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Abstract. Smart contracts have exhibited great potential in a spec-
trum of applications, ranging from digital currency to online gaming.
Yet smart contracts are known to be prone to errors and vulnerable to
attacks. The validation of smart contracts before their deployment is
an indispensable step for their correctness and security, and the high-
est level of guarantee can be provided using formal verification. The
level of difficulty, reliability, etc., of the formal verification of a smart
contract is deeply affected by the programming language in which the
contract is implemented. In this paper, we discuss the benefits of verify-
ing smart contracts at the level of intermediate languages, in comparison
with machine-level languages and user-level languages. We augment the
existing formalization of Yul – the intermediate language of Ethereum,
realize an ERC20 token contract in this language, and verify the guaran-
tees of all the functions provided by this contract. All this development
has been performed in the proof assistant Isabelle/HOL. It demonstrates
the feasibility and some of the most important advantages of mechanized
verification for smart contracts at the intermediate-language level, such
as a balance between the intuitiveness of the verification target and the
ability to validate lower-level mechanisms like the function dispatcher.

1 Introduction

The blockchain technology [29] has raised a significant amount of attention both
from the technological community specifically and from the society at large.
A blockchain is a digital ledger consisting of blocks of records, which are linked
together through hash values. Copies of the same ledger are maintained at a great
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number of network nodes. The ledger is append-only, with a consensus mecha-
nism guaranteeing a unified view of newly appended blocks. This design enables
distributed consensus over data, while providing guarantees such as tamper-
resistance, denial-resistance, and backward-traceability.

The blockchain hosts not only plain data but also executable programs. The
programs executed over the blockchain are often called smart contracts (as was
conceptualized in [25]). Typically, they prescribe the actions performed (e.g.,
money transfer between accounts) under a number of predefined conditions.
Owing to the guarantees provided by the underlying blockchain, distributed con-
sensus is obtained over the outcome of the execution of smart contracts. Smart
contracts have found application in numerous areas, such as financing, supply-
chain management, smart manufacturing, health information management, etc.

While adding much to the versatility and power of the blockchain, smart
contracts can be prone to errors, and vulnerable to security attacks – just like
ordinary computer programs. Since they often deal with monetary concerns,
the misbehaviors of smart contracts could directly cause harm to the economic
rights of the participants. The fact that smart contracts are often written in an
unconventional language (e.g., Solidity), and run on unconventional infrastruc-
ture, invites further possibilities of attack. One of the most notorious attacks on
smart contracts is the DAO attack, which caused ∼$60M to be lost (e.g., [11])
by the legitimate participants of the DAO contract [6].

To minimize the chances of errors and attacks, smart contracts must be thor-
oughly validated before being deployed. Formal verification provides the highest
level of correctness and security guarantees in the validation of IT systems, smart
contracts included. When formally verifying a smart contract, the abstraction
level of the contract is a critical factor to be considered. This abstraction level is
determined by the language in which the contract is to be realized. For Ethereum
smart contracts, verification has been attempted both for high-level languages
such as Solidity (e.g., [30]), and low-level languages such as EVM (Ethereum
Virtual Machine) bytecode (e.g., [19]). In general, the use of a high-level lan-
guage adds to the intuitiveness and manageability of the verification, while the
use of a low-level language minimizes the trust base of the verification. Neither
approach tends to enjoy the most important benefits of both.

In this paper, we explore the middle ground – the verification of smart con-
tracts in an intermediate language (IL). This helps strike a balance between the
intuitiveness of the verification, and the ability to reduce the needed trust base,
in ensuring the safety and security of smart contracts. Based on formal semantics,
we conduct a substantial case study for IL-level verification of smart contracts.
The verification is performed in a proof assistant (Isabelle/HOL), adding to the
confidence level on the results obtained. Our main technical contributions are:

– revised formalization of the Yul language (the IL of Ethereum), including
the formalization of function lookup due to observed mismatch between the
specification of Yul in English and its existing formalization (Sect. 3),

– realization of an ERC20 token contract [2] in Isabelle/HOL, in the formalized
Yul language (Sect. 4), and
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contract Token {
mapping(address=>uint256) public balances ;
. . .
function balanceOf(address owner) public view returns(uint256) {

return balances [ owner ] ;
}
. . .

}

Fig. 1. The token contract with Balance-retrieval Functionality in solidity

– mechanized proofs of the guarantees provided by each function in the
contract – in the form of pre/post-conditions for the body of each function,
and for the external call invoking each function (Sect. 5).

Our development totals ∼10k lines of code in Isabelle/HOL, of which ∼500
lines correspond to the realization of the token contract, ∼4k lines correspond to
the specification and proof for the function definitions in this contract, and the
rest correspond to the specification and proof for the calls to these functions.

2 Verifying Smart Contracts at the IL Level

In this section, we discuss the comparative benefits of formally verifying smart
contracts at the intermediate-language level. We use Solidity [4], EVM byte-
code [28], and Yul [8] as representative examples for smart contract languages
at the high level, the low level, and the intermediate level, respectively.

Verifying Contracts in Solidity. Solidity is the official programming lan-
guage of Ethereum. It offers contracts, balances, transfers, etc., as programming
abstractions. A contract allowing for the retrieval of the balances of all the par-
ticipants in some token could be implemented as in Fig. 1. In this figure, the
contract is represented by the contract construct of Solidity, the balances are
maintained in a mapping (from the address of each owner of the token to the
current balance of the owner), and the operation retrieving the balance of a
specific owner is implemented as a function.

As a structured, user-level language for smart contracts, Solidity allows for
intuitive representation of the business logic of each contract. This facilitates the
development of a specification in a formal verification (e.g., preconditions, post-
conditions, loop invariants, etc.). On the other hand, as a high-level language, the
features of Solidity are relatively complicated (with static and dynamic arrays,
mappings, inheritable contracts, access modifiers, imports, etc.). Furthermore,
the language is partly in its maturing process, and, hence, the evolvement of its
features is relatively fast. These two facts pose great challenges to the develop-
ment and stabilization of a formal semantics for Solidity, and the implementation
of a verification system on top of the semantics.
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function balanceOf(owner) −> bal {
bal := sload(accountToStorageOffset(owner))

}

Fig. 2. The Balance-retrieving function of token contract in Yul

Verifying Contracts in EVM Bytecode. EVM bytecode is the language
of the execution engine of Ethereum – the Ethereum Virtual Machine (EVM).
Implementing the contract of Fig. 1 in EVM bytecode requires the implemen-
tation of e.g., a function dispatcher that directs each call to the contract to
a specific function using the JUMPI instruction, the computation of the stor-
age location of a specific owner’s balance using arithmetic and stack-operating
instructions, the retrieval of the balance of the specified owner using the SLOAD
instruction, etc.

As a machine-level language, EVM bytecode does not permit a verification
engineer to clearly see the business logic of the smart contract to be verified. This
could lead to difficulties in developing the specification for the verification, and in
coming up with the necessary auxiliary information to guide the verification. On
the other hand, EVM bytecode is much less involved and more stable in terms of
language features, than a user-level language such as Solidity. This facilitates the
development and stabilization of a formal semantics. Furthermore, verifying the
bytecode excludes the possibilities for errors introduced by the compiler, adding
to the level of confidence on the verification result.

Verifying Contracts in Yul. Yul is the intermediate language of Ethereum, it
enables structured programming with constructs for contracts, functions, condi-
tional branches, and loops. At the same time, it supports the direct programming
of low-level mechanisms such as the dispatcher of calls to specific contract func-
tions, and the direct obtainment of the return data from calls.

An implementation of the balance-retrieval function in Fig. 1 in the Yul lan-
guage is shown in Fig. 2. The computation of the storage address for the owner’s
balance is performed using the auxiliary function accountToStorageOffset , the
implementation of which is elided from the figure.

The aforementioned characteristics of Yul indicate that it would not be diffi-
cult to comprehend the business logic of a smart contract while making a formal
specification for the code of the contract (as is the case for a high-level language
such as Solidity). At the same time, Yul supports functionalities that are occa-
sionally necessary in the implementation of smart contracts, but are not directly
offered by a high-level language (e.g., retrieval of resulting data of contract calls).
Furthermore, the function dispatcher and other low-level mechanisms explicitly
contained in a contract implemented in Yul can be directly examined in a formal
verification, excluding the chances for the introduction of errors into these mech-
anisms by a compiler. Finally, the feature set of Yul is succinct and stable in
comparison to that of Solidity, which reduces the difficulty level of formalization.
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3 The Formalization of Yul

The formalization of the Yul language in Isabelle/HOL serves as the (only) basis
of our verification of the ERC20 token contract. A preliminary formalization of
Yul (previously called Julia) has been performed by Hirai [3] in the Lem tool [22].
From Lem, we generate definitions of the syntax and (big-step) semantics of Yul
in Isabelle/HOL, and we revise the formalization for use as a basis of our work.
In this section, we first briefly introduce the basics of Isabelle/HOL, and then
describe the formalization of Yul by Hirai and our revision of it.

3.1 The Basics of Isabelle/HOL

Isabelle/HOL is an environment that provides the ability to reason formally in
Higher Order Logic inside the Isabelle framework [27]. System verification using
Isabelle/HOL reduces the verification problem to the construction of a formal
proof. The modeling of the system is often performed by functional program-
ming, and the proofs are often constructed by applying predefined tactics, or
using the declarative-style language Isar.

For simple definitions, the keyword definition is used. In case the definition
involves pattern matching or recursion, the keyword function or fun is needed.
In lemmas and theorems, all the hypotheses can be listed between a pair of
semantic brackets �. . .� and separated with semicolons.

The notation [] represents an empty list, and e#l represents the list that
results from prepending the element e to the list l. The term Map.empty rep-
resents an empty map (the map that takes each key to None), mp[k �→ v]

datatype expression =
FunctionCall id0 “expression l i s t ”

| Identifier id0
| Literal “ l i teral kind” “type name”

Fig. 3. The existing formalization of Yul expressions

datatype statement =
Block “statement l i s t ”

| FunctionDefinition id0 “(id0 × type name) l i s t ”
“(id0 × type name) l i s t ” statement

| VariableDeclaration “(id0 × type name) l i s t ” expression
| Assignment “id0 l i s t ” expression
| I f expression statement
| ForLoop expression statement statement
| Expression expression
. . . . . .

Fig. 4. The existing formalization of Yul statements
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represents the map that results from updating the map mp by mapping k to
Some(v), and mp1 ++ mp2 represents the map that results from updating the
map mp1 according to the map mp2, i.e., for each key k, if mp2 takes k to
Some(v), then mp1 ++ mp2 takes k to Some(v); otherwise mp1 ++ mp2 takes k
to (mp1 k). For a record rcd with field fd , (fd rcd) represents the value of fd in
rcd , and rcd�fd := v� represents the record rcd with the field fd updated to the
value v.

3.2 The Original, and Revised, Formalization of Yul

The two main syntactical categories of Yul are expressions and statements. Their
formalizations are shown in Figs. 3 and 4, respectively. In both figures, id0 is
the type for the identifiers of variables and functions. There are two types of
function calls – the call to a function in the current contract (internal calls), and
the call to a different contract (external calls). Both are supported by the type
FunctionCall id0 “expression list” in Fig. 3: if a function defined in the current
scope is associated with the function identifier, then an internal call is performed,
while if the builtin function Call is associated with the function identifier, an
external call is performed. Since a function may have a list of return values
(in addition to a list of parameters), the type constructor FunctionDefinition
in Fig. 4 has two lists as arguments. Although Fig. 4 is non-exhaustive in the
statements of Yul, the full definition of statement is not much more involved
than what is shown. It can be seen that the language has a succinct syntax.

fun func map : : “statement ⇒ (( id0 , value0) Map.map)” where
“func map (Block [ ] ) = Map.empty”

| “func map (Block (stmt # stmts)) =
(func map stmt ++ func map (Block stmts))”

| “func map (FunctionDefinition f params rets stmt) =
(Map.empty)( f �→ FunctionV f params rets stmt)”

| “func map = (Map.empty)”

Fig. 5. The definition of func map

A global state g of a contract contains the address of the currently executing
contract address g, the currently executing contract current g, the memory of
the execution engine memory g, the active number of bytes in the memory
memory size g, the value transfered with the call invoking the execution of the
current contract tmoney g, the input data of this call calldata g, the current
log content logs g, the function from account addresses (modeled by integers)
to the corresponding accounts accounts g, and other components relevant to the
execution of contracts. A local state l is a map from identifiers (of type id0 )
to values of type value0 . For each account at address addr (a 160-bit address),
i.e., acc = accounts g addr , storage acc represents the storage of the account,
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balance acc represents the balance of the account, and code acc represents the
code of the account. A contract is an account with non-empty code.

The existing formalization of Yul also contains the big-step semantics for
expressions and statements, defined using two evaluation functions. The function
eval expression takes a global state, a local state, an expression, and a natural
number as arguments, and returns the final result of evaluating the expression.
Here, the natural number is a counter introduced only to facilitate a termination
proof for the well-definedness of eval expression in Isabelle/HOL. The function
eval statement takes a global state, a local state, a statement and a natural
number (serving also as a counter for proving termination), and returns the
result of executing the statement. The two functions are mutually recursive since
a statement may have in it a function call (an expression), and an expression
may be the invocation of a function whose body is a statement.

In the original formalization [3], the functions that can be internally called
in the current scope are maintained by associating each such function to its
identifier in the local state, after processing the function definition. However,
this only allows for calling functions whose definitions are syntactically located
before the calls. Nonetheless, as mandated in the informal specification of Yul [8]

“Functions can be referenced already before their declaration (if they are
visible).”

To rectify this mismatch between the official documentation of Yul, and its
existing formalization, we define the function func map to build a map fctx for
all the functions defined in a statement (see Fig. 5). We augment the parameter
list of the functions eval statement and eval expression to contain this map,
thereby recording which functions are defined in the current scope, both before
and after the point where a function is called. With this revision, the terms

eval expression g l fctx expr n
eval statement g l fctx stmt n

represent the evaluation of expressions and execution of statements, respectively,
with knowledge of the available functions in the current scope. We inductively
prove that the result of evaluation a statement or an expression does not depend
on the value of the counter n, as long as n is sufficiently large for the evaluation
function to be fully unrolled.

Our revision of the formalization of Yul also contains the addition of a num-
ber of definitions for the evaluation of builtin functions, such as subtraction,
multiplication, division, the function retrieving the value transfered with the
current call, the function returning the address of the caller account, etc. Most
of these additions to the original formalization are used in our realization of the
token contract in the formal Yul language.

4 Realizing the Token Contract in Yul

A token contract keeps track of the total supply of a token, its current distri-
bution among its owners, and its flow between its owners. The ERC20 standard
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for token contracts mandates a number of interfaces to be provided, such as
querying the total supply of the token and the current balances of the owners,
and transferring a specified amount of tokens to a specified user [2].

We realize a version of ERC20 token contract in the formalized Yul language
in Isabelle/HOL. However, in the presentation of this section, we refrain from
using the Isabelle syntax due to its verbosity.

4.1 The Storage Layout of the Contract

The storage of an Ethereum smart contract is arranged in slots that are addressed
by 256-bit integers. We model the storage layout of the token contract as follows,
where keccak is the keccak-256 hash function, and uint256 (n) is the bit string
of length 256 for the unsigned integer n.

– The owner of the contract is stored at slot 0.
– The total supply of the token is stored at slot 1.
– The balance of the account at address addr is stored at slot

keccak(uint256 (addr).uint256 (2))

– The allowance for token transfer from the account at address addr1 by the
account at address addr2 is stored at slot

keccak(uint256 (addr2).keccak(uint256 (addr1).uint256 (3)))

In the above, the use of the keccak function to obtain the storage locations of
the balances and allowance mimics how the storage is allocated by a compiler
of the Solidity language. It utilizes the fact that the population of data in the
storage space is sparse, and properties of a secure hash function such as collision
avoidance, to avoid the mapping of different data to the same storage slot.

Table 1. The functions provided by the token contract to its users

total supply func Query the total supply of the token

balance of func Query the balance of a specific owner of the token

allowance func Query the amount of tokens an owner allows a spender to spend

transfer func Transfer a specified amount of tokens to a specified user

transfer from func Transfer a specified amount of tokens from a specified user to a
specified second user

approve func Approve transfer of a specified amount of tokens by a spender



Towards Verifying Ethereum Smart Contracts 129

4.2 The Code Layout of the Contract

Fig. 6. The code layout
of the token contract

The code layout of the token contract is shown in Fig. 6.
The code is organized as a Block (cf. Fig. 4) consisting
of the functions in the user interface, the utility func-
tions that support the implementation of the contract,
and the dispatcher statement that directs each contract
call to the specific function invoked. There are alto-
gether 19 functions. The functions in the user interface
and their description are given in Table 1. Below, we
selectively elaborate on the dispatcher statement and
the interface function transfer func.

if gt ( callvalue () , 0) { revert (0 , 0) }
switch selector func ()
case 0x10991a86 /∗ “balance of func(address)” ∗/ {

return uint func(balance of func(decode as address func(0)))
}
. . .
case 0xb513186f /∗ “transfer func(address , uint256)” ∗/ {

transfer func(decode as address func(0) , decode as uint func(1))
}
default { revert (0 , 0) }

Fig. 7. The dispatcher statement

The Dispatcher. A call to the token contract essentially triggers the execution of
the dispatcher statement. The code of the dispatcher statement is given in Fig. 7.
It is first checked that no money is transfered to the contract using the condition
that the value of the call should not be greater than zero. The value of the call
as an unsigned integer is retrieved using the builtin function callvalue. Then,
the function to which a call should be directed is obtained using the function
selector func and the switch statement. The function selector func (also included
in the implementation) computes the first 4 bytes of the input data to the call –
these 4 bytes represent the keccak-256 hash of the signature of the function to be
invoked. The subsequent chunks of the input data (of 32 bytes each) contain the
arguments to be passed to the specific function invoked. The i-th argument is
retrieved using decode as uint func(i) or decode as address func(i). In addition
to decoding an argument from the input data (or call data), the latter also
checks that the decoded argument is in the form of an account address (of 160
bits). The function return uint func signals the exit of the currently executing
contract, with the result placed at bit 0 in the memory of the execution engine.
In case the caller attempts to send ether to the contract, or the invoked function
is not found, the state is reverted using the builtin function revert.
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function transfer func(to , amount) {
deduct from balance func( cal ler () , amount)
add to balance func(to , amount)
log (1 , cal ler () , to , amount)

}

Fig. 8. The function transfer func

The Function transfer func. The code of the function transfer func (the func-
tionality of which is informally explained in Table 1) is given in Fig. 8. In
the function body, the function deduct from balance func is first invoked to
deduce the specified amount of tokens from the caller account. The function
add to balance func is then invoked to add the same amount of tokens to the
destination account of the transfer. Finally, the transfer event is logged with
topic 1, together with the caller of transfer func, the destination of the transfer,
and the amount of transfered tokens as parameters.

In Fig. 8, log is a builtin function [8]. On the other hand, deduct from balance
func and add to balance func are part of the contract implementation. The lat-
ter function makes use of a function for safe addition (safe add func) to avoid
overflow when increasing the balance of the destination account.

The Readability of Yul Code. It is demonstrated by Figs. 7 and 8 that smart
contract code in Yul has a greater level of readability than low-level instructions.
This benefits the intuitiveness level of formal verification.

5 Verification of the Token Contract

We prove the guarantees of calling each function of the token contract in the
ERC20 interface (c.f., Table 1) in Isabelle/HOL. To this end, we first establish
the guarantees of all the utility functions that are used to implement the interface
functions. Below, we selectively present our results.

5.1 The Guarantees of the Utility Functions

Below, we present the theoretical result about the guarantees of the utility func-
tion for safe addition. This function is used by the function add to balance func
that increases the balance of a specified account by a specified amount (cf. Fig. 8).
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1lemma safe add body correct :
“� n > 4 ;

∀ f id . bui l t in ctx f id �= None
4−→ (context0 g ++ fctx ) f id = bui l t in ctx f id ;

l a id = Some (IntV a); l b id = Some (IntV b);
is uint256 a; is uint256 b

7� =⇒
(a + b < two256 ∧
eval statement g l fctx (body of safe add func) n

10= Normal (g , l ( r id:=Some (IntV (a+b))) , RegularMode)
∨
a + b ≥ two256 ∧

13eval statement g l fctx (body of safe add func) n
= Exit (RevertExit g 0 0)

)”

In the above, the identifiers a id and b id are the parameters of the function
safe add func. The lemma safe add body correct asserts that if a id and b id have
values a and b, respectively, that are 256-bit unsigned integers, then evaluating
the body of safe add func yields a+ b (that is stored in the return variable r id)
if a+ b does not exceed 2256 − 1, and an exception reverting the state otherwise.
The condition n > 4 is imposed only because when fully evaluating the body of
safe add func in the semantics, the counter n decreases 5 times. The evaluation
would result in an error for any n ≤ 4. The condition at lines 3 and 4, on the
other hand, requires that each identifier of a builtin function should indeed be
mapped to the right builtin function by context0 g ++ fctx . Here, builtin ctx
is a pre-defined mapping from each identifier of a builtin function to the builtin
function, and context0 g is the map for all the globally available identifiers.

The proof of the lemma safe add body correct is by case analysis on the truth
of a+ b < two256, and by simplification using the semantics of Yul. We omit the
discussion of the statement/proof of the lemmas for the other utility functions.

Remark 1. The guarantees for the functions of the token contract (e.g., safe add
func) correspond to the notion of total correctness [10] – it is stated that under
specific conditions the execution terminates, resulting in global and local states
that satisfy specific conditions.

5.2 The Guarantees of Calls to the Token Contract

We first introduce a series of definitions that are used to formulate the theoretical
results about the calls to the contract. The term “keccak base key base key” is
defined to give the keccak-256 hash value of the list of 64 bytes where the first
32 bytes are those of the value key and the next 32 bytes are those of the
value base. The term “memory values m addr sz” is defined to give the list of
bytes (each as an integer) in the memory m starting at the address addr and
ending at the address addr + sz − 1. The term “sel val cd val” is defined to say
that the signature hash of the function to which the current call is dispatched
is val. The term “uint arg idx cd idx val” is defined to say that the idx-th
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argument value in the input data cd of the call is the unsigned integer val.
The term “addr arg idx cd idx val” is defined to require that in addition to
uint arg idx cd idx val, the idx-th argument has the form of an account address.
For the account acc, storage offsets o1 and o2, balances b1 and b2, and the
amount a of tokens, “upd bal acc o1 o2 b1 b2 a” is written for acc�storage :=
(storage acc)(o1 := IntV (b1 − a), o2 := IntV (b2 + a))�.

n > k ; length args = 7 ; length gs = 8 ; length l s = 8 ;
2argvs = [IntV gas , IntV addr , IntV val ,

IntV of f t in , IntV szin , IntV of f tout , IntV szout ] ;
∀ i . i ≥ 0 ∧ i < 7 −→

5eval expression (gs ! i) (ls ! i) fctx (args ! i) n
= Normal (gs ! (i+ 1) , ls ! (i+ 1) , (argvs ! i));

g ’ = gs ! 7 ; l ’ = ls ! 7 ;
8(context0 g ’ ++ fctx ) b ca l l id = Some (GBuiltinV Call ) ;

∀ f id . context0 g ’ f id = bui l t in ctx f id

Fig. 9. The list assms of assumptions

A number of conditions are shared as assumptions by multiple theoretical
results about calls to contracts. We write

assms args argvs gas addr val offt in sz in offtout sz out gs ls g′ l′ fctx n k

for the list of assumptions shown in Fig. 9. Here, args is a list of 7 argument
expressions for a contract call, argvs is a list of 7 argument values for the same
call, addr is an account address, val is an amount of money, offt in and offtout are
two memory offsets, sz in and sz out are two counts of memory bytes, gs is a list
of global states, ls is a list of local states, and n and k are two natural numbers.
The condition spanning lines 2 and 3 says that the list argvs is obtained by
wrapping the series of integer values provided using the type constructor IntV.
The condition spanning lines 4–6 says that the evaluation of the i-th argument
expression yields the i-th argument value, turning the global and local states to
the next ones in the respective lists gs and ls. The condition at line 8 says that
after evaluating all the arguments (thereby reaching the global state g′), the
identifier for the builtin function Call is still properly mapped to Call according
to g′ and the local function context fctx ′. The condition at line 9 says that the
global state g′ properly maintains the mapping for the builtin functions.

Below, we present the theorem about the guarantees of each call to the token
contract that invokes the function transfer func (cf. Table 1), when the source
account (the caller) has a sufficient amount of tokens to transfer, and the transfer
does not lead to an overflow of the balance at the destination.
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theorem normal call transfer :
“� assms args argvs gas addr 0 offt in sz in offtout szout gs ls g′ l′ fctx n 17 ;

3current g ’ = accounts g ’ (address g ’ ) ;
balance ((accounts g ’) (address g ’)) ≥ 0 ;
code ((accounts g ’) addr) = Some token contract ;

6cd0 = memory values (memory g ’) offt in (nat |sz in | ) ;
valid mem ( list to map cd0) 4 64 ;
se l va l cd0 0xb513186f ; addr arg idx cd0 0 to0 ; uint arg idx cd0 1 a0 ;

9o1 = keccak base key 2 (address g ’ ) ; o2 = keccak base key 2 to0 ;
storage (accounts g ’ addr) o1 = IntV b1 ;
(( storage (accounts g ’ addr)) (o1 := IntV (b1−a0 ))) o2 = IntV b2 ;

12is uint256 a0 ; is uint256 b2 ; b1 ≥ a0 ; b2 + a0 < two256
� =⇒

eval expression (gs ! 0) (ls ! 0) fctx (FunctionCall b ca l l id args) (n0 + 1)
15= Normal (

g ’�memory size := max (max (memory size g ’) (offt in+sz in )) (offtout+szout ) ,
current := i f address g’ = addr then upd bal(current g ’, o1, o2, b1, b2, a0)

18else current g ’ ,
accounts := (accounts g ’)(addr:=upd bal(accounts g’ addr , o1, o2, b1, b2, a0))
logs := ListV (memory values

21(mem upd 4 (memory g ’) 1 (address g ’) to0 a0)
0 128) # logs g ’ � ,

context0 g ’ ++ fctx erc20 , TrueV)”

In the theorem statement, the condition at line 3 says that address g′ is indeed
the address of the currently executing account in g′. The condition at line 5
requires that the code being called is that of the token contract (c.f. Fig. 6).
The condition at line 6 says that the input data to the call (as obtained from
the global state g′ reached after the evaluation of the arguments) is cd0. The
condition at line 7 says that the input data to the call contains valid data after
four initial bytes, for 64 bytes in a row – the argument values are contained in
these bytes. The conditions at line 8 say that the signature hash for the function
to be executed is the one for transfer func, and the 0-th and 1-th arguments
in the input data of the call are to0 (the address of the destination account of
the transfer) and a0 (the amount of tokens to be transfered), respectively. The
conditions at line 9 say that the storage offsets for the balances of the source and
destination accounts of the transfer are o1 and o2, respectively. The conditions
at line 10 and line 11 say that these two balances are b1 and b2, respectively. The
latter condition is stated with consideration of the fact that if the destination
account is the same as the source account, then the balance of the destination
account decreases when the tokens have been sent but not received. The updated
global state described in lines 16–22 reflects the change in the account balances
due to the transfer, and the recording of the transfer in the log.

The proof of theorem normal call transfer is conducted using lemmas that
connect the result of calling the token contract to the result of evaluating
the function transfer func. These latter lemmas are in turn based on lemmas
about the guarantees of the utility functions (e.g., for safe addition, as shown in
Sect. 5.1). Transformations are performed such that the resulting global state is
described directly wrt. g′ that is reached after evaluating the arguments for the
call. Hence, for side-effectless argument expressions, it is also directly in terms of
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the initial global state gs ! 0. The case where the source account does not have a
sufficient amount of tokens to be transfered, or the transfer leads to an overflow
of the balance at the destination, is covered by a separate theorem.

As a corollary, we have formally shown that a token transfer preserves the
total amount of tokens, provided that there is no collision of the keccak-256 hash
values of the addresses for all the accounts that own the token.

Remark 2. As is demonstrated in the theorem normal call transfer , the guaran-
tees for the calls to the contract functions are formulated to precisely reflect all
changes in the global and local states. This provides a solid basis for establishing
further safety and security properties in a broad range (e.g., [15]).

Finally, if the caller of the contract attempts to send money to the contract,
then the call is terminated with the effects on the states reverted.

theorem call with money :
“�val0 > 0 ;

assms args argvs gas addr val0 offt in sz in offtout sz out gs ls g′ l′ fctx n 7
� =⇒
eval expression (gs ! 0) (ls ! 0) fctx (FunctionCall b ca l l id args) (n0 + 1)
= Normal (g ’�memory size := max (max (memory size g ’)(offt in + sz in))

(offtout + sz out) � ,
l ’ , FalseV)”

Note that the potential increase in the number of active memory bytes is not
canceled, which is consistent with the semantics described in [17,28].

In the verification of the token contract in Isabelle/HOL, the contract code
in Yul has been sufficiently comprehensible for it to be used as the reference for
specifying the initial pre/post-conditions. These pre/post-conditions are further
revised in the proving process – the formal proof helps make all the assumptions
and effects associated with an invocation of the token contract explicit. Further-
more, since the dispatching logic of calls to specific functions is an integral part
of the token contract at the IL-level, the dispatcher is naturally covered by the
verification. This provides added confidence that the dispatcher does not contain
errors that could have otherwise been introduced by a compiler.

6 Related Work

Verification of Smart Contracts by Theorem Proving. The strongly neg-
ative impact of errors and flaws of smart contracts motivated their verification
by theorem proving. In [19], the EVM is formalized in Lem [22], and a few safety
properties of simple contracts are proven in Isabelle/HOL based on formal def-
initions generated in this proof assistant. In [9], a program logic is defined to
syntactically reason about properties of EVM bytecode. This development is
based on the formalization of [19]. In [18], a semantics of EVM bytecode is
defined in the K-framework, which provides the basis for program analysis and
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theorem proving [23] for Ethereum smart contracts. In [17], a small-step seman-
tics of EVM bytecode is defined (with partial mechanization in the F� language),
and a few security properties are defined on the basis of this semantics for the
verification of Ethereum smart contracts. In [5], a library of formal proofs is
developed for Ethereum smart contracts in the Coq proof assistant, based on a
demand-driven formalization of a Solidity-like language. In [30], a type system
and a big-step semantics are defined (in Coq) for Lolisa – a Solidity-like pro-
gramming language developed by the authors. In [14], an approach to verifying
Hyperledger Fabric chaincode (in Java) in the KeY prover is proposed. The main
idea is to extend KeY to handle the major API methods that are provided by
the Hyperledger blockchain and used for writing the chaincode.

The developments mentioned above formalize smart contracts and prove their
properties at either the user-language level or the machine-language level. In [24],
an intermediate language, Scilla, is defined in Coq, for the analysis and verifi-
cation of smart contracts. Unlike our development that leverages the existing
intermediate language in the ecosystem of Ethereum, Scilla is a new language
for which the translation from high-level languages like Solidity, and into low-
level languages like EVM bytecode is yet to be defined.

Validation of Smart Contracts in General. Numerous developments have
been carried out to validate smart contracts by non-theorem-proving means. For
space reasons, the following discussion is non-exhaustive on these developments.

In [13], the role of refinement in verifying and preserving the correctness of
smart contract designs (e.g., in the Event-B formalism) is discussed. In [20], the
problem of verifying smart contracts is addressed by generating and solving horn
clauses. In [16], a static analysis is proposed for Ethereum smart contracts, and
the analysis comes with a soundness proof. In [12], the SPIN tool is leveraged
to model check smart contracts. In [26], the target properties of a smart con-
tract is expressed as patterns, and the verification/falsification of properties is
performed by finding the corresponding patterns. In [21], a method of finding
bugs in smart contracts via symbolic execution is proposed. In addition, hybrid
approaches to the verification of smart contracts are proposed and used in the
VaaS framework [7] and the CertiK project [1].

7 Conclusion

Formal verification can be applied to provide the highest level of correctness
and security guarantee for smart contracts. The language used to realize the
smart contract affects multiple aspects of the verification. Specifically, the use
of an intermediate language (IL) ensures a relatively low level of complexity
in formalizing the language itself (owing to the succinctness of the language
features), a relatively high level of intuitiveness of the verification (owing to the
existence of structured programming constructs), and a relatively high level of
confidence on the verification result (owing to the partially reduced trust base).

To demonstrate some of these benefits, we present a concrete formal verifi-
cation of an Ethereum smart contract at the IL-level, in a proof assistant. The
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smart contract is an ERC20 token contract, which we realize in the Yul language,
the formalization of which we revise to rectify its observed deviation from its
informal specification. We prove the guarantees of calls to all the interface func-
tions of the token contract in Isabelle/HOL. The development totals ∼10k lines
of code (excl. code generated from Lem). In the verification, we take advan-
tage of the good level of comprehensibility of Yul to devise the initial pre/post-
conditions for the contract functions. These pre/post-conditions are then revised
in the proving process, such that all the assumptions and effects for the contract
functions are precisely identified. The complexity of the formal proof is partially
reduced by the simplicity of Yul and its formal semantics relative to a high-level
language. The overall approach applies easily to other Ethereum contracts.

Potential directions for future work include support for easier smart contract
proofs for Yul via proof automation and program logics, as well as refinement
verification of Yul contracts to preserve guarantees down to the lowest level.
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