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Abstract. Present attack methods can make state-of-the-art classifica-
tion systems based on deep neural networks mis-classify every adver-
sarially modified test example. The design of general defense strategies
against a wide range of such attacks still remains a challenging prob-
lem. In this paper, we draw inspiration from the fields of cybersecurity
and multi-agent systems and propose to leverage the concept of Moving
Target Defense (MTD) in designing a meta-defense for ‘boosting’ the
robustness of an ensemble of deep neural networks (DNNs) for visual
classification tasks against such adversarial attacks. To classify an input
image at test time, a constituent network is randomly selected based on a
mixed policy. To obtain this policy, we formulate the interaction between
a Defender (who hosts the classification networks) and their (Legitimate
and Malicious) users as a Bayesian Stackelberg Game (BSG). We empir-
ically show that our approach MTDeep, reduces misclassification on per-
turbed images for various datasets such as MNIST, FashionMNIST, and
ImageNet while maintaining high classification accuracy on legitimate
test images. We then demonstrate that our framework, being the first
meta-defense technique, can be used in conjunction with any existing
defense mechanism to provide more resilience against adversarial attacks
that can be afforded by these defense mechanisms alone. Lastly, to quan-
tify the increase in robustness of an ensemble-based classification system
when we use MTDeep, we analyze the properties of a set of DNNs and
introduce the concept of differential immunity that formalizes the notion
of attack transferability.

1 Introduction

State-of-the-art systems for image classification based on Deep Neural Networks
(DNNs) are used in many important tasks such as recognizing handwritten
digits on cheques [10], object classification for automated surveillance [9] and
autonomous vehicles [6]. Adversarial attacks to make these classification systems
misclassify inputs can lead to dire consequences. For example, in [15], road signs
saying ‘stop’ are misclassified, which can make an autonomous vehicle behave
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Fig. 1. At attack perturbation crafted for HRNN (FGMh) is rendered ineffective when
MTDeep picks the MLP (at random) for classification at test time.

dangerously. If D̂(i) denotes the class of an image i output by a Deep Neural
Network D̂, an adversarial perturbation ε when added to the image i tries to
ensure that D̂(i) �= D̂(i + ε). In addition, attackers try to minimize some norm
of ε, which ensures that the changed image i + ε and the original image i are
indistinguishable to humans. The effectiveness of an attack method is measured
by the accuracy of a classifier on the perturbed images generated by it.

Defenses against adversarial examples are designed to be effective against a
certain class of attacks by either training the classifier with perturbed images
generated by these attacks or making it hard for these attacks to modify some
property of the neural network. Some recent works construct defenses that
enforcing classification of images that are ε distance away from an image in the
training set to the same class. Unfortunately, this has the side effect of bringing
down the classification accuracy [21].

In this paper, we take a different view and design a meta-defense that can
function both as (1) a first line of defense against new attacks and (2) a second
line of defense when used in conjunction with any existing defense mechanism
to boost the security gains the latter can provide. We consider a game theoretic
perspective and investigate the use of Moving Target Defense (MTD) [25], in
which we randomly select a network from an ensemble of networks when classi-
fying an input image (i.e. strategic randomization at test time), for boosting the
robustness against adversarial attacks (see Fig. 1). Our contributions are–

– MTDeep – an MTD-based framework for an ensemble of DNNs.
– A Bayesian Stackelberg Game formulation with two players – MTDeep and

the users. The Stackelberg Equilibrium of this game gives us the optimal
randomization strategy for the ensemble that maximizes the classification
accuracy on regular as well as adversarially modified inputs.

– We show empirically that MTDeep can be used as (1) a standalone defense
mechanism to increase the accuracy on adversarial samples by ≈ 24% for
MNIST, ≈ 22% for Fashion MNIST and ≈ 21% for ImageNET data-sets
against a variety of well-known attacks and (2) in conjunction with existing
defense mechanisms like Ensemble Adversarial Training, MTDeep increases
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the robustness of a classification system (by ≈ 50% for MNIST). We also show
that black-box attacks (see related work) on a distilled network are ineffective
(in comparison to white-box attacks) against the MTDeep system.

– We define the concept of differential immunity, which is (1) the first attempt
at defining a robustness measure for an ensemble against attacks and (2) a
quantitative metric to capture the notion of attack transferability.

Although prior research has shown that effectiveness of attacks can sometimes
transfer across networks [19], we show that there is still enough residual disagree-
ment among networks that can be leveraged to design an add-on defense-in-depth
mechanism by using MTD. In fact, recent work has demonstrated that it is pos-
sible to train models with limited adversarial attack transferability [2], making
our meta-level defense approach particularly attractive.

2 Related Work

In this section, we first discuss existing work on crafting adversarial inputs
against DNNs (at test-time) and defenses developed against them. Then, we
briefly discuss some work in Moving Target Defense that inspires this defense.1

Recent literature has shown multiple ways of crafting adversarial samples for
a DNN [11,13,15,19] using the gradient information or by examining the geo-
metric space around an input. These attacks require complete knowledge about
the classification network. On the other hand, attacks that craft gradient-based
perturbations on distilled networks [14,19] or use zeroth-order optimization [5]
can cripple DNNs even when the attacker has no knowledge about the actual
classification network (and are thus called black-box attacks).

Defense techniques against the two types of attacks described above com-
monly involve generating adversarial perturbed training images using one (or
all) of the attack methods described and then using the generated images along
with the correct labels to fine tune the parameters of the DNN. Ensemble adver-
sarial training [20] and stability training [24] are improvements on this defense
technique. Unlike us, the former does not use the ensemble at classification time.
We do not discuss other defenses further because our proposed framework can
be used in conjunction with any of these to improve their security guarantees.
Our approach is well supported by findings in previous research works that show
introduction of randomized switching makes it harder for any attacker to reverse
engineer a classification system [22], which is necessary for constructing effec-
tive white-box attacks. Note that ensemble based defenses [1,8] can be viewed
as simply adding an extra pooling layer whose weights are equal to the impor-
tance given to the votes of the constituent networks. Thus, all attacks on a
DNNs are trivially effective against such voting-based ensembles. To this extent,
researchers have also shown that an ensemble of vulnerable DNNs cannot result
in a classifier robust to attacks [7]. In contrast, MTDeep builds in an implicit
mechanism based on randomization at prediction time, making it difficult for an
1 A detailed overview can be found at https://arxiv.org/abs/1705.07213.

https://arxiv.org/abs/1705.07213
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Table 1. The actions of the players and the utilities of the two user types–L and A
for the MNIST dataset.

Legitimate User (L)
MTDeep Classification Image

MLP 99.1
CNN 98.3
HRNN 98.7

Adversarial User (A)
F GMm F GMc F GMh DFm DFc DFh P GDm P GDc P GDh

3.1 20.39 38.93 1.54 89.8 93.83 0.00 49.00 61.00
55.06 10.28 71.39 98.87 0.87 98.55 78.00 0.00 90.0
25.12 27.24 11.43 95.38 83.17 3.66 23.00 51.00 0.00

adversary to fool the classification system. There has been some previous work
that leverage randomization at test time [4] but cannot be used out-of-the-box
for DNNs. The authors try to prevent misclassification rate under attack and
end-up affecting the classification accuracy on non-adversarial test inputs.

Universal perturbations [12], based on the DeepFool attack [13], needs to gen-
erate only one “universal” perturbation per network. Authors show that adver-
sarial training is ineffective against this attacks. On the contrary, we show that
MTDeep can prove to be an effective defense against these attacks because such
attacks are network specific and thus, often have low transferability.

Moving Target Defense (MTD) is a paradigm used in software security that
tries to reduce the success rate of an attack by pro-actively switching between
multiple software configurations [25]. Devising effective switching strategies for
MTD systems requires reasoning about attacks in a multi-agent game theoretic
fashion in order to provide formal guarantees about the security of such systems
[18]. Thus, we model the interaction between an image classification system (an
ensemble) and its users, both legitimate and adversarial, as a Bayesian Stackel-
berg Game, providing provable guarantees on the expected performance on both
legitimate and adversarial inputs.

3 MTDeep: MTD for Deep Neural Networks

In our system, the defender has multiple system classifiers for a given task. The
attacker has a set of attacks that it can use to cripple the constituent classifiers.
Given an input to the system, the defender selects, at random, one of the config-
urations to run the input and returns the output generated by that system. Since
the attacker does not know which system is specifically selected, its attacks are
less effective than before (Fig. 1). As stated earlier, randomization in selecting
a configuration for classification of each input is paramount. Unfortunately, an
MTD framework for classification systems, that leverages randomization, might
end up reducing the accuracy of the overall system in classifying non-perturbed
images. Thus, in order to retain good classification accuracy and guarantee high
security, we model the interaction between MTDeep and its users as a Bayesian
Stackelberg Game and show that the equilibrium results in the optimal selection
strategy. We now discuss our game-theoretic formulation.
Players and Action Sets. The configuration space for the defender, i.e.
MTDeep, comprise of various DNNs that are trained on the particular image
classification task. The second player in this game is the user of the classifica-
tion system. The second player has two player types – Legitimate User (L) and
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the Adversary (A). L has one action – to input non-perturbed images to the
MTDeep system. The adversary A has various attack actions and uses one of
these to perturbs an input image. In our threat model, we consider a strong
adversary who knows the different constituent architectures in our MTDeep sys-
tem. This means they can easily generate powerful white-box attacks.
Utilities. Existing works that design defense methods against adversarial
attacks for DNNs model the problem as a zero-sum game where the attacker
tries to maximize the defender’s loss function by coming up with perturbed
images that the network misclassifies, whereas the defender tries to reduce the
loss on these adversarially perturbed examples [11]. Fine tuning the classifier to
have high accuracy on adversarially perturbed inputs often has the side effect
of reducing the classification accuracy on non-perturbed inputs from the test
set [21]. In this paper, we move away from the zero-sum game assumption and
try to ensure that the defender minimizes the loss functions for both types of
inputs images– images from the initial test-set and the adversarially perturbed
ones. Thus, we want MTDeep to be effective for L (proportional to minimizing
the loss on the original test set) and, at the same time, increase the accuracy
of classification for the perturbed images (proportional to minimizing the loss
against adversarial inputs at test-time), making this a multi-objective optimiza-
tion problem. The utilities for each player in this game are as follows.

– The Legitimate User (L) and the defender both get a reward value equal to
the % accuracy of the DNN system.

– The Adversary (A) and the defender play a constant(= 100) sum game, where
the former’s reward value for an attack against a network is given by the
fooling rate and the defender’s reward is the accuracy on perturbed inputs.

We also consider a parameter α that defines the probability of the player types
A and L. It lets the defender weigh the importance of catering to legitimate test
samples vs. correctly classifying adversarial samples. The game-matrix for the
MNIST classification task is shown in Table 1.2

MTDeep’s Switching Strategy. Note that the defender D has to play first,
i.e. deploy a classification system that either a legitimate user L can use or an
adversary A can attack. This imparts a leader-follower paradigm to the formu-
lated Bayesian Game. The defender leads by playing first and then the attacker
follows by choosing an attack action having inferred the leader’s (mixed) strat-
egy. Satisfying the multi-objective criterion, mentioned above, is now equivalent
to finding the Stackelberg Equilibrium of this game. We find this equilibrium by
using the mixed integer quadratic program (MIQP) formulation in [16].

4 Experimental Results

We first compare the effectiveness of MTDeep as a standalone defense mecha-
nism for classifying MNIST, Fashion-MNIST and ImageNet datasets. We then
2 More details and examples of games (for the Fashion-MNIST and Imagenet classifi-

cation tasks) can be found at https://arxiv.org/abs/1705.07213.

https://arxiv.org/abs/1705.07213
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Fig. 2. Accuracy of MTDeep with non-adversarially trained networks compared to
accuracy of individual constituent networks and uniform random strategy.

show that MTDeep piggybacked onto an existing defense mechanism can help
boost the classification accuracy against adversarial attacks by almost 50%. We
then analyze the effect of black-box attacks created on a distilled network and
introduce the notion of differential immunity for ensembles. We discuss how that
this metric can capture the informal notion of transferability of attacks and be
used to measure the effectiveness of MTDeep.

4.1 MTDeep as a Standalone Defense Technique

We compare the effectiveness of MTDeep with two baselines– the individual
networks in the ensemble and the a randomized ensemble that uses Uniform
Random Strategy (MTD-URS) to pick one of the constituent networks with
equal probability. In contrast, MTDeep uses the Stackelberg equilibrium strategy
of the defender to pick a constituent DNN.
MNIST and Fashion-MNIST. For each data-set, we trained three classifica-
tion networks that were built using either Convolution layers (CNN), Multi-layer
Perceptrons (MLP) or Hierarchical Recurrent layers (HRNN). The size of the
train and test sets were 50000 and 10000 respectively.

We considered three attack methods for the attacker – the Fast Gradient
Based (FGM) attack (with ε = 0.3), the DeepFool (DF) attack (with three classes
being considered at each step when searching for an attack perturbation), and
the Projected Gradient Descent (PGD) attack (with ε : 0.3, ε − iter : 0.05). An
adversarial example generated using the PGD algorithm on the loss information
of the CNN is termed as PGDc in Table 1 (similarly PGDh/m). We then find
the classification accuracy of each network on these adversarial examples to
compute the utility values. Note that an adversarial example developed using
information about one network may not be as effective for the other networks.
We find that this is especially true for attacks like DF that exploit information
about a particular network’s classification boundary. On the other hand, attacks
that exploit the gradient signals of a particular network are more effective against
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Fig. 3. Results on the ImageNET classification task.

the other networks, i.e. have high transferability. We observe this trend for both
the MNIST and the Fashion-MNIST data-set.

In Fig. 2, we plot the accuracy of a particular classification system as α
varies from 0 to 1. When α = 0 and the defender ignores the possibility of
playing against an adversary, the optimal strategy for MTDeep boils down to a
pure strategy for selecting the most accurate classifier. In contrast, MTD-URS
has lower classification accuracy than MTDeep because it chooses the two less-
accurate classifiers with probability 0.33. Given that classification accuracy of
the constituent networks are relatively high, the drop in accuracy is small.

When α = 1 and the defender only receives adversarial examples as inputs,
strong attacks like PGD can fool individual networks 100% of the time for
MNIST and 97% for Fashion-MNIST. In contrast, randomized selection of net-
works at test-time perform much better because an adversarial perturbation
developed based on information from one network fails to fool other networks
that may be selected at classification time. MTDeep achieves a classification
accuracy of 24% for MNIST and 25% for Fashion-MNIST while MTD-URS has
a classification accuracy of ≈ 20% for both the data sets. The difference in clas-
sification accuracy stems form the fact that MTD-URS picks more vulnerable
networks with equal probability.
ImageNET. We use six different networks which have excelled on ILSVRC-
2012s validation set [17] to construct the ensemble for MTDeep3. Generating
attacks like FGM, DF and PGD for ImageNET are time and resource intensive.
Thus, we assume the adversary uses Universal Perturbations (UP) developed for
each network [12], which are built on top of DF and only one attack mask is
generated for each constituent network (as opposed to each test image).

Defense mechanisms like adversarial training are ineffective against this type
of attack [12]. Furthermore, no other defenses have been shown to be effective
against this attack. In such cases, MTDeep is a particularly attractive approach
because it increases the robustness of the classification system even when all
other defense mechanisms are ineffective.

In Fig. 3(a), we plot the expected accuracy for the MTDeep along with the
expected accuracy of each of the constituent networks when the probability of

3 More details can be found at https://arxiv.org/abs/1705.07213.

https://arxiv.org/abs/1705.07213
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Legitimate User (L)
MTDeep Classification Image

MLPeat 97.99
CNNeat 98.97
HRNNeat 97.22

Adversarial User (A)
F GMm F GMc F GMh DFm DFc DFh P GDm P GDc P GDh

95.06 75.32 70.1 1.5 96.97 95.73 0.00 88.00 69.00
61.44 96.55 68.58 98.36 0.79 96.09 72.00 20.00 81.00
81.24 84.79 93.1 96.85 95.9 4.41 82.00 71.00 10.00

Fig. 4. The utilities for the players when
the adversary uses the aforementioned attacks
against the classifiers fine-tuned using Ensemble
Adversarial Training (EAT) with FGM attacks.
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the adversary type α varies. Given there are six constituent networks in the
ensemble, to avoid clutter, we don’t plot MTD-URS for brevity but observe
that it always has ≈ 4% less accuracy than MTDeep, which is a large accuracy
difference in accuracy in the context of ImageNET. At α = 0, MTDeep uses
the most accurate network (ResNet-152) to maximize classification accuracy.
As adversarial inputs become more ubiquitous and α becomes 1, the accuracy
on perturbed inputs drops for all the constituent networks of the ensemble.
Thus, to stay protected, MTDeep switches to a mixed policy that utilizes more
networks. At α = 1, the accuracy of MTDeep is 42% compared to 20% for
the best of the single DNN architectures. The optimal strategy in this case is
x = 〈0.0, 0.171, 0.241, 0.0, 0.401, 0.187〉 which discards two of the six constituent
networks. Note that the 22% accuracy bump for modified images comes despite
(i) high misclassification rates of the constituent networks against Universal
Perturbations, and (ii) lack of proven defense mechanisms against such attacks.

4.2 MTDeep as an Add-On Defense-in-depth Solution

We study the use of MTDeep on top of a state-of-the-art defense mechanism
called Ensemble Adversarial Training (EAT) [20]. EAT is an improvement of
adversarial training that uses adversarial examples generated on non-target net-
works to fine tune weights of the target network. Given MTDeep works with
an ensemble, it renders itself naturally to this robustification method. Unfor-
tunately, using EAT can only make the networks robust against attack images
generated by the particular attack algorithm. We observe that the individual
networks are still vulnerable to stronger (i.e. more computationally intensive)
attacks. In Fig. 4, we show that the utility values obtained using the three con-
stituent networks whose parameters are fine-tuned using EAT (which, in turn
uses FGM). Note that although there is a boost in overall accuracy against
adversarial examples generated using FGM, the other attacks (1) DF, which is
generated in a very different manner compared to FGM, and (2) PDG, which
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Table 2. Differential immunity of various ensembles and their accuracy (α = 1).

Networks Differential
immunity (δ)

Accuracy of best
constituent net

Accuracy of
MTDeep

Gain

FashionMNIST 0.11 3% 24.8% 21.8%

MNIST 0.19 0% 23.68% 23.68%

ImageNET 0.34 22.2% 42.88% 20.68%

MNIST + EAT 0.78 4.41% 54.71% 50.3%

represents a stronger class of attacks, are both still able to cripple the individual
constituent networks. Although we do not presently understand why EAT helps
is reducing the transferability of the PDG and DF attacks, this phenomenon
helps MTDeep, when used in conjunction to the EAT, obtain impressive accu-
racy gains. In Fig. 5, we see that when α = 1 (only adversarially perturbed
inputs at test time) the accuracy of the constituent networks are 0–4% while
MTDeep achieves an accuracy of ≈ 55% Thus, we see a gain of more than 50%
when classifying only adversarially perturbed images.

4.3 Blackbox Attacks on MTDeep

MTDeep designs a strategy based on a set of known attacks. Once deployed, an
attacker can train a substitute network via distillation, i.e. use MTDeep as an
oracle to obtain labels for the (chosen-ciphertext like) training set for the sub-
stitute network. Given that the distilled network captures information relating
to the randomization at test time, we wanted to see how effective such a distilla-
tion procedure is in generating an expected network that mimics MTDeep. More
specifically, we want to know if adversarial samples generated on this distilled
network [14] successfully transfer against the MTDeep ensemble.

For this purpose, we used the three networks designed for MNIST data and
experimented with α = 1. We notice that MTDeep has higher immunity to
blackbox attacks and is able to classify attack inputs ≈ 32% of the time compared
to the ≈ 24% accuracy against white-box attacks. Thus, there exists a white-box
attack in the attacker’s arsenal that strictly dominates the black-box attack4.
Thus, the defender’s optimal mixed strategy remains unaffected.

4.4 Differential Immunity

If an attack u ∈ U could cripple all the networks n ∈ N , using MTDeep will
provide no gains in robustness. In this section, we try to quantify the gains
MTDeep can provide. Let E : N × U → [0, 100] denote the fooling rate function

4 Note that even if a blackbox attack proves to be a more effective attack against the
ensemble (for a different dataset), this attack is not modeled by the defender in the
original game. They may choose to include it in the formulated game.
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Attacks 0 1 2 3
FGMC 4788 3641 1449 118
FGMH 389 2728 6667 212
FGMM 1513 5790 2479 214
FGMBB 2305 2569 2678 2444

Fig. 6. Agreement among con-
stituent networks when classifying
perturbed inputs for the MNIST
data-set.
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where E(n, u) is the fooling rate when an attack u is used against a network
n. Now, the differential immunity δ of an ensemble N against a set of known
attacks U can measured as follows,

δ(U,N) = min
u

maxn E(n, u) − minn E(n, u) + 1
maxn E(n, u) + 1

If the maximum and minimum fooling rates of u on n differ by a wide margin,
then the differential immunity of MTDeep is higher. The denominator ensures
that an attack which has high impact (or fooling rate) reduces the differen-
tial immunity of a system compared to a low impact attack even when the
numerator is the same. The +1 factor the numerator ensures that higher val-
ues of maxn E(n, u) reduce the δ when maxn E(n, u) = minn E(n, u). Note that
δ ∈ [0, 1]. As per this measure, the differential immunity of the various ensembles
used in our experiments are highlighted in Table 2.

As per our expectation, we observe a general trend that the differential
immunity of an ensemble is proportional to the accuracy gains obtained by
MTdeep when compared to the most secure constituent network in the ensemble.
Although we notice the lowest gain in case of ImageNET, note that this 20.68%
gain in accuracy is substantially better than the ≈ 22% (or t ≈ 24%) gain in
accuracy for the Fashion-MNIST (or MNIST) dataset(s) with non-adversarially
trained DNNs because the number of classes in ImageNET is 1000 compared to
10 for the latter two datasets.Lastly, existing measures of robustness are mostly
designed for a single DNN [3,23] and thus, cannot capture the effect of attack
transferability on robustness (of an ensemble). Thus, we propose differential
immunity as one of the metrics for evaluating the robustness of ensembles that
use any form of randomization at test time.

Disagreement Metrics. In Fig. 6, we highlight the number of perturbed test
images (total 10000) on which 0–3 constituent DNN’s classification output(s)
agree with the correct class label. We conducted these experiments using the
non-adversarially trained networks for MNIST classification and for brevity pur-
poses, use only the FGM attack method. FGMC is the strongest attack that
can make all the n ∈ N misclassify at least 70% of the images. As generating δ
can be costly at times, which needs the fooling rates for each pair (u, n), one can
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generate the agreement metrics on a small data set to provide upper bounds for
δ. This provides an idea as to how using a MTDeep ensemble can increase the
robustness against adversarial samples. In this case, δMNIST ≤ 0.51 because for
the strongest attack, every network in the ensemble will misclassify (approx.)
49% of the time. Also, note that a majority based ensemble can will only be
able to guarantee an accuracy of ≈ 14% against the FSMC attack because in
all the other cases, only net 0 or net 1 is able to predict the correct class. In
comparison, MTDeep can obtain an accuracy of 26.8% against FGM attacks.

4.5 Participation of Individual Networks

In Fig. 3(b), we explore the participation of individual networks in the mixed
strategy equilibria for MTDeep used to classify ImageNET data. The results
clearly show that while it is useful to have multiple networks providing dif-
ferential immunity (as testified by the improvement of accuracy in adversarial
conditions), the leveling-off of the objective function values with more DNNs in
the mix does underline that there is much room for research in actively devel-
oping DNNs that can provide greater differential immunity. Note that no more
than four (out of the six) networks participate in the equilibrium. An ensem-
ble of networks with higher differential immunity equipped with MTD can thus
provide significant gains in both security and accuracy.

4.6 Robustness Against Miscalibrated α

If the value of α, which is assumed up-front, turns out to be incorrect, the com-
puted strategy ends up becoming sub-optimal. In Fig. 7, we plot the deviation
of the chosen policy (based on the assumed α) from the optimal as the real α is
varied ±50% from the one assumed. The BSG-framework remains quite robust
(as opposed to a uniform random strategy) i.e. the accuracy is within 0–3% of
the optimal accuracy. The robustness to α further highlights the usefulness of
MTDeep as a meta-defense meant to work not only against adversarial attacks
but also in the context of a deployed classifier that will have to deal with adver-
saries as well as legitimate users.

5 Conclusion

In this paper, we introduced MTDeep – a framework inspired by Moving Target
Defense in cybersecurity – as ‘security-as-a-service’ to help boost the security of
existing classification systems based on Deep Neural Networks (DNNs). We mod-
eled the interaction between MTDeep and the users as a Bayesian Stackelberg
Game, whose equilibrium gives the optimal solution to the multi-objective prob-
lem of reducing the misclassification rates on adversarially modified images while
maintaining high classification accuracy on the non-perturbed images. We empir-
ically showed the effectiveness of MTDeep against various classes of attacks for
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the MNIST, the Fashion-MNIST and the ImageNet data-sets. Lastly, we demon-
strated how using MTDeep in conjunction with existing defense mechanisms for
DNNs result in more robust classifiers, thereby highlighting the importance of
developing ensembles with higher differential immunity.
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