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Abstract. A game between software vendors, heterogeneous software
users, and a hacker is introduced in which software vendors attempt
to protect software users by releasing updates, i.e. disclosing a vulner-
ability, and the hacker is attempting to exploit vulnerabilities in the
software package to attack the software users. The software users must
determine whether the protection offered by the update outweighs the
cost of installing the update. Following the model is a description of why
the disclosure of vulnerabilities can only be an optimal policy when the
cost to the hacker of searching for a Zero-Day vulnerability is small. The
model is also extended to discuss Microsoft’s new “extended support”
disclosure policy.
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1 Introduction

In May of 2017 the WannaCry attacks infected over 300,000 systems in 150 coun-
tries and the approximate estimated cost that these attacks is $4 billion. One
month later, the NotPetya attacks, another major global attack that primarily
targeted Ukrainian systems, began. The approximated costs of the NotPetya
attacks were even larger than the WannaCry attacks and have been estimated
at around $10 billion. Following the NotPetya attacks, the Retefe banking Tro-
jan began leveraging the EternalBlue exploit in September. Finally, in August
of 2018 the Taiwan Semiconductor Manufacturing Company, an Apple chip sup-
plier, was hit by a new variant of the WannaCry attack that cost the company
approximately $170 million. The problem was not that Windows is an inher-
ently flawed system, but instead that these attacks could have been avoided if
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users/firms had only updated. In March of 2017, Microsoft patched this vulner-
ability in their monthly, second Tuesday, update.

This is not just a problem with Microsoft software, every piece of software, no
matter what care is taken by a software vendor, is riddled with vulnerabilities,
which leaves users of the software open to attack by hackers. To protect users,
software vendors release patches to address these found vulnerabilities, but this
is a double-edged sword. Releasing updates, a.k.a. vulnerability disclosure, may
in fact increase the susceptibility of current users to attack, in particular, those
who chose not to immediately install the updates. This is due to the fact that
the update can be reverse engineered quite easily by hackers. These types of
hacks have been gaining in prevalence over the last few of years.

In a seminal paper in the field of vulnerability disclosure, [1] asked if finding
vulnerabilities is optimal for social welfare. Since then, vulnerability disclosure
policy has been greatly debated in the literature. The model outlined in this
paper explores the decisions made by both the network of users and a hacker
given the different policy regimes that could be implemented by the vendor. The
interaction between vendors and software users was first modeled by [2], in which
they find that vendors will always want to delay the release of patches, but this
action is not socially optimal. However, [2] do not pose an answer to whether
a vendor should engage in disclosing vulnerabilities, which is the main focus of
this paper.

One of the first papers on the economic modeling of hacker behavior was
developed in [3], where they attempt to estimate the effects of the fixed costs
of hacking on the incentives of a profit maximizing hacker. Much of the recent
literature that has attempted to model hacker behaviour, e.g. see [4], follow
models similar to the Becker model of criminal behavior [5], but this approach
assumes that: (i) Law enforcement can easily track and find a hacker and (ii)
Hackers can easily be prosecuted. These assumptions are the exception, not the
rule. To break from this convention, the hacker is modeled as a profit maximizing
agent in order to contribute hacker behavior into the vulnerability disclosure
debate.

Both the network framework of software users and the hacker behaving as
a profit maximizing agent are extensions of the work in [6], where they focus
on the welfare effects of disclosure policy for a representative set of users with
the vendor facing a monopolistically competitive market. This paper follows the
notation in [6] rather closely so as to maintain a consistent notational scheme
within the vulnerability disclosure literature.

Others have examined how attack propensity changes under different disclo-
sure regimes (e.g. [7]), and have found that releasing patches tends to increase the
number of attacks. This model identifies the reasons for this observed increase
in attacks as being driven by the decisions of both the hacker and the software
users. The hacker’s decision is driven by parameters such as the probability of
a successful attack, as well as the costs associated of finding new vulnerabilities
in the software package. The software users must balance the value they place
on using the software relative to the expected damages of an attack and the



120 T. J. Canann

cost of updating their machine. Therefore, this model is able to give a causal
relationship between attack propensity and disclosure regimes which strengthen
the story behind these correlations.

In order to describe the best type of disclosure policy, a model of a het-
erogeneous network made up of an interconnected set of software users that are
attempting to defend themselves against a profit-maximizing hacker is developed
in this paper. Within my model, there are three decisions to be made: (i) The
strategy of attack to be played by the hacker, (ii) The optimal disclosure policy,
and (iii) The updating decision made by the software user. Following the model
setup, welfare maximizing policies are formulated to decrease a hacker’s efforts
in infiltrating networks and increase the software users’ utility.

The optimal strategy for the software vendor, the optimal policy, is to max-
imize the egalitarian sum of utilities of the software users, i.e. the vendor acts
as a social planner. The optimal policy is dependent both on the distribution
of software users on the network and how costly finding a previously unknown
vulnerability, i.e. a Zero-Day vulnerability, is for the hacker. Software users that
do not expect to bear the majority of the burden of an attack, known as low-type
users, do not want vulnerabilities to be disclosed, i.e. a Non-Disclosure policy,
since they will not update their machines, deeming it too costly. Also, if the
cost of searching for a Zero-Day exploit is higher than the expected payoff of
the exploit, then the hacker is not willing to expend the energy searching for
a Zero-Day, and Non-Disclosure is the optimal policy. Therefore, the only case
in which Disclosure can be an optimal policy is when search costs are low and
there are enough users that desire to update their machines.

Starting in January of 2020, Microsoft will no longer support Windows 7,
unless the users enroll in Extended Support1. The final result of the paper is
that Microsoft’s new policy increases the cost of exploiting the disclosed vulner-
ability, and, even though the policy increases the cost of updating, under certain
parameter values the policy causes the software uses to receive higher payoffs.
This new approach to disclosure policy can increase the overall welfare relative
to the policy of disclosing all vulnerabilities.

The sections of the paper are as follows: the model is introduced as well as
the first main contribution: A discussion of optimal policy when the hacker are
decision making agents in Sect. 2. Following is the newly proposed policy by
Microsoft in Sect. 4, then concluding is in Sect. 5.

2 Static Game

The players within this static game are the software vendor, a hacker, and the
software users. The software vendor follows a welfare maximizing disclosure pol-
icy, and thus determines the rules of the game. The hacker maximizes his profits
by choosing a hacking strategy of exploiting either a Zero-Day, the patch released
by the software vendor, i.e. an N-Day attack, or he can exit the game. Lastly,
1 See https://www.microsoft.com/en-us/microsoft-365/blog/2018/09/06/helping-

customers-shift-to-a-modern-desktop/.

https://www.microsoft.com/en-us/microsoft-365/blog/2018/09/06/helping-customers-shift-to-a-modern-desktop/
https://www.microsoft.com/en-us/microsoft-365/blog/2018/09/06/helping-customers-shift-to-a-modern-desktop/
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each software user must decide whether or not to update her machine if a vul-
nerability is disclosed, i.e. an update is released.

Table 1. Notations used in the paper

α Probability the software vendor finds a vulnerability, α ∈ (0, 1)

D, ND Disclosure or Non-Disclosure policy, respectively

I = {1, . . . , m} Set of interconnected software users

θ Set of software user weights, θ = {θ1, . . . , θm}
θi ith software user’s weight, 0 < θ1 ≤ θ2 ≤ · · · ≤ θm < 1

θiv Value obtained by the ith software user for using the software package, v > 0

θiD Damage done by the hacker to the ith software user via a hack, D > 0

cu Opportunity cost of updating, cu > 0

u, nu Software user choice of whether to update or not update, respectively

δ, ̂δ Probability the hacker successfully finds a Zero-Day under D and ND, respectively, δ > ̂δ

cs Opportunity cost of searching for a Zero-Day, cs > 0

E, S, X Hacker choice to (E)xploit the N-Day, (S)earch for a Zero-Day, or e(X)it the game

The vendor of the software package is only concerned with maximizing soft-
ware user welfare in an egalitarian manner, similar to a social planner. The
vendor is unable to detect all vulnerabilities before selling the software, but
the vendor, under a Disclosure policy, will attempt to find these vulnerabilities
ex post. The probability of finding a vulnerability, α, can either be thought of
as individual vendors searching for vulnerabilities by themselves or as bounty
systems such as Microsoft’s Bounty System (E.g. See: [8–11]).

The software user’s weight parameter in Table 1 can be thought of as the
network centrality of the software user, or as how desirable the information found
on the software user’s machine is to the hacker. Due to the hacker attempting
to exploit the network and the inability of vendors to solve all vulnerabilities ex
ante, each software user is vulnerable to an attack. The hacker is only able to
extract as much information as is available to software user i. This damage can
also be thought of a direct transfer from the software user to the hacker when
the software user is hacked.

The vendor does not usually charge the software users to install the updates,
but the updates are still costly in terms of opportunity costs, i.e. the time to
install the update. Updates often require software users to stop working or even
shutdown their machines, thus cu > 0. For simplicity, this cost is assumed to be
a fixed cost to be paid if the software user decides to update. To model the fact
that some people do not update under any policy and there exists at least one
software user that might update, the following assumption is made:

Assumption 1. Let θ1 < cu

v+D < θm.

A single hacker attempts to exploit vulnerabilities to maximize profits via
gaining access to the network of software users. The hacker’s profits function is
dependent on both the chosen policy and the software users’ optimal updating
decision. The hacker has two types of exploitation available to them, he is able
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to hack via a known vulnerability, an N-Day exploit, or by a previously unknown
vulnerability, a Zero-Day attack. The information available to the hacker consists
of the policy played by the vendor, the distribution of software user weights, the
strategies available to the software users, and the probability of a successful
Zero-Day attack.

Hacking, however, is not cost-less. A constant search cost, or opportunity
cost of searching for a Zero-Day, is assumed. If the hacker decides to exploit
a known vulnerability, meaning to attack vulnerability that was just patched
by the vendor, then the hacker’s cost of hacking is assumed to be zero. This
is to account for the relative ease of reverse engineering an update to find the
vulnerability in the code.

Under a Non-Disclosure regime, the hacker is only able to search for Zero-
Day exploits or exit the game; while the software user makes no decision under
this regime. If policy dictates that a Disclosure regime is optimal, then the
hacker can still search for Zero-Day exploits or exit the game as in the Non-
Disclosure regime, but he can also choose to exploit the updated vulnerability
on all machines that have not had the patch installed. Given a disclosed vul-
nerability, each software user must decide whether to install the update on her
machine.

2.1 Non-Disclosure Regime

If the vendor chooses ND, or is forced to withhold this information, then software
users do not make any decisions, they just use the software to gain, at most, vθi.
The hacker’s action set is defined as And ∈ {S,X}. The utility payoff of software
user i, U i

nd : And × θi → R, is equal to vθi if they are not exploited or −Dθi if
the hacker was successful in finding a Zero-Day.

Table 2. Hacker expected payoff functions: Non-Disclosure

Hacker action Payoff

(S) ΠND
S (θ) = δ(n)

[
D

∑
i θi

] − cs

(X) ΠND
X (θ) = 0

Via Table 2, the hacker will only choose (S) if the cost of searching for a
Zero-Day is low, i.e. the expected payoff is positive. If cs < δD

∑
i∈I θi, then the

Nash Equilibrium is that hacker will search for Zero-Days, A∗
nd = (S). However,

if cs > δD
∑

i∈I θi, then under Non-Disclosure, the unique Nash equilibrium is
to exit the game, A∗

nd = (X).

2.2 Disclosure Regime

If the vendor chooses D, the vendor releases updates every time they find a
vulnerability. Each software user then must choose whether to update, and thus
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endogenously define the two sets Γnu and Γu as the set of software users that
do not update and the set of software users that do update, respectively, and
ξ = |Γu|, the number of software users that update under a Disclosure policy.
When a software user chooses to update, she protects her machine from N-
Day exploits, but is still vulnerable to Zero-Days. Due to the costly nature of
updating, some software users may choose not to update leaving their computers
open to both Zero-Day and N-Day hacks (E.g. See [12]).

Now there are two stages within the game, the first being the possible release
of updates by the vendor, which happen with probability α, followed by the
game between the hacker and the software users. When the vendor is unable to
find a vulnerability, the game is identical to that of the Non-Disclosure regime
in Sect. 2.1. The hacker’s action set when the vendor is unable to find a vul-
nerability within the Disclosure regime is denoted as A1−α

d ∈ {S,X}. When the
vendor finds a vulnerability and releases an update, then both the hacker and
the software user must choose their actions, Aα

d ∈ {E,S,X} and Ai ∈ {u, nu},
respectively.

The expected utility of the software user i is defined as the function U i
d :

Aα
d ×A1−α

d ×Ai ×θi → R, where she receives vθi if her machine is not exploited,
−Dθi if the hacker is successful in attacking her machine, and −cu if she decides
to update.

Table 3. Hacker expected payoff functions: Disclosure

Hacker action Payoff

(E, S) ΠD
(E,S)(θ, {Γu, Γnu}) = α

[
D

∑
i∈Γnu

θi

]
+ (1 − α)

[
δD

∑
i θi − cs

]

(E, X) ΠD
(E,X)(θ, {Γu, Γnu}) = α

[
D

∑
i∈Γnu

θi

]

(S, S) ΠD
(S,S)(θ, {Γu, Γnu}) =

[
αδ̂ + (1 − α)δ

]
D

∑
i θi − cs

(S, X) ΠD
(S,X)(θ, {Γu, Γnu}) = α

[
δ̂D

∑
i θi − cs

]

(X, S) ΠD
(X,S)(θ, {Γu, Γnu}) = (1 − α)

[
δD

∑
i θi − cs

]

(X, X) ΠD
(X,X)(θ, {Γu, Γnu}) = 0

There are three main drivers of the Nash equilibria under Disclosure:

(a) Do there exist any software users that choose not to update when an update
is released? (Notice that this is always satisfied via Assumption 1.)

(b) If there is no update released, does the cost of finding a Zero-Day exceed
the expected profits of searching? I.e.

cs ≶ δD
∑

i∈I

θi. (1)
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(c) If a vulnerability is disclosed, does the cost of finding a Zero-Day exceed the
expected profits of searching? I.e.

cs ≶ δ̂D
∑

i∈I

θi. (2)

The first case to examine is when the cost of searching is high, i.e. cs >
δD

∑
i θi. Since both the hacker and the software users know whether an update

has been released, then the solution can be split into the Non-Disclosure and the
Disclosure sub-games. Similar to the Non-Disclosure case when there are high
search costs, in the Disclosure game when no vulnerability is found A1−α∗

d = (X)
is the equilibrium of the sub-game.

Since the search costs are high for the hacker and there exists at least one
software user that does not update, then Aα∗

d = (E) is the only strategy to
survive elimination of strictly dominant strategies for the hacker, and is thus the
only strategy in the best response for the hacker. Given the hacker strategy (E),
the best response of software user i is to not update, i.e. i ∈ Γ ∗

nu, if θi < cu

v+D .
Otherwise, for software user j such that θj > cu

v+D , updating is optimal, j ∈ Γ ∗
u .

If θi = cu

v+D , then she is indifferent between any mixture pj ∈ [0, 1] of Update
and Not Update.

Therefore, the Nash equilibrium of the Disclosure game under high search
costs is

((Aα∗
d , A

(1−α)∗
d ), (A∗

i )i∈I) = ((E,X), (nu)i∈Γ ∗
nu

, (u)j∈Γ ∗
u
) (3)

Where Γ ∗
nu =

{
i ∈ I|θi < cu

v+D

}
and Γ ∗

u =
{

j ∈ I|θj > cu

v+D

}
.

The next case, denoted the medium search cost case, is when searching is
profitable when the vendor is unable to find the vulnerability but not when the
vulnerability is disclosed by the vendor, i.e. δ̂D

∑
i∈I θi ≤ cs < δD

∑
i∈I θi. If

the vendor is unable to find a vulnerability, the cost of searching is still exceeded
by the expected profits of searching, and thus A

(1−α)∗
d = (S) is his best response.

However, when the vendor finds a vulnerability, then the expected profits of (S)
are surpassed by the cost of (S), then the action of (S) when a vulnerability
is disclosed yields a strictly lower payoff then (X). Since there always exist
software users that do not update, then the best action for the hacker to play is
Aα∗

d = (E).
Then, notice that all software users such that θi < cu

v+D will be in Γ ∗
nu, and

all software users θj > cu

v+D will be in Γ ∗
u . Therefore, the Nash equilibrium of

the medium search cost case is

((Aα∗
d , A

(1−α)∗
d ), (A∗

i )i∈I) = ((E,S), (nu)i∈Γ ∗
nu

, (u)j∈Γ ∗
u
) (4)

Where Γ ∗
nu =

{
i ∈ I|θi < cu

v+D

}
and Γ ∗

u =
{

j ∈ I|θj > cu

v+D

}
.

The final case is to determine what happens when searching yields positive
profits under both branches of the game, i.e. cs < δ̂D

∑
i θi. In this low search

cost case, with probability 1 − α, we obtain the same solution as in the Non-
Disclosure game in Sect. 2.1, i.e. A

(1−α)∗
d = (S).
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Next is to determine the best response of both the hacker and each software
user when an update is released. The first thing to notice is that (X) is never a
best response since exiting gives a payoff of zero while (S) and (E) both yield
positive expected payoffs. Given the hacker strategy (E), i ∈ Γ ∗

nu, is the software
user i’s best response so long as θi < cu

v+D .
If θj > cu

v+D , then software user j’s best response is j ∈ Γ ∗
u . Whenever the

hacker plays (S), updating will not protect the software user from a hack, and
thus, i ∈ Γ ∗

nu is the best response for all i ∈ I.
Allowing for the hacker to use mixed-strategies introduces the probability

ρ ∈ (0, 1), where ρ is the probability that the hacker chooses (E) and (1 − ρ)
gives (S). Using the expected payoffs of the software users given ρ, then any
software user i’s best response is i ∈ Γ ∗

nu when θi < cu

ρ(v+D) . Notice that for
any ρ ∈ [0, cu

θm(v+D) ), (nu) is the best response for all software users. For all
software users j such that θj > cu

ρ(v+D) , j ∈ Γ ∗
u is their optimal action. For any

software user k such that θk = cu

ρ(v+D) , the software user is indifferent between
updating and not updating, and will mix with probability pk ∈ [0, 1], where pk

is the probability of choosing (u).
Now to examine the best response of the hacker when a vulnerability is

disclosed given the software users’ strategies. If all of the software users update,
i.e. Γu = I, then the best response for the hacker is Aα∗

d = (S). Similarly, if the
software user strategy is Γnu = I, then Aα∗

d = (E) is the only strategy in the
best response for the hacker.

Due to the monotonicity of the software users, and thus their optimal actions,
all that is left to do is to split I between high- and low-type users. Define Ω ≡{

j ∈ I|θj ≥ cu

v+D

}
as the set of high-type software users, i.e. the users that will

update if the hacker chooses (E). For some k ∈ Ω, define Γ k
nu = {i ∈ I|θi < θk}

and Γ k
u = {j ∈ I|θj > θk}. Given a software user strategy of (Γ k

nu, (pk(u),
(1 − pk)(nu)), Γ k

u ), for some mixed strategy pk ∈ [0, 1] for software user k, then
the hacker’s expected payoff of mixing with ρ ∈ [0, 1] between exploiting and
searching is

ρ

[

D
∑

i∈Γ k
nu

θi + (1 − pk)Dθk

]

+ (1 − ρ)
[

δ̂D
∑

i∈I

θi − cs

]

(5)

For all ρ ∈ [0, 1], if

cs > δ̂D
∑

i∈I

θi − D
∑

i∈Γ k
nu

θi−
(
1 − pk

)
Dθk (6)

then ρ∗ = 1 is the best response for the hacker given the software users’ strategy.
However, if for every value ρ ∈ [0, 1],

cs < δ̂D
∑

i∈I

θi − D
∑

i∈Γ k
nu

θi−
(
1 − pk

)
Dθk (7)

then the hacker will send ρ∗ to zero.
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The last case is if there exists a pk ∈ [0, 1] such that Inequality 6 holds with
equality, i.e.

cs = δ̂D
∑

i∈I

θi − D
∑

i∈Γ k
nu

θi−
(
1 − pk

)
Dθk (8)

then any ρ∗ ∈ [0, 1] is the hacker’s best response to the software users’ strategy
of (Γ k

nu, (pk(u), (1 − pk)(nu)), Γ k
u ).

Theorem 1. Let kmin ∈ Ω be the minimal software user in Ω. If Inequality 6
holds for pkmin

= 1, then the Nash Equilibrium is

((Aα∗
d , A

(1−α)∗
d ), (A∗

i )i∈I) = ((E,S), (nu)i∈Γ ∗
nu

, (u)j∈Γ ∗
u
) (9)

Where Γ ∗
nu =

{
i ∈ I|θi < cu

v+D

}
and Γ ∗

u =
{
i ∈ I|θi > cu

v+D

}
.

Otherwise, there exists a pivotal software user, k∗ ∈ Ω, and a mixed strategy
for software user k∗, p∗

k∗ ∈ [0, 1], such that Eq. 8 holds, and the Nash equilibrium
is

((Aα∗
d , A

(1−α)∗
d ), (A∗

i )i∈I) (10)
= ((ρ∗(E,S), (1 − ρ∗)(S, S)), (nu)i∈Γ k∗

nu
, (p∗

k∗(u), (1 − p∗
k∗)(nu)), (u)j∈Γ k∗

u
)

Where ρ∗ = cu

θk∗ (v+D) , Γ k∗
nu = {i ∈ I|θi < θk∗}, and Γ k∗

u a = {i ∈ I|θi > θk∗}.

3 Welfare Analysis

In this section, the “Optimal Disclosure Policy” is first defined followed by solv-
ing for the optimal policy for each of the different search cost scenarios found in
Sect. 2.

Definition 1. The optimal policy Ψ∗ ∈ {Disclosure,Non−Disclosure} is cho-
sen such that:

Ψ∗ = argmaxψ∈{d,nd}

{
∑

i∈I

Ud(Aα∗
d , A

(1−α)∗
d , A∗

i , θi),
∑

i∈I

Und(A∗
nd, θi)

}

(11)

Where ((Aα∗
d , A

(1−α)∗
d ), (A∗

i )i∈I) and (A∗
nd) are the Nash equilibria under Dis-

closure and Non-Disclosure, respectively.

Under High Search Costs, recall that in the Nash equilibrium the hacker
chooses to exploit the N-Day under Disclosure and to exit the game under Non-
Disclosure. Under Disclosure, all low-type software users, the software users in
Γ ∗

nu, are hacked if a vulnerability is found; while all other software users must
pay the cost of updating, which is assumed to be strictly greater than zero.
Under Non-Disclosure, the hacker exits the game, and all software users obtain
θiv. Then the optimal policy is Non-Disclosure.

If δ̂D
∑

i∈I θi ≤ cs < δD
∑

i∈I θi, i.e. the medium search cost case, then
under a Non-Disclosure regime the hacker searches for a Zero-Day. However,
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under Disclosure, the hacker chooses to exploit the released vulnerability. Then,
solving for the optimal policy is dependent on

∑

i∈Γ ∗
nu

θi + ξ∗ cu

v + D
≶ δ

∑

i∈I

θi (12)

As the expected losses from a Zero-Day exceed the cost of the low type soft-
ware users being hacked since they did not update and the cost of updating
for all ξ∗ = |Γ ∗

u | of the high type software users, then Disclosure is the opti-
mal policy. Thus, the optimal policy under medium search costs is Disclosure if∑

i∈Γ ∗
nu

θi +ξ∗ cu

v+D < δ
∑

i∈I θi. Otherwise, the optimal policy is Non-Disclosure
if

∑
i∈Γ ∗

nu
θi + ξ∗ cu

v+D > δ
∑

i∈I θi.

The last case to examine is that of low search costs. Recall that the Nash
equilibrium of the Non-Disclosure game is A

(1−α)∗
d = (S), while the Nash equi-

librium of the Disclosure game takes the form of mixing between (E) and (S) for
the hacker while the software users split into (Γ k∗

nu, (p∗
k(u), (1 − p∗

k)(nu)), Γ k∗
u ).

The analysis begins with the optimal policy for all low-type software users, fol-
lowed by the optimal policy for all high-type software users. To conclude the
section the combined results of both high- and low-type software users are used
to find the optimal policy.

For all software users i ∈ Γ k∗
nu, then we are able to analyze which policy they

would prefer by solving

−δD
∑

i∈Γ k∗
nu

θi+(1 − δ) v
∑

i∈Γ k∗
nu

θi ≶ −ρ∗D
∑

i∈Γ k∗
nu

+(1−ρ∗)

⎡

⎣−δ̂D
∑

i∈Γ k∗
nu

θi + (1 − δ̂)v
∑

i∈Γ k∗
nu

θi

⎤

⎦

(13)

Disclosure is the optimal policy for all software users that do not update so long
as

ρ∗ <

[
−δ̂D + (1 − δ̂)v

]
− [−δD + (1 − δ)v]

(1 − δ̂)(v + D)

⇐⇒ ρ∗ <
δ − δ̂

1 − δ̂

(14)

Notice that both the left-hand side and the right-hand side are strictly posi-
tive. Thus, the software users that do not update, software users in Γ k∗

nu, will
sometimes want the policy to be Disclosure.

High-type software users, j ∈ Γ k∗
u , then face the welfare decision of

−δD
∑

j∈Γ k∗
u

θj + (1 − δ) v
∑

j∈Γ k∗
u

θj ≶ρ∗
(

v
∑

j∈Γ k∗
u

θj − ξcu

)

+ (1 − ρ∗)

⎡

⎣−δ̂D
∑

j∈Γ k∗
u

θj + (1 − δ̂)v
∑

j∈Γ k∗
u

θj − ξ∗cu

⎤

⎦

(15)



128 T. J. Canann

For software users i ∈ Γ k∗
nu, Disclosure decreases the probability of being hacked

by a Zero-Day, but it also increases their probability of being hacked since the
hacker can exploit the N-Day vulnerability that these software users are not
willing to defend against. However, software users j ∈ Γ k∗

u are more likely to
want a Disclosure regime since they both obtain the benefit of hackers having
less vulnerabilities to search over as well as protection from the N-Day exploits
since they will sometimes update.

Now to examine the welfare over all the software users by comparing the
sum of all software users’ utility functions. The optimal policy condition can be
written as

∑

i∈Γ k∗
nu

θi +
(

D

v + D
− δ̂ + ξ∗

)

θk ≶
(

δ − (1 − ρ∗)δ̂
ρ∗

) ∑

i∈I

θi (16)

Hence, the optimal policy under low search costs is Disclosure if
∑

i∈Γ k∗
nu

θi +
(

D
v+D − δ̂ + ξ∗

)

θk <

(
δ−(1−ρ∗)̂δ

ρ∗

)
∑

i∈I θi, or the optimal policy is Non-

Disclosure if
∑

i∈Γ k∗
nu

θi +
(

D
v+D − δ̂ + ξ∗

)

θk >

(
δ−(1−ρ∗)̂δ

ρ∗

)
∑

i∈I θi.

4 Microsoft’s “Extended Support”

This section contains an analysis of the forthcoming change to Microsoft 7 and
10’s updating procedures and how this change alters the game described in
Sects. 2 and 3. The game is altered such that the software vendor, Microsoft,
introduces a new monthly charge to receive updates. Microsoft intends to imple-
ment this policy starting on January 14th, 2020, which is the same day that
Windows 7 will no longer be supported. But with a large number of Windows
users still using Windows 7, Microsoft needed to come up with a policy to protect
these users and maintain their market share (Table 4).

Table 4. New notation for Microsoft’s “Extended Support”

φu New service charge paid by the software user and hacker to access the update
(also called the exploitation cost), φu > 0

cv Cost to switch to the new version of the software package, cv > 0

v Software user’s choice to install the new version of the software package

Updating is no longer the only available choice to the software user. The
software user can also choose to shift toward using a different version, i.e. Win-
dows 10, for which the software user must pay a cost cv > 0. If the software user
shifts toward using the new version of the software, then the hacker is not able
to attack the software user, not even via Zero-Days.
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Assumption 2. Let cv

δ(v+D) ∈ (θ1, θm).

If the hacker wants to gain access to the disclosure of the vulnerability, the
hacker must pay the subscription fee for the “Extended Support”, φu. However,
the hacker does not have to pay cu since the hacker could easily enroll an old
computer in the updating scheme in order to be notified of vulnerabilities. Con-
sequently, the cost of exploiting N-Days has increased since φu > 0. To be clear,
Microsoft’s new policy is fascinating since it has the potential to increase the
cost of exploiting N-Days while also decreasing the effectiveness of Zero-Days
against Windows 7.

Following the notation of the game in Sect. 2, this new policy can be explicitly
defined. The first case to be described is the Non-Disclosure regime. The vendor
was unable to find a vulnerability, and thus the hacker is only able to an action
A

(1−α)
M ∈ {S,X}. Searching for a Zero-Day is not as effective as in the above

games due to the fact that software users are now able to change their software
version to avoid being attacked. The software user choice is an action A

(1−α)
M,i ∈

{v, nu}. The utility of software user i, U i
M ;nd : A

(1−α)
M × A

(1−α)
M,i × θi. All players

that use the old software are contained in Γnu, and all software users that switch
versions are in Γv.

The next step is to formalize the Disclosure sub-game. The hacker has the
same set of actions in this case as in the Disclosure case above to pick from:
Aα

M ∈ {E,S,X}. The action set for the software users is now Aα
M,i ∈ {v, u, nu}.

The utility of software user i is now U i
M ;d : Aα

M × Aα
M,i × θi.

Table 5. Hacker expected payoff functions: Microsoft

Hacker action Payoff

(E, S) ΠM
(E,S)(θ, {Γnu, Γu, Γv}) = α

[

D
∑

i∈Γnu
θi − φu

]

+ (1 − α)
[

δD
∑

i∈Γnu∪Γu
θi − cs

]

(E, X) ΠM
(E,X)(θ, {Γnu, Γu, Γv}) = α

[

D
∑

i∈Γnu
θi − φu

]

(S, S) ΠM
(S,S)(θ, {Γnu, Γu, Γv}) = α

[

̂δD
∑

i∈Γnu∪Γu
θi

]

+ (1 − α)
[

δD
∑

i∈Γnu∪Γu
θi

]

− cs

(S, X) ΠM
(S,X)(θ, {Γnu, Γu, Γv}) = α

[

̂δD
∑

i∈Γnu∪Γu
θi − cs

]

(X, S) ΠM
(X,S)(θ, {Γnu, Γu, Γv}) = (1 − α)

[

δD
∑

i∈Γnu∪Γu
θi − cs

]

(X, X) ΠM
(X,X)(θ, {Γnu, Γu, Γv}) = 0

There are five main drivers of the Nash equilibria in this model: the three
stated in Sect. 2 and the following two conditions.

(d) Does the cost of updating exceed the cost of switching to the new version of
the software package? I.e.

cv ≶ cu + φu (17)
(e) Does the cost of searching for an N-Day exceed the payoff?

φu ≶ D
∑

i∈I

θi (18)
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When search costs exceed the expected payoff of search under the Non-
Disclosure sub-game, the hacker will always play (X). Given the hacker strategy
of exiting the game, all software users will not update. Therefore, the equilibrium

is
(

A
(1−α)∗
M ,

(
A

(1−α)∗
M,i

)

i∈I

)

= ((X), (nu)i∈I).

If cs < δD
∑

i∈I θi, then via the best responses of both software users and
the hacker, the Nash equilibria under medium search costs are as follows in
Theorem 2. Define ΩM ≡

{
k ∈ I|θk ≥ cv

δ(v+D)

}
.

Theorem 2. Let kmin ∈ ΩM be the minimal software user in ΩM . Then under
low search costs in the Non-Disclosure sub-game, if

cs < δD
∑

i∈I\ΩM

θi (19)

Then the Nash equilibrium is
(

A
(1−α)∗
M ,

(
A

(1−α)∗
M,i

)

i∈I

)

=
(
(S), ((nu)

i∈Γ
kmin,nd∗
nu

, (v)
j∈Γ

kmin,nd∗
v

)
)

(20)

Where Γ kmin,nd∗
nu = {i ∈ I|θi < θkmin

}, and Γ kmin,nd∗
v = {j ∈ I|θj ≥ θkmin

}.
Otherwise, there exists a pivotal software user k∗ ∈ ΩM and a mixed strategy

for software user k∗ strategy, pv∗
k∗ ∈ [0, 1], such that

cs = δ

⎛

⎝D
∑

i∈Γ k∗,nd∗
nu

θi + (1 − pv∗
k )Dθk∗

⎞

⎠ (21)

Then the Nash equilibrium is
(

A
(1−α)∗
M ,

(
A

(1−α)∗
M,i

)

i∈I

)

(22)

=
(

(
ρ∗(S), (1 − ρ∗)(X)

)
,
(
(nu)

i∈Γ k∗,nd∗
nu

, (pv∗
k∗(v), (1 − pv∗

k∗)(nu)), (v)
j∈Γ k∗,nd∗

v

)
)

Where ρ∗ = cv

θk∗δ(v+D) , Γ k∗,nd∗
nu = {i ∈ I|θi < θk∗}, and Γ k∗,nd∗

v =
{
j ∈ I|

θj > θk∗
}
.

Now to solve for the Nash equilibria under the Disclosure sub-game. Notice
that both the hacker and the software users have three actions they could each
take. In Sect. 2.2, the equilibria cases followed from the relation between the cost
of searching and the expected payoffs from searching. However, due to the new
action available to the software users, (v), and the enrollment fee, φu, there now
exist extra cases dependent on Eqs. 17 and 18.

If there are both high or medium search costs and high exploitation costs,
i.e. cs > δ̂D

∑
i∈I θi and φu > D

∑
i∈I θi, then notice that both searching for

Zero- and N-Days are too costly, therefore, the hacker will always exit the game.



Toward a Theory of Vulnerability Disclosure Policy: A Hacker’s Game 131

Given this strategy, the workers will all not update. Hence, the Nash equilibrium
is (Aα∗

M , (Aα∗
M,i)i∈I) = ((X), (nu)i∈I).

The last case to examine is when the exploitation costs of the N-Day are low.

Theorem 3. If cs > δ̂D
∑

i∈I θi and φu ≤ D
∑

i∈I θi, while the software users
face cv < cu + φu, and

φu < D
∑

i∈I\ΩM

θi (23)

Then the Nash equilibrium is

(Aα∗
M , (Aα∗

M,i)i∈I) =
(

(E),
(
(nu)i∈Γ d∗

nu
, (v)j∈Γ d∗

v

)
)

(24)

Where Γ d∗
nu = {i ∈ I \ ΩM} and Γ d∗

v = {j ∈ ΩM}.
Otherwise if cs > δ̂D

∑
i∈I θi and φu ≤ D

∑
i∈I θi, while the software users

face cv < cu + φu, and there exists k∗ ∈ ΩM and a mixed strategy for software
user k∗, pv∗

k∗ ∈ [0, 1], such that

φu = D
∑

i∈Γ ∗
nu

θi + (1 − pv∗
k∗)Dθk∗ (25)

Then the Nash equilibrium of the game is

(Aα∗
M , (Aα∗

M,i)i∈I) =

(
(ρ∗(E), (1 − ρ∗)(X)),

(
(nu)i∈Γ d∗

nu
, (pv∗

k∗(v), (1 − pv∗
k∗)(nu)), (v)j∈Γ d∗

v

))

(26)

Where Γ d∗
nu = {i ∈ I|θi < θk∗}, Γ d∗

v = {j ∈ I|θj > θk∗}, and ρ∗ = cv

θk∗ (v+D) .

4.1 Welfare Analysis

Now to investigate whether this new “Extended Coverage” will be a welfare
improving policy. This section flows as follows: First, define the optimal policy;
Then, the welfare improving policy will be solved for each of the different cost
scenarios.

Definition 2. The optimal policy Ψ∗ ∈ {Microsoft,Disclosure,Non −
Disclosure} is chosen such that:

Ψ∗ = argmaxψ∈{M,d,nd}

{∑

i∈I

UM (Aα∗
M , A

(1−α)∗
M , Aα∗

M,i, A
(1−α)∗
M,i , θi),

∑

i∈I

Ud(Aα∗
d , A

(1−α)∗
d , A∗

i , θi),
∑

i∈I

Und(A∗
nd, θi)

} (27)

Where ((Aα∗
d , A

(1−α)∗
d ), (A∗

i )i∈I), (A∗
nd), and ((Aα∗

M , A
(1−α)∗
M ), (Aα∗

M,i, A
(1−α)∗
M,i )i∈I) are

the Nash equilibria of the Disclosure, Non-Disclosure, and Microsoft policies,
respectively.
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Beginning with the high search cost case, recall that the equilibria of the
Microsoft policy game are split into two sub-cases. These two cases can be identi-
fied by Inequality 18. If φu > D

∑
i∈I θi, then both Microsoft and Non-Disclosure

are optimal policies. However, if φu ≤ D
∑

i∈I θi, then Non-Disclosure is the
optimal policy.

Therefore, for the new policy to be effective under high search costs, the
extended service fee must be large. Also notice that if φu ≤ D

∑
i∈I θi, i.e. the

exploitation fee is low, then the Nash equilibrium of the hacker exit when a
vulnerability is not found and to mix between exploitation of the N-Day and
exiting the game. Then, Microsoft is preferred to Disclosure when

ρ∗
M

⎡

⎣
∑

i∈Γ M∗
nu

θi + (1 − pM∗
k∗ )θk∗

⎤

⎦ + ξM∗cv < (v + D)
∑

i∈Γ d∗
nu

θi (28)

Given medium search costs and high exploitation costs, the welfare equation
for the software users is

∑

i∈I

UM (Aα∗
M , A

(1−α)∗
M , Aα∗

M,i, A
(1−α)∗
M,i , θi) = v

∑

i∈I

θi (29)

Therefore, compared to Disclosure, the software users do not need to either
update or be hacked via the released patch, and compared to Non-Disclosure,
the hacker is not going to be searching for a Zero-Day, and thus the software
users will not bear the burden of the expected damages. Hence, as discussed in
Theorem 4, the new policy proposed by Microsoft is optimal.

The next case to discuss is when the exploitation cost is low, φu ≤ D
∑

i∈I θi,
and the cost of installing the new version is less than the cost of updating,
cv ≤ cu + φu. Comparing the new Microsoft policy to Disclosure and Non-
Disclosure, the following inequality describes when the new Microsoft policy is
optimal.

αρ∗
M (1 − δ)

⎡

⎣
∑

i∈Γ M∗
nu

θi + (1 − pv∗
k∗ )θk∗

⎤

⎦ + ξ∗
v

cv

v + D
≤min

{
δ

∑

i∈I

θi,

α
∑

i∈Γ d∗
nu

θi + (1 − α)δ
∑

i∈I

θi + ξ∗
v

cu

v + D

}

(30)

Finally, if cv > cu + φu, then, under the Disclosure sub-game, the high-
type software users will update. Whereas, in the Non-Disclosure sub-game, the
high-type software users will install the new version of the software to protect
their computers, hence ρd∗

M 	= ρnd∗
M . Thus yields the following condition for when

“Extended Support” of Windows 7 is the optimal policy.
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αρd∗
M

⎡

⎢
⎣

∑

i∈Γ M∗
nu,nd

θi + (1 − pu∗
k∗)θk∗

⎤

⎥
⎦ + (1 − α)ρnd∗

M

⎡

⎢
⎣

∑

i∈Γ M∗
nu,nd

θi + (1 − pv∗
k∗)θk∗

⎤

⎥
⎦

+ ξ∗ α(cu + φu) + (1 − α)cv

v + D
≤ min

⎧
⎨

⎩
δ
∑

i∈I

θi, α
∑

i∈Γ d∗
nu

θi + (1 − α)δ
∑

i∈I

θi + ξ∗ cu

v + D

⎫
⎬

⎭

(31)

Theorem 4. Let δ̂D
∑

i∈I θi ≤ cs < δD
∑

i∈I θi. Then the cases satisfying
Inequality 18 are

1. If φu > D
∑

i∈I θi, then Microsoft is the optimal policy.
2. If φu ≤ D

∑
i∈I θi, cv ≤ cu +φu, and Inequality 30 is satisfied, then Microsoft

is an optimal policy.
3. If φu ≤ D

∑
i∈I θi, cv ≤ cu + φu, and Inequality 30 is not satisfied, then

Microsoft is not an optimal policy.
4. If φu ≤ D

∑
i∈I θi, cv > cu +φu, and Inequality 31 is satisfied, then Microsoft

is an optimal policy.
5. If φu ≤ D

∑
i∈I θi, cv > cu + φu, and Inequality 31 is not satisfied, then

Microsoft is not an optimal policy

Notice that φu can be used as a weapon to harm hackers. In order for
Microsoft’s new policy to be effective under medium search costs, the optimal
extended service fee and cost of installing the new version are interdependent.
The first way for Microsoft to maximize software user welfare is to pick a very
large support fee, i.e. high exploitation costs. This prices the hacker out of the
market, while also allowing for the software users to not have to pay to install
updates or update their software version since the hacker is priced out of the
exploitation market. However, under low exploitation costs, for the Microsoft
policy to maximize software user welfare they must choose cv such that either
Inequality 30 or Inequality 31 hold.

5 Conclusion

Sun Tzu said: “Know thy self, know thy enemy. A thousand battles, a thousand
victories.” This sentiment is just as relevant in cybersecurity as it was in the 5th

century BC. The optimal policy debate should be centered around how policies
influence both the hacker’s and software users’ behavior. The ease with which the
hacker is able to infiltrate the network can be decreased via appropriate disclo-
sure policies. Since the cost of searching for Zero-Days has drastically increased
over the last couple of years, the hacker desires more disclosure to decrease his
costs. Hence, Disclosure can only be an optimal policy in cases when the cost
to the hacker of searching for a Zero-Day vulnerability is small. The policies of
Non-Disclosure and Microsoft’s new policy both decrease hacker interference in
the network as well as increase overall software user welfare.
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The idea of this paper is to push the vulnerability disclosure literature toward
thinking about the appropriate assumptions faced by hackers, software users,
and software vendors. As the title implies, this is a simplified explanation of
the problem that firms face. For example, the Equifax hack can be traced to an
unpatched vulnerability, however there is more at play than is discussed in this
static model. Many firms do not immediately update their software packages
since doing so may inadvertently negatively affect other software packages. This
is beyond the scope of this paper, as this is an introduction to a theoretical
approach to the problem, and will be a focus of future research.
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