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Abstract. This paper describes a unified approach for both bounded
and unbounded software model checking to find errors in programs writ-
ten in the programming language C. It is based on a propositional logic
intermediate representation, called DimSpec, that has been successfully
applied in SAT-based automated planning. Using DimSpec formulas
allows us to exploit the advantages of incremental SAT solving and pro-
vides an alternative approach to using the universal incremental SAT
API IPASIR or native solver APIs. The DimSpec formula can be used
for bounded model checking (via incremental SAT solving) as well as
unbounded model checking (using a backend that implements an IC3-
style algorithm). We also present an implementation of our approach,
called LLUMC, which encodes the presence of certain errors in a C pro-
gram into a DimSpec formula. We evaluate our approach on benchmark
problems from the Software Verification Competition (SV-COMP) and
compare it with other tools to demonstrate runtime and functionality
advantages compared to state-of-the-art solvers.

1 Introduction

A DimSpec formula [30] consists of four CNF formulas I,U , T and G which
specify a transition system. The formula I describes the initial state, G the goal
state, U describes the constraints that must hold in each individual step of the
process and finally T describes the relation of each pair of neighboring steps.
DimSpec has been very successfully used for SAT-based automated planning
[16]. In this paper we demonstrate that the DimSpec format is also very useful
for software verification.

Software has become an important part of almost all modern technical
devices, such as cars, airplanes, household appliances, therapy machines, and
many more. The cars of tomorrow will drive on their own, controlled by soft-
ware. As shown by serious accidents like the rocket crash of Ariane flight 501 [24],
the massive overdoses of radiation generated by the therapy machine Therac-25
[25] or the car crash of the Toyota Camry in 2005 [22], software is never perfect
and almost inevitably contains errors and bugs. While testing of software can,
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in practice, only cover a limited number of program executions, software veri-
fication can guarantee a much higher coverage while producing proofs for the
existence or absence of errors. Many software verification approaches have been
developed, for instance symbolic execution [19], (bounded) model checking [9], or
abstraction and interpolation [1]. In bounded model checking, function calls are
inlined and loops unrolled a finite number of times. This unrolling reduces the
complexity of the problem to a computationally feasible level, though it limits
coverage and thus precision of the approach.

We developed an approach that is suitable for both bounded and unbounded
model checking. To this end, we produce a SAT encoding of a transition system
that is general enough to be solved with different solver back-ends, based on, e.g.,
incremental SAT or on an invariant checking algorithm. We focus on sequential
programs written in C, and use the low-level code representation of the compiler
framework LLVM as an intermediate language. Based on this representation, we
derived an encoding of the program verification task into a DimSpec formula. We
first encode the program into four SMT formulas and, subsequently, generate the
SAT-level representation in the desired DimSpec format. The resulting formula
is then solved by either an incremental SAT solver that unrolls the transition
system to find a path to an error state, or an invariant checking algorithm that
refines an over-approximation.

Our verification system uses Clang and LLVM version 3.7.1 to compile
C-code into LLVM Intermediate Representation. Then our new tool LLUMC
(Low-Level Unbounded Model Checker) translates the LLVM-IR representation
of the program P to be verified to a DimSpec formula with error states that are
reachable iff P contains a corresponding error. To solve the generated formulas
we either use the incremental SAT solver IncPlan [16] or the invariant checking
algorithm implemented in the solver MinireachIC3 [30]. LLUMC was inspired by
the bounded model checker LLBMC [28] but runs independently. Our evaluation
is based on the Software Verification Competition (SV-COMP) and shows the
correctness and feasibility of our approach. LLUMC is available online at [21].

2 The DimSpec Format

We assume the reader to be familiar with propositional logic, first-order-logic
and the Boolean satisfiability problem (SAT), and use definitions and notations
standard in SAT. In this section, for completeness, we introduce incremental
SAT-solving and describe the theory of bit-vectors in the context of SMT-solving.

Incremental SAT-Solving. Incremental SAT-solving is an approach to solve
several related SAT-problems efficiently. In the assumption based interface [14],
two methods are used to describe a related problem relative to a base prob-
lem: add(C) and solve(A), where C is a clause and A a set of literals called
assumptions. Clauses can be added with the add method and their conjunction,
together with previously added clauses, can then be solved under the condition
that all literals in A are true by solve(A). To enable simulating the removal of
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a clause C between invocations of solve(A), a clause C ′ = C ∪ a is passed to
the solver instead of C, with a (called an activation literal) being an otherwise
unused literal. C is then effectively taken into account iff ¬a is present in A.

DimSpec Formulas. A DimSpec formula [31] represents a transition system
with a finite number of states t0, t1, . . . , tk, where each state is a full truth assign-
ment on n Boolean variables x1, . . . , xn. It consists of four CNF formulas: I,U ,G
and T , where I encodes the set of initial states, G describes the set of goal states
(that in our case indicate occurrence of a program error). Formula U encodes
global constraints that have to hold in each state, and finally the transition
clauses T are satisfied by each pair of consecutive states ti, ti+1. The clause
sets I, U , and G contain variables x1, . . . , xn, and T contains x1, . . . , x2n, where
x1, . . . , xn encodes the current and xn+1, . . . , x2n the next state. Testing whether
the goal state is reachable from the initial state within k steps is equivalent to
checking whether the following formula Fk is satisfiable.

Fk = I(0) ∧
(

k−1∧
i=0

(
U(i) ∧ T (i, i + 1)

))
∧ U(k) ∧ G(k),

where I(i), G(i), U(i) and T (i, i + 1) denote the respective formulas without
index, where each variable xj is replaced by xj+i·n.

DimSpec formulas have been successfully employed in SAT-based automated
planning [16,30], but they represent a generic approach to utilize incremental
SAT solving for reachability analysis of transition systems. DimSpec solvers can
be developed independently of their usage and also be parallelized, which brings
benefit to all DimSpec applications.

Incremental SAT Solving for DimSpec. The straightforward way to solve
a DimSpec formula is to unroll the transition relation step by step, constructing
and solving the resulting formula Fi at each step, until a satisfiable formula is
observed. An efficient way to implement this is to use an incremental SAT solver
with the assumption-based interface via the following steps:

step(0) : add(I(0) ∧ (a0 ∨ G(0)) ∧ U(0))
solve({¬a0})

step(k) : add(T (k − 1, k) ∧ (ak ∨ G(k)) ∧ U(k))
solve({¬ak}) .

This algorithm, in practice, only terminates in reasonable time if the goal
state is reachable from the initial state. Otherwise it searches “endlessly”, i.e.
up to a bound of 2n in the worst case. A more sophisticated approach that can
detect unreachability is described next.
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IC3 Algorithm. A different approach to solve a DimSpec formula is
described in [12] and implemented, among others, in the tool IC3 (Incremental
Construction of Inductive Clauses for Indubitable Correctness). Given a tran-
sition system S and a safety property P , the algorithm can prove that P is
S-invariant, meaning that, regarding S, property P is true in all reachable
states, or produce a counterexample. IC3 incrementally refines a sequence of
formulas F ′

0, F
′
1, . . . , F

′
k that describe over-approximations of the set of states

reachable in at most k steps. It can extend the formula sequence in major steps
that increase k by one. In minor steps the algorithm refines the approximations
F ′
i with 0 ≤ i ≤ k by conjoining clauses to the F ′

i . Given a finite transition sys-
tem S and a safety property P , the IC3 algorithm terminates and returns true,
iff P is true in all reachable states of S [12]. The IC3 algorithm was implemented
and adjusted1 to the DimSpec format in the tool MinireachIC3 by Suda [30].

Comparison to Other SAT Formats. An alternative approach to DimSpec
for utilizing the benefits of incremental SAT solving is the IPASIR interface
introduced for the 2015 International SAT Race [4]. In contrast to DimSpec,
which is a file format, IPASIR is a collection of C/C++ function prototypes, i.e.,
an application program interface (API). Numerous state-of-the-art SAT solvers
implement the IPASIR interface, which makes it very easy and convenient to
develop applications using incremental SAT solving without committing to any
particular SAT solver.

The advantages of IPASIR over DimSpec are more flexibility (the clauses
for the next incremental SAT call can be constructed dynamically based on
previous results), more functionality (IPASIR provides much more control over
the SAT solver and allows the user to extract more information from the SAT
solving process, such as learned clauses or failed assumptions). On the other
hand, DimSpec is much easier to use since it does not require any programming
and it can be used to express unreachability of transition systems, which is
impossible with IPASIR. Furthermore, any SAT solver supporting IPASIR be can
used in the IncPlan application [16], which renders it into a DimSpec solver. In
summary, DimSpec is a purely declarative approach while IPASIR is procedural.

Another declarative format related to DimSpec is AIGER [10] with safety
invariants. AIGER is the format for representing and-inverter graphs, which
represent a structural implementation of the logical functionality of a circuit or
network. DimSpec and AIGER-safety are mutually translatable2.

3 Encoding for Software Model Checking

We give a short introduction into the Satisfiability Modulo Theories (SMT)
and the LLVM Framework, which are necessary to understand the encoding.

1 The clause sets I,U , T represent the transition system S, and G represents the
negation of the invariant property P .

2 We omit the description of these translations due to space limitations.
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Afterwards, we will describe a DimSpec encoding for the software model check-
ing approach in more detail to show the feasibility and advantages of encoding
problems into the DimSpec format.

Satisfiability Modulo Theories (SMT). Due to quantifiers and infinite
domains, first-order-logic is generally undecidable but there are numerous decid-
able sub-theories. As is for example described in [11], the problem of solving
those subsets or theories is called satisfiability modulo theories or SMT. These
theories can be seen as restrictions on possible models of first-order-logic for-
mulas [27]. For our encoding, we will only use the theory of bit-vectors. SMT
was standardized by the SMT-LIB initiative [5]. We will use the same notations,
especially when referring to SMT functions defined in the different theories. Such
an SMT-LIB function could for example be bvadd(b1, b2), describing the addition
of two bit-vectors b1 and b2. A more complex function is called if-then-else
(ite) and is defined by:

∀c ∈ BV1, x, y, z ∈ BVi (x = ite(c, y, z) ⇔ c ∧ x = y ∨ ¬c ∧ x = z) . (1)

We refer to the theory of fixed-size bit-vectors defined by the SMT-LIB stan-
dard in [5]. The theory of bit-vectors models finite bit-vectors BVn of length n
and operations on these vectors in first-order-logic. The set of function symbols
contains standard operations on bit-vectors such as addition or concatenation.

LLVM Representation. LLVM is an open source compiler framework that
consists of a “collection of modular and reusable compiler and tool-chain tech-
nologies” [26]. It supports compilation for a wide range of languages and is
known for its research friendliness and good documentation. To work directly
on C-code is very complex and it is extremely cumbersome to support all lan-
guage features. Thus, we use the intermediate language of LLVM, which allows
for a much simpler characterization of the semantics of statements and pro-
vides a number of optimizations and simplifications suitable for our approach.
We describe the constructs of LLVM bottom up. The smallest executable unit is
called an instruction. An instruction is an atomic unit of execution that performs
a single operation. A basic block is a linear sequence of program instructions hav-
ing one entry point and one exit point. It may have multiple predecessors and
successors and may also be its own successor. The last instruction of every basic
block is called terminator. Every basic block is part of a function. A function
(n,B, e) is a tuple of a name n, a sequence of basic blocks B = (b0, b1, ..., bm),
and an entry block e ∈ B. Hereinafter, we will denote the main function of a
program with fmain. A module m = (Fm, Gm) is a pair of a set of functions Fm

(including fmain) and a set of global variables Gm.
To optimize our encoding, we run some predefined optimization passes from

LLVM and LLBMC on the generated LLVM-module. Among other things, these
optimizations handle uninitialized local variables in C-code, promote memory
references to register references (as far as possible) and inline all functions into



24 M. Kleine Büning et al.

one main function. These optimizations are described in more detail in [20]. The
resulting LLVM-module is then used as input for our encoding.

3.1 Idea and Error Definition

A bug or error in a software program is a well-known notion, but there exists no
universal definition. A general concept is that a program has an error, if it does
not act according to its specification. For this paper we concentrate on notions
standardized in the SV-COMP competitions. Thus, we consider calls to assume
and assert and support both standard ANSI-C and notions used in benchmarks
of the competition. We state that a program acts according to its specification
if the assert statements are true if all assume conditions are met. If an assume
condition is not met, the further run of the program is not specified and thus no
errors can occur.

Definition 1 (Program Error in LLUMC). Let P be a program. Then there
exists an error in P , if all calls to assume that are prior to an assert statement
are true and a call to assert with a parameter value of false is invoked.

Of course, there are other errors that can happen during a program execution
like irregular bit-shifting, non-termination, or integer and buffer overflows.3

To verify a C program P with respect to Definition 1, we first translate P
to LLVM-IR (i.e. an LLVM-module) using the Clang compiler. After inlining all
function calls, we can concentrate on just the main function. Every basic block
together with its variable assignment can be seen as a state. We then add a
special error state and try to find a path from the entry state, defined by the
entry block of the main function, to the error state.

3.2 State Space

Transitions from one state to a next state will always represent transitions from
one basic block to the next with respect to its current variable assignment. Often
this kind of encoding is called small block encoding [7]. According to the theory
of bit-vectors, we define every state variable as a bit-vector of length n. The
number of bit-vectors in the state, including the bit-vectors representing the
current and previous basic block, define the number of SMT variables that are
needed to encode the state. The number of bits in total, i.e. the sum of the length
of all bit-vectors encoding a state, equals the number of CNF variables needed.

In our approach, we ignore memory accesses by over-approximating them
(i.e. each memory read results in a non-deterministic value). Accesses to stack
variables, which in most cases can be put into virtual registers by LLVM, are
handled precisely, though, and are sufficient in many cases.4 First of all, every
state has to save the current basic block. Hereinafter, |B| denotes the number of
3 In our tool LLUMC, we have additionally implemented checks for integer overflows.

These are not part of our experimental evaluation, though.
4 Integrating a full memory model into our approach is part of future work.
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basic blocks of the main function after inlining. For our encoding we need two
additional blocks. The ok block represents a safe state from which no more errors
can occur. This block is reached when the program terminates or when an assume
condition is not met. The second block is called error and is our goal state,
representing that an error occurred. With the function enc(bb) : BasicBlock →
N we injectively map every basic block to a natural number. If there are |B|
basic blocks in main, the required length of the bit-vector encoding a state’s
basic block is 
log2(|B| + 2)�. We call the SMT-variable encoding the current
basic block curr. In LLVM, the value of a register can depend on the previous
basic block (more specifically, this is the case for phi instructions) and must
thus also be encoded, resulting in another bit-vector of length 
log2(|B| + 2)�,
called pred. Furthermore, we need to save the current variable assignment. We
do not need the assignment of all variables, but should focus on those that
will be accessed later on and cannot be eliminated through optimization. Those
variables can be classified by two properties. We call the set of those variables
V , consisting of

1. variables that are used in more than one basic block and
2. variables that are read before written in a basic block that is part of a loop.

The length of the variables depends on their type. The standard integer type
(int) in C has a width of 32 bits on many architectures, long has 64, and Boolean
values have a width of 1. There are other types, but their lengths are always
specified by LLVM and thus can easily be extracted.

Definition 2 (State). The state space is the Cartesian product over the set
V ∗ of all state variables and the two state-encoding basic-block variables: V ∗ =
{curr, pred} ∪ V . Every variable v of the state space has a fixed bit-length �v.
For a specific step k, the state state(k) is the assignment of concrete bit-vector
values to every variable.

3.3 Encoding to DimSpec Format

Our goal is to encode an LLVM-module as defined at the beginning of this
section into DimSpec format. Therefore, we must define the four CNF formulas
{I,G,U , T } in such a way that if there exists a transition from I to G defined
by T and restricted by U then there exists an error in the given program code.5

The initial formula I can be created by encoding the entry block of the
LLVM-module. The encoding has to represent the state that we are currently at
the first basic block and that there were no prior actions. We declare the entry
block itself as the predecessor to exclude any prior actions. The entry block
and thus the initial formula is independent from any transition. The rest of the
variable assignment is arbitrary at this point and can be left undeclared. The
encoding of the goal formula G can be defined accordingly.
5 A detailed example of the encoding, starting with C-code, over the LLVM repre-

sentation to the SMT encoding, can be found online at https://baldur.iti.kit.edu/
icfem2019/Appendix.pdf.

https://baldur.iti.kit.edu/icfem2019/Appendix.pdf
https://baldur.iti.kit.edu/icfem2019/Appendix.pdf
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Definition 3 (Encoding of the Initial and Goal Formula). Let entry be
the name of the first block and let error be the name of the error block, then the
initial formula I(k) and the goal formula G(k) for the LLVM-module and for
k ∈ N are defined as:

I(k) = curr = enc(entry) ∧ pred = enc(entry),
G(k) = curr = enc(error).

The universal formula consists of constraints that have to be true in all states.
In our case, that are boundaries for the variables curr and pred. In the previous
section, the number of bits needed to encode the current and previous basic
block were defined as 
log2(|B|+2)�. In most cases |B|+2 is not a power of two
and thus bigger numbers can be represented. These numbers must be excluded
at all times in the universal formula U .

Definition 4 (Encoding of the Universal Formula). Let |B| be the number
of basic blocks in the LLVM-module, then the universal formula U(k) for k ∈ N

is defined as:

U(k) = curr ≤ (|B| + 2) ∧ pred ≤ (|B| + 2) .

At last, we have to define the transition formula. It represents the transition
between state k and state k +1. It is important to notice that the transition for-
mula has twice as much variables as the other formulas. To distinguish between
the variables in time-point k and k+1 every variable v of our state space is called
v′ at time-point k + 1. Otherwise, every transition formula would be evaluated
to false and thus no transition step could ever be taken. In general, the encoding
of one transition has the form:

state(k) ⇒ state(k + 1). (2)

We call state(k) antecedent and state(k + 1) consequent. For each state(k) that
is reachable from our initial state, a transition must be defined. An undefined
transition leads to an undefined state(k + 1) with arbitrary values. Thus, if
there is a reachable, undefined transition all goal states can be reached. For the
same reason, we determine that for each state(k) the transition must be explicit.
Variables that are not important for the transition should not be declared in the
antecedent but should be specified in the consequent to avoid undefined values.
We will use the auxiliary function

same(bb) : Basic Block → SMT-formula

to encode that variables which are not modified in a basic block maintain their
current value. The function same(bb) returns the conjunction of all var = var′,
for all variables in our state space, that have not been modified in the transition
of our basic block bb.

To encode the transition between steps, we take a closer look at the current
basic block, further denoted as bb and customize Eq. 2 for different branching
possibilities. We divide basic blocks into three groups and distinguish them by
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means of their terminator. The three different types of terminator instructions
are called unconditional branching, conditional branching and return.

Unconditional Branching (br %bb2): Branches to the basic block with the
label bb2 and creates a transition from the current basic block to bb2. If the
current basic block has no other instructions, only the change of basic block and
the saving of the predecessor have to be encoded. Furthermore, we have to state
that no variables have changed during this transition:

curr = enc(bb) ⇒ curr′ = enc(bb2) ∧ pred′ = enc(bb) ∧ same(bb). (3)

This encoding is rarely complete, because it does not regard all other instructions
in the basic block bb. Let rlbb be the ordered list of instructions from bottom
to top in bb. Then we iterate over rlbb and regard all instructions inst that are
part of our state variables inst ∈ V and are not the terminator instruction. The
instruction is then recursively encoded according to its type and its operands.
When an instruction like %tmp3 = add i32 10 %tmp2 is encoded by the method
visitInst(%tmp3), the algorithm checks the operands first. When regarding
the value %tmp2, the algorithm checks whether it is a variable that is part of
our state or a value calculated by an instruction, which the algorithm has to
then encode recursively. The stop criterion is always the occurrence of a state
variable, a constant or a call to assert, assume or error. The encoding then
creates SMT formulas dependent on the operands. Assuming %tmp2 is a variable
from our state space, the encoding for the add instruction would result in tmp3’
= add(10, tmp2). This generated SMT formula is then conjuncted with the
consequent of Eq. 3. The algorithm continues by iterating further through the
list rlbb until there are no instructions left.

Conditional Branching (br %cond, %bb1, %bb2): Creates a transition
to bb1 with the condition cond = 1 and a transition to bb2 with the condition
cond = 0. Every conditional branch has a branching condition represented as
a variable (cond). We can extract that condition by visiting and encoding the
variable representing the branching condition. In LLVM this branching condi-
tion is represented as a Boolean value that is assigned by the so called icmp -
instruction. This instruction returns a Boolean value based on the comparison
of two values and it supports equality, unsigned and signed comparison. The
icmp-instruction is then encoded recursively by visiting its two operands with
the same visiting approach as described for the unconditional branching. The
result could for example be the SMT encoding of the mathematical condition
tmp2 > 10. Based on it, the algorithm creates two separate transitions.

curr = enc(bb) ∧ visitInst(cond) ⇒
curr′ = enc(bb1) ∧ pred′ = enc(bb) ∧ same(bb).

curr = enc(bb) ∧ ¬(visitInst(cond)) ⇒
curr′ = enc(bb2) ∧ pred′ = enc(bb) ∧ same(bb).

Furthermore, the list rlbb is traversed as described previously resulting in a final
encoding of the current basic block.
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Return Value (ret val): The value val can be an arbitrary integer and repre-
sents the return value of the program as usual. This terminator creates a tran-
sition to ok. In an extended and already implemented version, another check is
inserted verifying that the result value of a correct program is 0 and if this does
not hold a transition to error is created.

After encoding branching possibilities, we will look at the calls to assume,
assert, error. During the instruction iteration of a basic block, we regard these
instructions differently because they lead to a split of our transitions.

Method Calls (Error, Assume, Assert): If the error-method, which is used
to specify program errors in C-code, is called inside a basic block, we do not
have to regard any other instructions and thus delete all other transitions from
this basic block. We produce a single transition:

curr = enc(bb) ⇒ curr′ = enc(error) ∧ same(∅).

The other three possibilities lead to a split of our transitions similar to the con-
ditional branching. A call of assume(var) divides the set of current transitions
for our basic block. The condition is var = 0 and leads to a transition to the
ok state with s′ = enc(ok). The call to assert(var) is similar only with the
transition to s′ = enc(error) if var = 0 holds true. In both cases, the encoding
continues normally with the next instruction if the conditions are not met.

All components of the transition formula have now been discussed. To obtain
the complete transition formula the algorithm has to iterate over all basic blocks
of the main function. Depending on their terminator instruction, every basic
block has to be encoded according to the definitions above. To predict which
transition is taken in which step would be equal to solving the whole formula.
Thus, the transition formula is time independent and the transition possibilities
for all time steps are part of the formula.

Definition 5 (Encoding of the Transition Formula). Let BB be the set of
all basic blocks of fmain and let encode(b) with b ∈ BB be the encoding as shown
above, then the transition formula T (k, k + 1) for k ∈ N is defined by:

T (k, k + 1) =
∧

b∈BB

encode(b). (4)

Claim. There exists an error as defined by Definition 1 in program p iff

1. p is transformed into an LLVM-module � as described in Sect. 3 and
2. there exists a transition path in � from the initial state to the goal state while

the universal formula holds in all states.

Proof Idea: We forego on a formal proof, because it would require a structural
induction over huge sets of C-Code and the LLVM-language. Instead, we present
short arguments and references for our claim.

(1): Using LLVM as a representation for C-code is widely accepted and used in
research and industry. We assume that the transformation from C-code
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into a LLVM-module does not remove or add any errors based on the
high number of research papers [1,3,6] and tools like LLBMC [27] and
SeaHorn [17].

(2): The error node has two types of incoming edges: from an assert statement
and an edge from the error node itself. We disregard the edge that points
to itself and are left with the option that match the property defined in
Definition 1. If the encoding of the variables is, as we claim, correct and our
state space is closed under T and U , we can assume that the a transition
path from the initial state to the error state complies with an error in the
LLVM-module.

From SMT to SAT Formula. The encoding of the LLVM-module gives us
four SMT formulas. Currently, there are no SMT solver that support the Dim-
Spec format and thus these formulas have to be translated into four CNFs in
DimSpec format. The most widespread approach to transform SMT to CNF for-
mulas is called bit-blasting. We have taken one approach implemented in STP [15]
and the ABC-library [18] and modified these algorithms to correspond to some
technical requirements of the DimSpec format. Finally, a CNF in the DimSpec
format is created that can be used as input for a number of SAT solvers.

4 Solving the Formula: Bounded vs. Unbounded Model
Checking

The general idea of bounded model checking (BMC) is to encode paths of a
transition system up to a certain bound. For software, the bound is maintained
by unrolling loops and inlining function calls at most k times. The number k is
called the bound and is the reason for the decidability of bounded model checking
but also for its limitations. After the unrolling and encoding of the program, a
formula that represents the negation of a desired property is added, and the
formula is solved with an SMT or SAT-solver. If the solver finds a model for
the formula, the approach has found an error and the model can be used as
a counterexample. The loop-bound can be increased step by step until a fixed
bound k is reached. The question to which bound the loops should be unrolled
is complex and further discussed for example by Biere et al. [9].

As mentioned earlier, our encoding to the DimSpec format leads to a unified
encoding for both bounded and unbounded model checking. Whether our app-
roach can be categorized as a bounded or unbounded model checking technique
depends on the kind of solver that is used to solve the generated formula.

A first approach is solving the formula with an incremental SAT-solver as
described in Sect. 2. We argue that the approach using an incremental SAT-
solver has to be categorized as bounded, because the problem is unrolled during
solving time and the verification is limited by the number of unrolling steps that
can be performed under time and memory restrictions. However, compared with
state-of-the-art bounded model checkers, there is a crucial difference in how our
verification approach is bounded. Bounded model checkers require a fixed bound
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early during their analysis to generate the corresponding problem instance, which
cannot be directly reused for other bound settings. For our approach the encod-
ing itself is independent of any unrolling. Only during solving of the instance the
loop is unrolled leading to the bound that is perceptible through the time and
memory limit which allows us to unroll only a finite number of times.

When solving the generated formula with an invariant checking algorithm as
e.g. the in Sect. 2 described IC3-algorithm, the approach becomes unbounded.
The whole path to the error label is computed using abstractions which are
iteratively refined until either the error path is concrete and no further refinement
is possible or a repetition is detected, from which the absence of errors can be
deduced. Thus, our approach is truly unbounded, but of course limited by time
and memory constraints when solving difficult problems. In summary, our unified
encoding can be used for both unbounded and bounded model checking.

5 Experimental Results

The LLUMC-approach is implemented as a tool chain. The input file, a C source
file, is compiled with Clang (version 3.7.1) and then optimized with LLVM and
LLBMC passes. This optimized LLVM module serves as input for the program
LLUMC, which performs the encoding as described above. We modified the tool
STP to translate SMT formulas to DimSpec problems. The final renaming and
aggregation is implemented directly in LLUMC.

We combined the two different approaches described in Sect. 4 to solve the
generated DimSpec/CNF formulas. The tool IncPlan [16] was developed at KIT
and implements the incremental SAT-solving interface described in Sect. 3. It can
be used with every SAT-solver that accepts the Re-entrant Incremental Satisfia-
bility Application Program Interface (IPASIR). We have evaluated IncPlan with
a number of SAT-solvers including Minisat [29], abcdSat [13], Glucose [2] and
Picosat [8]. While Glucose and Minisat produced good results for some bench-
marks, the IncPlan implementation for these solvers exhibited segmentation-
fault errors for some of the benchmark instances. Thus, we focused on the usage
of abcdSat and PicoSat. We only show the results of running IncPlan with abcd-
Sat as the backend solver since exchanging abcdSat with PicoSAT resulted in
negligible performance differences. For the incremental SAT-solving performed
with IncPlan and abcdSat, we are only able to find errors in programs but cannot
prove their absence. The reason is the design of the incremental solver IncPlan.
It regards the encoding as a path to the error label that has to be found and if
there is no such path, the program does not terminate. To also be able to prove
the nonexistence of errors an analysis for repetition in the state space has to be
performed, which is part of future research.

Secondly, the IC3 algorithm was implemented and adjusted to the DimSpec
format in the tool MinireachIC3 [30]. The safety property P expresses that the
error state should not be reachable, and thus P is given by ¬G, G being the
goal formula of the DimSpec encoding. Thus, we are not only able to prove the
existence of errors but also their absence.
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We ran both tools in parallel and took the results of the tool that terminated
first. As both tools are sound, this approach guaranteed the correct result while
circumventing disadvantages of each single approach, like the inability to prove
the absence of errors through the tool IncPlan. Thus, we are able to take full
advantage of the usability of the encoding for different solving techniques.

5.1 Benchmarks

We evaluated our approach using benchmarks from the Software Verification
Competition [6]. The SV-COMP is an annual competition for academic software
verification tools, with the aim to compare software verifiers. While we did not
submit our tool to the competition, the collected benchmarks serve as an excel-
lent evaluation basis for every verifier. All benchmarks are available at [32] and
we regarded the sub-folder c with programs written in the language C.

The benchmark problem sets are organized by topics. From these bench-
marks, we selected all problems compatible with our current LLUMC imple-
mentation and thus obtained a total of over 200 problems as a benchmark set.
We excluded some benchmarks that included memory accesses or floating point
arithmetic. Furthermore, we excluded recursive and concurrent tasks due to the
inlining in our approach and thus leaving us with 95 incorrect and 107 correct
programs. The benchmarks vary between 14 and 1500 lines of code (LoC).

The evaluation was performed on a system with 64 CPUs with 2.3 GHz and
126 GB working memory. We set a time limit of 600s (wall-clock time) per bench-
mark problem. We decided to measure the wall-clock-time for the whole LLUMC
tool-chain. Due to using GNU parallel [33], we were able to run benchmarks in
parallel, but decided to use only 8 CPUs to limit run-time noise arising e.g. due to
processes sharing CPU caches. Our approach works sequentially, and parallelism
is only achieved by running several benchmarks at once. The DimSpec format
supports parallelism on the SAT level, the advantages remain to be evaluated
thoroughly in future research.

5.2 Evaluation

We compared our approach to the bounded model checking approach which
is implemented for example in the tools CBMC (C Bounded Model Checker)
[23] and LLBMC (Low Level Bounded Model Checker) [28]. Both tools, CBMC
and LLBMC, are powerful state-of-the-art verification tools, which also earned
a number of gold, silver and bronze medals in the SV-COMP competitions.

We created scripts similar to the respective SV-COMP submissions from
recent years, but handled some configurations differently. Benchmarking with
bounded model checkers requires choosing a suitable loop unroll bound B, result-
ing in a trade off between precision (increases with B) and speed (decreases with
B). For the competition both solvers used specific bounds that were determined
through “educated guesses” [23]. Furthermore, in the competition, if a loop-
bound was reached and the solver failed to produce an answer, an educated
guess was made for the result. In our evaluation, we used the loop unroll bounds
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10, 100 and 1000 (in that order), aborting the solving process as soon as a verifi-
cation result was achieved. When reaching a time or memory limit, we classified
the problem instance as unknown. The scripts, benchmark sets and detailed
results are available at [21].

Fig. 1. Comparison of LLUMC with CBMC and LLBMC. The x-axis represents the
number of problems the solvers were able to solve and the y-axis the time they needed.

The results of our evaluation are shown in Fig. 1 and indicate both function-
ality and runtime advantages on the chosen benchmarks6. To explain the advan-
tage of our approach and the encoding over the state-of-the-art for bounded
model checking, we have to look at the solving approaches individually.

The advantage of the incremental solving with abcdSAT over bounded model
checking approaches is caused by our new approach of encoding the verification
problem and thereby the bound. With bounded model checking, programs are
unrolled to a fixed bound in an early phase of the analysis and the SAT encoding
is specifically created for this one bound. This fixed bound is mostly given by the
user and when not sufficient enough the verification has to be reattempted for
the new bound. With our approach, an unbounded low-level encoding is used,
with the unrolling bound being iteratively increased by the incremental backend
solver, which is able to reuse facts learned with lower bounds.

The chosen benchmark-set from the SV-COMP includes a large number of
problems with unbounded loops and loops with large bounds. While the basic
bounded model checking approach cannot handle unbounded loops, the abstrac-
tion refinement of MinireachIC3 is able to abstract the state space and prove the
absence of errors better then state-of-the-art tools. The number of benchmark
6 Detailed figures about the single solving approaches can be found online at https://

baldur.iti.kit.edu/icfem2019/Appendix.pdf.

https://baldur.iti.kit.edu/icfem2019/Appendix.pdf
https://baldur.iti.kit.edu/icfem2019/Appendix.pdf
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problems solved still indicates that proving the absence of errors for programs
with large loops is still a difficult task, but the approach using MinireachIC3
leads to a significant improvement.

This experimental evaluation illustrates the feasibility and potential of our
approach. We show that our flexible encoding supports a variety of different
approaches for solving the generated CNF in DimSpec format. In total, our
algorithm is competitive with existing bounded model checkers and can even
outperform them on some instances, especially ones with large loop bounds or
unbounded loops.

6 Conclusion and Future Work

In this paper we presented the DimSpec format for specifying properties of tran-
sition systems on the SAT level. It has already been successfully employed in
SAT-based automated planning in the past, and we showed that it can also be
advantageous to handle software verification problems. Our new DimSpec-based
encoding tool LLUMC can be used to express software verification problems
independently from loop-bounds, and thus can be used for both bounded and
unbounded model checking. Basing our encoding on DimSpec enables us to lever-
age powerful DimSpec solvers for software verification.

In future work the performance of the LLUMC approach could be improved
by enlarging the incremental steps of the solver. A first evaluation shows that
merging basic blocks in LLVM leads to performance improvements, indicating
that a large block encoding could be advantageous. Furthermore, adding a full
memory model to the LLUMC approach will enable us to support a wider range
of C language constructs.
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