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Abstract. Mental Workload is nowadays a keyword used and sometimes
abused in life sciences. The present chapter aims at introducing the concept of
mental workload, its relevance for Human Factor research and the current needs
of applied disciplines in a clear and effective way. This paper will present a
state-of-art overview of recent outcomes produced by neuroscientific research to
highlight current trends in this field. The present paper will offer an overview of
and some examples of what neuroscience has to offer to mental workload-related
research.
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1 Introduction to the Mental Workload Concept

Mental Workload is a complex construct that is assumed to be reflective of an indi-
vidual’s level of cognitive engagement and effort while performing one or more tasks
[1]. Therefore, the assessment of mental workload can essentially be a quantification of
mental activity resulting from such tasks. It is difficult to give a unique definition of
Mental Workload. Various definitions have been given during the last decades:

• “Mental workload refers to the portion of operator information processing capacity
or resources that is actually required to meet system demands” [2];

• “Workload is not an inherent property, but rather it emerges from the interaction
between the requirements of a task, the circumstances under which it is performed,
and the skills, behaviours, and perceptions of the operator” [3];

• “Mental workload is a hypothetical construct that describes the extent to which the
cognitive resources required to perform a task have been actively engaged by the
operator” [4];

• “The reasons to specify and evaluate the mental workload is to quantify the mental
cost involved during task performance in order to predict operator and system
performance” [5].

Apart from the definitions presented above, many other attempts to uniquely define
Mental Workload concept have been made, demonstrating how mental it may not be a
unitary concept because it is the result of different aspects interacting with each other.
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In fact, several mental processes such as alertness, vigilance, mental effort, attention,
stress, mental fatigue, drowsiness and so on, can be involved in task execution and they
could be affected by specific tasks demand in each moment. In general, mental
workload theory assumes that: (i) people have a limited cognitive and attentional
capacity, (ii) different tasks will require different amounts (and perhaps different types)
of processing resources, and (iii) two individuals might be able to perform a given task
equally well, but differently in terms of brain activations [6, 7].

1.1 A Topic in the Human Factors Research

In some safety-critical operational environments, one or few operators could be
responsible of the safety, and even more the life, of numerous people. For example, let
us think to the transportation domain (e.g. Aviation, Rail, Maritime), where the safety
of the passengers depends on the performance of the Pilot/Driver/Sailor, the Traffic-
Controller or the Maintenance crew. In such contexts, a human error could have serious
and dramatic consequences. In general, human error has consistently been identified as
one of the main factors in a high proportion of all workplaces accidents. In particular, it
has been estimated that up to 90% of accidents exhibits human errors as principal cause
[8]. This is true also for other domains such as health care, the US Institute of Medicine
estimates that there is a high people mortality per year (between 44.000 and 88.000) as
a result of medical errors [9], with an impressive amount of accidents resulting from
breast cancer treatments that doubles fatalities resulting from road accidents [10, 11].
Scientific publications regarding problem of medical surgeries, injuries and compli-
cations of treatment can be fairly dated to the 1991 as results of the Harvard Medical
Practice Study [10, 11]. The reviews of 30,000 medical records of patients hospitalized
in the New York state showed that the 4% of patients had complications of their
treatment, which have been called Adverse Events (AE). Even more shocking was the
finding that two-thirds of these injuries were due to medical operators’ mistakes,
highlighting the fact that they were preventable. The US study was replicated in other
Countries [12, 13] with the same results trend (Australia: 13% of patients with AE; UK:
10%). The report “To Err is Human” of the Institute of Medicine (IOM), published in
the 2000, had a dramatic effect in bringing patient safety to the medical and public
attention. The IOM proclaimed that nationwide as many as 98,000 Americans died
yearly because of medical mistakes [14]. It has also been estimated that inappropriate
human actions and consequently the errors implicated are the main causes of 57% of
road accidents and a contributing factor in over 90% of them [15]. The Aviation Safety
Network reported 19 accidents with 960 casualties during the last years; in many cases
factors related to workload, situation awareness and monitoring were a caused or
contributing factors [16, 17]. Additionally, over the past four decades, human error has
been involved in a high number of casualty catastrophes, including the Three Mile
Island, Chernobyl and Bhopal nuclear power disasters, the Tenerife, Mont St Odile,
Papa India and Kegworth air disasters, the Herald of Free Enterprise ferry disaster, the
Kings Cross fire disaster, the Lad-broke Grove rail disaster, and many others [18].
Consequently, the human factor concern, with its possible causes and ways to mitigate
its impact, received more and more attention, and it has been investigated across a wide
range of domains, including military and civil aviation [19, 20], aviation maintenance
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[21], air traffic management [22, 23], rail [24], road transportation [25, 26], nuclear
power and petrochemical reprocessing [27], military, medicine [9, 28], and even the
space travel domain [29]. At this point, what are the causes of human errors? Human
error is an extremely common phenomenon: people, regardless of abilities, skill level
and expertise, makes errors every day. The typical consequence of error-occurrence is
the failure to achieve the desired outcome or, even worst, the production of an unde-
sirable outcome. When it happens in particular working environments, such error can
potentially lead to accidents involving injuries and fatalities. Human error can be
defined as the execution of an incorrect or inappropriate action, or a failure to perform a
particular action. According to the scientific literature, there have been numerous
attempts at de-fining and classifying the human error. However, a universally accepted
definition does not yet exist. Rasmussen [30] pointed out the difficulty in providing a
satisfactory definition of human error. In 1987, he suggested that “human error rep-
resents a mismatch between the demands of an operational system and what the
operator does” [31]. The main causes of human errors can be searched within the
internal or psychological factors of the operator [32]. In fact, errors could also arise
from aberrant mental processes such as inattention, poor motivation, loss of vigilance,
mental overload and fatigue that negatively affect the performance.

Among the various cognitive components of mental activity, mental workload is
anyway considered to be the one indicating a comprehensive representation of an
operator’s mental state considering the amount of involved cognitive resources,
therefore cognitive psychology aimed to establish the relationship between mental
workload and human performance. Modelling such a relationship would help to predict
human performance evolution along time thus preventing potentially risky situations.
In this sense, the widest accepted hypothesis describes the relationship between mental
workload and performance through an‘‘inverted U-shape’’ (Fig. 1) function. This
hypothesis relies on the Yerkes-Dodson theory, that more than one century ago (Robert
M. Yerkes and John D. Dodson, 1908) described the effects on human performance
referred to as physiological activation [33]. Reasonably, this theory has not to be
intended as an exact one, but as a representative model, perhaps revised in different
ways recently [34, 35], however the pillar is that such a relationship is not linear, and
performance tends to degrades at both the boundaries of workload span. In other words,
some levels of mental workload may help the user to reach high performance levels
[36] since it stimulates positively the user and it keeps him/her awake with high
attention level. Nevertheless, a period of mental inactivity and “under-stimulation” can
cause a monotonous and boring state (underload), a low level of vigilance and atten-
tion, with low cognitive resources demand. For example, Warm and colleagues [37]
showed how vigilance requires an important amount of cognitive resources, by using
behavioural, neurophysiological and subjective measures. At the same time, an oper-
ative condition characterized by highly demanding multiple tasks can lead the user to
an overload condition, equally impairing from a performance perspective [38, 39].
Both the cases bring to a variation in neurophysiological factors and often to a
decrement of performance. Such performance reduction is highly undesired, especially
in safety-critical domains, as discussed above.

In 1981 Wickens pointed out that the development of increasingly complex tech-
nologies was radically changing the role and load to which an operator was subjected,
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leading to the dual need to exploit the model of multiple resources to optimize the
processing of human operator information in the definition of tasks (“Should one use
keyboard or voice? Spoken words, tones, or text? Graphs or digits? Can one ask people
to control while engaged in visual search or memory rehearsal?” [40]) and measure the
operator’s workload [41].

Since then, the measure of the workload has spread from the aeronautical field [16,
42] to the educational [43] and to the clinical [44] domains. Mental Workload
assessment techniques should be able to solve these questions, being sensitive to
fluctuations in task cognitive demands while operating or interacting with systems by
without intruding external interferences on primary task performance [45, 46]. To this
regard, three are the main categories of techniques investigated and employed in
Ergonomic field for mental workload monitoring [47, 48]:

• Behavioural measures, generally derived from measures of operator’s performance
with respect to the main and/or an additional task;

• Subjective measures, generally collected through self-confrontation reports and
questionnaires, such as the Instantaneous Self-Assessment (ISA, [49]) and NASA-
Task Load indeX (NASA-TLX, [3]);

• Neurophysiological measures, i.e. those techniques that infer human mental states
from specific variations of human biosignals, such as brain activity, hearth activity,
skin sweating, and so on.

The targeted level of sensitivity is unobtainable with behavioural and subjective
measures alone. In this regard, neurophysiological techniques have been demonstrated
to be able to assess mental workload of humans with a high reliability, even in
operational environments [50–54]. Moreover, neurophysiological techniques afford
another important advantage: unlike alternative subjective assessment techniques,
neurophysiological measures do not require the imposition of an additional task either
concurrently (as in secondary task techniques) or subsequently (as in subjective
workload assessment techniques) the primary one. Neurophysiological measures can be
obtained continuously, even online, with little intrusion, i.e. without interrupting the
operator’s work with additional tasks or questions [50]. In addition, it will become
more and more difficult to measure cognitive capacities with performance indices in

Fig. 1. Inverted U-shape relationship between mental workload and performance.
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future workstations, since they will be characterized by higher levels of automation,
therefore reducing the manual interaction between the humans and the machine. Also,
any eventual performance degradation would become “measurable” by the system
when the operator already suffered a mental impairment, i.e. “after the fact” [55].
Finally, neurophysiological measures have been demonstrated to be reliably diagnostic
of multiple levels of arousal, attention, learning phenomena, and mental workload in
particular [56–65]. Such applications will be discussed in the following paragraphs.
Thus, the online neurophysiological measurements of mental workload could become
very important, not only as monitoring techniques, but mainly as support tools to the
user during his/her operative activities. In fact, as the changes in cognitive activity can
be measured in real-time, it should also be possible to manipulate the task demand
(adaptive automations) in order to help the user to keep optimal levels of mental
workload under which he or she could be operating [66]. In other words, the neuro-
physiological workload assessment could be used to realize a passive Brain Computer
Interface (passive-BCI, please see Par. 3) application in real environments.

2 Neuroscientific Contribute to the Mental Workload
Assessment

Neuroimaging methods and cognitive neuroscience have steadily improved their sci-
entific and technological maturity over the past decade, consequently producing a
growing interest in their use to examine the neural circuits and physiological phe-
nomena behind human complex tasks representative of perception, cognition, and
action as they occur in operative settings. At the same time, many fields in the bio-
logical sciences, including neuroscience, are being challenged to demonstrate their
relevance to practical real-world problems [48]. Although the different conjugations of
the discipline name, for example Bioengineering or Cognitive Neuroscience or Neu-
roergonomy (in general due to a different point of view of the same problem), scientific
research in these fields is aiming at inferring and assessing humans’ workload, and
more generally their Internal States (IS), through neurophysiological measures. In fact,
such a concept of measuring humans’ IS, where IS has to be intended as the gener-
alization of all the possible mental, or purely cognitive (e.g. workload, attention, sit-
uation awareness), and affective, or purely emotional (e.g. stress, pleasantness,
frustration) psychophysical states, is based on the assumption that each biological
activity is regulated by the human Central Nervous System (CNS). The brain is of
course the main actor of CNS, but it is also important to take into account the activity
of the Autonomic Nervous System, that acts largely unconsciously and regulates bodily
functions such as the heart rate, respiratory rate, pupillary response, skin sweating and
so on [67]. Variations of these biological activities correspond to internal reactions
because of modification of external (environment) and internal (cognition, emotions,
etc.) factors, therefore neurophysiological signals become the interface to access what
is happening within the human mind. Just to make few examples, the electrical activity
of the brain’s prefrontal cortex in EEG Theta frequency band increases while cognitive
demand is increasing [68], increased skin sweating is related to higher levels of arousal
and attention [69], while heart rate tends to accelerate under stress conditions [70]. The
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last decades have been fruitfully spent by the scientific community in investigating the
correlation between such variations and specific human ISs, enabling the possibility of
obtaining measures (i.e. Neurometrics), of several concepts such as attention, stress,
workload, emotion, etc., and to use them (i) to provide a feedback to the user [56];
(ii) to modify the behaviour of the interface the user is interacting with [71]; or (iii) to
obtain insights related to user’s feelings while experiencing specific situations (e.g.
eating, or watching tv, or any other everyday activity) without any verbal communi-
cation [72, 73]. These potentialities have been usually demonstrated in controlled
settings (i.e. Laboratory), but recent technological progresses are allowing more and
more low invasive and low cost wearable devices that can open the door to applications
in everyday natural settings. From a technological point of view, many companies are
moving forward to develop biosignal acquisition devices more and more wearable and
minimally invasive and at the same time sensors (e.g. gel-free electrodes for EEG
systems, or bracelets/watches already integrating sensors for PPG and GSR) able to
ensure high signal quality and comfort at the same time [74, 75]. Just to have an idea of
the effort recently produced in this field, many works have been performed in opera-
tional environments, e.g. aviation [50, 76–78], surgery [79], city traffic monitoring [80–
82], power plant control centres [83], and many others [59, 73, 84–86] to demonstrate
the usefulness of Neurometrics.

Such neuroscientific researches are based on the use of neuroimaging technologies
and neurophysiological measures, including Electroencephalography (EEG), func-
tional Near-InfraRed (fNIR) imaging, functional Magnetic Resonance Imaging
(fMRI), Magnetoencephalography (MEG), and other types of biosignals such as
Electrocardiography (ECG), Electrooculography (EOG) and Galvanic Skin Response
(GSR) [68, 87, 88]. Neuroimaging methods such as Positron Emission Tomography
(PET) and fMRI are excellent tools in this endeavour, enabling the examination of how
the brain adapts itself in response to practice or repeated exposure to particular tasks.
However, their limitations in terms of cost, space and invasiveness make them not
suitable for real working environment settings, where a less invasive approach would
be preferable and the costs for its implementation and usage has to be limited. In fact,
PET and fMRI techniques require expensive instruments and high maintenance costs,
In addition, fMRI [89] and MEG techniques require room-size equipment that are not
portable. On the other hand, EOG, ECG and GSR activity measurements highlighted a
correlation with some mental states (stress, mental fatigue, drowsiness), but they were
demonstrated to be useful only in combination with other neuroimaging techniques
directly linked to the Central Nervous System (CNS), i.e. the brain [68, 90, 91].
Consequently, the EEG and fNIRs are the most likely candidates that can be
straightforwardly employed to investigate human brain behaviours in operational
environments. The propensity for using EEG or fNIRs techniques has not been clarified
yet. There are several factors to take into account about real operative scenarios. For
example, both EEG and Fast Optical Signal (FOS)-based fNIR have similar bandwidth
and sample rate requirements, as the FOS appears to directly reflect aggregated neural
spike activity in real-time and can be used as a high-bandwidth signal akin to EEG
[92]. However, EEG and fNIRs systems have different physical interfaces, sizes,
weights and power budgets, thus different wearability and usability in real operative
contexts. In this regard, the presence of hair may impact negatively on both photon
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absorption [93] and the coupling of the probes with the underlying scalp, thus the
fNIRs technique is very reliable only on those un-hairy brain areas, like the Pre Frontal
Cortex (PFC). For the mental states investigation, also other cortical regions, such as
the parietal brain sites play an important role. Derosière et al. [94] pointed out how
some fNIRs-measured hemodynamic variables were relatively insensitive to certain
changes during the brain activity. In conclusion, due to its higher temporal resolution
and usability, in comparison with the fNIRs technique, the EEG technique overcomes
such issues related to the fNIRs and appears to be the better candidate for such kind of
applications in operational environments. With particular regard to the mental work-
load literature, neurophysiological measurements have been and are often used to
evaluate the level of cognitive demand induced by a task [16, 95, 96]. Most part of the
EEG research showed that the brain electrical activities mainly considered for the
mental workload analysis are the Theta and Alpha rhythms typically gathered from the
Pre-Frontal Cortex (PFC) and the Posterior Parietal Cortex (PPC) regions. In this
regard, previous studies demonstrated as that EEG Theta rhythm over the PFC present
a positive correlation with mental workload [97, 98]. Moreover, published literature
stressed the inverse correlation between the EEG power in the alpha frequency band
over the PPC and mental workload [68, 99–103]. Only few studies have reported
significant results about the modulation of the EEG power in other frequency bands, i.e.
the delta, beta and gamma. Therefore, the most accepted evidences about EEG cor-
relates of mental workload could be resumed in an increase of the theta band spectral
power, especially on the frontal cortex, and a decrease in alpha band over the parietal
cortex, with increasing mental workload [17, 68] (Fig. 2).

Several studies, in particular in the aviation domain, have highlighted the high reli-
ability of EEG-basedmental workload indexes [99]. The results showed that the effects of
task demand were evident on the EEG rhythms variations. EEG power spectra increased
in the theta band, while significantly decreased in the alpha band as the task difficulty
increased, over central, parietal, frontal and temporal brain sites. More recently, Shou and
colleagues [104] evaluatedmentalworkload during anATC experiment using a new time-
frequency Independent Component Analysis (tfICA) method for the analysis of the EEG

Fig. 2. Schematic summary of the main EEG features variations when the mental workload
increasing.
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signal. They found that “the frontal theta EEG activity was a sensitive and reliable
metric to assess workload and time-on-task effect during an ATC task at the resolution of
minute(s)”. In other recent studies involving professional and trainees ATCOs [52, 105],
it was demonstrated how it was possible to compute an EEG-basedWorkload Index able
to significantly discriminate the workload demands of the ATM task by using machine-
learning techniques and frontal-parietal brain features. In those studies, the ATM tasks
were developed with a continuously varying difficulty levels in order to ensure realistic
ATC conditions, i.e. starting form an easy level, then increasing up to a hard one and
finishing with an easy one again. The EEG-based mental workload indices showed to be
directly and significantly correlated with the actual mental demand experienced by the
ATCOs during the entire task. However, the algorithms proposed were affected by some
weaknesses, such as parameters manual settings and performance decreasing over time,
that limited their employment in real operational environments. Moreover, other studies
aboutmental workload estimation by using neurophysiologicalmeasurements, have been
performed in other types of transport domain, in particular considering road transport (e.g.
car drivers) [59, 68, 106, 107], and in the military domain [108].

3 Passive Brain-Computer Interfaces and Automation

Neuroergonomics research field aims at developing systems that take such limitations
of a human’s mental capacity to process information into account and avoid perfor-
mance degradation, by adapting the user’s interface to reduce the task demand/
complexity or by intervening directly on the system [109]. Over the past two decades,
researchers in the field of augmented cognition worked to develop novel technologies
that can both monitor and enhance human cognition and performance. Most of this
augmented cognition research was based on research findings coming from cognitive
science and cognitive neuroscience. On the basis of such findings and the technological
improvements, that have allowed to measure human biosignals in a more reliable and
no-invasive way, it has been possible to evaluate the actual operator mental states by
using neurophysiological indexes, and to use them as input toward the interface the
operator is interacting. Such kind of application is called passive Brain-Computer
Interface (passive-BCI). In its classical assumption, a Brain-Computer Interface
(BCI) is a communication system in which messages or commands that an individual
sends to the external world do not pass through the brain’s normal output pathways of
peripheral nerves and muscles [110]. More recently, Wolpaw and Wolpaw [111]
defined a Brain-Computer Interface as “a system that measures Central Nervous Sys-
tem (CNS) activity and converts it into artificial output that replaces, restores,
enhances, supplements, or improves natural CNS output and thereby changes the
ongoing interactions between the CNS and its external or internal environment”. In the
BCI community, the possibility of using the BCI systems in different contexts for
communication and system control [112, 113], developing also applications in eco-
logical and operational environments, is not just a theory but something very closed to
real applications [114–116]. In fact, in the classic BCI applications the user can
modulate voluntarily its brain activity to interact with the system. In the new BCI
concept, i.e. the passive BCI, the system recognizes the spontaneous brain activity of
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the user related to the considered mental state (e.g. emotional state, workload, attention
levels), and uses such information to improve and modulate the interaction between the
operator and the system itself [117]. Thus, in the context of Adaptive Automation
(AA) in operational environments, the passive-BCI perfectly match the needs of the
system in terms of Human-Machine Interaction (HMI) (Fig. 3).

One of the main limitations of the use of EEG is its wearability. However tech-
nology improvements [75, 118–121] have being developed and tested in terms of dry
electrodes (no gel and impedances adaptation issues), comfort, ergonomic and wireless
communications (no cables between EEG sensors and the recording system). EEG-
based passive-BCI systems appear the best candidate to be integrated in the develop-
ment of AA-based systems and dynamically trigger the tasks allocation, on the basis of
the user’s actual mental state, i.e. his Mental Workload, in order to support him/her
during his/her work activities consequently improving his/her performance, thus the
safety of the whole environment. An issue that is still very much open is the devel-
opment of a systematic method, in other words an algorithm, able to assess the user’s
Mental Workload online, despite all the problems related to operational environments
(i.e. no controlled settings, artefacts, time cost in terms of calibration and computation,
invasiveness on the subject, etc.), and in a way that is transferrable to various diverse
environmental conditions.

4 Conclusions

Researchers in human factors and ergonomics sectors studied human capabilities and
limitations, both cognitive and physical, and used such knowledge to design tech-
nologies and work environments to be safer and more usable, efficient, and enjoyable

Fig. 3. Representation of the passive-BCI concept applied to enhance the Human-Machine
Interaction by adapting the automation of an Air Traffic Management workstation. Source:
https://doi.org/10.1109/TBME.2017.2694856 [117].

Mental Workload Monitoring: New Perspectives from Neuroscience 11

http://dx.doi.org/10.1109/TBME.2017.2694856


for people to interact with [7, 63, 122–124]. In today’s technology-driven environment,
where human capabilities are struggling to keep up with technology offerings, tech-
niques for augmenting human performance are becoming the critical gap to preclude
realizing the full benefits that these technology advances offer [125–134]. The concept
of human performance augmentation is not so recent. The idea was developed during
the past decade [64, 65], and, at the same time, the concept of Augmented Cognition
(AugCog) was borne out of the Defense Advanced Research Projects Agency’s
(DARPA) pushing for technologies that enhanced the Warfighter’s communication
skills and those technologies that involved biosensors for medical applications [66].
More in general, because of the technological progresses, Human Factor research also
evolved, and it now includes also the forefront techniques provided by Neuroscientific
disciplines, that are looked upon with increasing interest by the scientific community
and society in general. Alongside the latest technological development also the aims of
workload assessment methods have evolved: the ultimate goal in particular is now
geared towards Workload Adaptation, the process of workload management to aid
learning, healing or limiting human errors. Moreover, workload measurement affects
both the design and management of interfaces. On the one hand, by testing the
workload of subjects during the use of web interfaces [122], for example, it is possible
to direct the design. On the other hand, in the field of adaptive automation, it is the
continuous monitoring of the workload level of the subject that allows the system to
vary the feedback in response to the mental state of the operator [50, 71].
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