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Abstract. The measurement of the mental workload during real tasks by means
of neurophysiological signals is still challenging. The employment of Machine
Learning techniques has allowed a step forward in this direction, however, most
of the work has dealt with binary classification. This study proposed to examine
the surveys already performed in the context of EEG-based workload classifi-
cation and to test different machine learning algorithms on real multitasking
activity like the Air Traffic Management. The results obtained on 35 profes-
sional Air Traffic Controllers showed that a KNN algorithm allows discrimi-
nating up to three workload levels (low, medium and high) with more than 84%
of accuracy on average. Moreover, in such realistic employment it emerges how
important is to opportunely choose the set of features to ward off that task-
related confounds could affect the workload assessment.
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1 Introduction

Reading the Special Issue for the golden anniversary of the “Multiple Resources and
Mental Workload” theory of Christopher D. Wickens [1] allows to retrace the history
of the concept of workload from the difficulty of its definition up to the need to measure
it within Human Factors, passing through the definition of a workload model. In fact,
since the ‘70s, when the term workload began to appear in scientific publications,
several terms and definitions have overlapped and followed one another. The mental
workload, mental effort and mental strain were the most widely used terms to define the
relationship between the cognitive resources of a person who is required to perform a
task and the difficulty of the task itself. One of the first definitions of workload was “the
mental effort that the human operator devotes to control or supervision relative to his
capacity to expend mental effort” [2]; another typical description define the workload
as “the difference between the capacities of the information processing system that are
required for the task performance to satisfy performance expectations and the capacity
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available at any given time” [3]. In each of the definitions given to the workload to date
there is the term “capacity” which implies a finite amount of resources [1], in this case
cognitive resources. The pool of cognitive resources referred to is not unique, but it is
the set of different pools that allows to explain the link between performance and
difficulty in the case of multitasking. In fact, many of the actions we perform are
multitasking, such as observing a picture to describe it, talking while driving and
typically multitasking activities such as those carried out in an aircraft cockpit.

1.1 Multifaceted Aspects of Workload

It is precisely in these safety-critical environments that the need to evaluate an oper-
ator’s workload was firstly felt. In 1981, again Wickens pointed out that the devel-
opment of increasingly complex technologies had radically changed the role and load
to which an operator was subjected, leading to the dual need to exploit the model of
multiple resources to optimize the processing of human operator information in the
definition of tasks (“Should one use keyboard or voice? Spoken words, tones, or text?
Graphs or digits? Can one ask people to control while engaged in visual search or
memory rehearsal?”[1]) and measure the operator’s workload. From that moment on,
the measure of the workload has spread from the aeronautical [4, 5, 62], the educational
[6, 7] and to the clinical [8] fields. Even the aims of workload measurement have
evolved: the ultimate goal in all environments is mainly the Workload Adaptation, the
process of workload management to aid learning, healing or limiting human errors.
Moreover, workload measurement affects both the design and management of inter-
faces. On the one hand, by testing the workload of subjects during the use of web
interfaces [9], for example, it is possible to direct the design. On the other hand, in the
field of adaptive automation, it is the continuous monitoring of the workload level of
the subject that allows the system to vary the feedback in response to the mental state of
the operator [10, 11, 63].

1.2 Workload Measurements

The workload of an operator can be measured in three ways: by administering ques-
tionnaires, analyzing the performance of a subject or through psychophysiological
measures. Since the workload has different aspects (e.g. mental workload is different
from physical workload) the questionnaires preferably used are multidimensional ones,
such as NASA TLX [12] and SWAT [13]. However, these are subjective measures and
require subjects to be trained in interpreting and judging their condition. Moreover,
they can only be assessed after a task, not online. Similarly, performance measures do
not represent a direct indicator of the workload status of the subject as they do not
allow to know the amount of resources used and therefore the residual resources to
reach that performance value [14]. Moreover, measuring performance on a task does
not allow to obtain this measure of a differential nature (the remaining resources) so it is
always necessary to use a secondary task. However, even the use of secondary tasks
very often remains too closely linked to typical laboratory tasks and makes what really
happens in multitasking implausible [15]. The main objective of neurophysiological
measurements is to provide an objective and continuous, as well as an online
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measurement of an operator’s workload. Thanks to the possibility of making neuro-
physiological measures less and less intrusive, so far have been correlated with
workload values almost all neurophysiological known measures like the Electrocar-
diogram (ECG), the Eye movements, the Pupil diameter, the Respiration, the Galvanic
Skin Response (GSR) and the brain activity. Summarizing the evidence, the ECG, the
GSR and the ocular activity measurements highlighted a correlation, not only with
workload, but also with different mental states like stress, mental fatigue, drowsiness.
Therefore, they were demonstrated to be useful and robust only in combination with
other neuroimaging techniques directly linked to the Central Nervous System (CNS),
that is the brain [16]. Consequently, the electroencephalogram (EEG) and the func-
tional Near-Infrared Spectroscopy (fNIRS) as measures of the brain activity, are the
most likely candidates that can be straightforwardly employed to monitor the workload
in real environments [17]. Between the two, the EEG is usually preferred for the
workload assessment for its high temporal resolution. Moreover, it has been proved that
EEG features provide higher accuracy respect to ECG and GSR ones [18, 19]. The
electroencephalogram is the measure of brain electrical activity that in a non-invasive
way can be performed by means of electrodes placed on the scalp. To date, there has
been a strong improvement in technology oriented towards minimally invasive sys-
tems, with few electrodes, and possibly, dry electrodes [20]. The analysis of EEG
signals is usually aimed at studying the variance of the spectral power in the conditions
of interest. In the case of Workload, it has emerged that a higher task demand corre-
sponds to an increase in frontal theta band activity and a decrease in parietal alpha band
activity [16].

1.3 Machine Learning to Get Back Out-of-the-Lab

Therefore, the concept of workload was born for practical needs, has been modeled in
the laboratory essentially using dual-task procedures, but then the need to measure it in
realistic contexts as in operational, educational and clinical returns overwhelmingly.
The practical implications of applying a workload measurement in a realistic envi-
ronment define the characteristics that an automatic workload measurement system
must have. Firstly, especially in the applications in real environment, it is difficult to
create a direct link between the mental state of the subject and his brain activity, or
more generally his physiological state since there is no control condition typical of the
laboratory. The employment of secondary cognitive task (e.g. the n-back) during real
activities does not fit the realistic conditions and may increase the actual workload level
[21]. Moreover, because of the high individual variability of physiological responses,
traditional statistical tests are not able to discover the relationship between cause and
effect, so it is necessary to employ techniques that allow to take into account the
individual characteristics to correctly define the level of workload, such the machine
learning techniques [22]. Such methods allow to extract the features mostly influenced
by the mental state variation, and then use this information to classify the specific
workload level. Secondly, since by definition the workload is linked to the performance
by the inverted “U” model [23], the ideal would be to be able to distinguish at least 3
levels of workload, one suboptimal that concerns the workload too low, one optimal,
and the threshold that defines the overload condition. However, most of the work in
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literature is limited to classify two levels of workload, the low and high. In these cases,
the levels of accuracy reached are generally very high, greater than 80% [18, 22,
24–29]. Much less are the examples of multiclass-classification [17], whose highest
number of workload levels classified has been 7 [30] and, almost all, have been
obtained by means of n-back and arithmetic tasks in a laboratory context [31, 32]. In
this context, the majority of methods used to define the level of mental workload of a
subject are supervised machine learning techniques. The process that leads from the
recording of EEG signals to an indication of the workload level passes through the use
of signal analysis methods that allow to extract the informative features of the phe-
nomenon to be investigated. Regarding the measurement of the workload have been
used in several studies both spectral, temporal and spatial features [33]. The use of
spectral features remains the most suitable for the temporal continuity required by the
workload monitoring, since the brain activity induces variations in its spectral power
which, unlike ERPs used for time domain analysis [34], does not need to be triggered
with a certain timing [35]. Taking into account the nature of the features, there are
countless different examples of configurations, in terms of number of channels and
frequencies used in the literature. The number of electrodes can vary from 64 [24, 36]
to 6 [37], and even the bands considered vary from 2 (Theta and Alpha, [9]), to 7 (0–
4 Hz, 4–7 Hz, 7–12 Hz, 12–30 Hz, 30–42 Hz, 42–84 Hz, 84–128 Hz [38]), up to
considering all the single frequency bins that define the spectrum [39]. Several studies
have shown that it does not necessarily take more than 5–10 electrodes to classify the
workload [24]. Especially when dealing with a high number of channels and high
spectral resolution, the number of used features increases exponentially and leads to the
so-called “curse of dimensionality”[40]. Many researchers have therefore highlighted
the need to make a selection of features both to decrease the computational cost of
machine learning algorithms and to use this as additional information in experimental
setups. In fact, if the analysis shows that some electrodes are not useful for the clas-
sification of the workload, it is possible to remove them and then make the instru-
mentation lighter and less invasive. In this case the most used methods for the selection
of features are those recursive, such as recursive feature elimination [18, 41], sequential
forward feature selection [24] or methods that take into account the dependence
between features such as the Minimum Redundancy Maximum Relevance selection
[37, 42, 43], or unsupervised method (Locally linear embedding, [44]). Once defined a
meaningful set of features, it is necessary to choose a model to define the workload
level. In the literature innumerable algorithms, essentially of a supervised nature, have
been used to define the workload level of a subject starting from his brain signals,
belonging to both the so-called Shallow learning and deep Learning domains [45, 46].
In all cases the efficiency of such algorithms is usually presented in terms of accuracy.
However, the accuracy obtained in different studies are not directly comparable, since
the calculation of accuracy includes several factors like the task employed to elicit the
workload, the number of subjects and the number of EEG signals recorded (and also
the kind of instrumentation employed), the features extracted, the methods used to
eventually select them and, only at the end, the algorithm used to classify the workload.
Only taking into account all this information, it could be possible to compare the results
obtained so far in different works employing machine learning techniques to classify
the level of workload. Leveraging on the theoretical comparison of the works done so
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far with regard to the classification of the workload through electroencephalographic
signals, it is necessary to highlight an issue. In any case, starting from a very large set
of features or making a blind selection of them, very high accuracy of classification
could be obtained. However, it could not be directly associated with a change in the
workload level. To be sure that the system has actually classified workload, it is
therefore necessary to perform two fundamental actions. Firstly, it is necessary to
perform an excellent calibration of the machine learning algorithm avoiding task-
related confound, like for example movements or the influences of other mental states.
However, during a real task that is typically highly multitasking, it may not be possible
to perform a rigorous calibration of the system, as the ideal conditions provided by the
typical control conditions of the laboratory task are lacking. Therefore, in these cases
the calibration could be dirtied by task-related confounds. To solve this problem cross-
task calibration has been proposed, but the results produced so far have not shown that
it is possible to use a laboratory task to effectively classify a real task and the per-
formance is much lower than that obtained in a within-subject condition [41]. Sec-
ondly, it should be preferred a careful selection of features related to the phenomenon,
and possibly not to the other mental state variations, respect to a blind one. In the case
of workload, for example, many works have identified in the activity of the frontal
brain areas in the theta band and parietal areas in the alpha band [16] the most
informative features. Even more accurately, [30] have carried out a selection of the
channels through source localization analysis, and it has been possible for them to
classify 7 levels of workload. Therefore, the practical aim of this work is to provide a
comparison of five different machine learning algorithms and two different sets of EEG
features to discriminate three different levels of workload during a real task of Air
Traffic Management. The Air Traffic Management (ATM) is a highly multitasking
activity. In fact, air traffic controllers are continuously engaged in visual activities
(airplane control on the radar) and auditory (as they communicate with the pilots of
different aircrafts). The ATM represents one of the fields where the evaluation of
workload has a fundamental role both in training aspects and in operational conditions
[47, 48]. In fact, it has been established that it is a high demanding work during which
the slightest error could have very ominous effects [49]. Changes in the traffic
manipulation, complexity or volume, produced changes in mental resources required
and therefore in workload. In ATM domain, different tasks have been used to inves-
tigate workload changes and to create a workload index based on biosignals, even
though most of the results are related to laboratory environment. However, the present
study takes advantages of realistic task in a highly realistic context and of 35 profes-
sional Air Traffic Controllers.

2 Methods

2.1 Experimental Protocol

An experimental protocol with high realistic ATM scenarios has been settled up. The
controller position is similar to the ones used in the real operational center. The con-
troller working position has two screens, one 30″ to display radar image and a 21″ to
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interact with the radar image (zoom, move, clearances and information) and the voice
communication between controller and pseudo-pilot uses the same hardware and
software like the one used in training (headphones, microphone and push-to-talk
command), very similar to what normally used into operations. The radar picture shows
the sector (light grey), routes, waypoints and flights displayed according to their
coordination state (white ones are assumed). Information on neighbor flights is dis-
played in the list. The experimental task consists in an ATM scenario in which different
air-traffic conditions take place. For instance, the task could start with an increasing
traffic complexity until a hard condition, and then decreasing until a condition similar
to the initial one by passing through a medium complexity condition. The variation of
the task complexity is necessary to evaluate if the system is able to differentiate the
different workload levels. Each scenario lasts globally 45 min, while each session of
low (L), medium (M) and high (H) workload level lasts about 15 min. The different
levels of traffic, defined by subject matter experts (SME), vary according to the number
of aircrafts, traffic geometry, the number of conflicts and subjective assessment of
controller’s skill. Three different scenarios have been proposed, with compatible events
in order to induce the three mentioned difficulty levels (Easy, Medium, Hard), but not
exactly the same, to not induce habituation or expectation effects on the experimental
subjects. The experimental protocol involves 35 professional ATCOs. ATCOs have
been selected in order to have a homogeneous sample in terms of sex, age and
expertise. Sixteen EEG channels (FPz, F3, Fz, F4, AF3, AF4, C3, Cz, C4, P3, Pz, P4,
POz, O1, Oz, O2) have been recorded by the digital monitoring BEmicro system
(EBNeuro system) with a sampling frequency of 256 Hz. All the EEG electrodes have
been referenced to both earlobes, and the impedances of the electrodes have been kept
below 10 kX.

2.2 Signal Processing

The EEG signals have been digitally band-pass filtered by a 4th order Butterworth filter
(low-pass filter cutoff frequency: 30 Hz, high-pass filter cutoff frequency: 1 Hz) and the
Fpz signal has been used to correct eyes-blink artifacts from the EEG data by means of
the Reblinca algorithm [50]. It should be underlined that normally in a realistic envi-
ronment, different sources of artifacts could affect neurophysiological recorded signals,
more than in the laboratory environments. For instance, ATCOs normally communicate
verbally and perform several movements during their operational activity. Then each
trial having an amplitude exceeds 100 µV (threshold criteria), or the slope trend higher
than 3, or a sample to sample difference higher than 25 µV have been marked as
“artifact” and then rejected, with the aim to have clean EEG signals from which
estimate the brain parameters for the different analyses. The aforementioned parameters
and related techniques have been set following the methodology available on the
EEGLAB toolbox [51].

2.3 Features Extraction

The EEG signals have been segmented in periods of 2 s, 0.125 s shifted. After that, for
each period, the power spectral density (PSD) by using the Fast Fourier Transform has
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been computed in the Theta and Alpha frequency bands because it has been stated that
they are the most related to workload effects [9, 16]. The EEG frequency bands were
defined accordingly with the Individual Alpha Frequency (IAF) value estimated for
each subject. Since the alpha peak is mainly prominent during rest conditions, the
participants were asked to keep the eyes closed for a minute before starting with the
experiment. In particular, the theta and alpha bands have been respectively defined as
(IAF−6 � IAF−2) and (IAF−2 � IAF+2). Two different sets of features have been
considered. In the first case, the PSD values in the theta and alpha bands have been
computed for 14 EEG electrodes, to imitate what is usually done in several studies in
literature [9, 41, 43, 52]. In this work, 28 PSD Features (14 Channels � 2 Bands) have
been computed. The second set consisted of 9 features, 5 describing the frontal theta
activity and 4 the alpha parietal activity. These features have been chosen according to
the literature, because it is proven these are the features most correlated to workload [6,
16]. In both cases the features have been normalized because the differences in ranges
affect the calibration and the functioning of some algorithms [53] (e.g. K nearest
neighbor).

2.4 Machine Learning Algorithms

Five different machine learning techniques have been employed to discriminate
between three different levels of workload (i.e. Low, Medium and High level). The
starting dataset shows balanced classes (6000 instances per class) and has been used in
a within-subject manner, as this approach is allowed in case of long-lasting recordings
of a single subject. The total amount of occurrences available for each subject has been
divided in an optimization set, which occurrences have been used for the optimization
of model parameters by using grid search and 3-fold cross validation, and an evaluation
set, where the performance of the algorithms have been evaluated computing the
accuracy through 5-fold cross-validation. Optimization and evaluation of machine-
learning techniques have been computed by Phyton Scikit-learn library [54]. In par-
ticular five different techniques have been trained to cover a wide range of algorithms
types: a regression-based method (the multinomial logistic regression), a linear method
without any optimization procedure (LDA), a linear classifier with a cost parameter
(SVM), an instance-based method (the k nearest neighbor) and an ensemble method
(the Random Forest).

Logistic Regression (LR) is a model used for the prediction of the probability of
occurrence of an event. In this case it has been used in its multiclass configuration, the
multinomial logistic regression and the value of l2 penalization has been chosen in the
log space between −3 and 3

Linear Discriminant Analysis (LDA) is a linear algorithm that allows to create
hyperplanes in n-dimensional space according to the number of features, to discrimi-
nate 2 or more classes. Its advantage is that it has not any parameter to optimize,
however, it could finally try to describe only linear problems.

Support Vector Machine (SVM) is a supervised algorithm that allows to create
hyperplanes in n-dimensional space according to the number of features, to discrimi-
nate 2 or more classes. It could be a linear or nonlinear classifier (or regressor)
according to the employed kernel. In this case it has been used a linear kernel in a
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multiclass configuration using the Crammer and Singer method () and the optimal cost
parameter has been chosen in a log space between −3 and 3.

K-Nearest Neighbor (KNN) is a nonlinear instance-based algorithm. Its main idea
is to predict the class on the basis of the distance between the observation and the first k
neighbors and does not assume a priori the distribution of the dataset. The advantage of
this algorithm is that it is optimized locally, and it is not affected by the complexity of
the entire phenomena. The weakness is that the computational cost could be as high as
the amount of features increase. Only the number k of neighbors has been chosen in a
range from 1 to 20.

Random Forest Classifier (RF) is a nonlinear classifier [55] belonging to the
ensemble methods. This family of classifiers allows to generalize well to new data [56]
and are more robust to overfitting than individual trees because each node does not see
all the features at the same time [55]. Several parameters could be optimized, however,
in this case only the number of trees ([10, 100, 200]) have been chosen.

In the latter case, the algorithm allows also to obtain the information related to the
feature importance that could be used to explain how the model is affected by each
feature. Therefore the topographies showing the feature importance in the case of 28-
feature and 9-feature sets have been compared.

3 Results

The classification results for both sets of features are shown in Figs. 1 and 2. Each box
plot represents the value of the accuracy of the population, while the single mean value
of the accuracy obtained for each subject is shown in the black dot. The Friedman test
has been performed to statistically assess if there is any significant difference between
the algorithms, because the sphericity requirement was not met for both conditions
(Mauchly’s test p < 10−4). For the 28-feature set the Friedman test provided
v2 (N = 35, df = 4) = 123.0171 (p < 10−4) and for the 9-feature set v2 (N = 35,
df = 4) = 126.2857 (p < 10−4). The multiple comparison Bonferroni corrected has
been performed and the results are shown in Table 1. In both cases the mean accuracy
provided by the KNN is significantly higher than all the other algorithms. The Random
Forest provided significantly higher accuracy than the LR, LDA and SVM. Such 3
methods did not show significant differences in their performances when the 28-feature
set was used, while the SVM performed significantly worse than the other algorithms
when 9 features were used. In Fig. 3 are shown the topographies of the feature
importance computed with the Random Forest algorithm for theta and alpha band. The
values have been normalized. The scalp maps show that the most important features are
the central and occipital PSD values in alpha band in the case of 28-feature set and the
parietal activity in alpha band in case of the 9-feature set.
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Fig. 1. Accuracy distribution for each algorithm in case of 28 features. The black dots represent
the accuracy value for each subject.

Fig. 2. Accuracy distribution for each algorithm for 9-feature set. The black dots represent the
accuracy value for each subject.
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Fig. 3. Topographies of Feature importance according to Random Forest algorithm in theta and
alpha band. In the first row are represented the results for 28 features and in the second row for 9
features.

Table 1. Mean accuracies and standard deviation for each algorithm and multiple comparison
p-value (Bonferroni corrected). When the results for the two sets of features are different both
p-value have been reported.

Accuracy (%) p-value 28-Feat/9 Feat

Algorithm 28-Feat
Mean (SD)

9-Feat
Mean (SD)

LR LDA SVM KNN RF

LR 49.176
(6.74)

43.096
(5.72)

1.000 0.874/
10−7

0.000 0.000

LDA 47.889
(5.74)

42.645
(4.88)

1.000 1.000/
4.9 * 10−5

0.000 0.000

SVM 47.645
(7.57)

39.914
(6.55)

0.874/
10−7

1.000/
4.9 * 10−5

0.000

KNN 84.947
(5.05)

62.112
(3.98)

0.000 0.000 0.000 0.000 0.000

RF 78.214
(4.68)

58.617
(4.57)

0.000 0.000 0.000 0.000
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4 Discussion

This work aims to classify three different levels of workload during real multitasking
activities like the ATM. According to the theory, a correct modulation of the workload
in a laboratory environment should be based on a dual task to allow an evaluation of
the subject’s residual cognitive resources and consequently, by definition, of his
workload. However, in a real environment, it is very difficult to integrate a control
condition, as well as to take into account the variability underlying cognitive phe-
nomena both intra and inter subject. Therefore, the application of Machine Learning
has been considered the solution for classifying the workload and overcoming these
issues typical of real applications. The preliminary analysis of the works carried out so
far in this context has shown that it is possible to discriminate with acceptable accuracy
only two levels of workload [6, 18, 22, 24, 25, 27–29, 33, 36–39, 42, 45, 46, 57], even
though, above all in view of a practical application of the workload measurement, it is
necessary to establish at least the value of two thresholds to define the underload and
the overload state. The most frequently employed features are the spectral ones,
because they can be calculated with a high temporal resolution (up to one second) and
allow to monitor brain activity in a quantitative manner without temporal triggers.
Therefore, in this work the values of the PSD calculated in time windows of 2 s have
been used, averaging the values of PSD in each band to limit the number of features
and keep at the same time under control the collinearity [58]. Due to this condition, in
fact, the information provided by very close frequency bins could be superimposable,
which would lead to introduce a bias in the creation of the model. Since the number of
observations available is in the order of thousands, it was decided not to use any feature
selection algorithm, but to provide a posteriori information on the feature importance.
One of the chosen algorithms, the Random Forest, allowed to have this information.
Taking advantage of this potentiality, it has been highlighted that the most discrimi-
nating features of the concerned model are in the alpha band. In particular, when the
higher number of features has been used, the most important features cover the central
and occipital brain areas. This aspect can be explained considering that the alpha band
intervenes twice in the considered task. In fact, in the alpha band it is possible to find
both the motor alpha pattern, due to the activity of the sensorimotor area and generally
strongly lateralized [59], and the pattern associated to the visual area. This set of
features is not directly referring to the typical workload topographies, whose purpose is
to measure the net of cognitive resources used by the subject, but rather these features
provide the information derived from the movements of the subjects to define the level
of workload imposed by the task itself, which does not necessarily correspond to that
perceived by the subject. On the other hand, when only frontal theta and parietal alpha
features have been used, the most important features are related to parietal activity, that
is usually associated with the attentional alpha pattern that reflects the increase of brain
activity in areas afferent to the posterior attentional networks [59]. Therefore, it has
been demonstrated that, especially when the task is real and the algorithm does not take
advantage of a rigorous calibration to avoid the task related confounds, the role of the
features chosen a priori becomes essential and recalls the concept of “no free lunch”
[60] in machine learning: the necessity to use prior knowledge to optimize the
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algorithm functioning, but at the cost of generality. However, it is necessary to high-
light that reducing the number of features there is a decreasing in the performance of
each tested algorithms. In fact, to classify three levels of workload it was decided to test
different algorithms of machine learning, which in the first place can be divided into
two categories: regression and classification. Among the classifiers, we can further
distinguish linear (LDA and SVM) and non-linear (KNN and RF) methods. Although
regression has been proposed as a method that avoiding the strict equality between
classes allowing to have higher performances, especially in case of cross-task classi-
fication [41], it provided an accuracy value equal to 50%, but still higher than the
chance (33.33%). On the other hand, linear methods both in the case of optimization
(SVM) and in the case of non-optimized method (LDA) provided significantly lower
accuracy than nonlinear methods. The linear methods are appropriate when limited data
and limited knowledge about the data itself is available [61]. However, a linear clas-
sifier does not work well in the presence of strong noise or outliers, if the dimen-
sionality of the features space is too high, if regularization was not done well or the
problem is intrinsically non-linear [17]. If there are large amounts of data, non-linear
methods are suitable to find potentially complex structure in the data. In this work the
KNN not only provides the highest accuracy (84%), but it also has different advan-
tages: it is a method that does not require the calculation of the covariance matrix as in
the case of the LDA and is therefore mathematically very simple [56]. On the other
hand, it does not need time for training (because it just memorizes the training set) and
then could be used for an online application when there are a few features. In fact, in
the case of a large number of features this method does not allow to easily manage
those irrelevant and at the same time becomes computationally expensive to calculate
the distance. In addition to the high accuracy provided, even the choice of Random
Forest as classifier in realistic multitasking could be advantageous essentially for two
reasons. First, because it is an ensemble method, it tends to generalize well and is not
subjected to overfitting, Second, it allows to have the information regarding the feature
importance, that increase the possibility to know what the system is actually classi-
fying. However, the final choice of a classifier should be made after a systematic
evaluation of other different performance parameters, such sensitivity, specificity, recall
and precision.

5 Conclusion

With this work it has been proved that it is possible to reach very high accuracy to
distinguish between three levels of workload during a real task only by using the EEG
signals. However, according to the literature the high accuracy is only one of the
optimal characteristics required for an out-of-the-lab classifier besides the none or at
most few data samples for training the classifier and higher temporal reliability.
Therefore, several other questions need to be pointed out in realistic contexts.
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