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Abstract. Formal methods are vast and varied. This paper reports the
essentials of what I have observed and learned by teaching the Inductive
Method for security protocol analysis for nearly twenty years. My general
finding is something I realised after just a couple of years, that my target
audience of post-graduate students with generally little appreciation of
theory would need something different from digging deep down in the
wonders of proof ever since class two. The core finding is a decalogue of
steps forming the teaching methodology that I have been developing ever
since the general finding became clear. For example, due to the nature
of the Inductive Method, an important step is to convey the power and
simplicity of mathematical induction, and this does not turn out too hard
upon the sole basis that students are familiar with the informal analysis
of security protocols. But the first and foremost step is to convince the
learners that they already somewhat used formal methods, although for
other applications, for example in the domains of Physics and Mathe-
matics. The argument will convey as few technicalities as possible, in
an attempt to promote the general message that formal methods are
not extraterrestrial even for students who are not theorists. This paper
introduces all steps individually and justifies them towards the general
success of the teaching experience.

1 Introduction

Formal methods form a very big chapter in the book of, at least, Informatics. It
is widely recognised that they include a variety of approaches, for example, logic,
algebraic or ad hoc approaches. With a “universal view” of formal methods, I
contend that hey have been applied to virtually every real-world problem areas,
ranging from Astrophysics to Economics to Engineering.

It is clear that my view of a formal method is broad, in fact I like to include
in the pool any mathematically grounded, rigorous method. The distinctive fea-
ture implied here is that formal methods do not necessarily require the target
phenomenon or system under study to be practically available or built at all. As
opposed to empirical methods, formal methods can be profitably used on paper,
ideally with some computer support, namely at the abstract, design level.

My main “local” preconditions are that students are not very inclined to the-
ory in general. Broadly speaking, I find course modules more geared to practical
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competences such as (imperative) programming and system administration. In
the cybersecurity area in particular, the most job-oriented competences lie in the
area of Vulnerability Assessment and Penetration Testing (which I also introduce
at Master’s level), hence formal methods again suffer this particular though well
motivated trend of the present time. However, also formal methods continue to
contribute to the goodness of cybersecurity [1], for example as it can be read
from recent publications such as a NIST survey [2] or an NSF workshop report
[3]. Hence, the motivation for this paper.

The teaching experience within such a large area as formal methods is bound
to be diverse and multifaceted, and here I only engage into outlining my own,
limited experience on teaching the Inductive Method [4,5], which is embedded in
the theorem prover Isabelle [6], for the analysis of security protocols. This would
be the first encounter of my students with theorem proving and formal methods
in general. A fundamental disclaimer stemming from my local preconditions is
that none of my observations should be taken as general; by contrast, they are
limited to the specific lecturing experience in my Institution, though over nearly
two decades, at Master’s level in Informatics covering a module of at least 12 h
intertwining theory and laboratory experiments tightly.

My general finding is that the entanglements of proof theory must be left to
an advanced module, which I have never had the opportunity to teach. My core
finding is that teaching an introductory module requires at least a decalogue of
steps before any proof can be attempted profitably. Lecturing will resemble the
tailor’s activity of sewing together patches of different fabrics, though dealing
with somewhat heterogeneous notions from Informatics in our case.

To try and speed up readability, the style I take in this paper will be mixed,
sometimes describing the steps of the decalogue and summarising parts of the
lectures, sometimes as if I were speaking straight to the students. Hopefully, the
context will resolve the inherent ambiguity. As we shall see, the main obstacle
to overcome for students will be the perception of formal methods as something
so theoretical and abstract to be unattractive and unsurmountable, hence the
title of this paper. But the decalogue discussed below has yielded a very effective
teaching experience with me.

2 My Experience with Teaching the IM

There is no room for introducing the Inductive Method [4] and the theorem
prover Isabelle [6], so I must assume a basic familiarity of the readers’.

2.1 You Already Used Formal Methods

One of the first issues I encountered since the beginning and that I keep touch-
ing every year is some sort mental resistance that (my) students show to almost
anything prefixed with “formal”. In consequence, there seems to be some psy-
chological wall between themselves and formal methods in general.



230 G. Bella

At first, I set out to try and demolish that wall upfront. I started providing
vast reference material, also appealing to books that can be found freely on
the Internet [7], and presenting example applications to various scenarios in the
areas of both hardware and software. However, this did not work, as the class
felt kind of lost through the various methods, with each student looping through
a contrastive analysis of the methods.

I decided that this approach was too vast. So, I selected First-Order Logics
and tried to illustrate and variously demonstrate why it could be somewhat easy
to use in practice, and also nice and ultimately rewarding; but all this did not
seem to yield the results I was expecting. It was clear that students were almost
memorizing notions and formulas rather than adopting and actively using them.

It was still in the early years of teaching when I started to feel that psycho-
logical wall as unsurmountable for them. So, I thought that the only way to have
students on the other side would have been to make this true by assumption. I
was then left with the problem of finding an appropriate, realistic interpretation
that would make that assumption hold, which would have made students feel
already beyond the wall. At some point, I thought I found that interpretation,
and presented them with something as simple as this formula:

s = v · t

This was the first encouraging result because everyone could recognise the uni-
form linear motion formula with s indicating space, v for speed and t for time.

I decided to navigate this way and this is when I decided to take a somewhat
loose definition of formal methods. So, I claimed that formula to be an applica-
tion of a formal method, precisely a specification, namely some sort of abstract
representation of a real-world phenomenon. The formula clearly shows indepen-
dence from the actual phenomenon, it lives and computes in a world of its own,
that of symbols with a clear, non-ambiguous interpretation. Yet, the formula
models and describes the phenomenon closely, providing a realistic, written rep-
resentation of it. I did not need to describe the language of the formula more in
detail because I realised that students had already started to stair at the board
pensively, so they were finally engaged.

I then unfolded the same argument with accelerated linear motion and pro-
jectile motion. Then, I switched application area, and discussed definite integrals
as a very useful tool (not just to pass A levels but also to) calculate the area
under a curve, something that we could effectively use to help a farmer deter-
mine the extension of his land. Formal methods everywhere! Yes, such formulas
are formal because they leave (almost) no room for ambiguity but they are also
very applied due to what they allow us to do and resolve in everyday life. This
argument worked with the class, definitely, and keeps working every year.

I normally conclude this journey through heterogeneous applications of for-
mal methods with an extra reference to Propositional Logics and First-Order
Logics, whose basics the students regularly know from some foundational course.
This time around, they look at whatever I try to formalise with these languages
with renowned interest and, as far as I can tell, more familiarity and conscious
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understanding. For example, here I normally debate that there is no “wrong”
specification of a phenomenon but, rather, there may be an unrealistic specifi-
cation of it, for example like describing a river that flows from sea to peaks.

“Dear student, it is clear that you already used formal methods but did not
know it!”.

2.2 The Need for Formal Methods and in Particular for the IM

The next step in the decalogue is to demonstrate that formal methods are needed
in general. Here, it is useful to go back to the formula borrowed from Physics and
Calculus, as well as to hint at Ancient Greece mathematician Eratosthenes, with
his incredibly precise measurement of Earth’s circumference, and other Ancient
Greece prodigies.

To approach our days, I normally linger around the Pentium processor bug
(which luckily has a Wikipedia entry). With whatever microchip in hand to test,
it is intuitive for students to see in their minds the act of feeding it with various
inputs to inspect whether the output is correct. And here are the fundamentals
of modern (industrial strength) testing. However, the Pentium bug shouted out
to the world that testing may not be enough. This may be due, in general, to the
ever increasing complexity of modern circuits, whose complexity roughly doubles
every 18 months, as Moore started to predict ever since 1965. It may also be
due to the tight time-to-market constraints of products, and this is likely to have
been the case with the Pentium bug. While it is natural for everyone that testing
requires time due to the number of tests to physically execute, the learners also
understand that business success often correlates with early deployment. (An
underlying, usefully embodied, assumption is that even if something is appro-
priately designed, it is not obvious that it will work as expected at design level
when it is actually built, such as with houses or with any devices).

And here comes a clear need for an alternative that scientists may use, on
paper or arguably with some computer assistance, to get confidence that the
real-world phenomenon that is an actual industrial product works as intended
by its designers. That alternative is the use of formal methods, whose application
may not be constrained by execution times as testing is. This argument invites
at least two useful considerations. One is that formal methods support some
sort of reasoning on the target phenomenon, formal reasoning in fact, which
can be tailored to assess specific properties of interest, (functional ones) such
as correctness of computation, then (non-functional ones such as) secrecy and
authentication. Another useful argument is the predictive use of formal meth-
ods. We can effectively study a phenomenon before it actually takes place, or a
product before it is built, and this is an exclusive advantage.

This is the point when it becomes effective and useful to plunge into secu-
rity protocols, thus nearing my actual target. Students are normally familiar
with traditional attacks on toy security protocols, which are so popular in the
literature of the area. For example, I use to entertain my undergraduates with
an informal analysis of the original public-key Needham-Schröder protocol [8],
and I always succeed in convincing everyone that nonces remain secret and that
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mutual authentication works; after that, I surprise them with Lowe’s attack,
then help them overcome their frustration by observing that the attack was only
published some 17 years after the protocol. Therefore, I easily emphasise the lim-
itations of informal protocol analysis, calling for more rigour, hence for formal
protocol analysis, which has the strength and rigour of mathematics. Examples
are due here, but they still need to wait one more logical assertion.

That assertion is that a security protocol may be a strange, huge beast. There
is potentially no bound for the length of protocol messages, for the number of
protocol steps, of protocol participants, of nonces or keys they may invent and
for the number of protocol sessions they may interleave. It becomes apparent
that security protocols are potentially unbounded in size, hence it becomes intu-
itive that the empirical approach of testing (all) its potential executions falters.
Consequently, the idea that some sort of mathematical wisdom could help starts
to materialise at the mental horizons of the students.

Additionally, familiarity with the Needham-Schröder protocol implies
acquaintance with the notion of threat model, and in particular with the stan-
dard Dolev-Yao attacker. Because that attacker may intercept messages and
build new ones at will with the sole limitations imposed by encryption, students
realise that the attacker is yet another source of potential unboundedness, and
know by intuition that modelling it may not be straightforward.

Even if we took the approach of bounding all parameters and we magically
knew that the resulting protocol reached its security goals, then we still would
have no guarantee that those goals hold also when those parameters are exceeded
during a practical use. It would seem that unboundedness cannot be neglected.

“So, dear all, you will be amazed at how the Inductive Method can cope with
unboundedness!”.

2.3 A Parallel: How to Write a Biography

At this point, some students change the way the look at the lecturer, as if they
start to wonder independently how to possibly use the Inductive Method to
model security protocols. Here, I surprise them turning to talk about biogra-
phies, actual people’s biographies. The biographer faces a huge challenge: to
condense a continuous (we could build a bijection with the reals) sequence of
events in a finite manuscript. The biographer has no option except picking up a
few significant events and describe those, perhaps connecting them logically, and
sometimes drawing a general message about the chief character, either explicitly
or implicitly. From a data structure standpoint, a biography is a list of events.

The same approach can be taken to model security protocols, somewhat
surprisingly for students. So, our effort could be similar to the biographer’s.
Running a protocol of course entails a number of tasks for each of its peers. But,
as the biographer does, we need to abstract away from many of those and distill
out the main ones. With security protocols, it is easy to convince everyone that
the main ones are to send and to receive a cryptographic message.

Does this imply that a protocol can be compared to a human life? It would
seem so in terms of modelling effort and approach. More precisely, a specific
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protocol execution can be compared to the biography of a life, and both can
be modelled as a list of events. While a biography features events linking the
chief character to other people in the character’s life, or sometimes other people
among themselves, a protocol execution features events linking peers to each
other via the events of sending or receiving the protocol messages (a specific
peer could be isolated and interpreted as a chief character in the execution but
this is irrelevant). A list representing a protocol execution is normally termed a
trace, hence it is a list of events of sending or receiving the protocol messages.
We could then address a biography as the trace of someone’s life. If we blur the
focus on the chief character, then a biography is a representation of one possible
development of society, simply because it may involve many characters.

This argument invites thinking about other possible executions of protocols
in parallel to other possible developments of society, the very society of people on
this planet. And here students find themselves curious to understand if and how
all of the protocol executions and, equally of the society developments, could be
represented compactly. They get all the more hungry as they start to perceive
that such possible executions or developments are potentially unbounded. They
will have to resist their hunger a bit longer.

“We now know that a list is a useful structure to model an abstract ver-
sion of one possible protocol execution, but how can we ever model all possible
executions?”.

2.4 The Use of Computational Logics for Reasoning

At this point in the development of the discourse, the learners’ eyes begin to
glitter. It is hence the right time to instill the power of logics. I already men-
tioned that, in my experience, students normally come with some notions of
Propositional Logics and First-Order Logics, and discussed how to make them
feel familiar with such logics (Sect. 2.1). However, it would seem that logics is
merely seen as a language for specifying (or formalising) some phenomenon. It is
then not very clear to them what to do with a specification or how to use it prof-
itably. Here come handy again the arguments unfolded above, suggesting that a
specification is a somewhat compact representation of something real (Sect. 2.3)
and that it may be used to understand that thing predictively (Sect. 2.2).

The only way to overcome the dogmatic flavour that such justifications may
bring is to finally introduce elementary forms of classical reasoning to be con-
ducted on top of specifications, with the aim of proving something about the
specification. My favourite one is modus ponens, so I normally draw something
like this on the board:

p → q
p
q

Stating that “if you have p → q and you also have p, then you may also
derive q” is simply not enough to convey the meaning of this essential rule.
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Students have often taken p → q alone to magically derive q. This betrays their
misunderstanding, whereas p → q and p are both preconditions at the same log-
ical level, and it is precisely their combination what allows us to derive q; here,
it may help to denote p as the ammo that the weapon p → q needs to shoot out
q.

This is an essential yet powerful form of (formal) reasoning, and it may
also be the students’ first close encounter with such a wonderful engine that,
once they have certain formulas that hold, allows them to derive yet another
formula that holds too. Should the learners show concern that they are touching
something extraterrestrial again, I easily demolish that concern asserting that
we all follow an essential rule: if I am hungry, then I eat something. At every
moment in time, each of us is left wondering: am I hungry? It is clear that, only
when this is affirmative, do both preconditions of the modus ponens rule hold,
hence it is time to eat something. We all use modus ponens in all sorts of ways.

“Guys, you have only scratched the surface of formal reasoning, still you shall
see that you’ll be able to do a lot with what you just found out!”.

2.5 The Basics of Functional Programming

Functional programming is, for some reasons beyond the aims of this paper,
not very well received by my students, who tend to see it again as something
overly formal and not as actual programming. Convincing them fully of the
power of functional programming normally remains out of reach despite the fact
that they took a short crash course (which, however, lacks the details of Turing
completeness). The main issue that I take pains to convey is that it is just a
different programming paradigm from their dearest imperative approach, the
latter learned since school. They find it bewildering that a functional program
has no variables to assign values to.

So, how on earth can we carry out any sort of computation? The notion of
term rewriting must be introduced. Each rewriting derives from the application
of a sound rewriting rule. For example, linking the argument back to the use of
logics for reasoning (Sect. 2.4), modus ponens may be seen as a rewriting rule
for the pair of facts forming its preconditions. Similarly, p → q can be rewritten
as ¬p ∨ q by applying the logical equivalence of the two formulas as a rule.

But rewriting may also be conditional. For example, evaluating the guard of:

X = (if 2 + 1 = 3 then Y else Z)

allows us to rewrite the entire expression as X = Y . And this was computation.
“Rewriting is the essence of computation with functional programming, stop

thinking imperatively here, forget variables and assignments!”.

2.6 The Wonders of Mathematical Induction

Students are somewhat familiar with mathematical induction, in particular for
what concerns the definition of the natural numbers:

Base. 0 ∈ N

Ind. if n ∈ N then suc(n) ∈ N
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Because they understand rule Ind, it is the right time to introduce its more
formal version:

Ind. n ∈ N =⇒ suc(n) ∈ N

This lets me motivate the meta-level implication as the implication at the level
of reasoning, as opposed to the object level of the encoded logics. And I can then
introduce an equally formalised version of modus ponens:

[[p −→ q; p]] =⇒ p

I believe that with this and a few similar examples, the level of reasoning, as
expressed by fat square braces, semicolon and the fat arrow, is uploaded.

And here is how beautiful it is to capture a clearly unbounded set by means
of just two, formal, rules. Observe also the magic behind induction, at least due
to the fact that nobody has ever tried to practically verify if, say, 4893 can be
effectively built by an application of rule Base and a finite number of applications
of rule Ind. Still, we know by intuition that all natural numbers are represented.

Observing that all natural numbers are caught this way brings back memories
of an open problem, how to capture all possible society developments or protocol
executions. The answer clearly is by induction but we need to cope with traces.
Traces are lists, so can we build lists by induction? Yes, we can build them by
structural induction on their length. Therefore, we expect to be able to specify all
possible lists, even if unbounded, for our application, be is society or protocols,
with just a few inductive rules. And, of course, yes, we may have more than one
inductive rule in an inductive definition.

Before giving an example (Sect. 2.7), it is useful to go back to the reasoning
part and observe that it may also follow predefined strategies aimed at proving
a goal, thus proof strategies. Induction may also be viewed as a proof strategy,
based on application of the mathematical induction proof principle. As it is a
principle, there is no proof for itself. I often realise that students are able to
prove facts such as an expression for the sum of the first n natural numbers Sn:

Sn =
n · (n + 1)

2

They mechanically prove it for the Base case and then for the Ind case; in the
latter, they know how to assume the property, say, for n and then attempt to
prove it on that assumption for n+1. They may, however, not be fully aware that
they are inherently applying the induction proof principle. It is then important
to spell it out formally on a property P :

[[P (0); P (n) =⇒ P (n + 1)]] =⇒ ∀n. P (n)

I have memories of their surprise in front of this formal statement. This version
is also useful to teach that the latest occurrence of n is scoped by the universal
quantifier, hence not to be confused with the occurrences in the preconditions.

“You see now, induction is great for specifying and then for reasoning, namely
for formalising something and then proving facts about it!”.
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2.7 The Formal Protocol Definition

All pieces of the puzzle are now available to compose a formal protocol model.
As noted above, students are familiar with toy security protocols at least, hence
there will be little to discuss in front of an example like this:

1. A −→ B : A,Na

2. B −→ A : {|Na, B|}K−1
b

Initiator A sends her identity along with a fresh nonce of hers to responder B,
who sends it back, bundled with his identity, encrypted under his private key.
The formal model for this example protocol is finally unveiled as shown in Fig. 1.
I normally spend above an hour explaining it. It must be first looked at “from
the outside-in”, namely you must first realise the general structure of what you
have in front. It is five rules. They very often mention fep . This is a constant
(not a variable!) termed as an acronym for f formal example protocol, which is
the formal model for our example protocol. I purposely defer the discussion of its
type till now. Because we wanted to formalise all possible protocol executions,
and each execution was a trace, namely a list of events (of sending or receiving
the protocol messages), then fep must be a set of lists of events.

Base: "[ ] ∈ fep"

Fake: " [[evsf ∈ fep; X ∈ synth(analz(knows Spy evsf)) ]]
⇒ Says Spy B X # evsf ∈ fep"

Fep1: " [[evs1 ∈ fep; Nonce Na /∈ used evs1 ]]
⇒ Says A B {|Agent A, Nonce Na |} # evs1 ∈ fep"

Fep2: " [[evs2 ∈ fep; Gets B {|Agent A, Nonce Na |} ∈ set evs2 ]]
⇒ Says B A (Crypt (priSK B) {|Nonce Na, Agent B |}) # evs2 ∈ fep"

Recp: " [[evsr ∈ fep; Says A B X ∈ set evsr ]]
⇒ Gets B X # evsr ∈ fep"

Fig. 1. Definition of fep , the formal model for our example protocol

Going back to the rules defining fep , it can be seen that the first rule is very
special because it has no preconditions. It is in fact the base case of the inductive
definition. While the central rules, Fep1 and Fep2 , seem to be “similar” to the
protocol steps, the final rule, Recp , seems to be a matter of receiving messages,
but must be explained in depth. The remaining rule, Fake , is incomprehensible
without close inspection.

It must be noted that all rules following Base mention a trace of fep in the
preconditions, respectively efsf , evs1 , evs2 , evs3 and evsr . Recalling that # is
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the list cons operator, it may also be seen that all those rules conclude that the
respective trace, somehow extended on the left, is a trace of fep . These features
signify that they are all inductive rules. So, we are facing a definition with a
total of four inductive rules.

Rule Fep1 models the first step of the protocol. Standing on a trace evs1 of
the model, it also assumes a nonce that is not used on the trace, hence the nonce
is fresh. Of course, used is a function that is defined somewhere, but its definition
can wait till later (Sect. 2.8). The nonce freshness is a requirement set by the
protocol designers, hence we as analysers are merely adding it to our specifica-
tion. Event Says A B {|Agent A, Nonce Na |} is a self explaining formalisation of
the first event of the protocol, and also its justification through the datatype of
events can wait (Sect. 2.8). The postcondition of the rule states that the given
trace evs1 , appropriately extended with the event that models the first protocol
step, is a trace in the model. Thus, the rule’s structure resembles that of Ind
(Sect. 2.6).

Rule Fep2 models the second step of the protocol. It rests on a trace evs2

with the special requirement that it features an event formalising B’s reception
of the first protocol message, Gets B {|Agent A, Nonce Na |}, and set casts a list
to a set. The rule concludes that the suitably extended trace is in the model.

The difference between these two rules is that Fep1 puts no requirement
on the trace in terms of traffic occurred on it, so the rule may fire at any time,
modelling the real-world circumstance of any agent who may initiate the protocol
at any time and with any peer. By contrast, Fep2 may only fire upon a trace
that has already recorded the reception of the first message of the protocol.

If the first message is sent through Fep1 , what makes sure that it is received?
The first message, and in fact any message that is sent, is received through rule
Recp . It insists on a trace on which a generic agent A sends a generic message X

to a generic agent B , and extends it with the event whereby B receives X .
We are left with the Fake rule, which models the attacker, arguably repre-

sented as Spy . The trace extension mechanism is clear, so it can be seen that
this rule extends a given trace with an event whereby the attacker sends a fake
message X to a generic agent B . The fake message is derived from a set modelled
as a nesting of three functions, from the inside-out, knows , then analz , finally
synth , which are to be explained separately (Sect. 2.8). Intuitively, such a nesting
simulates all possible malicious activity that a Dolev-Yao attacker can perform,
yet without any cryptanalysis.

Thus, the formal protocol model features a number of rules that equals the
number of steps in the protocol, augmented with three extra rules, one for the
base of the induction, one for the attacker and another one to enable message
reception. Thanks to the wonders of induction, set fep will have all possible
traces that can be built under the given protocol, thus modelling effectively all
possible protocol executions. For example, it contains a trace on which ten agents
begin the protocol with other agents but none of those messages is received, a
trace that sees an agent sending off a message to another one and that message
being received many times. We are guaranteed that all possible traces that can
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be built by any interleaving of the given rules appear in fep . It is now time to
declare that the specific font indicates that the formal protocol model can be
fed, as is, to Isabelle, which will parse it and ensure at least type coherency.

“And here is how we ultimately define the formal protocol model in Isabelle,
including all possible protocol executions under the Dolev-Yao attacker!”.

2.8 The Main Functions

Intuitively, the innermost set, Knows Spy evsf contains all messages that are
ever sent on evsf by anyone. Then, function analz breaks down all messages
of the set into components, for example by detaching concatenated messages
and by decrypting cypher-texts built under available keys (no cryptanalysis at
all). Finally, synth uses available components to build messages by means of
concatenation or encryption, still under available keys.

Suppose that each event in the trace evsf carried not a cryptographic message
but some... bread, a ciabatta. Then, knows Spy evsf would be a set of ciabattas.
Suppose that ciabattas are one week old, hence too hard to be eaten. We could
then decide to grind them off finely into powder, and this is captured by set
analz(knows Spy evs) . If we want to mix this strange kind of flour again to
try and build bread again (ignoring other ingredients), then the resulting fresh
ciabattas would all be in the set synth(analz(knows Spy evs)) .

The definitions of such functions, of used and of the relevant types have been
published in many other places [4,5], but I want to stress the didactic value of
the definition of knows hence report it in Fig. 2. After justifying the declaration,
the focus turns to the primitive recursive style, with two rules. Rule knows_Nil

describes the knowledge that a generic agent A can form on observing an empty
trace. It reduces to the agent’s initial knowledge, formalised as initState A , but
it must be remarked that “state” is used loosely here and, in particular, it bears
no relation to the states underlying model checking.

The other rule pertains to a generic trace, and separates the case in which
agent A , whose knowledge is being defined, is the attacker from the case in
which she is not. For each of these, the definition emphasises the latest event
ev in the trace, which is then split up as trace ev # evs . It can be seen that
knowledge is evaluated accordingly to the specific event, which can be the sending
of a message, the reception of a message or a third type. This third type was
introduced by Paulson with the work on TLS of 1999 [9]. He needed to enable
agents to somewhat record the Master Secret of that protocol, and decided that
defining an additional event for agents’ notes was a convenient way.

I then take a good amount of time to describe why and how the definition
makes sure that the attacker knows everything that is sent by anyone or noted
by compromised agents, those in the set bad . This is the students’ first encounter
with such a set, and I will surprise them later showing that the set is only declared
but never ever defined: all reasoning that follows will be typically parameterised
over such a set. It means that the attacker has a full view of the network traffic.
Incidentally, the attacker does not need to learn the messages that are received
because these must have been sent in the first place, a theorem that can be



You Already Used Formal Methods but Did Not Know It 239

proved thanks to the definition of rule Recp , already discussed. I need also time
to explain that any agent who is not the attacker only learns from messages that
she sends, receives or notes down herself, because, by being honest, she only has
a limited view of the network traffic.

consts
knows :: "agent ⇒ event list ⇒ msg set"

primrec
knows_Nil: "knows A [] = initState A"

knows_Cons: "knows A (ev # evs) =

(if A = Spy then

(case ev of

Says A’ B X ⇒ insert X (knows Spy evs)

| Notes A’ X ⇒ if A’∈bad then insert X (knows Spy evs)

else knows Spy evs

| Gets A’ X ⇒ knows A evs)

else

(case ev of

Says A’ B X ⇒
if A=A’ then insert X (knows A evs) else knows A evs

| Notes A’ X ⇒
if A=A’ then insert X (knows A evs) else knows A evs

| Gets A’ X ⇒
if A=A’ then insert X (knows A evs) else knows A evs))"

Fig. 2. Definition of function knows

However, no matter how long I spend to signify this definition, students will
be left thirsty for some form of computation. Tight in the mental shackles of
imperative programming, they may still strive to see this definition as a rewrit-
ing rule that will, by its application, drive and determine computation. A few
examples are due. Expression knows Spy (Says A B X # evs) will get rewritten,
by application of rule knows_Cons , as insert X (knows Spy evs) . I sometimes
need to stress that the resulting expression is simpler because knows is applied
to a shorter trace; and, once more, that this rewriting is computation.

“You see, this is the core of the Inductive Method in Isabelle, one rule to
capture Dolev-Yao, a bunch of rules for the entire formal protocol model!”.

2.9 The Basic Interaction with the Theorem Prover

With all instruments on the workbench, it is time to discuss how they can be
used practically in Isabelle. It must be noted that those instruments only form
the essentials of the Inductive Method, and that the full suite can be found
by downloading Isabelle, then inside the \src\HOL\Auth folder. Precisely, all
constituents of the Inductive Method are neatly divided into three theory files:
Message.thy , Event.thy and Public.thy . While the first two theory names are
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intuitive, the last perhaps is not fully so. In fact, it originally only contained
an axiomatisation of asymmetric, or public-key cryptography, while symmetric,
shared-key cryptography was in a separate file Shared.thy . However, Public.thy
now contains both versions, and the other file has been disposed with.

Students are now ready to download Isabelle, find these theory files and
familiarise with their contents. Depending on the available time, I may parse
the specification part of all three theories. Before continuing to the proof part, I
must introduce the fundamental proof methods, which can be applied by means
of Isabelle command apply, and outline what they do:

– simp calls the simplifier, namely the tool that applies term rewriting mean-
ingfully; for example, to operate the rewriting just discussed (Sect. 2.8), the
analyst needs to call apply (simp add:knows_Cons)

– clarify performs the obvious steps of a proof, such as applying the theorem
that deduces both p and q from p ∧ q;

– blast launches the classical reasoner, and the analyst may easily state extra
available lemmas for the reasoner to invoke;

– force combines the simplifier with the classical reasoner;
– auto is similar to force but, contrarily to all other methods, applies to the

entire proof state, namely to all subgoals to prove.

I purposely keep the discussion on the proof methods brief because I aim at
providing the students with something they can fire and see the outcome of. This
will favour their empirical assessment of the proof as it unfolds. Of course, each
method is very worth of a much deeper presentation, but this can be deferred
depending on the aim of the course module and the available time.

“And now you have commands to try and see marvellous forms of computa-
tion unfolding through a proof!”.

2.10 Proof Attempts

And finally comes the time to show students how the instruments just learned
can be used in practice over an example security protocol chosen from those
that have been treated in the Inductive Method. A good choice could be to
pick the theory for the original public-key Needham-Schröder protocol, theory
NS Public Bad.thy , which also shows how to capture Lowe’s attack.

I open the file and review the formal protocol model for the protocol. I
continue arguing that one of the main protocol goals is confidentiality and debate
how to capture it in the Inductive Method. If we aim at confidentiality of a nonce
N , we would like the attacker to be unable to deduce it from her malicious analysis
of the observation of the traffic. It means that we leverage a generic trace, then
apply knows and finally analz , and we would aim at Nonce N /∈ analz(knows Spy

evs) . After skipping on various lemmas in the file, I reach the confidentiality
theorem for the initiator’s nonce NA , quoted in Fig. 3, and there is a lot to discuss:
the preconditions of a trace of the protocol model ns public that features the
first protocol message, so as to pinpoint the nonce whose confidentiality is to
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be proved, NA ; the two involved peers assumed not to be compromised; spies

to be interpreted as a translation for knows Spy (due to backward compatibility:
Paulson originally defined spies [4], then I generalised it as knows [5]).

theorem Spy not see Na:

" [[Says A B (Crypt(pubEK B) {|Nonce NA, Agent A ]]) ∈ set evs;

A /∈ bad; B /∈ bad; evs ∈ ns public ]]
=⇒ Nonce NA /∈ analz (spies evs)"

apply (erule rev mp)

apply (erule ns public.induct, simp all, spy analz)

apply (blast dest:unique NA intro: no nonce NS1 NS2)+

done

Fig. 3. Confidentiality of the initiator’s nonce in NS Public Bad.thy

The main effort must be devoted to playing with and understanding the proof
script. The first proof method that is applied resolves the goal with rev mp , hence
I introduce it as an implementation of modus ponens with swapped precondi-
tions, then sketch the basics of resolution on the fly. Of course, I mostly leverage
the intuition behind. Suppose you want to get rich and you are so lucky as to find
a secret recipe that guarantees you that whatever you want to reach, you just
need to do a couple of things to reach it. What would you then do? You would
engage to accomplish that very couple of things. The same reasoning is imple-
mented here through the first command, which leaves us with the preconditions
of rev mp left to prove.

I then dissect the second command as a condensed syntax to apply three
proof methods. The first resolves the only subgoal currently in the proof state
with the inductive proof principle that Isabelle instantiates on the inductive
protocol definition. Isabelle builds it automatically and makes it available as a
lemma on top of any inductive definition; it is ns public.induct in this case.

Here comes the general meta strategy that, after induction, we normally
apply simplification, namely term rewriting, and then classical reasoning. This
justifies simp all , which solves the Base subgoal. And we are left facing the Fake
case, which Paulson designed a special method to solve, spy analz . It may be
safely applied as a black box for the time being, but it can be dissected, if time,
by following another article of mine [10].

The next part of the lecture explains the two lemmas that are applied by
blast , discussing the general differences between a destruction rule and an intro-
duction rule, and understanding that the + symbol reiterates the same command
on all subgoals. It is didactic to assess which subgoal really requires application
of which lemma, so that students also familiarise with forward-style reasoning.

Finally, the same argument is repeated on the confidentiality conjecture on
the responder’s nonce NB . The proof attempt for this conjecture, omitted here for
brevity, cannot be closed, and we are left with a subgoal that describes Lowe’s
attack whereby the attacker learns NB . It is normally illuminating to note how
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the prover suggests, actually teaches us, scenarios that are so peculiar that we
may not have known them by intuition. Every time such a subgoal remains, and
we decode that the reasoning cannot be taken forward, then either we need to
change line of reasoning entirely or we understand that the scenario indicates an
attack (the very attack that contradicts the conjecture).

3 General Lessons Learned and Conclusions

Formal methods are great help over innumerable application scenarios, and
the Inductive Method remains a very effective tool that may at least serve
exploratory reasoning on new systems or security goals, possibly to inspire the
subsequent implementation of ad hoc tools.

In particular, Paulson also formalised the notion of an Oops event ever since
the inception of the Inductive Method to allow and agent to arbitrarily lose a
secret to the attacker, without any particular precondition. The socio-technical
understanding of cybersecurity and privacy is a very hot area today, grounding
non-functional properties not only on technical systems such as security protocols
but also on the use that humans may make of them. I believe that the Oops event
is the unique ancestor of all recent works in this area.

The problem treated in this paper was how to transmit the above messages
to post-graduate students with an embodied preconception that they do not like
theory. While it may be obvious that the contents must be taught gently and
incrementally, what I find less obvious is to convince them that they already
somewhat used formal methods although they did not use to call them so.

Another far from obvious finding I distilled over the years towards teaching
this discipline is the critical review, brought through the creases of my decalogue,
of some useful notions they may already have. For example, induction, or just its
basics, must be understood profoundly. And the essence of functional program-
ming must be leveraged for the students’ proof experience to near their embodied
imperative programming experience. I myself insisted on teaching them.
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