
Design Model Repair with Formal
Verification

Cheng-Hao Cai(B) , Jing Sun , and Gillian Dobbie

School of Computer Science, University of Auckland, Auckland, New Zealand
{chenghao.cai,jing.sun,g.dobbie}@auckland.ac.nz

Abstract. The main research content of this topic is model repair
in formal methods. Formal verification can verify the correctness of a
model using rigorous mathematical methods. However, the repair of
incorrect models is usually done by humans. In order to automate the
model repair, we combine the B method, formal verification, probabilistic
methods, satisfiability modulo theories and program synthesis, and we
study various automatic model repair algorithms, which are used to fix
reachability and eliminate invariant violations and deadlock states in
incorrect models.

Keywords: Model repair · B method · Model checking · Refinement

1 Introduction

This work targets to an automatic model repair problem based on formal
verification. Given a model described by a logical language and a set of properties
that are needed to be satisfied, formal verification tools can verify whether the
model satisfies these properties. If any properties are not satisfied, then the
model may be incorrect. The question is: can a computer automatically fix the
model?

The B method [2] is a correct-by-construction software development
technique. Its core idea is to start with a highly abstract model, gradually refine
the model and finally convert the refined model to complete software. During
the design and refinement process, the correctness of the model is verified using
formal logics several times, so that the final software is highly reliable. At present,
there are efficient B model checkers such as ProB [8] and Rodin [3]. Although
model checking is automated, subsequent model repair processes still require
the involvement of humans. Humans need to analyse the results of the model
checking, find out the errors in the model, propose possible repair solutions
and manually repair the model, but this process is often inefficient. In order to
improve the efficiency of model design, we have proposed a number of automatic
model repair algorithms.

This work is supported by the State Scholarship Fund sponsored by the China
Scholarship Council [Grant Number: 201708060334].

c© Springer Nature Switzerland AG 2019
Y. Ait-Ameur and S. Qin (Eds.): ICFEM 2019, LNCS 11852, pp. 489–492, 2019.
https://doi.org/10.1007/978-3-030-32409-4_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32409-4_30&domain=pdf
http://orcid.org/0000-0001-6815-9091
http://orcid.org/0000-0002-1979-6622
http://orcid.org/0000-0001-7245-0367
https://doi.org/10.1007/978-3-030-32409-4_30


490 C.-H. Cai et al.

Currently, we have developed algorithms that can automatically eliminate
deadlock states, invariant violations and assertion violations in B models [6].
The algorithms use model checking techniques to calculate the finite state space
of a model, find error states in the state space, calculate candidate repairs
with satisfiability modulo theories (SMT) and use probabilistic methods to
select repairs. Moreover, we have developed an algorithm that can be used for
reachability repair. It complements missing parts of a model using probabilistic
methods, so that the model can reach a set of previously unreachable states.
Further, we have confirmed the effectiveness of the algorithms via experiments.

2 Related Work

B model repair is currently an emerging research direction. It has been proposed
in [11] and further improved in [12], where inductive programming is used
to generate repairs for given I/O examples. For example, to generate a new
operation, a number of instances of pre- and post-states must be given. Then a
precondition that covers the pre-states and a post-condition (i.e., substitution)
that transitions the pre-states to the post-states are synthesised using inductive
programming, and the two conditions constitute a new operation. Additionally,
a model repair approach based on refinement checking has been proposed in [4],
which replaces model components that violate refinement conditions with other
components that satisfy the conditions.

Recently, a number of techniques for automatic software repair have been
developed, including those of imperative programming languages [7]. These
techniques mainly include two parts: fault localisation and repair generation. At
present, one of the most commonly used fault localisation methods is spectrum-
based fault localisation [1]. Its central idea is to obtain execution paths of a
program using test suites and estimate possible locations of errors by observing
overlapping parts of these paths. Methods for repair synthesis include template-
based repair, mutation repair, genetic programming, etc [7]. Similar to B model
repair, the above automatic software repair techniques aim to improve the
efficiency of finding and eliminating bugs in software development processes.
According to [9], one of the key problems of automatic software (or model)
repair is that the number of candidate fixes is generally huge, which results in a
combinatorial explosion. To solve this problem, repair algorithms usually include
evaluation functions for filtering high-quality fixes from candidate fixes.

3 Proposed Solutions

In order to achieve automatic model repair, we have proposed a semantic
learning algorithm for constructing the evaluation function of filtering high-
quality repairs. The core idea of semantic learning is to obtain the design intent
of a model from the state space of the model using classification techniques.
The model’s state space is a collection of valid state transitions. Using a binary
classifier, the state space can be probabilistically modelled to produce a semantic



Design Model Repair with Formal Verification 491

model that predicts whether any state transition is valid. The semantic model
is used to calculate scores of repair. For details on how to vectorise state spaces,
train classifiers and score repairs, please refer to our GitHub repository 1.

Additionally, we proposed three general-purpose repair operators: insertion,
modification and deletion. Insertion is a reachability repair operator. Given a
model M and a desired state s, if s is unreachable, then inserting an additional
state transition into the state space of M can make s reachable. In this process,
the semantic model is used to rank candidate insertions. Modification is used
to fix existing state transitions that violate given properties. Given a property
P that a model M needs to satisfy, if any state transitions produced by M do
not satisfy P , then a SMT solver is used to search for candidate edits to make
these transitions satisfy P , and the semantic model is used to score and rank
the edits. In order to apply modifications, scores of the edits need to achieve a
certain level. If not, then deletion is used to remove the faulty state transitions.

The significance of the above methods is that they provide a general-purpose
model repair strategy, and probabilistic machine learning techniques, especially
classification algorithms, can assist in the model design process. As semantic
learning and the three repair operators are based on the model’s state space,
they can be used not only for the B method, but also for other formal design
methods based on the checking of state space. The classification algorithms allow
the intent of model design to be modelled as evaluation functions, leading to
more efficient repairs. At present, there are many studies related to classification
algorithms, and these algorithms can be directly used for semantic learning. If
we try more classification algorithms in the future, the predictive performance
of the semantic model may be further improved.

4 Current Results and Future Work

We are currently developing a tool named B-repair that implements the B model
repair algorithms described in Sect. 3. B-repair uses scikit-learn [10] and Silas
[5] as semantic learners to support binary classifiers such as logistic regression
models, support vector machines, random forests and artificial neural networks.
Moreover, B-repair uses ProB [8] as a model checker and a SMT solver. Currently,
B-repair can automatically eliminate invariant violations, assertion violations
and deadlock states in B models using modifications and deletions, and it can use
insertions to achieve simple reachability repair. Additionally, it supports batch
repairs, which can fix multiple errors in a model at the same epoch. In order to
improve B-repair, we are developing more complex repair functions, optimising
the classifiers and extending the model repair algorithms to refinement.

We tested B-repair using a collection of representative models in the ProB
Public Examples Repository. The results revealed that the semantic learning
method led to 98.3% of average prediction accuracy. Moreover, we seeded faults
into the models and individually used the three repair operators to repair the
models. Results revealed that the deletion operator was able to eliminate all
1 Our repository is on https://github.com/cchrewrite/B-Model-Repair.

https://github.com/cchrewrite/B-Model-Repair


492 C.-H. Cai et al.

invariant violations in the models, and average repair accuracies of insertion and
modification reached 86.7% and 89.8%, respectively.

In the future, our work will include the following aspects. First, we will
collect model quality criteria from past studies and use them to evaluate results
of model repair. Second, we will make a benchmark dataset of B model repair
and perform a comprehensive performance test on B-repair. Finally, we will
combine model repair with refinement checking to achieve a complete software
development process.

References

1. Abreu, R., Zoeteweij, P., Golsteijn, R., van Gemund, A.J.C.: A practical evaluation
of spectrum-based fault localization. J. Syst. Softw. 82(11), 1780–1792 (2009)

2. Abrial, J.: The B-Book - Assigning Programs to Meanings. Cambridge University
Press, Cambridge (2005)

3. Abrial, J., Butler, M.J., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. Int. J. Softw. Tools
Technol. Transf. 12(6), 447–466 (2010)

4. Babin, G., Ameur, Y.A., Singh, N.K., Pantel, M.: A system substitution mechanism
for hybrid systems in Event-B. In: Proceedings of Formal Methods and Software
Engineering - 18th International Conference on Formal Engineering Methods,
ICFEM 2016, Tokyo, Japan, 14–18 November 2016, pp. 106–121 (2016)

5. Bride, H., Dong, J., Dong, J.S., Hóu, Z.: Towards dependable and explainable
machine learning using automated reasoning. In: Proceedings of Formal Methods
and Software Engineering - 20th International Conference on Formal Engineering
Methods, ICFEM 2018, Gold Coast, QLD, Australia, 12–16 November 2018, pp.
412–416 (2018)

6. Cai, C., Sun, J., Dobbie, G.: B-repair: repairing B-models using machine learning.
In: 23rd International Conference on Engineering of Complex Computer Systems,
ICECCS 2018, Melbourne, Australia, 12–14 December 2018, pp. 31–40 (2018)

7. Gazzola, L., Micucci, D., Mariani, L.: Automatic software repair: a survey. IEEE
Trans. Softw. Eng. 45(1), 34–67 (2019)

8. Leuschel, M., Butler, M.J.: ProB: an automated analysis toolset for the B method.
STTT 10(2), 185–203 (2008)

9. Mechtaev, S., Gao, X., Tan, S.H., Roychoudhury, A.: Test-equivalence analysis for
automatic patch generation. ACM Trans. Softw. Eng. Methodol. 27(4), 15:1–15:37
(2018)

10. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

11. Schmidt, J., Krings, S., Leuschel, M.: Interactive model repair by synthesis. In:
Proceedings of Abstract State Machines, Alloy, B, TLA, VDM, and Z - 5th
International Conference, ABZ 2016, Linz, Austria, 23–27 May 2016, pp. 303–307
(2016)

12. Schmidt, J., Krings, S., Leuschel, M.: Repair and generation of formal models
using synthesis. In: Integrated Formal Methods - 14th International Conference,
IFM 2018, Maynooth, Ireland, 5–7 September 2018, pp. 346–366 (2018)


	Design Model Repair with Formal Verification
	1 Introduction
	2 Related Work
	3 Proposed Solutions
	4 Current Results and Future Work
	References




