
Consistency Enforcement for Static
First-Order Invariants in Sequential

Abstract State Machines

Klaus-Dieter Schewe(B)

Zhejiang University, UIUC Institute, Haining, China
kdschewe@acm.org

Abstract. Given a program specification P and a first-order static
invariant I the problem of consistency enforcement is to determine a
modified program specification PI that is consistent with respect to I,
i.e. whenever I holds in a state S it also holds in the successor states
determined by PI , and at the same time only minimally deviates from P .
We formalise this problem by the notion of the greatest consistent spe-
cialisation (GCS) adapting and generalising this 20 year old concept to
sequential Abstract State Machines (ASMs) with emphasis on bounded
parallelism. In a state satisfying I such that P is repairable the notion of
consistent specialisation will require an enlargement of the update set,
which defines a partial order with respect to which a GCS is defined. We
show that GCSs are compositional in two respects: (1) the GCS of an
ASM with a complex rule can be obtained from the GCSs of the involved
assignments, and (2) the GCS with respect to a set of invariants can be
built using the GCSs for the individual invariants in the set.

Keywords: Consistency enforcement · Static invariant · Consistent
specialisation · Abstract State Machine · Compositionality

1 Introduction

State-based formal methods for the development of software systems place
emphasis on correctness proofs, most of which are concerned with consistency
and refinement. For the former ones we consider static invariants I that are
to hold in every state S of a program specification P . Such invariants are
expressed as logical formulae, most importantly using first-order logic (though
not restricted to this), and consistency verification splits the problem into show-
ing that consistency holds for the initial state(s) and is preserved by state transi-
tions defined by P , i.e. whenever I holds in a state S it also holds in the successor
state(s) determined by P . If such a proof fails, P has to be modified, but there
is very little methodological support for this.

A remedy to this lack of methodology is provided by consistency enforce-
ment, which has already been studied in the 1990s, in particular in the field of
databases [13]. The emphasis was mainly on the use of rule triggering systems,
c© Springer Nature Switzerland AG 2019
Y. Ait-Ameur and S. Qin (Eds.): ICFEM 2019, LNCS 11852, pp. 219–235, 2019.
https://doi.org/10.1007/978-3-030-32409-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32409-4_14&domain=pdf
https://doi.org/10.1007/978-3-030-32409-4_14

220 K.-D. Schewe

but in view of many problems associated with the active database approach
(see [14]) the interest has somehow died out. Unfortunately, this also stopped
further investigation of alternative approaches in rigorous state-based methods
such as greatest consistent specialisations (GCSs, see [15]), which were grounded
in Dijkstra’s guarded commands with predicate transformer semantics [5] in an
extended form [12] (also used at that time in the upcoming B method [1]).

In a nutshell, the problem of consistency enforcement is to determine a mod-
ified program specification PI that is consistent with respect to I, i.e. whenever
I holds in a state S it also holds in the successor states determined by PI , and
at the same time only minimally deviates from P , where “minimal deviation”
is formalised by a specialisation order, i.e. PI is maximal with respect to this
order among all consistent specialisations of P with respect to I. In the theory of
GCSs it could be shown that compositionally with respect to sets of invariants
holds, i.e. a GCS for the conjunction of invariants in a set can be essentially built
by taking the GCSs with respect to the individual invariants in arbitrary order.
It could further be shown that compositionality with respect to the composition
of P can also be achieved.

Nonetheless, the research remained uncompleted and still not fully satisfac-
tory. The notion of state space was adopted from B, and thus refers to a finite
set of state variables. When these are bound to bulk data such as sets or rela-
tions, the notion of specialisation becomes too restricted as already observed
in [11]. Furthermore, the compositional GCS construction does not take paral-
lelism into account, not even bounded parallelism, and the handling of GCSs for
assignments has not been addressed.

In this paper, we pick up the thread from the 20 year old research and investi-
gate consistency enforcement in the context of Abstract State Machines (ASMs,
[3]). In doing so we emphasise Tarski structures as states with much more fine-
grained locations, as well as non-determinism and parallelism, but we still restrict
our investigation to bounded parallelism as in sequential ASMs [10]. We also
restrict static invariants to formulae in first-order logic. As predicate transform-
ers are not suited to capture parallelism, we redefine the notion of GCS—this will
be done in Sect. 2 dedicated to preliminaries—but for simple state variables and
specifications without parallelism the new definition will cover the old one. We
will show that it is still possible to characterise specialisation using the logic of
non-deterministic ASMs [8,9]. With this we are able to prove again composition-
ality with respect to the structure of ASM rules—this gives the main content of
Sect. 3 dedicated to compositionality with respect to rules. This compositionality
result allows us to concentrate on GCSs for assignments.

In Sect. 4 we address compositionality with respect to sets of invariants. It
is easy to see that with the fine-grained notion of location compositionality
for sets of invariants as in the guarded-command-based GCS theory cannot be
achieved. However, as only assignments have to be taken into consideration, we
can exploit critical paths as in [14], where they were used to show the limitations
of rule triggering systems for consistency enforcement. Here we will use them,
again in connection with local stratification to obtain a canonical form for the

Consistency Enforcement for Static First-Order Invariants 221

GCS of an assignment with respect to a set of invariants. For the latter ones we
exploit a representation in clausal form, where skolemised variables give rise to
choose-rules. We conclude with a brief summery and outlook in Sect. 5.

2 Consistent Specialisations

As stated above consistency enforcement starts from a program specification P
and a static invariant I. For the former one we will concentrate on specifications
of sequential algorithms, and we know from [10] that these are captured by
sequential ASMs, so our specifications will be based on ASMs (see [3] for a
detailed introduction).

Thus, let Σ denote a signature, i.e. a finite set of function symbols. Each
f ∈ Σ has a fixed arity arf ∈ N (including 0). A structure S over Σ is given
by a base set B and an interpretation of the function symbols, i.e. for arf = n
the structure contains a function fS : Bn → B ∪ {⊥}, where ⊥ denotes a
value outside B representing undefinedness, by means of which partial functions
are captured. An isomorphism between Σ-structures S and S′ is a bijection
σ : B → B′ between the corresponding base sets of S and S′, respectively
(extended by σ(⊥) = ⊥) such that fS′(σ(v1), . . . , σ(vn)) = σ(fS(v1, . . . , vn)).

Usually, we assume an implicit background, i.e. fixed constant values and
operations on them, e.g. truth values and their junctors, or natural numbers.
The background together with Σ allows us to define terms and formulae (using
equality as predicate symbol) in the usual way. Their interpretation in a struc-
ture S is then defined as usual assuming that the constants are interpreted by
themselves and the operations on them have a fixed interpretation, with their
fixed interpretation in a structure S.

A (static) invariant over Σ is a closed first-order formula I in a logic with
equality and only the function symbols in Σ (and the background). A structure
S satisfies the invariant I (denoted as S |= I) iff the interpretation of I in S
yields true.

2.1 Sequential Abstract State Machines

ASMs provide means for the specification of computations on isomorphism
classes of structures. Thus, an ASM is defined by a signature Σ and an ASM
closed rule r. The signature defines a set S of states, out of which a subset I is
declared as set of initial states. Both S and I must be closed under isomorphisms.

Each state defines a set of locations. A location � of S is given by a function
symbol f ∈ Σ (say of arity n) and a tuple (v1, . . . , vn) ∈ Bn, where B is the
base set of S. We write valS(�) = v0 for a location � = (f, (v1, . . . , vn)) iff
fS(v1, . . . , vn) = v0 holds.

An update is a pair (�, v0) comprising a location � and a value v0 ∈ B ∪ {⊥}.
An update set is a finite set Δ of updates. Δ is called clash-free iff there cannot
be two updates (�, v), (�, v′) ∈ Δ with the same location � and v �= v′. If Δ is
a clash-free update set on state S, then there is a well-defined successor state

222 K.-D. Schewe

S′ = S + Δ with valS′(�) = v0 for (�, v0) ∈ Δ and valS′(�) = valS(�) otherwise.
For completeness we further let S + Δ = S in case Δ is not clash-free.

The rule gives rise to state transitions. Sequential ASM rules r are defined
as follows:

– Each assignment f(t1, . . . , tn) := t0 with a function symbol f ∈ Σ of arity n
and terms ti for i = 0, . . . , n is an ASM rule.

– If ϕ is a Boolean term (i.e. it evaluates to a truth value) and r1 and r2 are
ASM rules, then also if ϕ then r1 else r2 endif is an ASM rule (branching).

– If r1, . . . , rk are ASM rules, then also par r1 . . . rk endpar is an ASM rule
(bounded parallelism).

– If x is a variable, ϕ(x) is a Boolean term with free x and r(x) is an ASM rule
with free x, then also choose x with ϕ(x) do r(x) enddo is an ASM rule
(choice).

For completeness we also permit rules of the form let x = t in r(x), skip and
fail. The former one is just a shortcut for choose x with x = t do r(x) enddo
emphasising that the “choice” is deterministic, skip can be seen as a shortcut
for some f(t1, . . . , tn) := f(t1, . . . , tn), i.e. a rule that does not change the state,
and fail represents choose x with x �= x do r(x) enddo, i.e. it is a rule that is
always undefined.

We use parentheses freely as well as the usual abbreviations for branching
rules. We also mention the unbounded parallelism rule forall x with ϕ(x) do
r(x) enddo, which is permitted in general in ASMs, but not in sequential ASMs.

Given a state S a rule r together with a valuation ζ of its free variables yields
a set of update sets, which we denote as Δr(S):

– For an assignment rule f(t1, . . . , tn) := t0 there is exactly one update set, so
we have Δr(S) = {{((f, (valS,ζ(t1), . . . , valS,ζ(tn))), valS,ζ(t0))}}.

– For a branching rule if ϕ then r1 else r2 endif we have Δr(S) = Δr1(S)
for valS,ζ(ϕ) = true, and Δr(S) = Δr2(S) for valS,ζ(ϕ) = false.

– For a bounded parallel rule par r1 . . . rk endpar we have Δr(S) = {Δ1 ∪
· · · ∪ Δk | Δi ∈ Δri

(S) for i = 1, . . . , k}.
– For a choice rule choose x with ϕ(x) do r(x) enddo we have Δr(S) =⋃

valS,ζ(ϕ(x))=true Δr(x)(S).

Then we also have Δskip(S) = {∅} and Δfail(S) = ∅.

Definition 1. An ASM is consistent with respect to an invariant I iff every
initial state S0 ∈ I satisfies I, and for every state S ∈ S satisfying I also every
successor state S′ = S + Δ with Δ ∈ Δr(S) satisfies I.

2.2 Greatest Consistent Specialisations

Recall from the introduction that the idea is to replace a specification P (i.e. a
sequential ASM) by a modified specification PI that is consistent with respect to
a given invariant I subject to some minimality condition. Let us tacitly assume

Consistency Enforcement for Static First-Order Invariants 223

that the given initial states S0 always satisfy S0 |= I, so we can concentrate on
the state transitions. That is, we have to modify the rule r of a given sequential
ASM. Therefore, in the following we always consider such a rule r.

Update sets in a state S represent the intention behind the specification.
It therefore appears natural to request that the modification should preserve
the updates, i.e. update sets should be (minimally) enlarged. The question is
whether this is always possible, and the next example shows that this is not the
case (see also [14]).

Example 1. Consider an ASM with a rule par p(a) := true q(a) := false
endpar and an invariant I ≡ ∀x.p(x) ⇒ q(x). Assume a is a constant
evaluated to itself, so the only update set in an arbitrary state S will be
Δ = {((p, (a)), true), ((q, (a)), false)}. Hence in every successor state S′ = S+Δ
we will have valS′(p(a)) = true and valS′(q(a)) = false, which violates I, and
no enlargement of Δ can repair this. So the specification has to be considered
to be non-repairable.

Example 1 shows that there are situations, where consistency enforcement
by means of enlarging update sets is not possible, so we need a notion of a
repairable update set. For this we consider a clash-free update set Δ ∈ Δr(S)
as a structure, i.e. we let valΔ(�) = v for (�, v) ∈ Δ and valΔ(�) = ⊥ otherwise.

Definition 2. An update set Δ ∈ Δr(S) is non-repairable with respect to an
invariant I iff Δ |= ¬I holds. An ASM is repairable in state S with respect to I
iff there is at least one repairable update set Δ ∈ Δr(S).

Now we can approach a definition of consistent specialisation.

Definition 3. Consider an ASM A with a rule r and an invariant I. An ASM
AI with rule rI is a consistent specialisation of A iff for all states S the following
holds:

(i) If S |= I, then
(a) for all repairable Δ ∈ Δr(S) there exists some Δ′ ∈ ΔrI

(S) with Δ ⊆
Δ′, and

(b) for all Δ′ ∈ ΔrI
(S) there exists a repairable Δ ∈ Δr(S) with Δ ⊆ Δ′.

(ii) If S �|= I, then ΔrI
(S) = ∅.

(iii) If S |= I, then for Δ′ ∈ ΔrI
(S) we have S + Δ′ |= I.

Note that (i) and (iii) in Definition 3 together imply that if Δr(S) only
contains non-repairable update sets, then ΔrI

(S) will be empty.
We can define a partial order ≤ on consistent specialisations of A with respect

to an invariant I. If A1 and A2 are two consistent specialisations of A with
rules r1 and r2, respectively, then we have A1 ≤ A2 iff for all states S and all
Δ1 ∈ Δr1(S) there exists a Δ2 ∈ Δr2(S) with Δ2 ⊆ Δ1.

Clearly, if an update set is repairable, then the greatest consistent speciali-
sation will contain all minimal extensions (exploit unbounded choice for this),
which justifies the following definition.

224 K.-D. Schewe

Definition 4. Consider an ASM A with a rule r and an invariant I. An ASM
AI with rule rI is the greatest consistent specialisation (GCS) of A iff it is a
consistent specialisation and maximal with respect to the partial order ≤.

Remarks. Note that our definition of GCS is an ASM AI over the same signa-
ture as the given ASM A. Thus, states of AI are also states of A and vice versa.
Furthermore, the definition is based on the assumption that the invariant is con-
firmed to be valid, which is different from work as e.g. in [16], where invariants
are allowed to be weakened to achieve consistency. GCS are also “universal” in
the sense that all possible ways of minimal repair (as defined in Definition 3)
are taken into account leaving decisions, which of these might be preferred to
a human-driven refinement process. This differs from work of others, e.g. [4],
where machine learning methods are applied to detect the “best” repair.

Example 2. Consider a simple invariant I ≡ f �= ⊥ ⇒ g(f) �= ⊥, so the signature
Σ contains at least function symbols f and g of arity 0 and 1, respectively. Take
the rule r1 defined by f := a with a constant a. Then the GCS will be defined
by a rule

if f = ⊥ ∨ g(f) �= ⊥
then choose y do par f := a g(a) := y endpar enddo
else fail endif

This is easily verified using directly Definition 3. Note that the outermost
branching rule and the fail is only needed to capture the case of the rule being
applied in a state S not satisfying I.

Next take a rule r2 defined by g(a) := b with another constant b. Then the
GCS is defined by

if f = ⊥ ∨ g(f) �= ⊥ then g(a) := b else fail endif

Clearly, the GCS of par r1 r2 endpar is

if f = ⊥ ∨ g(f) �= ⊥ then par f := a g(a) := b endpar else fail endif

This is different from par r1I r2I endpar.

Example 3. Let us consider another simple, yet slightly more complicated exam-
ple with an invariant I ≡ f �= ⊥ ⇒ ∃y.g(f, y) = f . Let r1 be as in Example 2
and let r2 be defined as g(a, b) := a. Then the GCS of r1 is defined by

if f = ⊥ ∨ ∀y.g(f, y) �= f
then choose y do par f := a g(a, y) := a endpar enddo
else fail endif

For r2 the GCS will be defined by the rule

if f = ⊥ ∨ ∀y.g(f, y) �= f then g(a, b) := a else fail endif

Consistency Enforcement for Static First-Order Invariants 225

Clearly, the GCS of par r1 r2 endpar is

if f = ⊥ ∨ ∀y.g(f, y) �= f
then par f := a g(a, y) := a endpar
else fail endif

Again, this is different from par r1I r2I endpar.

Remark. In principle, the new definition of a GCS follows the idea of the defi-
nition given in [15], but as we want to deal with parallelism, the use of predicate
transformers is excluded. In addition, there are a few more subtle differences.
Definition 4 is based on update sets, which are grounded on the fine-tuned notion
of location in ASMs. For instance, every tuple in a relation defines a location,
whereas in the “old” work the whole relation would be considered as a sin-
gle value with the consequence that preserving “effects” (now updates) is much
more restrictive. We will see that this has consequences on compositionality with
respect to sets of invariants, but in Sect. 4 we will be able to achieve results that
are even more convincing than those for the “old” notion of GCSs.

3 Compositionality with Respect to Rule Composition

The key result in [15] states that the GCS can be built by first replacing elemen-
tary commands, i.e. assignments and skip, by their respective GCSs, and then
adding preconditions to ensure that the result is indeed a specialisation. This
reduces GCS construction to the case of assignments. The most difficult parts
of the decisive “upper bound theorem” are concerned with sequences and recur-
sion. In our modernised theory we can dispense with recursion, as the semantics
of ASMs includes the iteration of the rule, so we have a finer-grained notion
of consistency. Nonetheless, an extension to recursive ASMs (see [2]) is likewise
possible. As we deal with sequential algorithms there is also no need to bother
about sequences, as they are not needed (see the proof of the sequential ASM
thesis in [10] and the corresponding behavioural theory of unbounded parallel
algorithms in [7]; sequences can be easily expressed using bounded parallelism
and branching). However, we now have to deal at least with bounded parallelism,
to which the theory in [15] does not apply.

In this section we will nonetheless show that compositionality holds for
sequential ASM rules, and the most difficult part of the proof will concern the
case of the bounded parallel rule. This will reduce GCS construction again to
assignments, which we will handle in the next section.

226 K.-D. Schewe

3.1 Branching and Choice

First consider the cases of branching and choice rules.

Proposition 1. Let A be an ASM with a rule of the form if ϕ then r1 else r2
endif. Then the rule of its GCS AI with respect to an invariant I can be written
as if ϕ then r1I else r2I endif, where riI is the rule of the GCS of the ASM
defined by ri.

Due to space and time restrictions we omit the proof here. We only have to
check the conditions of Definitions 3 and 4 using the definition of update sets
yielded by branching rules. This is rather straightforward.

Proposition 2. Let A be an ASM with a rule of the form choose x with ϕ(x)
do r(x) enddo. Then the rule of its GCS AI with respect to an invariant I can
be written as choose x with ϕ(x) do rI(x) enddo, where rI(x) is the rule of
the GCS of the ASM defined by r(x).

Same as for the proof of Proposition 1 the proof of Proposition 2 is rather
straightforward based on the definition of update sets yielded by a choice rule
and Definitions 3 and 4.

3.2 Bounded Parallelism

Next consider the case of a bounded parallel rule. As Examples 2 and 3 already
show, we cannot obtain a simple compositional result as in Proposition 1 or 2.
If we build the GCSs of the different parallel branches of an unbounded parallel
rule separately and recombine them using unbounded parallelism, then we may
have additional branches that subsume those in the real GCS. There may also
be fail branches. Both have to be excluded.

In order to do this we need to exploit the logic of non-deterministic ASMs
[8,9], which is defined as a fragment of second-order logic, in which quantification
over update sets is permitted. However, as we are not yet dealing with unbounded
parallelism, we can simplify the logic discarding multiset functions and thus also
update multisets. We can also dispense with the difficult handling of meta-finite
structures.

Terms of the logic are the terms defined by the given ASM. Formulae of the
logic are built inductively using the following rules:

– If s and t are terms, then s = t is a formula.
– If t1, . . . , tr are terms and X is a second-order variable of arity r, then

X(t1, . . . , tr) is a formula.
– If r is a rule and X is a second-order variable of arity 3, then upd(r,X) is a

formula.
– If ϕ and ψ are formulae, then also ¬ϕ, ϕ ∨ ψ are formulae.
– If ϕ is a formula, x is a first-order variable and X is a second-order variable,

then also ∀x.ϕ and ∀X.ϕ are formulae.

Consistency Enforcement for Static First-Order Invariants 227

– If ϕ is a formula and X is a second-order variable of arity 3, then [X]ϕ is a
formula.

Additional junctors and quantifiers such as ∧, → and ∃ are defined as short-
cuts in the usual way. We also use 〈X〉ϕ as shortcut for ¬[X]¬ϕ as common in
dynamic logic.

In [8] a Henkin semantics for the logic was defined, in which the interpretation
of second-order quantifiers is part of the specification of a structure.

Definition 5. A Henkin prestructure over signature Σ is a state S with non-
empty base set B extended by sets of n-ary relations Dn ⊆ P(Bn) for each
n ≥ 1.

Variable assignments ζ for a Henkin prestructure S are defined as usual.
We have ζ(x) ∈ B for first-order variables x, and ζ(X) ∈ Dn for second-order
variables X of arity n. Given a variable assignment, formulae can be interpreted
in a Henkin prestructure. As we want to obtain update sets, we introduce new
constant symbols cf for each function symbol f ∈ Σ. For a second-order variable
X of arity 3 we write valS,ζ(X) ∈ Δ(r, S, ζ), meaning that there is a set Δ ∈
Δ(r, S, ζ) such that (f, a0, a1) ∈ U iff (cS

f , a0, a1) ∈ valS,ζ(X).
If ϕ is a formula, then the truth value of ϕ on S under ζ is determined as

follows:

– If ϕ is of the form s = t, then [[ϕ]]S,ζ = true iff valS,ζ(s) = valS,ζ(t).
– If ϕ is of the form X(t1, . . . , tr), then [[ϕ]]S,ζ = true iff (valS,ζ(t1), . . . ,

valS,ζ(tn)) ∈ valS,ζ(X).
– If ϕ is of the form upd(r,X), then [[ϕ]]S,ζ = true iff valS,ζ(X) ∈ Δ(r, S, ζ).
– If ϕ is of the form ¬ψ, then [[ϕ]]S,ζ = true iff [[ψ]]S,ζ = false.
– If ϕ is of the form (α ∨ ψ), then [[ϕ]]S,ζ = false iff [[α]]S,ζ = [[ψ]]S,ζ = false.
– If ϕ is of the form ∀x.ψ, then [[ϕ]]S,ζ = true iff [[ψ]]S,ζ[x�→a] = true for all

a ∈ B.
– If ϕ is of the form ∀X.ψ, where X is a second-order variable of arity n, then

[[ϕ]]S,ζ = true iff [[ψ]]S,ζ[X �→R] = true for all R ∈ Dn.
– If ϕ is of the form [X]ψ, then [[ϕ]]S,ζ = false iff ζ(X) represents a clash-free

update set Δ such that [[ψ]]S+Δ,ζ = false holds.

We can use the logic to define con(r,X) to express that X represents one of
the possible update sets generated by the rule r, and that X is clash-free. This
can be expressed in the logic by the formula con(r,X) ≡ upd(r,X)∧conUSet(X),
where

conUSet(X) ≡
∧

f∈Σ

∀x, y, z.X(cf , x, y) ∧ X(cf , x, z) → y = z.

Furthermore, in accordance with [15, Prop.7] we can use χ(r, r′) to express
that r′ subsumes r. This can be expressed in the logic by

χ(r, r′) ≡ {L′ �→ L}.[r′′]〈r〉(L = L′),

228 K.-D. Schewe

where L represents the common locations used by rules r and r′, L′ is a dis-
joint copy of L, and r′′ results from r′ by replacing all locations in L by the
corresponding ones in L′.

Proposition 3. Let A be an ASM with a rule of the form par r1 . . . rk endpar.
Then the rule of its GCS AI with respect to an invariant I can be written as

choose y1, . . . ,yk with
∧

1≤i≤k

ψi(yi) ∧ ∃Xi.con(r′
i(yi),Xi)

do par . . . r̂i(yi) . . . endpar enddo,

where r̂i(yi) is defined to be the rule

if
∧

j �=i

¬χ(r′
j(yj), r′

i(yi)) then r′
i(yi) else fail endif

using the GCSs with the rules riI of the form

choose yi with ψi(yi) do r′
i(yi) enddo.

For the proof, which we have to omit due to space and time restrictions,
we look again directly at Definitions 3 and 4. It is easy to see that the parallel
composition of GCSs riI defines a consistent specialisation, but in general not
the GCS. Conditions con(r′

i(yi),Xi) remove branches with clashes in update
sets, and conditions ¬χ(r′

j(yj), r′
i(yi)) discard parallel branches yielding update

sets that contain update sets from other branches.
Note that in Proposition 3 we assume that the GCSs riI of the rules ri have a

specific form. This is in accordance with Propositions 1, 2 and (inductively) 3 as
well as with the key result (see Theorem 1 in Sect. 4), on GCSs of assignments.

Example 4. Let us reconsider Examples 2 and 3. In the former case the parallel
composition of r1I and r2I leads to the rule

if f = ⊥ ∨ g(f) �= ⊥
then choose y do par f := a g(a) := b g(a) := y endpar enddo else
fail endif

Each parallel branch with y �= b defines only update sets that are not clash-
free. The requirement in Proposition 3 that there must exist a clash-free update
set removes these branches, so only the correct GCS remains.

In Example 3 the parallel composition of r1I and r2I leads to the rule

if f = ⊥ ∨ ∀y.g(f, y) �= f
then choose y do par f := a g(a, b) := a g(a, y) := a endpar enddo
else fail endif

Here a parallel branch with y �= b leads to update sets with an additional
update ((g, (a, y)), a), hence χ(r′(b), r′(y)) holds (using r′(y) as name for the
rules inside the par-block). Then the condition in Proposition 3 excludes such
branches, and we obtain the correct GCS.

Consistency Enforcement for Static First-Order Invariants 229

4 Compositionality with Respect to Sets of Invariants

Propositions 1, 2 and 3 allow us to build the GCS in a compositional way, pro-
vided the GCSs of assignments are known. We will address assignments in this
section. We will combine this directly with the treatment of sets of invariants.
Clearly, consistency with respect to such a set is equivalent to consistency with
respect to the conjunction of the invariants in the set, so the results of the
previous section can be preserved.

In [15, Prop.12] it could be shown that with the coarse notion of GCS defined
there compositionality with respect to conjunctions can be easily obtained. In
other words, a GCS with respect to a set of invariants can be built step-by-step
using the invariants in the set in arbitrary order. This does no longer hold in
our modernised and fine-grained case, as the following example shows.

Example 5. Consider two invariants I1 ≡ ∀x.p(x) ⇒ q(x) and I2 ≡ ∀x.p(x) ⇒
p(f(x)). Taking an ASM with a rule p(a) := true, its GCS with respect to I1 is
defined by the rule par p(a) := true q(a) := true endpar on states satisfying
I1. Building for this the GCS with respect to I2 gives a rule, which on states
satisfying I1 ∧ I2 takes the form par p(a) := true q(a) := true p(f(a)) := true
endpar, which is not the GCS with respect to I1 ∧ I2.

The reason for the discrepancy between Example 5 and the “old” theory in
[15] is again due to the changed treatment of locations. Using the theory in [15] p
and q would be state variables bound to unary relations, i.e. sets, and a GCS for
an assignment such as p(a) := true—in fact an insertion—cannot make further
changes to p, and only use preconditions to enforce I2.

Fortunately, there is away to deal simultaneously with several invariants
mutually influencing each other. This is inspired by the handling of rule trigger-
ing systems in [14]. We will adopt this theory here exploiting the fact that it is
only required for consistency enforcement for a single assignment. In fact, single
assignments are almost always repairable, unless the invariant contains a single
literal.

4.1 Clausal Form and Atomic Repairs

We assume that invariants I are first-order formulae, so we can write them in
prenex normal form

∀x1∃y1∀x2∃y2ϕ(x1,y1,x2,y2, . . .).

Then the existentially quantified variables can be replaced by Skolem functions
y1j = sk1j(x1), y2j = sk2j(x1, sk11(x1), . . . , sk1n1(x1),x2), etc.

We can further assume that the quantifier-free formula ϕ(x1,y1,x2,y2, . . .)
is written in conjunctive normal form, so it gives rise to a set of clauses, i.e.
disjunctions of literals ¬L1 ∨ ¬L2 ∨ · · · ∨ ¬Lk ∨ Lk+1 ∨ · · · ∨ Lk+� with the
variables xij and yij appearing in the atoms. Furthermore, atoms are simply
equations.

230 K.-D. Schewe

A violation of an invariant I is always linked to a violation of one of its
clauses, so we concentrate on the clauses. As in the relational case treated in
[14] we may define an atomic repair by means of a trigger. In case a positive
literal t1 or a negative literal ¬t2 is violated by an assignment changing the
value of either t1 or t2 and this leads to the whole clause to become false, we
can use another assignment making a positive literal t′1 �= t′2 to become true
or a negative literal ¬t′1 �= ¬t′2 become false. Any variable appearing in t1 or
t2 must also be bound to the same value in the triggered update, and all other
variables must be selected by embedding the assignment into a choose-rule.
Any such possibility defines an atomic repair rule comprising an event E, i.e. an
assignment rule leading to an invariant violation, a clause I that is violated, and
a repair R, which is an assignment embedded in a choice-rule. In analogy to rule
triggering system we write on E if ¬I do R for such an atomic repair rule.

Example 6. Let us consider a simple example adopted from [14, Ex.5] with three
clauses:

I1 ≡ ¬p(x) ∨ ¬r(x) ∨ q(x) I2 ≡ ¬q(x) ∨ p(x) I3 ≡ ¬p(x) ∨ r(x)

Then we obtain the following ten atomic repair rules:

R1 : on p(x) := true if ¬I1 do q(x) := true

R2 : on q(x) := false if ¬I1 do p(x) := false

R3 : on r(x) := true if ¬I1 do q(x) := true

R4 : on q(x) := false if ¬I1 do r(x) := false

R5 : on q(x) := true if ¬I2 do p(x) := true

R6 : on p(x) := false if ¬I2 do q(x) := false

R7 : on p(x) := true if ¬I3 do r(x) := true

R8 : on r(x) := false if ¬I3 do p(x) := false

R9 : on p(x) := true if ¬I1 do r(x) := false

R10 : on r(x) := true if ¬I1 do p(x) := false

It is easy to see that all possible atomic repair rules—assuming a single
assignment causing a violation—can be derived from a clause, the on-part refers
to the violating assignment, the if -part is the negation of the clause, and the
do-part is an assignment corresponding to another literal in the clause, by means
of which the violation would be disabled.

A set of atomic repair rules is said to be complete for an assignment rule r iff
for every possible violation of an invariant clause I defined by a set of invariants
there is at least one atomic repair rule with event r and clause I, and the same
holds for all assignment rules appearing as repair in at least one atomic repair
rule. A complete set of repair rules for r defines a sequential ASM rule, which
we call a complete repair and denote as rrep.

Consistency Enforcement for Static First-Order Invariants 231

4.2 Critical Paths

We will now provide the means to reduce a system of atomic repair rules in such
a way that we can obtain a GCS. For this we adapt the notions of rule graph
and critical trigger path.

Definition 6. Let Σ be a signature and R a set of atomic repair rules on Σ.
Then the associated rule graph (V,E) is defined as follows:

– The set V of vertices is the disjoint union of Σ and R. We then talk of
Σ-vertices and R-vertices, respectively.

– If R ∈ R has event E affecting a location of p ∈ Σ and a repair on q ∈ Σ,
then we have an edge from p to R labelled by + or − depending on E leading
to a violation of a negative or a positive literal, respectively, and an edge
from R to q analogously labelled by + or − depending on whether the repair
assignment on a q-location refers to a positive or negative literal.

Definition 7. Let (V,E) be the rule graph associated with a system R of atomic
repair rules. A trigger path is a sequence v0, e1, v

′
1, e

′
1, . . . , e

′
�, v� of vertices and

edges such that vi ∈ Σ for all i = 0, . . . , �, v′
i ∈ R holds for all i = 1, . . . , �, ei is

an edge from vi−1 to v′
i, and e′

i is an edge from v′
i to vi with the same label as

ei+1.

For a trigger path assign to each vertex vi ∈ Σ a formula ϕi that is the
negation of a clause such that the following conditions hold:

(i) ϕi implies the negation of the clause associated with v′
i+1;

(ii) the application of the repair in v′
i+1 will lead to a state satisfying ϕi+1.

Definition 8. A trigger path v0, e1, v
′
1, e

′
1, . . . , e

′
�, v� is critical iff it has maxi-

mum length and |= ¬(ϕ0 ∨ ϕ�) holds.

Intuitively, a critical trigger path corresponds to a sequence of applications
of atomic repair rules, each initialised by a violation of a clause, which finally
lead to a state, where the intended update is undone. Thus, such trigger paths
cannot define an extension of a repairable update set.

Proposition 4. Let S be a consistent state with respect to a given set of invari-
ants, let r be an assignment affecting a location with function symbol p ∈ Σ, and
assume S + Δr(S) |= ϕ0, where ϕ0 is a conjunction of literals. Then for a com-
plete repair rrep the sequence r; rrep is a consistent specialisation with respect to
the conjunction of the given invariants iff there is no critical trigger path starting
with a vertex p labelled by ϕ0.

The proof, which we cannot present here, basically follows the arguments
used in the proof of [14, Prop.4]. If there were such a critical trigger path, it
would lead to a state, in which one of the updates in Δr(S) would be discarded,
which is contained in the definition of a critical trigger path. Conversely, if there
is no such trigger path, rrep will lead to a state satisfying ϕ�.

232 K.-D. Schewe

4.3 Locally Stratified Sets of Invariants

We now look for sufficient and necessary conditions on the set of clauses derived
from a set of invariants that will allow us to obtain a complete repair satisfying
the conditions in Proposition 4, i.e. the absence of critical paths. The intuition
behind this procedure is that non-critical trigger paths give rise to cumula-
tive updates, by means of which a repairable update set can be extended to
achieve consistency, whereas critical trigger paths would undo some of the given
updates. A complete repair then defines a consistent specialisation as shown by
Proposition 4.

Definition 9. Let C be a set of clauses on Σ derived from a set of invariants.
Then C is called stratified iff there is a partition C = C1 ∪ . . .∪Cn with pairwise
disjoint sets of clauses Ci called strata such that the following conditions are
satisfied:

(i) If L is a negative (or positive, respectively) literal of some clause c ∈ Ci,
then all clauses c′ ∈ C containing a positive (or negative, respectively) literal
L′ such that L and L′ are unifiable also lie in stratum Ci.

(ii) All clauses c, c′ containing unifiable literals L and L′ either both positive or
both negative must lie in different strata.

Stratified sets of clauses give rise to complete repairs without critical trigger
paths.

Proposition 5. Let C be a set of clauses on Σ derived from a set of invariants,
and assume that C is stratified. Then there exists a complete repair rrep such that
the sequence r; rrep is a consistent specialisation with respect to the conjunction
of the given invariants.

For the proof, which we omit again due to space and time restrictions, we
construct the set of all atomic repair rules from C. Then assume the existence of
a critical trigger path initiated by r, i.e. r affects a location with function symbol
p ∈ Σ, S+Δr(S) |= ϕ0 holds for a conjunction of literals, and the critical trigger
path starting with a vertex p labelled by ϕ0. Then ϕ0 and ϕ� must contain a
literal and its negation, respectively, and the corresponding rules must involve
clauses in different strata, which leads to a contradiction.

Stratified sets of invariant clauses are sufficient for the construction of con-
sistent specialisation, and stratification can be checked effectively and efficiently
(see Algorithm 8 and Propositions 9 and 10 in [14]), but stratification is no nec-
essary condition. We will now look at the weaker notion of local stratification,
which will give us also a necessary condition.

Definition 10. Let C be a set of clauses on Σ derived from a set of invariants.
A labelled subsystem consists of a literal L (the label), a subset C ′ = {c ∈ C |
ρL(c) is defined}, and a set of clauses C ′′ = {ρL(c) | c ∈ C ′} such that each
clause c ∈ C ′ can be written as the disjunction ρL(c) ∨ c′ with |= c′ ⇒ L.

Consistency Enforcement for Static First-Order Invariants 233

Here ρL(c) is defined iff the negation ∼L does not occur in the clause c. Then
ρL(c) results from c by omission of the literal L, if the result contains at least
two literals. Otherwise ρL(c) is simply c. We call c′ the label part and ρL(c) the
label-free part of the clause c. If L is understood from the context, we drop the
subscript and write ρ instead of ρL.

A labelled subsystem (C ′, C ′′, L) is called stratified iff the set C ′′ is stratified
in the sense of Definition 9 or locally stratified as defined below.

Definition 11. Let C be a set of clauses on Σ derived from a set of invariants.
Then C is called locally stratified iff C = C ′

1 ∪ · · · ∪ C ′
n with stratified labelled

subsystems (C ′
i, C

′′
i , Li) (i = 1, . . . , n) such that for each clause c ∈ C ′

i and each
literal L occurring in its label part with respect to Ci there exists another j with
c ∈ C ′

j and L occurring in its label-free part of c with respect to Cj .

Proposition 6. Let C be a set of clauses on Σ derived from a set of invari-
ants. Then there exists a complete repair rrep such that the sequence r; rrep is a
consistent specialisation with respect to the conjunction of the given invariants
iff C is locally stratified.

For the proof of sufficiency we can proceed analogously to the proof of
Proposition 5, i.e. we take the local strata to define sets of atomic repair rules
and build the union of these. Then the assumption of a critical trigger path leads
again to a contradiction to the set of clauses being locally stratified.

Conversely, if we have a consistent specialisation r; rrep Proposition 4 implies
the absence of critical trigger paths. From this it is possible to construct a local
stratification (see also the proof of [14, Thm.12].

Example 7. Reconsider the invariants in Example 6. It is easy to see that this
set is locally stratified leading to the atomic repair rules in the example without
R9 and R10.

Finally, we can obtain the GCS of an assignment r by a choice between
all possible complete repairs defined by local stratifications of the given set of
invariants.

Theorem 1. Let C be a locally stratified set of clauses on Σ derived from a
set of invariants. Then the GCS of an assignment r with respect to the set of
invariants is defined by the sequence r; rep, where rep is defined by the choice
among all complete repairs rrep defined by different local stratifications of C.

5 Conclusion

In this paper we picked up the 20 year old theory of greatest consistent spe-
cialisation for consistency enforcement with respect to static invariants. We
generalised the definition in the context of sequential Abstract State Machines
with finer grained locations and bounded parallelism. Then we obtained gen-
eralised compositionality results with respect to the composition of ASM rules

234 K.-D. Schewe

and sets of invariants. The new theory supports the systematic construction of
consistent specifications, which is not bound to ASMs.

However, we still excluded unbounded parallelism from our investigation.
Extending the theory in this direction is an open, non-trivial task for continued
research. We also emphasised only invariants expressed in first-order logic as well
as only static invariants, though this covers the vast majority of specifications
using state-based rigorous methods. Nonetheless, extensions to more complex
invariants as well as a theory for transition or general dynamic invariants would
make sense. For instance, in [6] the importance of higher-order logic constructs
in formal methods was emphasised. Furthermore, in a database context many
classes of static constraints have been studied [17]. These give rise to important
classes of static invariants that could be used to derive a catalogue of GCSs for
them, and this could be further extended to classes of invariants in other contexts
giving even more support for the construction of consistent specifications.

References

1. Abrial, J.-R.: The B-Book - Assigning Programs to Meanings. Cambridge Univer-
sity Press, Cambridge (2005)

2. Börger, E., Schewe, K.-D.: A behavioural theory of recursive algorithms (2019).
Submitted for publication

3. Börger, E., Stärk, R.: Abstract State Machines. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-642-18216-7

4. Cai, C., Sun, J., Dobbie, G.: B-repair: repairing B-models using machine learning.
In: 23rd International Conference on Engineering of Complex Computer Systems
(ICECCS 2018), pp. 31–40. IEEE Computer Society (2018)

5. Dijkstra, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics. Texts
and Monographs in Computer Science. Springer, New York (1990). https://doi.
org/10.1007/978-1-4612-3228-5

6. Ferrarotti, F., González, S., Schewe, K.-D., Turull-Torres, J.M.: Systematic refine-
ment of abstract state machines with higher-order logic. In: Butler, M., Raschke,
A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 204–218.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91271-4 14

7. Ferrarotti, F., Schewe, K.-D., Tec, L., Wang, Q.: A new thesis concerning syn-
chronised parallel computing - simplified parallel ASM thesis. Theor. Comput. Sci.
649, 25–53 (2016)

8. Ferrarotti, F., Schewe, K.-D., Tec, L., Wang, Q.: A complete logic for database
abstract state machines. Log. J. IGPL 25(5), 700–740 (2017)

9. Ferrarotti, F., Schewe, K.-D., Tec, L., Wang, Q.: A unifying logic for non-
deterministic, parallel and concurrent abstract state machines. Ann. Math. Artif.
Intell. 83(3–4), 321–349 (2018)

10. Gurevich, Y.: Sequential abstract state machines capture sequential algorithms.
ACM Trans. Comput. Logic 1(1), 77–111 (2000)

11. Link, S., Schewe, K.-D.: Towards an arithmetic theory of consistency enforcement
based on preservation of delta-constraints. Electr. Notes Theor. Comput. Sci. 61,
64–83 (2002)

12. Nelson, G.: A generalization of Dijkstra’s calculus. ACM Trans. Program. Lang.
Syst. 11(4), 517–561 (1989)

https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-1-4612-3228-5
https://doi.org/10.1007/978-1-4612-3228-5
https://doi.org/10.1007/978-3-319-91271-4_14

Consistency Enforcement for Static First-Order Invariants 235

13. Schewe, K.-D.: Consistency enforcement in Entity-Relationship and object-oriented
models. Data Knowl. Eng. 28(1), 121–140 (1998)

14. Schewe, K.-D., Thalheim, B.: Limitations of rule triggering systems for integrity
maintenance in the context of transition specifications. Acta Cybern. 13(3), 277–
304 (1998)

15. Schewe, K.-D., Thalheim, B.: Towards a theory of consistency enforcement. Acta
Inf. 36(2), 97–141 (1999)

16. Schmidt, J., Krings, S., Leuschel, M.: Repair and generation of formal models using
synthesis. In: Furia, C.A., Winter, K. (eds.) IFM 2018. LNCS, vol. 11023, pp. 346–
366. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98938-9 20

17. Thalheim, B.: Dependencies in Relational Databases. Springer, Wiesbaden (1991).
https://doi.org/10.1007/978-3-663-12018-6

https://doi.org/10.1007/978-3-319-98938-9_20
https://doi.org/10.1007/978-3-663-12018-6

	Consistency Enforcement for Static First-Order Invariants in Sequential Abstract State Machines
	1 Introduction
	2 Consistent Specialisations
	2.1 Sequential Abstract State Machines
	2.2 Greatest Consistent Specialisations

	3 Compositionality with Respect to Rule Composition
	3.1 Branching and Choice
	3.2 Bounded Parallelism

	4 Compositionality with Respect to Sets of Invariants
	4.1 Clausal Form and Atomic Repairs
	4.2 Critical Paths
	4.3 Locally Stratified Sets of Invariants

	5 Conclusion
	References

