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Preface

Formal methods provide software engineers with tools and techniques for rigorously
reasoning about the correctness of systems. While formal methods are being
increasingly used in industry, university curricula are not adapting at the same pace.
Some existing formal methods courses interest and challenge students, whereas others
fail to ignite student motivation. We need to find ways to teach formal methods to the
next generation, and doing so will require us to adapt our teaching to 21st-century
students.

FMTea 2019 (Formal Methods Teaching Workshop and Tutorial) was a combined
workshop and tutorial on teaching formal methods held on October 7, 2019, as part
of the Third World Congress on Formal Methods, FM 2019, in Porto, Portugal. The
event was organized by FME’s Teaching Committee whose aim is to support
worldwide improvement in teaching and learning formal methods.

The workshop received 22 regular submissions, 14 of which were selected for
publication after a single blind review in which all papers were reviewed by two
members of the Program Committee or their delegates. Additionally, an invited sub-
mission by Tony Hoare (co-written with Alexandra Mendes and João F. Ferreira) was
similarly reviewed and selected for publication bringing the total number of papers to
15.

To encourage community-building discussions on the topic of teaching formal
methods, we divided the regular presentations into three panels in which authors briefly
introduced their papers and then contributed to a lively discussion of their topic and its
alternatives together with their peers and the audience. The first two panels were on
using state-of-the-art tools for teaching program verification and program development,
respectively, while the third was on novel techniques for effectively teaching formal
methods to future formal methods scientists.

The technical program of FMTea 2019 also included three invited talks:

– a lecture by Carroll Morgan (University of New South Wales and Data61,
Australia) on his approach to, and experiences with, teaching formal methods to
undergraduate students

– a tutorial presentation by Holger Hermanns (Saarland University, Germany) on
award-winning experiences with teaching concurrency theory and concurrent
programming using pseuCo

– a tutorial presentation by Bas Luttik (Eindhoven University of Technology, The
Netherlands) on experiences with online teaching to prepare Bachelor-level students
for learning formal methods

We would like to thank all of our invited speakers for agreeing to present at our
workshop and for the exciting and inspiring ideas they brought to it.

FMTea 2019 would not have been possible without the support of the FM 2019
general chair, José Nuno Oliveira, the workshop and tutorial chairs, Nelma Moreira and



Emil Sekerinski, and the numerous people involved in the local organization of FM
2019. We are grateful for their enthusiasm and dedication. We would also like to thank
the Program Committee and reviewers for their expert opinions on the papers we
received, and of course the authors for sharing their innovative teaching practices.

Finally, we acknowledge EasyChair, which supported us in the submission and
reviewing process, as well as in generating these proceedings and the FMTea 2019
program.

August 2019 Brijesh Dongol
Luigia Petre

Graeme Smith

vi Preface
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Invited/Tutorial Lectures



Is Formal Methods Really Essential?

Carroll Morgan1,2

1 School of Computer Science and Engineering,
University of New South Wales, Australia

2 Data61, Australia

Googling Math is fun. returns close to 300 million hits.
Is that part of “the problem” for maths education? Maybe if one says so emphat-

ically that a topic is fun, it reveals actually that it needs special treatment, that it’s
optional and that students must be enticed to learn it. Of course being a full-blown
mathematician is optional—but it is self-evident that being able to deploy elementary
maths in everyday life is not optional, or at least should not be. Yet many adults cannot
do even simple arithmetic.

Perhaps Formal Methods is similar: by insisting that it’s essential, we might be
losing some of our leverage. Of course not everyone has to be a “neat” (vs. a “scruffy”).
But it is still true that an appreciation of algorithmic rigour should be compulsory for
beginning programmers, together with some idea of how to achieve it in what has
become their everyday life. Yet there are many experienced programmers who have
never heard of invariants.

So maybe there’s a place for elementary formal methods –for FM by stealth– to be
learned at the same time as one’s first-year introduction to programming: not singled
out, not separated (and certainly not labelled “formal” or “elementary”), and without
any extra prerequisites (like logic) beyond what is required for beginners already.
Teach assertions about assignments, conditionals, loops (what they establish) at the
same time, at first encounter, just as we teach already their syntax (how to write them)
and their operational aspects (what they do). And bring to that as much informal
intuition as we can muster: use hand-waving, pictures… and even flowcharts, where it
all started.

Formal Methods? Let’s not call it that: let’s call it Programming.



PSEUCO.COM

Felix Freiberger1,2 and Holger Hermanns1,3

1 Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
2 Saarbrücken Graduate School of Computer Science,
Saarland Informatics Campus, Saarbrücken, Germany
3 Institute of Intelligent Software, Guangzhou, China

Abstract. This tutorial presents PSEUCO [1], an academic programming language
designed to teach concurrent programming. The language features a heavily
simplified Java-like look and feel. It supports shared-memory as well as
message-passing concurrent programming primitives. The behaviour of
PSEUCO programs is described by a formal semantics mapping on value-passing
CCS or coloured Petri nets [2], and is made executable using compilation to
Java. PSEUCO is not only a language but an interactive experience: PSEUCO.COM
[1] provides access to a web application designed for first hands-on experiences
with CCS and with concurrent programming patterns, supported by a rich and
growing toolset. It provides an environment for students to experiment with and
understand the mechanics of the fundamental building blocks of concurrency
theory and concurrent programming based on a complete model of the program
behaviour. PSEUCO and PSEUCO.COM constitute the centerpiece of an
award-winning lecture series, mandatory for Bachelor students at Saarland
Informatics Campus.

Acknowledgments. This work was partially supported by the ERC Advanced Investigators
Grant 695614 (POWVER) and by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – project number 389792660 – TRR 248 (see https://perspicuous-
computing.science).
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Cham (2017). https://doi.org/10.1007/978-3-319-63121-9_9
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https://doi.org/10.1007/978-3-030-21571-2_16
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Efficient Online Homologation to Prepare
Students for Formal Methods Courses

Bas Luttik

Eindhoven University of Technology, The Netherlands

Abstract. At Eindhoven University of Technology, the majority of students
enrolling in our master programme on Embedded Systems have one or more
deficiencies in prerequisite bachelor-level knowledge and skills. In the past, we
tried to determine such deficiencies on the basis of application data (e.g., a
transcript of their bachelor programme), and students were then required to repair
them by including one or two bachelor courses in their study programme. This
approach was found to be both unreliable and inefficient. To improve, we have
developed an online homologation recommendation tool by which students can
determine to which extent they satisfy the prerequisites of the programme and
fully automatically get a recommendation on how to repair deficiencies. Fur-
thermore, we have developed several online self-study homologation modules.

In my talk, I will discuss my experiences with developing both the
homologation recommendation tool and the online homologation module Logic
and Set Theory, which addresses prerequisites for the mandatory formal methods
course that is part of the Embedded Systems programme. The homologation
module consists of over 50 short videoclips and a week-by-week exercise pro-
gramme. In our experience, the material successfully and efficiently prepares
master-level students for an exam of our bachelor course Logic and Set Theory.
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Tutorial Lectures



Logic, Algebra, and Geometry
at the Foundation of Computer Science

Tony Hoare1,2, Alexandra Mendes3,4, and João F. Ferreira5(B)

1 Microsoft Research, Cambridge, UK
2 Cambridge University Computing Laboratory, Cambridge, UK

3 HASLab, INESC TEC, Porto, Portugal
4 Department of Informatics, Universidade da Beira Interior, Covilhã, Portugal

5 INESC-ID & Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
joao@joaoff.com

Abstract. This paper shows by examples how the Theory of Program-
ming can be taught to first-year CS undergraduates. The only prereq-
uisite is their High School acquaintance with algebra, geometry, and
propositional calculus. The main purpose of teaching the subject is to
support practical programming assignments and projects throughout the
degree course. The aims would be to increase the student’s enjoyment of
programming, reduce the workload, and increase the prospect of success.

Keywords: Algebra · Logic · Geometry · Teaching formal methods ·
Unifying theories of programming

1 Introduction

The Theory of Programming lies at the foundation of modern development envi-
ronments for software, now widely used in industry. Computer Science graduates
who understand the rationale of programming tools, and who have experience
of their use, are urgently needed in industry to maintain the current rate of
innovations and improvements in software products installed worldwide.

We put forward the following theses:

1. The fundamental ideas of the Theory of Programming were originally formu-
lated by great philosophers, mathematicians, geometers and logicians, dating
back to antiquity.

2. These ideas can be taught as an aid to practical programming throughout
a degree course in Computer Science. The desirable initial level of Math for
first-year CS students is that of High School courses in Algebra, Geometry
and Propositional Logic.

3. The ideas should form the basis of a student-oriented Integrated Development
Environment (IDE), needed to support students in understanding require-
ments, in designing solutions, in coding programs, in testing them, and in
diagnosing and debugging their errors.

c© Springer Nature Switzerland AG 2019
B. Dongol et al. (Eds.): FMTea 2019, LNCS 11758, pp. 3–20, 2019.
https://doi.org/10.1007/978-3-030-32441-4_1
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4 T. Hoare et al.

One of the goals of this paper is to contribute to the challenge posed by
Carroll Morgan in [21]:

Invariants, assertions and static reasoning should be as self-evidently
part of the introductory Computer Science curriculum as are types, vari-
ables, control structures and I/O in the students’ very first programming
language.
Can you help to bring that about?

Paper Structure. In this paper we provide examples of material that can be
taught to first-year CS undergraduates. In Sect. 2, we introduce the underlying
concepts of algebra and logic. These are then applied to the execution of com-
puter programs: in Sect. 3 we discuss the familiar topic of sequential composition
and in Sect. 4 we move on to concurrent composition. Section 4 includes material
suitable for a more advanced and elective course in formal methods delivered at
later stage in the syllabus, where we show how two familiar and widely used theo-
ries of programming can be unified. After presenting in Sect. 5 some related work,
we conclude in Sect. 6, where we also briefly suggest directions for future work.

2 Algebra and Logic

This section introduces the underlying concepts of algebra and logic. The first
subsection is entirely elementary, but it proves some essential theorems that will
be used in later sections. The second subsection shows how familiar logical proof
rules can be derived from the algebra. The third subsection introduces spatial
and temporal reasoning about the execution of computer programs.

2.1 Boolean Algebra

Boolean Algebra, which is widely taught at the beginning
of degree courses in Mathematics and in Philosophy, is
doubly relevant in a Computer Science course, both for
Hardware Design and for Program Development.

Boolean Algebra is named for the nineteenth cen-
tury mathematician George Boole (1815–1864). His father
was a shoe-maker in Lincoln, where he attended pri-
mary school. His father died when he was aged 16, and
he became the family breadwinner, working as a school-
master. At age 25 he was running a boarding school in
Lincoln, where he was recognised as a local civic dignitary.
He learnt mathematics from books lent to him by friendly
mathematicians. At the age of 34, he was appointed as
first Professor of Mathematics at the newly founded Queen’s College in Cork.
He published a number of articles in the humanities, and wrote several math-
ematical textbooks. But he is now best known for his logical investigations of
the Laws of Thought [6], which he published in 1854 and where he proposed the
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binary algebraic operators not, and, or, and a binary comparison for predicates
as the foundation for a deductive logic of propositions.

Disjunction. Disjunction is denoted as ∨ (read as ‘or’) and satisfies three
axioms: it is associative, commutative, and idempotent. All three axioms are
illustrated in the following proof.

Theorem 1. Disjunction distributes through itself:

(p ∨ q) ∨ r = (p ∨ r) ∨ (q ∨ r)

Proof.
RHS = p ∨ (r ∨ (q ∨ r)) by associativity

= p ∨ ((q ∨ r) ∨ r) by commutativity
= p ∨ (q ∨ (r ∨ r)) by associativity
= p ∨ (q ∨ r) by idempotence
= LHS by associativity

Corollary 1. Rightward distribution (follows by commutativity).

Geometry. Geometry is recognised in Mathematics as an excellent way of gain-
ing intuition about the meaning and the validity of algebraic axioms, proofs,
conjectures, and theorems. The relevant geometric diagrams for Boolean alge-
bra are familiar as Venn diagrams. For example, Fig. 1a illustrates the Venn
diagram for disjunction.

p q

p ∨ q

(a) Disjunction: p or q

r

p

p ≤ r

(b) Comparison: r is weaker than p

Fig. 1. Venn diagrams for disjunction and comparison.

Comparison (denoted as ≤). The most important comparison operator
between terms of Boolean algebra is implication. It is written here as a sim-
ple less-than-or-equal sign (≤). It is defined simply in terms of disjunction:

p ≤ r is defined as r = p ∨ r

The comparison may be read in many ways: that p implies r, or that p is
stronger than r, or that r is weaker than p. The definition is illustrated by a
Venn diagram showing containment of the stronger left side p by the weaker
right side r (see Fig. 1b).
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Disjunction Is a Weakening Operator. An operator is defined as weakening
if its result is always weaker than both of its operands. From Theorem2 and
Corollary 2 below, we conclude that the result of disjunction is always weaker
than both of its operands. The proof of this again uses all three axioms.

Theorem 2. p ≤ p ∨ r

Proof.
p ∨ r = (p ∨ p) ∨ r by idempotence

= p ∨ (p ∨ r) by associativity

The theorem follows by definition of ≤.

Corollary 2. p ≤ r ∨ p (by commutativity)

Henceforth, we omit brackets around associative operators and proofs of the-
orems that follow by commutativity.

2.2 Deductive Logic

The axioms of algebra are restricted to single equations or comparisons between
two algebraic terms. This makes algebraic reasoning quite simple, using only
substitution of equals to deduce a new equation from two equations that have
already been proved. The price of this simplicity is that proofs can get too long
for comfort, and they can be quite difficult to find. To tackle these problems we
need more powerful techniques, which are expressed as rules of logical deduction.

The Aristotelian Syllogism. A syllogism is a form of proof rule that has been
taught for over two thousand years. It consists of two antecedents written above
a line and one consequent written below the line. This says that any proof that
contains both the antecedents can validly be extended by adding the consequent
as its next line. A well-known example of a syllogism is:

All men are animals All animals are mortal
All men are mortal

The use of syllogisms as a tool for reasoning can be dated
back to the work of the ancient Greek philosopher Aristo-
tle [32], who made a remarkable contribution to the his-
tory of human thought. He was the founder, director and
a lecturer at a private academic institution in Athens.
His lecture notes still survive. They deal with both the
sciences and the humanities, and spanned almost the full
range of human intellectual endeavour for the next two
thousand years. The first application of syllogisms was
probably in Biology, of which he is also recognised as the
founding father. They are well adapted to deducing the
consequences of his biological classifications.

A proof rule in algebra rather than biology is given in
the following theorem.



Logic, Algebra, and Geometry at the Foundation of Computer Science 7

Theorem 3 (Proof by cases).

p ≤ r q ≤ r

(p ∨ q) ≤ r

Proof. Assuming the antecedents r = p ∨ r and r = q ∨ r, we prove the conse-
quent:

r = r ∨ r by idempotence
= (p ∨ r) ∨ (q ∨ r) by substitution for each r
= (p ∨ q) ∨ r by Theorem 1

The conclusion follows by definition of ≤.

In this proof, the assumption of the antecedents of the rule is justified by the
general embargo which forbids use of the rule until the antecedents have already
been proved.

A validated proof rule can also be used backwards to suggest a structure
and strategy for a proof of a desired conjecture which matches the conclusion of
the rule. Then the task of proof can be split into subtasks, one for each of the
antecedents. Success of this strategy requires that each antecedent is in some
way simpler than the conclusion. For example in the rule for proof by cases, the
conclusion has a disjunction p ∨ q where the antecedents only contain a single
operand, either p or q. The backward use is widely adopted in the search for
proofs by computer.

Partial Orders. The well-known properties of an ordering in mathematics are
usually defined by means of proof rules. The rules shown in the proof of Theo-
rem 4 define the concept of a partial order. Each rule is proved by only one of
the three axioms of disjunction. The first line shows how an axiom itself can be
written as the consequent of a proof rule with no antecedents.

Theorem 4. Comparison (≤) is a partial order.

Proof. Comparison is:

reflexive: p ≤ p (by idempotence)

transitive:
p ≤ q q ≤ r

p ≤ r
(by associativity)

antisymmetric:
p ≤ q q ≤ p

p = q (by commutativity)

Covariance (Monotonicity) of Disjunction. Covariance is the property
of an operator that if either of its operands is strengthened, its result is also
strengthened (or stays the same). Such an operator is said to respect the ordering
of its operands. Covariance justifies the use of the comparison operator ≤ for
substitution of one formula in another, just like the familiar rule of substitution
of equals.
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Theorem 5. Disjunction is covariant (monotonic) with respect to ≤, that is:

p ≤ q

p ∨ r ≤ q ∨ r

Proof. From the antecedent, transitivity of ≤, and weakening of disjunction, we
have:

p ≤ q ≤ q ∨ r and r ≤ q ∨ r

The consequent follows by the proof rule by cases.

Covariance is also a formal statement of a common principle of engineering
reasoning. Suppose you replace a component in a product by one that has the
same behaviour, but is claimed to be more reliable. The principle says that the
product as a whole will be made more reliable by the replacement; or at least
it will remain equally reliable. If the product is found in use to be less reliable
than it was before the replacement, then the claimed extra reliability of the
component is disproved.

2.3 Spatio-Temporal Logic

A theorem of Boolean algebra is used to state an universal truth, which remains
true everywhere and forever. The ideas of temporal logic were explored by Aris-
totle and his successors, for reasoning about what may be true only during a
certain interval of time (its duration), and in a certain area of space (its extent).
A proposition describes all significant events occurring within its given duration
and within its given extent. However, the logic does not allow any mention of a
numeric measurement of the instant time or the point in space at which an event
occurs. Thus a proposition in the logic can be true of many different regions of
space and time.

Temporal logic was widely explored by philosophers
and theologians in the middle ages. William of Occam
(1287–1347), a Franciscan friar studying philosophy at
Oxford, is considered to be one of the major figures
of medieval thought. Unfortunately he got involved in
church politics. He antagonised the pope in Rome, and
was excommunicated from the Church in 1328. This was
believed to condemn him to an eternity in hell. Fortu-
nately, he was reprieved thirty years later. Occam’s book
on Logic, Summa Logicae (1323) included familiar oper-
ators of Boolean Algebra, augmented by operators that
apply to propositions of spatial and temporal logic [25].
They include sequential composition p then q, written
here with semicolon (p; q), and p while q, written here with a single vertical
bar (p | q).

Geometric Diagrams. The propositions of Occam’s spatio-temporal logic are
best illustrated by two-dimensional geometric diagrams, with one axis repre-
senting time and the other representing space. As shown in Fig. 2a, the region



Logic, Algebra, and Geometry at the Foundation of Computer Science 9

described by a proposition p is represented by a rectangular box with the name
p written in the top left corner. The box contains a finite set of discrete points,
representing all the events that occurred in the region. The horizontal edges
of the box represent the interval of time within which those events occur. The
vertical edges represent the locations in space where the events occur. Figure 2b
illustrates these two dimensions.

In Cartesian plane geometry, each point lies at the intersection of a vertical
coordinate, shown here in gray, and a horizontal coordinate shown as a black
arrow (Fig. 2b). Each point can therefore be identified by a pairing of a horizontal
coordinate with a vertical coordinate. But the geometry shown here differs from
this in that not all coordinate positions are occupied by a point. This is because
in the description of the real world many or most coordinates are occupied by no
event. Our diagrams are comparable to the output of a multiple pen recorder,
for example the seismograms of geology and the cardiograms. Each horizontal
line is the output of a single pen recording the value given by sensors in different
locations. The events record significant changes in the value of the sensor.

In computer applications, the horizontal lines stand uniquely for a variable
held in the memory of the computer. The events on a line represent assignments
of potentially new values to the variables. The vertical lines are often drawn
in later to explain a group of significant changes made simultaneously in many
variables.

The sequential composition of p and q, denoted as p;q, starts with the start of
p and ends with the end of q. Furthermore, q starts only when p ends. Figure 3a
shows a diagram of the sequential composition of p and q. As before, the box is
named by the term written in the top left corner. Every event in the composition
is inside exactly one of the two operands. The vertical line between p and q is
shared by both of them. It shows that time intervals of the two operands are
immediately adjacent in time. The interval for the result is the set union of the
interval for p and the interval for q .

The boxes with dotted edges at the corners of the p; q contain no events. They
are padding, needed to draw the result of composition as a box. To represent
this padding we introduce an algebraic constant

�
, read as ‘skip’.

interval in time

ex
te

nt
 in

 s
pa

ce p

(a) Region describing p, with points
representing events.

events

locations

instants

(b) Events occur within an interval in a
given location in space.

Fig. 2. Propositions as two-dimensional geometric diagrams.
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time

sp
ac

e
p;q

p

q

(a) Sequential composition.

time

sp
ac

e

p|q

p

q

(b) Concurrent composition.

Fig. 3. Spatio-temporal diagrams for sequential composition and concurrent
composition.

The concurrent composition of p and q, denoted as p | q and read as p while q ,
starts with the start of both p and q and ends with the end of both of them. Its
duration is the maximum of their durations. Figure 3b shows a diagram of the
concurrent composition of p and q. Its extent in space is the disjoint union of
the extents of the operands. This means that no location can be shared by the
concurrent components This embargo is the characteristic of O’Hearn’s separa-
tion logic [23,24,30], which protects against the well-known problem of races in
concurrent programs.

3 Sequential Composition

The algebraic axioms for sequential composition are:

– Sequential composition is associative and has the unit
�

– Sequential composition distributes through disjunction (both leftward and
rightward):

p; (q ∨ q′) = p; q ∨ p; q′ and (q ∨ q′); p = q; p ∨ q′; p

Distribution justifies giving sequential composition a stronger precedence than
disjunction. The associativity of sequential composition is evident from its dia-
gram, and so is the unit law.

We now show how the algebraic axioms can be used to prove some rules.

Theorem 6 (Proof rule for sequential composition).

p; q ≤ m m; r ≤ t

p; q; r ≤ t

Proof. Assuming the antecedents (1) m = p; q ∨ m and (2) t = m ; r ∨ t, we
prove the consequent:

t = (p; q ∨ m) ; r ∨ t substitute (1) in (2)
t = p; q; r ∨ (m; r ∨ t) ; distributes through ∨
t = p; q; r ∨ t substitute back by (2)
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This proof rule is used for decomposing its consequent into two parts, each
of which has only three operands instead of four. Each antecedent is in this way
simpler than the consequent, whose proof can therefore be constructed by divide
and conquer.

Rules of Consequence. The following corollaries are a consequence of Theorem
6.

Corollary 3.
p ≤ m m; r ≤ t

p; r ≤ t

Corollary 4.
p; q ≤ m m ≤ t

p; q ≤ t

Proof. Corollary 3: by substitution of q by
�

. Corollary 4: by substitution of r
by

�
.

3.1 Hoare Triples

Consider the proposition p; q ≤ r. It means that if p describes the interval from
the start of r to the start of q, and q describes the interval from the end of p to
the end of r, then r correctly describes the whole of p; q. This is the intended
meaning of the Hoare triple [14]. Therefore, we define:

{p} q {r} def= p; q ≤ r

This definition allows p and r to be arbitrary programs—a generalisation
of the original formulation of Hoare logic, in which p and r are required to be
assertions.

3.2 Verification Rules for Sequential Composition

By substitution of the definition of triple into the proof rule for sequential com-
position (Theorem 6), we obtain the Hoare rule for sequential composition:

{p} q {m} {m} r {t}
{p} q ; r {t}

From Corollaries 3 and 4, we obtain the Hoare Rules of Consequence:

p ≤ m {m} r {t}
{p} r {t}

{p} q {m} m ≤ t

{p} q {t}
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3.3 Milner Transition

Robin Milner defined CCS [19], a theory of programming which is now widely
used in specifying how an implementation should generate a single execution
of a given program r. The Milner transition defined here, and denoted r

p−→ q,
states that r can be executed by executing p first, saving q as a continuation for
subsequent execution. (Other executions may begin with an initial step different
from p). But this is exactly the meaning of the same comparison that we used
to define the Hoare triple. We thus define:

r
p−→ q

def= p; q ≤ r

Thus the two calculi are identical, and all theorems of one can be translated
letter by letter from the corresponding theorem of the other. For example, in
Milner’s notation the rule for sequential composition and its corollaries are

r
p−→ m m

q−→ t

r
p;q−−→ t

m ≤ r m
q−→ t

r
q−→ t

r
p−→ m t ≤ m

r
p−→ t

These corollaries play the role of the structural equivalence, which Milner
introduced into the definition of concurrent programming languages (with ≡
replaced by ≤) [20].

4 Concurrent Composition

Concurrent composition has the same laws as sequential composition. An addi-
tional interchange axiom permits a concurrent program to be executed sequen-
tially by interleaving. The algebraic axioms are:

– Concurrent composition is associative and has unit
�

– Concurrent composition distributes through disjunction
– Interchange axiom: (p | q); (p′ | q′) ≤ (p; p′) | (q; q′)

We omit the commonly cited commutativity law for concurrency since it can be
introduced later, whenever needed. The interchange law gets its name because it
interchanges operators and variables when passing from one side of the compar-
ison to the other. Note how the RHS and LHS differ by interchange of operators
(; interchanged with |) and of operands (p′ with q).
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4.1 Interchange

The two following elementary corollaries of interchange show that a concurrent
composition can be strengthened by sequential execution of its operands in either
order:

p; q′ ≤ p | q′ by interchange with p′ = q =
�

q; p′ ≤ p′ | q similarly, with q′ = p =
�

From these two properties and the proof rule by cases, we obtain:

p; q ∨ q; p ≤ p | q

This means that concurrent composition is weaker than the disjunction of these
alternative orderings. We will now show by example that the interchange law
generalises this interleaving to operands containing any number of operators.

We start with what are known as small interchange laws.

Theorem 7 (Small interchange laws).

p; (p′ | q′) ≤ (p; p′) | q′ q =
�

q; (p′ | q′) ≤ p′ | (q; q′) p =
�

(p | q); q′ ≤ p | (q; q′) p′ =
�

(p | q); p′ ≤ (p; p′) | q q′ =
�

Proof. All four are proved from the interchange axiom, by substitution of
�

for
a different variable.

The above six corollaries are called frame laws in separation logic. They
adapt the interchange law to cases with just two or three operands. Successive
application of the frame laws can strengthen any term with two or three operands
to a form not containing any concurrency. The following is an example derivation:

p; q; q′ ≤ (p | q); q′ ≤ p | (q; q′)

4.2 Basic Principle of Concurrent Programming

We now show how to interleave longer strings. Let x, y, z, w, a, b, c, d be characters
representing single events. Let us omit “;” in strings except for emphasis. Thus:

xyzw = x; y; z;w

The interchange law itself extends this principle to arbitrary terms, with many
concurrent compositions, as the following example shows:

abcd | xyzw is the RHS of interchange

≥ ( a; bcd ) | (xy; zw) associativity (twice)

≥ ( a | xy); ( bcd | zw) interchange

≥ ( a | x; y); ( b; cd | zw) associativity (twice)

≥ ( a | x); y; ( b | zw); cd frame laws (twice)

≥ x a yz b w cd similarly
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In the first line of this derivation, the characters of the left operand of con-
currency have been highlighted; and the same characters are highlighted in sub-
sequent lines. This conveys the important intuition that the order of characters
in each sequential substring is preserved throughout. The same applies to the
original right operand. Furthermore, each line splits some of the substrings of
the previous line into two substrings. When all the highlighted substrings are of
length 1, the first corollary can eliminate the concurrency. This shows that any
chain of calculation using the interchange law must terminate.

A basic principle of concurrent programming states that every concurrent
program can be simulated by a sequential program. Without this principle, it
would have been impossible to exploit concurrency in general-purpose libraries
and class declarations. The principle was proved for Turing machines by the
design of a normal sequential Turing machine that could interpret any program
run by multiple machines [27]. Our result is that any concurrent program can
be translated by algebraic transformations for execution by a purely sequential
machine. A direct algebraic proof is much simpler than a proof by interpretation.
The result is also more useful because it can be applied to arbitrary sub-terms
of a term. Thus the explosive increase in length of most reductions to normal
form can generally be avoided.

4.3 Unifying Theories of Concurrency

The basic concurrency rule of separation logic was formulated by Peter O’Hearn
in Hoare Logic. When translated to our algebraic notation it gives the following
proof rule.

Interchange Rule (O’Hearn).

p; q ≤ r p′; q′ ≤ r′

(p | p′); (q | q′) ≤ (r | r′)

His frame rule similarly translates to one of the frame laws of Theorem 7.
Just as the sequential rule is derived from the sequential axioms in Sect. 3,

the Interchange Rule is derivable from the Interchange Axiom.

Theorem 8. The Interchange Axiom implies the Interchange Rule.

Proof. Assume the antecedents of the interchange rule:

p; q ≤ r and p′; q′ ≤ r′
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(p | p′); (q | q′) ≤ (p; q) | (p′; q′) Covariance of | twice:

(p; q) | (p′; q′) ≤ (r | r′)
and transitivity of ≤

(p | p′); (q | q′) ≤ (r | r′)

Conclusion:
p; q ≤ r p′; q′ ≤ r′

(p | p′); (q | q′) ≤ (r | r′)
the interchange rule

Surprisingly, the implication also holds in the reverse direction.

Theorem 9. The Interchange Rule implies the Interchange Axiom.

Proof. We start by assuming the interchange rule. Since it is a general rule, we
can replace consistently all occurrences of each of its variables by anything we
like.

p; q ≤ r p′; q′ ≤ r′

(p | p′); (q | q′) ≤ (r | r′) replace r by p; q

and r′ by p′; q′

p; q ≤ p; q p′; q′ ≤ p′; q′

(p | p′); (q | q′) ≤ (p; q | p′; q′) both antecedents are true
by reflexivity of ≤

Conclusion: (p | p′); (q | q′) ≤ (p; q) | (p′; q′) the interchange axiom

Summary . We have extended to concurrency the unification between Hoare
Triples and Milner Transitions that was achieved for sequentiality in Sect. 3.

Theorem 10. The following three rules are logically equivalent.

p; q ≤ r p′; q′ ≤ r′

(p | p′); (q | q′) ≤ (r | r′)
The Interchange Rule

{p} q {r} {p′} q′ {r′}
{(p | p′)} q | q′ {(r | r′)} Translated to Hoare Triples

r
p−→ q r′ p′

−→ q′

(r | r′)
(p|p′)−−−→ (q | q′)

Translated to Milner transitions
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The third rule is just the rule for concurrency in Milner’s CCS, as formulated
in the so-called ‘big-step’ version of operational semantics. It is interpreted as
stating:

To execute a concurrent composition of two sequential operands, split each
operand into two sequential parts. Then start by executing the first part of
both operands concurrently, and conclude by executing the second parts.

The unification of two widely accepted theories of programming is presented
as strong evidence that our algebraic axioms are actually applicable to familiar
programming languages implemented on computers of the present day. Many
interpreters and compilers for programming languages are specified by an oper-
ational semantics expressed as Milner Transitions. Most program analysers and
proof tools for sequential languages follow a verification semantics expressed as
Hoare Triples. Many papers in the Theory of Programming prove the consis-
tency between these two ‘rival’ theories for particular languages. Algebra unifies
the theories, by proofs which could be understood or even discovered (under
guidance) by CS students in their practical programming courses.

5 Related Work

This section surveys evidence for the validity of the three theses listed in the
Introduction.

1. The biographies in this paper of Aristotle, Boole, and Occam are only a small
selection of those who have contributed to the basic ideas of Computer Sci-
ence, long before computers were available to put them into practice. Further
examples are Euclid and Descartes for Geometry, Al-Khawarismi and Leibniz
for Algebra, and Russel and Gödel for Logic. Their biographies may be found
in Wikipedia. More recent pioneers are treated in [8].

2. Considerable experience has been accumulated of the effectiveness of teaching
the Theory of Programming as part of practical degree courses in Computer
Science. For example, in [29], the authors show how teaching concurrency and
verification together can reinforce each other and enable deeper understand-
ing and application. They suggest that concurrency should be taught as early
as possible and they introduce a new workflow methodology that is based on
existing concurrency models (CSP, π-calculus), on the model checker FDR
that generates counter-example traces that show causes of errors, and on
programming languages/libraries (occam-π, Go, JCSP, ProcessJ) that allow
executable systems within these models.
Another interesting example is the experimental course in “(In-)Formal Meth-
ods” [21], where invariants, assertions, and static reasoning are introduced.
The author argues that the ideal place for an informal-methods course is the
second half of first year, because at that point students already understand
that “programming is easy, but programming correctly is very hard”.



Logic, Algebra, and Geometry at the Foundation of Computer Science 17

Further proposals to introduce invariants and assertions as part of the intro-
ductory Computer Science curriculum, even at pre-university level, are pre-
sented in [10] and [11]. In [10], a programme focused on algorithmic problem
solving and calculational reasoning is proposed. In [11], an experiment is pre-
sented where students specify algorithmic problems in Alloy [17] and reason
about problems in an algebraic and calculational way. It has been argued that
students seem to prefer and understand better calculational proofs [9]. Calcu-
lational proofs are commonly used in the functional programming community
to demonstrate algorithm correctness [4,16]. Recent tool support shows that
this style can have impact in practical functional programming [33]. An appli-
cation of relational calculation to software verification is presented in [26],
illustrated with a case study on developing a reliable FLASH filesystem for
in-flight software. It combines the pragmatism of Alloy [17] with the Algebra
of Programming presented in [5].

3. The introduction of formal methods in practical programming has acceler-
ated in recent years. Regarding practical verification, there have been sev-
eral attempts at building languages and systems that support verification,
providing the ability to specify preconditions, postconditions, assertions, and
invariants. ESC/Java [12] and Spec# [3] build on existing languages, Java and
C#, respectively. Dafny [18] is a programming language with built-in speci-
fication constructs. The Dafny static program verifier can be used to verify
the functional correctness of programs. Dafny has been extensively used in
teaching. Whiley [28] is a programming language designed from scratch in
conjunction with a verifying compiler. SOCOS [2] is a programming environ-
ment that applies Invariant Based Programming [1], a visual and practical
program construction and verification methodology. The Java+ITP [31] was
used as a teaching tool at the University of Illinois at Urbana-Champaign to
teach graduate students and seniors the essential ideas of algebraic semantics
and Hoare logic. A recent case of success in industry is Infer1 [7], a static
analyzer based on separation logic [30] adopted and being developed by Face-
book. Infer has been used in a 4th-year MEng and MSc course on separation
logic at the Department of Computing, Imperial College London2.

6 Conclusion

We hope that this article has contributed to the challenge posed by Carroll
Morgan that we mentioned in the Introduction. We also hope to have made
the case that current achievements in teaching sequential programming can be
extended to concurrent programming.

1 Infer static analyzer website: https://fbinfer.com.
2 Course link: https://vtss.doc.ic.ac.uk/teaching/InferLab.html.

https://fbinfer.com
https://vtss.doc.ic.ac.uk/teaching/InferLab.html
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The theory has been further extended to object oriented programming in
[15]. These extensions will require new textbooks and extension and combination
of existing tools. The creation of an environment that effectively combines the
experience and tools already available is an open challenge. Ideally, the environ-
ment should allow students to work at different levels of abstraction and should
unify interfaces and techniques from existing tools, such as Alloy Analyzer [17]
and Isabelle/UTP [13]. Since this environment is to be used in a teaching envi-
ronment, we do not have the problem of scale; however, feedback must be given
quickly to students (and preferably in a graphical form). The approach described
in [29] is an excellent example of how a model-checker for concurrency can be
integrated with a testing tool. We believe it would be fruitful if tool-builders
and users adopted a similar approach, integrating their tools and ideas into this
system and other rival verification platforms. Tools such as the theorem prover
Lean [22] seem to provide a promising basis for further developments.
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Abstract. Deductive verification of software is a formal method that is
usually taught in Computer Science curriculum. But how can students
with no strong background in Computer Science be exposed to such a
technique? We present in this paper two experiments made at ISAE-
SUPAERO, an engineering program focusing on aerospace industry. The
first one is a classic lecture introducing deductive methods through the
Frama-C platform or the SPARK programming language. The second
one is the production by two undergraduate students of a complete guide
on how to prove complex algorithms with SPARK. Both experiments
showed that students with no previous knowledge of formal methods nor
theoretical Computer Science may learn deductive methods efficiently
with bottom-up approaches in which they are quickly confronted to tools
and practical sessions.

1 Introduction

Formal methods are usually taught in Computer Science curriculum where stu-
dents have a good background in theoretical Computer Science. But how to
teach formal methods in a more “hostile” environment, for instance where stu-
dents only have a minimal background in Computer Science? ISAE-SUPAERO
engineering program is such an environment, as students are exposed to a small
amount of hours in Computer Science and almost nothing in theoretical Com-
puter Science.

However, as ISAE-SUPAERO is mainly oriented to aerospace industry, we
think that introducing formal methods is crucial, at least for students choosing
the Critical Systems final year major. In order to do so, we have first introduced a
classic course in this major with two tracks on deductive verification: one using
Frama-C and its plugin WP to verify C programs and another one using the
SPARK programming language and its associated tool GNATProve. These two
tracks are taught with different educational methods. The first one uses a classic
top-down approach with theory on deductive verification presented before using
c© Springer Nature Switzerland AG 2019
B. Dongol et al. (Eds.): FMTea 2019, LNCS 11758, pp. 23–36, 2019.
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tools, whereas the second one uses a bottom-up approach in which students uses
SPARK from the beginning of the course and prove more and more complex
properties on their programs.

We have also asked two undergraduate students to develop a complete guide
on how to use SPARK to prove classic Computer Science algorithms (algorithms
on arrays, binary heaps, sorting algorithms). This is inspired by ACSL by Exam-
ple, a similar guide developed for the ACSL specification language for C pro-
grams, hence the name of our guide, SPARK by Example. The development
of SPARK by Example showed us some pitfalls and difficulties encountered by
beginners and we hope that the resulting document may help to understand how
to specify and prove SPARK programs.

This paper is organized as follows. Section 2 presents ISAE-SUPAERO engi-
neering program and why it is difficult to teach formal methods in this context.
Section 3 presents a last year course on formal methods and focuses on tracks on
deductive verification through Frama-C and SPARK. Section 4 presents SPARK
by Example, a complete guide on how to prove 50 algorithms taken from the
C++ STL. Finally, Sect. 5 is dedicated to conclusion and perspectives.

2 Why Is It Difficult to Teach Formal Methods
at ISAE-SUPAERO?

2.1 The ISAE-SUPAERO Engineering Program

ISAE-SUPAERO is one of the leading French “Grandes Écoles” and is mostly
dedicated to the aerospace industrial sector even if half of its students begin
their career in other domains (research, energy, bank, IT, . . . ). Before entering
ISAE-SUPAERO, students are selected through a national competitive exam for
which they attend preparatory classes during two years. The ISAE-SUPAERO
engineering program [14] is a three-year program during which students acquire
common scientific and non-scientific background on aerospace industry and also
choose elective courses to prepare themselves for their career. The three years
are split into 6 semesters whose content is presented on table 1.

Table 1. Content of semesters in ISAE-SUPAERO engineering program

Semester Content

S1 Common core

S2 Elective courses & projects

S3 Common core

S4 Elective courses & projects

S5 Field of application (140 h) & Major of expertise (240 h)

Figure 1 show the ratio of Computer Science oriented courses in the S1 and
S3 common core courses. There are only three Computer Science courses:
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– A 40 h course on Algorithm and Programming in S1. This course focuses
on basic algorithms, classic data structures (linked lists, binary search trees,
graphs) and C is the associated programming language. No formal meth-
ods are discussed during the lecture, but algebraic specifications are used to
specify data structures.

– A 40 h course on Object-Oriented Design and Programming in S3, focusing
on object-oriented design principles and programming in Java.

– A 10 h course on Integer Linear Programming in S3 during which complexity
theory is tackled up to NP-completeness.

Common core S1 (600h)

CS

scientific

hum.

management

projects

Common core S3 (500h)

CS

scientific

hum.

management

Fig. 1. Computer science part in S1 and S3 semesters

S2 and S4 are mainly dedicated to 30-h elective courses and some of them
are Computer Science oriented, e.g. courses on functional and logic program-
ming languages, implementation of control software in C or avionics architecture.
However, none of the proposed course provides the students theoretical founda-
tions of Computer Science nor formal methods.

The Computer Science, Telecommunications and Networks major of expertise
in S5 have a Computer Science 240-h track mainly oriented towards Critical
Systems Architecture. This tracks is composed of 6 courses presented on Table 2.
The Model-Based Engineering course is composed of two parts: a 38-h part on
SysML and SCADE and a 17-h part on formal methods.

2.2 The Challenges

In order to expose the students of the Critical Systems Architecture major to
formal methods, we face several challenges:

– First, we cannot rely on elective courses proposed during S2 and S4 as the
program does not enforce specific elective courses for each S5 major. We can
only suppose that the students have been exposed to the 90 h of Computer
Science courses in the common core, mainly on programming.

– Even if the scientific common core in S1 and S3 is rather large, non Computer
Science scientific courses mainly rely on continuous mathematics, which are
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Table 2. The courses of the critical systems architecture major

Course Title Volume

FITR301 Network and computer architecture 40 h

FITR302 Security 24 h

FITR303 Real-time systems 65 h

FITR304 Model-based engineering 55 h

FITR305 Distributed systems 35 h

FITR306 Conferences 21 h

not necessarily useful for formal methods. Particularly, students lack back-
ground on mathematical logic, calculability theory, programming languages
semantics etc. On the other hand, students having attended the preparatory
courses have a strong background in “classic” mathematics and are comfort-
able with mathematical proofs.

– There is only a 17-h slot in S5 to expose students to formal methods.

2.3 Why Teaching Formal Methods at ISAE-SUPAERO?

Given these pitfalls, one can wonder why teaching formal methods at ISAE-
SUPAERO, particularly with a 17-h slot? We identify two points that justify
this decision:

– As the main industrial sector of SUPAERO is aerospace, an introduction to
formal methods seems legitimate, particularly for the students attending the
Critical Systems Architecture major.

– Formal methods give more visibility to Computer Science as a science.
As most students are exposed to Computer Science through programming
courses, a non negligible part of them sees Computer Science as a technology,
not a science. Notice that we do not consider programming as an minor part
of a Computer Science curriculum, but it should not be the only one.

3 Introducing Formal Methods in 17 h

Instead of designing a course in which students are exposed to several formal
methods, we decided to give students a brief introduction on the subject and
then let them choose to learn a particular formal method through a dedicated
track. As there are about 16 students in the major, this means that each track
will be followed by 4 students. The tracks are the following:

– A track on model-checking through LTL and CTL, in which students model
a system and prove some temporal properties on it
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– A track on abstract interpretation, in which students implement an abstract
interpreter on a tiny imperative language

– A track on deductive methods using SPARK
– A track on deductive methods using Frama-C.

The 17 h are divided as follows:

1. A 2-h introduction lecture during which we present what are formal meth-
ods, and what are their industrial uses. A small introduction to programming
languages semantics is also done through a toy imperative language via deno-
tational, operational and axiomatic semantics.

2. Each track has then six 2-h sessions to work on the corresponding technique.
These sessions mix theoretical concepts and practical exercices.

3. Each track evaluates its students through a group project.
4. Each students group has then 30 min to present to the other groups the prin-

ciples of the method they used, their results, the difficulties they encounter
etc.

5. A 2-h industrial feedback is then done on how (aerospace) industry uses
formal methods.

In the following, we will focus on the two tracks on deductive methods,
particularly because they use two different pedagogical approaches.

3.1 Deductive Verification with Frama-C and SPARK

Deductive verification of programs is a formal method or technique that trans-
lates the problem of verifying a program annotated by assertions, invariants and
contracts to the satisfiability problem of a particular mathematical logic formu-
las. Deductive verification relies on early work by Hoare [13], Floyd [12] and
Dijkstra [9]. We are using two platforms for deductive verification:

– The Frama-C platform [16] with its WP plugin for deductive verification and
the ACSL specification language [6]. Frama-C is dedicated to the analysis of
C programs.

– The SPARK language [4] with its associated tool GNATProve. SPARK is a
subset of the Ada programming language targeting formal verification.

3.2 A Top-Down Approach with Frama-C

The Frama-C track is built on a classic top-down approach: the students are first
exposed to theory and then use the Frama-C tool. The first 2 h are dedicated
to proof theory, particularly on formal systems for propositional and first-order
logics. Floyd-Hoare logic is then presented and an introduction to weakest pre-
condition calculus is done in 2 h. Students have then to manually annotate small
imperative programs (e.g. factorial, euclidian division, greatest common divisor)
to understand how weakest precondition works. Let us take for instance a facto-
rial algorithm represented on Listing 1.1. The students have to discover the loop
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invariant and variants for the while loop and then use Floyd-Hoare logic rules to
annotate each line of the program with assertions about memory. These small
exercises are rather useful as they show the students that most of the assertions
can be computed automatically, that proof obligations need to reason with par-
ticular theories in order to be discharged and that invariants are crucial to prove
the expected postconditions but are sometimes difficult to find.

Listing 1.1. A simple imperative program computing factorial
{N ≥ 0}
K := 0
F := 1
while (K �= N) do

K := K + 1 ;
F := F ∗ K

od
{F = N !}

The next 3 sessions are dedicated to a presentation of the Frama-C platform
and its WP plugin for deductive verification. The exposure to Frama-C and
ACSL is done gradually through small C programs that students have to prove or
for which specifications are incomplete or wrong and that students have to debug.
For instance, Listing 1.2 presents the previous factorial algorithm written in C
with an axiomatic for factorial. Pointers are also tackled, particularly memory
separation, which is more difficult.

Listing 1.2. A C program computing factorial
/∗@ axiomat ic f a c t o r i a l {

@ pred i c a t e i s f a c t ( i n t e g e r n , i n t e g e r r ) ;
@ axiom zero :
@ i s f a c t (0 , 1 ) ;
@ axiom succ :
@ \ f o r a l l i n t e g e r n , i n t e g e r f ;
@ n>0 ==> i s f a c t (n−1, f ) ==> i s f a c t (n , f ∗n ) ;
@
@ l o g i c i n t e g e r f a c t ( i n t e g e r i ) ;
@ axiom fa c t 1 : \ f o r a l l i n t e g e r n ;
@ i s f a c t (n , f a c t (n ) ) ;
@ axiom fa c t 2 : \ f o r a l l i n t e g e r n , i n t e g e r f ;
@ i s f a c t (n , f ) ==> f == f a c t (n ) ;
@ }
@∗/

int f a c t o r i a l ( int n) {
int k = 1 ;
int f = 1 ;
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while ( k <= n) {
f = f ∗ k ;
k = k + 1 ;

}

return f ;
}

The project the students have to work on is rather classic: it consists in
specifying, implementing and proving a small library on strings consisting of
three functions:

int s t r l e n ( const char ∗ s t r ) ;
void s t r s ub s t r i n g (char ∗dst , const char ∗ src ,

int s ta r t , int l ength ) ;
void strappend (char ∗dst , const char ∗ s r c ) ;

3.3 A Bottom-Up Approach with SPARK

The track on deductive methods with SPARK is guided by a different method-
ology proposed by [5]. This approach is based on different levels of verification
applied to SPARK code. The students are gradually exposed to the SPARK
language and associated tools:

– On stone level, students have to write valid SPARK code. As a subset of the
Ada language, SPARK has some limitations compared to Ada. As students
have not been exposed to Ada programming before this course, attaining
stone level is just learning a new language syntax and rational for them.

– In order to validate bronze level, SPARK programs must be such that there
is no uninitialized variables nor interferences between parameters nor global
variables.

– Silver level corresponds to Absence of RunTime Errors (AoRTE). These errors
are typically overflows or underflows on integers, or accesses outside the range
of an array. In order to validate SPARK programs on the silver level, students
have to add preconditions to their functions, e.g. to restrict the possible value
of a parameter to avoid possible overflows. They also have to write postcondi-
tions when several functions are interacting and are thus initiated to modular
proof.
A typical exercise is to specify a simple stack implementing with an array
and offering Initialize , Push and Pop functions. Of course, manipulating an
array may lead to illegal accesses, and the students have to add preconditions
and postconditions to avoid them.

– Finally, gold level corresponds to functional correctness of SPARK programs.
In order to prove that a program is correct, students have to understand
how to write more complex contracts for functions and to add invariants
and variants if some functions include loops through simple exercises. For
instance, Listing 1.3 presents a Find Int Sqrt function implementing integer
square root algorithm for which the students had to find a loop invariant.
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Listing 1.3. A SPARK program computing integer square root
function Find In t Sqr t (N : in Natural ) return Natural
i s

Lower , Upper , Middle : Natural ;
Maximum Root : constant Natural := 46341 ;

begin
Lower := 0 ;

i f N >= Maximum Root then
Upper := Maximum Root ;

else
Upper := N + 1 ;

end i f ;

loop
−− Add a pragma Loop Invar iant and a
−− pragma Loop Variant here .

exit when Lower + 1 = Upper ;
Middle := (Lower + Upper ) / 2 ;
i f Middle ∗ Middle > N then

Upper := Middle ;
else

Lower := Middle ;
end i f ;

end loop ;
return Lower ;

end Find In t Sqr t ;

The project proposed to the students was to prove a small part of the
Ada.Strings.Fixed GNAT standard library. This library consists in functions
and procedures manipulating fixed size strings. For instance, the Index func-
tion shown on listing 1.4 searches for the first or last occurrence of any of a set
characters, or any of the complement of a set of characters.

Listing 1.4. The index function from the GNAT standard library
function Index

( Source : S t r ing ;
Set : Maps . Character Set ;
Test : Membership := In s i d e ;
Going : D i r e c t i on := Forward ) return Natural ;

Students were given 12 functions with their complete implementation and
some specification written in natural language. They had to formally specify
and prove these 12 functions.
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3.4 Comparison of Both Approaches

First, let us notice that both groups of students manage to complete the assigned
projects. Even if there were more functions to specify and prove in the SPARK
project, the C functions used pointers as parameters, which was difficult to
handle for students (particularly the problem of memory separation and the
amount of specification needed to prove programs using pointers).

Of course, a top-down approach in such a small amount of time is not efficient.
Starting from theory, particularly proof theory, takes a lot of time and there
is not enough time to manipulate Frama-C. On the contrary, the bottom-up
approach chosen for the SPARK track was more efficient: hands-on session from
the beginning of the track is clearly an advantage as students immediately see the
benefits of deductive verification on one particular aspect (control flow, AoRTE,
functional correctness). Student presentations also shown that students having
attended the SPARK track had more hindsight than the ones having attended
the Frama-C track.

Finally, notice that the comparison between both approaches may be biased
as C is a more difficult language than SPARK, particularly when using pointers.

4 The SPARK by Example Experiment: Learning
from Examples

4.1 What Is SPARK by Example?

When wanting to learn to prove C programs using Frama-C and the WP plugin,
ACSL by Example [7] is a good entry point. ACSL by Example is a booklet
presenting how to prove with Frama-C more than 50 algorithms extracted from
the C++ Standard Template Library (STL) [18,19]. Each algorithm in ACSL by
Example comes with detailed explanations on how to specify it, how to prove it
and what possibly are the lemmas needed for the proof. It is therefore a good
companion for who wants to learn deductive methods with Frama-C and ACSL.

Even if some interactive learning tools for SPARK have been developed
recently [1,2]) and good learning material is already available [3,15], we thought
that a “recipe” document in the spirit of ACSL by Example was lacking for the
SPARK community. Léo Creuse and Joffrey Huget were two second year stu-
dents willing to learn formal methods during their S4 at ISAE-SUPAERO. We
asked them to produce SPARK by Example, a SPARK equivalent of ACSL by
Example, with the following constraints:

– All algorithms proved in ACSL by Example should be specified, implemented
and proved in SPARK. SPARK Community 2018, freely available, must be
used.

– A complete documentation must be produced for each algorithm detailing
the specification and the implementation of the algorithm as well as proof
“tricks” used for difficult proofs.
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– Wrong or incomplete specifications that sometimes seem natural for beginners
should also be described in order to explain why they are wrong.

– All proofs must be done in the spirit of [10], i.e. only with automatic SMT
solvers and no interactive proof assistants, whereas some proofs in ACSL by
Example need Coq.

Léo and Joffrey managed to specify, implement, prove and document all
algorithms in less than 3 months without previous knowledge of formal methods
nor SPARK. SPARK by Example is available on [8] and is provided as a Github
project with all documentation directly readable from the website. All code
source, installation instructions and build artefacts are also provided.

4.2 A Corpus of Proved Algorithms

Algorithms are classified in ACSL by Example and therefore in SPARK by Exam-
ple in different chapters.

– The first chapter deals with non mutating algorithms. These algorithms do
not modify their input data. For instance, find returns the first index in an
array where a value is located and count returns the number of occurrences
of a value in an array.
These algorithms are rather simple, but they serve as a starting point for the
reader of SPARK by Example. They will thus be very important as they are
used to present important information (how to define a contract, ghost func-
tions, loop invariants, how to interpret counterexamples returned by provers
etc).

– Chapter 2 deals with maxmin algorithms and is a particular subset of non
mutating algorithms. Its algorithms simply return the maximum and mini-
mum values of an array.

– Chapter 3 is about binary search algorithms. These algorithms work on sorted
arrays and therefore have a temporal complexity of O(log n). The classic
binary−search is presented in this chapter.

– Chapter 4 deals with mutating algorithms, i.e. algorithms that modify their
input data. They all are procedures that rotate, copy, or modify the order of
elements in arrays to match properties. The algorithms in this chapter gen-
erally have two implementations: the first one is usually easier, because the
content of the input array is copied in another array; the second implemen-
tation is done on the array itself and has sometimes lead to difficulties in the
proof process.
In the previous chapters, there has been no difference between the algorithm
specification and implementation in C/ACSL or SPARK, but due to the avail-
ability of “real” arrays in SPARK, this is the first chapter in which important
differences between ACSL by Example and SPARK by Example appear.

– Chapter 5 on numeric algorithms is a special chapter because it mainly focuses
on overflow errors. For instance, when returning the sum of the values in
an array or the scalar product of two arrays, overflow errors may occur,
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particularly if the values are integer ones. Moreover, even if the final result is
in the right range, the intermediate results can overflow and lead to an error.
It is the only chapter that deals with these kinds of errors so it is a little bit
besides the others.

– Chapter 6 focuses on one particular data structure, namely the binary heap.
It presents a concrete implementation of the classic heap structure as a record
consisting of a fixed-sized array and a size attribute. It implements the basic
algorithms dealing with heaps (push heap, pop heap) but also other algo-
rithms such as make heap that returns a heap created from an input array,
or sort heap that returns a heap of size 0 but with a sorted list inside of it.

– Chapter 7 deals with sorting algorithms and is a short chapter: is sorted
checks whether an array is sorted or not, and partial sort partially sorts
(with a specific definition) an array.

– Finally, Chapter 8 presents three classic sorting algorithms: selection sort ,
insertion sort and heap sort.

SPARK by Example is therefore a rather complete document to learn how to
use SPARK to prove classic algorithms. Chapters have an increasing difficulty
and we hope that the explanations we have written for difficult notions or proofs
are sufficiently clear to help beginners.

4.3 Lessons Learnt

What have we learnt from this experiment? First, it is possible to prove rela-
tively complex algorithms without previous knowledge of formal methods in a
relatively small amount of time. Of course, this has to be put in perspective as
our students can rely on ACSL by Example to understand how to prove most of
the algorithms. On the other hand, they had to understand how to build com-
plex proof with lemma functions in SPARK which was clearly not the approach
chosen by ACSL by Example.

Second, we encounter two difficult points when proving complex algorithms:

– The proof of some verification conditions often requires reasoning on prop-
erties that can not be directly handled by SMT or automatic solvers, for
instance inductive properties. In this case, the proof may be achieved with
a proof assistant like Coq or discharged by an automatic solver guided by
lemmas. Lemmas are mathematical theorems, possibly with hypotheses, that
must be added to the theories available to the SMT solvers to prove the ver-
ification condition. Of course, lemmas must also be proved, either using a
proof assistant or an automatic prover.
In SPARK, there is no proper construction of lemmas as in ACSL. To work
around this limitation, the user has to define a procedure and use contract-
based programming to write the lemma: hypotheses of the lemma are the
preconditions of the procedure, conclusions of the lemma are its postcondi-
tions. This “emulation” requires them to be instantiated within the code to
prove, whereas lemmas in Frama-C are automatically used by the provers
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when necessary. The main advantage of the SPARK approach is the fact that
the user can help the solver to prove the lemma using an actual implemen-
tation of the procedure, whereas some lemmas in ACSL by Example have to
be proven with Coq when the SMT solvers fail to prove them.
Therefore, the prover of a program must understand which lemmas are needed
for his or her proofs, prove the lemmas and manually add instances of the
lemmas in the code in order to help the provers. This is quite equivalent to
give a sketch of proof to the provers. Fortunately, certain forms of “templates”
appear when implementing lemmas for proving them, so it becomes easier and
easier. Moreover, the GNATprove tool is of great help when inserting lemmas
in the code to be proved to understand where to place them.

– Auto-active proof of a program is a kind of proof in which the verification con-
ditions (VC) generated from the specification and assertions of the program
are discharged only by automatic provers. Most of the time, SMT solvers like
Alt-Ergo, CVC4 or Z3 are used as they embed first-order theories that are
suitable for program verification (bitvectors or arrays theories for instance).
However, SMT solvers are limited. For instance, universal quantifiers in for-
mulas are not handled in a complete way. Therefore, when a SMT solver
cannot discharge a VC, there may two several explanations:

• The VC is effectively false
• The VC should be discharged but is not due to solver limitation

The second case may be difficult to understand and solve by beginners,
because they have to understand for instance that SMT solvers instantiate
formulas involving universal quantifiers using instantiation patterns called
triggers. Therefore, when trying to prove a VC with universal quantification,
adding a new trigger through may ease the solvers task. We face this problem
in a first version of SPARK by Example where we had to split a complex
assertion on arrays involving nested quantifiers using several auxiliary func-
tions that were used as triggers for the solvers. Notice that SMT solvers are
improving quickly and that some VC that cannot be discharged by a solver
may be discharged easily by a future version.

5 Conclusion

We presented in this paper two teaching experiments on deductive methods for
program verification. The first one takes the form of a classic course on formal
methods, but in a very small amount of time, i.e. 17 h. We showed that it is pos-
sible for beginners to use tools like Frama-C/WP or GNATProve to verify imper-
ative programs written in C or SPARK. Experience shows also that bottom-up
approaches, in which students are using the tools from the beginning of the
course and prove more and more complex properties are better than top-down
approaches often used in the French “Grandes Écoles” system in which theory is
first exposed before practising. The second experiment pretended the production
of teaching material, namely SPARK by Example, to evaluate students capacity
to learn deductive methods. It showed that it is possible for non-experts to use
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SPARK to prove relatively complex programs, as an implementation of binary
heaps was entirely proved using only SMT solvers. We hope that SPARK by
Example will also be a useful tool to learn SPARK and deductive methods.

Due to the structure of ISAE-SUPAERO engineering program, students
sometimes lack knowledge or background that is useful to specify programs or
fully understand how the tools work. For instance, writing complex specifica-
tions requires some understanding on how memory is represented in the tools or
knowledge of programming language semantics that is currently not taught at
ISAE-SUPAERO. Understanding how SMT solvers work and why they may fail
to prove a verification condition is also important to handle complex proofs.

Concerning the S5 lecture, industrial feedback given on the last session of
the course is really important for the students. They understand that these
techniques, although rather mathematical, are used in industry, particularly in
aerospace. Qualification and certification are also addressed during the session
to show students that a technique or a tool, however attractive or powerful it is,
must be incorporated in a global process.

Some ideas arise from these experiences:

– First, we may begin with a more suitable language for deductive verification.
In particular, C is a difficult language to use, mainly due to pointers arith-
metics, even if ACSL is a really nice specification language to manipulate.
WhyML and the Why3 platform [11,20] seem to be natural candidates for a
first initiation to deductive verification.

– Create a S4 optional course on reliable software using SPARK. This course
would be based on the bottom-up approach described previously and incor-
porate theoretical sessions when necessary to help students. For instance, a
3-h lecture and practical session on how SMT solvers work would be useful.

– Add more formal methods during the curriculum, particularly in the Critical
Systems major. For instance, TLA+ [17] could be introduced in the dis-
tributed systems course to show students that formal methods can be used
for distributed algorithms.
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Abstract. In this work, we present a study of different support tools
to teach formal verification of Java programs and show our experience
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1 Introduction

Formal verification of algorithms is a technique to ensure that a program is
correct even before being implemented in some programming language, verifying
that the program does what it is supposed to do for all the possible input data
without the necessity of applying testing. Although formal verification is not
(yet) a mandatory subject in most computer science studies, it is included in the
Common Criteria for Information Technology Security Evaluation [1].

In the University of La Rioja, formal verification is taught as part of a compul-
sory course called “Specification and Development of Software Systems” (SDSS).
In the first years of existence of this course (the degree in computer science is
taught in our University since 2002), formal verification was considered only in
a “theoretical” way, explaining the Hoare logic axioms [12] and presenting the
inference rules that make it possible to prove that a program satisfies a spec-
ification (given by means of a precondition and a postcondition). Six courses
ago we decided to complement this teaching by means of some support tool to
formally verify Java programs in a semi-automatic way. To this aim, we did a
study of the available software for this task (some of them used only in compa-
nies or research) and the chosen support tool was Krakatoa [8]. In the first year
of use of this theorem prover, we only used it as support tool during theoretical
lessons, showing to students some basic examples. Then, we tried to improve the
experience and since 2014 we decided to include in the course some practical
lectures in a computer classroom where students could use the tool themselves.
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The paper is organized as follows. In Sect. 2 we present the context of the
course SDSS and the teaching of formal verification in our university. Next,
in Sect. 3 we study several alternatives for teaching formal verification of Java
programs, considering different criteria which are interesting for our lectures,
and we explain why Krakatoa is the most adequate for our purposes. Some
examples of formal verification with this tool are shown in Sect. 4 as well as the
set of exercises that the students must solve and the question on verification
in the final exam. We present the results of our experience in Sect. 5. Finally,
conclusions and further work are detailed in Sect. 6.

2 Context of Our Experience

At the computer science studies at the University of La Rioja, formal verification
is taught as part of the course “Specification and Development of Software Sys-
tems” (SDSS). SDSS is a compulsory course that is taught in the fourth semester
of the degree in computer science, and corresponds to the fourth course of Pro-
gramming. The course has 6 ECTS, divided into 30 h of theoretical lectures,
28 h of practical exercises in a computer laboratory, 2 h for the final exam
and 90 h of the student individual work. As it is claimed in the guide of the
course, one of the aims of SDSS is to provide a formal perspective about dif-
ferent aspects of programming (syntax, semantics, correctness and efficiency),
trying to improve the programming skills of students. After considering some
subjects such as specification and implementation of abstract data types and
their relation with object-oriented programming and specification of algorithms,
the final part of the course (about 15 h) is devoted to formal verification of algo-
rithms. The course SDSS is also part of the degree in mathematics; the students
of both degrees attend together the lectures and the contents and the evaluation
system for all of them are the same. The students are supposed to have followed
the three previous courses on Programming. Moreover, they are supposed to
have acquired the fundamental concepts of first order logic which are taught in
the second semester of the degrees (as part of the course “Logic”). Each year
there are around 70 students, of which about two thirds are students of com-
puter science the rest of mathematics. With respect to the evaluation, 70% of
the mark corresponds to the final exam and 30% to laboratory exercises.

One of the goals of SDSS is to consolidate the acquired knowledge in the
third semester of both degrees, where it is introduced the concept of object-
oriented programming in Java. For this reason, Java is the chosen programming
language for the SDSS course. It is worth noting that at the beginning of the
course, the students lack a strong experience in programming languages. This,
in conjunction with the few hours available to the formal verification part, cause
that the introduction from scratch of another different programming language
could be a counter-productive decision.

Until 2013, formal verification was taught in SDSS only in a “theoretical”
way by means of the Hoare logic axioms [12]. Given a precondition Q and a
postcondition R, a program “s” (consisting of a sequence of elementary instruc-
tions s ≡ {s1, . . . , sn}) satisfies the specification {Q}s{R} if: whenever the
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program s is executed starting in a state which satisfies Q, the program ter-
minates and the final state satisfies R. In order to verify the correctness of
{Q}s{R}, one must consider predicates which determine the states which are
satisfied at the intermediate points of the program, called assertions, such that
{Q}s1{P1}s2{P2} . . . {Pn−1}sn{R}. If the initial assertion Q (precondition) is
satisfied, and each elementary “program” sk, consisting of one simple instruc-
tion, satisfies the specification {Pk−1}sk{Pk}, then when the program stops the
postcondition R is satisfied and therefore the program is correct. In our course,
we do not deal with partial correctness but with total correctness, i.e., a program
is correct when it returns the expected result and the algorithm terminates.

Hoare logic provides rules to verify the correctness of the elementary instruc-
tions of a programming language (assignments, sequential composition, condi-
tional clauses and iterative composition). These rules allow one to compute in
a straightforward way correct preconditions, from a given postcondition, for the
cases of assignments, sequential compositions and conditional clauses. However,
in the case of the iterative composition the process is not direct and it is neces-
sary to construct first an invariant predicate P and a variant V . Then, Hoare
logic requires that the loop body decreases the variant (to ensure termination)
while maintaining the invariant. In addition, the invariant must be strong enough
so that at the end of the loop we could deduce the postcondition. Usually, the
students find it difficult to figure out the invariant.

In SDSS we present (in a theoretical way) the Hoare rules for the basic
instructions of an iterative language and we do small examples of application
of each one of the rules. Once all the rules have been introduced, we do some
exercises of formal verification proofs of some small programs with an iterative
scheme. The proofs of correctness considered in the course SDSS are restricted
to programs corresponding to the following sketch:

{Q}

<init>

while B do {

<body>

}

<end>

return <var>

{R}

where the blocks <init>, <body> and <end> consist of a sequence of elementary
instructions, usually assignments and conditional structures. In fact this is not
a restriction, because if there are several “sibling” loops it can be thought that
all but the last one are inside <init>, and if there are nested loops one can think
that the internal loops are inside <body>.

Taking into account Hoare’s axioms, in order to verify the correctness of a
program with the previous sketch it is necessary to:

1. Find an invariant P for the loop.
2. Verify the specification {Q}<init>{P}.



40 J. Divasón and A. Romero

3. Verify that P is an invariant, that is to say, the specification
{P and B}<body>{P} is satisfied.

4. Verify the specification {P and not(B)}<end>{R}.
5. Find a variant.

Following these steps, in SDSS we consider proofs of correctness of some easy
algorithms such as the (iterative) computation of the power of a real number
raised to a natural number, the computation of the factorial of an integer, the
integer square root, the sequential search of an element in an array and the sum
of all components of an array. After explaining some of these exercises on the
blackboard, we do also some exercise classes where the students must apply their
knowledge in a practical way and make some correctness proofs on their own.
The difficult part of the exercises is the determination of the invariant P , and
it is very frequent that students propose invariants that are not strong enough
and they have to make different attempts (and repeat steps 2, 3 and 4 for all of
them) in order to find the correct one.

This “traditional” way of teaching formal verification was the chosen one
at our University until 2013. At that moment, we decided to complement the
theoretical lectures with the help of some support automatic tool for formal
verification of Java programs based on Hoare logic. A study of the different
alternatives was done, and the chosen tool was Krakatoa, an automatic theorem
prover which allows students to interactively visualize the various steps required
to prove the correctness of a Java program, to think about the used reasoning
and to understand the importance of verification of algorithms to improve the
reliability of our programs. In the first year of use of this theorem prover, we
only used it as support tool during theoretical lessons, showing to students some
basic examples of formal proofs with Krakatoa. After the positive results of that
initial attempt (the marks in the final exam of the formal verification part were
higher than previous years and students showed interest in Krakatoa), we tried
to improve the experience and since 2014 we decided to include in the course
some practical lectures in a computer classroom where students could use the
tool themselves, providing the correct specification and the necessary code to
verify the proposed programs as explained in Sect. 4.

3 Study of Different Alternatives

Our study of different alternatives for teaching formal verification of Java pro-
grams started in 2013, when we decided to complement our theoretical lessons
with some support tool. At that moment we found some documentation of uni-
versities where formal verification was taught in a practical way (see for exam-
ple [7,14,15]), but most of them did not correspond to Java programs or did not
seem to be based on Hoare logic.

There are several approaches and levels to carry out formal verification of
programs. Essentially, tools for this task are classified in three groups. Interactive
theorem provers, such as Isabelle [18] and Coq [6], belong to this kind of tools.
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They allow a mathematical modeling and verification of programs at the highest
level of confidence (Common Criteria certification at level EAL7). They have
been used in industrial applications, such as the verification of seL4, an operating
system kernel [13]. Nevertheless, these tools need a steep learning curve to gain
enough expertise to be able to prove formally specifications of programs, so
they seemed not to be a good choice for a first introduction course on formal
verification. Secondly, there are tools based on model checking, such as Java
Pathfinder [11]. This kind of tools are supposed to be a rigorous method to find
a violation of a given specification, not only by means of tests but with abstract
interpretations. Finally, there exist tools based on Hoare logic or similar logics,
which are the ones we were mainly interested in due to their relation with the
theoretical part of the course. In addition, some such tools are indeed focused
on teaching (but not in Java), such as Dafny [14] and HAHA [17]. Due to the
context of SDSS, we aim to use a tool devoted to verify Java programs. Then,
we selected the following tools for evaluation.

– Krakatoa [8] (version 2.41, May 2018)
– KeY [2] (version 2.6.3, October 2017)
– OpenJML [5] (version 0.8.40, October 2018)

Those ones seem to be the most important ones, although there exist more
alternatives that could also have been considered for this study such as Jahob [4]
and Jack [3]. However, most of them are no longer developed.

In the concrete context of our SDSS laboratory lessons, we evaluated the
following features of the tools: ease of use (taking into account that the program
will be used by students with no previous knowledge on it), feedback (the infor-
mation about the proof attempts and proof failures should be understandable
for students with no expertise in the tool), documentation (the evaluated tool
should have enough examples of different levels of difficulty), relation between
the tool and the contents that are taught in the theoretical lessons (this is the
most important feature for us: we want to check if the tool clearly follows the
steps from Hoare logic), ease of installation and if there exist plugins for Eclipse
(the IDE used in our laboratories) or an online tool. Table 1 shows a summary
of this evaluation. Apart from that, we also checked the tools against seven
exercises that we teach in SDSS in a theoretical way:

1. Minimum of two integers
2. Swap two elements of an integer array
3. Square root (linear version)
4. Square root (binary version)
5. Check if an integer array is sorted in ascending order
6. Exponentiation
7. Linear search of an element in an integer array

We checked if the language of each tool is expressive enough to specify the
algorithms, and also whether the evaluated tools are able to prove them strictly
by means of just the specification (precondition and postcondition), together
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with the corresponding invariants and a measure that decreases in each step if
necessary. The result is shown in Table 2. It is worth remarking that most of
the programs are able to verify automatically the exercises once the user has
provided some hints (or working a bit with the corresponding goals), but we
wanted to test them exactly with the same reasoning that we would make in the
theoretical lessons: that is, just making use of the specification, invariants and
variants (something that decreases in each step).

KeY is the most powerful tool, from the ones that we have studied, and it
is also the most used one. It is worth noting that there are several universities
where KeY is used as a tool for teaching formal verification of Java programs
such as Chalmers University1 or the Karlsruhe Institute of Technology2, but
within the computer science master’s programme. In our opinion, KeY requires
a longer learning step than Krakatoa and it is to be used by experts, or at
least, it is not designed to be used by degree students in the forth semester.
In addition, KeY was not able to automatically prove the correctness of our
examples (just from the specifications, invariants and variants), but Krakatoa
had a higher success rate. To sum up, despite of the fact that Krakatoa is not
the most powerful one, it fits our requirements. Thus, we decided to put it into
practice in our laboratory lessons. The Krakatoa program was then available in
the computer laboratories of our university as an Eclipse plugin. Indeed, it is a
virtualized application, i.e., the students can use it at home easily. This solves
the two main drawbacks which Krakatoa presents in our study: the lack of an
online tool and the difficulty of its installation. The confusing feedback provided
by Krakatoa is solved with the help of the teachers in the laboratory lessons.

It is worth noting that the study of these tools was repeated every year from
2013 (we present here the one that we did in January 2019). The performance
of KeY with some exercises has improved in the last years but the results of all
studies were similar.

Table 1. Main features of the evaluated tools.

Tool

Krakatoa KeY OpenJML

Ease of use ✓ ✗ ✓

Feedback Lack of information Need a deep knowledge ✓

Related to theory ✓ ✓ ✗

Documentation Few examples ✓ Under development

Ease installation ✗ ✓ ✓

Plugin Eclipse ✓ ✓ ✓

Online tool ✗ ✓ ✓

1 http://www.cse.chalmers.se/edu/year/2018/course/TDA294 Formal Methods
for Software Development/.

2 https://formal.iti.kit.edu/teaching/FormSys2SoSe2017/.

http://www.cse.chalmers.se/edu/year/2018/course/TDA294_Formal_Methods_for_Software_Development/
http://www.cse.chalmers.se/edu/year/2018/course/TDA294_Formal_Methods_for_Software_Development/
https://formal.iti.kit.edu/teaching/FormSys2SoSe2017/
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Table 2. Expressiveness and solvable problems by the tools.

Tool

Krakatoa KeY OpenJML

Specif. Solv. Specif. Solv. Specif. Solv.

Minimum ✓ ✓ ✓ ✓ ✓ ✓

Swap two elements ✓ ✓ ✓ ✓ ✓ ✓

Linear sqrt ✓ ✓ ✓ ✗ ✗ ✗

Binary sqrt ✓ ✗ ✓ ✗ ✗ ✗

Sorted array ✓ ✓ ✓ ✓ ✓ ✓

Exponential ✓ ✓ ✓ ✗ ✗ ✗

Linear search ✓ ✓ ✓ ✗ ✓ ✓

4 Some Examples of Formal Verification with Krakatoa

Trying to complement the theoretical teaching of formal verification by means
of some software, and after the study of alternatives explained in Sect. 3, the
chosen support tool has been Krakatoa. As already said in Sect. 2, in an initial
experience we used it only as a support tool during theoretical lessons but since
2014 we decided to include in the course some practical lectures in a computer
classroom where students could use the tool. More concretely, we have now 3
practical lectures (each of them of 2 h) for 3 different levels of exercises. The
first lecture is devoted to the specification and verification of Java methods where
only assignments and conditional clauses are used; in this case, if the specification
given by the student is valid, Krakatoa should be able to verify directly that the
program is correct. On the contrary, if iterative structures are included, Krakatoa
needs some help and the student must write the invariant predicate for the loops;
the second lecture is devoted to this kind of exercises. Finally, it is also sometimes
necessary to introduce auxiliary predicates, axiomatic definitions or assertions,
which are explained in the third lecture. Since formal verification is only part of
the course contents, we teach it in an introductory way and we do not have time
to teach formal verification of object oriented aspects such as classes, inheritance
or dynamic types.

In this section, we present some examples that we show in the lectures, the
mandatory exercises that the students must solve in the computer laboratory
and the verification exercises of the final exam.

4.1 Lectures in the Computer Classroom

As we have already said, we have now 3 practical lectures for 3 different levels of
exercises. We present here one example of the exercises explained in each one of
the lectures. Other examples of exercises of formal verification of Java programs
explained in SDSS can be found in [16].
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Fig. 1. Obligations generated by Krakatoa for the method min.

In order to verify the correctness of a Java program, Krakatoa inputs the
specification (precondition and postcondition) written in the Java Modeling Lan-
guage [10] (JML). Then, making use of a tool called Why [9], it generates a series
of lemmas (called proof obligations) that correspond to the different steps, follow-
ing Hoare logic, to verify the correctness of the program. These lemmas must be
verified by some automatic theorem provers which are included in the Krakatoa
tool; if these theorem provers do not reach some of the proofs, it is also possible
to send the lemmas to Isabelle and Coq, two interactive theorem provers where
the user can help the prover to construct the proofs.

Minimum of 2 Elements. One of the simplest examples explained in the
first Krakatoa practical lesson is the following Java method for computing the
minimum of two integers x and y:

/*@ ensures \result <= x && \result <= y &&

@ ((\result == x) || (\result == y));

@*/

public static int min(int x, int y) {

if (x<y) return x; else return y;

}

The specification of the method, in JML, is written as a comment between
/*@ and @*/. The clause ensures is used to introduce the postcondition, which
is a logical predicate which must be satisfied when the method stops for any
possible value of the inputs. Inside the postcondition, result is used to denote
the returned value. In this case, the postcondition means: the result is smaller
than or equal to x, the result is smaller than or equal to y, and the result is
equal to x or equal to y.

The goal of Krakatoa consists of verifying that the method min is imple-
mented in a correct way, that is to say, it satisfies the given specification. As
shown in Fig. 1, Krakatoa generates 6 lemmas (proof obligations) that express
the correctness of the program. The 6 obligations correspond to each one of the
3 components of the postcondition, which must be satisfied by each one of the
two branches of the conditional clause. These obligations are the steps that the
students should do to formally verify (in a theoretical way) that the program
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is correct. The first lemma, which is detailed on the right side of Fig. 1, says that,
the result is less than or equal to x. In this example the lemmas are very easy
and the automatic theorem provers Alt-Ergo3 and CVC34, which are integrated
in Krakatoa, are able to verify them in a direct way. The proof of the 6 obliga-
tions imply that the program is correct with respect to the given specification,
which ensures that in any possible situation, that is to say, for any of the infinite
possible input data, the method returns the desired result.

Deciding if an Array Is Sorted. The correctness proof of a program is more
complicated when it includes iterative instructions. Let us consider now the
following method to decide if the elements of an array of integers are sorted (in
ascending order):

/*@ requires v != null && 1 <= v.length ;

@ ensures \result <==> (\forall integer j; (0 <=j < v.length-1) ==>

@ v[j]<=v[j+1]);

@*/

static boolean isSorted(int v[]) {

int i=0; boolean b=true;

while (i<v.length-1 && b) {

if (v[i] > v[i+1]) b=false;

i=i+1;

}

return b;

}

The clause requires introduces the precondition, which is a logic predicate
that must be satisfied when the method is called. In this case, the argument
v must be a non-null array with positive length. Krakatoa generates now 2
obligations corresponding to the postcondition but, as one can observe in Fig. 2,
it is not able to prove them. From the 8 obligations which ensure that the method
is safe, it only proves 5 of them.

In order to verify the correctness of a Java program with iterative instructions
following the axioms of Hoare logic, as we have explained in Sect. 2, it is necessary
to define an invariant P which is a predicate that is satisfied at the beginning
and end of each execution of the loop. This invariant must be strong enough
so that when the loop finalizes the postcondition is satisfied. In general it is a
difficult problem to find the adequate invariant.

In order to introduce the invariant predicate in the JML specification of a
program in Krakatoa one uses the clause loop invariant. Moreover, to be able
to verify that the loop stops (and therefore the method is safe), very frequently
we must define in Krakatoa the variant, which must be an integer expression
such that it is non negative and it decreases after each execution, denoted by
loop variant. For the iterative structure inside the method isSorted we can use
the following specification:

3 Alt-Ergo http://alt-ergo.lri.fr/.
4 CVC3 http://www.cs.nyu.edu/acsys/cvc3/.

http://alt-ergo.lri.fr/
http://www.cs.nyu.edu/acsys/cvc3/
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Fig. 2. Obligations generated by Krakatoa for the method isSorted without specifying
the invariant predicate.

static boolean isSorted(int v[]) {

int i=0; boolean b=true;

/*@ loop_invariant 0<=i && i<v.length && (b == true <==>

@ (\forall integer j; (0 <=j < i) ==> v[j]<=v[j+1]));

@ loop_variant v.length-i;

@*/

while (i<v.length-1 && b) {

if (v[i] > v[i+1]) b=false;

i=i+1;

}

return b;

}

Krakatoa generates now 21 obligations, some of them have appeared when
the invariant has been introduced. The proof of such obligations will show the
soundness of the algorithm. We can also observe than the generated obligations
correspond to steps of the theoretical proof of the correctness of the program
explained in Sect. 2. With the help of this invariant the Alt-Ergo and CVC3
theorem provers are able to verify the correctness of the program, as shown in
Fig. 3.

Exponential Function. In some situations, the definition of the invariant
predicate and the variant is not enough to prove the correctness of a program
with iterative structures and it is also necessary to include auxiliary predicates,
axiomatic definitions and assertions which help the theorem provers to verify
the lemmas generated by Krakatoa.

The following method implements the exponential function raising a float to
an integer:

public static float exponential (float x, int n) {

int i=0; float r=1;
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Fig. 3. Obligations generated by Krakatoa for the method isSorted after specifying the
invariant predicate.

while (i<n) {

i++;

r=r*x;

}

return r;

}

After introducing the idea of the method, the students must think of a possi-
ble specification written in JML. Since the JML version supported by Krakatoa
does not allow to use the exponential function, in order to specify the method
it is necessary to include the following axiomatic definition:

/*@ axiomatic Exponential {

@ logic float exp(float x, integer n);

@ axiom exp_zero : \forall float x; exp(x,0) ==1;

@ axiom exp_sum: \forall integer n; \forall float x;

@ exp(x,n+1) == exp(x,n)*x;

@}

@*/

Using this axiomatic definition, the students should write, using the JML
syntax, the specification of the method exponential:

/*@ requires n >=0;

@ ensures \result == exp(x,n);

@*/
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With this specification, Krakatoa generates 3 obligations but it is able to
prove only 1 of them. As we have already said, it is necessary to define the
invariant predicate P for the iterative structure. The students should propose
an invariant, run Krakatoa and see if the obligations are proved. A possible
solution for the invariant (and variant) of the program is:

/*@ loop_invariant 0 <= i && i <= n && r == exp(x,i);

@ loop_variant n-i;

@*/

4.2 Exercises in the Computer Classroom

Once Hoare logic, the steps for verifying programs and the previous examples are
explained in the lectures, the students must practice and complete by themselves
some exercises with Krakatoa. To this aim, the students work in pairs. They have
6 h at the computer laboratories with the help of the teacher and 2 days of work
at home before the deadline to send their solutions via GitHub classroom. This
set of exercises consists of two parts and corresponds to a 5% in the final mark
of the course. The first part is mandatory and has 8 exercises devoted to design
and verify the following Java programs:

1. A method to compute the absolute value of an integer
2. Check if the arithmetic mean of three non-negative real numbers is higher or

equal to 5
3. A method to compute the maximum of three integer numbers
4. Given an array with 4 real numbers, modify it by dividing each component

by the sum of all components (with no loops)
5. Decide if a number is prime
6. Check if all elements in an integer array are non-negative
7. Compute the highest factor of a positive integer number (excluding itself)
8. A method to compute the factorial of a non-negative integer number

The second part comprises three voluntary exercises: modification of each
component of an integer array by its absolute value, find the frequency of a
number in an array and finally design and verify other algorithms with loops or
that use some of the previous exercises.

In the course 2019, 61 students (from 68) did the set of Krakatoa exercises.
As in previous years, they had very good marks: the mean was 0.457 (over
0.5). Concretely, the students of computer science had a mean of 0.447 and the
ones of mathematics 0.467. Table 3 shows the number of students with wrong
answers in each mandatory exercise (all students did all of them). As it can be
seen, the students have problems with exercise 7, which corresponds to the one
with the most difficult invariant. With respect to the optional exercises, 80%
of the students did the first one (from which, 90% did it well). Only 26.9% of
the students sent the second voluntary exercise (all of the received answers were
correct). One student did the third one.
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Table 3. Results of mandatory exercises in the computer classroom. Number of stu-
dents who did the exercises N = 61.

Exercise 1 2 3 4 5 6 7 8

Wrong answers 2 1 4 3 2 2 10 4

4.3 The Exam

The final exam consists of three written exercises of the different aspects covered
by the course. The exercises are solved without the help of the computer. One of
them is about formal verification. It is the most important one: approximately
45% of the mark in the final exam corresponds to this exercise.

In the last course (2019), this exercise consists of two parts:

1. Prove that the predicate P = (1 ≤ i ≤ n) and (n%m = 0) and (∀α ∈
{m + 1, . . . , i − 1}.(n%α �= 0)) is an invariant for the following loop:

while (i < n) {

if (n % i == 0) m=i;

i++;

}

2. Verify the correctness of an algorithm computing the mean of the values of
the elements of an array.

In general, the marks in this exercise were high (7.35 over 10 last year, the
higher the better). During these years, we noticed a better understanding of the
concepts among the students of the degree in mathematics, since they are more
used to abstract reasoning and formal proofs. Indeed, the students of that degree
outperform the students of the degree in computer science. This can be shown,
for instance, in the marks of the verification exercise of the last exam: the mean
of the marks of the students of computer science was 6.29, whereas the mean
increased to 8.19 for the students of the degree in mathematics.

5 Results of the Experience

The results of using Krakatoa as a support tool for teaching formal verification
of Java programs have been very positive. First of all, we have observed that
after using Krakatoa the students understand the different steps of the (theo-
retical) formal proofs in a better way; more concretely, when Krakatoa was not
used as a support tool many of the students memorized the exercises of formal
verification (and very frequently they did not really understand them). This bet-
ter understanding of students has been shown in the marks on average of the
formal verification exercises in the final exam that have increased significantly
(see Table 4, exercises are marked with a number between 0 and 10, the higher
the better). The first year of use of Krakatoa just as a support tool (2013),
the average of the marks in the final exam of the formal verification part was
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Table 4. Marks on average of formal verification exercises in the final exam.

Year Students Marks

2012 46 6.14

2013 50 7.50

2014 37 7.06

2015 38 7.17

2016 54 6.81

2017 54 7.23

2018 73 7.86

2019 66 7.35

higher than previous years. The difficulty was very similar. During the following
courses the marks remained higher than in 2012, although deeper contents and
higher difficulty of the exercises were demanded in the exams. Moreover, many
students claim now that this is the most interesting part of the course. Indeed,
two students decided to carry out their final-degree project on this subject. Our
experience as teachers is also positive and we plan to continue using Krakatoa
in the following courses.

6 Conclusions and Further Work

In this work we have presented our experience with the tool Krakatoa to teach
formal verification of Java programs, improving in this way the theoretical lessons
on Hoare logic and helping students to understand the different steps of formal
verification. With this experience, the average marks of formal verification exer-
cises in the final exam has been increased; moreover, students show interest in
this part of the course.

After these positive results, we plan to continue using Krakatoa in the fol-
lowing courses in laboratory sessions, considering other exercises with similar
difficulty to the ones presented in this work. We will also repeat the study of
other possible tools presented in Sect. 3, and we think that KeY could be also a
good candidate in the future.
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enseñanza de la programación. In: Proceedings of Jornadas de Enseñanza Uni-
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Abstract. We present the contents of a new formal methods course
taught to undergraduate students in their third year at the University
of Rennes 1 in France. This course aims at initiating students to for-
mal methods, using the Why3 platform for deductive verification. It
exposes students to several techniques, ranging from testing specifica-
tions, designing loop invariants, building adequate data structures and
their type invariants, to the use of ghost code. At the end of the course,
most of the students were able to prove correct in an automated way
non-trivial sorting algorithms, as well as standard recursive algorithms
on binary search trees.

1 Introduction

Since the design by contract methodology implemented in Eiffel in the eight-
ies [13], many programming languages support assertion-based contracts, that
are taught in programming and software engineering courses for beginner stu-
dents. As an example, in our university, contract-based programming is intro-
duced at the end of a second-year software engineering course where students
learn the Scala programming language [15].

Moreover, automated provers (especially SMT solvers) improved significantly
over the decade. They are applied in many different fields, including formal
verification, and are able to prove huge expressive formulae. Several tools are
now available to automatically prove that a program is correct with respect to
its specification. These deductive verification tools generate verification condi-
tions (i.e., logical formulae) that are discharged by automated provers. Among
them are Dafny [12], Frama-C [6], KeY [3], Rodin [2], SPARK [5], Verifast [10],
Viper [14] and Why3 [7]. Some of them operate over real languages such as Ada,
C and Java and are used in industry to develop real-world programs [5]. They
rely on an expressive specification language (e.g., JML [11], or EACSL [4]).

Encouraged by these advances, we decided to teach deductive verification to
undergraduate students in their third year at university. After 25 years of teach-
ing various formal methods courses at master level using different tools, we found
that it was the right time to teach deductive verification at the undergraduate
level. Our class consists of about 100 students. Most of them followed in previ-
ous years introductory courses on functional and immutable programming (using
c© Springer Nature Switzerland AG 2019
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Scala, first year), and on software engineering (second year). Other students are
newcomers with a different background. During their third year and before our
course, they follow an introductory course on logic and a programming course
in Java on basic data structures.

The goal of our course is to learn how to formally specify a program, in
order to prove that the instructions of the program satisfy its specification. An
effort is done on studying various practical case studies, involving non-trivial
algorithms, where students practice a lot with a tool, and use the tool to learn
from their errors. Students learn what precise pre and postconditions are, they
practice loop invariants and define type invariants to make their specifications
more concise. Mastering these notions takes some time and writing precise loop
invariants is still difficult for beginners. To guide the students in their formal
development process, we require them to follow a pedagogical approach that we
describe in this paper. The course briefly introduces the weakest-precondition
calculus used to compute verification conditions, but it is not a course on proof
techniques and interactive proofs. Such courses are taught the following year
during the first year of master studies.

The tool we chose for our course is the Why3 platform [7]. Its program-
ming language is an imperative programming language, that is the intermediate
language used by different tools for verifying Ada, C and Java programs. In
past teaching experiences, we tried other tools operating over a more complex
language, but it required the students to understand precisely the semantics of
tricky features of the language, and to frequently pollute their specifications with
minor details about these features. Why3 supports a simple and clear program-
ming language. Moreover, beginners make frequent and various mistakes when
writing a specification or a piece of code, and they need to understand their
errors. We found that Why3 is a very useful tool to help them find and correct
their errors. Last, we also chose Why3 because of our geographical proximity
with the Why3 development team.

Our course is organized as follows. Seven lectures (each one lasts two hours
and so do exercise and lab sessions) present general ideas and concepts and live
demonstrations. Each lecture is followed by one or two exercise sessions, where
students practice in group setting. There are eight exercise sessions and each
exercise session is followed by one or two lab sessions. The goal of an exercise
session is to prepare the following lab session. Each exercise session ends with a
small quiz. Each quiz gets a score; it is corrected and returned by email before the
following lab session. These quizzes make the students more attentive during the
lectures and the exercise sessions. A typical quiz question is a choice between four
specifications of a program, where we reuse wrong answers from previous years
to build these four specifications. Such various choices given to the students may
generate interesting live discussions. There are ten lab sessions, where students
work in pairs in small-group settings. We use the Moodle learning platform of
our university to collect the student exercises done during lab sessions and to
communicate with them. Last, the semester ends with a written exam.
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The rest of the paper is organized as follows. First, Sect. 2 gives background
information on the Why3 platform. Then, Sect. 3 highlights the first notion
taught to students, precise specifications. It concerns pre and post-conditions,
and loop invariants. Section 4 explains how we use type invariants and ghost code
to write more complex programs, and Sect. 5 details some examples of recursive
programs. Finally, Sect. 6 concludes.

2 Background on Why3

From a user point of view, Why3 provides a rich specification and programming
language called WhyML [8]. The specification language of Why3 is an extension
of first-order logic. The programming language of Why3 is an imperative lan-
guage with arrays, polymorphism, algebraic data types, pattern matching and
references. It also features exceptions, but we do not use them in our course
(we restrict ourselves to option types to model a failure of a program). Its syn-
tax is close to OCaml syntax. Why3 comes with a standard library providing
useful definitions and properties of common data structures. We mainly use the
following libraries: integers, maps, arrays, matrices, lists, sequences and trees.

The Why3 user writes a specification and instructions implementing this
specification. Why3 translates them into verification conditions that are given
as input to external automated provers. An interesting feature of Why3 is that it
is able to translate and communicate the verification conditions to many external
provers [7]. The next step is the automated proof that the program satisfies its
specification. Why3 provides different strategies to conduct automatically this
proof. In our installation, the basic strategy (called 0) mainly calls the SMT
solver Alt-Ergo; other strategies transform formulae (via splitting of conjunctions
and unfolding of definitions) before calling several automated solvers. Compared
to strategy 1, in strategy 2, the timeout and memory limit of the external provers
are increased. In our course, we only use the four standard strategies (called 0,
1, 2 and S, where S is the default strategy for splitting a conjunctive formula)
and the four automated provers Alt-Ergo, CVC4, Eprover and Z3. Fortunately,
we neither need to understand the internals of these strategies, nor to use ad
hoc advanced interactive strategies provided by Why3.

When an automated prover manages to prove a verification condition, we
know that it is valid (assuming that the tools are sound). When none of them is
able to prove a verification condition, either there is an error in the instructions
that do not satisfy this verification condition, or there is an error in the speci-
fication, or the verification condition holds but none of the automated provers
is able to prove it. The first step to understand what is wrong is then to look
at the logic formula that could not be proved. This formula is the verification
condition expressed in WhyML. Let us note that Why3 can also be used as a
tool to write and prove logical formulae. We do not use it as such, but we use a
lot the logic window of its graphical user interface.

Figure 1 shows the graphical user interface of Why3. The upper right window
is an editor to write the specification and the program. The example program
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Fig. 1. The Why3 IDE. From top left to bottom right: proof tree, edited specification
and program (program view), verification condition (logic view). (Color figure online)

of Fig. 1 is called max; its definition starts with the let keyword. This program
computes the maximum of two integers; it consists of a postcondition (that we
split into two ensures clauses for readability purposes) and a single instruction.
In the postcondition, the result keyword represents the value returned by the
program. The window on the left is the proof tree built by Why3; its leaves are
the verification conditions (hence the VC keyword) generated by Why3. The node
with a Swiss knife shows the strategy used by Why3 to transform a verification
condition. In Fig. 1, we have used the default splitting strategy (called split vc

in the proof tree). The second window on the right is called Task; it shows the
logical formula associated to a given node in the proof tree (its corresponding
specification is highlighted in the program window). For example, in Fig. 1, we
have split the postcondition of the program into two subgoals and we have proved
with strategy 0 the first subgoal (hence the green bullet in the proof tree). Of
course, this is only to illustrate the Why3 graphical user interface. We could have
directly (i.e., without splitting) used the strategy 0 to prove that this program
satisfies its specification.

3 Learning to Write Precise Specifications

Because there are several possible origins of errors when we specify a program
and write its instructions, a main difficulty when teaching deductive verifica-
tion to beginners is to give them guidelines to understand where these errors
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come from. Thus, the first part of the course aims at understanding what is a
precise specification (i.e., a specification that is precise enough so that the associ-
ated instructions can be proved correct, if they indeed satisfy it). Moreover, even
if they followed a course on logic before our course, our students have a low back-
ground on logic, compared to their background on programming. This section
explains how we first ask students to write specifications and to test them. Then,
it shows how the testing of specifications scales to larger specifications. Last, it
details how we teach students to write precise loop invariants.

3.1 Testing of Specifications

We first learn to specify and write simple programs manipulating integers. The
two main goals are to learn the WhyML syntax, and to test the specifications
before writing instructions. A test case is a program with an assertion checking
that the expected value of the program is satisfied by its specification. Testing a
specification is very useful to detect imprecise specifications. Figure 2 shows an
example of an imprecise specification and a corresponding test case. The keyword

Fig. 2. An example of an imprecise specification (imprecise max program) and a pre-
cise specification (precise max program).
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Fig. 3. A logical formula revealing an imprecise specification.

val indicates that the program is only specified (contrary to the keyword let

seen in Fig. 1); its instructions will be defined later on. This file consists of two
modules: one for the program and another one for the test cases.

The test module consists of the test cases, where each test case is defined in
a separate test program. The instructions of a test program are defined (hence
the let keyword) but not specified: they call the program to test, and trigger an
assertion stating that the program returns the expected value. In WhyML, there
is a clear distinction between instructions and logical formulae, which is useful for
pedagogical purposes and for using ghost code in a program (see Sect. 4.2). For
this reason, only logical formulae can be written in an assertion, which excludes
the call to the program to test. We thus use a local definition called tmp to store
the result of the tested program.

When we use the basic strategy 0 to prove the test module, the first test case
called test1 is not proved. We then switch to the logic window (called Task in
Why3, and shown at the bottom of Fig. 2) and look at the corresponding for-
mula, that indeed can not be proved. The formula is the verification condition of
test1 : the formula written in the assertion, under the hypothesis that the called
program satisfies its specification. When we look at this formula, we understand
that tmp = 4 can not be proved under the only hypothesis tmp = 3 ∨ tmp = 4.
We must strengthen the specification of imprecise max into the specification of
precise max .

If we do not yet realize that the formula can not be proved, we can still use
the strategy 1 to split as much as possible the formula; here, it is split into two
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Fig. 4. An example of a proof tree with nodes identified by user explanations. The
Task window shows the formula corresponding to the [both positive] node.

subformulae (i.e., a split for each disjunctive case of the hypothesis, as shown
by the two Swiss knifes in the proof tree), and try to prove each subformula.
As shown in Fig. 3, one subformula remains unproved, and looking again at the
logic window will show us a simpler formula (i.e., tmp = 3 → tmp = 4), that
obviously can not be proved.

The take-home message of this example is that the caller p1 of a program p2

only sees the specification of p2 (and not its instructions). So this specification
must be precise enough so that p1 can be proved correct. In our test program, the
specification of p1 is omitted (meaning that its pre and postconditions are the
logical constant true), but the take-home message still holds whatever the speci-
fication of p1 is. Moreover, the take-home message generalizes to loop invariants.
Indeed, when we teach loop invariants, we face a similar situation, since outside
a loop, only the loop invariant is seen. This justifies that the loop invariant needs
to be precise as well.

3.2 Testing Larger Specifications

Another way of helping students to understand where an error in the specification
comes from is to decompose a specification into a conjunction of subformulae
and to annotate each subformula with a short meaningful explanation (e.g., both
positive) that will be shown in the proof tree. Figure 4 shows a simple proof tree
that is proved correct, once the user has split both verification conditions. His
explanations, added in each subformula of its specification annotate the proof
tree, so that it becomes easier to connect a particular verification condition with
a corresponding instruction in the program. The program max of Fig. 4 computes
the same result as the program max of Fig. 1, but with the precondition that its
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two parameters are strictly positive integers. As shown in the proof tree (where
the precondition is called [both positive]), this precondition is verified by the
caller of max.

WhyML is a polymorphic language, meaning that the specification language
and the programming language use polymorphic types. When Why3 generates
the verification conditions of a program, it transforms its polymorphic expres-
sions into monomorphic ones, so that they can be handled by the monomorphic
logics of the automated provers that do not support polymorphism. Many data
structures defined in the Why3 library (e.g., arrays, lists and trees) use polymor-
phic types. The first polymorphic data structures we study are arrays of type
(array ’a), where ’ a denotes a polymorphic type.

Another well-known example of imprecise specification is the specification
of a sorting program, and it can be revealed by testing. Specifying only that
the array elements are sorted is imprecise, which can be understood by testing
the specification. In a precise specification, the property that the sorted array
is a permutation of the initial array (i.e., the elements of the sorted array are
exactly the elements of the initial array) is required as well. Both properties
can be defined by a polymorphic predicate is sorted (a : array ’a) of the array
library that we reuse in several sorting programs.

Students are already familiar with testing, and testing their specifications
gives them confidence in their formulae. A typical example of error is the
confusion between an implication and a logical and in quantified formulae.
Such formulae are extensively used to specify array manipulating programs.
Given an array a of integers, an example formula states that all the array
cells belong to the interval [10; 100]. It can be written as follows, where the
predicate (valid index a i) states that the index i is within the array bounds:
∀i : int . valid index a i → 10 ≤ a [ i ] ≤ 100. Indeed, in the specification lan-
guage of Why3, arrays are modeled using infinite maps from integers to array
elements. Defining a property of an array often requires to first select the valid
indices of the array.

Testing specification is very useful for students when they fix their first pro-
grams. Interestingly, students manage to test their programs on representative
test cases (i.e., an array of 20 elements). In previous experiments conducted two
years ago, testing the specification of a sorted array was generating formulae that
were out of reach of automated provers, for the reason that these formulae were
differing too much from the corresponding specification. Once a specification is
tested successfully, the next step is to write the instructions of the program.

3.3 Loop Invariants

Without guidance, students tend to write imprecise loop invariants. A false com-
mon belief is that the shorter the invariant is, the easier it is proved. The take-
home message of Sect. 3.1 is recalled when students write their first loops, and
generalized to loop invariants: a loop invariant specifies a loop, and as a specifi-
cation, it must be precise enough.
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First, students write simple loop invariants with loops manipulating only
integers. We start with for loops, where the validity of the loop index does not
need to be added in the invariant (as it is implicitly handled by Why3), and
a loop variant is not needed. The goal is to understand the main parts of a
verification condition of a program with a loop. Figure 5 shows an example of a
proof tree where we split the verification condition of the loop to see its seven
subformulae. The program to prove correct is called max array; it uses a reference
(i.e., a mutable variable) to an integer called m. The syntax for references follows
the OCaml syntax, where !m reads the content of reference m and := is used
to update this content. max array computes the maximum element in an array
of positive integers and it is adapted from an example of the Why3 gallery of
verified programs [16]. Why3 is able to prove directly this program (i.e., without
splitting).

Five of the seven subformulae correspond to the three properties that a loop
invariant must satisfy: the loop invariant holds at the loop entry (property num-
bered 0 in the proof tree), it is preserved after any loop iteration (numbers 3
and 4), and it suffices to prove the corresponding postcondition of the program
(numbers 5 and 6). These last two properties appear twice in the proof tree
because they must hold for any execution of the program (i.e., whether the loop
condition initially holds or not), and whether the then branch of the if state-
ment is taken or not. The subformulae numbered 1 and 2 in the proof tree are
preconditions of programs called from max array. Indeed, the cell a [ i ] is read
twice in the program, and this read operation requires the index i to be a valid
index.

The task window of Fig. 5 shows the subformula corresponding to the prop-
erty that the invariant initially (i.e., when the value of !m and i is 0) holds,
under the hypotheses called H1 and H2 that the precondition (that we split in
two parts in the specification of max array, hence the two hypotheses) holds.
In this simple loop, the loop invariant mimics the postcondition: it is the same
property, but related to only some first elements of the array. Thus, we general-
ized the postcondition into a predicate parameterized by low and high bounds
of array indices. We call this predicate is max and use it in the postcondition
and in the loop invariant.

The take-home message of this example is that a loop invariant must be pre-
cise enough, and it often mimics the post-condition. Next, students write simple
while loops requiring a loop variant to ensure that the loop terminates, and then
nested loops. For some programs consisting of a single loop over an array, we ask
students to first write the program specification and the loop invariant. Asking
them to think of the loop invariant before writing the instructions of the loop
makes them write better code (e.g., a single loop instead of nested loops). A
well-known example of such a program is the Dutch national flag, which sorts
an array of three possible values blue , white and red.

At the end of the course, students write array sorting programs (in increasing
order) consisting of two nested loops. We start with a simple array sort (i.e.,
selection sort) such that the invariants of the two nested loops differ, and the
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Fig. 5. An example of loop invariant split into subformulae by Why3.

inner loop (that computes the index of the smallest element in a subarray) can
be first proved as an independent program. The invariant of the outer loop is
trickier to write, as it is the first example of a loop invariant that partially
mimics the postcondition and requires another property that is not expressed in
the postcondition. This property states that any array element in the unsorted
subarray (i.e., the right part of the array) is greater than any array element in the
sorted subarray (i.e., the left part of the array). Some students use the splitting
strategy and look at the subformulae that are not proved to understand that a
property is missing in the invariant, as introduced in Sect. 3.1. Other students
ask for help and we recall them to use the splitting strategy, and ask them to
draw on paper the partially sorted array (i.e., a “graphical” loop invariant).

For the more advanced array sorting programs, students need to think in
order to discover the inner loop invariant. For the insertion sort, we first give
them code of the program that facilitates the writing of the invariant. Then, we
ask them to update this code into more efficient code (with less array writes)
and to adapt their loop invariant accordingly.

4 Towards More Complex Specifications

When students are familiar with Why3 enough to specify and write simple pro-
grams with loop invariants, we explain to them how to build more complex pro-
grams. We introduce two features that we describe in this section, type invariants
and ghost code.
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4.1 Type Invariants

When we study programs involving arrays and matrices, we introduce type
invariants. A type invariant follows a type definition and is declared with the
keyword invariant ; it is a convenient way of enforcing properties of values of
the type. A type invariant is written once for all, thus avoiding to repeat its
properties in the specifications. In Why3, type invariants must be ensured at
each entry and exit of a program. Moreover, they can only be defined on record
types, which explains why we do not use use them at the beginning of our course.
This is not a strong limitation, as type invariants become useful when we write
more complex programs, with larger specifications involving multiple uses of a
same predicate.

Our first example of type invariant is introduced when we study arrays. In
the Why3 standard library, a type invariant is used in the definition of arrays
to express (among others) that the size of the array is positive. Several of our
examples are programs manipulating matrices. A representative example is a
maze specified by a matrix of cells, where the cell type consists of the three values
denoting a free cell, an exit and a wall of the maze. A type invariant is defined
to express properties of the maze, such as there is a single exit. Furthermore,
writing programs manipulating matrices gives students another opportunity to
write loops and their invariants.

4.2 Ghost Code

Another representative example of a type invariant is a ghost variable to sim-
plify a specification and facilitate a proof. A ghost variable and more generally
ghost code do not interfere with the instructions of the program. Our favorite
example is the ring buffer data structure. It is available in the gallery of verified
programs of Why3 [16]. This program is the third exercise of a challenge given
at a verification competition in 2012 [9]; it is detailed in lecture notes written
for a Why3 tutorial [8].

The ring buffer is a circular array, starting at a given index in the array and
storing N elements, where N is less than the size of the array. In a ring buffer,
elements may wrap around the array bounds, as shown in Fig. 6. A new element
y will be added after the last added element x, if the array is not full. In this case,
if x is stored in the last array cell, then y will be stored in the first array cell. In
a similar way, there are two cases to consider when removing an element from
a ring buffer. This circularity of the ring buffer makes the array not adapted to
specify the ring buffer: there are two cases to consider, depending on whether
elements of the ring buffer wrap around the array bounds or not.

The solution to simplify the specification is to use a ghost variable of type
sequence that abstracts the ring buffer. There is a one-to-one correspondence
between this ghost variable and the array used to implement the ring buffer
(see the example in Fig. 6). Sequences are defined in the Why3 standard library.
A sequence has no bound, contrary to an array. In a sequence, elements can
be added at the end, and removed at its beginning, like in a ring buffer.
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3 4 6 7 8 9 2

N elements

8 9 2 3 4 6 7

N elements

ghost sequence [3; 4; 6; 7; 8; 9; 2]

arrayarray

Fig. 6. An example of two ring buffers consisting of the same elements, implemented
in an array, and specified by a same ghost sequence.

The sequence represents in a uniform way the two cases we need to distin-
guish when using an array in the specification. The correspondence between the
sequence and the array is defined once for all in the type invariant of the ring
buffer, and the specifications only use the ghost sequence.

This technique is similar to data refinement (used for instance in the B
method [1]), and this type invariant can be seen as a gluing invariant between an
abstract data (the sequence) and its refinement (the array). Moreover, another
advantage of the ghost sequence is that it facilitates the proof of correctness of
the operations we define on the ring buffer data structure. To convince students
of this fact, we ask them to use different types for the ghost sequence. For exam-
ple, when the ghost sequence is defined as a list, we observe that the automated
solvers need more time to the prove the verification condition of the ring buffer
operations.

Last, in the ring buffer program, some instructions need to be added to
update the ghost sequence according to the specification. These instructions are
ghost code, that must not interfere with regular code (hence the name ghost).
When this constraint is not respected, Why3 emits an error message.

5 Proving Recursive Programs

The last part of the course is devoted to recursive programs. We design var-
ious algebraic data structures and write associated recursive programs. The
match expression with syntax borrowed from OCaml for pattern matching (i.e.,
filtering the different cases of a sum type) is new for the students. We start with
simple recursive programs manipulating integers and polymorphic lists, and then
switch to programs manipulating binary trees. When we write a recursive pro-
gram, we need to define a variant that ensures the termination of the program.
A variant is a value that strictly decreases at each recursive call. Well-founded
orders are defined in the Why3 standard library for basic types (i.e., integers,
lists and trees). So we only need to write in the variant clause the name of the
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Fig. 7. A recursive program: finding the maximum in a binary search tree.

tree (or of the list or integer) that decreases with respect to its corresponding
order. As for loops, the variant generates a verification condition that is easily
proved.

The binary tree polymorphic data type is defined in the Why3 library as a
type with two constructors called Empty and Node. Figure 7 shows an example
of a recursive program called find max that returns if it exists the maximum
element in a binary search tree of integers. The recursive predicate isBST specifies
that a tree of integers is a binary search tree; it uses the predicate mem (for
member) of the tree library. In this small example, we do not use a type invariant,
as we only use isBST once in the precondition. When the tree is empty, the
program does not return an integer, hence the value None of the option type
to represent this situation. When the tree is not empty, the program returns
a (Some v) value, where v is the maximum element in the tree. Recursive calls
are done on subtrees of the initial tree t, which ensures the termination of the
program, as indicated by the (variant t) clause. The program is proved by Why3
using the basic strategy 0.

Among other examples of recursive programs, we study the well-known exam-
ple of towers of Hanoi (that is detailed in the Why3 gallery). Next, in other
programs, we ask students to write two versions of a program, an imperative
one and a recursive one. The students realize that the specification is the same,
but the instructions differ and so do the verification conditions. The last kind of
recursive programs we study is an imperative program specified by a recursive
specification. More precisely, we axiomatize a type or a computation (i.e., we
define it in the specification language only by its properties, qualified as axioms
as they are not proved by external provers).
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6 Conclusion

We presented the Why3 platform and its use to teach a course on deductive
verification to undergraduate students. During this course, students managed to
specify, program and prove correct non-trivial algorithms such as the selection
sort of an array, and the insertion in a binary search tree. Students learned
to design data structures and to specify, program and prove correct programs
manipulating them. Some of these data structures (ghost variables) facilitate the
writing of specifications; they are abstract representations of program variables.

Using Why3 was extremely useful. We were unexpectedly surprised to face
many situations where students wrote a meaningful specification together with
meaningful instructions but both did not match (e.g., because the specification
used < to compare elements but the instructions used ≤, or because a variable
initialized to 0 in the code was supposed to be initialized to 1 in the specification).
Why3 is very useful to reveal these situations and to help students to correct
their program so that it satisfies its specification. We only used the automatic
strategies 0, 1, 2 and S recently introduced in Why3. They are powerful enough
to handle all our programs, which did not require students to change themselves
for instance the time-outs of the external provers.

We teach students to first test their specifications using assertions, and they
managed to test all of them. Because of the discrepancy between the formulae
written in the assertion and the generated verification condition, this would
not have been possible two years ago. Another very positive outcome of the
improvement and maturity of Why3 and automated provers is that students
never needed to add assertions in their programs, so that they could be proved
correct. We only use assertions to test a specification, but never to prove a
program correct (even if its postcondition is existentially quantified). Adding
assertions in a program is a common technique used to help automated provers;
several programs of the Why3 gallery (including tricky ones) use it. However,
we chose to avoid this technique for beginner students. In the past, we observed
that students tend to add as assertions most of the formulae that can not be
proved, which most of the time does not solve their problems.

Last, using automated provers is a less and less fragile technology. When stu-
dents wrote programs manipulating binary search trees, we observed that some
programs were more difficult to prove correct than others. For example, if we
remove the first pair of parentheses of the predicate isBST defined in Fig. 7, none
of the four automated provers we used is able to prove the program find max .
We only faced this situation with programs manipulating binary search trees,
and we suspect that the problem stems from the fact that reasoning by induction
is difficult for automated provers. To avoid similar situations (that were much
more frequent in our past experiences), along the course, we teach students hints
to avoid bad practices when writing their specifications. An example of a bad
student practice is to always write a quantifier at the beginning of a formula,
even if it does not quantify over some parts of the formula.
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man who convinced her to write this paper.

References

1. Abrial, J.: The B-Book - Assigning Programs to Meanings. Cambridge University
Press, Cambridge (1996)

2. Abrial, J., Butler, M.J., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. STTT Int. J. Softw. Tools
Technol. Transf. 12(6), 447–466 (2010)

3. Ahrendt, W., et al.: The KeY platform for verification and analysis of Java pro-
grams. In: Giannakopoulou, D., Kroening, D. (eds.) VSTTE 2014. LNCS, vol. 8471,
pp. 55–71. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12154-3 4

4. Baudin, P., et al.: ACSL 1.13 documentation. Technical report, CEA (2018)
5. Cormick, J.M., Chapin, P.: Building High Integrity Applications with Spark. Cam-

bridge University Press, Cambridge (2015)
6. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:

Frama-C - a software analysis perspective. In: Eleftherakis, G., Hinchey, M., Hol-
combe, M. (eds.) SEFM 2012. LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33826-7 16
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Abstract. Formal methods provide systematic and rigorous techniques
for software development. We are convinced that they must be taught in
Software Engineering curricula. In this paper, we present a set of formal
methods courses included in a Software Engineering & Security track
of ENSIIE, École Nationale Supérieure d’Informatique pour l’Industrie
et l’Entreprise, a French engineering school delivering the «Ingénieur de
l’ENSIIE» degree (master level). These techniques have been taught over
the last fifteen years in our education programs in different formats. One
of the difficulty we encounter is that students consider these kinds of
techniques difficult and requiring much work and thus are inclined to
choose other courses when they can. Furthermore, students are strongly
focused on the direct applicability of the knowledge they are taught, and
they are not all going to pursue a professional career in the development
of critical systems. Our experience shows that students can gain confi-
dence in formal methods when they understand that, through a rigorous
mathematical approach to system specification, they acquire knowledge,
skills and abilities that will be useful in their professional future as Com-
puter Scientists/Engineers.

1 Introduction

Formal methods provide systematic and rigorous techniques for reliable software
development. Many industries developing critical systems have already adopted
formal methods with significant successes (see e.g. [14] for railway experience).
Knowing these techniques and methods helps enhancing the quality of software,
even in contexts were full-fledged formal verification is not employed. We are thus
convinced that formal methods must to be taught in Software Engineering cur-
ricula whatever the professional orientation of the future engineers. In this paper,
we present a set of formal methods courses included in a Software Engineering
& Security track at ENSIIE, École Nationale Supérieure d’Informatique pour
l’Industrie et l’Entreprise, a French engineering school delivering the «Ingénieur
de l’ENSIIE» degree (master level). These techniques have been taught over
the last fifteen years in our education programs in different formats, especially
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regarding hourly volumes and elective/compulsory nature. These formal meth-
ods courses also reflect a long tradition of research in formal methods at ENSIIE.

The paper is organised as follows. Section 2 presents ENSIIE, its curriculum
and specialised tracks. Section 3 quickly introduces the Software Engineering &
Security track, emphasizing the courses where formal methods play an important
role. Each of these courses is then detailed in a dedicated section (Sects. 4, 5
and 6). We then conclude in Sect. 7.

2 ENSIIE

École Nationale Supérieure d’Informatique pour l’Industrie et l’Entreprise
(ENSIIE, https://www.ensiie.fr) is one of the oldest French institutions offer-
ing a degree of Engineer (master level) in computer science. Since its creation in
1968, almost 3,000 engineers have graduated from this institution.

Like for the majority of engineering schools in France, most students are
admitted at ENSIIE through a selective entrance examination that requires at
least two years of preparation with an intensive program in Mathematics and
Physics (Classes Préparatoires aux Grandes Écoles in French, a very selective
curriculum for the first two years in college). ENSIIE hosts about 500 students
(around 150 new students per year for a 3-years curriculum).

Students follow a threefold curriculum1:

– Information Technology (40%): software engineering, systems and networks,
security, artificial intelligence, virtual reality, games and video gaming,
robotics, high performance computation;

– Applied Mathematics (30%): operational research, optimisation, data science,
machine learning, financial mathematics;

– Business organisation (30%): economy, finance, management, business organ-
isation, entrepreneurship.

A considerable amount of time (11 months during the whole studies) is spent
working in companies or research laboratories, corresponding to 3 internships
distributed during the study period.

ENSIIE curriculum is organised in 6 semesters or 3 years. Semesters 1 and
2 (first year) form the common core of training with courses in the three main
areas previously cited - computer science and engineering, applied mathemat-
ics and management - and humanities. This first year has a bachelor level or
L3 level according to French educational system. Semesters 3, 4 and 5 mainly
correspond to elective technical courses (they are completed by management
and humanities). Students can freely choose their courses but specialised tracks
are proposed. Because of quotas imposed in some courses, the choices of a stu-
dent are accepted according to their academic results and personal professional
motivations. Semester 6 is dedicated to a 6 months internship leading to a dis-
sertation and a defence evaluated by a jury. These four last semesters end up
1 Course catalogue can be found at https://www.ensiie.fr/wp-content/uploads/2018/

05/ensiie_course_catalogue.pdf.

https://www.ensiie.fr
https://www.ensiie.fr/wp-content/uploads/2018/05/ensiie_course_catalogue.pdf
https://www.ensiie.fr/wp-content/uploads/2018/05/ensiie_course_catalogue.pdf
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with a master level. During ENSIIE third year (Semesters 5 and 6), students
can be enrolled in a research oriented Master (2nd year) in applied mathematics
or computer science by attending selected courses from the engineer and master
programs. In that case they may have a double degree.

Four specialised tracks are offered: Applied Mathematics (financial analysis,
statistics, data science, operational research), Software Engineering & Security
(SE & S) (software architecture, systems, formal methods, security), Numerical
Interactions (virtual & augmented reality, artificial intelligence), High Perfor-
mance Computing/Big Data (HPC architecture and operating system, clusters,
compilation, numeric simulation). In each track, there are also compulsory and
elective courses. Besides, there is also a free track in which students are allowed
to choose courses from the four previous tracks, composing a menu à la carte.

In the rest of the paper, we focus on the SE & S track. Most of the acronyms
for courses titles used in this paper stand for names in French. We decided to
keep them for a better matching with the official course catalogue.

3 Software Engineering and Security Track

Common core contains some courses related to basics in computer science2:
imperative programming (C), database design, operating systems, functional
programming (OCaml), logic, Web programming (PHP, Javascript) and net-
works, object oriented programming (Java, C++). Programming projects devel-
oped by a team of several students accompany the previous courses.

At this stage, a first formal highlight is given with logic and functional pro-
gramming. The former course forms the basis for teaching formal methods while
the latter introduces students to types, induction, termination and correctness.

Let us focus now on Semesters 3 and 4 (Master 1 level) in SE & S track.
S3 courses are mainly compulsory: Agile Project Management, Advanced Func-
tional Programming (IPF), Formal languages, Software Validation and Verifica-
tion (VVL), Assembly Language and Compilation, Software Engineering (IGL).
Students can choose between Operational Research and a course about Security
and Protocols. The course entitled IGL introduces students to the principles
of Software Engineering and trains them in modelling with UML. It also pro-
vides some knowledge about model-driven engineering and quality collaborative
project management. Semester S4 is more flexible in the sense that students
have some choice, e.g. they can choose between a course about formal methods
(MFDLS) and a course about semi numerical algorithms. Then, they have the
choice between a course about models of computations (CAL) and a course about
the design of privacy-by-design applications. Until 2017, they could also take a
class about concurrency and verification by model checking (PCV). However, for
structural reasons, this course has not been taught during the last years, but it
will be proposed again in 2019–2020, in Semester 4, with a similar content.

Semester 5 (Master 2 level) proposes a large choice of courses. We focus
on PROG1 and PROG2 that, among others, belong to the SE & S track.
2 In parenthesis appear the languages used to illustrate the different concepts.
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The former focuses on formal proof and formal semantics and the latter on
abstract interpretation and deductive verification.

We consider the following set of courses, VVL, MFDLS, CAL, PCV, PROG1,
PROG2 as the formal methods track or, shorter, the formal track. All of them
are 42 h long (including lectures, tutorials, lab sessions and exams), except VVL
which is only 21 h long. As the number of students is quite low, lectures and
tutorials are usually mixed.

VVL introduces students to testing (both black- and white-box testing),
and proof of programs (Hoare Logic). Besides lectures and tutorial classes, lab
sessions are organized where students use Junit [5], PathCrawler [13] and the
Frama-C [12] platform (in particular its deductive verification WP plugin).

CAL, as its name suggests, focuses on calculability and presents several equiv-
alent philosophies and models for computation: Turing machines, partial recur-
sive functions, lambda-calculi. At this point, notions of complexity can be intro-
duced. Eventually, Gödel’s first incompleteness theorem is discussed. In order
to make these notions more concrete, lab sessions are organized, for example to
implement Turing machines.

PCV is concerned with basic concepts of concurrent programming and verifi-
cation. With these lectures, students acquire in particular the main techniques to
verify dynamic properties of concurrent programs (deadlock freeness and more
advanced properties) using a model-checker, here SPIN.

We focus below on the three remaining courses, MFDLS, PROG1 and
PROG23.

In Table 1, we can find the numbers of students that registered in the dif-
ferent courses we focus on in this paper. As mentioned above, the acronyms
are related to the French titles. Thus VVL stands for Software Validation and
Verification, MFDLS for Formal Methods for Reliable Systems, CAL for Models
of Computation, PCV for concurrency and model-checking, PROG1 for Formal
Proof and Semantics and PROG2 for Static Analysis. Finally, IGL stands for
Software Engineering, and IPF for Advanced Functional Programming. We can
see that these numbers are quite stable over years.

As said before, IGL, IPF and VVL are compulsory courses for the SE & S
track. With a very few exceptions (because of the free track), students registered
in MFDLS and CAL have been enrolled in VVL in the previous semester. A
large number of students take both MFDLS and CAL (50% in 2018–2019). In
Semester 5, most of students taking PROG1 have taken MFDLS or at least
VVL. PROG1 and PROG2 are taught to the same students, except a very small
number of students taking only PROG1.

4 Formal Methods for Reliable Systems (MFDLS)

The course about software validation and verification (VVL) introduces students
to formal proofs of programs when programs are annotated with assertions (pre

3 The authors of this paper are teaching these courses.
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Table 1. Numbers of students

Semester Course title 2018–2019 2017–2018 2016–2017

S3 IGL 57 57 63
S3 IPF 64 69 67
S3 VVL 59 59 67
S4 MFDLS 25 29 32
S4 CAL 19 34 28
S4 PCV 29
S5 PROG1 17 20 15
S5 PROG2 19 18 15

and post-conditions, loop invariants and variants). It is their first encounter
with formal specifications. MFDLS makes them go further on that direction
with state-based formal methods like B [1] and Event-B [2] and the correct-
by-construction development process. The B method was used until spring 2019
when we decided on switch to Event-B. Focus is put on modelling and refinement.
We also introduce some security notions, more precisely the main control access
policies and show that security issues may also be formalised and integrated to
a functional model.

Why moving from B to Event-B while the B version was a well-oiled machine?
A first answer would be that Event-B being the recent variant of the B method,
it should be preferred for teaching newer generations of engineers. However, it is
not an easy task. Indeed, B is devoted to developing software with a very long life
cycle and it has demonstrated its capacities on large industrial projects (e.g. Paris
Meteor line 14), while Event-B is rather a language for modelling systems [14].
However, they share the same foundations: set theory, predicate language, state-
based method and refinement. We believe that Event-B refinement is easier and
more natural for beginners in formal methods than B refinement. They can
understand quite easily the so-called parachute paradigm [2] even if they have
difficulties when it comes to implementing it on examples. Finding good gluing
invariants remains a hard task, both in B and Event-B. Furthermore, Event-B,
with its rather weak language of actions (no if/while substitutions) helps sending
the message that modelling and programming are two very distinct activities.

The 2019 schedule is as follows (just replacing Event-B with B will give the
previous schedules). Usually, 2 sequences of 3h30 each are scheduled per week
on a period of 7 weeks. The first sequence contains an introduction to formal
methods and Event-B as well as a presentation of set theory (sets, relations,
functions). The second sequence is devoted to - pen and pencil - exercises from
simple models requiring only sets to models with sets and relations as variables.
For example, one exercice concerns a small system with users that register, log
in and log out, revisited with passwords and then with black-listed users. Then,
students have a hands-on sequence with Rodin (http://wiki.event-b.org) and

http://wiki.event-b.org
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ProB (https://www3.hhu.de/stups/prob/) where they play with or implement
some of the models written previously. Faults may have been introduced by
the instructor. Sequence 4 is devoted to a formal approach of the semantics of
actions and proof obligations. It is also the occasion to review some concepts from
logic such as term, formula, free/bound occurrence of a variable and proof rule.
Sequence 5 is a lab session, where students learn how to do simple interactive
proofs with Rodin. At that time, around the middle of the course, students
are evaluated on their ability to manipulate set theory and write some models.
This pen-and-pencil evaluation takes place in Sequence 6 and is an hour long.
Refinement is then taught and practised during 2,5 sequences with again some
practice with Rodin and ProB. A peer-correction of the previous evaluation
(described in more details below) takes place meanwhile. For the rest of the
course, focus is put on security and control access policies (DAC, MAC and
RBAC) with lectures and tutorials. In particular, we study the RBAC encoding
(invariants mainly) done within B by Huynh et al. [10] and the combination of a
functional model and a security policy. In one of the last sequences, an industrial
partner visits us and gives a talk illustrating some real case studies (usually about
transportation systems), that motivate students a lot. This talk often opens not
only summer internships, but also (and more often) long internships in Semester
6. During the last sequence (Seq. 12), students have to defend their project whose
subject has been given in the middle of the course.

The course is illustrated with many examples, from simple to more complex
(e.g. Bridge example is studied with the help of Abrial’s slides and some youtube
videos) giving them good patterns to reuse. We encourage both proof and anima-
tion though Rodin and ProB but we insist a lot on the differences with respect
to verification and validation.

The project has to be realized by 2-persons teams and usually a list of 3
subjects is proposed to the classroom. Most of the projects have security aspects:
secure management of medical records, voting system, DAC, ... They are usually
case studies inspired by research papers, e.g. in 2019 a reporting management
system inspired from [19] that integrates a control access policy close to RBAC
but with state-dependent access rights, or a simplified control air traffic control
system inspired from [11]. With the description of the system, a refinement plan
is proposed. The project is part of the evaluation for 50% of the final mark.
Students pass this course with very few exceptions.

Let us come back to the peer correction of the first evaluation that we have
been doing for 2 years now. For the moment we do not use any tool for that
purpose, so some manual manipulation of assignment papers are required to
ensure anonymity of both the corrector and the author. The main benefit for
the students is to understand that there are different acceptable solutions. For
the teacher it is more work because a solution sheet must be carefully prepared
and a double check is necessary. Furthermore, as we do the peer evaluation
during a class, the teacher is very much solicited and has to individually help
some correctors.

https://www3.hhu.de/stups/prob/
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A recurrent difficulty for some students, both in B and in Event-B, is the real
nature of invariants and the link with proofs. They do understand proof obliga-
tions corresponding to preservation of the invariants by the events. As we noticed
while reviewing projects, an informal requirement for a bike sharing system like
«A damaged bicycle can not be borrowed by any user» is usually reflected in the
pre-condition of an operation modeling the action of borrowing a bike but it is
more rarely part of the invariant. As said before in Sect. 1, most of our students
have a good background in mathematics. However we can notice that we spend
more time to practice set theory and more precisely relational operators because
students have less knowledge about that field for some years. We plan to use a
set interpreter and an intensive individual training to make it through. For this
course, we do not see too much disparity in students’ mathematics background.
The difference lies in their ability to abstraction.

5 Mechanized Formal Proof and Semantics (PROG1)

This course is equally divided into 2 modules, Mechanized Formal Proof (MFP)
and Semantics of Programming Languages (SPL) running in parallel, with one
sequence (3h30) for each one in a week. The 2 modules are independent, however
the common mathematical tool is the notion of inference rule for proving but
also for specifying semantics. Students pass this course with very few exceptions.

MFP is devoted to interactive proving and also automatic proving at an
introductory level. Thus, in this module we first step into the Coq interactive
theorem prover (https://coq.inria.fr/), used here as an environment to write
functional programs, specifications and proofs. We benefit from the fact that
our students have studied functional programming and practised OCaml (at least
in their common core for most of them), they are used to functions, recursive
functions, inductive data types, pattern matching, types and functions as first
class values. Hence, they can move from OCaml to Coq quite easily regarding
writing code. The first two sequences are hands on, students are introduced to
inductively defined predicates and proofs using tactics, up to proofs by induction.
At the end of these two sequences, a Coq project is assigned to the students:
usually functions on lists (from simple to more elaborate ones, e.g. a simplified
version of count-down, sorting function, queue implementation, set as interval
list). Projects are done by pairs and must be submitted at the end of the course
with a small report using coqdoc.

Then we come back to logic with a reminder of natural deduction for first
order logic and a highlight on intuition/classical settings. A quick presentation
(which is just a reminder for most students) of pure lambda-calculus and simply
typed lambda-calculus (STLC) is done. We then link both worlds by present-
ing the Curry-Howard (CH) isomorphism. This isomorphism is illustrated on
STLC and minimal natural deduction. A blackboard proof is done, describing
a process/algorithm to go from a natural deduction proof to a STLC term and
back. It is checked on simple examples inside Coq. Then extensions are stud-
ied (pairs/conjunction and sum types/disjunction). We do not go further in the

https://coq.inria.fr/
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Barendregt cube [3], but we insist on the idea that when logical features are
added, the language is extended too. Presenting all this lasts 3 sequences with
lectures and tutorials. The part about CH isomorphism is considered as diffi-
cult by students. To make it more concrete, we plan to make them implement
the production of the lambda term by enriching the tactical prover provided in
Chapter 16 of [8].

In the last sequence, students are introduced to automated theorem provers
(that they have already encountered in the proof part of VVL when they used
the WP Frama-C plugin). We quickly have a look at the DPLL algorithm and
implement, during a short lab session, an SMT solver by combining glucose4 as
a SAT solver and glpsol (a tool from the library GLPK5) as a solver for linear
arithmetic6.

An exam is organized at the end of the module and the project is part of the
evaluation for 50% of the final mark.

The previous module is complemented by a module (SPL) about semantics
of programming languages. Students are taught dynamic operational seman-
tics with small step and big step format. Different programming paradigms
are revisited (because they have all been practised in other courses in previ-
ous semesters). Sequence 1 starts with a language of arithmetic expressions with
variables, illustrating the notions of evaluation and environment. Then, we build
on this language to formalize the semantics of a small imperative language lead-
ing to the notion of execution. Besides tutorials, practical sessions allow students
to implement interpreters for the previous languages in OCaml. Then, we move
on to a small functional language (Mini-ML) allowing for the introduction of
lambda abstractions, closures, and call-by-name vs. call-by-value. Here again, a
lab session is organized to develop an OCaml interpreter for Mini-ML, and we
also investigate the notion of higher order abstract syntax. A tutorial is usually
organized to study other features such as inheritance (using Featherweight Java
following the presentation in [17]) or blocks (where locations are introduced).
The module ends with a presentation of the K system (http://k-framework.
org/) [18], which is an environment for specifying and animating formal seman-
tics, followed by a practical session about this system, going back to the previous
simple imperative language.

An exam is organized at the end of the module. Students have to submit the
results of some practical sessions, which will account for 30% of the final mark.
The main difficulty that the students encounter is the handling of inductive
rules that describe the semantics. Although inductive systems are taught already
since the logic course of the common core, the students struggle in linking their
intuition of the behaviour of programming languages with the design of inductive
rules.

4 https://www.labri.fr/perso/lsimon/glucose/.
5 https://www.gnu.org/software/glpk/.
6 The lab session text is at the following url http://web4.ensiie.fr/~guillaume.burel/

download/PR_TP.pdf.

http://k-framework.org/
http://k-framework.org/
https://www.labri.fr/perso/lsimon/glucose/
https://www.gnu.org/software/glpk/
http://web4.ensiie.fr/~{}guillaume.burel/download/PR_TP.pdf
http://web4.ensiie.fr/~{}guillaume.burel/download/PR_TP.pdf
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6 Static Analysis and Deductive Verification (PROG2)

The course contains 6 sequences (3h30 each), giving a brief overview of static
analysis and abstract interpretation. It uses a fairly classical minimal imperative
language (assignment, test and while loop) as illustration. In parallel students
have to work on a project detailed below. Students pass this course with very
few exceptions.

The first sequence recalls notions about operational semantics (which in the-
ory have been seen by the students in their previous courses) and introduces the
notion of control-flow graphs, concrete execution traces and collecting seman-
tics. The second sequence defines the main grounding blocks of static analysis:
lattices and fixpoints, with examples of forward and backward analyses as well
as over- and under- approximations. We then move on to Galois connections and
insertions and define abstract execution over the sign domain. Widening is seen
in the fourth sequence (together with narrowing) and illustrated over intervals.
Finally, we present reduced product by showing how the combination of sign
and parity information can give more precise results than each piece seen in iso-
lation. The last sequence is dedicated to the presentation of the Eva plugin [7]
of Frama-C [12] and a lab session were students use Eva to prove the absence of
runtime errors in small C functions, usually extracted from open-source libraries
(see for instance https://gitlab.com/vprevosto/stan/wikis/2018-2019/tp for the
exercises given this year).

The most important message we try to convey is that it is possible to obtain
correct, mathematically backed results about programs, including ones written
in real-world languages (hence the last course). As an aside, we also put for-
ward the importance of having precise definitions of the semantics of the various
programming languages elements one is working with.

Generally speaking, students do not have a very strong background in logic,
which is particularly seen during the lecture on Galois connections and insertions
that is usually felt as particularly difficult to grasp.

The main frame of the course is quite stable since the last few years. A small
change in the lectures organization has been made possible by the relatively small
numbers of students taking the course. While each sequence is formally divided
into a lecture followed by a tutorial session, in practice, giving an exercise as soon
as the corresponding notion has been introduced proved very beneficial. A more
radical change would be to move from pen and paper exercises to lab sessions
where they would have to implement these notions, e.g. in OCaml, Why3 or Coq.
Such a change would however imply a huge preparation beforehand, and even if
students tend to prefer programming rather than doing more theoretical exercises
it is not completely clear whether these activities will help them understanding
better the theoretical notions that are presented. Indeed a two hours session is
very short for proposing something in Coq, or even Why3. On the other hand,
an exercise in OCaml would make them focus on an implementation, leaving out
the proofs that it is correct. Furthermore, such exercises might interfere with the
projects that are described in the next paragraph.

https://gitlab.com/vprevosto/stan/wikis/2018-2019/tp
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In parallel to the main course, students are asked to work in pairs on a project,
consisting in first reading a research article and summarizing it during a short
presentation to the whole class, and second doing some software development
related to the article. There are usually two categories of subjects for the projects.
For each of them, one or two individual subjects are selected, depending on the
number of students enrolled in the course. All in all, at most 2 or 3 groups
are working on the same subject. The first category is based on an article about
static analysis or abstract interpretation and the associated assignment typically
consists in implementing the algorithm described in the paper. After many years,
where we asked the implementation to take the form of a Frama-C plug-in (or
in one occasion of a new domain for Eva), we chose this year to restrict the
task to a simple academic language similar to the one presented in the lectures
(https://gitlab.com/vprevosto/stan). While letting the students interact with a
real framework can be more formative, the complexity of Frama-C’s API was a
big hurdle to pass before being confronted to the static analysis itself. The two
articles this year were Antoine Miné’s A New Numerical Abstract Domain Based
on Difference-Bound Matrices [15] and David Monniaux’ and Laure Gonnord’s
Cell Morphing: from Array Programs to Array-free Horn Clauses [16], the latter
being probably a bit too ambitious.

The second category is dedicated to deductive verification, with an article
on program proofs and a subject consisting in implementing, specifying and
proving a small algorithm. Again, this year we shifted from imposing the use of
the WP plug-in of Frama-C (and thus a C implementation) to propose Why3
[9], so that students do not have to fight C’s idiosyncrasies in addition to think
about the best way to write their function contracts and loop invariants. The two
articles were Ghost for Lists: A Critical Module of Contiki Verified in Frama-C
by Allan Blanchard, Nikolai Kosmatov and Frédéric Loulergue [6], and Secure
Information Flow by Self-Composition by Gilles Barthe, Pedro D’Argenio and
Tamara Resk [4]. For the former, the associated subject was the basic operations
of the skip list data structure, while for the latter it consisted in the Kruskal
algorithm for computing maximal spanning trees over graphs.

7 Conclusion

We presented in this paper a formal track offered to students engaged in a
Software Engineering & Security curriculum in an engineering school. This has
been happening for more than 15 years with variants. Some of our students who
have followed this set of courses have a job where they use formal methods every
day but a lot of them do not. We interviewed a few of the latter about benefits
they got from this formal track in their professional life while they do not apply
formal methods directly7. To quote one of them, «I think that all the notions
we learn about analysis of a program, its source code, and its behaviour, allow
us to better understand what we are developing, to better understand what is
happening when we write this or that instruction in our code.». And to quote
7 Answers can be found at http://web4.ensiie.fr/~dubois/interviews_FMTEA19.pdf.

https://gitlab.com/vprevosto/stan
http://web4.ensiie.fr/~{}dubois/interviews_FMTEA19.pdf
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another one «Formal methods gave me rigor in software design». We believe
that this formal track gives a solid basis to students who want to continue down
the formal direction (Phd or job relying on formal methods) because it covers
a large panel of techniques for specification and verification. For those who go
to more traditional development, this formal track gives them rigor, rigor and
rigor. This also gives them, when the time comes, the memory that formal tools
exist and can help them in a more reliable development.
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Abstract. The construction of correct software, i.e. a computer pro-
gram that meets a given specification, is an important goal in Computer
Science. Nowadays, not only critical software (the ones used in aircraft,
hospitals, banks, etc.) is supposed to provide additional guarantees of
its correctness. Nevertheless, this is not an easy task because proofs are
often long and full of details. In this sense, a strong background in logical
deduction is essential to provide Computer Science (CS) professionals the
necessary competencies to understand and provide mathematical proofs
of their programs. Logic courses for CS tend to follow old precepts with-
out emphasizing mastering deduction itself. In our institution, for several
years we have followed a more pragmatical approach, in which the foun-
dational aspects of both natural deduction and deduction à la Gentzen
are taught and, in parallel, the operational premises of deduction are
put into practice in proof assistants. Thus, CS students with a minimum
knowledge in programming are challenged on providing correctness cer-
tificates for simple algorithms. “Putting their hands in the dough” they
acquire a better understanding of the value and importance of deduc-
tive technologies in computing. Here we show how this is done relating
natural deduction and sequent calculus deduction and using the proof
assistant PVS in the simple context of a library of sorting algorithms.

1 Introduction

Logic is essential in CS, and the correct manipulation of tools available in this
discipline can be very helpful for a good practice of programming and mathemat-
ical certification of computational objects. However, motivating the necessity of
a profound knowledge about the available deductive frameworks is sometimes
hard, if no practical context is provided (to undergraduate students). For doing

Work supported by FAPDF grant 193001369/2016.
M. Ayala-Rincón—Partially supported by CNPq grant 307672/2017-4.

c© Springer Nature Switzerland AG 2019
B. Dongol et al. (Eds.): FMTea 2019, LNCS 11758, pp. 81–96, 2019.
https://doi.org/10.1007/978-3-030-32441-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32441-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-32441-4_6


82 A. A. Almeida et al.

this, we have contextualized our courses on computational logic through the
formal verification of basic properties involving simple but relevant algorithms.

Algorithmic properties are verified using the Prototype Verification System
(PVS), that is a higher-order proof assistant based on sequent calculus (SC) with
a functional specification language that supports dependent types. In this way,
students are in contact with a deductive tool, used to certify programs and algo-
rithms, directly related to the theory seen in classroom. Our goal is to motivate
logic as a relevant branch of CS through the use of simple formalizations.

To challenge students with scarce knowledge on deduction and induction dur-
ing a one semester course on Computational Logic1, to build complete formal-
izations would be frustrating and demotivating. This problem is circumvented
providing almost complete formalizations of correctness of simple (sorting) algo-
rithms with some strategic holes, proposed as conjectures, that are supposed to
be completed by them. In this way, students can grasp the connections between
theoretical and practical notions needed for fulfilling the demanded tasks. The
choice of the proof assistant at this initial level is irrelevant since, after this first
contact, having as focus deduction and induction and not formalization, it would
not be so difficult for them to migrate to different proof systems.

Even though we believe the importance of relevant results of mathematical
logic should not be neglected, such as Gödel’s completeness, incompleteness and
undecidability theorems, as well as expressiveness bounds of first-order logic
and extensions of first-order logic, the most important target when teaching
computational logic is to provide students enough foundations so that they can
master a good understanding of mathematical deduction and computational
abilities to apply it in real computational problems.

This work reports how we motivate students to acquire these understanding
and abilities with a supervised use of a proof assistant. The textbook that sup-
ports the course covers natural deduction (ND) and SC and their equivalence for
propositional and predicate (intutionistic and classical) logic, Gödel complete-
ness theorem, undecidability of the predicate logic and how SC is implemented
in PVS [3]. After introducing the required concepts and relations on ND and SC,
we introduce PVS functional specifications of sorting algorithms through some
easy examples over naturals. These examples follow the lines of the sorting
library, developed by the authors, and available as part of the NASA LaRC PVS
libraries. The sorting library includes formalizations of correction of the Max-
sort, Mergesort, Insertion sort, Quicksort, Bubblesort and Heapsort algorithms
over elements in a non-interpreted type with an abstract preorder [2].

In Sect. 2, we illustrate how connections between ND and SC are useful for
understanding deduction in practical frameworks. In Sect. 3, we show how teach-
ing connections between deductions in a mathematical and in a proof assistant

1 This is a sixteen week (sixty four hour) course exceeding the contents of Basic Logic
and whose requirements are courses on Data Structures and/or Discrete Structures
according to the CS ACM curricula recommendation. Students typically attend this
course on Computational Logic after the third semester and, after attending courses
on integral and differential calculus, and algebra.
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as PVS is valuable for motivating formal deduction. Section 4 shows how induc-
tion and recursion, along with formal deduction, can be taught to CS students
as a practical tool to analyze correctness of simple recursive algorithms such as
basic sorting algorithms. Section 5 presents related work and concludes.

2 Logical Deduction Frameworks

In order to allow students to deal with different deductive styles and proof assis-
tants, we show how to relate deductive frameworks and its rules to prove its
equivalence. Here we work with the presentation of the deduction rules à la
Gentzen for first-order predicate logic (for short SC) and ND, as given in [22].
Then we relate the rules with a few basic proof commands of PVS and its oper-
ational semantics. We expect the reader to be familiar with logical deduction,
structural induction and recursion.

As a simple example to introduce the notion of relation between frameworks,
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Now, the ND derivations ∇′
1 and ∇′

2 follow:
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∃x∃y(¬R(x) ∧ ¬R(y) ∧ R(xy))
(I∃)2

¬R(
√
2) ¬R(

√
2)

¬R(
√
2) ∧ ¬R(

√
2)

(I∧)
[R(

√
2

√
2
)]a2

¬R(
√
2) ∧ ¬R(

√
2) ∧ R(

√
2

√
2
)

(I∧)

∃x∃y(¬R(x) ∧ ¬R(y) ∧ R(xy))
(I∃)2

And from these derivations, one obtains:

(LEM) ¬R(
√

2
√

2
) ∨ R(

√
2

√
2
) ∇′

1 ∇′
2

∃x∃y(¬R(x) ∧ ¬R(y) ∧ R(xy))
(E∨, a1, a2)

It is straightforward that SC right rules and ND introduction rules perform
corresponding tasks in both frameworks. For instance, observe the second appli-
cation of rules (R∧) and (I∧) in the derivations ∇1 and ∇′

1 above. On the other
hand, understanding the relation between SC left rules and ND elimination rules
requires a good comprehension of the role of (cut) in SC. For instance, observe
the application of (L∨) and (cut) and (E∨) in previous derivations. The cor-
respondence between ND and SC rules is the basis to verify that restricted to
the intuitionistic fragment both derivation mechanism are equivalent. Below we
illustrate the necessary translation for the specific case of derivation rules (E∨)
and (cut) plus (L∨). In these derivations, the symbols ∇ and ∇′ (as well as their
subscripted versions) represent derivations in ND and SC, and a derivation ∇′

is inductively assumed from the existence of the corresponding derivation ∇.

Γ
∇

φ ∨ ϕ

[φ]a Γ
∇1

ξ

[ϕ]b Γ
∇2

ξ

ξ
(E∨, a, b) �

∇′

Γ ⇒ φ ∨ ϕ

∇′
1

φ, Γ ⇒ ξ

∇′
2

ϕ, Γ ⇒ ξ

φ ∨ ϕ, Γ ⇒ ξ
(L∨)

Γ ⇒ ξ
(cut)

For the equivalence for the whole classical first-order logic, additional prob-
lems arise, such as the restriction of sequents in intuitionistic logic to have at
most one formula in their succedent. This is solved by applications of c-equivalent
transformations steps on sequents, a discipline also used in proof assistants as
PVS to provide sequents only with positive formulas.

To prove that ¬φ, Γ ⇒ Δ implies Γ ⇒ Δ,φ one uses non-intuitionistic
stability axioms (⇒ ¬¬φ → φ) derived from axioms (Ax) and (L⊥) as shown in
the left sub-branch below.

φ ⇒ φ, ⊥ (Ax)

⇒ φ, ¬φ
(R→) ⊥ ⇒ φ (L⊥)

¬¬φ ⇒ φ
(L→)

⇒ ¬¬φ → φ
(R→)

¬φ, Γ ⇒ Δ

¬φ, Γ ⇒ Δ, φ, ⊥ (RW )

Γ ⇒ Δ, φ, ¬¬φ
(R→)

φ, Γ ⇒ Δ, φ (Ax)

¬¬φ → φ, Γ ⇒ Δ, φ
(L→)

Γ ⇒ Δ, φ
(cut)

The other direction is obtained using the sequents Γ ⇒ Δ,φ and ⊥, Γ ⇒ Δ as
premises of an application of rule (L→). The second premise is obtained through
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application of rule (L⊥). The proof for the sequents φ, Γ ⇒ Δ and Γ ⇒ Δ,¬φ
does not require stability axioms.

We denote as (c-eq) all four invertible derived rules related with c-
equivalence:

¬φ, Γ ⇒ Δ

Γ ⇒ Δ, φ
(c-eq)

Γ ⇒ Δ, ¬φ

φ, Γ ⇒ Δ
(c-eq)

3 Logical Deduction versus Proof Commands

Understanding how proof assistants use the chosen deductive calculus is neces-
sary in a more practical setting. In PVS for instance, that relation is clarified by
highlighting the main differences between its proofs and SC derivations.

The first observation is that derivations in PVS start from the conclusion,
thus, the proof trees can be seen as SC derivations upside down. Another point
is that propositional steps and applications of properties such as (LEM) and
(c-eq) as well as axioms are done automatically by the proof assistant, while in
SC derivations this has to be done step by step.

To provide a formal proof about some conjecture with PVS, first one specifies
it using the specification language. Then, the proving process starts using the
proof language whose proof commands follow a SC style [14,15].

To illustrate this we examine a PVS deduction tree for the example of the
previous section, specified as the following conjecture, where R? abbreviates the
predicate rational?. The root node (see Fig. 1) is labelled by the objective
sequent, but for simplicity, all sequents were dropped from this tree:

� EXISTS (x,y) : NOT R?(x) AND NOT R?(y) AND R?(xˆy)

As first derivation step, related with SC rule (cut), one must proceed by case
analysis using the command (case), providing two branches (see Fig. 1).

The right branch brings as objective the instance of (LEM) used in the case,
that is ‘‘R?( ˆ (

√
2,

√
2)) OR NOT R?( ˆ (

√
2,

√
2))’’ as a succedent, which is

proved using rule (R∨), applied through the PVS proof command (flatten),
generating two succedent formulas, R?( ˆ (

√
2,

√
2)) and NOT R?( ˆ (

√
2,

√
2)).

The system automatically applies (c-eq) and concludes this branch with a sole
command, by moving the second formula to the antecedent without negation,
and then (Ax). In the left branch that is the interesting one, PVS provides the
formula referent to the (case) as an antecedent. Thus, rule (L∨) should be
applied to split the proof into two sub-branches, which is done by PVS proof
command (split) along with c-equivalence.

The left sub-branch brings a sequent with the formula R?( ˆ (
√

2,
√

2)) in
the antecedent and is related to derivations ∇2 and ∇′

2, while the right sub-
branch is related to derivations ∇1 and ∇′

1 and has this formula in the succedent
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Fig. 1. PVS deduction tree for existence of irrationals with rational potentiation

due to c-equivalence. In both cases, one must deal adequately with the existen-
tial quantifiers in the target conjecture EXISTS (x,y) : NOT R?(x) AND NOT
R?(y) AND R?( ˆ (x,y)) with the SC rule (R∃). Since it is done in a down to
up manner, concrete and adequate witnesses of the existence of these quantified
variables should be provided, requiring from students a good comprehension of
quantifier inference rules and also creativity to find the right instantiations.

For the left sub-branch, applying instantiation (by command (inst ‘‘
√

2”
“
√

2’’)) gives as result the sequent (label of the node marked with (α))

R?(ˆ(
√
2,

√
2)) � NOT R?(

√
2) AND NOT R?(

√
2) AND R?(ˆ(

√
2,

√
2))

The formula in the succedent splits into three objectives by application of
(R∧) using the PVS proof command (split). The third of these objectives is
trivially discharged by an automatic application of (Ax), since R?( ˆ (

√
2,

√
2))

is also an antecedent of the sequent. The other two require the knowledge that
NOT R?(

√
2), obtained from a lemma as (lemma ‘‘sq2 is irr’’).

For the right sub-branch, the instantiation (inst ‘‘ ˆ (
√

2,
√

2)’’ ‘‘
√

2’’)
generates the sequent (label of the node (β))

� NOT R?(ˆ(
√
2,

√
2)) AND NOT R?(

√
2) AND R?(ˆ(ˆ(

√
2,

√
2),

√
2)), R?( (̂

√
2,

√
2))

The proof proceeds as in the left sub-branch, requiring (lemma
‘‘two is rat’’) to state that R?( ˆ ( ˆ (

√
2,

√
2)

√
2) to complete its last sub-

branch.
In general, when dealing with quantifiers, the proof command related with

both rules (R∃) and (L∀) is (inst), while for both rules (R∀) and (L∃) what is
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required is application of Skolemization through the proof command (skolem).
In the last case, PVS substitutes quantified variables by fresh ones.

When using proof assistants to deal with algorithmic properties, the syntax of
branching instructions of the specification language such as IF-THEN-ELSE need
to be related to logic by establishing their concrete semantics. For instance, by
illustrating IF-THEN-ELSE instruction behavior in PVS one has:

a � b

� a → b
(flatten)

� a, c

� ¬a → c
(flatten)

� IF a THEN b ELSE c ENDIF
(split)

a, b �
a ∧ b � (flatten)

c � a

¬a ∧ c � (flatten)

IF a THEN b ELSE c ENDIF � (split)

Table 1 summarises a few relations between SC and ND rules and PVS proof
commands. Marks in the second column indicate that rules (Ax), (L⊥) and (c-eq)
are automatically applied whenever possible along with proof commands.

Table 1. SC and ND rules versus PVS proof commands

(Ax)(L⊥) (LRW )(LRC) (L∧) (L∨) (L→) (L∀) (L∃) (R∧) (R∨) (R→) (R∀) (R∃) (cut)

c-equiv (E∧) (E∨) (E→) (E∀) (E∃) (I∧) (I∨) (I→) (I∀) (I∃)
(hide) ×
(copy) ×
(flatten) � × × ×
(split) � × × ×
(skolem) � × ×
(inst) � × ×
(lemma) ×
(case) � ×

4 Inductive Proofs Versus Recursive Algorithms

To move to the formalization of correctness of simple algorithms as a mechanism
to motivate students in the study of formal logic and deduction, other important
concepts, such as recursion and induction are necessary. As example, we propose
the formalization of correctness of sorting algorithms, as will be illustrated using
Hoare’s Quicksort algorithm specified over lists of a non-interpreted type T in
which a preorder is available. Lists are specified as usual as an inductive data
structure where null is the constructor for empty lists, and cons constructs a
new list from a given element of T and a list. The operators cdr and car give
the tail and head of a list: cdr(cons(x,l)) := l and car(cons(x,l)) := x.

quick_sort (l : list[T]): RECURSIVE list[T] =

CASES l OF null: null,

cons (x, r): append(quick_sort (leq_elements (r,x)),

cons(x,quick_sort(g_elements(r, x))))

ENDCASES

MEASURE length(l)
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Above, the head of the list is chosen as the pivot x; leq elements(r,x)
and g elements(r,x) build the lists of elements of the tail r that are respec-
tively less than or equal to and greater than x; these lists are then recursively
sorted and properly appended, along with the pivot, to provide the sorted list.
The termination MEASURE for this function is given as the length of the list. This
measure helps one to conclude that quick sort is well-defined (and terminat-
ing) by proving that each recursive call has as argument a list whose length is
strictly smaller than the input list. Sometimes PVS can prove well-definedness
automatically, but in general, as in this case, the user needs to prove that the
measure indeed decreases. The proof for Quicksort uses the following lemmas:

leq_elements_size : LEMMA g_elements_size : LEMMA

FORALL (l : list[T], x:T) : FORALL (l : list[T], x:T) :

length(leq_elements(l,x)) <= length(g_elements(l1,x)) <=

length(l) length(l)

Proving these lemmas is left as exercise that requires structural induction,
which is usually not easily digested by the students. In fact, their first practical
contact with structural induction happens likely in this course when they have to
prove, for instance, that well-formed expressions in the syntax of first-order logic
satisfy some properties or, when they have to prove by induction in derivations
the correctness of ND or of SC. Similarities with natural induction might be used
to explain this principle. Structural induction principle of PVS is used through
command (induct) followed by the induction variable. In general, with P as the
predicate representing the property to be proved, one has the following schema:

More interesting, a complete or strong induction principle can be applied,
where a different measure, say μ, from the one extracted from the inductive
data structure is used, which is built as the following schema:

After applying proof commands (skolem) and (flatten), one has the
sequent Γ, (∀(x, l′) : (μ(l′) < μ(l) → P(l′))) � P(l),Δ, which can also be
obtained by the PVS command (measure-induct+) with the same arguments
as above.

Using structural induction on l to prove lemma leq elements size above,
one obtains the sub-objectives below, where leq l abbreviates leq elements:

|- FORALL (x: T): length(leq_l(null, x)) <= length(null)
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and

|- FORALL (x’: T, l’: list[T]):

(FORALL (x: T): length(leq_l(l’, x)) <= length(l’))

IMPLIES (FORALL (x: T): length(leq_l(cons(x’, l’), x)) <=

length(cons(x’, l’)))

For proving the former, it is enough to apply the command (skolem)
and then expand the definition of leq elements obtaining the trivial sequent
�length(null) <= length(null). For proving the latter, after applying the
commands (skolem) twice and then (flatten), one obtains the sub-objective:

FORALL (x: T): length(leq_l(l’, x)) <= length(l’)

|- FORALL (x: T): length(leq_l(cons(x’, l’), x)) <= length(cons(x’, l’))

After Skolemization, instantiation and expansions of length and leq l (i.e.,
leq elements), one obtains the following objective:

length(leq_l(l’, x)) <= length(l’)

|- IF x’ <= x THEN 1 + length(leq_l(l’, x))

ELSE length(leq_l(l’, x)) ENDIF <= 1 + length(l’)

Notice that the IF-THEN-ELSE expression can be lifted to the top of the
succedent (using proof command (lift-if), obtaining the equivalent formula

IF x’ <= x THEN 1 + length(leq_l(l’, x)) <= 1 + length(l’)

ELSE length(leq_l(l’, x)) <= 1 + length(l’) ENDIF

According to the discussion on the semantics of IF-THEN-ELSE, it is possible
to apply proof commands obtaining two sub-objectives that can be concluded
directly applying the command (assert), which will automatically apply the
necessary simplifications from the PVS prelude library using decision procedures.

Notice that when performing this kind of exercise, justifying the application
of several proof techniques (or proof commands) will demand additional effort,
for instance, to let clear to students that, when definitions are expanded (through
proof command (expand)), an equational derivation rule is being applied. Such
rule essentially replaces the application of an operator by its definition, exactly
as it was defined in the specification. Similarly, other equational commands that
are required for equational management, such as (replace) which replaces the
left or right-hand side of an equation for the other side of the equation in other
formulas of the sequent, can be explained. These deduction mechanisms could
be easily schematized and explained as the SC rules:

(Γ ⇒ Δ)[f(t) 	→ deff (t)]

Γ ⇒ Δ
(L=)

Γ [s 	→ t], s
.
= t ⇒ Δ[s 	→ t]

Γ, s
.
= t ⇒ Δ

(L=) ⇒ x = x (R=)

where, .= denotes that the orientation of the equational formula is irrelevant, and
[s 	→ t] denotes the substitution of some occurrences of s by t. And f(t) denotes
an application of the operator f to the argument(s) t and deff (t) denotes the
instantiation of the body of the specification of the operator f with t. In rule
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(L=), when all occurrences of s are replaced by t, the equation s
.= t in the

antecedent of the premise sequent might be dropped.
Regarding lifting IF-THEN-ELSE’s to the top of the formulas, it can be seen as

an invertible SC rule that, according to the semantics of this branching instruc-
tion, corresponds to the command below, where P is a predicate on tuples of
the type of b (that should be the same type of c) and the type of d. This rule
behaves identically in the antecedent of a sequent.

Γ � P(IF a THEN b ELSE c ENDIF, d), Δ

Γ � IF a THEN P(b,d) ELSE P(b, c) ENDIF,Δ
(lift-if)

Translating complete PVS proofs to SC derivations helps to consolidate the
understanding of relations between theory and practice. To illustrate this, con-
sider the simple property that list that are permutations are also permutations
after adding to them the same element. Permutations? (for short Perm?) is a
predicate that appears in the main correctness theorem of Quicksort below.

quick_sort_works: THEOREM FORALL (l : list[T]):

is_sorted?(quick_sort(l)) AND Permutations?(quick_sort(l), l)

Perm? is specified over pairs of lists based on the coincidence of occurrences
of elements in the lists: Perm?(l1, l2) := ∀x O(l1, x) = O(l2, x), where O(l, x) is
specified as the number of occurrences of x in l. Assume the knowledge that ⇒
∀y O(y · l, y) = 1+O(l, y) ≡ ϕ(l) and ⇒ ∀x, y ¬x = y → O(x · l, y) = O(l, y) ≡ ψ(l),
where x · l abbreviates cons(x, l). In order to provide deductions to prove that
adding the same element x to permutations l1 and l2 one obtains lists x · l1 and
x · l2 that are also permutations. Below, a SC derivation that follows the steps
of the PVS proof is given.

(LEM) ⇒ x = y ∨ ¬x = y

∇1 ∇2

x = y ∨ ¬x = y, O(l1, y) = O(l2, y) ⇒ O(x · l1, y) = O(x · l2, y)
(L∨)

O(l1, y) = O(l2, y) ⇒ O(x · l1, y) = O(x · l2, y)
(cut)

∀y O(l1, y) = O(l2, y) ⇒ O(x · l1, y) = O(x · l2, y)
(L∀)

∀y O(l1, y) = O(l2, y) ⇒ ∀y O(x · l1, y) = O(x · l2, y)
(R∀)

Perm?(l1, l2) ⇒ Perm?(x · l1, x · l2)
(L=)

⇒ Perm?(l1, l2) → Perm?(x · l1, x · l2)
(R→)

⇒ ∀l1, l2, x Perm?(l1, l2) → Perm?(x · l1, x · l2)
(R∀)3

Where ∇1 is given as:

⇒ ϕ(l1) ∇′
1

O(l1, y) = O(l2, y) ⇒ O(y · l1, y) = O(y · l2, y)
(cut)

x = y, O(l1, y) = O(l2, y) ⇒ O(x · l1, y) = O(x · l2, y)
(L=)

with ∇′
1:

⇒ ϕ(l2)

⇒ 1 + O(l1, y) = 1 + O(l1, y)
R=

O(l1, y) = O(l2, y) ⇒ 1 + O(l1, y) = 1 + O(l2, y)
(L=)

O(y · l2, y) = 1 + O(l2, y), O(l1, y) = O(l2, y) ⇒ 1 + O(l1, y) = O(y · l2, y)
(L=)

ϕ(l2), O(l1, y) = O(l2, y) ⇒ 1 + O(l1, y) = O(y · l2, y)
(L∀)

O(l1, y) = O(l2, y) ⇒ 1 + O(l1, y) = O(y · l2, y)
(cut)

O(y · l1, y) = 1 + O(l1, y), O(l1, y) = O(l2, y) ⇒ O(y · l1, y) = O(y · l2, y)
(L=)

ϕ(l1), O(l1, y) = O(l2, y) ⇒ O(y · l1, y) = O(y · l2, y)
(L∀)
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And ∇2 is given as:

∇2 :

⇒ ψ(l1)
.
.
.
.

⇒ x = y, O(x · l1, y) = O(l1, y) ∇′
2

O(l1, y) = O(l2, y) ⇒ x = y, O(x · l1, y) = O(x · l2, y)

¬x = y, O(l1, y) = O(l2, y) ⇒ O(x · l1, y) = O(x · l2, y)
(c-eq)

(cut)

with ∇′
2:

⇒ ψ(l2)
.
.
.
.

⇒ x = y, O(x · l2, y) = O(l2, y)

O(l1, y) = O(l2, y) ⇒ O(l1, y) = O(l2, y) (Ax)

O(x · l2, y) = O(l2, y), O(l1, y) = O(l2, y) ⇒ O(l1, y) = O(x · l2, y)
(L=)

O(l1, y) = O(l2, y) ⇒ x = y, O(l1, y) = O(x · l2, y)

O(x · l1, y) = O(l1, y), O(l1, y) = O(l2, y) ⇒ x = y, O(x · l1, y) = O(x · l2, y)
(L=)

(cut)

The proof that Quicksort computes a permutation starts with the sequent
below (labelling the root node �0 in Fig. 2):

|- FORALL (l : list[T]): Perm?(quick_sort(l),l)

Fig. 2. Deduction PVS tree to permutation of Quicksort
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Now, by strong induction applying (measure-induct+) using as measure the
length of lists, the sequent below is obtained (�1 in Fig. 2), where the induction
hypothesis is the antecedent formula (type annotation is omitted by short):

FORALL(y): length(l’) < length(l) IMPLIES Perm?(quick_sort(l’),l’)
|- Perm?(quick_sort(l),l)

After that, proper applications of (expand) as well as (copy) and (inst)
are done. In particular, for the last proof command, two adequate instantiations
(that is, SC rule (L∀)) of the induction hypothesis are needed: one with the
sublist containing the elements smaller than or equal the pivot and the other with
the sublist containing the elements greater than the pivot, giving the sequent
below (�2 in Fig. 2), where for brevity q s, g l and app respectively abbreviate
quick sort, g elements and append.

length(g_l(cdr(l), car(l))) < length(l) IMPLIES

(FORALL(x):O(q_s(g_l(cdr(l),car(l))))(x) = O(g_l(cdr(l),car(l)))(x),

length(leq_l(cdr(l), car(l))) < length(l) IMPLIES

(FORALL(x):O(q_s(leq_l(cdr(l),car(l))))(x) = O(leq_l(cdr(l),car(l)))(x)

|- null?(l),

O(app(q_s(leq_l(cdr(l), car(l))),

cons(car(l), q_s(g_l(cdr(l), car(l))))))(x) = O(l)(x)

After splitting the antecedents of previous sequent, and instantiating twice,
several lemmas are needed. Among them (see Fig. 2): occ of app, same occ leq
and same occ g. Similarly, the proof command (lemma) is used to apply both
lemmas leq elements size and g elements size in the branches rooted by
(�3) and (�4). This is done to prove correct instantiation of the inductive
hypotheses with lists that are in fact shorter than l. The lemma occ of app
states that the occurrences of some element in an append is the sum of the
occurrences in the appended lists and, after proper instantiations, adds the fol-
lowing antecedent to the previous sequent (node �5 in Fig. 2):

O(app(q_s(leq_l(cdr(l),car(l))),cons(car(l),q_s(g_l(cdr(l),car(l))))))(x)

= O(q_s(leq_l(cdr(l), car(l))))(x) +

O(cons(car(l), q_s(g_l(cdr(l), car(l)))))(x)

Then, the left-hand side of this equation is replaced by the right-hand side in
the succedent and the second occurrence of O in the succedent is expanded. Since
the expanded definition considers whether car(l) = x or not, the development
of this proof brings the opportunity to relate (split) proof command and (R∧)
rule for the analysis of cases. These cases, car(l) = x and NOT car(l) = x
(nodes �6 and and �7 in Fig. 2) are concluded by applying lemmas same occ leq
and same occ g. The former lemma states that for an element k that is less than
or equal to x, its occurrences in the lists l and leq l(l,x) are equal, while it
occurs zero times in the list g l(l,x). The later one states that for an element
k that is greater than x, its occurrences in the lists l and g l(l,x) are equal,
while it occurs zero times in the list leq l(l,x).



The Computational Relevance of Formal Logic Through Formal Proofs 93

5 Related Work and Conclusions

Teaching and motivating students to learn logic is, in general, a difficult task
that has been gathering effort for a lot of years to ease the students learning and
interest, giving rise to various tools aiming to achieve this goal. These tools range
from those used to help students to work with evaluation of formulas in predicate
logic over a concrete model, such as Tarski’s World [4], to more sophisticated ones
used to assist and verify the correct construction of proofs. Several tools can be
used specifically to teach logic in various manners, according to Huertas’ survey,
used in this discussion, that classifies these tools into five categories: Provers,
Checkers, Assistants, E-tutors and E-tutorials [11]. E-tutors and tutorials are
directly related to a course and its contents, as for the first category, the user
is more passive and the proofs can be done in an automatic way, reproduced by
the student or assisted. Therefore, we believe that among these tools, checkers
and assistants provide the greatest learning benefits for the students.

Assistants provide a high level of interaction and allow students to build
their own deductions while offering help and guidance through messages, hints
and dialog interfaces. This is the case of JAPE [5], a tool to reproduce paper
and pencil proofs and display them using ND (in Fitch style), or SC deduction
trees, allowing the user to apply deduction rules in a simple manner. JAPE
usefulness to teach logic was reporter in [1]. It provides a full environment to the
user, allowing, for instance, the cut rule for SC and proof by contradiction in
ND, but neither compositions with partial proofs nor the use of equality rules.
The use of partial proofs is supported by tools such as PANDA [10], a friendly
graphic interface to deal with ND in classical logic. When the user clicks on a
formula, the system provides a list of applicable rules, allowing backwards and
forwards reasoning, displaying the proof tree as the user goes on with it in a
very interactive way. Equality rules can also be found in other tools such as the
SC Trainer in [9], a didactic tool that helps students to understand how to deal
with SC. As another assistant PESCA can be also mentioned [18]. In PESCA the
user can write down a logic formula in ASCII and then use the system to know
which SC rule can be applied. The system does not support the use of cut rules
or structural rules. The proofs are done step by step in a sequential manner, and
the proof tree can then be constructed by user commands as a latex document.
The corresponding ND proof can also be exported in a latex file.

Checkers can be used as a guide to students to check their deductions and ver-
ify if their exercises are correct. Here, ProofWeb [12] can be mentioned. Although
it can be an assistant since it is a web interface where students can make use
of proof assistants without installing them, this tool allows the introduction of
deduction exercises that can be automatically verified when the students finish
them. Other tools combine ProofWeb with other features in order to provide dif-
ferent environments to improve didactic, for instance, [21] presents an E-tutorial
built to allow proving or refuting conjectures as a method to help teaching logic.

Even with so many tools available and the effort of several people in building
more didactic and complete tools to ease the understanding of logical proofs,
students can feel demotivated or unwilling to learn a subject if no real world
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contexts are presented that are related with the theory. In this sense, some logic
classes focus on giving a general idea on the importance of this subject and its
practical application, such as reported in [20], where examples of propositional
and first-order logic sentences related to the day-to-day universe are provided
and it is discussed how students can represent knowledge and reasoning about
it, using for instance Prolog and other tools. This is valuable to relate the formal
representation of real world sentences as logical propositions, being very helpful
for teaching logic in philosophy courses, as reported in [19], where the ND Plan-
ner is used to teach ND to students with limited background in mathematics and
scare familiarity with rigorous notations. However, when dealing with logic in
CS courses, such tools still lack in providing an exciting practical use of logic in
computational problems. Some tools provide this feature, such as VeriFun [23], a
semi-automated tool allowing one to verify statements about programs written
in a functional language, or even tools built over some proof assistant, such as
the tool for imperative programs build over PVS discussed in [13].

Proof assistants have been shown valuable on logic classes that contain an
extensive content, such as shown in [6,16,17], where Coq is used successfully to
help motivating students to follow the necessary rigor when dealing with logic
and programming languages by being a valuable guidance to the teacher, since
the proof assistant is used as a “teaching assistant” in a large classroom. Another
use of proof assistants to teach logic is done with a more friendly version of the
ACL2, the ACL2 Sedan [8], that helps novices to use the tool in an “assisted”
way by, for instance, preventing the user to make simple but common mistakes,
such as inserting incomplete or not well-formed expressions. This version also
aims to be self-teaching, by providing a graphical environment as an Eclipse
plugin where the student can navigate and learn how to reasoning by programs
with the assistant by using and exploring it.

Our proposal is to use proof assistants to provide a learning environment
where the principles of logic can be related, in a general way, to reasoning about
real computational problems. This is possible since proof assistants implement
the required logic background and allow reasoning over CS and Math problems,
by providing a specification language that allows one to deal with the semantics
of programming and other computational features. Such tools are really powerful
and thus applied to verify sophisticated properties, but also are adequate for
our purposes since their basis is built just on formal deduction. Thus, the use
of proof assistants can be done in a careful way, without demanding complex
correctness proofs of the students, but just using the power provided by these
tools to teach and motivate logic learning in a practical manner. The central
premise of our proposal is to work first with very simple but real applications that
motivate CS students to apply formal derivation as a non-fault approach in their
programs. We use PVS to teach logic through stimulant and feasible applications
in verification of simple functional programs. Although proof assistants are not
designed as teaching tools, our goal is to show that a well-balanced use of them
is useful for motivating students about the relevance and usefulness of formal
deduction and induction in CS and Math.
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This methodology has been applied to teach computational logic to under-
graduate CS students with the background mentioned in the introduction and
without previous experience with proof assistants. We believe our approach is
pertinent and important to start the preparation of CS professionals, who will
work with the construction and design of mathematically proved correct soft-
ware. Since courses in proof theory, type theory and formal methods are optional,
we advocate a long term, continuous and strong preparation as well as an early
motivation of such professionals that should start during the first years of under-
graduate CS courses.

In addition to formalization of algorithms, future work includes the use of
proof assistants to teach complexity of algorithms, useful in courses on analysis
of algorithms, as well as, to explore its natural application in courses on type
theory as illustrated by Constable in [7].
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Abstract. In this paper, we report the author’s experience teaching for-
mal methods to undergraduate students in the fourth year of the Software
Engineering degree at the University of Málaga. The subject is divided
into three blocks devoted to explaining the application of formal methods
at different abstraction levels during the process of developing software.
Although we teach the theoretical basis for students to understand the
techniques, we mainly focus on the practical application of formal meth-
ods. Students are asked to realize in pairs three modelling and specifying
projects of medium size (one for each block). The practical work corre-
sponds to 60% of the student assessment, the remaining 40% is assessed
with an exam on the theory of the subject matter. We have been teaching
the subject during the last five years with very good results.

1 Introduction

The introduction of formal methods in the Computer Science curriculum is not
an easy task. Many colleagues of other software engineering related areas tend to
think that formal methods are only academic procedures without a real imple-
mentation in industry and that, consequently, they should be taught in master’s
degrees or courses for graduate students. However, the situation is evidently a
vicious circle, if software engineers do not know formal methods, it is very unlike
that they can be applied to industry. The change of Spanish university degree
curricula in 2011 made it possible to update the content and structure of Com-
puter Science studies. In the particular case of the University of Málaga, this
change allowed the introduction of a subject devoted to Formal Methods in the
fourth year of the Software Engineering degree with the consensus of a large part
of the university community. This was possible probably because there are very
established research groups with a strong background in Formal Methods in the
Málaga University Computer Science Department.
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Fig. 1. Structure of the subject

In this paper, we describe our experience since 2014 teaching Formal Meth-
ods to groups of about 50 students for whom the subject is compulsory. Some
colleagues think that formal methods are hard to teach and study due to their
strong mathematical basis. However, our students’ results show exactly the oppo-
site. In general, students have enough skills in mathematics and logic to enable
them to handle the subject very successfully.

Figure 1 shows the structure of the course which is taught during a semestre.
Two transversal activities are present during the whole semestre. On the one
hand, formal methods mainly consist of modelling and specification tasks. Thus,
students must learn how to describe the software/hardware artifacts to be ana-
lyzed using different modelling languages. They must also know different logic-
based specification languages to write the desirable properties. On the other,
the use of (semi-)automatic tools that carry out the analysis work is the best
way of convincing students of the usefulness of formal methods. Thus, during
the course students become familiar with three different formal method tools.

As seen in Fig. 1, the subject is divided into three independent blocks. The
idea is to show students that each formal technique is suitable for analyzing
certain types of properties, from the fine and tiny errors produced by a bad
coding of a small process or by the incorrect interaction of small processes to
the incorrect construction of large software components whose inter-relations are
not sufficiently well described. Thus, we start by introducing the foundations
of explicit model checking. This method is very good at searching for errors
produced by the incorrect interaction of concurrent processes. Model checking
is a powerful technique capable of discovering subtle errors very difficult to find
by non exhaustive methods. In consequence, we could say that model checking
is a technique to analyze software in the small, that is, software written at a
low-level where a simple instruction can cause system malfunction. Then, we
continue with the Alloy language and tool. This formal method contrasts with
model checking since the input modelling language is declarative and the type
of analysis carried out by Alloy is t a higher level, as it is mainly oriented to
check structural properties. Finally, following this ascending path, the last formal
method studied is UML/OCL. This is almost a must-choice for the software
engineering students that use UML intensively during their degree. Thus, we
show students that the use of a logic-based language like OCL is very useful to
improve their UML descriptions which, in many cases, lack expressiveness.
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W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15
Model Checking Alloy OCL

Fig. 2. Temporal distribution

The choice of the techniques taught in the course is guided by the research
work carried out by several instructors in the Málaga University Computer Sci-
ence department. Model checking is well known by the authors of this paper,
and UML/OCL is the research core of other department members. Alloy was
chosen as a link between model checking and UML/OCL. We were not specialist
in the language. But after having worked with Alloy during the last few years,
we think that it was a successful choice. Students like Alloy and the transition
to OCL from Alloy is quite easy for them.

The paper is organized as follows. Section 2 summarizes the contents
explained in each of the three blocks mentioned above. Section 3 explains the
methodology used in the subject. Section 4 shows the assessment procedures
and their results during the last five years. Finally, Sect. 5 gives the conclusions
and discusses several aspects related to the results of the subject.

2 Content of the Subject

In this section, we give a brief review of the specific content of each subject block.
The course begins with the usual introductory class that motivates the use of
formal methods in software engineering. We show the serious consequences of
software errors with examples such as the explosion of the Ariane 5 launcher1 or
the failure in the Patriot Missile2. They highlight the need of using formal meth-
ods not only in academia but also in industry to ensure that software behaves
correctly, at least, with respect to its essential properties. In addition, in this
introduction we explain the main activities of formal methods, i. e., modelling,
specification, and analysis.

Then, we continue with the blocks devoted to the different formal methods.
In each block, we describe the foundations of each formal technique and the cor-
responding tool. Thus, at the end of the course the students know how to model
a system and specify their requirements with different languages, as commented
in the Introduction. The rest of the section is devoted to presenting the main
concepts and examples used in each of the following blocks:

1. Model Checking using Spin [7].
2. Satisfiability (SAT) with Alloy [8].
3. Testing of UML/OCL models with Use [5].

The temporal distribution of the blocks during the fifteen weeks of the course
is shown in Fig. 2. As shown, the course devotes six weeks to Model Checking, five
1 http://www-users.math.umn.edu/∼arnold/disasters/ariane.html.
2 http://www.ima.umn.edu/∼arnold/disasters/patriot.html.

http://www-users.math.umn.edu/~arnold/disasters/ariane.html
http://www.ima.umn.edu/~arnold/disasters/patriot.html
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to Alloy and four to OCL. The first block is longer because at the beginning
of the course, students have to get used to the formal presentation inherent to
formal methods and, also, because tool Spin is a bit harder to handle. Alloy
is explained in approximately five weeks, and OCL only ocuppies four weeks.

2.1 Model Checking/SPIN

The first part of the subject focuses on model checking and the well-known tool
Spin [7]. We present the technique’s main characteristics, and both its strengths
(automatic technique, ability to produce counterexamples, etc.) and weaknesses
(e.g. the state space explosion problem) are emphasized. The theoretical doc-
umentation given to the students (in the form of slides) is mainly extracted
from [1]. The theoretical lectures and the presentation of the tool are interleaved
in order to ease the practical work. The content of the block is organized to
answer the following questions:

1. How to model a system? We initially introduce basic notions such as transi-
tion systems, reachability graphs, interleaving and synchronous/asynchronous
composition of processes, and so on. All these concepts are illustrated with
different practical examples described in natural language, graphical repre-
sentation using state/transition diagrams, as well as mathematical notation.
We use classical algorithms in this block, such as Peterson’s mutual exclusion
algorithm, the bit alternate protocol or the Sieve of Eratosthenes to show the
communication along a pipeline of processes. After providing the theoreti-
cal background, we continue introducing the Promela modelling language
to which the previously presented transition systems diagrams can be easily
translated. In addition, we introduce tool Spin showing its basic function-
ality available through the graphical user interface: syntax check, random
and interactive simulation, and the verification of assertions and detection of
deadlocks. Observe that, at this moment, students can only perform simu-
lations and analysis of deadlock and assertion violation since temporal logic
has not yet been explained.

2. How to specify the system’s requirements or properties? In this chapter, we
briefly introduce Kripke structures and temporal logic, after which we focus
on the Linear Time Logic (LTL), which is one of the specification languages of
properties accepted by Spin. Understanding how to describe system require-
ments in LTL is one of the most challenging tasks of the course. We present
the syntax and semantics of the boolean and temporal operators. Then, dif-
ferent kind of properties are introduced (e.g. invariants and liveness, safety
and fairness properties) along with their LTL specification. At this point, we
review the systems previously modelled in Promela to identify their main
requirements and specify them using LTL. Students can now use Spin to ver-
ify these requirements. They learn how to interpret the results of the analysis,
and how to run and explore the counterexamples provided by the tool using
the simulation features.
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3. What are the underlying algorithms to verify the system against the set of
properties? Finally, we present the notion of Büchi automata as the underly-
ing representation of the system’s behaviour and requirements in automata-
based model checking algorithms. We also show the relation between Büchi
automata and the transition system and LTL formulae. Spin can accept
requirements specified in LTL or directly described with a special Promela
proctype called never claim. This proctype, is in fact, a Büchi automata whose
execution is synchronously interleaved with the system’s model. This part of
the block is explained to show students the underlying algorithmic character
of model checking, but we do not ask them to write Büchi automata.

As commented above, during the presentation of the theoretical aspects of
model checking, students are asked to solve several practical exercises that go
from the system modelling and the specification of requirements using LTL to
its verification with Spin, interpreting the tool output.

2.2 Alloy

The second block of the course is devoted to Alloy [8], which is a tool and a
language to model and specify systems based on sets and set relations. The tool,
also called Alloy analyzer, transforms the Alloy model into an SAT problem
that can be analyzed using different theorem provers, by default the tool uses
the SAT4J prover. Alloy limits the size of the system in order to achieve a
compromise between automatic analysis and ease of use (normally not present
in theorem provers). However, this is not a real limitation, since normally system
errors can be discovered in small size systems.

The slides with the theoretical content about the language are based on
the material of the Alloy book [8]. This second block starts with a review
of the theory of sets and relations. Although these concepts have been studied
in previous courses, it is good to refresh them before introducing the Alloy
language. Although the syntax of Alloy is not difficult, it is very extensive. This
is why we follow an iterative approach to gradually introduce all the elements
of the language, allowing students to do practical exercises almost from the
beginning of the block. We carry out four iterations described in the following
paragraphs.

1. In the first iteration, we introduce the main characteristics of the language
and the tool as well as the basic constructors of the Alloy language, that
is, signatures and relations. In addition, we present multiplicities (for sig-
natures and relations), set operators (e.g. union, intersection and difference),
logic operators and relational operators. One of the most important and chal-
lenging operators is the composition operator dot join (.) that performs the
composition of relations. This operator is a bit complicated to manage since
relations can be composed from left to right (which is how the function com-
position usually works) but also from right to left. This is somehow counterin-
tuitive but, on many occasions, it is very useful to simplify the specifications.
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Finally, we introduce the concept of facts as the way to define system con-
straints. With all these elements, students are able to model several systems,
such as an address book, and generate valid instances of the model using the
Alloy analyzer.

2. In the second iteration, we delve into the language details. For instance, we
present abstract signatures and some new relational operators such as the
transitive (̂ ) and reflexive (∗) closures, the transpose (∼) operator, and the
let and cardinality (# ) operators. We also explain how to generate sets by
comprehension, which is a powerful and compact way to define derived rela-
tions. All these new language elements are illustrated by means of several
examples such as the classic family model which is built as a set of people
with the father/child binary relations and their derived relations ancestor/de-
scendant.

3. The third iteration introduces all the remaining language constructors needed
to build the so-called static view of a system. Thus, students may already
construct a complete system with multiple signatures, facts and predicates.
We use the song “I’m my own grandpa”, written by Dwight Latham and Moe
Jaffe, given in [8], as an example of a system described in natural language,
that can be translated step by step into Alloy. In addition, in this iteration,
we present the two types of analysis supported by Alloy: running predicates
to generate valid instances according to the model described, and checking
assertion to search for counterexample instances.

4. The fourth iteration is devoted to describing how to construct dynamic Alloy
models by means of the inclusion of a new signature Time in the static models.
Each instance of a static model can be seen as a snapshot of a system at
a given time instant. To make models evolve over time, we use transitions
that change the system state between to successive time instant. Transitions
are implemented using Alloy predicates. They must include three types of
conditions: pre-conditions, that is, the state of the system before executing the
transition, post-conditions, that is, the state of the system after executing the
transition, and what remains unchanged, called frame conditions. In addition,
we explain how to describe the initial system state and how to obtain an
execution trace with Alloy. To exemplify all these machinery, we extend the
family model presented in the previous iterations with new predicates such
as marriage or divorce, that can change the family relationships over time.

2.3 UML/OCL

The last block of the course is devoted to the refinement of UML descriptions
using the OCL logic and the tool Use. Students know UML very well since
they have already studied it in a previous course devoted to software modelling.
Thus, students usually have a solid background in UML and we only have to
refresh it with some examples. In fact, they also have some experience with
OCL, although it is very limited. Thus, the block mainly focuses on presenting
the subset of OCL supported by tool Use. OCL is an annotation-based language
geared at the definition of constraints on UML class diagrams. Constraints are
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usually nested in the context of UML classes. For instance, OCL invariants
impose constraints over the objects of a class, pre- and postconditions define the
conditions that must be true before and after executing an instance method.

We start reviewing types and values, collections (set, bag and sequence) and
the meta-types OclAny and OclType presented in OCL. Then, we continue pre-
senting the navigation operator, which is the most characteristic of OCL to
access remote objects. Navigation is especially tricky when it returns a col-
lection of objects instead of a single one. To correctly navigate over collections,
operations over collections have to be introduced. For instance size(), isEmpty(),
or notEmpty() are related to the number of objects in a collection. Operations
select(B) and reject(B) return the elements of a collection that satisfy or do not
satisfy the condition B, respectively. Then, we also introduce OCL quantifiers
over collections such as forAll(B), the universal quantifier operator that returns
true iff all elements in the collection satisfy boolean expression B, exists(B), the
existential quantifier that returns true iff there exists at least one element in
the collection satisfying B, or one(B) that returns true iff there is exactly one
element satisfying the condition B. We also use other operations such as any(B)
that returns any element of the collection satisfying B. With all these operators,
it is possible to define many invariants on classes.

This block includes many examples, and we usually present new ones every
year. One of these examples, extracted from the OCL documentation, is a com-
pany’s meeting system. Initially, the system comprises three classes Meeting,
TeamMember and Location. Although the system’s UML class diagram is sim-
ple, it is very useful to illustrate multiple invariants. For instance a meeting can
impose a maximum number of attendees, or a meeting cannot take place in some
locations. The complexity of the UML models is gradually increased, as well as
the complexity of the corresponding OCL constraints.

We also introduce OCL pre- and post-conditions on methods. To define a
postconditions it is useful to know the keywords result, which represents the
result of a method, @pre to reference the value of an expression before executing
a method, and operator send (̂) that indicates that communication took place
using the corresponding messages. To illustrate the definition of pre- and post-
conditions, we extend the example that has already worked on. For instance,
the meeting system example may be enriched with new methods to confirm a
meeting, obtain the duration of a meeting, or change its date.

3 Methodology

In this section, we explain the methodology followed in the subject. The goal of
the course is that students know the fundamental methodological basis of (some)
formal methods and also learn that formal methods can help them during their
carrier to develop complex and correct software. Thus, even though an approach
to learning formal methods could entail emphasizing on their theoretical aspects,
we discard this focus from the beginning. The course has about 50 students that
are required to take it. Clearly, not all of them have good abilities to manage
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the complex formalizations involved in formal methods. It is worth mention-
ing, however, that every year we have found some students with extraordinary
skills for formalization and abstraction, although that is not the normal case.
In consequence, we decided to present formal methods with a strong practical
bias. This means that each course block starts with some classes devoted to giv-
ing the basic theoretical notions as class lectures, following which we alternate
theoretical lessons in the classroom and practice classes in the laboratory.

Each block has a list of practical exercises to help students become familiar
with both the tool and the corresponding modelling and specification languages.
Laboratory rooms have about 30 computers, so we need to use two of them
(connected) for the practical sessions. Anyway, we encourage students to work
in pairs, since it is easier for them to solve the problems collaboratively. Each
block finishes with the so-called assessable practical exercise. This laboratory
exercise involves modelling, specifying and analyzing a medium size problem.
This practical work should be carried in pairs, and we use two or three laboratory
sessions to help students get the job done. Anyway, we establish a deadline
date to upload the code solving the problem, and a brief report explaining the
solution, showing how the tool has successfully proved the correctness of the
specified properties.

The key part of this methodology is to select, for each formal method, suitable
examples that are neither too easy nor too complicated. Thus, each practical
exercise should involve some effort to motivate students to learn and use the
main characteristics of each formal method, but it should not be so difficult that
many students cannot solve it. For this purpose, we structure practical exercises
in several parts (from the easier questions to the much harder ones). This allows
us to gradually distinguish the average students from the excellent ones, passing
students that have worked sufficiently on it.

Since the methodology utilized in each block is the same, students have to
carry out and submit three assessable practical exercises: one using model check-
ing/Spin, another one using Alloy and the last one using OCLand the Use
tool. Since the assessable practical exercises have significant weight in their final
marks, students are very motivated to participate and do the job correctly. In
practice, laboratory sessions are usually full of students working in pairs on the
proposed exercises which from our point of view, constitutes the subject’s main
goals: (1) modelling, specifying and correctly using the associated tools and (2)
learning to work in collaboration with other colleagues.

We now detail some of the theoretical and practical issues for each block.

3.1 Model Checking

With respect to the practical work, we start explaining the use of Spin and
Promela with simple exercises to try the tool and the main characteristics
of languages like non-deterministic do and if sentences, boolean expressions
as a mechanism to synchronize processes, the assert instruction to evaluate
conditions at certain code points, and so on. In the first practical classes, students
only use Spin’s simulation capacity and the verification of deadlocks (invalid
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end states). We use [7] to elaborate the list of practical exercises. Another good
example that shows the effectiveness of Spin/Promela to describe and analyze
concurrent software is the version of the session initiation protocol (SIP) given by
Prof. Pamela Zave in [10]. The example allows us to illustrate how it is possible to
directly transform a transition system diagram into a Promela program. When
the logic LTL is introduced in the theoretical lectures, we also use it to analyze
safety and liveness properties on the Promela models using Spin’s verification
capacities . Students also learn how to interpret the tool output (number of
states analyzed, errors found, and so on), and to simulate the counterexamples
provided by the tool to debug the code or correct the property specification.

Over the years, we have proposed different assessable practical exercises. As
an example, the model checking assessable practical exercise in the 2016/17
course was based on the Village Telephone System described in [2]. The scenario
is a small village where people use their phones to talk with any other neighbour
(they do not care who the neighbour is). We elaborate a first Promela version
of the system in which the village people communicate with each other through
synchronous channels (which simplifies the implementation). In the second ver-
sion of the exercise, the neighbours communicate through bounded asynchronous
channels. This version is more complicated since neighbour processes have to
solve the conflict that arises when two of them are simultaneously trying to talk
to each other. Students had to prove the same safety/liveness temporal proper-
ties on both versions. For instance, some properties are “deadlock freedom”, “no
neighbour is ever talking with himself/herself” or “if all the people are talking,
then some phone will eventually be hung up”.

3.2 Alloy

The first practical exercises to be done in the laboratory are inspired by the
examples in the Alloy book [8]. In these examples, we try to make emphasis
in the ability of the language to describe structural characteristics of software
and to refine them using the relational first-order logic. Students take some time
to assimilate some Alloy operators such as the composition of relations or the
transitive closure, but after solving some examples, they become familiar with
them. With respect to the logic, they have also problems with some connectors
and quantifiers (the implication is usually a bit confusing for them). However,
with practice, they finally understand and use them correctly.

As in the case of model checking, students work on different assessable prac-
tical exercises each year. In this case, our goal is to use the language to describe
systems structurally more complex than the ones analyzed by model checking,
but in which, in contrast, the interaction between processes is not the main
issue. As an example of the type of Alloy assessable practical exercise, in the
2016/17 course, we proposed the modelling and specification of Software-Defined
Networks (SDNs). An SDN is a new network paradigm in which the control and
data planes are decoupled. Thus, switches are programmable by a controller node
that can dynamically decide to change the way in which they should deal with
a certain type of data packet. The example was inspired by the research work
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carried out by our group [4,9]. SDNs are a good example for showing the power
of Alloy since they have different actors which relate to each other in a non-
trivial way. For instance, SDNs have different types of nodes (hosts, switches,
controller) that are connected through ports via links. They also have control
and data packets, tables in the switches with the rules to be applied to forward
data packets, and so on. We structured this assessable practical exercise in four
phases, from the simpler structural definition of SDNs to the complex behaviour
where different predicates can be used to move the packets through the network.

3.3 OCL

When students reach the last block of the course devoted to OCL, they have
enough experience in both the specification of properties using the first-order
relational logic and in the construction of UML models. In consequence, in this
block, we start with a brief reminder of the main OCL operators giving some
non-trivial examples of how UML must be decorated with OCL expressions to
improve the precision during the modelling phase. The slides with the theoreti-
cal documentation have been written using references [3,6]. In addition, we have
used them to elaborate the list of exercises and we have added some exercises
from the Alloy list for students to compare the similarities and differences
between the two languages. It is worth noting that this block is slightly shorter
than the other two, since the student experience with formal methods at this
point enables them to assimilate concepts quickly. As mentioned before, in this
block we use the tool Use for the practical work in the laboratory. The tool
has recently incorporated new functionalities to automatically generate object
instances according to the UML/OCL specifications following the Alloy phi-
losophy. Students learn how to configure the tool to benefit from these new Use
extensions.

As an example of assessable practical exercise for this block, in the 2015/16
course, we proposed the construction of a circular rail system composed of tracks,
track sections, stations and trains. The example allows the iterative construction
of the model in different phases as in the case of Alloy. In the last phase,
trains should move along the tracks preserving several invariants and pre/post
conditions in the methods. We elaborated this practical exercise from scratch
without using any previous reference material.

4 Assessment and Results

In this section, we explain how the subject is assessed and the results of these
last few years.

As mentioned above, the assessable practical exercises constitute 60% of the
final mark. We also give students a theory exam to distinguish between the
work performed by each student in the practical exercises, and to detect pla-
giarism. The theoretical exam consists of solving three exercises, one for each
block. The model checking exercise is to construct the reachability graph of some
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Fig. 3. Yearly results

small process models that interact via synchronous or asynchronous channels.
We also ask students to specify some LTL properties on the model constructed.
The Alloy and OCL exercises are to implement small models with the aim
of checking whether the score of the assessable practical exercise coincides with
the student’s abilities. In most cases, the results of the theoretical exam confirm
the assessment of the practical exercises but, on some occasions there exists a
significant discrepancy that shows that some of the students have not worked
sufficiently on their practical exercises. Anyway, the following tables of results
show that the methodology used in the subject makes it possible for students to
learn formal methods and successfully pass the course.

Figure 3 shows the proportion between the students that pass/fail the subject
after the first and second exam sessions. As shown, more than 70% of students
pass each year.

Fig. 4. Yearly detailed results
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Figure 4 gives the results of the first exam session. For each year, it shows the
number of students who did not take the final exam, who failed it and who passed
it with different marks. The figure illustrates that the number of students with
a very good performance in the subject is increasing year after year. In addition,
we see that every year there are some students with excellent results.

Finally, Fig. 5 shows the distribution by gender of the subject. Although, it is
not the goal of the paper, it is interesting to observe the small number of female
students that course Computer Science in Spain.

From our point of view, these results show the success of the methodology
followed in the subject.

Fig. 5. Gender distribution

5 Conclusions

In this paper, we have described our experience teaching formal methods to
undergraduate students at the University of Málaga. Since the subject is manda-
tory for all students in the fourth year of the Software Engineering degree, we
have chosen to give it a very practical bias emphasizing the use of tools, although
we also explain the theoretical basis using the usual terminology and formalism
of Formal Methods. Thus, we have succeeded in having most students acquire
skills in modelling, specifying and analyzing non-trivial software systems. We
have chosen model checking with Spin and OCL with the tool Use, since sev-
eral research groups in our department are directly related to these two tech-
niques. We think being very familiar with the methods we teach helps staying
updated with the techniques and tools and transmitting enthusiasm to the stu-
dents for the contents they are studying. Alloy was chosen as an intermediate
formal method between the exhaustive and automatic model checking technique
and UML/OCL, whose analysis is currently less automated. Considering the
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results, we think it was a good choice, since Alloy has proven to be an excel-
lent technique that allows students to practice with a modelling language close
to the object oriented languages they know very well and also with the first order
logic to specify properties.

It is worth noting that specification using temporal logic and first-order logic
is the hardest activity for the students. They are usually good at modelling,
since they are very used to learning different programming languages of differ-
ent paradigms (imperative, object-oriented and functional) and software tools
are also very familiar to them. However, the logic specification of properties
requires different nested logic operators (logic connectives, temporal operators
and quantifiers) to be handled with ease. Some students find it difficult to use
logic even though we show them many examples using well-defined formula
patterns.

As a conclusion, we think that studying formal methods provides students
with new and enriching tools to deal with software. On the one hand, formal
methods allow them to look at software from a new perspective, improving their
understanding and analysis abilities. On the other, students learn how formal
method tools may help them improve the quality of the software developed,
which can be of interest during their professional life.

From the teacher’s point of view, the most complicated task is the elaboration
of assessable practical exercises. We have to find an scenario that shows the power
of formal methods to construct correct software (being attractive to students),
and with a degree of complexity which allows us to fairly assess their competences
in the subject. We think it would be a good idea to have a common space
where the professors in charge of different formal method courses may share
their practical projects.

To finalize, the course we have described here is geared at undergraduate
students. We think that for master students, a formal method subject could be
more theoretical although the practical perspective should always be present.

Acknowledgement. The authors would like to thank Dr. Francisco Durán and Dr.
José Maŕıa Álvarez for their help in designing the form and content of the course.
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Abstract. As formal methods come into broad industrial use for verifi-
cation of safety-critical hardware, software, and cyber-physical systems,
there is an increasing need to teach practical skills in applying formal
methods at both the undergraduate and graduate levels. In the aerospace
industry, flight certification requirements like the FAA’s DO-178B, DO-
178C, DO-333, and DO-254, along with a series of high-profile accidents,
have helped turn knowledge of formal methods into a desirable job skill
for a wide range of engineering positions. We approach the question of
verification from a safety-case perspective: the primary teaching goal is
to impart students with the ability to look at a verification question and
identify what formal methods are applicable, which tools are available,
what the outputs from those tools will say about the system, and what
they will not, e.g., what parts of the safety case need to be provided
by other means. We overview the lectures, exercises, exams, and stu-
dent projects in a mixed-level (undergraduate/graduate) Applied Formal
Methods course (Additional materials are available on the course web-
site: http://temporallogic.org/courses/AppliedFormalMethods/) taught
in an Aerospace Engineering department. We highlight the approach,
tools, and techniques aimed at imparting a good sense of both the state
of the art and the state of the practice of formal methods in an effort
to effectively prepare students headed for jobs in an increasingly formal
world.

1 Introduction

Verification is a fundamental engineering skill; the current surge toward auton-
omy and increasingly intelligent operation of hardware, software, and cyber-
physical systems has changed how we need to apply, and teach, verification at
the university level. Industrial aerospace systems, including avionics, commer-
cial aircraft, Unmanned Aerial Systems (UAS), satellites, and spacecraft, are
being pushed toward design-for-verification, e.g., by Model-Driven Engineering
[16,18,37–40], Fault Detection, Isolation and Recovery (FDIR) [5,14], and Run-
time Verification [15,23,24,33]. “Nowadays, it is well-accepted that the devel-
opment of critical [aerospace] systems involves the use of formal methods,” [1].
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In addition to the obvious need to train verification engineers and researchers
developing new formal methods, we are faced with the need to train a wide
range of engineers with basic skills like understanding the outcome of a formal
methods analysis.

Through a mixed-level (undergraduate/graduate) course, we introduce stu-
dents to the fundamentals of formal methods, which we define as a set of math-
ematically rigorous techniques for the formal specification, design, validation,
and verification of safety-critical systems, of which aircraft and spacecraft are
the prime example. The course explores the tools, techniques, and applications
of formal methods with an emphasis on real-world use-cases such as enabling
autonomous operation. Students build experience in writing mathematically ana-
lyzable specifications from English operational concepts for real systems, such as
aircraft and spacecraft. Together, the class examines the latest research to gain
an understanding of the current state of the art, including the capabilities and
limitations of formal methods in the design, verification, and system health man-
agement of today’s complex systems. Students leave with a better understanding
of real-world system specification, design, validation, and verification, including
why the FAA specifically calls out formal methods in certification requirements
such as DO-178B [21], DO-178C [20], DO-333 [19], and DO-254 [22].1

This course is intended to be a fun, interactive introduction to applying
formal analysis in the context of real-world systems. We emphasize hands-on
learning, through the use of software tools in homeworks and projects. Students
learn the real tools used at NASA, Boeing, Collins Aerospace, Honeywell, Air-
bus, the Air Force, and others. Students from all areas of aerospace engineering,
electrical and computer engineering, computer science, and other engineering dis-
ciplines, are encouraged to enroll. The course is cross-listed at the senior under-
graduate/entry graduate levels and cross-listed in the Aerospace Engineering
(AERE) and Computer Science (COMS) departments at Iowa State University
and advertised in the Electrical and Computer Engineering and Mathematics
departments; students from Industrial Engineering and Mechanical Engineer-
ing have also enrolled in this elective. Aiming for broad appeal, all concepts
in the class are motivated chiefly through aerospace engineering applications;
this shows direct applications to those students in the Aerospace Engineering
Department and provides interesting use-cases for other majors. Example appli-
cations in homeworks include many different aspects of automated air traffic
management and designing for autonomous operations of UAS.

Applied Formal Methods takes a safety case perspective [2,7,10,16,32]; in
Aerospace Engineering, a safety case enables flight certification by providing an
explicit statement of safety claims, a body of evidence concerning the system,

1 Note that the railway industry has comparable standards CENELEC EN 50126
[8], EN 50128 [9], and EN 50129 [11]; these govern applications of formal methods
in industrial rail systems, such as the success in verifying Paris’ fully automatic,
driverless Métro Line 14 (aka Météor-Metro est-ouest rapide) [3]. The course high-
lights railway, motor vehicle, medical, and other applications of industrial formal
verification.
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and an argument, based on the evidence, that the system satisfies its claims [31].
The major learning objective is for students to be able to read and understand,
contribute to, and design an engineering system for being flight certified by a
safety case, as this capability is now a general engineering skill. Students have
the opportunity to construct a safety case as a half-semester final project for the
course.

Learning Outcomes. Our central focus is to enable students to look at a problem,
identify what we can verify, what information is needed to perform that analysis,
how to validate the verification setup, and how to place the results in the field,
e.g., by identifying what is now known, to what extent, and what is not known.
Students learn to read research papers in formal methods, identify the current
state of the practice, critically analyze current capabilities and limitations of the
available tools and techniques, and effectively identify the inputs and outputs
to verification, including what they really mean with respect to industrial safety
standards. We specifically emphasize learning techniques for specification debug-
ging and validation of mathematical models of systems. By the end of the course,
students can identify what we can verify, and how; what can’t we verify and why
not; and what do we not have enough information to verify (and what additional
information would we need). To construct an effective safety case, students must
be able to recognize incomplete verification problems, identify ways to complete
them, and identify assumptions and risks to validation.

Specific Learner Objectives. Through hands-on experience with formal methods
tools and techniques, classroom discussions, homeworks, and projects students
have the opportunity to learn to:

– Specify system requirements formally in Linear Temporal Logic (LTL) and
Computational Tree Logic (CTL).

– Specify systems as formal models, i.e., models in a formal semantics.
– Apply model checking to system models and LTL specifications to determine

if the models satisfy the specifications.
– Use tools popular in industrial verification labs, including explicit and sym-

bolic model checkers, and theorem provers.
– Evaluate real-world systems to determine appropriate formal methods to use

in their analysis.
– Evaluate system requirements, including determining if they are safety or

liveness, and performing basic specification debugging.
– Analyze and draw conclusions about real-world systems regarding formal

properties, understanding their significance and the inherent assumptions and
limitations.

– Explain the principles underlying formal methods for different types of sys-
tem analysis (e.g. design time versus runtime), the capabilities, and the lim-
itations.

– Develop an understanding of the current state of the art and how to find
formal methods tools for real-world use cases.
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Prerequisites. The course requires the mathematical maturity and experience
with proof structures covered in Calculus II (ISU MATH 166). Due to the cross-
listing, the prerequisite is a disjunction of the Aerospace Engineering course
Computational Techniques for Aerospace Design (ISU AERE 361) or the Com-
puter Science Algorithms course (ISU COMS 311); both have MATH 166 as a
prerequisite. Students should be familiar with first-order logic quantifiers and
inductive proof techniques in order to understand Theorem Proving; professor
permission enables registration for students who learned these skills in another
300-level course, e.g., from other engineering majors.

Organization. The remainder of this paper is organized as follows. Section 2
overviews the high-level approach to teaching Applied Formal Methods, includ-
ing course assignments and examinations, highlights from the syllabus, and a
general course schedule. We specifically pull out the tools and techniques cov-
ered in class in Sect. 3. Further details about the student research presentations
and half-semester projects, including group projects, appear in Sects. 4 and 5
respectively. Section 6 concludes with an outlook toward continuous improve-
ment of the course.

2 Approach

Grade Component Weight
Homeworks and Projects 30%
Midterm 25%
Research Paper Presentation 15%
Evaluation of Other Presentations 5%
Final Project 25%

Fig. 1. The weight assigned to each com-
ponent: grades are assigned based on per-
formance on homeworks, projects, presenta-
tions, a midterm exams, and a final project.

The first half (55–60%) of the course
is a survey of the formal methods
using modern tools, exemplified by
case studies on industrial applica-
tions of formal verification. Class
sessions are largely interactive and
include discussions of the readings,
guest speakers from industry, small
group activities, and lecture. Stu-
dents are encouraged to participate
actively in class sessions. Lectures
commence with “Formal Methods
Explained: what are formal methods, why do we need formal methods, and
why don’t we formally verify everything?” The course proceeds to briefly review
propositional logic and proofs. Class sessions cover in detail temporal logics,
strategies for formal specification, specification debugging [27,28], system mod-
eling, explicit model checking [29], theorem proving [6], and symbolic model
checking based on [25]. These are the topics covered by the midterm exami-
nation, given during normal class hours, covering the material from readings
and homeworks from the first half of the course. The second half of the course
requires only two assignments: an in-class presentation of a research paper of the
student’s choosing, and a final project spanning the second half of the course,
which serves in place of a final exam. All students are required to present the
results of their final project mid-term and final results to the class and turn
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in a report including all artifacts required for reproducibility of their results at
the end of the semester during the final exam period. Figure 1 summarizes the
course assignments.

Fig. 2. The tree of Formal Methods, as pre-
sented in lectures; solid lines represent direct
variations whereas dashed lines represent
related derivations.

Other formal methods are dis-
cussed in class, included in in-class
activities, demos or videos, and read-
ings. Classes trace the relationships
shown in Fig. 2.

Homeworks and Projects. All home-
works are distributed and collected
via github classroom. Homeworks are
required to be typed and formatted in
LATEX; some require submitting input
files, e.g., for Spin, nuXmv, or PVS,
solving the verification exercises. Stu-
dents may talk about the problems
with fellow students and the profes-
sor, but must submit individually-
drafted write-ups. We occasionally
discuss and work through parts of
homework problems or variations
thereof in class. When discussing
with fellow students they must strictly follow the “empty hands policy:” one
cannot leave a discussion meeting with any record of the discussion (hard
copy or electronic). All scratch paper must be torn and thrown away and all
boards erased. Homeworks are encouraged to include BibTEX references sec-
tions, including credit to collaborators and outside sources consulted. Students
are encouraged to consult research papers, books, or other published materials
in accordance with the University Honor Code (which prohibits searching for
answers online, posting questions to internet forums, or discussing any assign-
ments with others on the internet). All solutions should be written in each stu-
dent’s own words, even if the solutions exist in a publication referenced in the
homework bibliography. While we adjust the course schedule every semester,
depending on the students’ backgrounds and the availability of guest speakers,
a common schedule for the 16-week semester appears in Table 1.2

Reading Materials. Reading materials are included in the homeworks or other-
wise distributed in class, e.g., research papers. There is no required textbook for
this class. Two optional textbooks provide supplemental materials for students
who desire additional reading, with the following caveats.

2 In the U.S., there is usually a one-week break in the second half of the semester, after
the mid-term project report presentations (Thanksgiving Break or Spring Break).
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Table 1. A typical schedule for the homework assignments/small verification projects
(top) comprising the survey of formal methods tools and techniques, along with the
independent-research-based course assignments (bottom) across a 15-week semester
with a following final exam period.

Week: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0: git
1: PL
2: TL
3: Spec
4: E-MC
5: TP
6: S-MC
Midterm
Pres
P: Prop
P: MP
P: FP
P: Fin

HW 0 github classroom and LATEXfundamentals; due 2nd class period
HW 1 Propositional Logic: review of logic and proof structure; ∼1 week
HW 2 Temporal Logic: LTL and CTL; ∼1.5 weeks
HW 3 Classifying Specifications & Explicit-State Modeling in Spin; ∼2.5 weeks
HW 4 Explicit-State LTL Model Checking in Spin; ∼1 week
HW 5 Theorem Proving: exercises in PVS (or Isabelle); ∼1 week
HW 6 Symbolic Model Checking with NUXMV; ∼1 week

Midterm Comprehensive exam covering all homework topics in the 9th or 10th week
Presentation Choice of paper due concurrently with HW 6; research paper presentation

and peer evaluations during class periods after midterm
Project (P) Initial project proposal due immediately following midterm; mid-way pre-

sentation (MP) in front of the class 2-3 weeks later; final presentation (FP)
during the last week of classes; final paper/verification artifacts (Fin) due
during final exam period

Optional Textbook: An Introduction to Practical Formal Methods Using Tem-
poral Logic [13]. Use this for:

– good background on LTL: well-formed formulas, semantics, encoding English
sentences, expressivity, normal forms, relationship to automata

– reactive system properties: safety, liveness, fairness
– specification and modeling of real systems
– deciding the truth of a temporal formula; related proof techniques including

explicit model checking
– thorough chapter on Spin, including how to run it from the command line

and a good Promela tutorial
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– review of classical and propositional logic
– extensions including synthesizing software from specifications

Be cautious that:

– LTL is instead called PTL in this book; that is non-standard
– LTL2BA is not the best tool; SPOT is superior now: https://spot.lrde.epita.

fr/
– URLs provided are outdated (no longer active or superseded by the state of

the art)
– Spin chapter refers to outdated xspin (though only briefly)

Optional Textbook: Systems and Software Verification: Model-Checking Tech-
niques and Tools [4]. Use this for:

– supplemental material on temporal logics (LTL, CTL, CTL∗)
– background on automata as system models
– review of explicit and symbolic model checking
– reachability, safety, liveness, deadlock-freeness, fairness
– overview of modeling abstraction methods
– out-of-date chapters on SPIN and SMV still have useful reviews of basic tool

usage
– ideas for related formal methods, including timed automata models, addi-

tional tools

Be cautious that:

– This book is extremely out of date!
– LTL is the proper name for Linear Temporal Logic (book calls it PLTL)
– comparisons of LTL vs CTL/CTL∗ have been changed/been disproved
– SMV version described is no longer available; current tool is nuXmv
– Spin version described has been updated (xspin vs ispin)

3 Tools and Techniques

While homeworks include hands-on projects in Spin, nuXmv, and PVS (or
Isabelle), several other tools and techniques are covered in lectures, demos, or
in-class activities. These tools, plus the most popular selections from student-
devised projects, are collected in Table 2.

The first half of the semester (before the midterm) lectures are predominantly
taught with a combination of slides and in-class exercises, frequently involving
the class breaking into two or three groups, each with their own whiteboard,
and solving problems in competition, usually in the form of a game. Groups
must convince the rest of the class of the correctness of their answers to receive
game points. The winning team is often awarded a prize like NASA stickers or
similar swag from a guest speaker. Sometimes the same problem is posed to
all groups, and sometimes each group is assigned a different strategy to employ
then discuss with the class. For example, lessons on temporal logic encodings

https://spot.lrde.epita.fr/
https://spot.lrde.epita.fr/
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Table 2. Tools featured in different areas of the Applied Formal Methods course.

Spin Model Checker http://spinroot.com/

SPOT Produces Our Traces https://spot.lrde.epita.fr/

(Optional for use in Spin-related homeworks)

nuXmv Model Checker https://es-static.fbk.eu/tools/nuxmv/

PVS Theorem Prover http://pvs.csl.sri.com/

(OR Isabelle)

Isabelle Theorem Prover https://isabelle.in.tum.de/

(OR PVS)

PRISM Model Checker http://www.prismmodelchecker.org/

Z3 SMT Solver https://github.com/Z3Prover/z3

R2U2 Runtime Verifier http://temporallogic.org/research/R2U2/

Dafny Language and Program Verifier http://rise4fun.com/dafny/

(continued)

http://spinroot.com/
https://spot.lrde.epita.fr/
https://es-static.fbk.eu/tools/nuxmv/
http://pvs.csl.sri.com/
https://isabelle.in.tum.de/
http://www.prismmodelchecker.org/
https://github.com/Z3Prover/z3
http://temporallogic.org/research/R2U2/
http://rise4fun.com/dafny/
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Table 2. (continued)

CBMC (Bounded Model Checker for C and C++ programs) http://www.cprover.

org/cbmc/

Coq Proof Assistant https://coq.inria.fr/ [Book: Formal Reasoning About Programs

http://adam.chlipala.net/frap/]

Legend:

Required in homework assignments & covered thoroughly in class

Featured in in-class instruction or presentation by guest lecturer(s)

Utilized in student-selected final project(s)

involve dividing the class by their personal preferences into an LTL group, a
CTL group, and an optional CTL* group (should anyone in the class feel most
strongly about that logic). During this Temporal Logic Showdown (based in part
on [35]), requirements in the form of English and/or figures (timelines, drawings,
flowcharts, etc.) are posed to the class simultaneously. The first group to correctly
encode the requirement in their logic and buzz in wins the points for the round.
After that, encoding in the other logic (between LTL and CTL) earns half-points
and the first team to buzz during that round in has the chance to steal those
points by completing the correct encoding in the other team’s logic and buzzing
in before that team.

4 Research Paper Presentations

Each member of the class presents a research paper in applied formal methods
to the class during the second half of the semester. A presentation consists of
a slide presentation to the class covering the paper, and a discussion including
the student’s own analysis of its results. Students sign up for presentation times.
The professor must approve all papers selected. Students can choose their papers
from a provided list of papers or from a list of relevant publication venues. Alter-
natively, students may feel free to propose a paper on applying formal methods
from any source for approval. Students evaluate the presentations of others for
credit; anonymized summaries of the feedback of classmates are included in each
student’s evaluation. While the professor reads these evaluations, presentations
are graded by the professor alone.

http://www.cprover.org/cbmc/
http://www.cprover.org/cbmc/
https://coq.inria.fr/
http://adam.chlipala.net/frap/
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4.1 Professor’s Presentation Evaluation Form

Students design their in-class research paper presentations according to the fol-
lowing evaluation criteria. Point values are listed in ��s.

1. Did the presentation address the following aspects of the paper?
(a) �5� What was the motivation given for the work? What problem was

being solved or question was being answered?
(b) �5� What was the product of the paper? How was the paper novel and

what did it contribute to the field? What tools were used, problems were
solved, and artifacts were created?

(c) �5� Is the work in the paper reproducible,3 i.e. are all of the necessary
artifacts available to redo the study, including any models, specifications,
theorems, code, data, benchmarks, or other instruments used to complete
the study described in the paper.

(d) �5� Is the work in the paper correct, i.e. did the authors specifically address
how that they know their work is correct or provide any evidence of
correctness such as a proof or a comparison to known results?

(e) �5� Is the work in the paper buildable, i.e. is the foundation laid in such a
way that others in the future would be able to build on it, extend it, and
utilize the results in a meaningful way to accomplish a different project?

(f) �5� Is there future work? This can include both future work listed in the
paper and ideas the student has for extending the work.

2. �10� Did the presentation accurately overview the paper and the work pre-
sented therein, given the time limit? Did the student make an effort to fully
understand the material and explain, if some piece is missing or not under-
standable, why that is the case?

3. �20� Was the presentation clear? Did the student make an effort to present the
materials clearly and instructively, not necessarily in the order of the paper?
Did the student draw on additional sources to fill out the information and
background knowledge required to understand the paper? Did the student
draw figures or create ways of presenting the material clearly and fully aside
from simply pasting in artifacts from the paper?

4. �15� Did the student adequately cover background information and related
work in an effort to enable him/herself as well as the class to understand
the material being presented? Examples of doing this well might include the
student reading and including material from some of the paper’s citations or
manuals for the tools used or otherwise including related background infor-
mation to aid understanding of the material presented in the paper. These
papers are short (usually about 15 pages) snapshots of single projects in for-
mal methods and are meant to be read by practitioners familiar with the field
and so usually do not include sufficient background information in the main
text.

3 For further reference on how exactly to define reproducibility, correctness, and build-
ability, please refer to: Rozier, Kristin Yvonne, and Rozier, Eric. “Reproducibility,
Correctness, and Buildability: the Three Principles for Ethical Public Dissemination
of Computer Science and Engineering Research,” In IEEE International Symposium
on Ethics in Engineering, Science, and Technology, Ethics’2014, May 23–24, 2014 [26].



On Teaching Applied Formal Methods in Aerospace Engineering 121

4.2 Student’s Presentation Evaluation Form

Peer evaluations earn students participation credit and provide good feedback
that is summarized, anonymized, and returned to their peers. Point values are
listed in ��s.

1. �2� What did you learn today? List at least three things you took away from
today’s class material.

2. �1� Was the presentation clear? What did you like about the way your
classmate explained the materials to you? What constructive suggestions do
you have to offer this classmate about how to present the material more
clearly? (Your response will not be passed on to your classmate, however,
an anonymized summary of all suggestions may be presented in class at the
professor’s discretion.)

3. �1� Was the content of the paper useful? Do you think the authors have
contributed something that you or others might use or build upon in a future
foray into formal verification? Why or why not?

4. �1� Is today’s paper/formal method/topic something you think would be use-
ful to examine in more depth in this class? Why or why not? Some paper
topics may be covered in more depth following student presentations in the
upcoming weeks; some may be earmarked for updating this class the next
time it is taught.

5 Student Projects

In lieu of a final exam, students complete half-semester projects demonstrating
their knowledge of applying formal methods. The high-level concept is simple:
pick a system, pick a formal method, and successfully apply that method to
that system. Students may work in groups of size one, two, or three. They are
encouraged to discuss their proposal with the professor early and often; a formal
project proposal is due mid-semester. Weekly progress reports, and a mid-term
presentation to the class ensure steady progress while encouraging them to name
their verification challenges and bring them up for discussion in class.

5.1 Initial Project Plan: Statement of Work

For the initial project plan, each person/group submits a statement of work that
specifically addresses the following questions:

1. Define your group. Who are the members of your group? What is your group
name?

2. Define the parameters of your project. What formal method are you using?
What specifications will you verify? What system will you analyze?

3. What does a success look like for your project? For example, a successful
model checking project will be able to demonstrate a system model, validation
of that model, a set of temporal logic specifications, a set of model checking
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runs checking the specifications against the model, and an analysis of the
results. A successful theorem proving project will be able to demonstrate a set
of (validated) theorems that automatically prove in an automated theorem
prover and an analysis of the results of the proofs. A successful project in
runtime monitoring will be able to demonstrate a set of specifications, a set
of runtime monitors constructed from them, experimental results over many
system runs demonstrating correct operation of the runtime monitors, and
analysis of the results.

4. How will you demonstrate your analysis? In other words, answer all of the
following questions that relate to your project:

– What benchmarks will you use? Where will you get them from?
– How will you demo your analysis (in the class?) (in your final report?)
– How will you measure your results?

5. Remember to think about important logistics and organization elements.
Each person/group will collaborate via a git repository shared with the pro-
fessor. What will be the structure of your repo? How often should members
check point models/specifications/documentation elements? If the project is
a group project, how will the group coordinate? For a group, when will group
meeting be? For a single-person project, what time have you scheduled each
week to work on the project?

6. Provide a project timeline: for each week, list what you plan to accomplish
that week. Be realistic and make backup plans! Your group will email the
professor a (short) report at the end of each week with a project update
according to your weekly plan. This email can be as simple as a statement
that all tasks were accomplished that week, or as complicated as a detailed
explanation why something did not work and how you have replanned to do
an equivalent task. Weekly reports are due at 5pm on Fridays. This is your
chance to get feedback on your progress and questions every week!

5.2 Progress Report and Preliminary Results

Provide a preliminary report from your group in the form of an in-class pre-
sentation of your results-so-far, making sure to explicitly answer the following
questions:

– What parts of your project have you completed? Provide a bulleted list of
work outputs to date.

– Provide an outline of your final report. What will the format be? What sec-
tions will you include? How do you plan to present any data and your analysis?

– What challenges have you encountered so far and how do you plan to overcome
them? Provide a bulleted list of pairs {Challenge, Plan for action} to answer
this section.

– Do you think you will need to change/modify/add to your project in any
way? If so, make your case here. For example, if you have discovered that all
of your specifications fail when analyzed against your system, what is your
plan to modify the system and/or specifications?
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5.3 Final Report and Presentation to the Class

Each person/group presents their project and results to the class during the
last class periods, The time slots vary according to the size of the group. The
final report from each person/group is due during the scheduled final exam
period. The final report follows the outline and format described in the pre-
liminary progress report. It includes the deliverables listed in the initial project
plan/statement of work. Specifically, students should make sure to include the
following:

– An abstract: succinctly summarize the final project setup and results.
– All models, specifications, code, or other artifacts needed to reproduce the

work and re-run the verification tasks you completed for the project. The
professor must be able to re-run the verification procedure(s) fol-
lowed.

– Overview of the project including introduction, motivation, problem setup,
and other information needed to understand the problem domain.

– Related work and background information, citing any resources used in the
design and completion of this project.

– How was validation performed?
– What precisely was verified? What does it mean? How are the results signif-

icant?
– A complete verification analysis: results, performance of the tool(s) used, etc.
– A bibliography; Chicago Manual of Style (CMS) format is preferred.

The final report is cumulative; it needs to include all work done for the
project in a complete report. Failure to include any of the required sections
listed above results in losing points, even if the work was mentioned in class or
in a presentation.

5.4 Example Student Projects

Students are encouraged to design final projects involving real-life systems of
personal interest. Many students choose to form a project from the verification
component of their graduate or undergraduate thesis research, or of a senior
design or club project, such as creating a safety case for the launch of a student-
designed CubeSat. Other popular categories of projects include designing tools to
create instances of a game the student enjoys or to play such a game. Verification
of autonomous driving or security scenarios from popular media, and “classic”
projects (like verification of an elevator or traffic light protocol) have been pro-
posed every semester. A competitive project category has emerged where two
or three students all verify the same system from the same initial specification
using a different favorite verification tool akin to an extended version of the
VerifyThis4 competition, with additional creative judging criteria.

4 https://www.pm.inf.ethz.ch/research/verifythis.html.

https://www.pm.inf.ethz.ch/research/verifythis.html
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Table 3 collects brief descriptions of student-designed final projects; in all
cases, the size of the expected final deliverables scaled linearly with the num-
ber of students in the group and was adjusted for undergraduate vs graduate
status. Several of the projects changed from the initial project proposal as the
students ran into unexpected road blocks or discovered new tangents worth pur-
suing. Changes often stemmed from negative validation results, and ranged from
minor adjustments in scope to major changes in the tools used (e.g., after being
able to prove a construct could not be expressed in one tool), or problem objec-
tive. Accordingly, many of the final reports include thoroughly-explored negative
results.

Table 3. A representative selection of student-devised final projects, 2015–2018.

Project description # U/G Tool(s) used

Verify a lane-keeping module for autonomous cars.

Starting with a road line detection algorithm, design

a correct control algorithm, verify safety

requirements using KeymaeraX and software

implementation via CBMC, and validate including

with real-world testing via augmenting the student’s

own car

1 U KeymaeraX, CBMC

Utilize explicit model checking to generate 3 × 3

magic square puzzles with unique solutions, and to

solve a given 3 × 3 puzzle

1 U Spin

Analyze a real system (the CySat Make to Innovate

(M:2:I) undergraduate research project) under active

development spanning multiple abstraction layers on

a demonstration mission toward surveying

near-Earth objects under NASA’s CubeSat Launch

Initiative. Software and hardware verification that

the ISU-designed flight computer meets mission

reliability requirements

1 U Spin, nuXmv

Verify the control of a tilt-wing medevac UAS

designed by an ISU senior design team meets safety

specifications

1 U Spin

Generate attack graphs (structures representing all

attack scenarios that an attacker can launch on a

system) via a model-based approach with

components/behaviors/defences/vulneratbilities and

specification of security/resiliency properties.

Iteratively model-check, disjuncting the previous

counterexample to the current security property to

generate acyclic attack graphs

1 G AADL, Lustre, Jkind, AGREE

Model the ZigBee wireless protocol along with a

collection of possible faults using OCRA for

component based modeling, contract-based design

and refinement, nuXmv for model checking of

resulting transition systems, and xSAP for safety

assessment and analysis

1 G nuXmv, OCRA, xSAP

Use Spin to generate winning strategies for the

Kartenspiele card game after a failed attempt with

PVS

1 G Spin, PVS

(continued)
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Table 3. (continued)

Project description # U/G Tool(s) used

Create a python library to parse mission-time linear

temporal logic (MLTL), create an explicit state-space graph

of a formula, display this with graphviz, and find a

satisfying path through the graph, comparing two different

search algorithms

1 G N/A

Model a set of self-driving car intersection navigation

scenarios and driving paths; use symbolic model checking to

verify that the car always chooses a safe path. Generalize

this to a maze solver, replicating previously-published

experiments with TuLiP. Solve two small mazes using the

GR(1)Py toolkit

1 G nuXmv, TuLiP, GR(1)Py

Model, validate, and verify a set of traffic signaling

algorithms using symbolic model checking. Scale the

number of traffic lights to four per intersection and the

number of successive intersections, varying properties like

the timing of lights, max cumulative wait time, and max

allowable queue length at a light. Compare performance for

BDD, BMC, and IC3 back-ends

1 G nuXmv

Define the formal operational semantics for a Simply Typed

Message-passing Calculus (STMC) for software concurrency.

Machine-checked proofs demonstrate the correctness of the

message passing model including broadcasting, multicasting

and guarded receive, and show the utility of the calculus by

proving the properties guaranteed delivery of messages, the

happens-before relation between the various actions, and

the mover properties of the possible actions

1 G Coq

Verify a vehicle-to-vehicle communication subsystem of an

autonomous vehicle platooning system

1 G Spin

Evaluate security of a Software Defined Network (SDN)

model, including firewalls, a switch-level security feature to

prevent malicious attacks, and a controller-level security

feature to prevent DOS attacks by verifying invariants

including reachability, isolation, loop freedom, no dead-ends

1 G nuXmv

Formally analyze three security protocols

Needham-Schroder Public Key Protocol, Otway- Rees

Protocol and Kerberos Protocol. Analysis of a protocol is

targeted towards detection of attacks in the protocol and

suggestive modifications to the protocol that can eradicate

the attack detected

1 G nuXmv

Two students compete to verify the same Traffic Alert and

Collision Avoidance System (TCAS) [34]: will explicit

model checking or symbolic model checking be the better

formal method for this task? One employs Holzmann’s

suggestions for optimizing the Spin model, the other takes

advantage of nuXmv’s newer back-end search algorithms.

The competition includes performance, ease-of-use,

modeling language expressibility, and usefulness of

counterexamples

2 G Spin, nuXmv

(continued)
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Table 3. (continued)

Project description # U/G Tool(s) used

Verify a python implementation of an A*-based pathfinding

algorithm for a robot avoiding obstacles to traverse a maze via a

shortest path using Linear Temporal Logic MissiOn Planning

(LTLMoP). Validation included representing the same model in

multiple tools and cross-validating model behaviors

2 U/G (Py)NuSMV,

PRISM,

LTLMoP

Solve chess puzzles (puzzles over the pieces and rules of chess) via

model checking focusing first on the mate-in-one-move problem

2 G Spin

Verify a Mars rover mission sequence including coordination of a

launch vehicle, ejection of the rover, executing a landing sequence,

and commencing ground operations; confirm that mission goals are

upheld including when faults occur and mitigation plans are

executed

2 G nuXmv

Explore the level of privacy maintained by users despite

datamining, first through replication of a study on formal

verification of privacy constraints on loan applications, then by

devising a scalable model of e-voting machine data with

user-specified privacy settings. An unsuccessful venture in Coq was

followed by a successful re-imagining of the project using nuXmv

3 U2/G nuXmv, Coq

Compositionally verify an autonomous drone racing system with

dissimilar components: localization (PVS), path planning

(mCRL2). and the high-level architecture (Belief-Desire-Intent

programming in AgentSpeak using Jason, Spin). Each student

leads the verification of one subcomponent; ultimately the effort

was unsuccessful due to integration challenges

3 U/G2 PVS, mCRL2,

Spin

Three students compete using three different tools to solve the

same verification challenge (a Rubik’s cube) and compare their

results, performance, and which parts of the problem were

easier/harder with each tool; creative methods of cross-validation

took advantage of overlap between tools, e.g., nuXmv and MiniSat.

Models started with 2 × 2 × 2 cubes and scaled the difficulty and

size of the cubes

3 G Spin, nuXmv,

CBMC, MiniSat

and CaDiCaL

SAT solvers

Model and verify a realistic subsystem of UTM (UAS Traffic

Management) for near mid-air collision (NMAC) avoidance based

on [12,17,30,36]. Use nuXmv to verify preflight, enroute, and

emergency situations; further explore properties of enroute (like

probability of a route change to avoid an NMAC) using PRISM

3 G nuXmv, PRISM

Legend:

# Number of students in the group

U All students in group are undergraduate students

G All students in group are graduate students

6 Conclusions and Outlook

In post-course surveys, students overwhelmingly identified details of tool use to
be the aspect of the course they struggled with most; this includes the challenge
of exposure to multiple new modeling/specification languages, details of tool
installation/setup/debugging, and the gap between the level of detail required
by formal methods tools versus their previous experiences, e.g., with pencil-
and-paper proofs and informal (or no) system requirements. The majority of
students identified the theorem proving tool (either PVS or Isabelle) as the
most difficult to learn. When asked in hindsight (a year or more after course
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completion) what aspect(s) of the course turned out to be most useful, nearly
every part of the course was listed by some student. The course project and the
survey of formal methods were each identified by over half of the former students
as most useful, citing in particular the perspective gained through experience.
Other popular responses include the students’ sound theoretical understanding
of formal methods, the comparative discussions of specification languages, and
in-class exercises (which some students felt so strongly about they questioned
the ability to scale the course to include more students or online students). Sev-
eral students particularly appreciated learning about the (ab)use of SAT solvers
for a variety of applications including scheduling, specification debugging, and
reduction of other problems to SAT. Nearly every student surveyed, both during
the course and in hindsight, wrote an impassioned essay about the paper presen-
tation section of the course, including the value of individualized feedback from
the professor and other students, the opportunity to improve their analysis/p-
resentation skills, exposure to the breadth of research frontiers and case studies
in formal methods, the perspective they gained on verification in the wild, and
the ability to steer the topics of the second half of the course to match the class’
interests.

When asked how the course could be improved, students have overwhelmingly
focused on small details of individual exercises; this feedback is continuously used
to improve lectures, slides, and assignment descriptions. Examples include more
in-class demonstrations of the quirkier aspects of tools, more details on indus-
try standards requiring formal methods, and more information on community
resources such as the active mailing lists for many tools, especially Isabelle and
PVS. Students have requested add-on or follow-on courses such as a research
paper reading group that offers an expanded version of the paper presentation
portion of the class, and a large-scale application option where students work
in groups to verify a real system over a whole semester simulating an industry
setting. This is consistent with the most-requested course improvement: each
semester students request more information on the end-to-end formal verifica-
tion process, such as a universal flow-chart with all of the aspects of verification
from initial conception to system maintenance laid out in fine detail.

Applied Formal Methods is currently taught as an elective; it counts toward
one required technical elective for undergraduate and graduate students in
Aerospace Engineering, Computer Science, and Computer Engineering, and has
(so far) always been approved for replacing technical electives in other areas of
engineering. Going forward, we look to integrate it as a required course in a track,
e.g., in an avionics or intelligent systems concentration or minor within aerospace
or in a cybersecurity or other interdisciplinary major. At its current size of 12–20
students per semester, the high level of participation and multiple presentations
by each student in the course is both practical and advantageous: each student
can participate actively in the course and receive personalized instruction in
applying formal methods to a project tailored to her/his interests. Maintaining
learning outcomes while potentially scaling the class to a larger size will be a
formidable challenge. End-of-semester student ratings of the course have been
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consistently very high; if the course becomes required instead of purely elective,
some adjustments may have to be made to accommodate a broader audience
with more diverse interests.

One goal of publishing materials on the course is to receive feedback that can
lead to continuous improvement; another is to open course materials for others
to use and build upon. As formal methods teaching at the undergraduate and
beginning graduate levels becomes more widespread there may be enough mate-
rials across the teaching community to support a tool-wise central repository of
exercises, exam questions, and other teaching resources. We hope to contribute
to such a repository, especially for tools like nuXmv and Spin, which remain
popular for student use. Such materials could also be used to create industrial
courses, such as the PVS Course at NASA Langley research center. We are con-
tinuously looking for industrial guest speakers to visit or give virtual lectures on
their experiences applying formal methods in industrial practice. Traditionally,
these lectures have received rave reviews and resulted in extra students showing
up to class, in addition to those enrolled in the course. We hope to build up a
club of regular industrial guest speakers as well as new lecturers to continue to
inspire future students to apply formal methods in practice.
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Abstract. The Gries-Owicki non-interference condition is fundamental
to concurrent programming, but difficult to explain as it relies on proof
outlines rather than only pre- and postconditions. This paper reports on
teaching a practical course on concurrent programming using hierarchi-
cal state diagrams to visualize concurrent programs and argue for their
correctness, including non-interference.
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1 Introduction

Given the ubiquity of distribution, interactive computing, and multi-core pro-
cessors, concurrency is pervasive. Concurrent programming is also error-prone.
The intrinsic difficulty is succinctly captured by the Gries-Owicki rule for the
non-interference of concurrent processes [17]. Let the statements of an abstract
programming language be made up of assignments (“:=”) that are composed
sequentially (“;”), conditionally (“if”), and repetitively (“while”). Statements
can also be composed in parallel (“‖”), be guarded (“await”), and put into atom-
icity brackets (“〈. . .〉”). Let Si be statements such that, considered in isolation,
each Si under precondition Pi establishes postcondition Qi, for i ∈ 1..n:

{P1} S1 {Q1}, . . . , {Pn} Sn {Qn}

The Gries-Owicki rule states that under the conjunction of the preconditions
Pi, the parallel composition of Si establishes the conjunction of the postcondi-
tions Qi,

{P1 ∧ . . . ∧ Pn} S1 ‖ . . . ‖ Sn {Q1 ∧ . . . ∧ Qn}

provided that all atomic statements R in each Si do not interfere with any
annotation of Sj for all i, j ∈ 1..n with i �= j. That is, the processes Si are not
considered to be “black boxes” leading from a precondition to a postcondition,

Supported by NSERC Grant RGPIN-2017-06692.

c© Springer Nature Switzerland AG 2019
B. Dongol et al. (Eds.): FMTea 2019, LNCS 11758, pp. 135–149, 2019.
https://doi.org/10.1007/978-3-030-32441-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32441-4_9&domain=pdf
http://orcid.org/0000-0001-9788-5842
https://doi.org/10.1007/978-3-030-32441-4_9


136 E. Sekerinski

but composed of atomic statements with intermediate annotations. In general,
an atomic statement R with precondition A and postcondition B,

{A} R {B}
does not interfere with condition C if R preserves C:

{A ∧ C} R {C}
Each process Si has to “know” about the conditions in visible intermediate states
of all other processes (proof outline) and has to ensure that its own actions
(atomic statements) do not invalidate those conditions; these conditions can be
over the global variables as well as the private ones of any involved processes. The
necessity of knowing the private variables of other processes and the exploding
number of non-interference checks arising from the combinations of intermediate
states and atomic statements in all process explains the intrinsic difficulty in
“getting a concurrent program right”.

The above programming language does not correspond to commonly used
programming languages, but allows to define constructs of those: compare-and-
swap instructions of processors, semaphores, monitors, remote procedure calls,
synchronous and asynchronous channels, and any other concurrency constructs
that can be understood in terms of interleaving. This model of concurrency allows
to motivate, compare, and contrast concurrency constructs in current languages.
The non-interference condition allows to analyze restrictions on the structure
of process and the shape of annotations to minimize interference [1,2,9]. It is
therefore appealing for courses that involve practical programming. However,
explaining non-interference with proof outlines requires a long introduction.

The author was teaching a sequence of two software design courses that
include (sequential) programming with pre- and postconditions as a unifying
foundation for requirements analysis, stepwise development, modularization,
object-oriented programming, and testing [20]. The experience has been that the
notions of pre- and postconditions, loop and class invariants are well received, but
a rigorous application of the correctness rules not. The source of the difficulty are
the programming languages to which students have been previously exposed: the
confusion of assignment and equality due to the use of = for assignment (and
still pronouncing it as “equal”), the confusion of statements and expressions,
and to some degree, the use of {. . .} in programming languages for bracketing
statements. Together with the distinction of assert statements and correctness
assertions, this results in a thorough confusion of statements, properties of those,
and the notations for each, as visible in typical nonsensical expressions of the
kind:

{true} x := x + 1 {x = x + 1} (1)
{x = 0} ⇒ {x ≥ 0} (2)

(One can attribute the recent interest in functional programming to the ugliness
of statements like x = x + 1. According to Kernighan and Ritchie [13, p. 17],
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the justification for using = for assignment is: “Since assignment is about twice
as frequent as equality testing in typical C programs, it’s appropriate that the
operator be half as long”. Later on, Ritchie comments on the development of C
by “Other fiddles ... remain controversial, for example the decision to use the
single character = for assignment instead of :=.” [18]).

Defining formally the grammar of statements and expressions first, as Dijk-
stra [7], to avoid above nonsense had a limited effect: it distracts, it is perceived
as an artificial restriction, and it does not help in understanding the difference
between program statements, program expressions, and correctness assertions
(and (1) is syntactically correct). Students were perfectly able to explain all
these concepts correctly, but would still write nonsensical expressions. They are
not to blame, having been exposed to confusing notations.

This paper reports on teaching formally concurrent programming with the
non-interference condition to third-year students who had a prior course in
discrete math and logic, following Gries and Schneider [10] and using Calc-
Check [12], and limited exposure to pre- and postconditions. Assignments involve
programming in Python (with semaphores), Java (with monitors), and Go (with
message passing). As the novelty, students are introduced to nested, concurrent
state diagrams: the graphical layout makes the distinction between statements
and annotations obvious; it gives a simple visualization of the non-interference
condition; it avoids curly braces, so does not compete with programming lan-
guages; it explains naturally nondeterminism and blocking; it is not perceived
as a “formal method” with its own language but as a visual model of programs.

State diagrams with nesting and concurrency originate in Harel’s statecharts
for embedded systems [11]. Manna and Pnueli use nested states with invari-
ants for verification [16]. Back proposes to start the development with nested
invariants diagrams and then to add transitions [5]. By contrast, here we present
invariants and transitions hand-in-hand, with the structure of transitions emerg-
ing from structured (single-entry, single-exit) programs. This can lead to differ-
ent nested state structure, e.g. the final state of a simple loop is nested inside
the invariant state in Back but a separate state here. State invariants here are
similar to invariantcharts in our earlier work on embedded systems [19]. Invari-
antcharts have nesting, concurrency, events, and broadcasting like statecharts,
as well as invariants, but we do not consider events and broadcasting here. Our
contribution is a visual interpretation of the non-interference condition.

The next section outlines the course material on state diagrams for sequen-
tial programming, including correctness, hierarchical diagrams, nondeterminism,
and blocking. Section 3 outlines the presentation of state diagrams with concur-
rency, atomicity, and non-interference and gives an example of using semaphores.
Section 4 provides some specifics of the course delivery and Sect. 5 discusses the
approach.

2 State Diagrams for Sequential Programming

The presentation of state diagrams below follows the exposition in class.
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Basic Statements. Programs in our algorithmic notation consist of variables that
hold values, expressions that, when evaluated, have a result, and statements
that, when executed, have an effect on variables. The assignment statement
x := E evaluates expression E and assigns the result to variable x. This can be
generalized to multiple assignments in which two or more variables are modified,
as in x, y := E,F. The sequential composition S ;T first executes statement S and
then statement T:

The conditional statement evaluates a Boolean expression and executes a
statement or does nothing, depending on the evaluation of the expression. The
repetitive statement executes the body, a statement, as long as the condition,
a Boolean expression, is true. Suppose S, T are statements and B is a Boolean
expression:

Correctness. Statements have a number of properties; the property we consider
here is which final state is produced for which initial state. More generally,
we consider the final states for a set of possible initial states. The initial and
final states are characterized by predicates. In general, for predicates (Boolean
expression) P, Q, we express that under precondition P statement S establishes
postcondition Q by a correctness assertion (colour distinguishes programs from
properties):
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The correctness of a possibly composed statement with respect to its precon-
dition, postcondition, and annotations in intermediate states is checked in state
diagrams by following rules for transitions between states:

Here, P[x, y := E,F] stands for the simultaneous substitution of x with E and
y with F. A statement is correct if all its transitions are correct. For example,
the algorithm for multiplication by successive additions is:

According to the correctness rules of transitions, the algorithm is correct
provided:

1. x ≥ 0 ⇒ (z + u × y = x × y ∧ u ≥ 0)[z, u := 0, x]
2. z + u × y = x × y ∧ u ≥ 0 ∧ u > 0 ⇒

(z + u × y = x × y ∧ u ≥ 0)[z, u := z + y, u − 1]
3. z + u × y = x × y ∧ u ≥ 0 ∧ u ≤ 0 ⇒ z = x × y

These follow from the rules of [10]. The precondition of the repetition has
the role of an invariant.

Hierarchical Diagrams. Nesting allows an annotation that is repeated in several
states to be factored out into a superstate. Following are equivalent diagrams:

As long as the computation resides within the superstate, R is an invariant.
For example, the algorithm for multiplication by shifting is:
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Following are two equivalent diagrams; the one to the right factors out u > 0
to a superstate:

Nondeterminism and Blocking. Dijkstra’s if and do guarded commands generalize
the conditional and repetitive statements to multiple alternatives, each with its
own guard. If several guards hold, one is selected nondeterministically. If none
holds, the alternative stops and the repetition terminates:

As special cases, S []T selects nondeterministically between S and T, as in an
alternative with true guards, skip does nothing, and stop does not lead to any
further state:
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3 State Diagrams for Concurrent Programming

Parallel Composition. The parallel composition S1 ‖ S2 is visualized by a dashed
line:

In the textual notation, atomicity brackets indicate how expressions are eval-
uated and statements executed as seen by concurrent programs. For example,
〈x := x+1〉 means that x is incremented by 1 atomically, 〈x〉 := 〈x+1〉 means that
first x is first read and then its new value written in separate steps. In state dia-
grams, each transition is executed atomically. Auxiliary variables (“registers”)
are used to express atomicity, for example:

Non-interference. If S1 and S2 operate on distinct variables, the postcondition of
S1 ‖ S2 is the conjunction of the postconditions of S1 and S2, as on the left-hand
side below. If S1 and S2 operate on the same variables, as on the right-hand side
below, it is not obvious what suitable pre- and postconditions of S1 and S2 would
be:
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A naive approach, as on the left-hand side below, fails: if both processes start
with x = 0 and x := x + 1 is executed first, the precondition of x := x + 2 is
no longer x = 0. Likewise, if x := x + 2 is executed first and establishes x = 2,
then x := x + 1 would invalidate that postcondition. The key is to weaken state
predicates such that the execution in parallel processes will not invalidate the
predicates, as to the right-hand side below:

An atomic statement A that starts in state P does not interfere with predicate
Q if A preserves Q, textually {P∧Q}A{Q}. For transitions, this is visualized as:
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The rule for the correctness of parallel composition S1 ‖ S2 assumes that each
process S1, S2 is correct in isolation:

{P1}S1{Q1}
{P2}S2{Q2}

Then the parallel composition will establish the conjunction of the postcon-
ditions under the conjunction of the preconditions,

{P1 ∧ P2}S1 ‖ S2{Q1 ∧ Q2}

provided that each atomic statement S1,i of S1 preserves each state of S2 and
vice versa (the non-interference condition), visually:

For example, the non-interference conditions for x := x + 1 ‖ x := x + 2 are
derived from the green dotted lines of the correct annotation above:

1. (x = 0 ∨ x = 2) ∧ (x = 0 ∨ x = 1) ⇒ (x = 0 ∨ x = 1)[x := x + 1]
2. (x = 0 ∨ x = 2) ∧ (x = 2 ∨ x = 3) ⇒ (x = 2 ∨ x = 3)[x := x + 1]
3. . . .

Condition Synchronization. The await statement “waits” until a Boolean expres-
sion is true and then executes its body atomically. The await statement is at the
very core of every synchronization mechanism, even though programming lan-
guages do not support it in its full generality:

That is, an await is like an if with one alternative. For example, consider
a producer who places objects into a (one-place) buffer. A consumer removes
objects from the buffer. The producer has to wait until the buffer is empty
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before placing an object. Producers and consumers proceed in their own pace.
The consumer has to wait until the buffer is not empty before removing the
object:

var p, c : 0..N = 0, 0
var buf : T

var a : array 0..N − 1 of T = . . . var b : array 0..N − 1 of T
while p < N do while c < N do

〈await p = c〉 〈await p > c〉
buf := a(p) b(c) := buf
p := p + 1 c := c + 1

The state diagram below shows the required state annotations to allow to
conclude that upon termination of Consumer, it will have a copy of array a of
Producer in its own local array b.

Each of the black solid transitions has to be correct in isolation. The pro-
ducer invariant P does not contain variables that are modified by Consumer and
likewise the consumer invariant C does not contain variables that are modified
by Producer, so these are always preserved by transitions of the other process.
The conditions for Consumer are, using correctness assertions:

1. {PC∧P∧C∧c < N∧p > c} b(c) := buf {PC∧C∧c < N∧p > c∧b(c) = a(c)}
2. {PC ∧ P ∧ C ∧ c < N ∧ p > c ∧ b(c) = a(c)} c := c + 1 {PC ∧ C}

The green dotted arrows indicate which transitions of Consumer may interfere
with the states of Producer. There are six non-interference conditions for the
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transition with b(c) := buf; of those the three for the green dotted arrows going
to “empty” states of Producer are identical, leaving four conditions:

1. {PC ∧ P ∧ C ∧ c < N ∧ p > c} b(c) := buf {true}
2. {PC ∧ P ∧ C ∧ c < N ∧ p > c ∧ p < N} b(c) := buf {p < N}
3. {PC ∧ P ∧ C ∧ c < N ∧ p > c ∧ p < N ∧ p = c} b(c) := buf {p < N ∧ p = c}
4. {PC ∧ P ∧ C ∧ c < N ∧ p > c ∧ p < N ∧ p = c ∧ buf = a(p)}

b(c) := buf
{p < N ∧ p = c ∧ buf = a(p)}
Likewise, there are four non-interference conditions for the transition with

c := c + 1:

1. {PC ∧ P ∧ C ∧ c < N ∧ p > c} c := c + 1 {true}
2. {PC ∧ P ∧ C ∧ c < N ∧ p > c ∧ p < N} c := c + 1 {p < N}
3. {PC ∧ P ∧ C ∧ c < N ∧ p > c ∧ p < N ∧ p = c} c := c + 1 {p < N ∧ p = c}
4. {PC ∧ P ∧ C ∧ c < N ∧ p > c ∧ p < N ∧ p = c ∧ buf = a(p)}

c := c + 1
{p < N ∧ p = c ∧ buf = a(p)}
The conditions for Producer not interfering with Consumer are analogous and

have been left out for brevity.

Semaphores. A semaphore is an initialized integer variable with two operations,
the wait operation P and the signal operation V, formally:

var s : semaphore = init
P(s) : 〈await s > 0 then s := s − 1〉
V(s) : 〈s := s + 1〉

The critical section problem assumes that processes repeatedly try to enter
a critical section, but only one is allowed to do. This can be enforced by using a
binary semaphore, i.e. a semaphore whose value is either 0 or 1, for example for
two concurrent processes:

var mutex : semaphore = 1

while true do while true do
P(mutex) P(mutex)
critical section critical section
V(mutex) V(mutex)
noncritical section noncritical section

To argue for the correctness, we add ghost variables in1, in2 to the two pro-
cesses, CS1, CS2, that indicate if the process is in its critical section. Ghost
variables are only assigned to and appear in invariants, but are not used in the
program; obviously, they can be left out without affecting the program:
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The critical section property is in1 + in2 ≤ 1, which is a consequence of CS
above. The correctness of above program follows from each transition of CS1
being correct, i.e.

– CS ∧ C11 ∧ mutex > 0 ⇒ (CS ∧ C12)[mutex, in1 := mutex − 1, 1]
– CS ∧ C13 ⇒ (CS ∧ C14)[mutex, in1 := mutex + 1, 0]

and each transition of CS1 not interfering with the states of CS2, as indicated
by the green dotted arrows above, i.e.

– CS ∧ C11 ∧ mutex > 0 ∧ C21 ⇒ C21[mutex, in1 := mutex − 1, 1]
– CS ∧ C11 ∧ mutex > 0 ∧ C22 ⇒ C22[mutex, in1 := mutex − 1, 1]
– . . .

The assumption is that neither critical section nor noncritical section contain oper-
ations on mutex. Because of symmetry, it then follows that each transition of CS2
is also correct and that CS2 does not interfere with the states of CS1.

4 Course Notes and Delivery

Jupyter notebooks, a web-based environment for interactive literate program-
ming, are used for the course notes [14]. Notebooks consist of a sequence of
cells with markdown or code. Markdown cells contain prose, algorithms, proofs,
and diagrams, including state diagrams. A Jupyter extension was developed to
ease formatting and colouring of algorithms and proofs, see Fig. 1. All diagrams,
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Fig. 1. (a) On the left a screenshot of a Jupyter notebook with an algorithm, an
exercise whose solution can be revealed by clicking on the � symbol, and code cell
with a Python implementation. (b) On the right a sequence of markdown cells.

including state diagrams, are created using a drawing editor. Currently, the code
cells contain Python (for semaphores), Java (for monitors), and Go (for message
passing) programs and can be executed right within the notebooks. The note-
books are available on a public GitHub repository1 and on a local JupyterHub
server. Students can either download the notebooks and run them on their own
computers or run the notebooks on the JupterHub server in a web browser.
JupyterHub supports grading of notebooks and is used for assignments and the
final exam. JupyterHub also supports automated grading through test suites,
however, because of the nondeterministic nature of concurrency, limited use is
made of that. Still, the experience is that JupyterHub speeds up grading com-
pared to the course management system that is used at McMaster, and is suitable
for large classes.

The Jupyter notebooks are turned into slides by the RISE extension [4]; the
course slides are the course notes with some cells suppressed. The slides retain
the interactivity of Jupyter and allow code to be executed without leaving the
slideshow. The experience is that the ability to switch quickly to executing code
and back to explanations effectively keeps the attention of students even in larger
classes.

5 Conclusions

Earlier on, the authors was using flowcharts to explain control structures, with
annotations for (partial) correctness, following [21]. Despite the authors’ best

1 https://github.com/emilsekerinski/softwaredesign.

https://github.com/emilsekerinski/softwaredesign
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Fig. 2. State diagram vs flowchart

efforts, students produced too many spaghetti charts. The common flowchart
notation cannot describe nondeterminism and blocking, see Fig. 2. Since the
statements rather than the states are nested, there is no direct way to inherit
invariants of enclosing states as with state diagrams, leading to repetition or
extra naming of parts of annotations. By contrast, the overall experience with
state diagrams for concurrent programming has been positive; state diagrams
can give the formal rigour that concurrency calls for without being perceived as
a “formal method” with its own language.

A tempting alternative is to use automated verification by model-checking,
e.g. [6,8,15]. Another option is to use a static analysis tool for a language that
is already used in the course to complement state diagrams. The author used
ThreadSafe for Java programs in one year and this could be further explored [3].
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Abstract. Discrete Mathematics is an inevitable part of any undergrad-
uate computer science degree programme. However, computer science
students typically find this to be at best a necessary evil with which
they struggle to engage. Twenty years ago, we started to address this
issue seriously in our university, and we have instituted a number of
innovations throughout the years which have had a positive effect on
engagement and, thus, attainment. At the turn of the century, a mere
2% of our first-year students attained a 1st-class mark (a mark over
70%) in the discrete mathematics course whilst over half of the class
were awarded a failing grade (a mark under 40%). Despite the course
syllabus and assessment remaining as difficult as ever (if not more chal-
lenging), and despite maintaining the same entrance requirements to the
programme whilst more than tripling the class size, for the past two
years, two-thirds of the class attained a first-class mark whilst less than
2% of the class failed. In this paper, we describe and motivate the inno-
vations which we introduced, and provide a detailed analysis of how and
why attainment levels varied over two decades as a direct result of these
innovations.

1 Introduction

There are a great number of excellent textbooks for teaching computer science
students the discrete mathematics which they will find necessary in their pursuit
of the subject. Without prejudice, we can cite [6,9,17] as exemplars which have
gone through multiple editions and commonly appear in the reading lists of rel-
evant courses. However, whilst often written with computer science applications
in mind, the standard presentation in such texts is inevitably mathematical in
nature, with a methodical approach to formal syntax and semantics taking cen-
tre stage. As the modern computer science student often lacks the mathematical
maturity of their predecessors (as argued below), this can be a hindrance to
engagement and, thus, academic attainment.

That the modern computer science student is in general less mathematically
minded than a generation ago is well recognised, and its causes now under-
stood. Moller and Crick [13] give a detailed account of the history of computing
education in UK schools: from a strong position in the 1980’s with the introduc-
tion of the BBC Micro into every school along with a curriculum for teaching
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the fundamentals of programming including hardware, software, Boolean logic
and number representation; through the 1990’s and beyond where the emer-
gence of pre-installed office productivity software led to the computing curricula
being permeated – and overwritten – by basic IT skills; “Death-By-Powerpoint”
became a common epithet for the subject. Beyond the arguments and references
provided in [13], we can note a trend towards omitting mathematics as a prereq-
uisite subject for studying computer science: of the 164 undergraduate computer
science programmes offered by 105 universities in the UK, over 60% of these do
not require mathematics as a school prerequisite [7].

There is a recognised digital skills shortage providing a high demand for
computer science graduates [8], and an eagerness on the part of universities to fill
places. However, with ever more students declaring in entrance statements that
they are choosing to study computer science due to a love of digital devices rather
than a love of the subject – and thus ever less prepared for the intellectual, logical
and mathematical problem-solving challenges this entails – it can be a challenge
in making some of the mathematical content of the curriculum palatable. This is
especially true in the current climate where student satisfaction is a key indicator
which universities are required by law in the UK to publish in their recruitment
and marketing.

Fig. 1. Trends of students achieving 1st-class and failing results; and class sizes.

This paper describes an innovative approach that we have developed for
teaching discrete mathematics to first-year university computer science students.
By adopting and adapting our approach over the past twenty years from a tra-
ditional starting point, we have substantially increased the success rate – and
substantially decreased the failure rate – of our students. Figure 1 shows how the
percentage of students attaining a first-class mark (one over 70%) rose from 2%
in 2000–2001 to over 60% in 2017–2018 and 2018–2019, whilst those failing the
course (with a mark under 40%) dropped over the same time frame from 56%
to under 2%. The figure also shows the class sizes which have more than tripled
over the most recent five years which explains a noticeable dip in attainment
which, we show, required further tweaking of our delivery model to address.
The fact that this success is based on our approach is borne out by reflecting
on annual student feedback for the various modules which students take across
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their programme of study; our delivery model is contrasted favourably against
traditional approaches used in other modules taken by the same students, and
recorded attendance (and hence engagement) is highest in this module.

2 Background

The nature of computer science education is changing, reflecting the increasing
ubiquity and importance of its subject matter. In the last decades, computational
methods and tools have revolutionised the sciences, engineering and technology.
Computational concepts and techniques are starting to influence the way we
think, reason and tackle problems; and computing systems have become an inte-
gral part of our professional, economic and social lives. The more we depend on
these systems – particularly for safety-critical or economically-critical applica-
tions – the more we must ensure that they are safe, reliable and well designed,
and the less forgiving we can be of failures, delays or inconveniences caused by
the notorious “computer glitch.”

Unlike for traditional engineering disciplines, the mathematical foundations
underlying computer science are often not afforded the attention they deserve.
The civil engineering student learns exactly how to define and analyse a math-
ematical model of the components of a bridge design so that it can be relied
on not to fall down, and the aeronautical engineer learns exactly how to define
and analyse a mathematical model of an aeroplane wing for the same purpose.
However, software engineers are typically not as robustly drilled in the use of
mathematical modelling tools. In the words of the eminent computer scientist
Alan Kay [10], “most undergraduate degrees in computer science these days
are basically Java vocational training.” But computing systems can be at least
as complex as bridges or aeroplanes, and a canon of mathematical methods
for modelling computing systems is therefore very much needed. “Software’s
Chronic Crisis” was the title of a popular and widely-cited Scientific American
article from 1994 [5] – with the dramatic term “software crisis” coined a quarter
of a century earlier by Fritz Bauer [16] – and, unfortunately, its message remains
valid a quarter of a century later.

University computer science departments face a sociological challenge posed
by the fact that computers have become everyday, deceptively easy-to-use
objects. Today’s students – born directly into the heart of the computer era
– have grown up with the Internet, a billion dollar computer games industry,
and mobile phones with more computing power than the space shuttle. They
often choose to study computer science on the basis of having a passion for
using computing devices throughout their everyday lives, for everything from
socialising with their friends to enjoying the latest films and music; and they
often have less regard than they might to the considerations of what a univer-
sity computer science programme entails, that it is far more than just using
computers. In our experience, many of these students are easily turned off the
subject when faced with a traditional course in discrete mathematics, with many
of these, e.g., transferring into media or information studies. This has motivated
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us to reflect on our presentation of discrete mathematics, which has resulted in
the following key considerations, all of which we have gleaned – and from which
we have learned – from student feedback.

– Do not rely on a service module provided by your mathematics department.
This is by no means a criticism of the mathematics department. It is simply
the case that many students will not appreciate the importance of a course
taken in a different department. At best, they may consider it peripheral to
their studies, and at worst they will thus disengage completely.

– Do not call it (discrete) mathematics. A simple change of name from “dis-
crete mathematics for computer science” to “modelling computing systems”
in 2010–2011 was enough for us to witness a substantially increased level of
engagement and attainment with the course, as made evident in Fig. 1. There
was no other change that year to add to the cause of this effect.

– Do not formalise early on. The standard approach to, e.g., propositional logic
is to present the formal syntax and semantics of the logic and emphasise the
precise form and function of the connectives. The approach we have adopted
is to stress the careful use of English, and to introduce logical symbols as
mere shorthand for writing out English sentences. Formalism becomes far
easier to adapt to if and once the students are comfortable with working with
the concepts.

– Exploit riddles and games. As described later through characteristic examples,
riddles and games provide an effective way to instil the rigours of computa-
tional thinking.

– Use regular interactive small-group problem sessions. We supplement three
hours of weekly whole-class lectures with a one-hour small-group problem
session (of 30–50 students) in which the emphasis is on the students carrying
out computational problem-solving tasks, typically in pairs. We are confident
in our thesis that this matters, as tweaking the sizes and regularity of these
groups through the years coincides with peaks and dips in the attainment
graphs. In particular, see the next consideration.

– Keep these problem session groups small. As can be seen in Fig. 1, attainment
dropped between 2014 and 2017 as class sizes grew, but more than recovered
in 2017–2018 despite a huge increase in the overall class size. This was due to
an increase in the number of problem session groups; whilst the whole-class
lectures became far less personable due to the huge numbers, the decrease
in the sizes of the problem session groups resulted in much better results.
Again, this being the only substantive change to delivery, we are confident in
attributing the positive effect to this.

The first half of our course covers standard discrete mathematics topics: sets,
propositional and predicate logics, functions and relations. Whilst it would be
instructive to explore our approach to these topics, in this paper we explore
our approach to teaching some of the topics from the latter part of the course.
The reasons for this are two-fold. Firstly, the topics we discuss are typically not
present in standard discrete mathematics courses; we make a case for why they
ought to be so, for scientific reasons as well as due to the scope for presenting
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them in an engaging style. Secondly, our aim is to demonstrate the informal
and engaging approach we take to the subject; we do so with the novel topics,
leaving it to the readers’ imagination as to how such techniques – e.g., the use
of Smullyan- and Dudeney-style puzzles and riddles [4,18] – can be applied to
the earlier standard topics.

3 Games and Winning Strategies

There is a long-standing tradition in disciplines like physics to teach modelling
through little artefacts. The fundamental ideas of computational modelling and
thinking as well can better be learned from idealised examples and exercises
than from many real world computer applications. Our approach employs a
large collection of logical puzzles and mathematical games that require no prior
knowledge about computers and computing systems; these can be more fun and
sometimes more challenging than, e.g., analysing a device driver or a criminal
record database. Also, computational modelling and thinking is about much
more than just computers.

In fact, games play a far more important role in our approach: they provide
a novel approach to understanding computer software and systems. When a
computer runs a program, for example, it is in a sense playing a game against
the user who is providing the input to the program. The program represents a
strategy which the computer is using in this game, and the computer wins the
game if it correctly computes the result. In this game, the user is the adversary
of the computer and is naturally trying to confound the computer, which itself
is attempting to defend its claim that it is computing correctly, that is, that
the program it is running is a winning strategy. (In software engineering, this
game appears in the guise of testing.) Similarly, the controller of a software
system that interacts with its environment plays a game against the environment:
the controller tries to maintain the system’s correctness properties, while the
environment tries to confound them.

This view suggests an approach to addressing three basic problems in the
design of computing systems:

1. Specification refers to the problem of precisely identifying the task to be
solved, as well as what exactly constitutes a solution. This problem corre-
sponds to the problem of defining a winning strategy.

2. Implementation or synthesis refers to the problem of devising a solution
to the task which respects the specification. This problem corresponds to the
problem of implementing a winning strategy.

3. Verification refers to the problem of demonstrating that the devised solu-
tion does indeed respect the specification. This problem corresponds to the
problem of proving that a given strategy is in fact a winning strategy.

This analogy between the fundamental concepts in software engineering on the
one hand, and games and strategies on the other, provides a mode of computa-
tional thinking which comes naturally to the human mind, and can be readily
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exploited to explain and understand software engineering concepts and their
applications. It also motivates our thesis that game theory provides a paradigm
for understanding the nature of computation.

4 Labelled Transition Systems

Labelled transition systems have always featured in the computer science cur-
riculum, but traditionally (and increasingly historically) only in the context of
finite automata within the study of formal languages. In our course we introduce
them as general modelling devices, starting with an intuitively-clear and famil-
iar use. Figure 2 presents Euclid’s algorithm for computing the greatest common
divisor of two numbers x and y, alongside a labelled transition system depicting
the algorithm being hand-turned on the values 246 and 174.

repeat as necessary:

x := x mod y;

if x=0 then return y;

y := y mod x;

if y=0 then return x

x = 246
y = 174

x = 72
y = 174

x = 72
y = 30

x = 12
y = 30

x = 12
y = 6

x = 0
y = 6
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=x

m
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Fig. 2. Computing the greatest common divisor.

In general, a computation – or more generally a process – can be represented
by a labelled transition system (LTS), which consists of a directed graph, where
the vertices represent states, and the edges represent transitions from state to
state, and are labelled by events. An LTS is typically presented pictorially as
in Fig. 2, with the states represented by circles and the transitions by arrows
between states labelled by actions.

As a further example, consider the lamp process depicted in Fig. 3. The lamp
has a string to pull for turning the light on and off, and a reset button which

Off

Broken

On

pull

pull

breakreset

pull

Fig. 3. The lamp process.
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resets the circuit if a built-in circuit breaker breaks when the light is on. At any
moment in time the lamp can be in one of three states:

• Off – the light is off (and the circuit breaker is set);
• On – the light is on (and the circuit breaker is set); and
• Broken – the circuit breaker is broken (and the light is off).

In any state the string can be pulled, causing a transition into the appropriate
new state (from the state Broken, the new state is the same state Broken).
In the state On, the circuit breaker may break, causing a transition into the
state Broken in which the reset button has popped out; from this state, the
reset button may be pushed, causing a transition into the state Off. (Note:
discussions of design decisions naturally arise with the decision to always reset
into the Off state, regardless of the number of string pulls carried out in the
Broken state. This provides a useful excursion into the problems that arise in
the requirements analysis phase of software engineering.)

These two examples demonstrate the simple, but effective, use of LTSs as a
means of modelling computing problems and real world objects.

4.1 Introducing LTSs with Puzzles

Whilst the definition of a labelled transition system is surprisingly straightfor-
ward for such a powerful formalism, getting students to engage with it requires
some ingenuity. Fortunately, this is equally straightforward by resorting to well-
known recreational puzzles.

4.2 The Man-Wolf-Goat-Cabbage Riddle

The following riddle was posed by Alcuin of York in the 8th century, and more
recently tackled by Homer Simpson in a 2009 episode of The Simpsons titled
Gone Maggie Gone.

A man needs to cross a river with a wolf, a goat and a cabbage. His boat is
only large enough to carry himself and one of his three possessions, so he
must transport these items one at a time. However, if he leaves the wolf
and the goat together unattended, then the wolf will eat the goat; similarly,
if he leaves the goat and the cabbage together unattended, then the goat will
eat the cabbage. How can the man get across safely with his three items?

The puzzle can be solved by modelling it as an LTS as depicted in Fig. 4. A state
of the LTS will represent the current position (left or right bank) of the four
entities (man, wolf, goat, cabbage); and there will be four actions representing
the four possible actions that the man can take:

• m= the man crosses the river on his own;
• w= the man crosses the river with the wolf;
• g= the man crosses the river with the goat; and
• c= the man crosses the river with the cabbage.
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The initial state is MWGC: (meaning all are on the left bank of the river),
and we wish to find a sequence of actions which will lead to the state: MWGC
(meaning all are on the right bank of the river). However, we want to avoid
going through any of the six dangerous states WGC : M, GC : MW, WG : MC,
MC : WG, MW : GC and M : WGC. There are several possibilities (all involving
at least 7 crossings), for example: g, m, w, g, c, m, g.

WGC : M

MWGC :

WC : MG

MWC : G

C : MWG W : MCG

MGC : W MWG : C

G : MWC

MG : WC

: MWGC

M : WGC

GC : MW

MC : WG

WG : MC

MW : GC

m

g

m

m

g

m

w c

c w

w c

g g

c w

m

m

m

m

Fig. 4. The man-wolf-goat-cabbage LTS.

4.3 The Water Jugs Riddle

In the 1995 film Die Hard: With a Vengeance, New York detective John McClane
(played by Bruce Willis) and Harlem dry cleaner Zeus Carver (played by Samuel
L. Jackson) had to solve the following problem in order to prevent a bomb from
exploding at a public fountain.

Given only a five-gallon jug and a three-gallon jug, neither with any mark-
ings on them, fill the larger jug with exactly four gallons of water from the
fountain, and place it onto a scale in order to stop the bomb’s timer and
prevent disaster.

This riddle – and many others like it – was posed by Abbot Albert in the 13th
Century, and can be solved using an LTS. A state of the system underlying
this riddle consists of a pair of integers (i, j) with 0 ≤ i ≤ 5 and 0 ≤ j ≤ 3,



158 F. Moller and L. O’Reilly

representing the volume of water in the 5-gallon and 3-gallon jugs A and B,
respectively. The initial state is (0, 0) and the final state you wish to reach is
(4, 0).

There are six moves possible from a given state (i, j) as listed in Fig. 5.
Drawing out the LTS (admittedly a daunting task in this instance yet a useful
exercise), we get the following 7-step solution:

(0, 0)
fillA

−−−−−→ (5, 0)
AtoB−−−−−→ (2, 3)

emptyB
−−−−−→ (2, 0)

AtoB−−−−−→ (0, 2)
fillA

−−−−−→ (5, 2)
AtoB−−−−−→ (4, 3)

emptyB
−−−−−→ (4, 0).

(i,j)
fillA

−−−−−→ (5, j) if i=0

(i,j)
fillB

−−−−−→ (i, 3) if j=0

(i,j)
emptyA
−−−−−→ (0, j) if i>0

(i,j)
emptyB
−−−−−→ (i, 0) if j>0

(i,j)
AtoB

−−−−−→ max(0, i+j−3),min(3, i+j)
)

if i>0 and j<3

(i,j)
BtoA

−−−−−→ min(5, i+j),max(0, i+j−5)
)

if i<5 and j>0

Fig. 5. Water jug riddle moves.

These simple riddles and puzzles allow students to easily grasp and under-
stand the powerful concept of labelled transition systems. After seeing only a
few examples, they are able to model straightforward systems by themselves
using LTSs. Once an intuitive understanding has been established, the task of
understanding the mathematics behind LTSs becomes less foreboding.

5 Verification via Games

Having introduced a formalism for representing and simulating (the behaviour
of) a system, the next question to explore is: Is the system correct? In its most
basic form, this amounts to determining if the system matches its specification,
where we assume that both the system and its specification are given as states of
some LTS. For example, consider the two vending machines V1 and V2 depicted
in Fig. 6, where V1 is taken to represent the specification of the vending machine
while V2 is taken to represent its implementation. Clearly the behaviour of V1

is somehow different from the behaviour of V2: after twice inserting a 10p coin
into V1, we are guaranteed to be able to press the coffee button; this is not true
of V2. The question is: How do we formally distinguish between processes?
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5.1 The Formal Definition of Equivalence

A traditional approach to this question relies on determining if these two states
are related by a bisimulation relation, which is a binary relation R over its states
in which whenever (x, y) ∈ R:

• if x
a→ x′ for some x′ and a, then y

a→ y′ for some y′ such that (x′, y′) ∈ R;
• if y

a→ y′ for some y′ and a, then x
a→ x′ for some x′ such that (x′, y′) ∈ R.

Simple inductive definitions already represent a major challenge for undergrad-
uate university students; so it is no surprise that this coinductive definition of
a bisimulation relation is incomprehensible even to some of the brightest post-
graduate students – at least on their first encounter with it. It thus may seem
incredulous to consider this to be a first-year discrete mathematics topic, even
if it is a perfect application for exploring equivalence relations as taught earlier
in the course. However, there is a straightforward way to explain the idea of
bisimulation equivalence to first-year students – a way which they can readily
grasp and are happy to explore and, indeed, play with. The approach is based
on the following game.

V1

10p
10p

coffee

tea

collect

V2

10p
10p

10p

coffee

tea

collect

Fig. 6. Two vending machines.

5.2 The Copy-Cat Game

This game is played between two players, typically referred to as Alice and Bob.
We start by placing tokens on two states of an LTS, and then proceed as follows.

1. Alice moves either of the two tokens forward along an arrow to another state;
if this is impossible (that is, if there are no arrows leading out of either node
on which the tokens sit), then Bob is declared to be the winner.
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2. Bob must move the other token forward along an arrow which has the same
label as the arrow used by Alice; if this is impossible, then the Alice is declared
to be the winner.

This exchange of moves is repeated for as long as neither player gets stuck. If
Bob ever gets stuck, then Alice is declared to be the winner; otherwise Bob is
declared to be the winner (in particular, if the game goes on forever).

Alice, therefore, wants to show that the two states holding tokens are some-
how different, in that there is something that can happen from one of the two
states which cannot happen from the other. Bob, on the other hand, wants to
show that the two states are the same: that whatever might happen from one of
the two states can be copied by the other state.

It is easy to argue that two states should be considered equivalent exactly
when Bob has a winning strategy in this game starting with the tokens on the
two states in question; and indeed this is taken to be the definition of when two
states are equal, specifically, when an implementation matches its specification.

As an example, consider playing the game on the LTS depicted in Fig. 7.

U

V

W

Z Y X

a

a

b

c

c

b

a

Fig. 7. A simple LTS.

Starting with tokens on states U and X, Alice has a winning strategy:

• Alice can make the move U
a→ V .

• Bob must respond with the move X
a→ Y .

• Alice can then make the move Y
c→ Z.

• Bob will be stuck, as there is no c-transition from V .

This example is a simplified version of the vending machine example; and
a straightforward adaptation of the winning strategy for Alice will work in the
game starting with the tokens on the vending machine states V1 and V2. We thus
have an argument as to why the two vending machines are different.

5.3 Relating Winning Strategies to Equivalence

Whilst this notion of equality between states is particularly simple, and even
entertaining to explore, it coincides precisely with the complicated coinductive
definition of when two states are bisimulation equivalent. Seeing this is the case
is almost equally straightforward.
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• Suppose we play the copy-cat game starting with the tokens on two states x
and y which are related by some bisimulation relation R. It is easy to see that
Bob has a winning strategy: whatever move Alice makes, by the definition of
a bisimulation relation, Bob will be able to copy this move in such a way that
the two tokens will end up on states x′ and y′ which are again related by R;
and Bob can keep repeating this for as long as the game lasts, meaning that
he wins the game.

• Suppose now that R is the set of pairs of states of an LTS from which Bob
has a winning strategy in the copy-cat game. It is easy to see that this is a
bisimulation relation: suppose that (x, y) ∈ R:

– if x
a→ x′ for some x′ and a, then taking this to be a move by Alice in

the copy-cat game, we let y
a→ y′ be a response by Bob using his winning

strategy; this would mean that Bob still has a winning strategy from the
resulting pair of states, that is (x′, y′) ∈ R;

– if y
a→ y′ for some y′ and a, then taking this to be a move by Alice in the

copy-cat game, we let x
a→ x′ be a response by Bob using his winning

strategy; this would mean that Bob still has a winning strategy from the
resulting pair of states, that is (x′, y′) ∈ R.

We have thus taken a concept which baffles postgraduate research students, and
presented it in a way which is well within the grasp of first-year undergraduate
students.

5.4 Determining Who Has the Winning Strategy

1

3

2

4

5 6

a

a

a

a

a

a

a

a

b

a

a

a

a

a

Once the notion of equivalence is understood
in terms of winning strategies in the copy-cat
game, the question then arises as to how to
determine if two particular states are equiva-
lent, ie, if Bob has a winning strategy starting
with the tokens on the two given states. This
isn’t generally a simple prospect; games like
chess and go are notoriously difficult to play
perfectly, as you can only look ahead a few
moves before getting caught up in the vast
number of positions into which the game may
evolve.

Here again, though, we have a straightfor-
ward way to determine when two states are

equivalent. Suppose we could paint the states of an LTS in such a way that any
two states which are equivalent – that is, from which Bob has a winning strategy
– are painted the same colour. The following property would then hold.

If any state with some colour C has a transition leading out of it into a
state with some colour C’, then every state with colour C has an identically-
labelled transition leading out of it into a state coloured C’.
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That is, if two tokens are on like-coloured states (meaning that Bob has a
winning strategy) then no matter what move Alice makes, Bob can respond in
such a way as to keep the tokens on like-coloured states (ie, a position from
which he still has a winning strategy). We refer to such a special colouring of
the states a game colouring.

To demonstrate, consider the following LTS.
At the moment, all states are coloured white, and we might consider whether

this is a valid game colouring. It becomes readily apparent that it is not, as the
white state 4 can make a b-transition to the white state 5 whereas none of
the other white states (1, 2, 3, 5 and 6) can do likewise. In fact, in any game
colouring, the state 4 must have a different colour from 1, 2, 3, 5 and 6.

1

3

2

4

5 6

a

a

a

a

a

a

a

a

b

a

a

a

a

a

Hence we paint it a different colour from
white; in order to present this example in black-
and-white, we shall paint the state 4 with the
new colour “checkered.”

(Of course, unbound in class by black-and-
white printing, we’d use an actual colour in prac-
tice). We again consider whether this is now a
valid game colouring. Again it becomes appar-
ent that it is not, as the white states 3 and 6
have a-transitions to a checkered state, whereas
none of the other white states 1, 2 and 5 do. And
in any game colouring, the states 3 and 6 must
have a different colour from 1, 2 and 5.

Hence we paint these a different colour from
white and checkered; we shall choose the colour “swirly.”

1

3

2

4

5 6

a

a

a

a

a

a

a

a

b

a

a

a

a

a

We again consider whether this is now a valid
game colouring. This time we find that it is, as
every state can do exactly the same thing as
every other state of the same colour: every white
state has an a-transition to a white state and an
a-transition to a swirly state; every swirly state
has an a-transition to a swirly state and an a-
transition to a checkered state; and every check-
ered state has a b-transition to a white state.

At this point we have a complete understand-
ing of the game, and can say with certainty
which states are equivalent to each other. This
is an exercise which first-year students can hap-
pily carry out on arbitrarily-complicated LTSs,

which again gives testament to the effectiveness of using games to great success
in imparting difficult theoretical concepts to first-year students – in this case the
concept of partition refinement.
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6 Conclusion

We teach first-year Discrete Mathematics in the guise of modelling computing
systems; and we find that our students quickly and easily understand the mod-
elling of computing systems when it is done in a way which nurtures their willing-
ness to engage. Starting with formal syntax and semantics and complicated real
world examples, in our experience, makes the task very daunting, difficult and
generally unpleasant for students. However, appealing to their existing under-
stand of how the world works, using puzzles as a medium, students can quickly
become comfortable using mathematical concepts such as LTSs. A similar les-
son is learnt when it comes to teaching verification: starting with the formal
definition of bisimulation (or similar) is an uphill battle from the start, even for
postgraduate research students. However, starting from games like the copy-cat
game, such topics become immediately accessible.

We have used this approach for over a decade to teach discrete mathemat-
ics incorporating the modelling and verification of computing systems as part
of our first-year undergraduate programme, resulting in the publication of the
course textbook [14]. With the fine-tuning of our approach, and abiding by the
considerations outlined in Sect. 2, we have succeeded in maximising attainment
levels of the students through active and interested engagement.

Of course, problem solving through recreational mathematics – which is
ultimately what we are exploiting in our approach – has very many propo-
nents, and there is a long and extensive history of books marketed towards the
mathematically-inquisitive. We are by no means alone in recognising the power
of applying recreational mathematics to the development of computational prob-
lem solving skills; as relevant exemplars we note Averbach and Chein’s Problem
Solving Through Recreational Mathematics [1], Backhouse’s Algorithmic Prob-
lem Solving [2], Levitin and Levitin’s Algorithmic Puzzles [11]; and Michalewicz
and Michalewicz’s Puzzle-Based Learning [12]. What we offer in particular is
an embedding of the approach from day one of the first year of our students’
undergraduate journey, in particular to engage them in a topic – discrete math-
ematics – that they typically struggle with, both academically and in terms of
recognising its relevance in the subject. In this sense, we are closely related to the
various approaches that have been developed of late for introducing school-aged
audiences to computational thinking. In this vein we note the CS Unplugged1

and the CS4Fun2 initiatives. Indeed, much of our material has been adapted into
school workshops for the Technocamps3 initiative.

The “informal” way in which we approach the teaching of formal meth-
ods has many parallels with Morgan’s (In)Formal Methods: The Lost Art [15].
The course described in this report is for upper-level computer science students
who are already adept at writing programs who are studying software devel-
opment methods, whereas our course is for first-year students and thus very

1 csunplugged.org.
2 cs4fn.org.
3 technocamps.com.

http://csunplugged.org
http://cs4fn.org
http://technocamps.com
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much preliminary. Nonetheless, many of the findings in [15] – in particular as
reflected in the student feedback – are replicated in our course, where positive
feedback is provided on: the interactive and hands-on approach; the amusing
exercises and assignments; the class room style teaching; the overall teaching
methodology with dedicated tutors; and the means by which the relevance of
the course is stressed.

As a final note, many of the considerations that we have identified as being
important in teaching mathematics to computing students are reflected in [3] as
being useful and thus adopted in their novel approach to teaching computing to
mathematics students.
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Abstract. Programmers from the imperative tradition often have lit-
tle experience of using inductive definitions and inference, and that may
explain why executable SOS specifications have not become a standard
feature of mainstream language development toolkits. We wish to ‘de-
mystify’ SOS for such programmers, allowing precise and principled spec-
ifications to be given for even small industrial DSL’s. eSOS (elided Struc-
tural Operational Semantics) is a compact tool for specifying executable
formal semantics. It is designed to be a translation target for enriched
SOS specification languages. The simplicity of eSOS and its reference
Java implementation allow programmers to follow the details of an exe-
cution trace, and to step through rules using a conventional debugging
framework, allowing them to understand and use SOS-based specifica-
tions to construct usable language interpreters.

Keywords: Structural Operational Semantics · Domain Specific
Language specification · Operationalising formal specifications

1 Introduction

Formal specification of programming language semantics is still seen by most
software engineers as an esoteric and opaque approach to language implementa-
tion. In this paper we describe our approach to ‘de-mystifying’ formal semantics
by embedding a simple model of SOS interpretation into a final year course on
the engineering of Domain Specific Languages. We use the formal specification
of semantics as a concise and precise specification from which an interpreter
may be automatically generated rather than emphasising verification or proving
properties of programs. We limit ourselves to sequential languages and as a result
direct interpretation of the rules can yield processors which are fast enough for
many applications.

A key part of the approach is to show how to write the SOS rule inter-
preter itself in a few lines of a procedural programming language. This allows
practitioner programmers who may have little or no mathematical training to
understand operationally how the specification is executed, and to think of for-
mal specification as ‘just another kind of programming’. We have found that the
approach is successful even with ‘maths-averse’ students.
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Is this sort of programmer-driven approach necessary or even desirable? Well,
it is nearly 40 years since Plotkin introduced Structural Operational Semantics
(SOS) in a series of lectures at Aarhus University [6]. In that time the computer
science theory community has generated myriad related papers, and SOS is now
firmly established as part of the basic toolkit for any programming language
researcher. Perhaps surprisingly, the practitioner community has in large mea-
sure eschewed formal semantics, including SOS. This is in marked contrast to,
say, syntax definition using BNF, formal parsing algorithms and even attribute
grammars which are widely used (at least in the somewhat informal way that
Bison and some other parsing toolkits provide). This ought not to be the case:
the core ideas of SOS are certainly no harder to grasp than the notions of gram-
mars and derivation trees.

We would consider that SOS had entered the mainstream if some of the
following were true: textbooks on languages and compilers had a chapter on
using SOS to write precise descriptions of some or all of a language; widely used
language implementation toolkits included a SOS specification capability and
an associated interpreter; programming language standards used at least a little
SOS to clarify details; and online forums featured discussion of the pragmatics of
applying SOS. In fact none of these are true – for instance on the Stack Overflow
forums there are a few questions about SOS and its place in the spectrum of
formal semantics techniques, but almost none of the pragmatic ‘how do I do X
in Y’ questions that characterise the forums for widely deployed software tools.

Why might this be? It could be that SOS specifications quickly become too
large to be useful, but current informal programming language standards docu-
ments are hardly noted for brevity. We suspect that the problem simply arises
from the usual cultural gap in our discipline: that in practice the entry price for
understanding declarative specifications comprising inductive definitions of rela-
tions via inference rules is too high for many working procedural programmers.

Our hypothesis, then, is that if we could reduce SOS interpretation to a simple
procedural operation over the rules, programmers would embrace the brevity
and clarity of the approach. The problem seems to be that the core idea of
inference and the heavy use of mathematical notation in typical SOS textbooks
are offputting to ‘normal’ programmers: perhaps ironically, they simply don’t
understand the meaning of the semantic formalism.

Several ambitious projects aim to deliver the benefits of formal seman-
tics specification in a programmer-friendly manner; including the well known
and now-venerable ASF+SDF system [10] (and its successors including Ras-
calMPL [4] and the Spoofax [3] language workbench), the K system [7] and
tools such as OTT [9]. The PlanCompS project [1] provides a unifying approach
by abstracting away from formal semantics frameworks, building specifications
from small fundamental constructs.

Our eSOS system, described in this paper, certainly does not compete
with these rich systems, but rather attempts to leverage procedural program-
mers’ existing knowledge to give them a way into formal semantics. The core
tool comes as two small Java packages, one containing a value system which
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provides straightforward runtime type checking, and the other containing a
parser for eSOS specifications, classes implementing an abstract syntax for SOS,
and an SOS interpreter for sequential programs. Though conceived as a back
end for richer SOS notations, we have found that it is a comfortable notation for
neophyte users who can think of it as just another form of programming, and
can answer questions such as ‘yes, but what does that really do’ by looking at
the source code and exercising SOS specifications using the debugger from their
preferred development environment to walk through traces.

2 The Course

We run a third year course entitled Software Language Engineering (SLE). This
was originally conceived as a pragmatic counterpart to our existing compiler
theory course which presents topics in parsing and code generation and optimi-
sation. The SLE course is intended to equip students with the engineering skills
needed to design and deliver a fully working interpreter or compiler for a small
language, with no emphasis on optimisation: the primary goal is correctness of
the language processor, not high performance. The focus is on Domain Specific
Languages, with motivating examples which include 3D modelling languages for
graphics and 3D printing; music specification languages which connect to the
Java MIDI synthesizer; and image processing languages. As part of the course,
students develop their own DSL’s, usually in one of these domains.

Over time, the two courses have developed independently, and now not all of
the SLE students take the compiler theory course. As a result, we work ab initio
and make no assumptions about prior knowledge of compilers.

The students are rarely mathematically confident. They will have taken typ-
ical first year courses on discrete maths with some exposure to logic and the
use of inference rules, but they will not have previously applied that knowledge
beyond very small pencil-and-paper exercises.

The course is taught over ten weeks (plus one week of revision and consolida-
tion) each of which has two one-hour lectures and a two-hour lab session. There
are seven programmed labs; the remaining sessions are used for tutorial support
whilst the students develop their own language projects.

The first week is critical. The goal is to de-mystify formal systems by pre-
senting rule based ‘symbol-pushing’ games. We use Conway’s Game of Life as
an example. Our students are familiar with this formal system because the first
large program that they write in year one is a graphical version of Life.

We then need to help students become comfortable with a reduction model
of program execution in which the program is progressively rewritten (with side-
effects recorded in semantic entities such as the store and the environment). Most
students have a von Neumann mind set in which a static program is traversed
under the control of the program counter: we tell them that we need to ‘get rid of
the program counter’ before we can use our chosen formal specification method.

We introduce the idea of establishing a program’s meaning by repeatedly
rewriting it, rather than by an execution walkthrough, using a version of Euclid’s
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Greatest Common Divisor (GCD) algorithm written in a simple procedural lan-
guage with implicit declarations:

a := 15; b := 9;

while a != b

if a > b

a := a - b;

else

b := b - a;

gcd := a;

The program leaves its result in variable gcd; with a and b initialised to 15
and 9 we expect that after execution gcd would contain 3.

We also give the program in an internal (abstract) syntax form, as a term
built from prefix functions. The internal abstract syntax is not formally defined
at this stage: we simply use a form that is sufficiently close to the concrete
program that students can accept it as being equivalent.

seq(seq(seq(

assign(a, 15), assign(b, 9)),

while(ne(deref(a), deref(b)),

if(gt(deref(a), deref(b)),

assign(a, sub(deref(a), deref(b))),

assign(b, sub(deref(b), deref(a)))))),

assign(gcd, deref(a)))

We then compare the behaviour of the concrete program (as observed via a
walkthrough in the Eclipse debugger) with the behaviour of the internal abstract
syntax term under term rewriting. This is a purely illustrative exercise, but
nevertheless sufficient to informally show that term rewriting can mimic the
execution of the program as conventionally understood.

In the main body of the course, students learn four key techniques: eSOS
interpretation; parsing; attribute grammar evaluation; and (limited) term rewrit-
ing. In each case, the technique is presented as a formal system, but with an
accompanying procedural model rendered in Java code. Often the procedural
model presented in lectures is not fully general but is sufficient to provide
an intellectual model that allows them to use more powerful versions of the
same idea in the labs as a black box, without being burdened by their internal
complexity.

Parsing forms a good example of this style of learn-by-doing, and take-the-
rest-on-trust. For project work, the production parsing technology that we use is
the GLL generalised parser [8] but a detailed description of that method would
require too much classroom time. Instead, students learn how to hand-write in
Java simple singleton-backtracking recursive descent parsers. We then look at
grammatical constructs for which that approach fails: we believe that things
which are broken can be more educational than things that seem to magically
work. The students go on to use a GLL parser which behaves to some extent
like a backtracking parser but overcomes these problems in a way they don’t
need to know the details of. We extend the parsers to support attributes and
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attribute equations, and use the resulting tool to implement a grammar for
BNF itself with attribute equations which generate. By the end of this two week
segment the students have developed a bootstrapped parser generator which can
reproduce itself. They understand parsing, meta-description and generation of
programs from specifications. Students know that the parsing technology they
have explored is weak, but understand that the principles scale up directly to
more general parsing approaches.

3 How We Teach SOS

We teach SOS using eSOS, a variant we have developed to be accessible to
mainstream students with a basic procedural programming background. In the
later sections we shall describe the eSOS interpreter that allows students to
experiment by executing their specifications. However, we don’t just want to
talk about teaching, we want to illustrate our classroom style. The SLE course
has an accompanying textbook which is being developed as we gain experience
and feedback from the course. In this section we provide a precis of the lecture
material which introduces eSOS to illustrate the way in which we strip the
subtleties down to a basic minimum. The rest of Sect. 3 is written as though
for students. This allows the reader who is not a SOS practitioner to pick up
the notions and terminology they need for the subsequent sections. Experts will
find nothing surprising and can skip to the description of the eSOS interpreter
in Sect. 4.

At hardware level, computer programs exist as essentially static patterns
of instructions, traversed under the control of a program counter which forms
a pointer into the program. It can be difficult to directly prove properties of
programs in this model, since the evolution of the computation is a property
of the trace of the program counter. An initial step in formalising programming
language semantics is often to move to a ‘reduction’ model, in which the program
is a dynamic object that may be rewritten during execution. Most (though not
all) execution steps reduce the size of the program term. For pure functional
programming languages, these rewrites capture everything there is to say about
the computation, but most languages also allow side-effects such as store updates
and appends to output lists.

Here is the four step reduction of a program term which computes 10− 2− 4
and ‘outputs’ the result by appending it to an initially empty list.

<output(sub(sub(10, 2),4)), []>
<output(sub(8,4)), []>
<output(4), []>
<, [4]>

At each point, some part of the program term called the reducible expression or
redex has been identified, a simple computation performed and then the term
rewritten: in the first step the redex sub(10, 2) has been rewritten to 8.
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A configuration 〈program term, output list〉 thus captures everything about
the state of the computation at some point: the list captures side-effects of pre-
vious computations and the program term contains what is left to be computed.
The output list is an example of a semantic entity : depending on the style of
language we are specifying, configurations may have several entities in addition
to the program term.

In eSOS we have five kinds of entity: (i) read-only lists and (ii) write-only lists
model input and output; (iii) maps whose bindings may be changed which model
read/write memory (usually called stores); (iv) maps whose bindings may not
changed which model symbol tables (or environments) and (v) singleton sets
which are used for describing signals and exceptions. We refer to a 〈program
term, entity list〉 pair as a configuration. If the entity list is empty, we may
omit it.

Execution of programs, then, is modeled by stepping from configuration to
configuration. The components of a configuration vary according to the language
being specified. In the subtraction example we have a program term and a write-
only list. Our abstract internal form of the GCD program above does not have
input and output, so all we need is a program term and a store, denoted as
〈θ, σ〉.

We can view program execution as a sequence of configuration transitions:
configuration X transitions to Y if there is a program whose transition sequence
has Y appearing as a successor to X. The set of all transitions describes every-
thing that could possibly be executed: in a deep sense it is the semantics of the
language of those programs.

An SOS specification is merely a device for specifying a (usually infinite)
set of transitions using a finite recipe of inference rules. For languages with
configurations 〈θ, σ〉, each rule has the form

C1 C2 . . . Ck

〈θ, σ〉 → 〈θ′, σ′〉
The single transition below the line is the conclusion. The Ci are the condi-

tions: there may be zero or more of them. Conditions can themselves be transi-
tions, or may be functions. The latter are referred to as side-conditions.

One might read an inference rule in this style as:

if you have a configuration 〈θ, σ〉,
and C1 succeeds and C2 succeeds and . . . and Ck succeeds
then we can transition to configuration 〈θ′, σ′〉

One uses this kind of rule by checking that the current configuration matches
the left hand side of the conclusion, then checking the conditions (in any order)
and then, if everything succeeds, rewriting the current configuration into the
right hand side of the conclusion. Where a condition is itself a transition we
must recursively apply our checking process to transitions in the conditions. The
subchecking can only terminate when we encounter a rule with no transitions in
its conditions.
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In practice, to produce a finite specification, SOS rules are written as rule
schemas in which variables are used as placeholders for subterms. For example,

<seq(done, C)>→<C >

is a rule schema with variable C, and a rule is obtained by replacing C with a
program term

<seq(done, output(6))>→<output(6)> .

When interpreting these rule schemas, we use the operations of pattern matching
and substitution to dissect and reconstruct terms. We call a term which contains
variables an open term or pattern. A term with no variables is closed.

We shall write θ � π for the operation of matching closed term θ against
pattern π. The result of such a pattern match is either failure represented by ⊥,
or a set of bindings. So, in these expressions where X is a variable

seq(done, output(6)) � seq(done, X)

returns {X �→ output(6)} whereas

seq(done, output(6)) � seq(X, done)

returns ⊥ because output(6) does not match done.
Pattern substitution is the process of substituting bound subterms for the

variables in the pattern. We shall write π � ρ for the operation of replacing
variables in pattern π with their bound terms from ρ. So

plus(X, 10) � {X �→ 6} returns plus(6, 10).

The following SOS rule (schema) handles the subtraction of two integers. It
has three side conditions which use pre-specified functions isInt and subOp. The
construct sub belongs to the abstract syntax of the language whose semantics
are being specified.

isInt(n1) � true isInt(n2) � true subOp(n1, n2) � V

〈sub(n1, n2)〉 → 〈V 〉 [sub]

The conclusion tells us that this rule will rewrite expressions of the form
sub(n1, n2) to some value, if the conditions (which are all side-conditions) are
met.

How should we use such rules to implement interpreters? Let us assume that
the current program term is θ, then one way to compute whether the transition
may be made is:

if ρ1 = (θ � sub(n1,n2)) then
if (isInt(n1) � ρ1) � true
and (isInt(n2) � ρ1) � true
and ρ2 = ((subOp(n1,n2) � ρ1) � V )
then θ′ = V � ρ2
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Informally, we try to match the current program term against the left-hand
side of the conclusion and store any variable bindings in the map ρ1. We then
work through the conditions substituting for variables on their left hand sides and
perhaps creating new environments for pattern matches. If all of the conditions
succeed then we make a new program term θ′ by substituting the most recent
environment. If we can guarantee that each variable appears only once as an
argument to a pattern match operator �, then we can use a single environment
which is extended as we work through the conditions.

Using the two rules below, we specify program terms which are nested
subtractions. 〈E1, α〉 → 〈I1, α〉

〈sub(E1, E2), α〉 → 〈sub(I1, E2), α〉 [subLeft]

〈E2, α〉 → 〈I2, α〉 isInt(n) � true

〈sub(n,E2), α〉 → 〈sub(n, I2), α〉 [subRight]

The rule [subLeft] rewrites the left argument to a simpler expression whilst
preserving the second argument. Rule [subRight] will only process terms that
had a single integer as the left hand argument, and rewrites the second argument.
The original [sub] rule will then perform the subtraction of the integers. Together
these three rules comprise a so-called small-step SOS for subtraction and act so
as to enforce left to right parameter evaluation order.

When running the interpreter on a particular initial term, we can put in
checks to ensure that at most one rule is activated at each rewrite step, though of
course that will only detect non-determinism that is triggered by that particular
term. Static checking of rules can detect some forms of non-determinism.

Example: SOS Rules for the GCD Internal Language

An SOS specification may name more than one set of transitions. The rules we
have looked at so far are so-called ‘small-step’ rules. Big-step rules in which, say,
arithmetic operations proceed directly to their result without the fine-grained
elaboration of the left and right arguments are also possible, and both types of
transition may occur within one set of rules. We illustrate this technique with
a complete set of rules for our GCD abstract internal language in which the
relational and arithmetic operations are specified using a big-step transition ⇒
and the commands using a small-step transition →. It is sometimes helpful to
think of small-step rules such as [assignResolve] ‘calling’ the big step transition
to reduce a complex arithmetic expression to a value.

As well as arithmetic and boolean values, this specification uses the special
value done (sometimes called skip in the literature) which represents the final
reduction state of a program term.

<seq(done, C), σ>→<C, σ> [sequenceDone]
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< C1, σ >→< C
′
1, σ

′
>

< seq(C1, C2), σ >→< seq(C ′
1, C2), σ

′ >
[sequence]

< if(true, C1, C2), σ >→< C1, σ > [ifTrue]

< if(false, C1, C2), σ >→< C2, σ > [ifFalse]

< E, σ >⇒< E
′
, σ

′
>

< if(E,C1, C2), σ >→< if(E′ , C1, C2), σ
′ >

[ifResolve]

< if(E, seq(C,while(E,C)), done), σ >→< C
′
, σ

′
>

< while(E,C), σ >→< C ′ , σ′ >
[while]

isInt(n) � true updateOp(σ,X, n) � σ1

< assign(X,n), σ >→< done, σ1 >
[assign]

< E, σ >⇒< n, σ
′
>

< assign(X,E), σ >→< assign(X,n), σ′ >
[assignResolve]

< E1, σ >⇒< n1, σ1 >< E2, σ1 >⇒< n2, σ2 > gtOp(n1, n2) � V

< gt(E1, E2), σ >⇒< V, σ2 >
[gtBig]

< E1, σ >⇒< n1, σ1 >< E2, σ1 >⇒< n2, σ2 > neOp(n1, n2) � V

< ne(E1, E2), σ >⇒< V, σ2 >
[neBig]

< E1, σ >⇒< n1, σ1 >< E2, σ1 >⇒< n2, σ2 > subOp(n1, n2) � V

< sub(E1, E2), σ >⇒< V, σ2 >
[subBig]

valueOp(σ,R) � V

< deref(R), σ >⇒< V, σ >
[variable]

The result of running the eSOS interpreter with these rules on the input term
above is a 30-step reduction of the initial term to the terminating value done,
the last four configurations of which are:

< seq(done, assign(gcd, deref(a))), sig = { a->3 b->3 } >

< assign(gcd, deref(a)), sig = { a->3 b->3 } >

< assign(gcd, 3), sig = { a->3 b->3 } >

< done, sig = { a->3 b->3 gcd->3 } >

Happily, after the final step the store in the final configuration contains a
binding from gcd to 3.

One can write specifications that are incomplete, but appear to work. The
characteristic symptom is that the behaviour of the interpreter is sensitive to
the order of the rules. In fact this specification contains nondeterminsim: rules
[assign] and [assignResolve] can both trigger if the redex is an integer.

With the ordering shown here, the interpreter prioritises [assign] over [assign-
Resolve] which has the effect of invoking [assignResolve] on complex expressions
until they are reduced to an integer, at which point [assign] performs the assign-
ment. If the order of the rules is reversed, the interpreter will loop forever on
[assignResolve].
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The cure for this class of problem is to ensure that sufficient side-conditions
are added to the rules to ensure that at most one rule at a time can be triggered.

4 The eSOS Interpreter

The origins of the eSOS tool lie in providing efficient interpretation of rules
for funcons. The software was developed within the PLanCompS project as a
sort-of ‘assembly language’ for SOS rules. The intention was to reduce SOS rule
interpretation to a minimalist core, with richer and more expressive forms of
specification languages (such as Mosses’ CBS notation) being translated down
into eSOS before execution. Once developed, we created experimental lab ses-
sions for the SLE course. These were very successful and led to a reworking of
the course which put SOS at its centre.

In the literature a variety of notations are used within SOS specifications.
Some are just syntactic sugar: for instance a turnstile symbol � may be used in
expressions such as ρ � 〈θ, σ〉 → 〈θ′, σ′〉 as shorthand for 〈θ, ρ, σ〉 → 〈θ′, ρ, σ′〉.

More significantly, most authors use standard mathematical notation where
possible, and allow computations and function calls to appear directly within
transitions. For instance, a rule for subtraction might be written:

n1 ∈ Z n2 ∈ Z
〈sub(n1, n2)〉 → 〈n1 − n2〉 [subConcise]

using standard symbols for set membership and the set of integers. The expres-
sion in the right-hand side of the conclusion should be read as the arithmetic
result of performing subtraction on the substituted variables n1 and n2.

These conventions certainly allow for more succinct expression, but can be
a little daunting at first encounter, especially the ellision of side conditions into
transitions. We might think of them as ‘high level’ formats which are convenient
for the human reader when exercising small example specifications.

The eSOS format is extremely limited, but no less expressive than these richer
forms. We can view it as a low level format in which the operations needed for
our style of interpretation are explicit. eSOS allows only the three operations:
pattern matching, substitution and evaluation of functions from term(s) to term.
In fact the substitution operator is automatically applied to the right hand side of
all transitions and side conditions, and so never needs to be written. In addition,
configurations must be comprised of terms with no embedded functions.

Functions can only appear on the left hand side of side-conditions. The argu-
ments to, and the return value from, a function, must be terms. This means
that terms such as the number 67 or the boolean false are represented as trees
containing a single node which is labeled with 67 or false accordingly.

New values may be computed and inserted into the result of a transition by
matching the result of function to a variable, and then binding that variable in
the right hand side of a conclusion, as shown in rule [sub] above.
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The current eSOS interpreter works greedily in the sense that the first rule
that succeeds will be used, and rules are checked in the order that they are writ-
ten. Within a rule, conditions are checked in strict left to right order. In principle
we could also use more sophisticated interpretation strategies that supported
non-determinism so as to model concurrency.

eSOS provides a value system which has built in dynamic type checking
allowing a designer to test parts of their implementation before they have imple-
mented the static semantics of their type system. The system has a fixed set of
operations with suggestive names such as add, union and so on. The value classes
are all extensions of class Value, which contains a method for each operation.
Within Value, the operation methods all throw a Java exception. The idea is
that the class for, say, Integer extends Value and implements its own overrid-
ing method for each operation that is meaningful on that type. If an operation
is called on an inappropriate value (for which is no operation defined) the top
level method in Value will issue a run time error.

Function calls in eSOS side conditions are almost all direct calls to the func-
tions in the value library; all the interpreter needs to do is to extract the label
from a term (which will be an instance of a value package class) and call the cor-
responding method. The interpreter contains a case statement which branches on
the function name and performs the extract-and-call action. Here is the branch
for the subOp() function used in our GCD rules:

case "subOp":

functionResult = new ValueTerm(

leftPayload.sub(children.get(1).getPayload()));

break;

The value system also provides a set of coercion operations which can inter-
convert values where appropriate.

Most of the value classes are really wrappers on the underlying Java API
class. We offer these primitive types: Boolean, Character, Integer32, IntegerAr-
bitrary, Real64, RealArbitrary, Null and Void; and these collection types: Array,
String, List, Set, Tuple, Map, Record, MapHierarchy.

The IntegerArbitrary and RealArbitrary classes support arbitrary length val-
ues. The MapHierarchy class contains a map and a reference to another MapHier-
archy called the parent. If a key lookup is performed on a MapHierarchy, the
search proceeds recursively through the base MapHierachy and its parents. This
naturally implements nested scoping of key-value bindings. In addition there are
Term and TermVariable classes that construct trees whose nodes are labeled
with instances of Value types. The Term class includes pattern match and sub-
stitute operations. Some of the collection classes also have implementations of
match and substitute that generalise over the terms held in the collection.

The implementation of eSOS relies heavily on the classes in the value pack-
age; for instance SOS configurations are represented by instances of the Record
class and environments by instances of MapHierarchy. Terms are, of course,
represented by instances of value class Term and the builtin matching and sub-
stitution methods are sensitive to instances of variables represented with the
TermVariable class.
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With so much of the work being done within the operation methods of the
Value library, the main interpreter function may be compactly expressed. The
current implementation requires some 30 lines of Java.

5 The eSOS Concrete Syntax

eSOS rules may be constructed directly by programs written in Java and other
JVM languages through an Application Programmer Interface (API), but the
usual way to create a specification is via a text file containing eSOS concrete
rules. The prelude and a concrete form of the first two rules from our GCD
specification is shown below. From this, LATEX source to typeset the equations
is automatically generated.

relation ->, sig:map, done

relation =>, sig:map

latex sig "\\sigma", -> "\\rightarrow", => "\\Rightarrow"

-sequenceDone

---

seq(done, C) -> C

-sequence

C_1 -> C_1'

---

seq(C_1, C_2) -> seq(C_1', C_2)

The relation directive declares each transition symbol and zero or more
associated syntactic entities. These are typed as one of the five classes of entity
mentioned on page page 6; in this case entity sig is of type map and thus can
be used to model the store. The configurations of the complete specification is
the union of the entities declared in all of the relation directives.

The latex directive creates a set of mappings which are used to generate
LATEX aliases, enabling us to write sig in the source file and have it appear as
σ in the typeset output.

The rules themselves are elided in that entities which are used in ‘standard’
ways need not be mentioned. This approach is inspired by Peter Mosses’ work
on MSOS [5], in which semantic entities are gathered into a record which labels
the transition. Mosses provides a category-theoretic classification of propagation
rules for entities. In eSOS we use a single propagation rule which we call the
‘round the clock’ rule, so for instance an unmentioned store entity σ propagates
as: 〈, σ0〉 → 〈, σ1〉 〈, σ1〉 → 〈, σ2〉 . . . 〈, σk−1〉 → 〈, σk〉

〈, σ0〉 → 〈, σk〉
Apart from reducing the amount of writing required, the main purpose of this
elision is to support modularity, allowing fragments of specifications which may
use different configurations to be brought together in the manner of MSOS. Our
uniform propagation rule has the merit of simplicity but in general will generate
more bindings during interpretation than strictly necessary.
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Space precludes a detailed example, but the motivation for adopting this
capability is to support the Funcon methodology mentioned in Sect. 1. In partic-
ular, we wish to support the use of signal entities which manage the propagation
of exceptions and other forms of unusual control flow. In general, the only con-
structs needing to access signal entities are those originating or handling the
exceptions. We do not want to clutter all of the other rules with references to
signals; in eSOS they can be simply elided away in the source, and will then be
automatically generated as the rules are expanded for interpretation.

6 Connecting Parsers to eSOS

A BNF context free grammar for the GCD language in Sect. 2 is shown below.
Terminals are stropped 'thus' and we assume the availability of two lexical
items INTEGER and ID which match decimal digit sequences and alpha-numeric
identifiers in the conventional way. (Ignore for the moment the ^ annotations.)
For compactness, the grammar only provides definitions for the >, 
= and sub-
traction operations though it does encode their relative priorities and associa-
tivities. The grammar does not generate empty programs.

statement ::= seq^^ | assign^^ | if^^ | while^^
seq ::= statement statement
assign ::= ID ':='^ subExpr ';'^
if ::= 'if'^ relExpr statement 'else'^ statement
while ::= 'while'^ relExpr statement
relExpr ::= subExpr^^ | gt^^ | ne^^
gt ::= relExpr '>'^ subExpr
ne ::= relExpr '!='^ subExpr
subExpr ::= operand^^ | sub^^
sub ::= subExpr '-'^ operand
operand ::= deref^^ | INTEGER^^ | '('^ subExpr^^ ')'^
deref ::= ID

When used to parse the GCD program above, this grammar yields a derivation
tree containing 92 nodes. The relatively large structure contains nodes repre-
senting, for instance, keywords and punctuation that may be safely discarded
without losing the underlying meaning of the program. It is conventional in for-
mal semantics work (and indeed in compiler construction) to generate a more
compact intermediate form. For instance, the GNU compilers use the GENERIC
libraries to build simplified trees which are translated into three-address code
for optimisation, and the metamodelling community typically use Java classes
to represent semantic entities which are initialised by concrete parsers.

In formal semantics, connections to concrete parsing are often eschewed in
favour of starting with some abstract syntax capturing syntactic-categories such
as declarations, commands, expressions and so on. This is reasonable for research,
but can be a bar to progress for those wishing to simply execute semantic speci-
fications, whether on paper or via interpreters. For example, how should phrases
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in the simplified abstract syntax to be constructed from a concrete program
source?

An approach we have found useful is to deploy folds [2] to convert full deriva-
tion trees to simplified abstract syntax trees. There are two fold operations
denoted by ^ (fold under) and ^^ (fold over). In both cases, the annotated node
A is combined with its parent P and the children of A are ‘pulled up’ and inserted
as children of P , in order, between the siblings of A. When folding-over, the label
of P is replaced by the label of A.

When folding under, P retains its original label and thus A disappears: a fold-
under applied to a terminal, therefore, has the effect of deleting it from the tree
and can be used to remove syntactic clutter such as the '(' and ')' terminals in
the GCD grammar. Fold-overs can be used to telescope chains of nonterminals:
for instance we use it above to overwrite all instances of nonterminal operand
with deref, subExpr or an integer literal as appropriate. We have also used
carrier nonterminals such as ge and sub to replace concrete syntax operators
such as >= with alphanumeric names. The reader may like to check that the
annotations above, when applied to the derivation tree for our GCD program
yields this abstracted tree, which has 39 nodes.
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If we output the labels in a preorder traversal using the usual bracketing
convention, we get this text rendition which is in a format suitable for use directly
as a program term with the eSOS interpreter.

seq(seq(seq(assign(a, 15), assign(b, 9)),

while(ne(deref(a), deref(b)), if(gt(deref(a), deref(b)),

assign(a, sub(deref(a), deref(b))),

assign(b, sub(deref(b), deref(a)))))),

assign(gcd, deref(a)))

Tree construction with fold operations may be described using an L-
attributed grammar and hence folded derivation trees may be produced in a
single pass, or even ‘on the fly’ by recursive descent parsers.

7 Student Response and Conclusions

eSOS is a distillation of the core operating principles of a sequential SOS inter-
preter, and as such it represents a ‘lowest common denominator’ of the various
enriched notations that one encounters in the research literature. The simple
syntax, combined with a compact interpreter written in Java provide a com-
fortable entry to formal semantics for undergraduate students. Student response
has been enthusiastic. The even split between laboratory and lecture room time
enabled impressive project work, and in formal questionnaire returns students
rated the course as being significantly more intellectually stimulating than the
mean scores across all other courses in our school.
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Abstract. At Kiel University, a course on theory of computation and
a course on logic in computer science form the basis for teaching for-
mal methods. Over the last years, new study programmes (computer
science teacher training, business information systems, computer science
for international students on master level) have been established, calling
for changes to the courses. Guided by the experience gathered over time,
course syllabi as well as teaching and examination formats and practices
were adapted, resulting in a complex scheme. In this paper, we review
this development, with particular focus on managing heterogeneity and
bridging the gap between actual and required qualification of enrolling
students. Key ingredients of our teaching methods are a spiral approach,
frequent testing, supervised learning time, and a game.

1 Introduction

The department of CS at Kiel University enrolls most of the students for its
bachelor’s programme in CS; many of the students finishing this programme are
then enrolled to the consecutive master’s programme. In both programmes, sev-
eral electives on using formal methods, relating to formal methods and on formal
methods directly are offered: Introduction to Formal Software Analysis, Alge-
braic Specification, Engineering Secure Software Systems, Decision Problems,
and so on. The basis for all these courses is laid in the bachelor’s programme,
where a fundamental course on theory of computation (ToC) and one on logic in
computer science (LiCS) are compulsory. These courses build, in turn, on three
math courses. The five courses altogether are worth 40 credits.

Resources at Kiel University are scarce, in particular, the staffing level is low,
both in terms of professors and scientific staff. So, as new study programmes
have emerged over time, the ToC and the LiCS course had to be adapted to the
different groups of students: in addition to the students from the aforementioned
bachelor’s programme in CS, students from a business information systems (BIS)
programme, a two-area (2A) programme with one area being CS, and a CS
teacher training (CSTT) programme have to be catered for.—The department
had to manage heterogeneity ; it was no option to offer separate courses for each
study group.

When, in 2017, the CS department decided to set up an international master’s
programme, a new problem arose with regard to ToC and LiCS. The students
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who apply to this programme are not fully qualified according to our regulations:
they are often missing modules in theory, logic, and math. In addition, their
learning habits are very different from the ones our students have acquired. One
reason might be completely different examination practices: we often give our
students a few complex problems which they have to work on for some time;
the students applying to us are used to exams with many questions which need
to be answered in brief and quickly. So the CS department had to somehow
bridge the gap between the actual qualification of the admitted students and the
required qualification and help the students get accustomed to the local teaching,
learning, and examination culture.

In this paper, we describe how the department adapted ToC and LiCS to the
changing requirements, which experiences were gathered, and how these expe-
riences induced further changes. To be more precise, we describe the interplay
between changing requirements, experiences gathered, and modifications made.
The key insights that we have gained are:

1. A spiral approach (see [4]) has been successful for coping with heterogeneity.
2. Frequent testing (see [6,10]) as an examination practice has been effective in

bridging the gap and making the students accustomed to the local teaching
and learning culture.

3. In general, supervised learning time is effective and economical.

We hope our experiences may help other CS departments when confronted with
similar problems.

Structure of the Paper. The next section provides details about the study pro-
grammes offered by the CS department of Kiel University and their history.
There are two main sections, one about managing heterogeneity (Sect. 3) and
one about bridging the gap (Sect. 4), and there is a final section (Sect. 5) which
provides statistical data and an evaluation of our teaching approaches.

2 The Study Programmes and Their History in Short

In the following, we describe the study programmes offered by the CS department
of Kiel University briefly. The formal examination regulations can be found at [5].

2.1 Computer Science

When, in 2002, the CS department of Kiel University replaced the diploma
study programme in CS by a bachelor’s and a consecutive master’s programme,
it established two courses as the basis for teaching formal methods: a course on
ToC and another one on LiCS, both placed in the second year of the bachelor’s
programme, each of them spanning 14 weeks with 180 min (four hours) teaching
and 90 min (two hours) classroom exercises per week (worth eight credits in
the ECTS [9]). Roughly, the theory course covered Chaps. 1 through 5 of [13]
and fundamental notions and facts of complexity theory, while the logic course
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covered Chaps. 1 through 12, except 3, 5, and 8, of [2]. Four math courses, which
addressed math students in the first place, were part of the first two years of the
bachelor’s programme.

In 2008, the four math courses were replaced by three newly designed math
courses (Mth-A, Mth-B, Mth-C), directly addressing students of computer sci-
ence. ToC and LiCS were moved to the end of the second year and the beginning
of the third year, respectively, following the three math courses. In addition, an
advanced programming course (AP), which offered an introduction into logic
programming, was introduced.

2.2 Business Information Systems

In 2006, the CS department of Kiel University established a bachelor’s and a con-
secutive master’s programme in business information systems. Formal methods
are relevant to this program when it comes to business process models. In con-
trast to the CS students, students from BIS take only two math courses (Mth-A
and Mth-B).

ToC has been a substantial ingredient of the BIS study programmes, orig-
inally located in the master’s programme, then reduced to half the credits
(ToCBIS), and later on moved to Semester 4 of the bachelor’s programme.

There were no resources for installing a separate course. Section 3 describes
the heterogeneous teaching concept we developed.

2.3 2-Area Programme

In 2014, Kiel University established two university-wide so-called two-area bach-
elor’s and master’s degrees, one of them being a high-school teacher degree, the
other one aiming at the general job market. The CS department made Mth-A
and ToC compulsory courses for the bachelor’s CS area. Later on, the number
of the CS-specific courses was increased at the expense of Mth-A, resulting in
the need to offer an adapted theory course (ToC2A).

Just as with BIS, there were no resources for installing a separate course.
Section 3 describes the heterogeneous teaching concept we developed.

2.4 International Programme

For the first time in winter 2017/18, the CS department offered a master’s pro-
gramme in English, addressing, in the first place, students from abroad. As a
reaction to the fact that many applicants were missing a thorough education in
theory and logic, the department took several different measures to address this,
see Sect. 4.

3 Managing Heterogeneity

The ToC course and the LiCS course were originally designed for the bachelor’s
programme in CS and the consecutive master’s programme only. They were
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based on a considerate amount of math and supposed to prepare for advanced
courses on formal methods. They were meant to convey core concepts in theory
and logic.

These days, the ToC course serves a heterogeneous body of students with
diverse study objectives and prior knowledge:

1. students from the bachelor’s programme in CS
∠ ToC is compulsory in Semester 4
∠ Mth-A, Mth-B, and Mth-C are prior knowledge

2. students from the bachelor’s programme in BIS
∠ a smaller ToC (TocBIS) is compulsory in Semester 4
∠ Mth-A, Mth-B, and Mth-C are prior knowledge

3. students from the 2A bachelor’s programme
∠ a smaller ToC (ToC2A) is compulsory in Semester 2
∠ no math courses

3.1 Teaching Approaches for Managing Heterogeneity

In the following we review how the teaching approach with regard to ToC and
LiCS has evolved over the past two years, as a reaction to the changes in the
study programmes. We describe the model prior to theses changes and discuss
the need for modifications as well as our experiences.

All our courses are taught in German. The ToC course covers the Chomsky
hierarchy and automata, basics on theory of computation, and complexity theory.
The LiCS course covers propositional and first-order logic: syntax and semantics,
decidability of satisfiability, normal forms, and modelling problems in logic.

Teaching Approach Prior to 2016. The traditional format of these two
courses is the same as that for many other courses at our department: there are
fourteen weeks of teaching, where in every week there are two teacher-centered
lectures of 90 min each and assisting tutorials of 90 min with about 30 students
participating. All tutorials are the same; each student attends one of them. The
students are given weekly homework exercises. The solutions they turn in are
corrected, and good solutions are presented and discussed in the tutorials. The
tutorials are conducted by undergraduate students without prior training on
how to teach (but with a proper supervision by a doctoral student). As a result,
the quality of the tutorials varies extremely. Each course has a final written
exam at the end of the semester, consisting of problems similar to the homework
exercises. These two courses had the reputation of being the toughest of the
curriculum beside the introductory math course Mth-A.

ToC underwent major changes in the last two years. This is what we describe
in the following.

Changes in Winter 2016/17. In winter 2016/17, ToC had to be offered in
the full version (8 credits) and a reduced form (ToCBIS, 4 credits). In summer
2017, the reduced form would also be part of the 2A bachelor’s programme.



Managing Heterogeneity and Bridging the Gap in Teaching Formal Methods 185

Teaching Approach. We realized a spiral approach: we split the semester in
half, and in the first half we covered the same topics as previously in the entire
semester, but on a lower level of detail and without proofs; in the second half we
covered all topics again, but on a more detailed level and with proofs, see below
for details and compare Fig. 1.
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Fig. 1. Structure of the
course

The students with less prior knowledge (BIS) were
only required to attend the first half of the course
(and obtained only half the credits), while the stu-
dents from the bachelor’s programme in CS had to
attend the full course.

In the first half, every topic was motivated with
an introductory example. Then formal definitions fol-
lowed, which were then enriched by more examples.
Selected basic theorems were only stated and not
proven, but intuition was conveyed. Simpler construc-
tions and algorithms were presented and practiced.

In the second half, formal proofs were given for some of the theorems, more
specialized theorems were dealt with, more involved concepts were introduced,
and more complex constructions were presented and practiced.

Here are some details of how the part on finite-state automata was split. The
first half started out with an illustration of several DFAs, followed by a formal
definition of DFA, followed by more examples cast in terms of that definition.
The Pumping Lemma was discussed in the first half and illustrated using the
sketch given in Fig. 2. The students also learned how to apply the Pumping
Lemma to prove that a language is not regular. The power set construction,
being a simple construction, was also presented in the first half.

q0

q

Fig. 2. Pumping lemma

The minimization of DFAs was part of the
second half. The same applies to the proof of
the Pumping Lemma or the proof of correct-
ness of the power set construction.

We redesigned the homework exercises
completely. In the first half of the course we
asked the students to construct automata for
given languages, apply algorithms such as the
power set construction or check the correctness
of many-one reductions. Only in the second half, proofs were required.

We kept the general format of the tutorials. Unlike before, we provided the
tutors with a sample solution to each problem, which they would rely on in their
tutorials and which they would pass on to the students. In a tutorial session,
the problems of that week were worked on and solved in the group, based on
the solutions produced by the individual participants prior to the tutorial and
guided by the tutor. The idea was to produce a joint solution in a collaborative
way. In addition, one new problem was discussed, introducing the topic of the
homework exercise for the following week.
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We created two sets of problems for the end-term exam. Each of the sets
consisted of a multiple choice section (reproduction of knowledge) and five fur-
ther problems, each of them similar to, but in general somewhat easier than the
problems in the homework exercises. Each set was set up for 1.5 h. The students
that had only attended the first half of the course had to work on the first set;
the other students had to work on both sets. In addition, we offered an optional
mid-term exam. By passing this exam the students were released from working
on the first set of problems in the final exam.

Feedback. The students’ feedback to the spiral approach was mostly positive.
They liked the idea of revisiting each topic and believed that this had improved
their understanding. There was a debate among the students whether in the
first half of the lecture the general approach had been too formal or not. They
complained about the way we had covered (un-)decidability reductions, which
then led us to cover this in more detail in the following semester. The increased
number of examples in the lecture was considered a positive feature.

The feedback on the tutorials was mostly positive. This had not been the case
in previous years. The students believed they had gained a better understanding
of formal proofs. They credited us for being patient and for the interactive devel-
opment of solutions in the tutorials. In some cases, even in the first half, students
complained about missing mathematical skills on their own part. The mid-term
test received, in general, a positive review. However, the students noted they
had almost no time for preparing themselves for this test.

The overall evaluation of the tutorials and the lecture was much better than
in previous years.

Changes in Summer 2017. We kept the spiral approach.—Recall that in this
semester the first half (reduced form) was not only compulsory for BIS students,
but also for 2A students.

Prior to this semester the LiCS course had been taught in the fourth and
the ToC course in the fifth semester of the CS bachelor’s programme. In 2017
the two courses switched their places, calling for changes, because the part of
ToC on complexity theory had been heavily centered around satisfiability in
propositional logic (Sat), a problem discussed in depth in LiCS.

So in this semester in ToC we gave (only) a brief introduction into satsfi-
ability and reduced the part on complexity theory. We skipped several of the
logic-related algorithmic problems, for instance, the quantified boolean formula
problem (QBF).
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Fig. 3. Tableaux used in
Sat proof

Proving NP-completeness of Sat—an essential part
of the second half of the course—now was treated on a
rather informal level, by presenting only the tableaux
idea as depicted in Fig. 3 (see [13]), but not going into
details of the proof. A positive effect of this was that
we had some more time to go into details of other top-
ics: we introduced unbounded grammars as a formalism
equivalent to Turing machines.

The tutorials underwent a major reorganization: we
offered two four-hour slots of supervised learning time
(SLT). The students worked in small groups of two to four people. They mainly
discussed the problems from their homework exercises, but also general problems
occurring within the course. A highly qualified doctoral student guided the small
groups individually. The main advantage of this tutorial style is the individual
assistance by a qualified tutor. In a discussion with a small group, the tutor
can easily adjust to the level of expertise of individual members of the group.
A drawback of this style is that it lacks open discussions (which are suitable for
general questions) and concrete instruction.

Changes in Summer 2018. As a reaction to the drawback just mentioned, we
reintroduced a third tutorial following the traditional style: guided by a qualified
doctoral student, the participants developed solutions to difficult problems in
class. This tutorial had, in fact, a positive impact: the quality of the solutions to
homework exercises turned in by students increased. In general, the feedback to
the overall tutorial scheme in this semester was very positive: we did not receive
any negative feedback.

Changes in Summer 2019. In the current semester, the lecture is the same.
We still have not found a solution to the problem that propositional and pred-
icate logic are treated on an informal level. The homework exercises are now
augmented by programming exercises where students are asked to implement
techniques and structures introduced in the lecture (e.g., a deterministic finite-
state automaton, a decision procedure whether a context-free language accepts
a given word, or a Turing machine). Working practically with simple structures
such as DFAs is, from our point of view, the best way to get into the more com-
plex details of formal software verification. In addition, implementing an abstract
concept supports the understanding. The implementation is done in Python 3,
a script-based language, which is in general quite self-explanatory (see [1]). The
feedback, so far, has been positive.

4 Bridging the Gap

For the first time in winter 2017/18 the CS department of Kiel University offered
a master’s programme in English, open to students from all over the world,
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following the same pattern (and, in fact, according to the same examination
regulations) as the master’s programme offered in German.

As formal methods are part of the master’s programme, a solid expertise
in theory and logic is required and explains why in our bachelor’s programme
courses in theory of computation and logic in computer science are mandatory.

All of the students that applied to us were missing an adequate LiCS course
in their bachelor’s programmes and many of them were missing an adequate ToC
course, which meant we had to “bridge the gap” between actual qualification and
required qualification.

In what follows we describe in more detail the student body of the programme
and our way to bridge the gap.

4.1 Students

Criteria for Admission. The general rule of admission is that prospective
master students need to have obtained

(∗) a qualification which they would have obtained through our bachelor’s
programme.

In this sense, our master’s programme is consecutive.
Prospective students who are not fully qualified can still be admitted, pro-

vided that their gap corresponds to a workload of credits in ECTS of at most
30 and on the condition they catch up on the missing qualification within half a
year or a full year of enrollment. For details, see below.

From the general rule (∗), we derive the following concrete admission criteria.
The students need to have

∠ a bachelor’s degree in computer science or in a similar domain like computa-
tional engineering or computer and information systems,

∠ taken courses in mathematics worth at least 24 credits, and
∠ profound language skills in English (IELTS 6.0, TOEFL-ITP 550, or an

English proficiency letter by a university).

Countries of Origin. More than three quarters of our international students
originate from Pakistan and India; the remaining fourth is made up of students
from up to 18 different countries, see Fig. 1. The latter group of students is
heterogeneous with regard to their academic qualification and culture. In the
following, we refer to the students beginning in winter 2017, summer 2018, . . .
by Cohort I, II, . . . .

Additional Requirements—Opening the Gap. As stated above, we have
the option to admit students who are not fully qualified, under certain conditions.
As no international student that has applied to us was fully qualified (in the sense
of our regulations), we admitted partially qualified students. As these students
are required to obtain a full qualification within their first half year or their first
year, we speak of students with additional requirements (SWARs).
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Table 1. Countries of origins

Cohort Pakistan India Bangladesh Iran Nigeria Yemen Other

I 1 1 2

II 12 6 6

III 37 21 8 2 1 6

IV 45 22 12 5 2 2 9

As we wanted (and want) to support SWARs, we admitted only students that
were missing qualifications in LiCS, ToC, advanced programming (distributed
programming, functional programming, logic programming), and computer and
network security, because we did not have lecturers (nor examiners) for the other
subjects.

Since the number of applicants which fell under this rule increased over time,
see Table 2, we now only admit applicants with a missing qualification in LiCS
and AP only. The reason for the particular choice of LiCS and AP is that these
subjects are key ingredients of the teaching profile of our department.

Prior Knowledge—Widening the Gap. While the three courses in math-
ematics in our bachelor’s curriculum provide all students with a thorough and
rigorous basis in mathematics, in particular, all students are skilled in finding
and carrying out mathematical proofs to a certain extent, our international stu-
dents are trained in applied or engineering mathematics. Some of them may be
able to phrase a mathematical statement like the Pumping Lemma for regular
languages and apply it, but none of them can give a proof of it; some of them
know how to construct a finite-state automaton for a given regular language,
but none of them know what it means to prove that the automaton constructed
is correct, let alone to come up with a proof themselves.

Even though we only admit students with profound language skills in English,
not all international students speak and understand English sufficiently well for
following lectures, participating actively in class room exercises, or taking an
oral exam. In general, our international students have difficulties with abstract
thinking.

Table 2. Number of applications and admissions

Semester Applicants Admissions Obligations in

ToC LiCS AP

Winter 2017/18 65 52 3 6 6

Summer 2018 113 85 9 21 26

Winter 2018/19 221 183 21 59 73

Summer 2019 347 136 0 132 134
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Table 3. Teaching approaches over time

Cohort

I II III IV

First semester LICS
· self-studies
· oral exam

ToC
· lecture
· homework
· oral exam

LiCS/ToC

· lecture
· homework
· 4 written exams
· HtP

LiCS/ToC

· lecture
· homework
· 4 written exams
· HtP
· tutorial

Second Semester ToC
· lecture
· homework
· oral exam

LiCS (ToC)

· lecture
· homework
· 4 written exams
· HtP

Learning Environment. First of all, the majority of our international students
need to rebuild an attitude towards learning in an academic environment, as they
have been employed in the job market for a couple of years when they start their
master’s studies with us. (This is in sharp contrast to our German students.) In
addition, due to a problematic housing situation (in all over Germany), it takes
most of our international students a couple of months to find a place to stay
for longer. This makes their first steps even more difficult. It is, however, worth
noticing that at Kiel university there are well-organized Pakistani and Indian
communities welcoming and supporting new students upon arrival, whereas this
is, more or less, not the case for other countries.

4.2 Teaching Schemes for Bridging the Gap

It is important to understand that our regular teaching is quite regulated. How-
ever, how we support SWARs to obtain a full qualification and verify they have
been successful, is essentially unregulated: the department can install own rules.

We started with a teaching scheme we thought was reasonable and changed
the scheme over time according to the experiences we gathered, but also adjusted
it to the resources available to us. In general, the level of support increased
steadily.

In the following, we outline our schemes, see also Table 3.

Winter 2017/18. Cohort I, which started in winter 2017/18, was aligned to the
study programme of the German students: LiCS in winter and ToC in summer.
This meant Cohort I had one year time to fulfill their obligations: LiCS in the
first semester; ToC in the second semester.

For LiCS, we offered a weekly tutorial of two hours. The students were
expected to prepare a section from [12] through self-studying for the tutorial.
During the tutorial, first the section was discussed. Then the students were given
the opportunity to work on a set of problems and discuss these problems.
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The active participation in this tutorial was poor; only a few students showed
up. It was almost impossible for the students to solve the problems given to them.
Interestingly, it was almost impossible for them to describe the difficulties they
encountered when trying to solve the problems.

In February, at the end of the semester, the students had to pass oral exams of
30 min. The questions (if understood at all) were answered only very vaguely and
not with the precision one would expect for a mathematically rigorous course.

We concluded that self-studies with weekly discussions are not sufficient for
learning LiCS for students lacking abstract thinking and appropriate mathemat-
ical skills. This led to minor changes for the summer 2018, when the same cohort,
together with the new one, Cohort II, was supposed to take ToC.

Summer 2018. Cohort II, just as Cohort I, was given one year to clear their
obligations: in summer 2018, they were supposed to take ToC; in the following
winter, they were supposed to take LiCS (and, potentially, repeat ToC if they
had failed it in their first attempt).

In contrast to the previous semester we offered a lecture of two hours once
a week based on [8], i.e. no self-studies anymore, but a lecture and an accompa-
nying textbook. In addition, the students were given homework exercises with
a processing time of one week. Their solutions were corrected very carefully:
the students were given hints to what was wrong and advice on how they could
improve. Moreover, the students were provided with sample solutions.

While the number of students who worked on the assignments dropped as
the semester went on (we have the same experience with the German students),
the students participated actively and continuously in the lecture.

The solutions submitted by the students reflected our observations from the
previous semester: as long as the problems were very similar to the examples from
the lecture and did not involve proofs, the results were fine; but the students were
neither able to phrase a decent proof nor to transfer what they had learnt to new
situations. Even though the absolute results of the students were better during
the semester, only half of the students passed the oral exam at the end of the
semester in July. To be very clear, the reason was that they had no experience
on how to work mathematically rigorously.

Winter 2018/19. Since winter 2018/19 we have offered, in each semester, a
LiCS and (!) a ToC course. This means, in particular, that from Cohort III
onward each cohort has only one semester to clear their obligations (which
explains the two empty entries in Table 3). There were two reasons for this
change: first, this way we can handle the increased number of students better;
second, the students get an earlier feedback whether they are allowed to pursue
their master’s studies.

In addition, we changed our format of examination drastically. None of the
students of Cohorts I and II had had an oral exam in their home countries. So we
switched to written exams. Following the frequent test paradigm, see [10], the
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students had to pass three out of four one-hour long exams, with two attempts
at each exam. The exams were spread over the entire semester, see Table 4.

Table 4. Examination schedule during a semester where Ex a.b represents the bth

attempt of the ath exam.

Date 1 Date 2 Date 3 Date 4 Date 5

Ex 1.1 Ex 2.1 Ex 3.1 Ex 4.1

Ex 1.2 Ex 2.2 Ex 3.2 Ex 4.2

In practice, we deviated from the scheme on one occasion: the exam on date 5
was oral, because only four students took the exams.

The teaching remained the same as in the previous semester: two hours lec-
ture per week and corrected homework exercises supplemented by sample solu-
tions. The homework was designed in the same way as the exams. Each assign-
ment consisted of four parts:

1. true/false part: determine whether given statements are true or false.
2. definition part: rephrase definitions of formal notions
3. thinking part: solve small problems, in particular, prove statements on your

own
4. reversed learning part (only in homework): create one (!) true/false-question

on your own

The definition part was crucial, after we had noticed that too many students
had only a rough and superficial idea of the formal notions in the lecture and
thus could not work properly with them. In particular, they had not been able
to solve problems from the first and the third part. We experienced that now
the students performed better at the first and the third part.

The fourth part gave us a relaxed way to start the next lecture with a game:
each student passes on his/her question to some other student; this students
tries to answers the question on the same sheet of paper and passes it on to
a third student; this third student reads the question aloud and has to decide
whether the answer is correct. See [3].

The students seemed to spend a lot of time preparing a question for the
game that would be answered incorrectly. Although the game was meant to be
anonymous the authors of the questions often revealed their identity as they were
eager to communicate what they had intended with their question. It is worth
noting that the students who created the question had a good understanding of
the respective issue. An incentive for participating in the game is that three out
of the ten questions in the exams are former questions by the students.

We also changed the textbook to [7]. Our previous choice, [12], was based
on the good experience we had with the German version of [11]. The English
translation turned out not to work as well.
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The final change in our teaching scheme was a new small lecture: we offered
a lecture How to Prove? Mathematical Techniques for Proving (HtP) based on
our observations with the first two cohorts. The students had problems with
abstract thinking and basic notions of mathematics such as sets and functions,
as well as basic proof techniques. Consequently, the lecture covered exactly this,
and, in addition, it went into details of problems discovered in the LiCS and the
ToC course.

Summer 2019. Due to more resources we are able to offer an additional tutorial
of 90 min per week. Based on the good experience with SLT (see Sect. 3) we
decided to offer this tutorial as SLT. Until the writing of this paper, this tutorial
has had a high number of participants and received good feedback.

5 Quantitative Data and Evaluation

5.1 Managing Heterogeneity

In Table 5, the number of participants and the pass rates for three consecutive
ToC courses are displayed, along with the changes to the respective teaching
approach. By comparison, the pass rates for prior ToC courses—the students
taking these courses formed a homogeneous group—were between 40 and 50 %.
The bottom line is that our current approach to managing heterogeneity yields
better results than the traditional one obtained with a homogeneous group.

Obviously, the drop-out rates are unsatisfactory. This is something we have
not been able to investigate so far.

Table 5. Pass rates for ToC

Semester Change Students
registered

Exams taken Success Pass rate %

Winter 16/17 Spiral approach 115 100 28 28

Summer 17 Supervised
learning group
etc.

180 47 25 53

Summer 18 Additional
tutorial

218 77 51 66

5.2 Bridging the Gap

In Cohort I, which started in winter 2017, three students had ToC and 6 students
had LiCS as an additional requirement. One student passed the ToC exam and
three passed the LiCS exam (33% ToC, 50% LiCS). Note that LiCS was offered in
winter 2017, whereas ToC was offered in summer 2018, which means the formats
were different.
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In Cohort II, which started in summer 2018, nine students had ToC and 21
students had LiCS as an additional requirement. The rate of passing increased
significantly after we had replaced self-studies by a lecture: five students passed
the ToC exams and 14 students passed the LiCS exams (56% ToC, 67% LiCS).
Note that ToC was offered in summer 2018, whereas LiCS was offered in winter
2018, which, again, means the formats were different.

Frequent testing, introduced in winter 2018, had only a major impact on ToC:
15 out of 21 students passed ToC and 41 out of 59 students passed LiCS (71%
ToC, 69% LiCS). Notice that these students had twice the workload compared
to the previous cohorts.

See also Table 6; recall the different teaching schedules summed up in Table 3.

Table 6. Success rates for pre-master courses

Cohort Pass rate ToC Pass rate LiCS

I 33% 50%

II 56% 67%

III 69% 71%

The first observation is that there is a steady increase in the pass rates.
The second observation is that frequent testing had a much higher impact

for ToC than for LiCS. This may be interpreted as follows. ToC requires much
more a continuous work throughout the semester.

The third observation is that, in general, the results for ToC are worse than
for LiCS, even though the groups were almost identical, the lecturer was the
same, etc. We offer two potential explanations: ToC relies on more mathematical
tools (feedback of the students); ToC intertwines mathematics and computer
science much more than LiCS.

All students who participated in the voluntary lecture HtP passed the exams
in the first try.

6 Conclusion

Laying the foundations for teaching formal methods is a complex and tedious
task. The experiences we have gathered show:

1. Frequent testing increases the pass rates, even when a tight schedule with
overlapping exams (second attempt on the same date as the next exam) is
used.

2. Supervised learning time is especially suited to teach a mathematically rigor-
ous subject (early feedback and small-step guidance necessary).

3. A spiral approach (here used in the context of heterogeneity) can still be
applied when used within a short period of time (one semester), and helps to
save resources. In addition, it is positively received by the students!
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The experience we have gathered so far makes us change (improve!) our
teaching scheme for the international students again for the cohort starting this
coming winter: we will introduce a spiral approach in the pre-master course. More
precisely, we will offer one combined course—Logic and Theoretical Foundations
of Computer Science—with a spiral curriculum. We will start with propositional
logic (logic), go on to a part on simple mathematical proofs and proof techniques
(math) and on natural proofs (logic), to automata and the Chomsky hierarchy
(theory of computation), to predicate logic (logic), to more complex mathemati-
cal proofs (math), and, finally, to complexity theory (theory of computation).—
This should lay the right foundation for learning formal methods in the master’s
programme.
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Abstract. Much has been written about the challenges of teaching dis-
crete mathematics and formal methods. In this paper we discuss the
experiences of delivering a course that serves as an introduction to both.
The one-week intensive course, Software Engineering Mathematics, is
delivered as part of the University of Oxford’s Software Engineering Pro-
gramme to groups of professional software and security engineers study-
ing for master’s degrees on a part-time basis. We describe how a change
in the course’s emphasis—involving a shift towards a focus on modelling-
based group exercises—has given rise to some pleasing results.

1 Introduction

Much has been written about the difficulties of teaching discrete mathematics
and formal methods, with problems associated with ‘getting’ abstraction, student
motivation and what might be termed ‘math-phobia’ being recurring themes.
Proposed solutions include the utilisation of a ‘stealth-like’ approach [19] (“we
sneak up on our blissfully unaware students, slip a dose of formal methods into
their coursework and development environments, then with a thunderclap dis-
appear in a puff of smoke” [19]), a clear justification [29], a considered approach
to links with the rest of the curriculum [30], and a focus on modelling [4].

Our focus in this paper is a one-week intensive course, Software Engineering
Mathematics, which is delivered as part of the University of Oxford’s Software
Engineering Programme1 to groups of professional software and security engi-
neers who are studying for master’s degrees on a part-time basis. The course
aims to do two things: introduce students to formal methods and teach them
core discrete mathematics concepts (in a fashion similar to, for example, the
courses described by Warford [39] and Jaume and Laurent [18]).

Teaching part-time students who are predominantly drawn from the software
engineering industry has its advantages when compared to teaching full-time

1 http://www.cs.ox.ac.uk/softeng/.
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undergraduate students—such students bring ‘real-world’ experience and prob-
lems to the classroom, which helps those delivering courses to make connections
between theory and practice, and to demonstrate potential benefits. In addition,
such students tend to be very motivated—the financial and time investments
required are, after all, significant. (The overall course costs are approximately
£25K. In addition, the students are required to spend 11 weeks in Oxford, and
commit several hundreds of hours to assignments and project work.) On the
other hand, there are complexities associated with teaching such students: the
diversity of prior academic and industrial experience, as well as a diversity of
expectations, can make for an extremely heterogeneous mix of participants. A
further challenge involves demonstrating that an appropriate application of the
techniques being taught is relevant to the students’ everyday activity—and, as
such, justifies the aforementioned investments.

Of course, the difficulty of demonstrating the ‘pay-off’ of many Computer
Science and Software Engineering tools and techniques is a challenge that has
been recognised widely. For example, to quote Finkelstein [10]:

“Software engineering is, in large part, about scale. Illuminating the
essence of a software engineering technique and motivating the students
with convincing arguments for its value, without giving examples which
are so large as to submerge the student in extraneous detail is extremely
difficult.” [10]

The philosophy of the course under consideration in this paper is sympathetic
to the view that an ‘appropriate’ and ‘within context’ application of formal
and mathematical techniques is essential to demonstrating their potential value
to professional software engineers. In many ways, this is consistent with the
argument put forward by Woodcock et al. [42]:

“One of the main difficulties in engineering is the cost-effective choice of
what to do and where. No engineer gives the same attention to all the
rivets: those below the waterline are singled out; similarly, a formalism
need not be applied in full depth to all components of an entire product
and through all stages of their development, and that is what we see in
practice.” [42]

In this paper, we show how a change to the emphasis of our Software
Engineering Mathematics course—involving a shift towards a heavy focus on
modelling-based group exercises—has given rise to some positive results. Our
aims have much in common with those of Larsen et al. who, in [23], describe
“experiences developing and delivering courses that endeavour to equip students
with generic skills of abstraction and rigorous analysis by means of lightweight
formal methods using VDM and its support tools.” Further, our journey has
much in common with that described by Cowling [3]:

“The starting point for this experience was the approach of teaching Z as a
formal specification method, as presented in the standard textbooks. The
problem that was soon found with this approach was that these texts did
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not suggest any method for constructing specifications, but instead focused
on the various mathematical constructions that could be employed in the
specifications. This focus left the students feeling a bit like the audience at
a magic show, asking the question ‘where did that bit of the specification
come from’, meaning that they were gaining little understanding of how
they could actually use such methods themselves.” [3]

In Sect. 2 we briefly consider related work. Then, in Sect. 3, we discuss the
context of the contribution. In Sect. 4, we reflect upon how experience led us
to the restructured version of the course that we now use. In Sect. 5 we present
some indicative (and caveated) results. Finally, we conclude in Sect. 6.

2 Related Work

Our focus is a course that exists at the academic–industry interface. This is an
area covered by a number of authors, including Mead et al. [26], Fraser et al. [11],
Vaughn and Carver [38], Subrahmanyam [36], and Almi et al. [1]. In addition,
in a series of papers [13,14,28], Taguchi and colleagues discuss their experiences
of educating Software Engineering professionals in Japan.

The importance of abstraction and modelling2 to the practising software engi-
neeri is recognised widely (“We all know that the only mental tool by means of
which a very finite piece of reasoning can cover a myriad cases is called ‘abstrac-
tion’; as a result the effective exploitation of his powers of abstraction must be
regarded as one of the most vital activities of a competent programmer” [8]; see
also [7] and [40]); the difficulties of teaching abstraction and modelling is also
acknowledged by many [16,20,22]. To quote Fincher and Utting [9]:

“we know that abstraction is a very difficult step to take . . . that learners
find it difficult to grasp the principles embodied in a single example (or a
series of single examples) then isolate it as the common referent they all
share (that is, abstract from the details to the principle) and apply that
principle in novel situations.” [9]

Addressing these challenges is at the heart of this paper.
The course under consideration in this paper leverages the mathematical

language of Z [35,41], and our contribution discusses the value of case studies. It
is worth recognising that there is a rich history of Z case studies: running from
the early contributions of the likes of Hayes, Morgan and Sufrin [12,27], through
Jacky’s The Way of Z [17], to more recent contributions such as [37].

3 Context

We now consider the context of the course. We start by discussing the Software
Engineering Programme at the University of Oxford and then turn our attention
to the Software Engineering Mathematics course.
2 We would argue that, in this context, at least, the two go hand-in-hand—a ‘comple-

mentary partnership’ in the words of Kramer [21].
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3.1 The Software Engineering Programme

The Software Engineering Programme at the University of Oxford, which was
established in the early 1980s, built on the University Oxford’s experience in
delivering one-week intensive courses to professional software engineers in, for
example, formal methods such as Z [35] and CSP [31]. An ‘integrated programme’
of six one-week modules was established in 1993; the Software Engineering Pro-
gramme now offers one-week courses in over 40 topics. The programme also
offers students the opportunity to study for MScs in Software Engineering and
Software and Systems Security on a part-time basis.

At present, approximately 300 students are registered with the Software Engi-
neering Programme. Students are drawn from a wide range of backgrounds,
including large IT firms, government organisations, small companies, and the
financial sector. The programme’s requirements for entry are flexible, taking
into account prior industrial experience, as well as academic background.

The wide diversity of the student body gives rise to a number of challenges:
few assumptions can be made about the nature of previous industrial and aca-
demic experience, meaning that the complexities of teaching modelling tech-
niques are slightly different to those associated with teaching cohorts of full-time
student that are (typically) more homogeneous. Some of those complexities are
discussed in [33], and it is worth reprising those arguments here:

“The typical student on the Software Engineering Programme 20 years ago
was a relatively experienced software engineer, who had been based in the
industry for at least five years. This meant that the prior knowledge that
one might use in delivering courses was relatively uniform. As an exam-
ple, when teaching discrete mathematics, one might use a binary tree as
a motivating example when discussing recursive functions. Unfortunately,
this is no longer true: it is not unusual to be met by blank faces (by even
those with a first degree in an IT-related subject) when mentioning binary
trees. This is for (at least) two reasons. First, the level of abstraction
has been raised: developers don’t have to define their own tree-like struc-
tures as libraries exist that can be leveraged. Second, the student body
of the Software Engineering Programme now reflects the healthy hetero-
geneity that is the workforce in software engineering, security, and related
industries.” [33]

Various aspects of the Programme have been written about previously
[6,33,34]. In addition, in [25], the authors considered the relationship between
relational database design and the language of Z and explored how the rela-
tionship between the two paradigms is exploited within the teaching of the Pro-
gramme. Finally, the use of a model-driven approach to support the Programme’s
information system (amongst others) is described in [5].

3.2 Courses and Assignments

To gain a Postgraduate Certificate, a student needs to attend and submit an
assignment for four courses (averaging at least 50% across all assignments, with
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no more than one scoring below 45%); to gain a Postgraduate Diploma, atten-
dance and subsequent submission for eight courses is required (averaging at least
50% across all assignments, with no more than two scoring below 45%); for an
MSc, the requirement is 10 (averaging at least 50% across all assignments, with
no more than two scoring below 45%), together with the successful completion
of a dissertation.

Each course consists of: a period of preparatory study (involving, for exam-
ple, the reading of one or more research papers or book chapters and/or a small
exercise); an intensive teaching week; and a written assignment. Each teaching
week involves some combination of lectures and exercise/practical sessions. The
relatively small class sizes of up to 18 students typically lead to much interac-
tion between students and instructors. The take-home assignments—which are
undertaken over a period of six weeks—allow students to reflect upon and apply
the techniques taught during the week.

There are good reasons for this choice of mode of assessment. First, our
students often travel from all over the world to attend our courses; to expect
them to travel back to sit examinations would be impractical. More importantly,
a six-week period in which to undertake an assignment provides students with
an opportunity to properly reflect upon the material that was delivered during
the one-week course.

3.3 The Software Engineering Mathematics Course

The course under consideration—Software Engineering Mathematics—attempts
to do two things. First, it attempts to teach students key aspects of discrete
mathematics—with the mathematical language of Z being the vehicle of delivery.
Second, it aims to show how formal models can be used to aid comprehension
and communication.

A ‘light touch approach’ (as per, for example, the philosophy of [15]) is advo-
cated3, and a realistic view of the success of the impact of formal methods in
general (as reflected by, for example, [24,30]) is presented. The course text is
Using Z [41] by Woodcock and Davies; Discrete Mathematics By Example [32]
is used as a supplementary text for additional examples and exercises.

Anecdotal evidence suggests that the course is seen as ‘difficult’ by many stu-
dents: the combination of new concepts and techniques, an unfamiliar language,
and the intense pace of a week-long course makes for a challenging experience for
some students. In addition, this course is a particular victim of the disconnect
between theory and practice—while the techniques taught (thinking abstractly
and precisely) are clearly beneficial in the long term, this is not always immedi-
ately obvious to the students.

Students gain a passing grade in this subject (50%+) if they can demonstrate
that they can use the mathematical language of Z to build simple models; they

3 See [43] for a useful classification of ‘lightweight formal methods’. While Z does not
appear in the discussion, we would argue that it’s ideally suited to be used as a
‘lightweight’ method.
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gain a grade in the distinction range (70%+) if they can demonstrate that they
can convincingly undertake deductive and inductive proofs.

4 The Approach

We now give consideration to the changes in our approach to delivering the
Software Engineering Mathematics course.

4.1 The Motivation for Change

As discussed in Sect. 3, the course text is Using Z by Woodcock and Davies [41].
Prior to the change in emphasis, the course’s timetable followed faithfully the
first 10 chapters of the book:

1. Introduction (Monday AM)
2. Propositional logic (Monday AM)
3. Predicate logic (Monday AM–Tuesday AM)
4. Equality and definite description (Tuesday PM)
5. Sets (Wednesday AM)
6. Definitions (Wednesday PM)
7. Relations (Thursday AM)
8. Functions (Thursday PM)
9. Sequences (Thursday PM–Friday AM)

10. Free types (Friday AM).

The timetable (and, relatedly, the textbook) gave rise to two main challenges
in delivering the content. First, natural deduction is at the forefront of Using
Z : natural deduction rules for conjunction, disjunction, etc. are presented at
the point at which the core logical concepts are introduced. To some students,
this presents a barrier to learning as the pace at which they learn the notions
of propositional and predicate logic is slowed due to a need to appreciate the
intricacies of natural deduction rules (and tactics). An additional consequence is
that natural deduction assumes greater importance in the minds of the students
than it perhaps deserves.

Second, while the timetable allowed for exercises that reinforced learning of
individual concepts, there wasn’t the scope to allow students to leverage the
techniques taught to actually build models: exercises simply reinforced the con-
cepts taught in the previous hour or two. Subsequently, there was evidence that,
when it came to the assignment, some students—having not had the experience
of building models during the week—had difficulty making the transition from
theory to practice.
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4.2 A Change in Emphasis

The substantial change made was to compress and redistribute material to ensure
that all of the material required to utilise the taught techniques in a meaningful
way and build models was taught by the end of Wednesday—leaving Thursday
clear for a whole day of case studies. (Friday morning was thereafter dedicated
to free types and structural induction).

The other important change (although less important in the context of this
paper) was to divorce the introduction to propositional and predicate logic
from the introduction to natural deduction. The resulting compressed timetable
looked as follows:

1. Introduction and propositional logic (Monday AM): Chapters 1 and 2 (minus
natural deduction)

2. Predicate logic, equality and definite description (Monday PM): Chapter 3
(minus natural deduction) and Chapter 4

3. Natural deduction (Tuesday AM): the remainder of Chapters 2 and 3
4. Sets and definitions (Tuesday PM–Wednesday AM): Chapters 5 and 6
5. Relations (Wednesday AM–Wednesday PM): Chapter 7
6. Functions and sequences (Wednesday PM): Chapters 8 and 9 (minus struc-

tural induction on sequences)
7. Modelling case studies (Thursday AM and PM)
8. Free types and structural induction (Friday AM): the remainder of Chapter 9

and Chapter 10.

4.3 Benefits and Challenges

The change gave rise to two significant benefits. First, the new structure has a
clear delineation between modelling and proof: proof techniques no longer ‘get
in the way’ when introducing new techniques. Second, the conceptually familiar
topic of sets appear significantly earlier in the week: on Tuesday afternoon, rather
than on Wednesday morning.

As well as benefits, the change gave rise to some challenges. The most signif-
icant challenge was that, in order to create the space to spend a whole day on
modelling exercises, the pace of the first three days necessarily had to be swift
in order to cover the material. Second, as there was deviation from the ‘natural
order’ of the course text, there had to be a degree of trust from the students
that the ‘postponed’ material would be covered in due course.

4.4 An Example

Dedicating a whole day to modelling case studies allows students to apply the
techniques that they have been taught. The students tackle the exercises in
groups of three or four, using whiteboards. If time allows, the students utilise
LATEX and the Fuzz type-checker.

An example case study is reproduced below.
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A TV recording system records television programmes to a hard-drive.
The hard-drive has the capacity to store up to 200 h of programming; each
programme may be at most 6 h in length.
When the viewer accesses the hard-drive, they are presented with a menu
presenting all of the shows currently stored. The details are:

– title;
– programme length; and
– whether or not the programme has been viewed.

You may assume the following types and abbreviations.

[Title]
Length == N

Viewed ::= yes | no
(We shall assume that the length of recordings is represented in terms of

minutes.)
(a) Complete the following axiomatic definition with appropriate con-

straint information (“the hard-drive has the capacity to store up to
200 h of programming; each programme may be at most 6 h in length”):

hd : seq (Title × Length × Viewed)

...

The sequence hd captures information pertaining to programmes
stored on the hard-drive. (You should assume, for now, the existence of
a function cumulative total ∈ seq (Title×Length×Viewed) → Length.
This function will be defined in part (d).)

(b) Define, via set comprehension, the collection of titles of programmes
(which appear in hd) that are over two hours in length.

(c) Define functions viewed and not viewed that take sequences of type
Title×Length×Viewed , and return the sequences with the not viewed
and viewed programmes removed respectively. So,

viewed 〈(t1, 3, yes), (t2, 4, yes), (t1, 5,no)〉 =
〈(t1, 3, yes), (t2, 4, yes)〉

not viewed 〈(t1, 3, yes), (t2, 4, yes), (t1, 5,no)〉 =
〈(t1, 5,no)〉

(d) Define a recursive function, cumulative total , that takes sequences
of type Title × Length ×Viewed and returns the cumulative length of
the programmes recorded. So,

cumulative total 〈(t1, 3, yes), (t2, 4, yes), (t1, 5,no)〉 = 12

(e) Give a µ-expression for the title of the longest programme that appears
in hd .
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(f) Define a function that maps programme titles (which appear in hd) to
cumulative lengths, i.e.,

f 〈(t1, 3, yes), (t2, 4, yes), (t1, 5,no)〉 = {t1 �→ 8, t2 �→ 4}

(g) Define a function that takes a sequence of programmes and removes
the longest viewed one, i.e.,

g 〈(t1, 3, yes), (t2, 4, yes), (t1, 5,no)〉 = 〈(t1, 3, yes), (t1, 5,no)〉

(h) Define a function that takes an element of seq (Title×Length×Viewed)
and sorts that sequence in terms of programme length—with the
longest programme appearing first. So,

s 〈(t1, 3, yes), (t2, 4, yes), (t1, 5,no)〉 =
〈(t1, 5,no), (t2, 4, yes), (t1, 3, yes)〉

Typically, such an exercise—which would take an expert no more than 20 min
or so to complete—will take groups of three or four between two and three hours.

5 Indicative Results

We now consider some indicative results regarding the success of the initiative.
We recognise that there are caveats here: the class sizes are small; the groups
are heterogeneous in their make up; there is an element of subjectivity in any
assessment process. However, we are able to leverage data spanning several years.

There have been 10 instances of the course using the approach described
in this paper; to compare, we also consider the final 10 instances of the course
using the former approach. We consider first student performance (in terms of
examination results) and then consider student feedback.

5.1 Student Performance

As already discussed, students are assessed by way of a take-home assignment
that they have six weeks to complete.

The assessment criteria for the course are given below.

1. Propositional and predicate logic: have you understood the syntax and
semantics of propositional and predicate logic? can you write logical
statements? can you interpret logical statements? can you reason about
logical statements?

2. Equality and definitions: do you understand the notion of a type?
do you understand the different ways of introducing types, sets, and
identifiers into a formal document? do you understand the notion of
equality and its associated properties?
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3. Sets, relations, functions, and sequences: do you understand the for-
mal representations of these structures? can you define such structures
according to some property? can you apply the operators associated
with these structures? can you interpret a statement defined in terms
of these operators? can you reason about such statements? can you
use these structures to describe systems and properties?

4. Free types: can you define a free type? have you understood the prin-
ciple of recursion? can you construct an inductive proof?

Table 1. Student performance

Date Submissions Min. Max. Mean Median % 50+ % 70+

2010 (iteration 1) 16 10 85 59 62.5 81.25 37.5

2010 (iteration 2) 13 35 95 61 55 84.6 23.1

2011 (iteration 1) 17 20 85 56 55 64.7 29.4

2011 (iteration 2) 12 35 80 58 57.5 83.3 16.7

2012 (iteration 1) 15 30 85 64 60 86.7 40

2012 (iteration 2) 10 20 90 61 60 90.0 30.0

2012 (iteration 3) 10 30 80 55 56.5 60.0 30.0

2013 (iteration 1) 13 20 90 63 65 84.6 38.5

2013 (iteration 2) 11 50 80 62 58 100.0 36.4

2014 (iteration 1) 13 33 94 65 60 92.3 15.4

2014 (iteration 2) 14 40 95 67 67 78.6 42.9

2015 (iteration 1) 3 55 63 60 63 100.0 0.0

2015 (iteration 2) 19 10 88 61 64 89.5 31.6

2015 (iteration 3) 16 42 80 63 66.5 81.3 43.8

2016 (iteration 1) 5 35 74 55 62 60.0 20.0

2016 (iteration 2) 15 40 88 67 67 86.7 46.7

2017 (iteration 1) 12 35 83 63 65 83.3 41.7

2017 (iteration 2) 16 35 73 58 61 81.3 12.5

2018 (iteration 1) 14 45 95 72 69 92.9 50.0

2018 (iteration 2) 14 55 90 72 71.5 100.0 50.0

Pre-change 130 10 95 60 60 82.3 35.4

Post-change 128 10 95 64 65 85.9 37.5

Assignments in this subject typically consist of 10 questions and follow a
similar structure each time: Question 1 is typically concerned with truth tables;
Question 2 is typically concerned with equivalence proofs; Question 3 typically
pertains to proof trees; Questions 4–8 leverage a scenario, asking the students to
write definitions and constraints, and then define sets, relations and functions.
Such questions are on a par (in terms of style and difficulty) with the case studies
discussed in Sect. 4. Questions 9 and 10 typically involve free type definitions and
proof by induction. The structure of the assignments was consistent across the
course instances considered in this paper.
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Recall from Sect. 3 that students pass an assignment in this subject (scoring
50%+) if they can use the mathematical language of Z to build simple models;
they gain a grade in the distinction range (70%) if they can demonstrate that
they can convincingly undertake deductive and inductive proofs.

Table 1 illustrates examination results for 20 iterations of the course: the
first 10 were delivered ‘pre-change’; the last 10 were delivered ‘post-change’.
The number of submissions, lowest score, highest score, mean score and median
score are given for each instance. The percentage of submissions scoring 50+ and
70+ respectively are also given.

The bottom rows aggregate the respective scores. Curiously, the lowest and
highest grades do not differ at all. However, the mean and median scores have
improved significantly; there are slight increases in the percentages scoring 50+
and 70+.

There is one final measure that can be utilised: non-submission of assignments
by students who have attended the course. This rate has decreased slightly: from
21.2% (pre-change) to 20.0% (post-change).

There is, beyond the raw facts, little that we can conclude here. However,
the overall increase in grades is clearly a pleasing result and perhaps indicates
that, even if practice does not ‘make perfect’, it does ‘make better’.

Table 2. Student feedback

All courses Pre-change Post-change Difference

Statement 1 4.6 4.73 4.77 0.85%

Statement 2 4.66 4.68 4.82 2.99%

Statement 3 4.41 4.38 4.59 4.79%

Statement 4 4.77 4.83 4.94 2.28%

Statement 5 4.46 4.64 4.7 1.29%

Statement 6 4.77 4.89 4.91 0.41%

Statement 7 4.75 4.84 4.85 0.21%

Statement 8 4.55 4.58 4.75 3.71%

Statement 9 4.43 4.13 4.18 1.21%

Statement 10 4.42 4.45 4.64 4.27%

Statement 11 4.44 4.38 4.61 5.25%

Statement 12 4.58 4.56 4.7 3.07%

Overall 4.57 4.59 4.71 2.61%

5.2 Feedback

Following each course, students are invited to complete (anonymously) a ques-
tionnaire. The statements (scored in the range 1–5) are as follows.
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1. The lectures added significant value to the course material
2. The lecturer took the time needed to explain the key concepts
3. The lectures included valuable contributions from the other students in the

class
4. The lecturer was helpful and ready to answer questions
5. The exercises helped me to understand the topics covered in the lectures
6. The lecturer or tutor was knowledgeable and encouraging
7. Help was available—from the lecturer or tutor—when I needed it
8. Issues raised were adequately addressed—through model solutions or

discussion
9. I think that the techniques taught during the course will be valuable to me

in the future
10. The course was well constructed: the various components worked well

together
11. The course material was appropriate, and of good quality
12. The course administration was efficient and effective.

While the final question is not of direct relevance to this paper, we include it
here for the sake of completeness.

In Table 2, we compare the scores per-question for pre-change and post-
change iterations. We also compare the scores with the overall scores across
all courses between mid-February 2010 (when data was first collected in this
fashion) and mid-February 2019—giving rise to a total of 6264 completed ques-
tionnaires.

When comparing pre-change and post-change courses, there is a positive
difference in feedback in all questions. The most significant differences can be
seen for Statements 3 (“The lectures included valuable contributions from the
other students in the class”), 8 (“Issues raised were adequately addressed—
through model solutions or discussion”), 10 (“The course was well constructed:
the various components worked well together”) and 11 (“The course material
was appropriate, and of good quality”).

Post-change, the course outperforms the average feedback with respect to all
statements, with one exception. (Pre-change, it was below the average on three
others: “The lectures included valuable contributions from the other students in
the class”, “The course material was appropriate, and of good quality” and “The
course administration was efficient and effective”.) And it is this question—“I
think that the techniques taught during the course will be valuable to me in the
future”—which, after all, motivated the changes (and, indeed, this contribution).
While the slight increase is pleasing, the feedback does, perhaps, show that there
is still some way to go in terms of demonstrating relevance to practitioners.

6 Conclusions

In this paper we have described how we have changed the emphasis of a course
that introduces part-time students typically employed in the software engineering
industry to introductory topics from discrete mathematics and formal methods.



208 A. Simpson

While our arguments for such an emphasis are not new (see, for example, [2],
in which Barr advocates helping the situation by requiring students to model
real-world implementations), we have been able to demonstrate how, via close
to a decade’s worth of data, the changes have given rise to some pleasing results.

We recognise that our experiences are somewhat unique: the nature of the
Software Engineering Programme (being targeted at professional software engi-
neers) is very different to an undergraduate programme in Computer Science;
the make-up of the class is more heterogeneous; the nature of the teaching (in
intensive one-week blocks) is different from the typical mode of delivery; and
the nature of assessment differs from what most full-time students will be used
to. However, we do think that some of the challenges faced will be familiar to
many, and, indeed, are part of the ongoing discourse with respect to the value
and applicability of modelling techniques.

One clear trend over the 25+ years of the Programme’s existence is the
shift from companies funding their employees’ professional development to few
employers now being prepared to provide such support. As it is now typical for
students to ‘pay their own way’, there is an increasing need to provide evidence
of practical value. To this end, and reflecting upon the results of Sect. 5, future
changes will be driven by the statement “I think that the techniques taught
during the course will be valuable to me in the future”.

Acknowledgements. The author would like to thank the anonymous reviewers for
their helpful and constructive comments.
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4. Cristiá, M.: Why, how and what should be taught about formal methods? In:
Bollin, A., Margaria, T., Perseil, I. (eds.) Proceedings of the 1st Workshop on
Formal Methods in Software Engineering Education and Training (FMSEE&T
2015). CEUR Workshop Proceedings, vol. 1385 (2015)

5. Davies, J.W.M., Gibbons, J., Welch, J., Crichton, E.: Model-driven engineering
of information systems: 10 years and 1000 versions. Sci. Comput. Program. 89,
88–104 (2014)

6. Davies, J., Simpson, A., Martin, A.: Teaching formal methods in context. In: Dean,
C.N., Boute, R.T. (eds.) TFM 2004. LNCS, vol. 3294, pp. 185–202. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30472-2 12

https://doi.org/10.1007/978-3-540-30472-2_12


Teaching Introductory Formal Methods and Discrete Mathematics 209

7. Devlin, K.: Why universities require computer science students to take math. Com-
mun. ACM 46(9), 37–39 (2003)

8. Dijkstra, E.W.: The humble programmer. Commun. ACM 15(10), 859–866 (1972)
9. Fincher, S., Utting, I.: Pedagogical patterns: their place in the genre. In: Caspersen,

M.E., Joyce, D.T., Goelman, D., Utting, I. (eds.) Proceedings of the 7th Annual
SIGCSE Conference on Innovation and Technology in Computer Science Educa-
tion, (ITiCSE 2002), pp. 199–202. ACM, June 2002

10. Finkelstein, A.: Software engineering education: a place in the sun? In: Proceedings
of the 16th International Conference on Software Engineering (ICSE 1994), pp.
358–359. IEEE Computer Society Press (1994)

11. Fraser, S., et al.: Meeting the challenge of software engineering education for work-
ing professionals in the 21st century. In: Proceedings of the 18th Annual SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA 2003), pp. 262–264 (2003)

12. Hayes, I.J.: Specification Case Studies, 2nd edn. Prentice-Hall, Hertfordshire (1992)
13. Honiden, S., Tahara, Y., Yoshioka, N., Taguchi, K., Washizaki, H.: Top SE: edu-

cating superarchitects who can apply software engineering tools to practical devel-
opment in Japan. In: Proceedings of the 29th International Conference on Software
Engineering (ICSE 2007), pp. 708–718. IEEE Computer Society Press (2007)

14. Ishikawa, F., Taguchi, K., Yoshioka, N., Honiden, S.: What top-level software engi-
neers tackle after learning formal methods: experiences from the top SE project. In:
Gibbons, J., Oliveira, J.N. (eds.) TFM 2009. LNCS, vol. 5846, pp. 57–71. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04912-5 5

15. Jackson, D.: Lightweight formal methods. In: Oliveira, J.N., Zave, P. (eds.) FME
2001. LNCS, vol. 2021, pp. 1–1. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45251-6 1

16. Jackson, M.: Aspects of abstraction in software development. Softw. Syst. Model.
11(4), 495–511 (2012)

17. Jacky, J.: The Way of Z: Practical Programming With Formal Methods. Cambridge
University Press, Cambridge (1997)

18. Jaume, M., Laurent, T.: Teaching formal methods and discrete mathematics. In:
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Abstract. This paper summarises our experience in teaching Formal
Methods to Computer Science and Software Engineers students from var-
ious universities around the world, including the University of Madeira
in Portugal, the Pontificia Universidad Javeriana and the University of
The Andes in Colombia, Carnegie Mellon University (CMU) in the USA,
and Innopolis University (INNO) in Russia. We report challenges we have
faced during the past 10 to 15 years when teaching formal methods using
the Event B formalism, and describe how we have evolved the struc-
ture of our courses to respond to those challenges. We strive to help
students to build skills on Formal Methods that they can employ later
on in their future IT jobs in software Industry. Our goal is to promote the
wide use of Formal Methods by software Industry. We consider that this
goal cannot be achieved without first universities transferring to Indus-
try students with a strong background in Formal Methods and related
formal tools. Formal Methods are key to software development because
they are based on Discrete Mathematics which can be used to properly
reason about properties that the software one develops should have. We
have conducted two surveys among our students, the first one at CMU
and the second one at INNO, that we use here to document and justify
our decisions in terms of the course structure. The first survey is about
the use of Event B as main mathematical formalism, and the second
one is about the organisation of teams of students within the classroom
to work on software projects that use Event B as main mathematical
formalism. Our hope is that our work can be reused by other Faculty to
make their own decisions on course structure and content in the teaching
of their Formal Methods courses.

Keywords: Computer Science · Discrete Mathematics · Event B ·
Formal Methods · Software Engineering

1 Introduction

This paper summarises our experiences in designing and teaching an Event B
[1] master course on Formal Methods. The MSS (Models of Software Systems)
course is a Computer Science course lectured to Software Engineers students at
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Carnegie Mellon University (CMU) in Pittsburgh, USA, and at Innopolis Uni-
versity (INNO), Russia. Decisions made on course structure have been shaped
by our own previous experience in teaching Formal Methods from 2004 to 2015,
which includes giving various guest lectures to students of the Programming
Usable Interfaces (PUI) master course offered at CMU to HCI (Human Com-
puter Interaction) students in 2010. This is particularly important because HCI
students do not necessarily have a strong background in Logic and Discrete
Mathematics, which poses additional challenges to us. To our knowledge, that
was the first time that two, arguably, diverse topics, Formal Methods and HCI,
are combined into a single master course to formally develop Android apps.

The Models of Software Systems master course is part of the MSIT-SE (Master
of Science in Information Technology-Software Engineering) programme offered
at both CMU and INNO. The goal of the programme is to create software company
leaders in the field of Software Engineering and to help students build theoretical
as well as practical expertise in the use of Formal Methods techniques which they
can later use in their careers. Models of Software Systems is a Formal Methods
course taught to Software Engineering students in the Fall of every year. It exposes
students to several formalisms including first-order logic, state machines, concur-
rency, and temporal logic. In the Fall of 2016, we commenced to teach at INNO an
adapted version of the Models of Software Systems course offered at CMU. This
adapted version profited from our previous experience with PUI whereby students
implemented a usable and verified Android app during their course project. The
adapted version offered at INNO has been nurtured by the results of two surveys.
The first survey (Sect. 3) was conducted in Pittsburgh in the Fall of 2015 among
students of the Models of Software Systems course offered at CMU. The survey
sheds light on the benefits of teaching Event B to SE students. The Models of
Software Systems course at CMU includes a course project with 3 deliverables for
the modelling and analysis of an Infusion Pump [4]. At INNO, we restructured
the course project to consider the analysis and formal software development of
an Android app. The second survey (Sect. 4) was conducted among students of
the Models of Software Systems course at INNO. The goal of this second survey
is to understand how students can work together as a team to develop software
modelled with Event B.

The primary goal of this paper is to outline several aspects and guiding prin-
ciples that can be used by other Faculty to structure their courses on Event B.
These aspects and principles take into consideration various features and pecu-
liarities of our students (introduced in Sect. 2). This paper is about teaching
Formal Methods and formal software development with Event B. Our work
does not intend to serve as a reference to teach any other SE subject. In our
course, software development with Event B does not compete with software
development with any other technique, and indeed, we always encourage stu-
dents to combine Agile methodologies with software development with Event
B during their course projects.

The rest of this paper is structured as follows. Section 2 presents our char-
acterization of our students. We have formulated this characterization by direct
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interaction with them and through discussions with other Faculty. Section 3
explains the structure of the Models of Software Systems course that is lectured
at INNO and the results of the first survey. This survey led to a list of recom-
mendations to re-structure the Models of Software Systems course which we also
discuss. Preliminary results of this first survey were presented to SECM’17 [5].
Section 4 presents the results of the second survey. Section 5 discusses related
work and Sect. 6 presents conclusions and discusses future work.

2 Our Students

It is commonly understood that in order to teach well one should know in advance
whom one is teaching to. We present our characterisation of our students below.
This characterisation should be taken as a heuristic of recommendations of com-
mon students traits. It has been gathered through daily interaction with students
in and out of the classroom. Of course, each future below is not common to every
and each student.

Tech Savvy. Our students are not afraid of technology. They naturally engage
in technology and the use of novel devices. They interact with each other to seek
information.

Discovery-Driven. Our students are often interested in the most recent tech-
nological inventions of society. Students apply novel approaches to today’s
problems.

Immediate Feedback. Our students quite often ask for immediate feedback
about the activities they undertake, or feedback on the results of their assess-
ments. They expect tools would give them immediate feedback. For instance,
students expect feedback from proof assistants (called provers) on why a proof
rule cannot be applied at a certain point during the proof, or why a proof tactic
cannot discharge a whole proof. They see provers as push-button technology.
They expect immediate feedback from compilers about which line of code pro-
duces a particular error.

Elaborative Rehearsal. We encourage elaborative rehearsal in our courses in
which students not just repeat a concept (a definition, a proof, a program, a
proof tactic, etc.) over and over again but memorise the technique behind the
concept to apply it when it should be.

Our support to the practice of “Elaborative Rehearsal” started very early
in our teaching of Formal Methods, back in 2006, when the author was invited
to give a couple of guest lectures on JML [6,11] (Java Modeling Language) and
Design-by-Contract (DbC) [14] for the final part of an undergraduate course
on Event B offered at Pontificia Universidad Javeriana (PUJ) in the Spring
of every year. We wanted to bridge mathematical models in Event B, whose
syntax was familiar to students, to Java programs and DbC Jml contracts,
which was a new topic for them. Therefore, we designed and implemented the
EventB2Java Java code generator [15], which generates Jml-specified Java
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programs for Event B models. This constituted a breakthrough in the way we
started lecturing Event B as the code generator was used to assist in develop-
ment of course projects ever since.

Active Learner. Our students easily engage in activities they are interested in.
They frequently discover strategies through individual experiments with a tool,
for instance, when using provers, they might apply pruning steps of automatic
proofs and restart the proof with a different proof assistant.

Easily Bored. Our students get bored with things that are not interesting to
them. Things that interest them are often related to technology, social activities,
media, and the Internet.

Visually Focused. Our students are interested in systems and programs they
can picture in their minds. Traditional Formal Methods courses use toy examples
to introduce topics and theories. Students are often not interested in or strug-
gle to understand those types of examples. They often prefer to be presented
examples they can visualize in their minds, or are related to some particular
technology they are familiar with.

Multi-Tasker. Our students are often involved in multiple activities at the same
time, which may or not relate to Academia.

Team Focus. Our students often struggle with working in teams.

Socially Aware. Students often engage in social activities. They care about
society, animals, nature, and other people around them. They enjoy social media
and social apps; they engage in social activities.

Learning from Failure. This is related to Immediate Feedback. Students learn
through failure and use counter-examples to validate their theories. Students feel
the need for examples that contradict or confirm their theories.

3 The Survey at Carnegie Mellon University

MSS (Models of Software Systems) students at CMU (Carnegie Mellon Univer-
sity) have previous exposure to logic and software development, typically covered
by courses such as Discrete Mathematics and Software Engineering. The MSS
course at CMU consists of 16 weekly classes and 16 weekly recitation sessions.
Sessions are 2 h and 45 min each. The course has homework assignments, which
are issued weekly and are due the following week. Each recitation session dis-
cusses issues and challenges that took place during the homework assignment
of the previous week. Students are exposed to propositional and predicate logic,
proof techniques, sets relations and functions, sequences and induction, state
machines, Z [17], concurrency, and linear temporal logic.

The following survey encompasses 3 main questions related to Event B. The
survey was conducted among the students of the MSS course at CMU. It was
anonymous and conducted online. 29 students answered it. Answers were not
mandatory, so some students left some answers blank. The goal of the survey is
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to sense students’ opinions on the advantages and disadvantages of using Event
B as mathematical formalism; these opinions are valuable to us students were
exposed to various mathematical formalisms prior to learning Event B. The
questions of the survey are based on two hypotheses that the survey attempts
to corroborate or refute. Event B has a practical lien to code refinement and
code generation that is not quite present in other mathematical formalism.

Hypothesis 1: Students can understand a program written in Event B easily.

Hypothesis 2: Event B can easily be integrated and used to validate, verify,
animate, and reason about software systems used in the industry.

The following are the questions of the survey:

Question 1: Overall, how would you rate the Event B sessions?

Answer #

Excellent 4

Good 18

Neutral 6

Poor 1

Terrible 0

The results for this first question of the survey show that about 76% of the
students answered Good or Excellent, 21% answered Neutral, and 3% answered
Poor or Terrible.

Question 2: What was your favourite part of the Event B sessions?

Answer #

They were motivated by real examples 9

The close link between Event B, code generation,
and programming languages

6

Event B syntax is easy to understand 6

Event B is tool-supported 2

I like it overall 1

Nothing 1

Left blank 4

79% of the answers given to this question point out to practical aspects of Event
B. By “real examples” students mean a strong connection to software systems.
Students were presented with modelling example of a social network in Event
B [7]. MSS is rather an unusual course. It is a Formal Methods course, and
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hence strongly mathematically oriented, lectured to SE students, who might
or might not be as mathematically strong as Computer Science students often
are. This fact compels us (Formal Methods instructors) to motivate and attract
students by presenting modelling and verification examples of applications they
use in life rather than demonstrating traditional Computer Science toy examples.
The examples must illustrate the lien between modelling and verification with
software technology.

Question 3: Which aspects of Event B did you find attractive or unique (that
you do not find in other formalisms)?

Answer #

Its approach to software development 6

Its support for code generation 6

Its tool support 2

I do not know 1

None 1

Left blank 12

It is easy to use 12

48% of the answers given (the first 3 rows) point out to practical aspects of
Event B. The first row makes reference to the fact that Event B implements
refinement calculus techniques.

Question 4. What would make the Event B sessions better?

Answer #

6 More lectures

5 More examples, including code generation demos

2 Putting Event B sessions right after Z sessions

16 Left blank

38% of the answers (the first 2 rows) point out to extending the sessions on
Event B. The third row points out to having those sessions right after the
sessions on Z as notations of both languages are similar.

Overall, Question 1 tells us about students’ general satisfaction on the Event
B part of the course. Second and fourth answers to Question 2 provide support
for hypothesis 2. The last answer to Question 3 and the third answer to Question
2 give some indications about Hypothesis 1.

Next, we relate answers to the survey with the features presented in Sect. 2.
The two first answers to Question 2 relate to “Visually Focused”. We presented
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examples related to Facebook. This further seeks to stress the “Social Aware”
feature of our students. The second answer to Question 4 is related to the “Elab-
orating Meaning” feature of our students. Students always like to see programs
running, in particular if those are programs for a logical model. From the results
of the survey above, we decided to write a series of recommendations to modify
the structure of the MSS course. Some of these modifications have successfully
been implemented at INNO. We map each recommendation to one or several
features presented in Sect. 2.

3.1 Recommendations

The survey led to the elaboration of some recommendations for improvement of
various aspects of the MSS (Models of Software Systems) course. Modifications
to the MSS course are subtle due to the tight interplay of the course material,
hence, lectures are assessed throughout weekly homework assignments, which are
related to the course project, the midterm, and the final exam. Hence, introduc-
ing Event B into the course syllabus entails to create a homework assignment
for each Event B session, to add relevant questions on Event B to the midterm
and final exams, and primarily to link Event B to one or all the three project
deliverables. Here is our list of recommentations.

1. Build a large set of modelling examples and homework assignments with
questions and solutions. Examples must be full-fledged modelling and ver-
ification examples of software systems. This suggestion is to be realised by
writing the second part of the teacher guide book so as to include modelling
and verification examples of software systems.
Related Aspects : (i) “Visually Focused”, examples must relate to systems
students are familiar with rather than to programs. (ii) “Discovery-Driven”,
examples relate to mobile applications or social networking sites. (iii) “Elab-
orative Meaning”, examples expose students to practical aspec first and then
the theory is introduced on-the-fly as examples need it.

2. During the recitation sessions, we should conduct logical proofs in Coq rather
than attempting pencil-and-paper proofs only.
Related Aspects : (i) “Immediate Feedback”, the Coq tool provides immediate
feedback on errors users make during a proof. (ii) “Learning from Failure”,
feedback provided by the Coq tool enables users to learn from their mistakes.
(ii) “Active Learner”, Coq enables students to discover when proving strate-
gies will work better, to abandon a strategy when it does not work and then
apply another one.

3. Although the previous suggestion is about using Coq, other proof assistants
could be used too. Nevertheless, the advantage of using Coq is related to the
Curry-Howard isomorphism: a mathematical proof in classical logic without
the excluded-middle rule is a program in the logic of the typed lambda-
calculus. Students can run proofs as programs, for instance, in Objective
Caml (an implementation of typed lambda calculus). If a lecture introduces
a soundness proof of the translation performed by a parser, then the proof is



Teaching Formal Methods: Lessons Learnt from Using Event-B 219

just the program implementing the parser. There is no better way to motivate
students to conduct proofs: proofs are programs that are part of software
systems students can run.
Related Aspects : (i) “Elaborative Meaning”, the theory about the syntax
and semantics of a parser is carried down to animating a program that shows
what the parser does.

4. Regarding the lectures on Natural and Structural induction, the key link
between induction and programming is recursion. Recursive definitions
require well-founded inductive proofs. If Coq is to be introduced into the
MSS course, one can use Objective Caml (Coq’s programming language) to
write examples of recursive definitions, and Coq to formalize the algorithm in
logic and discharge underlying Proof Obligations. Examples of recursive def-
initions may relate to data structures, for instance, for searching algorithms.
Related Aspects : (i) “Elaborative Meaning”, the intrinsic aspects of recursive
definition proofs are boiled down to running programs in OCaml.

5. We plan to incorporate the teaching of software development with Event
B into the MSS course (Check questions of Survey 2 in Sect. 4). Event B
enables users (i) to use a tool (Rodin [2]) to write mathematical models about
sets (In Event B, relations are sets of pairs), (ii) to tool-check whether the
set-based model is correct, (iii) to conduct correctness proofs about set-
based models, (iv) and to generate Java code (via the EventB2Java tool)
for students to animate formal models of software systems.

3.2 Implementation of Recommendations at Innopolis University

This section explains which of the previous recommendations have we imple-
mented at Innopolis University (INNO).16 Regarding recommendation 1, we
almost finished writing the second part of the guide book.

We have not implemented recommendations 2 and 3 at INNO. Introducing
Coq to the course syllabus would require a lot of effort regarding preparation.
It would require us (i) to re-structure the slides of the first part of the course
(about 25%), (ii) to re-work the homework assignments to be based on Coq, and
(iii) to adapt the course project to account for Coq.

We have not implemented recommendation 4. Let us discuss an example of
how this recommendation can be implemented in the classroom. We define a
Stack in Objective Caml that implements standard operations. We ask students
to implement a Map function that takes a function and a Stack object and
applies the function to each element of the Stack. The result is a new Stack
obtained by applying the function to each element of the original Stack. The
Map function can be defined recursively. One would ask students whether their
recursive definitions are correct or not, asking them to undertake the correctness
proof formally. The Objective Caml program can naturally be re-written in Coq,
where the proof can be conducted.

Regarding recommendation 5, we extended the teaching of Event B to 4
sessions of two hours 45 min each. Each weekly session has its respective home-
work assignment on Event B. We re-oriented the third deliverable of the course



220 N. Cataño

for students to design in Event B the core functionality of an Android app [9].
The Android app is structured following an MVC design pattern. The VC part is
based on OpenGL, the M part is initially be modelled in Event B and then code
generated to Java using the EventB2Java tool. For the third course-project
deliverable, students must conduct 4 tasks. The first task asks students to use
ProB [12] to detect any likely deadlock or race condition in the Event B model.
The second task asks students to define safety properties in Event B. The third
task asks students to generate code, to animate it, and to check if the code runs
as expected. The fourth task asks students to re-implement the interface of the
app.

4 The Survey at Innopolis University

Formal software development with Event B follows “the parachute strategy”
in which systems are first considered from a very abstract and simple point of
view, with broad fundamental observations. This view usually comprises a few
simple invariant properties that students can easily grasp, for instance, defining
what can reasonably be expected from the operation of such a system. When
writing a model for a software system in Event B students should write an
abstract machine (model) and then successively write refinement machines [3].
For each refinement machine Proof Obligations (POs) are to be discharged to
ensure that it is a proper refinement of the most abstract machines. Only once
all the machines are written and all the POs are discharged one can consider the
underlying system has completely been modelled. But, if an abstract machine is
modified, for instance, invariants are added to it, or some definition is changed,
then typically new POs are generated for all the machines in the refinement
chain, or existing proofs are to be re-run. The worst scenario happens when a
software requirement changes or a new one is added on top of the existing ones
as this typically would break existing invariants. Pedagogically speaking this
raises a concern regarding the way members of a software development team
should work together and how team members can share their workload. If team
members work together in a way that each member is in charge of designing
and tool-proving the correctness of a sole machine, then each time a member
introduces a change, the work of any team member in charge of a refinement
machine will become invalid. In an opposite direction, one team member can
be in charge of writing the whole model, but then, at least from a pedagogical
perspective, this will diminish the Event B learning curve of the other team
members. The parachute strategy advocates for the Waterfall software develop-
ment methodology in which software requirements are set upfront and then the
software development process starts. In practice, this is quite difficult to achieve,
and even if it is achieved, it is often the case that actual definitions are changed
on-the-fly, for instance, when one decides to encode a variable with a total and
not with a partial function, invalidating all the related and discharged POs.

The survey presented in Sect. 4.1 relates to issues regarding how a group of
students can work together as a team to develop software with Event B. The
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survey was conducted at INNO (Innopolis University) among students of the
MSS course, it was anonymous and conducted online. Each of the 25 students
answered the survey. The survey seeks to address the “Team Focus” feature
described in Sect. 2.

4.1 Student’s Feedback

We gathered software requirements for WhatsApp from our experience using
it. We focused on WhatsApp’s Android mobile version and disregarded its web
version. After we wrote the initial software requirements document we proceeded
to formalise the requirements in Event B. However, it was often the case that
we had discussions with students in and out of the classroom to clarify our
understanding of the functionality of WhatsApp. For instance, when two persons
are chatting and one of them decides to delete a previously sent content (message,
picture or video), shall this content be deleted from the sender, the receiver or
anyone to whom the content has been forwarded too? Would this functionality
(to delete a content item) be implemented differently if the person who is deleting
the content is the sender (the person who sent the content initially) or the
receiver of the content? All these questions required careful discussions both in
and out the classroom as different implementations would break the invariants
written for WhatsApp.

The above text gives the reader an introduction to the first and second ques-
tions of the survey. We thought that students could follow a Waterfall style of
software development, but we finally needed to evolve the software requirements
document.

Question 1: What do you think would be the most suitable software develop-
ment methodology to develop WhatsApp with Event B and Rodin?

1. Agile (requirements evolve, change at any time)
2. Waterfall (requirements are stable, don’t change)
3. Both combined
4. Other? Which one?

Answer # %

Agile 6 24%

Waterfall 9 36%

Both 8 32%

Other 2 8%

By looking at the answers to the first question, students are more or less
equally fine with developing WhatsApp following Waterfall, Agile, or combining
both methodologies. In the end, students needed to combine both methodologies
as requirements changed.
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As for the last row of results, 2 students selected Spiral as software devel-
opment methodology, which goes in the direction of a software project in which
software requirements evolve.

Question 2: Did your team develop WhatsApp following the methodology
selected in Question 1?

Answer # %

Fully 1 4%

Largely 10 40%

Fairly 9 36%

Scarcely 4 16%

Not at all 1 4%

According to the results above, 80% of the students (the 3 first rows) followed a
software methodology that they considered the most suitable. We gave students
complete freedom so as to choose any software methodology that they considered
the most appropriate to develop WhatsApp.

Question 3: If you decide to develop WhatsApp following an MVC design
pattern structure, how do you think your team should be organized to develop
the M (model) part of WhatsApp?

1. Software requirements are fixed in advance, and each team member develops
one or several different machines; the team members meet at an early stage to
decide who (which team member) will develop what functionality and which
machine; in the end, team meets again to put all the machines together.

2. Only two team members would develop the complete functionality of What-
sApp in Event B; the other two or three members would provide continuous
feedback to the first two members. In short, you would engage in a “pair pro-
gramming” discipline of working organized in groups of two members.

3. None.

Answer # %

Fixed 6 24%

Paired 18 72%

None 1 4%

Changes in software requirements are particularly cumbersome in software
development with Event B since they might affect one machine and therefore
all the machines in its refinement-chain making often most of the discharged POs
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invalid afterwards. Students can then decide to split the number of machines (4
for this project) into equal shares among students (4 or 5 students per team),
working individually and communicating decisions regularly as a team, or they
can select some of the team members to work in the Event B formalization and
the rest of the members to work, for instance, in Android, in the visual interface
of the app. But then, students were also concerned about learning Event B
properly as this was included in the final exam. 72% of the students selected the
last option of team work (second row in the results table) in accordance with an
Agile methodology of work in which requirements change constantly.

Question 4: How difficult was for you to use Event B to model the M (Model)
part of WhatsApp?

Answer # %

Very hard 6 24%

Hard 12 48%

Moderate 7 28%

Easy 0 0%

Very easy 0 0%

72% of the students (the first 2 rows) found difficult to come up with an imple-
mentation of the core functionality of WhatsApp. The initial difficulty was to
write a sound model for WhatsApp in Event B. Additional difficulties came
from the use of the EventB2Java tool which did not support some of the syn-
tax of Event Bso that students needed to manually write the code generated
by the tool in some cases.

Question 5: How difficult was for you to extend the code generated for the M
(model) part of WhatsApp so that it can be used from the V (view) part?

Answer # %

Very hard 5 20%

Hard 13 52%

Moderate 4 16%

Easy 3 12%

Very easy 0 0%

Students needed to extend the core functionality of WhatsApp in the following
way. They needed (i) to define the architecture of their implementation of What-
sApp, and (ii) either implement it or use an existing platform that could handle
concurrency of several users chatting with each other in several chat-rooms. Stu-
dents needed to write some wrapping code that links the interface of the app
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developed with Android Studio with the code generated by EventB2Java for
the core functionality of the app. 72% of the students (the first 2 rows) con-
sidered that implementing this extension was difficult, which was expected by
course instructors.

Question 6: Given flexible time and project conditions, which approach would
you use to bridge/interface the Java code generated for the M part of WhatsApp
to the implementation of its V part?

1. You would write Event B code for the extended functionality of the M part
functionality and would generate code to Java with the EventB2Java tool
that interfaces with the V part of WhatsApp.

2. You would manually and directly implement the extended functionality in
Java that interfaces with the V part of WhatsApp.

3. Both combined.
4. None.

Option # %

Code generation 1 4%

Manual implementation 13 52%

Both combined 4 40%

None 1 4%

Question 6 seeks to sense students’ opinion about using Event B for devel-
oping the interface of WhatsApp. 52% of the students though it is not worthwhile
to use Event B for that purpose, only 4% of them thought it is, and 40% of
them thought they could attempt a combined effort. We considered that it would
be preferable to write the interface manually given the complexity and size of
graphical libraries of Android.

4.2 Related Aspects

At INNO, the course project was changed in accordance with the Related Aspects
discussed in Sect. 2.

Tech Savvy. Though most of our students have prior experience in programming,
only a bunch of them have prior experience in programming with the Android
platform. Hence, working on an Android project during the MSS course gave stu-
dents the opportunity to learn a new technology while working on mathematical
formalisms behind the scenes.

Immediate Feedback. In our courses, Event B is introduced with the aid of the
Rodin IDE [2], a platform that provides support for writing models in Event
B. Rodin comes with a series of provers that give students feedback when dis-
charging POs (Proof Obligations).
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Visually Focused. During the third project-deliverable students implement a
visual interface of the Android app that links to its core functionality.

Socially Aware. Examples of social apps introduced in our courses include a
social event planner (an app to invite people to gather around a social event),
WhatsApp, among others, all of which can be framed as course projects.

5 Related Work

In [13], Méry presents a teaching programming methodology using Event B.
We do not teach program development but system development in our courses.
Nevertheless, program development can be tackled as a last program refinement
step in the Event B formalisation of our course projects, and EventB2Java
can be extended to generate Java program implementations.

Early efforts in introducing Formal Methods have been made in the past.
In [18], Stanley Warford describes his efforts to incorporate Formal Methods in
the teaching of Discrete Mathematics. The author argues that Formal Methods
can be mastered at the undergraduate level. He claims that “the benefit of
teaching Formal Methods in a Discrete Math course had immediate benefit in
following courses”. Jaume and Laurent [10] share the same view that Formal
Methods should be taught during the undergraduate studies. We also think
that our master course would benefit from students having previous exposure to
Formal Methods, for instance, during their undergraduate studies. We found that
our students find easier to understand concepts such as injective, surjective or
bijective functions through the use examples related social networks or systems
related to technology.

More recently [16], Ken Robinson describes his experience in teaching For-
mal Methods. He claims that “Software Engineers should aspire to fault-free
software”, which goes in the same direction as our teaching. We believe in devel-
oping correct software from specifications to code.

In a similar manner to our work, Gibson and Méry [8] report on lessons
learnt on the teaching of Formal Methods. They adopt a similar view to ours in
the sense of expecting that Formal Methods students can be transferred from
Academia to Industry and expect that transferred students can make Formal
Methods more popular in Industry. Authors work in small case studies in an
intuitive manner so that students can appreciate the need for formality.

6 Conclusion

Organising a course project around software development teams helps students
to enhance their collaboration spirit. Our students are always motivated about
any course project that involves the use of Android as they are always attracted
to technology. The use of the EventB2Java code generator to implement the
course project is one of our assets. Students are always positively surprised to see
how mathematical models based on predicate calculus relate to programs written
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in Java (or another programming language). They love to execute mathematical
models to get a grasp on their behaviour.

We would like to mention one of the difficulties that our students have
regarding Learning from Failure. Students love to learn from failure and the use
counter-examples to check if something is right or wrong, but the logical mean-
ing they attach to counter-examples is often wrong. If one says “most water
bottles are made of plastic”, then students might think the sentence is not true
because they know “a water bottle made of glass”, without realizing that the
two sentences do not conflict each other. The second sentence does not make the
first sentence invalid. To help students understand the first sentence one would
need to add some redundancy, let us say, “most but not all the water bottles are
made of plastic”.

Our future work is mainly related to completing the guide book with mod-
elling examples and homework assignments as described in Sect. 3.1. Each exam-
ple includes (i) the core functionality of the example written in Event B, (ii)
all the POs discharged with Rodin, (iii) an implementation of the functionality
generated with the EventB2Java tool, and (iv) an interface implementation,
for instance, an Android app implementation with Android studio. We have also
started writing a second book, more oriented to Java practitioners, to help them
effectively use Event B to enhance the quality of their programs. The book
does not go much into details about discrete mathematics and first-order logic
but introduces only the mathematic formalism needed by the book to explain
the Java programming examples.
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Abstract. Formal methods are vast and varied. This paper reports the
essentials of what I have observed and learned by teaching the Inductive
Method for security protocol analysis for nearly twenty years. My general
finding is something I realised after just a couple of years, that my target
audience of post-graduate students with generally little appreciation of
theory would need something different from digging deep down in the
wonders of proof ever since class two. The core finding is a decalogue of
steps forming the teaching methodology that I have been developing ever
since the general finding became clear. For example, due to the nature
of the Inductive Method, an important step is to convey the power and
simplicity of mathematical induction, and this does not turn out too hard
upon the sole basis that students are familiar with the informal analysis
of security protocols. But the first and foremost step is to convince the
learners that they already somewhat used formal methods, although for
other applications, for example in the domains of Physics and Mathe-
matics. The argument will convey as few technicalities as possible, in
an attempt to promote the general message that formal methods are
not extraterrestrial even for students who are not theorists. This paper
introduces all steps individually and justifies them towards the general
success of the teaching experience.

1 Introduction

Formal methods form a very big chapter in the book of, at least, Informatics. It
is widely recognised that they include a variety of approaches, for example, logic,
algebraic or ad hoc approaches. With a “universal view” of formal methods, I
contend that hey have been applied to virtually every real-world problem areas,
ranging from Astrophysics to Economics to Engineering.

It is clear that my view of a formal method is broad, in fact I like to include
in the pool any mathematically grounded, rigorous method. The distinctive fea-
ture implied here is that formal methods do not necessarily require the target
phenomenon or system under study to be practically available or built at all. As
opposed to empirical methods, formal methods can be profitably used on paper,
ideally with some computer support, namely at the abstract, design level.

My main “local” preconditions are that students are not very inclined to the-
ory in general. Broadly speaking, I find course modules more geared to practical
c© Springer Nature Switzerland AG 2019
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competences such as (imperative) programming and system administration. In
the cybersecurity area in particular, the most job-oriented competences lie in the
area of Vulnerability Assessment and Penetration Testing (which I also introduce
at Master’s level), hence formal methods again suffer this particular though well
motivated trend of the present time. However, also formal methods continue to
contribute to the goodness of cybersecurity [1], for example as it can be read
from recent publications such as a NIST survey [2] or an NSF workshop report
[3]. Hence, the motivation for this paper.

The teaching experience within such a large area as formal methods is bound
to be diverse and multifaceted, and here I only engage into outlining my own,
limited experience on teaching the Inductive Method [4,5], which is embedded in
the theorem prover Isabelle [6], for the analysis of security protocols. This would
be the first encounter of my students with theorem proving and formal methods
in general. A fundamental disclaimer stemming from my local preconditions is
that none of my observations should be taken as general; by contrast, they are
limited to the specific lecturing experience in my Institution, though over nearly
two decades, at Master’s level in Informatics covering a module of at least 12 h
intertwining theory and laboratory experiments tightly.

My general finding is that the entanglements of proof theory must be left to
an advanced module, which I have never had the opportunity to teach. My core
finding is that teaching an introductory module requires at least a decalogue of
steps before any proof can be attempted profitably. Lecturing will resemble the
tailor’s activity of sewing together patches of different fabrics, though dealing
with somewhat heterogeneous notions from Informatics in our case.

To try and speed up readability, the style I take in this paper will be mixed,
sometimes describing the steps of the decalogue and summarising parts of the
lectures, sometimes as if I were speaking straight to the students. Hopefully, the
context will resolve the inherent ambiguity. As we shall see, the main obstacle
to overcome for students will be the perception of formal methods as something
so theoretical and abstract to be unattractive and unsurmountable, hence the
title of this paper. But the decalogue discussed below has yielded a very effective
teaching experience with me.

2 My Experience with Teaching the IM

There is no room for introducing the Inductive Method [4] and the theorem
prover Isabelle [6], so I must assume a basic familiarity of the readers’.

2.1 You Already Used Formal Methods

One of the first issues I encountered since the beginning and that I keep touch-
ing every year is some sort mental resistance that (my) students show to almost
anything prefixed with “formal”. In consequence, there seems to be some psy-
chological wall between themselves and formal methods in general.
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At first, I set out to try and demolish that wall upfront. I started providing
vast reference material, also appealing to books that can be found freely on
the Internet [7], and presenting example applications to various scenarios in the
areas of both hardware and software. However, this did not work, as the class
felt kind of lost through the various methods, with each student looping through
a contrastive analysis of the methods.

I decided that this approach was too vast. So, I selected First-Order Logics
and tried to illustrate and variously demonstrate why it could be somewhat easy
to use in practice, and also nice and ultimately rewarding; but all this did not
seem to yield the results I was expecting. It was clear that students were almost
memorizing notions and formulas rather than adopting and actively using them.

It was still in the early years of teaching when I started to feel that psycho-
logical wall as unsurmountable for them. So, I thought that the only way to have
students on the other side would have been to make this true by assumption. I
was then left with the problem of finding an appropriate, realistic interpretation
that would make that assumption hold, which would have made students feel
already beyond the wall. At some point, I thought I found that interpretation,
and presented them with something as simple as this formula:

s = v · t

This was the first encouraging result because everyone could recognise the uni-
form linear motion formula with s indicating space, v for speed and t for time.

I decided to navigate this way and this is when I decided to take a somewhat
loose definition of formal methods. So, I claimed that formula to be an applica-
tion of a formal method, precisely a specification, namely some sort of abstract
representation of a real-world phenomenon. The formula clearly shows indepen-
dence from the actual phenomenon, it lives and computes in a world of its own,
that of symbols with a clear, non-ambiguous interpretation. Yet, the formula
models and describes the phenomenon closely, providing a realistic, written rep-
resentation of it. I did not need to describe the language of the formula more in
detail because I realised that students had already started to stair at the board
pensively, so they were finally engaged.

I then unfolded the same argument with accelerated linear motion and pro-
jectile motion. Then, I switched application area, and discussed definite integrals
as a very useful tool (not just to pass A levels but also to) calculate the area
under a curve, something that we could effectively use to help a farmer deter-
mine the extension of his land. Formal methods everywhere! Yes, such formulas
are formal because they leave (almost) no room for ambiguity but they are also
very applied due to what they allow us to do and resolve in everyday life. This
argument worked with the class, definitely, and keeps working every year.

I normally conclude this journey through heterogeneous applications of for-
mal methods with an extra reference to Propositional Logics and First-Order
Logics, whose basics the students regularly know from some foundational course.
This time around, they look at whatever I try to formalise with these languages
with renowned interest and, as far as I can tell, more familiarity and conscious
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understanding. For example, here I normally debate that there is no “wrong”
specification of a phenomenon but, rather, there may be an unrealistic specifi-
cation of it, for example like describing a river that flows from sea to peaks.

“Dear student, it is clear that you already used formal methods but did not
know it!”.

2.2 The Need for Formal Methods and in Particular for the IM

The next step in the decalogue is to demonstrate that formal methods are needed
in general. Here, it is useful to go back to the formula borrowed from Physics and
Calculus, as well as to hint at Ancient Greece mathematician Eratosthenes, with
his incredibly precise measurement of Earth’s circumference, and other Ancient
Greece prodigies.

To approach our days, I normally linger around the Pentium processor bug
(which luckily has a Wikipedia entry). With whatever microchip in hand to test,
it is intuitive for students to see in their minds the act of feeding it with various
inputs to inspect whether the output is correct. And here are the fundamentals
of modern (industrial strength) testing. However, the Pentium bug shouted out
to the world that testing may not be enough. This may be due, in general, to the
ever increasing complexity of modern circuits, whose complexity roughly doubles
every 18 months, as Moore started to predict ever since 1965. It may also be
due to the tight time-to-market constraints of products, and this is likely to have
been the case with the Pentium bug. While it is natural for everyone that testing
requires time due to the number of tests to physically execute, the learners also
understand that business success often correlates with early deployment. (An
underlying, usefully embodied, assumption is that even if something is appro-
priately designed, it is not obvious that it will work as expected at design level
when it is actually built, such as with houses or with any devices).

And here comes a clear need for an alternative that scientists may use, on
paper or arguably with some computer assistance, to get confidence that the
real-world phenomenon that is an actual industrial product works as intended
by its designers. That alternative is the use of formal methods, whose application
may not be constrained by execution times as testing is. This argument invites
at least two useful considerations. One is that formal methods support some
sort of reasoning on the target phenomenon, formal reasoning in fact, which
can be tailored to assess specific properties of interest, (functional ones) such
as correctness of computation, then (non-functional ones such as) secrecy and
authentication. Another useful argument is the predictive use of formal meth-
ods. We can effectively study a phenomenon before it actually takes place, or a
product before it is built, and this is an exclusive advantage.

This is the point when it becomes effective and useful to plunge into secu-
rity protocols, thus nearing my actual target. Students are normally familiar
with traditional attacks on toy security protocols, which are so popular in the
literature of the area. For example, I use to entertain my undergraduates with
an informal analysis of the original public-key Needham-Schröder protocol [8],
and I always succeed in convincing everyone that nonces remain secret and that
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mutual authentication works; after that, I surprise them with Lowe’s attack,
then help them overcome their frustration by observing that the attack was only
published some 17 years after the protocol. Therefore, I easily emphasise the lim-
itations of informal protocol analysis, calling for more rigour, hence for formal
protocol analysis, which has the strength and rigour of mathematics. Examples
are due here, but they still need to wait one more logical assertion.

That assertion is that a security protocol may be a strange, huge beast. There
is potentially no bound for the length of protocol messages, for the number of
protocol steps, of protocol participants, of nonces or keys they may invent and
for the number of protocol sessions they may interleave. It becomes apparent
that security protocols are potentially unbounded in size, hence it becomes intu-
itive that the empirical approach of testing (all) its potential executions falters.
Consequently, the idea that some sort of mathematical wisdom could help starts
to materialise at the mental horizons of the students.

Additionally, familiarity with the Needham-Schröder protocol implies
acquaintance with the notion of threat model, and in particular with the stan-
dard Dolev-Yao attacker. Because that attacker may intercept messages and
build new ones at will with the sole limitations imposed by encryption, students
realise that the attacker is yet another source of potential unboundedness, and
know by intuition that modelling it may not be straightforward.

Even if we took the approach of bounding all parameters and we magically
knew that the resulting protocol reached its security goals, then we still would
have no guarantee that those goals hold also when those parameters are exceeded
during a practical use. It would seem that unboundedness cannot be neglected.

“So, dear all, you will be amazed at how the Inductive Method can cope with
unboundedness!”.

2.3 A Parallel: How to Write a Biography

At this point, some students change the way the look at the lecturer, as if they
start to wonder independently how to possibly use the Inductive Method to
model security protocols. Here, I surprise them turning to talk about biogra-
phies, actual people’s biographies. The biographer faces a huge challenge: to
condense a continuous (we could build a bijection with the reals) sequence of
events in a finite manuscript. The biographer has no option except picking up a
few significant events and describe those, perhaps connecting them logically, and
sometimes drawing a general message about the chief character, either explicitly
or implicitly. From a data structure standpoint, a biography is a list of events.

The same approach can be taken to model security protocols, somewhat
surprisingly for students. So, our effort could be similar to the biographer’s.
Running a protocol of course entails a number of tasks for each of its peers. But,
as the biographer does, we need to abstract away from many of those and distill
out the main ones. With security protocols, it is easy to convince everyone that
the main ones are to send and to receive a cryptographic message.

Does this imply that a protocol can be compared to a human life? It would
seem so in terms of modelling effort and approach. More precisely, a specific
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protocol execution can be compared to the biography of a life, and both can
be modelled as a list of events. While a biography features events linking the
chief character to other people in the character’s life, or sometimes other people
among themselves, a protocol execution features events linking peers to each
other via the events of sending or receiving the protocol messages (a specific
peer could be isolated and interpreted as a chief character in the execution but
this is irrelevant). A list representing a protocol execution is normally termed a
trace, hence it is a list of events of sending or receiving the protocol messages.
We could then address a biography as the trace of someone’s life. If we blur the
focus on the chief character, then a biography is a representation of one possible
development of society, simply because it may involve many characters.

This argument invites thinking about other possible executions of protocols
in parallel to other possible developments of society, the very society of people on
this planet. And here students find themselves curious to understand if and how
all of the protocol executions and, equally of the society developments, could be
represented compactly. They get all the more hungry as they start to perceive
that such possible executions or developments are potentially unbounded. They
will have to resist their hunger a bit longer.

“We now know that a list is a useful structure to model an abstract ver-
sion of one possible protocol execution, but how can we ever model all possible
executions?”.

2.4 The Use of Computational Logics for Reasoning

At this point in the development of the discourse, the learners’ eyes begin to
glitter. It is hence the right time to instill the power of logics. I already men-
tioned that, in my experience, students normally come with some notions of
Propositional Logics and First-Order Logics, and discussed how to make them
feel familiar with such logics (Sect. 2.1). However, it would seem that logics is
merely seen as a language for specifying (or formalising) some phenomenon. It is
then not very clear to them what to do with a specification or how to use it prof-
itably. Here come handy again the arguments unfolded above, suggesting that a
specification is a somewhat compact representation of something real (Sect. 2.3)
and that it may be used to understand that thing predictively (Sect. 2.2).

The only way to overcome the dogmatic flavour that such justifications may
bring is to finally introduce elementary forms of classical reasoning to be con-
ducted on top of specifications, with the aim of proving something about the
specification. My favourite one is modus ponens, so I normally draw something
like this on the board:

p → q
p
q

Stating that “if you have p → q and you also have p, then you may also
derive q” is simply not enough to convey the meaning of this essential rule.
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Students have often taken p → q alone to magically derive q. This betrays their
misunderstanding, whereas p → q and p are both preconditions at the same log-
ical level, and it is precisely their combination what allows us to derive q; here,
it may help to denote p as the ammo that the weapon p → q needs to shoot out
q.

This is an essential yet powerful form of (formal) reasoning, and it may
also be the students’ first close encounter with such a wonderful engine that,
once they have certain formulas that hold, allows them to derive yet another
formula that holds too. Should the learners show concern that they are touching
something extraterrestrial again, I easily demolish that concern asserting that
we all follow an essential rule: if I am hungry, then I eat something. At every
moment in time, each of us is left wondering: am I hungry? It is clear that, only
when this is affirmative, do both preconditions of the modus ponens rule hold,
hence it is time to eat something. We all use modus ponens in all sorts of ways.

“Guys, you have only scratched the surface of formal reasoning, still you shall
see that you’ll be able to do a lot with what you just found out!”.

2.5 The Basics of Functional Programming

Functional programming is, for some reasons beyond the aims of this paper,
not very well received by my students, who tend to see it again as something
overly formal and not as actual programming. Convincing them fully of the
power of functional programming normally remains out of reach despite the fact
that they took a short crash course (which, however, lacks the details of Turing
completeness). The main issue that I take pains to convey is that it is just a
different programming paradigm from their dearest imperative approach, the
latter learned since school. They find it bewildering that a functional program
has no variables to assign values to.

So, how on earth can we carry out any sort of computation? The notion of
term rewriting must be introduced. Each rewriting derives from the application
of a sound rewriting rule. For example, linking the argument back to the use of
logics for reasoning (Sect. 2.4), modus ponens may be seen as a rewriting rule
for the pair of facts forming its preconditions. Similarly, p → q can be rewritten
as ¬p ∨ q by applying the logical equivalence of the two formulas as a rule.

But rewriting may also be conditional. For example, evaluating the guard of:

X = (if 2 + 1 = 3 then Y else Z)

allows us to rewrite the entire expression as X = Y . And this was computation.
“Rewriting is the essence of computation with functional programming, stop

thinking imperatively here, forget variables and assignments!”.

2.6 The Wonders of Mathematical Induction

Students are somewhat familiar with mathematical induction, in particular for
what concerns the definition of the natural numbers:

Base. 0 ∈ N

Ind. if n ∈ N then suc(n) ∈ N
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Because they understand rule Ind, it is the right time to introduce its more
formal version:

Ind. n ∈ N =⇒ suc(n) ∈ N

This lets me motivate the meta-level implication as the implication at the level
of reasoning, as opposed to the object level of the encoded logics. And I can then
introduce an equally formalised version of modus ponens:

[[p −→ q; p]] =⇒ p

I believe that with this and a few similar examples, the level of reasoning, as
expressed by fat square braces, semicolon and the fat arrow, is uploaded.

And here is how beautiful it is to capture a clearly unbounded set by means
of just two, formal, rules. Observe also the magic behind induction, at least due
to the fact that nobody has ever tried to practically verify if, say, 4893 can be
effectively built by an application of rule Base and a finite number of applications
of rule Ind. Still, we know by intuition that all natural numbers are represented.

Observing that all natural numbers are caught this way brings back memories
of an open problem, how to capture all possible society developments or protocol
executions. The answer clearly is by induction but we need to cope with traces.
Traces are lists, so can we build lists by induction? Yes, we can build them by
structural induction on their length. Therefore, we expect to be able to specify all
possible lists, even if unbounded, for our application, be is society or protocols,
with just a few inductive rules. And, of course, yes, we may have more than one
inductive rule in an inductive definition.

Before giving an example (Sect. 2.7), it is useful to go back to the reasoning
part and observe that it may also follow predefined strategies aimed at proving
a goal, thus proof strategies. Induction may also be viewed as a proof strategy,
based on application of the mathematical induction proof principle. As it is a
principle, there is no proof for itself. I often realise that students are able to
prove facts such as an expression for the sum of the first n natural numbers Sn:

Sn =
n · (n + 1)

2

They mechanically prove it for the Base case and then for the Ind case; in the
latter, they know how to assume the property, say, for n and then attempt to
prove it on that assumption for n+1. They may, however, not be fully aware that
they are inherently applying the induction proof principle. It is then important
to spell it out formally on a property P :

[[P (0); P (n) =⇒ P (n + 1)]] =⇒ ∀n. P (n)

I have memories of their surprise in front of this formal statement. This version
is also useful to teach that the latest occurrence of n is scoped by the universal
quantifier, hence not to be confused with the occurrences in the preconditions.

“You see now, induction is great for specifying and then for reasoning, namely
for formalising something and then proving facts about it!”.
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2.7 The Formal Protocol Definition

All pieces of the puzzle are now available to compose a formal protocol model.
As noted above, students are familiar with toy security protocols at least, hence
there will be little to discuss in front of an example like this:

1. A −→ B : A,Na

2. B −→ A : {|Na, B|}K−1
b

Initiator A sends her identity along with a fresh nonce of hers to responder B,
who sends it back, bundled with his identity, encrypted under his private key.
The formal model for this example protocol is finally unveiled as shown in Fig. 1.
I normally spend above an hour explaining it. It must be first looked at “from
the outside-in”, namely you must first realise the general structure of what you
have in front. It is five rules. They very often mention fep . This is a constant
(not a variable!) termed as an acronym for f formal example protocol, which is
the formal model for our example protocol. I purposely defer the discussion of its
type till now. Because we wanted to formalise all possible protocol executions,
and each execution was a trace, namely a list of events (of sending or receiving
the protocol messages), then fep must be a set of lists of events.

Base: "[ ] ∈ fep"

Fake: " [[evsf ∈ fep; X ∈ synth(analz(knows Spy evsf)) ]]
⇒ Says Spy B X # evsf ∈ fep"

Fep1: " [[evs1 ∈ fep; Nonce Na /∈ used evs1 ]]
⇒ Says A B {|Agent A, Nonce Na |} # evs1 ∈ fep"

Fep2: " [[evs2 ∈ fep; Gets B {|Agent A, Nonce Na |} ∈ set evs2 ]]
⇒ Says B A (Crypt (priSK B) {|Nonce Na, Agent B |}) # evs2 ∈ fep"

Recp: " [[evsr ∈ fep; Says A B X ∈ set evsr ]]
⇒ Gets B X # evsr ∈ fep"

Fig. 1. Definition of fep , the formal model for our example protocol

Going back to the rules defining fep , it can be seen that the first rule is very
special because it has no preconditions. It is in fact the base case of the inductive
definition. While the central rules, Fep1 and Fep2 , seem to be “similar” to the
protocol steps, the final rule, Recp , seems to be a matter of receiving messages,
but must be explained in depth. The remaining rule, Fake , is incomprehensible
without close inspection.

It must be noted that all rules following Base mention a trace of fep in the
preconditions, respectively efsf , evs1 , evs2 , evs3 and evsr . Recalling that # is
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the list cons operator, it may also be seen that all those rules conclude that the
respective trace, somehow extended on the left, is a trace of fep . These features
signify that they are all inductive rules. So, we are facing a definition with a
total of four inductive rules.

Rule Fep1 models the first step of the protocol. Standing on a trace evs1 of
the model, it also assumes a nonce that is not used on the trace, hence the nonce
is fresh. Of course, used is a function that is defined somewhere, but its definition
can wait till later (Sect. 2.8). The nonce freshness is a requirement set by the
protocol designers, hence we as analysers are merely adding it to our specifica-
tion. Event Says A B {|Agent A, Nonce Na |} is a self explaining formalisation of
the first event of the protocol, and also its justification through the datatype of
events can wait (Sect. 2.8). The postcondition of the rule states that the given
trace evs1 , appropriately extended with the event that models the first protocol
step, is a trace in the model. Thus, the rule’s structure resembles that of Ind
(Sect. 2.6).

Rule Fep2 models the second step of the protocol. It rests on a trace evs2

with the special requirement that it features an event formalising B’s reception
of the first protocol message, Gets B {|Agent A, Nonce Na |}, and set casts a list
to a set. The rule concludes that the suitably extended trace is in the model.

The difference between these two rules is that Fep1 puts no requirement
on the trace in terms of traffic occurred on it, so the rule may fire at any time,
modelling the real-world circumstance of any agent who may initiate the protocol
at any time and with any peer. By contrast, Fep2 may only fire upon a trace
that has already recorded the reception of the first message of the protocol.

If the first message is sent through Fep1 , what makes sure that it is received?
The first message, and in fact any message that is sent, is received through rule
Recp . It insists on a trace on which a generic agent A sends a generic message X

to a generic agent B , and extends it with the event whereby B receives X .
We are left with the Fake rule, which models the attacker, arguably repre-

sented as Spy . The trace extension mechanism is clear, so it can be seen that
this rule extends a given trace with an event whereby the attacker sends a fake
message X to a generic agent B . The fake message is derived from a set modelled
as a nesting of three functions, from the inside-out, knows , then analz , finally
synth , which are to be explained separately (Sect. 2.8). Intuitively, such a nesting
simulates all possible malicious activity that a Dolev-Yao attacker can perform,
yet without any cryptanalysis.

Thus, the formal protocol model features a number of rules that equals the
number of steps in the protocol, augmented with three extra rules, one for the
base of the induction, one for the attacker and another one to enable message
reception. Thanks to the wonders of induction, set fep will have all possible
traces that can be built under the given protocol, thus modelling effectively all
possible protocol executions. For example, it contains a trace on which ten agents
begin the protocol with other agents but none of those messages is received, a
trace that sees an agent sending off a message to another one and that message
being received many times. We are guaranteed that all possible traces that can
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be built by any interleaving of the given rules appear in fep . It is now time to
declare that the specific font indicates that the formal protocol model can be
fed, as is, to Isabelle, which will parse it and ensure at least type coherency.

“And here is how we ultimately define the formal protocol model in Isabelle,
including all possible protocol executions under the Dolev-Yao attacker!”.

2.8 The Main Functions

Intuitively, the innermost set, Knows Spy evsf contains all messages that are
ever sent on evsf by anyone. Then, function analz breaks down all messages
of the set into components, for example by detaching concatenated messages
and by decrypting cypher-texts built under available keys (no cryptanalysis at
all). Finally, synth uses available components to build messages by means of
concatenation or encryption, still under available keys.

Suppose that each event in the trace evsf carried not a cryptographic message
but some... bread, a ciabatta. Then, knows Spy evsf would be a set of ciabattas.
Suppose that ciabattas are one week old, hence too hard to be eaten. We could
then decide to grind them off finely into powder, and this is captured by set
analz(knows Spy evs) . If we want to mix this strange kind of flour again to
try and build bread again (ignoring other ingredients), then the resulting fresh
ciabattas would all be in the set synth(analz(knows Spy evs)) .

The definitions of such functions, of used and of the relevant types have been
published in many other places [4,5], but I want to stress the didactic value of
the definition of knows hence report it in Fig. 2. After justifying the declaration,
the focus turns to the primitive recursive style, with two rules. Rule knows_Nil

describes the knowledge that a generic agent A can form on observing an empty
trace. It reduces to the agent’s initial knowledge, formalised as initState A , but
it must be remarked that “state” is used loosely here and, in particular, it bears
no relation to the states underlying model checking.

The other rule pertains to a generic trace, and separates the case in which
agent A , whose knowledge is being defined, is the attacker from the case in
which she is not. For each of these, the definition emphasises the latest event
ev in the trace, which is then split up as trace ev # evs . It can be seen that
knowledge is evaluated accordingly to the specific event, which can be the sending
of a message, the reception of a message or a third type. This third type was
introduced by Paulson with the work on TLS of 1999 [9]. He needed to enable
agents to somewhat record the Master Secret of that protocol, and decided that
defining an additional event for agents’ notes was a convenient way.

I then take a good amount of time to describe why and how the definition
makes sure that the attacker knows everything that is sent by anyone or noted
by compromised agents, those in the set bad . This is the students’ first encounter
with such a set, and I will surprise them later showing that the set is only declared
but never ever defined: all reasoning that follows will be typically parameterised
over such a set. It means that the attacker has a full view of the network traffic.
Incidentally, the attacker does not need to learn the messages that are received
because these must have been sent in the first place, a theorem that can be
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proved thanks to the definition of rule Recp , already discussed. I need also time
to explain that any agent who is not the attacker only learns from messages that
she sends, receives or notes down herself, because, by being honest, she only has
a limited view of the network traffic.

consts
knows :: "agent ⇒ event list ⇒ msg set"

primrec
knows_Nil: "knows A [] = initState A"

knows_Cons: "knows A (ev # evs) =

(if A = Spy then

(case ev of

Says A’ B X ⇒ insert X (knows Spy evs)

| Notes A’ X ⇒ if A’∈bad then insert X (knows Spy evs)

else knows Spy evs

| Gets A’ X ⇒ knows A evs)

else

(case ev of

Says A’ B X ⇒
if A=A’ then insert X (knows A evs) else knows A evs

| Notes A’ X ⇒
if A=A’ then insert X (knows A evs) else knows A evs

| Gets A’ X ⇒
if A=A’ then insert X (knows A evs) else knows A evs))"

Fig. 2. Definition of function knows

However, no matter how long I spend to signify this definition, students will
be left thirsty for some form of computation. Tight in the mental shackles of
imperative programming, they may still strive to see this definition as a rewrit-
ing rule that will, by its application, drive and determine computation. A few
examples are due. Expression knows Spy (Says A B X # evs) will get rewritten,
by application of rule knows_Cons , as insert X (knows Spy evs) . I sometimes
need to stress that the resulting expression is simpler because knows is applied
to a shorter trace; and, once more, that this rewriting is computation.

“You see, this is the core of the Inductive Method in Isabelle, one rule to
capture Dolev-Yao, a bunch of rules for the entire formal protocol model!”.

2.9 The Basic Interaction with the Theorem Prover

With all instruments on the workbench, it is time to discuss how they can be
used practically in Isabelle. It must be noted that those instruments only form
the essentials of the Inductive Method, and that the full suite can be found
by downloading Isabelle, then inside the \src\HOL\Auth folder. Precisely, all
constituents of the Inductive Method are neatly divided into three theory files:
Message.thy , Event.thy and Public.thy . While the first two theory names are
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intuitive, the last perhaps is not fully so. In fact, it originally only contained
an axiomatisation of asymmetric, or public-key cryptography, while symmetric,
shared-key cryptography was in a separate file Shared.thy . However, Public.thy
now contains both versions, and the other file has been disposed with.

Students are now ready to download Isabelle, find these theory files and
familiarise with their contents. Depending on the available time, I may parse
the specification part of all three theories. Before continuing to the proof part, I
must introduce the fundamental proof methods, which can be applied by means
of Isabelle command apply, and outline what they do:

– simp calls the simplifier, namely the tool that applies term rewriting mean-
ingfully; for example, to operate the rewriting just discussed (Sect. 2.8), the
analyst needs to call apply (simp add:knows_Cons)

– clarify performs the obvious steps of a proof, such as applying the theorem
that deduces both p and q from p ∧ q;

– blast launches the classical reasoner, and the analyst may easily state extra
available lemmas for the reasoner to invoke;

– force combines the simplifier with the classical reasoner;
– auto is similar to force but, contrarily to all other methods, applies to the

entire proof state, namely to all subgoals to prove.

I purposely keep the discussion on the proof methods brief because I aim at
providing the students with something they can fire and see the outcome of. This
will favour their empirical assessment of the proof as it unfolds. Of course, each
method is very worth of a much deeper presentation, but this can be deferred
depending on the aim of the course module and the available time.

“And now you have commands to try and see marvellous forms of computa-
tion unfolding through a proof!”.

2.10 Proof Attempts

And finally comes the time to show students how the instruments just learned
can be used in practice over an example security protocol chosen from those
that have been treated in the Inductive Method. A good choice could be to
pick the theory for the original public-key Needham-Schröder protocol, theory
NS Public Bad.thy , which also shows how to capture Lowe’s attack.

I open the file and review the formal protocol model for the protocol. I
continue arguing that one of the main protocol goals is confidentiality and debate
how to capture it in the Inductive Method. If we aim at confidentiality of a nonce
N , we would like the attacker to be unable to deduce it from her malicious analysis
of the observation of the traffic. It means that we leverage a generic trace, then
apply knows and finally analz , and we would aim at Nonce N /∈ analz(knows Spy

evs) . After skipping on various lemmas in the file, I reach the confidentiality
theorem for the initiator’s nonce NA , quoted in Fig. 3, and there is a lot to discuss:
the preconditions of a trace of the protocol model ns public that features the
first protocol message, so as to pinpoint the nonce whose confidentiality is to
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be proved, NA ; the two involved peers assumed not to be compromised; spies

to be interpreted as a translation for knows Spy (due to backward compatibility:
Paulson originally defined spies [4], then I generalised it as knows [5]).

theorem Spy not see Na:

" [[Says A B (Crypt(pubEK B) {|Nonce NA, Agent A ]]) ∈ set evs;

A /∈ bad; B /∈ bad; evs ∈ ns public ]]
=⇒ Nonce NA /∈ analz (spies evs)"

apply (erule rev mp)

apply (erule ns public.induct, simp all, spy analz)

apply (blast dest:unique NA intro: no nonce NS1 NS2)+

done

Fig. 3. Confidentiality of the initiator’s nonce in NS Public Bad.thy

The main effort must be devoted to playing with and understanding the proof
script. The first proof method that is applied resolves the goal with rev mp , hence
I introduce it as an implementation of modus ponens with swapped precondi-
tions, then sketch the basics of resolution on the fly. Of course, I mostly leverage
the intuition behind. Suppose you want to get rich and you are so lucky as to find
a secret recipe that guarantees you that whatever you want to reach, you just
need to do a couple of things to reach it. What would you then do? You would
engage to accomplish that very couple of things. The same reasoning is imple-
mented here through the first command, which leaves us with the preconditions
of rev mp left to prove.

I then dissect the second command as a condensed syntax to apply three
proof methods. The first resolves the only subgoal currently in the proof state
with the inductive proof principle that Isabelle instantiates on the inductive
protocol definition. Isabelle builds it automatically and makes it available as a
lemma on top of any inductive definition; it is ns public.induct in this case.

Here comes the general meta strategy that, after induction, we normally
apply simplification, namely term rewriting, and then classical reasoning. This
justifies simp all , which solves the Base subgoal. And we are left facing the Fake
case, which Paulson designed a special method to solve, spy analz . It may be
safely applied as a black box for the time being, but it can be dissected, if time,
by following another article of mine [10].

The next part of the lecture explains the two lemmas that are applied by
blast , discussing the general differences between a destruction rule and an intro-
duction rule, and understanding that the + symbol reiterates the same command
on all subgoals. It is didactic to assess which subgoal really requires application
of which lemma, so that students also familiarise with forward-style reasoning.

Finally, the same argument is repeated on the confidentiality conjecture on
the responder’s nonce NB . The proof attempt for this conjecture, omitted here for
brevity, cannot be closed, and we are left with a subgoal that describes Lowe’s
attack whereby the attacker learns NB . It is normally illuminating to note how
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the prover suggests, actually teaches us, scenarios that are so peculiar that we
may not have known them by intuition. Every time such a subgoal remains, and
we decode that the reasoning cannot be taken forward, then either we need to
change line of reasoning entirely or we understand that the scenario indicates an
attack (the very attack that contradicts the conjecture).

3 General Lessons Learned and Conclusions

Formal methods are great help over innumerable application scenarios, and
the Inductive Method remains a very effective tool that may at least serve
exploratory reasoning on new systems or security goals, possibly to inspire the
subsequent implementation of ad hoc tools.

In particular, Paulson also formalised the notion of an Oops event ever since
the inception of the Inductive Method to allow and agent to arbitrarily lose a
secret to the attacker, without any particular precondition. The socio-technical
understanding of cybersecurity and privacy is a very hot area today, grounding
non-functional properties not only on technical systems such as security protocols
but also on the use that humans may make of them. I believe that the Oops event
is the unique ancestor of all recent works in this area.

The problem treated in this paper was how to transmit the above messages
to post-graduate students with an embodied preconception that they do not like
theory. While it may be obvious that the contents must be taught gently and
incrementally, what I find less obvious is to convince them that they already
somewhat used formal methods although they did not use to call them so.

Another far from obvious finding I distilled over the years towards teaching
this discipline is the critical review, brought through the creases of my decalogue,
of some useful notions they may already have. For example, induction, or just its
basics, must be understood profoundly. And the essence of functional program-
ming must be leveraged for the students’ proof experience to near their embodied
imperative programming experience. I myself insisted on teaching them.
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