different nature. Java classes are consti-
tuted by attributes and methods, javascript code files are batch processing files that are
stored in plain text, JSP files are a combination of java code, javascript code, tomahawk
and html tags. The process of A1 as depicted in Fig. 1, can be summarized in the

Fig. 1. Proposed fine-grained traceability link recovery process
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generation of a plain text file with the information of methods headers (i.e. access
modifier [optional], return type, name, parameter list, exception throws [optional]) and
their path in the different source code artifacts.

4.2 A2: Indexing Phase

Before going through the algorithm of information retrieval, several processing tasks
are performed on the text for both the corpus and the query. The query is a list of
requirements writing in natural human language to be traced into the corpus, which is
the source code of a selected system.

When dealing with two entries of a different nature, the treatment of the terms that
make up the corpus and the query is essentially different in both cases. With respect to
the treatment performed on the query, tokenization, stemming, stopword removal, part
of speech (a.k.a. POS) tagging, punctuation removal, number spell out and word
embedding [3, 5, 8, 16, 25] task are performed. On the other hand, the tasks carried out
with the terms that make up the corpus include stop word removal, splitting by camel
case, punctuation removal and tokenization.

4.3 B: Information Retrieval Process

Once the corpus and the query are indexed, they are treated as entries for the infor-
mation retrieval algorithm to obtain a ranked list of the possible corpus files that are
most likely related to the text of the query requirements.

After executing the algorithm of information retrieval, k files are obtained in order
of relevance for each requirement; that is, if the query file contains a set of n
requirements in total, the list of ranked links will contain a total of kn most related files
to each entry in the query file.

The determination of the number of links taken into account (k) for each
requirement was determined empirically. In other words, after several tests of execution
we determined that the optimal value for k fluctuates between 25 and 30 files per
requirement. This number is sufficient to obtain the most strictly relevant files, ignoring
those that are least related to requirements.

4.4 C: Parsing Phase

Once the list of possible files more related to a given requirement based on textual
similarity is obtained, the next phase of the algorithm consists of analyzing source code
implementations and perform abstractions through program slicing, to find structures at
source code level that are related to the implementation of a particular requirement. In
order to correctly extract different structures within the code, we use parsers for each
type of file that was included in the corpus file. The parsers statically analyze code
elements present in .java, .js, .jsp, .xml, .sql, .properties and plain text files. Parsers
receive as input a source code fragment and give us an Abstract Syntax Tree
(AST) representation of it in a way that make it easier to process.
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4.5 D: Program Slicing Process

After executing the parsers for each type of source code file, it is possible to extract
code fragments of interest since we are able to perform an exhaustive static analysis of
source code. For each of the files that were identified by the information retrieval
algorithm (LSI), silicing criteria were defined taking into account the subjects present
in the description of each requirement. Within the source code there are terms (e.g.
subjects, adjectives, verbs) of the problem context and therefore it is possible to define
slicing criteria from the names of variables, objects, classes and methods. To illustrate
this point, let’s assume that a requirement r1 contains a total of 4 subject names; so it is
possible to define 4 slicing criteria to conduct a program slicing process in each file
obtained from the retrieval information algorithm for r1 after executing the process
defined in B (Fig. 1). For each source code file, a slicing process is performed to obtain
the code lines within each file that affect or are affected by a particular criterion. The
result of this operation is a set of slices for each file ranked in B.

4.6 E: Full Trace Construction Phase

The information given by the process of abstraction of the source code through pro-
gram slicing is not enough to build entirely the trace of a requirement. To put it another
way, consider a slice of source code obtained after applying the process defined in D; it
is highly likely that such fragment of code contains calls to other methods within the
system that do not necessarily contain terms in common with a high level requirement
but that fulfill a very important role in the implementation. This problem can also be
seen as a consequence of delegation.

In this phase of the algorithm the fragments of code obtained in the slices are
analyzed and, for each call to an external method that is not defined in the parent file, a
search process is carried out according to the definition header of the method that is
invoked with the support of the mapping file obtained in A1. Each of the methods that
are referenced are also included in the trace of the requirement and recursively, a
slicing process D is performed.

To carry out the process of evaluation and testing of our approach, we developed a
tool in Java that implements the traceability technique previously exposed. It was
named Fine Grained Traceability Hunter (FGTHunter). We implemented a set of tools
designed for static analysis of source code, as well as information retrieval algorithms.

Table 4. Some specific requirements extracted from the available documentation of selected
healthcare systems

ID Requirement System Documentation

ITRUST-1 “An HCP is able to create a
patient [S1] or disable a
selected patient [S2]. The
create/disable patients and HCP
transaction is logged (UC5)”

iTrust http://agile.csc.ncsu.edu/
iTrust/wiki/doku.php?id=
requirement

(continued)
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5 Results

We executed the traceability algorithm implemented in the FGTHunter tool for each of
the open source systems. We collected the results and evaluated the precision of our
technique to find traceability links between high level artifacts and source code lines.
The algorithm was able to successfully find a large number of the high-level
requirements filtered for this study, along with new traceability links that were not
originally found by the manual construction of traces.

To evaluate the performance of our technique, we calculated the F1 score for each
extracted requirement that was associated with a HIPAA statute; then, we calculated
the average of F1 scores obtained in each statute. Results were grouped for each of the
analyzed systems. Table 5 summarizes our findings.

The audit management is a fundamental part of any software system that aims to
keep track of all the operations that are performed by every actor that use the system.
Table 5 shows the average of the harmonic mean (average of F1 score) for the
requirements in each healthcare system that are related to HIPAA statute 164.312 (b).
The precision of FGTHunter for iTrust and OSCAR systems had an approximate value
of 0.4 whereas in TAPAS the precision was much lower. In the process of observation
that was made when performing the manual code inspection, we noticed that very few
code lines in TAPAS handled the audit control; this may explain the low precision for
this case.

The access control of the information within a system ensures the correct manip-
ulation of the data. In the four systems that we analyzed, the access of the information
was restricted by the definition of roles and user permissions to see, read, modify or
eliminate the data. Table 5 shows the F1 score means of FGTHunter obtained after
executing the algorithm to find the lines of code that most are related to the require-
ments associated with the statute 164.312 (a) (1) of HIPAA in each system. The

Table 4. (continued)

ID Requirement System Documentation

OSCAR-1 “Your password is stored in an
encrypted format such that even
the system administrator cannot
find out what it is. If you have
forgotten your user name and/or
password, your administrator
can reset the password for you
but he/she cannot tell you what
the original password was”

OSCAR http://oscarmanual.org/oscar_
emr_12/General%
20Operation/access-
preferences-and-security/
accessing-oscar

TAPAS-1 “The system must have the
ability to manage users in the
system. Like clinical data, users
should not be able to be deleted
from the system as they will be
tied to activities in a record”

TAPAS http://tap-apps.sourceforge.net/
docs/use-cases.
html#UCSYSADM-01
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Table 5. Summary of results for all healthcare systems analyzed in this study.

HIPAA statute Description Average F1 score

164.312(b) “Implement hardware, software, and/or procedural
mechanisms that record and examine activity in
information systems that contain or use electronic
protected health information”

iTrust: 0,39
OSCAR: 0,39 TAPAS:
0,15

164.312(a)(1) “Implement technical policies and procedures for
electronic information systems that maintain
electronic protected health information to allow
access only to those persons or software programs
that have been granted access rights as specified in
§164.308(a)(4)”

iTrust: 0,25
OSCAR: 0,39
OPENMRS: 0,66
TAPAS: 0,39

164.312(a)(2)(i) “Assign a unique name and/or number for
identifying and tracking user identity”

iTrust: 0,43
OSCAR: 0,65
OPENMRS: 0,77

164.312(d) “Implement procedures to verify that a person or
entity seeking access to electronic protected health
information is the one claimed”

iTrust: 0,6
OSCAR: 0,87
TAPAS: 0,46

164.312(a)(2)(iii) “Implement electronic procedures that terminate an
electronic session after a predetermined time of
inactivity”

iTrust: 0,30
OSCAR: 0,32
TAPAS: 0,46

164.308(a)(5)(ii)(C) “Procedures for monitoring log-in attempts and
reporting discrepancies”

iTrust: 0,48
OSCAR: 0,73
OPENMRS: 0,66

164.308(a)(1)(ii)(D) “Implement procedures to regularly review records
of information system activity, such as audit logs,
access reports, and security incident tracking
reports”

iTrust: 0,4
OSCAR: 0,39

164.312(e)(2)(i) “Implement security measures to ensure that
electronically transmitted electronic protected health
information is not improperly modified without
detection until disposed of”

iTrust: 0,41

164.308(a)(5)(ii)(D) “Procedures for creating, changing, and
safeguarding passwords”

iTrust: 0,53
OSCAR: 0,69

164.312(a)(2)(iv) “Implement a mechanism to encrypt and decrypt
electronic protected health information”

OSCAR: 0,83

164.308(a)(7)(ii)(A) “Establish and implement procedures to create and
maintain retrievable exact copies of electronic
protected health information”

OSCAR: 0,96
TAPAS: 0,58

164.308(a)(4)(i) “Establish and implement procedures to create and
maintain retrievable exact copies of electronic
protected health information”

TAPAS: 0,32

164.312(c)(2) “Implement electronic mechanisms to corroborate
that electronic protected health information has not
been altered or destroyed in an unauthorized
manner”

TAPAS: 0,63

164.312(c)(1) “Implement policies and procedures to protect
electronic protected health information from
improper alteration or destruction”

TAPAS: 0,51
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average harmonic mean has an acceptable level (greater than 0.4 points) in OPENMRS,
OSCAR and TAPAS; on the other hand, for iTrust the algorithm had the lowest
performance. According to our observations, the access control by roles in iTrust was
handled by access restrictions defined in the configuration .xml files for the TOMCAT
server.

Assigning a unique identifier to each entity of a system ensures the correct
manipulation of the data and facilitates the control of the information integrity.
According to our observations, the restrictions of non-repetition were always defined at
the database level, that is, the traceability of the requirements associated with the
Statute 164.312 (a)(2)(i) of HIPAA was carried out analyzing .sql files with thousands
of code lines impacting negatively on the precision of our technique. However,
according to the results, for OSCAR and OPENMRS systems the algorithm reaches its
highest performance, probably because at the application level, the uniqueness of the
identifiers for each entity was also validated.

Ensuring the correct implementation of access control mechanisms is a fundamental
aspect in any system that manipulates critical information. Such control strategies range
from verification of passwords and access codes to role management within the system.
Considering the wide spectrum of artifacts in each system that may be related to
HIPAA Statute 164.312 (d), it is natural that the accuracy tend to be very high;
however in TAPAS that value is low, maybe because the access control in this
application is not clearly defined at the application level (i.e. there is no login forms or
access restrictions) and externally they must control the access to the information by
applying restrictions policies.

Finishing the session after a period of inactivity is a measure of additional pro-
tection that usually exists to avoid improper manipulation of the data. The session time
limit for a given user is usually specified in a particular line of code within the
application, either through a property file, a database record or a global variable.
Considering the quantity of artifacts analyzed and the reduced number of code lines in
which the requirements related to statute 164.312 (a)(2)(iii) of HIPAA are imple-
mented, for iTrust and OSCAR the level of precision was very low. According to
Table 5, TAPAS is the exception probably because in many parts of the code the
mechanisms of termination of sessions are repeated, once a particular operation has
started.

As a security measure, many information systems keep a record of unsuccessful
attempts prior to login for a particular service. Depending on the number of failed
attempts, an account is blocked for a period of time or indefinitely until an adminis-
trator decides to unblock it. Table 5 summarizes the traceability results for the
requirements related to HIPAA Statute 164.308 (a)(5)(ii)(C). iTrust was the system
with less precision in this aspect, probably because there are very few code lines where
the control of failed attempts is made.

When a user of the system views or edits the information of a particular patient, the
audit information should be able to be consulted to follow the detail of the modifica-
tions in critical data, as is established by the statute 164.308 (a)(1)(ii)(D) of HIPAA.
Table 5 shows the average of the harmonic mean for the systems that implemented
control mechanism of visualization for audit data. In general, the performance of the
traceability algorithm was acceptable, above 0.4.
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As a measure of securing information in the event of a disaster, data security should
be periodically generated from the information contained in the database in order to be
effectively restored. The HIPAA statute 164.308 (a)(7)(ii)(A) refers to this topic.
OSCAR was the system in which our algorithm reached a higher precision, while
TAPAS was the opposite case. This particular behavior can be proved when we
compare the source code artifacts from both systems that were involved in the
implementation of such statute, from our findings in the GOLDSET we can observe
that OSCAR contains more lines of code associated with data backups and database
restoration than TAPAS.

6 Conclusions

Traceability in software systems is a necessary and important process that must be
conducted from the beginning of any project where a large number of people work and
delegate tasks. Especially in contexts where it is required to follow strict and critical
rules to ensure the correct treatment of data in sensitive information, such is the case of
medical health systems that obey written legal regulations such as HIPAA.

From the results it was possible to appreciate that the precision of FGTHunter
obtained an acceptable performance (in general, more than 0,4 F1 score mean for each
requirement) when in the code there were present good design practices and conven-
tions to name entities according to the context of the problem.

Techniques of static code analysis play a predominant role in the construction of a
totally autonomous technique to recover traceability links between high level
requirements and source code artifacts. An information recovery technique alone would
not achieve a level of precision adequate enough to build the full trace of a requirement.

The restrictions and standards written in legal texts are usually described in a very
technical language and detached from a particular context. For this reason, as a step
prior to the execution of the algorithm, it was necessary to filter and extract official
documentation requirements for each software system that had a relationship with some
HIPAA statute within the taxonomy that we defined.

Although it is not a mandatory task in the execution of our technique, when starting
from requirements that are defined from a specific context (i.e. system domain) the
precision of the technique would improve.

Regulations related to audit control standards and session expiration in the
implementation of healthcare systems were in general terms the ones that achieved less
precision when analyzed with our traceability algorithm (over 0,35 F1 score mean for
each related system). Very few lines and source code structures related with these
requirements were successfully mapped by our algorithm for each system; This may be
explained probably due to the few places within the source code where these
requirements were implemented, increasing in that way the recall of our technique and
decreasing the precision. With respect to the other statutes defined in the privacy and
security rule of HIPAA, the performance of our algorithm was acceptable (over 0,4 F1
score mean) and in some cases excellent (over 0,8 F1 score mean).

Although, it is very difficult to reach a perfect degree of precision in a traceability
technique based on an information retrieval algorithm without the help of an external
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person to delimit the list of ranked links, our proposal would undoubtedly facilitate the
work of those people who seek to certify a system compliance with rules and standards
at a source code level, as in the case of HIPAA.

7 Future Work

Our technique was designed for projects written in JAVA EE; future work may require
to improve our traceability algorithm so that it would be generic in any programming
language independently of the syntax and particular rules. For this purpose we could
use controlled techniques of machine learning, and train models constantly with the
new trends in programming and design patterns. We could also follow the original
approach of our technique and define syntactic analyzers for each programming lan-
guage in such a way that the source code slicer and code analysis algorithms can be
applied.

To evaluate the performance of our technique in other regulations different to
HIPAA, we would have to conduct an adequate study of the structure of such regu-
lations and find software systems whose source code and documentation is available
for analysis.

An empirical study to assess the performance of our tool with real users and
regulation reviewers would give us an important feedback for real situations. This point
should be boarded in future improvements for our algorithm.
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