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Abstract. Secure Message Transmission (SMT) is a two-party protocol
by which the sender can privately transmit a message to the receiver
through multiple channels. An adversary can corrupt a subset of chan-
nels and makes eavesdropping and tampering over the corrupted chan-
nels. Fujita et al. (GameSec 2018) introduced a game-theoretic security
notion of SMT, and showed protocols that are secure even if an adversary
corrupts all but one of the channels, which is impossible in the standard
cryptographic setting. In this work, we study a game-theoretic setting
in which all the channels are corrupted by two or more independent
adversaries. Specifically, we assume that there are several adversaries
who exclusively corrupt subsets of the channels, and prefer to violate
the security of SMT with being undetected. Additionally, we assume
that each adversary prefers other adversaries’ tampering to be detected.
We show that secure SMT protocols can be constructed even if all the
channels are corrupted by such rational adversaries. We also study the
situation in which both malicious and rational adversaries exist.

Keywords: Cryptography · Secure message transmission · Game
theory · Rational adversary

1 Introduction

Cryptography in the traditional sense provides the confidentiality of messages
between two parties, Alice and Bob. Symmetric-key cryptography requires to
share the key before communication, and the key agreement is still a problem to
be resolved. Asymmetric-key cryptography (a.k.a. public-key cryptography) is
free from the key agreement problem but must rely on some unproven computa-
tional hardness of mathematical problems. In the standard setting, we implicitly
assume that there is a single channel between Alice and Bob. Since computer
networks nowadays are like a web, we may assume that several channels are
c© Springer Nature Switzerland AG 2019
T. Alpcan et al. (Eds.): GameSec 2019, LNCS 11836, pp. 563–582, 2019.
https://doi.org/10.1007/978-3-030-32430-8_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32430-8_33&domain=pdf
http://orcid.org/0000-0002-5552-8457
http://orcid.org/0000-0001-8994-729X
https://doi.org/10.1007/978-3-030-32430-8_33


564 K. Yasunaga and T. Koshiba

available for communication between Alice and Bob. Secure message transmis-
sion (SMT) is a scheme for the communication between Alice and Bob in the
environment in which several channels are available.

SMT is a two-party cryptographic protocol with n channels by which a sender
Alice securely and reliably sends messages to a receiver Bob. SMT also assumes
the existence of the adversary who can corrupt t channels out of the n chan-
nels. The adversary can eavesdrop messages from the corrupted channels and
alter them. We consider privacy and reliability as properties of SMT against the
adversaries. The privacy means that the adversary can obtain no information
on the messages Alice sends to Bob. The reliability means that a message Bob
receives coincides with the message Alice sends. An SMT protocol is said to be
perfect if the protocol satisfies both properties in the perfect sense. An SMT
protocol is said to be almost-reliable if the protocol satisfies the perfect privacy
and allows transmission errors of small probability.

The notion of SMT was originally proposed by Dolev, Dwork, Waarts, and
Yung [9]. They showed that any 1-round (i.e., non-interactive) perfect SMT must
satisfy that t < n/3, and any perfect SMT of at least two rounds must satisfy
that t < n/2. Since then, the efficiency of perfect SMT has been improved in
the literature [3,25,28,32]. The most efficient 2-round perfect SMT was given
by Spini and Zémor [31]. In the case of almost-reliable SMT, the situation is
different from the case of perfect SMT. Franklin and Wright [10] showed an
almost-reliable SMT against t < n corruptions by using a public channel in
addition to the usual channels. Later, Garay and Ostrovsky [15] and Shi et al.
[30] gave the most round-efficient almost-reliable SMT protocols using public
channels.

In the standard cryptographic setting, adversaries are assumed to be semi-
honest or malicious. Semi-honest adversaries follow the protocol but try to
extract secret information during the protocol execution. Malicious ones deviate
from the protocol either to obtain secret information or to obstruct the proto-
col execution. Especially, malicious adversaries would do anything regardless of
their risks. However, some adversaries realistically take their risks into account
and rationally behave forward the other participants in the protocol. To incor-
porate the notion of “rationality” into cryptography, we employ game-theoretic
ideas. Halpern and Teague [20] firstly investigated the power and the limitation
of rational participants in secret sharing. Since then, rational secret sharing has
been investigated in the literature [1,6,11,24]. Besides secret sharing, rational
settings have been employed in other cryptographic protocols such as leader elec-
tion [2,16], agreement protocols [18,21], public-key cryptography [34,35], two-
party computation [5,17], delegated computation [7,19,23], and protocol design
[13,14]. In particular, we can overcome the “impossibility barrier” in some cases
[4,12,18] by considering that the adversaries rationally behave.

Fujita, Yasunaga, and Koshiba [12] studied a game-theoretic security model
for SMT. They introduced rational “timid” adversaries who prefer to violate
the security requirement of SMT but do not prefer the tampering actions to
be detected. They showed that even if the adversary corrupts all but one of
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the channels, it is possible to construct perfect SMT protocols against rational
timid adversaries. In the standard cryptographic setting, perfect SMT can be
constructed only when the adversary corrupts a minority of the channels. This
demonstrates a way of circumventing the impossibility results of cryptographic
protocols based on a game-theoretic approach. In this paper, we further investi-
gate the game-theoretic security of SMT.

In [12], the simplest game-theoretic setting (i.e., 1-player game) was
employed. In the 1-player game, the player’s behavior is determined by the strat-
egy of the largest expected utility. In this paper, we consider the case of games
for two or more players (i.e., adversaries). We study a game-theoretic setting in
which all the channels may be corrupted by two or more independent rational
timid adversaries. More specifically, we assume that there are more than one
adversaries who exclusively corrupt subsets of the channels, and prefer to vio-
late the security of SMT with being undetected. Additionally, we assume that
each adversary prefers other adversaries’ tampering to be detected. Note that
if a single adversary corrupts all the channels, we cannot hope for the security
of SMT. We show that secure SMT protocols can be constructed even if all the
channels are corrupted by such independent rational adversaries. One protocol
uses a public channel, and the others do not.

– We show that Shi et al.’s almost-reliable SMT protocol (after a minor adap-
tation) in [30], which uses a public channel, works as a perfect SMT against
multiple independent rational adversaries. We assume that there are λ ≥ 2
adversaries, and adversaries i ∈ {1, . . . , λ} exclusively corrupt ti ≥ 1 channels
such that t1 + · · · + tλ ≤ n.
Since we employ a Nash equilibrium as a solution concept, the result is not
surprising. Nash equilibrium requires that no deviation increases the util-
ity, assuming that the other adversaries follow the prescribed strategy. Since
the security against a single adversary corrupting n − 1 channels is provided
in [12], a similar argument can be applied in our setting, though slightly
different utility functions should be considered.

– To construct perfect SMT protocols without public channel, we employ the
idea of cheater-identifiable secret sharing (CISS), where every player who
submits a forged share in the reconstruction phase can be identified. Intu-
itively, in the setting of rational SMT, timid adversaries will not tamper with
shares because the tampering action will be detected with high probabil-
ity, but the message can be recovered by using other shares. We construct
a non-interactive SMT protocol based on the idea of CISS due to Hayashi
and Koshiba [22]. Technically, our construction employs pairwise indepen-
dent (a.k.a. strongly universal) hash functions as hash functions. Since the
security requirements of CISS are not sufficient for proving the security of
rational SMT, we provide the security analysis of our protocol, not for gen-
eral CISS-based SMT protocols.

– The limitation of CISS is that the number of forged shares should be a minor-
ity. Namely, the above construction only works for adversaries who corrupt
at most �(n−1)/2� channels. We show that a slight modification of the CISS-
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based protocol gives a perfect SMT protocol against strictly timid adversaries
even if one of them may corrupt a majority of the channels. Adversaries are
said to be strictly timid if they prefer being tampering undetected to vio-
lating the reliability. A similar idea was used in the previous work of [12],
where robust secret sharing is employed for the protocol against a strictly
timid adversary. Since we consider independent adversaries who prefer other
adversaries to be detected, CISS is suitable in this setting.

– Finally, we consider the setting in which a malicious adversary exists as well as
rational adversaries. Namely, there are several adversaries, all but one behave
rationally, but one behaves maliciously. We believe this setting is preferable
because the assumption that all of the adversaries are rational may not be
realistic. Mixing of malicious and rational adversaries was studied in the con-
text of rational secret sharing [1,24]. We show that a modification of the
CISS-based protocol achieves a non-interactive perfect SMT protocol against
such adversaries. The protocol is secure as long as a malicious adversary cor-
rupts t∗ ≤ �(n−1)/3� channels, and each rational adversary corrupts at most
min{�(n − 1)/2� − t∗, �(n − 1)/3�} channels.

We clarify the differences from the previous work of [12]. In [12], there is only
one adversary who corrupts at most n − 1 channels. This setting can be seen as
one in which there are two independent adversaries A1 and A2. While A1 tries
to violate the security of the SMT protocol by corrupting at most t ≤ n − 1
channels, the other adversary A2, who corrupt n − t ≥ 1 channels, does nothing
for the protocol. Thus, the setting of [12] can be seen as a weaker setting of
independent adversaries. In other words, this work provides stronger results for
the problem of SMT protocols against rational adversaries. The mixed setting
of malicious and rational adversaries in this work is closest to the traditional
cryptographic setting of SMT. Even in this setting, we present a non-interactive
protocol against adversaries corrupting in total t < n/2 channels, for which
cryptographic SMT requires interaction or a weaker bound t < n/3.

2 Secure Message Transmission

A sender S and a receiver R are connected by n channels, and in addition,
they may use an authentic and reliable public channel. Messages sent over the
public channel are publicly accessible and correctly delivered to the receiver. We
assume that SMT protocols proceed in rounds. In each round, one party can
synchronously send messages over the n channels and the public channel. The
messages will be delivered before the next round starts.

The adversary A can corrupt at most t channels. Such an adversary is referred
to as t-adversary. Messages sent over corrupted channels can be eavesdropped
and tampered by the adversary. We assume that the adversary cannot delay
messages over the corrupted channels. Namely, the tampered messages will be
transmitted to the receiver in the same round. We also assume that A is com-
putationally unbounded.
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Let M be the message space. In SMT, the sender tries to send a message in
M to the receiver by using n channels and the public channel, and the receiver
outputs some message after the protocol execution. For an SMT protocol Π, let
MS denote the random variable of the message sent by S and MR the message
output by R in Π. An execution of Π can be completely characterized by the
random coins of all the parties, namely, S, M, and A, and the message MS

sent by S. Let VA(m, rA) denote the view of A when the protocol is executed
with MS = m and the random coins rA of A. Specifically, VA(m, rA) consists of
the messages sent over the corrupted channels and the public channel when the
protocol is run with MS = m and A’s random coins rA.

We formally define the properties of SMT protocols.

Definition 1. A protocol between S and R is (ε, δ)-Secure Message Transmis-
sion (SMT) against t-adversary if the following three conditions are satisfied
against any t-adversary A.

– Correctness: For any m ∈ M, if MS = m and A does not corrupt any
channels, then Pr[MR = m] = 1,

– Privacy: For any m0,m1 ∈ M and rA ∈ {0, 1}∗, it holds that

SD(VA(m0, rA), VA(m1, rA)) ≤ ε,

where SD(X,Y ) denotes the statistical distance between two random variables
X and Y over a set Ω, which is defined by

SD(X,Y ) =
1
2

∑

u∈Ω

|Pr[X = u] − Pr[Y = u]| ,

and
– Reliability: For any message m ∈ M, when MS = m,

Pr[MR �= m] ≤ δ,

where the probability is taken over the random coins of S, R, and A.

If a protocol achieves (0, 0)-SMT, the protocol is called perfect SMT, and
if a protocol achieves (0, δ)-SMT, which admits transmission failures of small
probability δ, the protocol is called almost-reliable SMT.

For perfect SMT, Dolev et al. [9] showed the below.

Theorem 1 ([9]). Perfect SMT protocols against t-adversary are achievable if
and only if t < n/2.

3 SMT Against Independent Rational Adversaries

We define our security model of SMT in the presence of independent rational
adversaries. Rationality of the adversary is characterized by a utility function
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which represents the preference of the adversary over possible outcomes of the
protocol execution.

We can consider various preferences of adversaries regarding the SMT pro-
tocol execution. The adversaries may prefer to violate the security of SMT pro-
tocols without the detection of tampering actions. In addition, they may prefer
other adversaries to be detected by tampering actions. Here, we consider the
adversaries who prefer (1) to violate the privacy, (2) to violate the reliability, (3)
their tampering actions to be undetected, and (4) other adversaries’ actions to
be detected.

To define the utility function, we specify the SMT game as follows. We assume
that there are λ adversaries 1, 2, . . . , λ for λ ≥ 2. Each adversary does not coop-
erate with other adversaries. We assume that adversary j ∈ {1, . . . , λ} exclu-
sively corrupt at most tj channels out of the n channels for tj ≥ 1, and that∑λ

j=1 tj ≤ n.

The SMT Game. First, set parameters suc = 0 and guessj = detectj = 0 for
every j ∈ {1, . . . , λ}. Given an SMT protocol Π with the message space M,
choose m ∈ M uniformly at random, and run the protocol Π in which the mes-
sage to be sent is MS = m. In the protocol execution, adversaries j can exclu-
sively corrupt tj channels, and tamper with any messages sent over the corrupted
channels. The sender or the receiver may send a special message “DETECT at
i” for i ∈ {1, . . . , n}, meaning that some tampering action was detected at chan-
nel i. Then, if adversary j corrupts channel i, set detectj = 1. After running
the protocol, the receiver outputs MR, and each adversary j outputs Mj for
j ∈ {1, . . . , λ}. If MR = MS , set suc = 1. For j ∈ {1, . . . , λ}, if Mj = MS , set
guessj = 1. The outcome of the game is

(
suc, {guessj′ , detectj′}j′∈{1,...,λ}

)
.

The utility of the adversary is defined as the expected utility in the SMT
game.

Definition 2 (Utility). The utility Uj(A1, . . . ,Aλ, U) of adversary j when
strategy (A1, . . . ,Aλ) and utility function U are employed is the expected value
E[U(j, out)], where U is a function that maps index j and the outcome out =(
suc, {guessj′ , detectj′}j′∈{1,...,λ}

)
of the SMT game to real values, and the prob-

ability is taken over the random coins of the sender, the receiver, and the adver-
saries, and a random choice of message MS.

Each adversary j ∈ {1, . . . , λ} tries to maximize utility Uj by choosing a strat-
egy Aj . Since the utility depends on other adversaries’ strategies, we use game-
theoretic notions in the security definition. We define the security of rational
secure message transmission (RSMT). For strategies B1, . . . ,Bλ,Aj , we denote
by (Aj ,B−j) the strategy profile (B1, . . . ,Bj−1,Aj ,Bj+1, . . . ,Bλ).

Definition 3 (Security of RSMT). An SMT protocol Π is perfectly secure
against rational (t1, . . . , tλ)-adversaries with utility function U if there are tj-
adversary Bj for j ∈ {1, . . . , λ} such that for any tj-adversary Aj for j ∈
{1, . . . , λ},
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1. Perfect security: Π is (0, 0)-SMT against (B1, . . . ,Bλ), and
2. Nash equilibrium: Uj(Aj ,B−j , U) ≤ Uj(Bj ,B−j , U) for every j ∈ {1, . . . , λ}

in the SMT game.

The perfect security guarantees that the strategy profile (B1, . . . ,Bλ) is harm-
less. The Nash equilibrium guarantees that no adversary j can gain more utility
by changing the strategy from Bj to Aj . Thus, the above security implies that
each adversary j has no incentive to deviate from the harmless strategy Bj .

In the security proof of our protocol, we will consider the strategy profile
(B1, . . . ,Bλ) in which each adversary j does not corrupt any channels, and
outputs Mj by choosing a message uniformly at random from M. For such
(B1, . . . ,Bλ), the perfect privacy and reliability immediately follow if Π satisfies
the correctness.

Timid Adversaries

We construct secure protocols against independent timid adversaries, who do not
prefer the tampering actions to be detected, and prefer to violate the reliability.

Regarding the utility function, let U ind
timid be the set of utility functions that

satisfy the following conditions:

1. U(j, out) > U(j, out′) if suc < suc′, guessj = guess′j , and detectj = detect′j ,
2. U(j, out) > U(j, out′) if suc = suc′, guessj = guess′j , detectj < detect′j , and

detectk = detect′k for every k ∈ {1, . . . , λ} \ {j}, and
3. U(j, out) > U(j, out′) if suc = suc′, guessj = guess′j , detectk > detect′k for

some k �= j, and detectj′ = detect′j′ for every j′ ∈ {1, . . . , λ} \ {k},

where out =
(
suc, {guessj , detectj}j∈{1,...,λ}

) and out′ = (suc′, {guess′j , detect′j}j∈{1,...,λ})
are the outcomes of the SMT game.

In addition, timid adversaries may have the following property:

4. U(j, out) > U(j, out′) if suc > suc′, guessj = guess′j , detectj < detect′j , and
detectk = detect′k for every k ∈ {1, . . . , λ} \ {j}.

Let U ind
st-timid be the set of utility functions satisfying the above four conditions.

An adversary is said to be timid if his utility function is in U ind
timid, and strictly

timid if the utility function is in U ind
st-timid.

For j ∈ {1, . . . , n} and b ∈ {0, 1}, we write detect−j = b if detectj′ = b for
every j′ ∈ {1, . . . , n} \ {j}. In the analysis of the security of our protocols, we
use the following values of utility of adversary j ∈ {1, . . . , λ}.

– u0 is the utility when Pr[guessj = 1] = 1
|M| , suc = 0, detectj = 0, detect−j =

1,
– u1 is the utility when Pr[guessj = 1] = 1

|M| , suc = 0, detectj = 0, detect−j =
0,

– u2 is the utility when Pr[guessj = 1] = 1
|M| , suc = 1, detectj = 0, detect−j =

0,
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– u3 is the utility when Pr[guessj = 1] = 1
|M| , suc = 0, detectj = 1, detect−j =

0, and
– u4 is the utility when Pr[guessj = 1] = 1

|M| , suc = 1, detectj = 1, detect−j =
0.

For any utility function in U ind
timid, it holds that u0 > u1 > max{u2, u3} and

min{u2, u3} > u4. If the utility is in U ind
st-timid, it holds that u0 > u1 > u2 > u3 >

u4.

4 Protocol with Public Channel

We show that the SJST protocol of [30] works as a perfect SMT protocol against
independent adversaries. See Sect. A.1 for the description of the protocol. More
specifically, we slightly modify the SJST protocol such that in the second and
the third rounds, if bi = 1 in B or vi = 1 in V for some i ∈ {1, . . . , n}, the special
message “DETECT at i” is also sent together.

Theorem 2. For any λ ≥ 2, let t1, . . . , tλ be integers satisfying t1 + · · ·+ tλ ≤ n
and 1 ≤ ti ≤ n − 1 for every i ∈ {1, . . . , λ}. If the parameter � in the SJST
protocol satisfies

� ≥ max
t∈{t1,...,tλ}

{
1 + log2 t + log2

u3 − u4

u2 − u4 − α
, 1 +

1
t

log2
u1 − u3

α

}

for some α ∈ (0, u2 − u4), then the protocol is perfectly secure against rational
(t1, . . . , tλ)-adversaries with utility function U ∈ U ind

timid.

Proof. For each j ∈ {1, . . . , λ}, let Bj be the adversary who does not corrupt
any channels and outputs a uniformly random message from M as Mj . Then,
the perfect security for (B1, . . . ,Bλ) immediately follows.

We show that (B1, . . . ,Bλ) is a Nash equilibrium. Since Uj(B1, . . . ,Bλ) = u2

for j ∈ {1, . . . , λ}, it is sufficient to show that Uj(Aj ,B−j) ≤ u2 for any tj-
adversary Aj . Note that, since the SJST protocol achieves the perfect privacy
against at most n − 1 corruptions, we have that Pr[guessj = 1] = 1/|M| for any
tj-adversary Aj .

Since messages in the second and the third rounds are sent through the
public channel, the adversary Aj can tamper with messages only in the first
round. If Aj changes the lengths of ri or Ri of the i-th channel, the tampering
will be detected, and hence detectj = 1. Thus, such tampering cannot increase
the utility.

Suppose that Aj corrupts tj channels in the first round. Namely, there are
exactly tj distinct i’s such that (r′

i, R
′
i) �= (ri, Ri). Note that a tampering action

such that r′
i �= ri and R′

i = Ri does not increase the probability that suc = 0,
but may only increase that of detectj = 1. Hence, we assume that R′

i �= Ri for all
the corrupted channels. Also, note that Aj cannot cause detectj′ for j′ �= j since
a message “DETECT at i” is sent only when tampering is made by an adversary
who corrupts the i-th channel. Thus, the maximum utility of Uj(Aj ,B−j) is u1.

We define the following events:
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– E1: No tampering action is detected in the protocol,
– E2: At least one but not all tampering actions are detected, and
– E3: All tampering actions are detected.

Note that these three events are disjoint, and either event should occur. Thus, we
have that Pr[E1]+Pr[E2]+Pr[E3] = 1. It follows from the discussion in Sect. A.3
that the probability that the tampering action on one channel is not detected is
21−�. Since each hash function hi is chosen independently for each channel i, we
have that Pr[E1] = 2(1−�)tj . Similarly, we obtain that Pr[E3] = (1−21−�)tj . Note
that the utility when E1 occurs is at most u1. When E2 occurs, some tampering
is detected, but not another tampering. Thus, we have suc = 0 and detectj = 1.
In the case of E3, we have suc = 0 and detectj = 0. Hence, the utilities when
E2 and E3 occur are at most u3 and u4, respectively. Therefore, the utility of
adversary j is

Uj(Aj ,B−j) ≤ u1 · Pr[E1] + u3 · Pr[E2] + u4 · Pr[E3]
= u3 + (u1 − u3) Pr[E1] − (u3 − u4) Pr[E3]

≤ u3 + (u1 − u3) 2(1−�)tj − (u3 − u4)
(
1 − tj 21−�

)

≤ u3 + α − (u3 − u4)
(
1 − tj 21−�

)
(1)

≤ u2, (2)

where we use the relations � ≥ 1+ 1
tj

log2
u1−u3

α and � ≥ 1+log2 tj +log2
u3−u4

u2−u4−α

in (1) and (2), respectively. Thus, the utility of adversary j when playing with
(Aj ,B−j) is at most u2 for every j ∈ {1, . . . , λ}, and hence the statement
follows. �	

5 Protocol for Minority Corruptions

We provide a non-interactive SMT protocol based on secret-sharing and pairwise
independent hash functions. The protocol is secure against independent adver-
saries who only corrupt minorities of the channels. Namely, we assume that each
adversary corrupts at most �(n − 1)/2� channels. Note that the protocol does
not use the public channel as in the protocol in Sect. 4.

We describe the construction of our protocol. The protocol can employ any
secret-sharing scheme of threshold �(n − 1)/2�, which may be Shamir’s scheme
described in Sect. A.2. Let (s1, . . . , sn) be the shares generated by the scheme
from the message to be sent. Then, pairwise independent hash functions hi

are chosen for each i ∈ {1, . . . , n}. For any j �= i, hi(sj) is computed as an
authentication tag for sj . Then, (si, hi, {hi(sj)}j �=i) will be sent through the i-
th channel. When si is modified to s′

i �= si by some adversary, the modification
can be detected by the property of pairwise independent hash functions because
the adversary cannot modify all tags hj(si) for j �= i. In addition, a random mask
ri,j is applied to hi(sj) to conceal the information of sj in hi(sj). The masks
{rj,i}j �=i for si will be sent through the i-th channel so that only the i-th channel
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reveals the information of si. Hence, the message sent through the i-th channel
is (si, hi, {hi(sj) ⊕ ri,j}j �=i, {rj,i}j �=i). As long as minorities of the channels are
corrupted by each adversary, a single adversary cannot cause erroneous detection
of silent adversaries.

We give a formal description.

Protocol 1. Let (Share,Reconst) be a secret-sharing scheme of threshold �(n −
1)/2�, where a secret is chosen from M, and the shares are defined over V. Let
m ∈ M be the message to be sent by the sender, and H = {h : V → {0, 1}�} a
class of pairwise independent hash functions in Sect.A.3.

1. The sender does the following: Generate the shares (s1, . . . , sn) by Share(m),
and randomly choose hi ∈ H for each i ∈ {1, . . . , n}. Also, for every dis-
tinct i, j ∈ {1, . . . , n}, choose ri,j ∈ {0, 1}� uniformly at random, and
then compute Ti,j = hi(sj) ⊕ ri,j . Then, for each i ∈ {1, . . . , n}, send
mi =

(
si, hi, {Ti,j}j∈{1,...,n}\{i}, {rj,i}j∈{1,...,n}\{i}

)
through the i-th channel.

2. After receiving m̃i =
(
s̃i, h̃i, {T̃i,j}j∈{1,...,n}\{i}, {r̃j,i}j∈{1,...,n}\{i}

)
on each

channel i ∈ {1, . . . , n}, the receiver does the following: For every i ∈
{1, . . . , n}, compute the list Li =

{
j ∈ {1, . . . , n} : h̃i(s̃j) ⊕ r̃i,j �= T̃i,j

}
. If

a majority of the lists coincide with a list L, reconstruct the message m̃ by
Reconst({i, s̃i}i∈{1,...,n}\L), send messages “DETECT at i” for every i ∈ L,
and output m̃.

Theorem 3. For any λ ≥ 2, let t1, . . . , tλ be integers satisfying t1 + · · ·+ tλ ≤ n
and 1 ≤ ti ≤ �(n−1)/2� for every i ∈ {1, . . . , λ}. If the parameter � in Protocol 1
satisfies

� ≥ log2
u1 − u4

u2 − u4
+ 2 log2(n + 1) − 1,

then the protocol is perfectly secure against rational (t1, . . . , tλ)-adversaries with
utility function U ∈ U ind

timid.

Proof. For k ∈ {1, . . . , λ}, let Bk be the tk-adversary who does not corrupt
any channels and outputs a random message as Mk. First, note that, for any
i ∈ {1, . . . , n}, the information of si can be obtained only by mi, the message
sent over the i-th channel. This is because for any j �= i, hj(si) is masked as
hj(si) ⊕ ri,j , and the random mask ri,j is included only in mi. Also, each si is
a share of the secret sharing of threshold �(n − 1)/2�. Since Bk can obtain at
most �(n − 1)/2� shares, Bk can learn nothing about the message sent from the
sender. Thus, the perfect security is achieved for (B1, . . . ,Bλ).

Next, we show that (B1, . . . ,Bλ) is a Nash equilibrium. For k ∈ {1, . . . , λ},
let Ak be any tk-adversary. Since Uk(B1, . . . ,Bλ) = u2, to increase the utility,
Ak needs to get either (a) suc = 0, or (b) suc = 1, detectk = 0, and detectk′ = 1
for some k′ �= k.

For the case of (a), Ak tries to change si into s̃i �= si for some i ∈ {1, . . . , n}.
Since Ak does not corrupt some i′ ∈ {1, . . . , n}, the index i corrupted by Ak will
be included in the list Li′ unless hi′(s̃i) ⊕ r̃i′,i = Ti′,i. Note that s̃i and r̃i′,i are
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included in m̃i, and thus can be changed, but hi′ and Ti′,i are in m̃i′ , and thus
have been unchanged. It follows from the property of pairwise independent hash
functions that this can happen with probability 21−� assuming s̃i �= si. Thus, i
will be included in Li′ with probability at least 1− 21−�. Since there are at least
n − �(n − 1)/2� = �(n + 1)/2 such indices i′, the probability that a majority of
the lists contains i is at least 1 − �(n + 1)/2 · 21−�. Note that Ak may corrupt
�(n − 1)/2� channels in total. The probability that all the corrupted indices
coincide with a majority of the list is at least 1−�(n−1)/2� ·�(n+1)/2 ·21−� ≥
1 − (n + 1)2 · 2−(�+1). In that case, the message can be reconstructed by other
shares, and thus we have suc = 1, detectk = 1, and detectk′ = 0 for k′ �= k,
resulting in the utility of u4. Since Ak only corrupts a minority of the channels,
it cannot cause detectk′ = 1 for k′ �= k. Thus, the maximum utility of Ak is u1.
Thus, the utility of adversary k when tampering as s̃i �= si is at most

Uk(Ak,B−k) ≤ (n + 1)2 · 2−(�+1) · u1 +
(
1 − (n + 1)2 · 2−(�+1)

)
· u4,

which is at most u2 by the assumption on �.
For the case of (b), Ak needs to generate the corrupted message m̃i for the

i-th channel so that for a majority of indices j ∈ {1, . . . , n}, h̃i(sj) ⊕ ri,j �= T̃i,j ,
where each j is corrupted by Bk′ with k′ �= k, and thus ri,j and sj are not
tampered with. Since Ak only corrupts a minority of the channels, this cannot
happen.

Therefore, (B1, . . . ,Bλ) is a Nash equilibrium. �	

6 Protocol for Majority Corruptions

We present a protocol against adversaries who may corrupt a majority of the
channels. We assume that adversaries are strictly timid in this setting. The
protocol is a minor modification of the protocol for minority corruptions. In
Protocol 1, the lists Li’s of the corrupted channels are generated for each channel,
and the final list L is determined by the majority voting. Thus, if an adversary
corrupts a majority of the channels, the result of the majority voting can be
easily forged, and hence the protocol does not work for majority corruption.

To cope with majority corruptions, we modify the protocol such that (1) the
threshold of the secret sharing is changed from �(n − 1)/2� to n − 1, and (2) the
final list L of the corrupted channels is composed of the union of all the set Li,
namely, L = L1 ∪ · · · ∪ Ln. The threshold of n − 1 can be achieved by Shamir’s
scheme. Intuitively, this protocol works for strictly timid adversaries because any
tampering detection is approved without voting and thus such adversaries will
keep silent not to be detected.

We give a formal description of the protocol.

Protocol 2. Let (Share,Reconst) be a secret-sharing scheme of threshold n− 1,
where a secret is chosen from M, and the shares are defined over V. Let m ∈ M
be the message to be sent by the sender, and H = {h : V → {0, 1}�} a class of
pairwise independent hash functions in Sect.A.3.
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1. The sender does the following: Generate the shares (s1, . . . , sn) by Share(m),
and randomly choose hi ∈ H for each i ∈ {1, . . . , n}. Also, for every dis-
tinct i, j ∈ {1, . . . , n}, choose ri,j ∈ {0, 1}� uniformly at random, and
then compute Ti,j = hi(sj) ⊕ ri,j . Then, for each i ∈ {1, . . . , n}, send
mi =

(
si, hi, {Ti,j}j∈{1,...,n}\{i}, {rj,i}j∈{1,...,n}\{i}

)
through the i-th channel.

2. After receiving m̃i =
(
s̃i, h̃i, {T̃i,j}j∈{1,...,n}\{i}, {r̃j,i}j∈{1,...,n}\{i}

)
on each

channel i ∈ {1, . . . , n}, the receiver does the following: For every i ∈
{1, . . . , n}, compute the list Li =

{
j ∈ {1, . . . , n} : h̃i(s̃j) ⊕ r̃i,j �= T̃i,j

}
.

Then, set L = L1 ∪ · · · ∪ Ln. If L = ∅, reconstruct the message m̃ by
Reconst({i, s̃i}i∈{1,...,n}), and output m̃. Otherwise, send messages “DETECT
at i” for every i ∈ L, and output ⊥ as the failure symbol.

Theorem 4. For any λ ≥ 2, let t1, . . . , tλ be integers satisfying t1 + · · ·+ tλ ≤ n
and 1 ≤ ti ≤ n − 1 for every i ∈ {1, . . . , λ}. If the parameter � in Protocol 2
satisfies

� ≥ log2
u0 − u3

u2 − u3
− 1,

then the protocol is perfectly secure against rational (t1, . . . , tλ)-adversaries with
utility function U ∈ U ind

st-timid.

Proof. For k ∈ {1, . . . , λ}, we define Bk as the tk-adversary who does not corrupt
any channels and outputs a random message as Mj . By the same reason as in
the proof of Theorem3, the protocol is perfectly secure against (B1, . . . ,Bλ).

Next, we show that (B1, . . . ,Bλ) is a Nash equilibrium. Let Ak be any tk-
adversary for k ∈ {1, . . . , λ}. As in the proof of Theorem 3, Ak needs to yield
either (a) suc = 0, or (b) suc = 1, detectk = 0, and detectk′ = 1 for some k′ �= k.
For the case of (a), Ak needs to corrupt the i-th channel so that s̃i �= si. Since
there is at least one index i′ ∈ {1, . . . , n} that is corrupted by Bk′ with k′ �= k,
the index i is included in the list Li′ with probability at least 1 − 21−�. Thus,
the utility of adversary k is at most

Uk(Ak,B−k) ≤ 2−(�+1) · u0 +
(
1 − 2−(�+1)

)
· u3,

which is at most u2 by assumption. For the case of (b), if some index is in
the final list L, since the threshold of secret sharing is n − 1, the message is
not reconstructed. Then we have suc = 0. Namely, (b) does not happen. Thus,
(B1, . . . ,Bλ) is a Nash equilibrium. �	

7 SMT Against Malicious and Rational Adversaries

In the previous sections, we have discussed SMT against independent rational
adversaries. We have assumed that all the adversaries behave rationally. The
assumption may be strong in the sense that all of them can be characterized by
the utility function we defined. In this section, we discuss more realistic situations
in which some adversary may not behave rationally, but maliciously.
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7.1 Rational SMT in the Presence of a Malicious Adversary

Without loss of generality, we assume that there are λ ≥ 2 adversaries, and
adversaries 1, . . . , λ − 1 are rational, and adversary λ behaves maliciously.
We use the same definitions of the SMT game and the utility function in
Sect. 3. We define robust security against rational adversaries. A similar def-
inition appeared in the context of rational secret sharing [1]. For strategies
B1, . . . ,Bλ−1,Aλ,Aj for j ∈ {1, . . . , λ − 1}, we denote by (Aj ,B−j ,Aλ) the
strategy profile (B1, . . . ,Bj−1,Aj ,Bj+1, . . . ,Bλ−1,Aλ).

Definition 4 (Security of Robust RSMT). An SMT protocol Π is t∗-robust
perfectly secure against rational (t1, . . . , tλ−1)-adversaries with utility function U
if there are tj-adversary Bj for j ∈ {1, . . . , λ− 1} such that for any tj-adversary
Aj for j ∈ {1, . . . , λ − 1} and t∗-adversary Aλ,

1. Perfect security: Π is (0, 0)-SMT against (B1, . . . ,Bλ−1,Aλ), and
2. Robust Nash equilibrium: Uj(Aj ,B−j ,Aλ, U) ≤ Uj(Bj ,B−j ,Aλ, U) for every

j ∈ {1, . . . , λ − 1} in the SMT game.

Compared to Definition 3, robust RSMT requires that the perfect security is
achieved even in the presence of a malicious adversary Aλ, and a strategy profile
(B1, . . . ,Bλ−1,Aλ) is a Nash equilibrium for adversary j ∈ {1, . . . , λ − 1}.

7.2 Protocol Against Malicious and Rational Adversaries

We show that a robust RSMT protocol can be constructed based on the pro-
tocol for minority corruption in Sect. 5. For t∗-robust against (t1, . . . , tλ−1)-
adversaries, we assume that t∗ ≤ �(n − 1)/3� and 1 ≤ tj ≤ min{�(n − 1)/2� −
t∗, (n − 1)/3�} for each j ∈ {1, . . . , λ − 1}. Our non-interactive protocol is
obtained simply by modifying the threshold of the secret sharing in Protocol 1
from �(n − 1)/2� to �(n − 1)/3�. This protocol works because when only a mali-
cious adversary corrupts at most �(n − 1)/3� channels, the transmission failure
does not occur due to the error-correction property of the secret sharing. Thus,
perfect security is achieved in the presence of a malicious adversary. Even if
some rational adversary deviates from the protocol together with a malicious
adversary, they can affect at most tj + t∗ ≤ �(n − 1)/2� votes, and thus any
tampering will be identified with high probability by the majority voting.

The formal description is given below.

Protocol 3. Let (Share,Reconst) be a secret-sharing scheme of threshold �(n −
1)/3�, where a secret is chosen from M, the shares are defined over V, and the
secret can be reconstructed even if �(n−1)/3� out of n shares are tampered with.
Let m ∈ M be the message to be sent by the sender, and H = {h : V → {0, 1}�}
a class of pairwise independent hash functions in Sect.A.3.

1. The sender does the following: Generate the shares (s1, . . . , sn) by Share(m),
and randomly choose hi ∈ H for each i ∈ {1, . . . , n}. For every dis-
tinct i, j ∈ {1, . . . , n}, choose ri,j ∈ {0, 1}� uniformly at random, and
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then compute Ti,j = hi(sj) ⊕ ri,j . For each i ∈ {1, . . . , n}, send mi =(
si, hi, {Ti,j}j∈{1,...,n}\{i}, {rj,i}j∈{1,...,n}\{i}

)
through the i-th channel.

2. After receiving m̃i =
(
s̃i, h̃i, {T̃i,j}j∈{1,...,n}\{i}, {r̃j,i}j∈{1,...,n}\{i}

)
on each

channel i ∈ {1, . . . , n}, the receiver does the following: For every i ∈
{1, . . . , n}, compute the list Li =

{
j ∈ {1, . . . , n} : h̃i(s̃j) ⊕ r̃i,j �= T̃i,j

}
. If

a majority of the list coincide with a list L, reconstruct the message m̃ by
Reconst({i, s̃i}i∈{1,...,n}), send message “DETECT at i” for every i ∈ L, and
output m̃.

For the security analysis, we define the values of utility of adversary j ∈
{1, . . . , λ − 1} such that

– u′
1 is the utility in the same case as u1 except that detectλ = 1,

– u′
2 is the utility in the same case as u2 except that detectλ = 1, and

– u′
4 is the utility in the same case as u4 except that detectλ = 1.

The values u1, u2, u4 are defined as the case that detectj′ = 0 for every j′ ∈
{1, . . . , λ} \ {j}. In the above, the values u′

1, u
′
2, u

′
4 are defined as detectj′ = 0

for every j′ ∈ {1, . . . , λ − 1} \ {j} and detectλ = 1.

Theorem 5. For any λ ≥ 2, let t1, . . . , tλ−1, t
∗ be integers satisfying t1 + · · · +

tλ−1+t∗ ≤ n, 0 ≤ t∗ ≤ �(n−1)/3�, and 1 ≤ ti ≤ min{�(n−1)/2�−t∗, �(n−1)/3�}
for every i ∈ {1, . . . , λ − 1}. If the parameter � in Protocol 3 satisfies

� ≥ max
(u∗

1 ,u∗
2 ,u∗

4)∈{(u1,u2,u4),(u′
1,u′

2,u′
4)}

{
log2

u∗
1 − u∗

4

u∗
2 − u∗

4

+ 2 log2(n + 1) − 1
}

,

then the protocol is t∗-robust perfectly secure against rational (t1, . . . , tλ−1)-
adversaries with utility function U ∈ U ind

timid.

Proof. For k ∈ {1, . . . , λ−1}, let Bk be the tk-adversary who does not corrupt any
channels, and output a random message as Mk. Let Aλ be any t∗-adversary. Note
that the information of si can be obtained only by seeing mi since each hj(si) is
masked by rj,i, which is included only in mi. Since each si is a share of the secret
sharing of threshold �(n − 1)/3�, each adversary Bk and Aλ can learn nothing
about the original message. Although at most t∗ messages may be corrupted by
Aλ, it follows from the property of the underlying secret sharing that the message
can be correctly recovered in the presence of t∗ ≤ �(n− 1)/3� corruptions out of
n shares. Thus, the protocol is perfectly secure against (B1, . . . ,Bλ−1,Aλ).

Next, we show that (B1, . . . ,Bλ−1,Aλ) is a Nash equilibrium for any Aλ.
When the strategy profile (B1, . . . ,Bλ−1,Aλ) is employed, we have suc = 1.
Hence, to increase the utility of adversary k, Ak needs to get either (a) suc = 0,
or (b) suc = 1, detectk = 0, and detectk′ = 1 for some k′ �= k.

For the case of (a), Ak tries to change si into s̃i �= si for some i ∈ {1, . . . , n}.
When playing with (Ak,B−k,Aλ), the number of corrupted channels is at most
tk + t∗ ≤ �(n − 1)/2�. Hence, there are a majority of indices i′ that is not
corrupted by Ak or Aλ, and for each i′, the tampering on the i-th channel will
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be detected, namely, the list Li′ will include i with high probability. By the same
argument as in the proof of Theorem3, any tampering of s̃i �= si by Ak and Aλ

is detected with probability at least 1 − (n + 1)2 · 2−(�+1). Thus, we have that

Uk(Ak,B−k,Aλ) ≤ (n + 1)2 · 2−(�+1) · u∗
1 +

(
1 − (n + 1)2 · 2−(�+1)

)
· u∗

4,

which is at most u∗
2 by the assumption on �.

For the case of (b), Ak needs the result that j ∈ Li for a majority of the
list Li’s, where the j-th channel is corrupted by adversary k′. However, since Ak

and Aλ can corrupt a minority of the channels, this event cannot happen.
Thus, we have shown that (B1, . . . ,Bλ−1) is a robust Nash equilibrium. �	

8 Conclusions

We have studied the problem of constructing SMT protocols against adver-
saries who may corrupt all the channels between the sender and the receiver.
If all adversaries are malicious, we cannot hope for reliable transmission because
adversaries who interrupt all the messages can cause transmission failure. Also, if
a single adversary corrupts all the channels, we cannot achieve privacy since the
adversary can obtain the same information as the receiver who can recover the
transmitted message. We show that if multiple rational adversaries exclusively
corrupt the channels, perfectly secure SMT protocols can be constructed. Our
results demonstrate that even if all the physical resources may be corrupted by
adversaries, it is possible to provide secure protocols by considering the ratio-
nality and independence of each group of adversaries.

Acknowledgments. This work was supported in part by JSPS Grants-in-Aid for
Scientific Research Numbers 16H01705, 17H01695, 18K11159, and 19K22849.

A Building Blocks

A.1 The SJST protocol

We describe an almost-reliable SMT protocol using the public channel proposed
by Shi, Jiang, Safavi-Naini, and Tuhin [30]. We refer it as the SJST protocol.

The protocol is based on the simple protocol for “static” adversaries in which
the sender sends a random key Ri over the i-th channel for each i ∈ {1, . . . , n},
and the encrypted message c = m ⊕ R1 ⊕ · · · ⊕ Rn over the public channel.
Suppose that the adversary sees the messages sent over the corrupted chan-
nels, but does not change them. Since the adversary cannot see at least one
key Rj when corrupting less than n channels, the mask R1 ⊕ · · · ⊕ Rn for the
encryption looks random for the adversary. Thus, the message m can be securely
encrypted and reliably sent through the public channel. To cope with “active”
adversaries, who may change messages sent over the corrupted channels, the
SJST protocol employs a mechanism for detecting the adversary’s tampering by
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using hash functions. Specifically, the pairwise independent hash functions (see
Sect. A.3) satisfy the following property: when a pair of keys (ri, Ri) is changed
to (r′

i, R
′
i) �= (ri, Ri), the hash value for (ri, Ri) is different from that for (r′

i, R
′
i)

with high probability if the hash function is chosen randomly after the tamper-
ing occurred. In the SJST protocol, the sender sends a pair of keys (ri, Ri) over
the i-th channel. Then, the receiver chooses n pairwise independent hash func-
tions hi’s, and sends them over the public channel. By comparing hash values
for (ri, Ri)’s sent by the sender with those for (r′

i, R
′
i)’s received by the receiver,

they can identify the channels for which messages, i.e., keys, were tampered
with. By ignoring keys sent over such channels, the sender can correctly encrypt
a message m with untampered keys and send the encryption reliably over the
public channel.

We describe the SJST protocol below, which is a three-round protocol, and
achieves the reliability with δ = (n − 1) · 21−�, where � is the length of hash
values.

Protocol 4 (The SJST protocol [30]). Let n be the number of channels,
m ∈ M the message to be sent by the sender S, and H = {h : {0, 1}k → {0, 1}�}
a class of pairwise independent hash functions.

1. For each i ∈ {1, . . . , n}, S chooses ri ∈ {0, 1}� and Ri ∈ {0, 1}k uniformly at
random, and sends the pair (ri, Ri) over the i-th channel.

2. For each i ∈ {1, . . . , n}, R receives (r′
i, R

′
i) through the i-th channel, and

then chooses hi ← H uniformly at random. If |r′
i| �= � or |R′

i| �= k, set bi = 1,
and otherwise, set bi = 0. Then, set T ′

i = r′
i ⊕ hi(R′

i), and Hi = (hi, T
′
i ) if

bi = 0, and Hi = ⊥ otherwise. Finally, R sends (B,H1, . . . , Hn) over the
public channel, where B = (b1, . . . , bn).

3. S receives (B,H1, . . . , Hn) through the public channel. For each i ∈ {1, . . . , n}
with bi = 0, S computes Ti = ri ⊕ hi(Ri), and sets vi = 0 if Ti = T ′

i ,
and vi = 1 otherwise. Then, S sends (V, c) over the public channel, where
V = (v1, . . . , vn), and c = m ⊕ (

⊕
vi=0 Ri).

4. On receiving (V, c), R recovers m = c ⊕ (
⊕

vi=0 Ri).

Theorem 6 ([30]). The SJST protocol is (0, (n − 1) · 21−�)-SMT against t-
adversary for any t < n.

We can find a complete proof of the above theorem in [30]. For self-
containment, we give a brief sketch of the proof.

– Privacy : The adversary can get c = m ⊕ (
⊕

vi=0 Ri) through the public
channel. Since m is masked by uniformly random Ri’s, the adversary has to
corrupt all the i-th channels with vi = 0 to recover m. However, since any
t-adversary can corrupt at most t (< n) channels, the adversary can cause
vi = 1 for at most n − 1 i’s. Hence, there is at least one i with vi = 0, for
which the adversary cannot obtain Ri. Thus, the protocol satisfies the perfect
privacy.
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– Reliability : Since the protocol uses the public channel at the second and
the third rounds, the adversary can tamper with channels only at the first
round. Suppose that the adversary tampers with (ri, Ri). If Ri �= R′

i and
Ti = T ′

i , then R would recover a wrong message, but the tampering is not
detected. It follows from the property of pairwise independent hash functions
(see Sect. A.3) that the probability that the above event happens is at most
(n−1)21−�. Thus, the protocol achieves the reliability with δ = (n−1) ·21−�.

A.2 Secret Sharing

Secret sharing, introduced by Shamir [29] and Blackley [8], enables us to dis-
tribute the secret information securely. Let s ∈ F be a secret from some finite
field F. A (threshold) secret-sharing scheme provides a way for distributing s
into n shares s1, . . . , sn such that, for some parameter t > 0, (1) any t shares
give no information about s, and (2) any t + 1 shares uniquely determine s.

Definition 5. Let t, n be positive integers with t < n. A (t, n)-secret sharing
scheme with range G consists of two algorithms (Share,Reconst) satisfying the
following conditions:

– Correctness: For any s ∈ G and I ⊆ {1, . . . , n} with |I| > t,

Pr [(s̃, J) ← Reconst ({i, si}i∈I) ∧ s̃ = s] = 1,

where (s1, . . . , sn) ← Share(s), and
– Perfect Privacy: For any s, s′ ∈ G and I ⊆ {1, . . . , n} with |I| ≤ t,

SD ({si}i∈I , {s′
i}i∈I) = 0,

where (s1, . . . , sn) ← Share(s) and (s′
1, . . . , s

′
n) ← Share(s′).

Shamir [29] gave a (t, n)-secret sharing scheme based on polynomial evalua-
tions for any t < n. Let F be a finite field of size at least n. Then, for a given
secret s ∈ F, the sharing algorithm chooses random elements r1, . . . , rt ∈ F, and
constructs a polynomial f(x) = s + r1x + r2x

2 + · · · + rtx
t of degree t over

F. Then, for a fixed set of n distinct elements {a1, . . . , an} ⊆ F, the i-th share
is f(ai) for i ∈ {1, . . . , n}. Given {i, f(ai)}i∈I for |I| > t, the reconstruction
algorithm recovers the polynomial f by polynomial interpolation, and outputs
f(0) = s as a recovered secret.

McEliece and Sarwate [26] observed that Shamir’s scheme is closely related
to Reed-Solomon codes, and thus the shares can be efficiently recovered even if
some of them have been tampered with. We will use the useful fact that even if
at most �(n − 1)/3� out of the n shares are tampered with, the original secret
can be correctly recovered by decoding algorithms of Reed-Solomon codes.



580 K. Yasunaga and T. Koshiba

A.3 Pairwise Independent Hash Functions

Wegman and Carter [33] introduced the notion of pairwise independent (or
strongly universal) hash functions and gave its construction. As in the SJST
protocol described above, our protocols employ pairwise independent hash func-
tions.

Definition 6. Suppose that a class of hash functions H = {h : {0, 1}m →
{0, 1}�}, where m ≥ �, satisfies the following: for any distinct x1, x2 ∈ {0, 1}m

and y1, y2 ∈ {0, 1}�,

Pr
h∈H

[h(x1) = y1 ∧ h(x2) = y2] ≤ γ.

Then H is called γ-pairwise independent. In the above, the randomness comes
from the uniform choice of h over H.

Here we mention a useful property of almost pairwise independent hash func-
tion, which guarantees the security of some SMT protocols.

Lemma 1 ([30]). Let H = {h : {0, 1}m → {0, 1}�} be a γ-almost pairwise inde-
pendent hash function family. Then for any (x1, c1) �= (x2, c2) ∈ {0, 1}m×{0, 1}�,
we have

Pr
h∈H

[c1 ⊕ h(x1) = c2 ⊕ h(x2)] ≤ 2�γ.

In [33], Wegman and Carter constructed a family of 21−2�-almost pairwise
independent hash functions. In particular, their hash function family Hwc =
{h : {0, 1}m → {0, 1}�} satisfies that

Pr
h∈Hwc

[h(x1) = y1 ∧ h(x2) = y2] = 21−2�

for any distinct x1, x2 ∈ {0, 1}m and for any y1, y2 ∈ {0, 1}� and also

Pr
h∈Hwc

[c1 ⊕ h(x1) = c2 ⊕ h(x2)] = 21−� (3)

for any distinct pairs (x1, c1) �= (x2, c2) ∈ {0, 1}m × {0, 1}�.
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