Yamine Ait-Ameur
Shengchao Qin (Eds.)

Formal Methods
and Software Engineering

21st International Conference
on Formal Engineering Methods, ICFEM 2019
Shenzhen, China, November 5-9, 2019, Proceedings

LNCS 11852

@ Springer

Lecture Notes in Computer Science

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino

Purdue University, West Lafayette, IN, USA
Wen Gao

Peking University, Beijing, China
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Gerhard Woeginger

RWTH Aachen, Aachen, Germany
Moti Yung

Columbia University, New York, NY, USA

11852

https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Yamine Ait-Ameur - Shengchao Qin (Eds.)

Formal Methods
and Software Engineering

21st International Conference

on Formal Engineering Methods, ICFEM 2019
Shenzhen, China, November 5-9, 2019
Proceedings

@ Springer

Editors

Yamine Ait-Ameur Shengchao Qin
IRIT/INPT - ENSEEIHT Teesside University
Toulouse, France Middlesbrough, UK
ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science

ISBN 978-3-030-32408-7 ISBN 978-3-030-32409-4 (eBook)

https://doi.org/10.1007/978-3-030-32409-4
LNCS Sublibrary: SL2 — Programming and Software Engineering

© Springer Nature Switzerland AG 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-4582-9712
https://orcid.org/0000-0003-3028-8191
https://doi.org/10.1007/978-3-030-32409-4

Preface

The International Conference on Formal Engineering Methods (ICFEM) gathers
researchers and practitioners interested in the recent progress in the use and
development of formal engineering methods for software and system design. It records
the latest development in formal engineering methods.

The 21st edition of ICFEM took place in Shenzhen, China during November 5-9,
2019. ICFEM 2019 received 94 submissions covering theory and applications of formal
engineering methods together with case studies. Each paper was reviewed by at least
three reviewers and the Program Committee accepted 28 long papers leading to an
attractive scientific program.

ICFEM 2019 was marked by the presence of four keynote speakers. The first two
talks dealt with machine learning techniques. Yang Liu from Nanyang Technological
University, Singapore gave a talk entitled “Secure Deep Learning Engineering: a Road
towards Quality Assurance of Intelligent Systems.” The second talk, entitled
“Probabilistic Programming for Bayesian Machine Learning,” was given by Luke Ong
from Oxford University, United Kingdom. Zhendong Su, from the Swiss Federal
Institute of Technology Zurich, Switzerland, gave a talk entitled “Specification-less
Semantic Bug Detection” addressing rigorous software bug detection. Finally, with his
talk entitled “Taming Delays in Cyber-Physical Systems,” Naijun Zhan from the state
key laboratory of Computer Science of the Chinese Academy of Sciences, China
addressed formal engineering of Cyber-Physical Systems. The four talks covered
current hot research topics. In addition to the mentioned obtained results, these talks
revealed many research directions.

After the success of the doctoral symposium of the previous edition, ICFEM 2019
decided to host it again. The doctoral symposium Program Committee chaired by Yi Li
from Nanyang Technological University, Singapore and Xin Peng from Fudan
University, China accepted eight doctoral papers to be included in the ICFEM 2019
proceedings.

ICFEM 2019 would not have been successful without the deep investment and
involvement of the Program Committee members and the external reviewers who
contributed by reviewing (with more than 260 reviews) and selecting the best
contributions. This event would not exist if authors and contributors did not submit
their proposals. We address our thanks to every person, reviewer, author, Program
Committee member, and Organization Committee member involved in the success of
ICFEM 2019.

The EasyChair system was set up for the management of ICFEM 2019, supporting
submission, review, and volume preparation processes. It proved to be a powerful
framework.

ICFEM 2019 had three affiliated workshops: the 9th International Workshop on
SOFL+MSVL for Reliability and Security (SOFL+MSVL 2019), the 7th International
Workshop on Formal Techniques for Safety-Critical Systems (FTSCS 2019), and the

vi Preface

first International Workshop on Artificial Intelligence and Formal Methods (AI&FM
2019). These workshops brought in additional participants to the ICFEM week and
helped make it an interesting and successful event. We thank all the workshop
organizers and authors for their hard work.

ICFEM 2019 was hosted and sponsored by Shenzhen University, China. The local
Organization Committee offered all the facilities to run the conference in a lovely and
friendly atmosphere. Many thanks to all the local organizers.

Lastly, we wish to express our special thanks to the general co-chairs Jifeng He and
Zhong Ming, and to the Steering Committee members in particular Shaoying Liu and
Jin Song Dong for their valuable support.

November 2019 Yamine Ait-Ameur
Shengchao Qin

Program Committee

Bernhard K. Aichernig
Yamine Ait Ameur
Etienne André
Christian Attiogbe
Guangdong Bai
Christel Baier
Richard Banach
Luis Barbosa
Michael Butler
Franck Cassez
Ana Cavalcanti
Yuting Chen
Zhenbang Chen
Wei-Ngan Chin
Sylvain Conchon
Florin Craciun
Frank De Boer
Yuxin Deng

Jin Song Dong
Zhenhua Duan
Marc Frappier
Stefania Gnesi
Lindsay Groves
Ichiro Hasuo
Xudong He
Fuyuki Ishikawa
Jie-Hong Roland Jiang
Fabrice Kordon
Mark Lawford
Michael Leuschel
Xuandong Li

Yi Li

Yuan-Fang Li
Shaoying Liu
Shuang Liu

Yang Liu
Zhiming Liu
Brendan Mahony

Organization

TU Graz, Austria

IRIT/INPT-ENSEEIHT, France

Université Paris 13, LIPN, CNRS, UMR 7030, France
University of Nantes, France

Griffith University, Australia

TU Dresden, Germany

The University of Manchester, UK

University of Minho, Portugal

University of Southampton, UK

Macquarie University, Australia

University of York, UK

Shanghai Jiao Tong University, China

National University of Defense Technology, China
National University of Singapore, Singapore
Université Paris-Sud, France

Babes-Bolyai University Cluj, Romania

CWI, The Netherlands

East China Normal University, China

National University of Singapore, Singapore
Institute of Computing Theory and Technology, China
Université de Sherbrooke, Canada

ISTI-CNR, Italy

Victoria University of Wellington, New Zealand
National Institute of Informatics, Japan

Florida International University, USA

National Institute of Informatics, Japan

National Taiwan University, Taiwan
LIP6/Sorbonne Université, CNRS, France
McMaster University, Canada

University of Diisseldorf, Germany

Nanjing University, China

Nanyang Technological University, Singapore
Monash University, Australia

Hosei University, Japan

Singapore Institute of Technology, Singapore
Nanyang Technological University, Singapore
Southwest University, China

Defence Science and Technology Group, Australia

viii Organization

Jim McCarthy
Dominique Mery
Stephan Merz
Mohammadreza Mousavi
Cesar Munoz
Shin Nakajima
Jun Pang

Yu Pei

Xin Peng
Geguang Pu
Shengchao Qin
Silvio Ranise
Elvinia Riccobene
Adrian Riesco
Klaus-Dieter Schewe
Jing Sun

Jun Sun

Meng Sun

Cong Tian

Elena Troubitsyna
Jaco van de Pol
Hai H. Wang
Virginie Wiels
Zhiwu Xu

Naijun Zhan

Jian Zhang
Huibiao Zhu
Peter Olveczky

Additional Reviewers

An, Jie

Araujo, Hugo
Basile, Davide
Borde, Etienne
Bournat, Marjorie
Braghin, Chiara
Bu, Lei

Cai, Chenghao
Cheng, Zheng
Chien, Po-Chun
Chondamrongkul, Nacha
Ciancia, Vincenzo
Ciobanu, Gabriel

Defence Science and Technology Group, Australia

Université de Lorraine, Loria, France
Inria Nancy, France

University of Leicester, UK

NASA, USA

National Institute of Informatics, Japan
University of Luxembourg, Luxembourg

The Hong Kong Polytechnic University, SAR China

Fudan University, China

East China Normal University, China
Teesside University, UK

FBK-Irst, Italy

University of Milan, Italy

Universidad Complutense de Madrid, Spain
Zhejiang University, China

The University of Auckland, New Zealand
Singapore Management University, Singapore
Peking University, China

Xidian University, China

KTH Royal Institute of Technology, Sweden
Aarhus University, Denmark

University of Aston, UK

ONERA/DTIM, France

Shenzhen University, China

Chinese Academy of Sciences, China
Chinese Academy of Sciences, China

East China Normal University, China
University of Oslo, Norway

Dima, Catélin
Dong, Yunwei
Dong, Zhijiang
Du, Dehui

Feliu Gabaldon, Marco Antonio
Ferrarotti, Flavio
Gazda, Maciej
Gonzalez, Senén
Guan, Ji

H. Pham, Long
He, Chunhui

He, Mengda
Hiep, Hans Dieter

Laarman, Alfons

Li, Jiaying

Liyun, Dai

Ma, Feifei

Masci, Paolo

Miao, Weikai
Monin, Jean-Francois
Omitola, Tope

Safey El Din, Mohab
Shi, Ling

Song, Yahui

Sun, Weidi

Tang, Enyi

Vandin, Andrea

Vistbakka, Inna
Waga, Masaki
Wang, Fan
Wang, Qing
Wang, Shuling
Yu, Nengkun
Zhan, Bohua
Zhang, Yuanrui
Zhang, Yueling
Zhao, Hengjun
Zhao, Liang
Zhao, Yongxin
Zuo, Zhigiang

Organization

ix

Abstracts of Invited Talks

Probabilistic Programming for Bayesian
Machine Learning

Luke Ong

University of Oxford
Luke.Ong@cs.ox.ac.uk

Abstract. Probabilistic programming is a general-purpose means of expressing
probabilistic models as computer programs, and automatically performing
Bayesian inference such as posterior probability and marginalisation. By
providing implementations of these generic inference algorithms, probabilistic
programming systems enable data scientists and domain experts to focus on
what they can do best, i.e., utilising their domain knowledge to design good
models; the task of constructing efficient inference engines can be left to
researchers with expertise in statistical machine learning and programming
languages. By promoting the separation between model construction and
inference procedures, probabilistic programming can democratise access to
Bayesian machine learning, with potentially huge benefits to Al and scientific
modelling. Because of their generality, probabilistic programming poses inter-
esting and challenging research problems for (both pragmatic and semantic
aspects of) programming languages, Bayesian statistics, and machine learning.

In this talk I will introduce probabilistic programming for Bayesian machine
learning as a general concept, and explain a number of research directions
unique to probabilistic programming.

Specification-Less Semantic Bug Detection

Zhendong Su

Swiss Federal Institute of Technology — ETHZ, Zurich, Switzerland
zhendong.su@inf.ethz.ch

Abstract. The lack of specifications has been the most difficult practical and
technical obstacle to software reliability. Without detailed application-specific
properties, one cannot utilize formal verification and is confined to detecting
generic bugs such as program crashes and memory safety violations, rather than
deeper semantic bugs. Breaking this paradoxical impasse is very difficult, and
impossible in general. This talk shows how to mitigate it via effective techniques
for constructing tests with expected results, thus tackling both test and oracle
generation. It illustrates this view with recent successful attacks on difficult
testing and analysis problems from diverse domains, ranging from compilers,
database engines, to deep learning systems. The talk discusses

1. the high-level principles and core techniques,

2. their significant practical successes—hundreds and thousands of confirmed/
fixed bugs in the most widely-used software, and

3. future opportunities and challenges.

Taming Delays in Cyber-Physical Systems

Naijun Zhan

State Key Lab. of Comput. Sci., Institute of Software, CAS
znj@ios.ac.cn

Extended Abstract

Historical motivation (predating digital control):

“Despite [...] very satisfactory state of affairs as far as [ordinary]
differential equations are concerned, we are nevertheless forced to turn to
the study of more complex equations. Detailed studies of the real world
impel us, albeit reluctantly, to take account of the fact that the rate of change
of physical systems depends not only on their present state, but also on their
past history.”

[Richard Bellman and Kenneth L. Cooke, 1963, see [1]]

Conventional embedded systems have over the past two decades vividly evolved
into an open, interconnected form that integrates capabilities of computing, commu-
nication and control, thereby triggering yet another round of global revolution of the
information technology. This form, now known as cyber-physical systems (CPS), has
witnessed an increasing number of safety-critical systems particularly in major scien-
tific projects vital to people’s livelihood. Prominent examples include automotive
electronics, health care, nuclear reactors, high-speed trains, aircrafts, spacecrafts, etc.,
in which a malfunction of any software or hardware component would potentially lead
to catastrophic consequences. Meanwhile with the rapid development of feedback
control, sensor techniques and computer control, time delays have become an essential
feature underlying both the continuous evolution of physical plants and the discrete
transition of computer programs, which may well annihilate the stability/safety
certificate and control performance of embedded systems. Traditional engineering
methods, e.g., testing and simulations, are nevertheless argued insufficient for the
zero-tolerance of failures incurred in time-delayed systems in a safety-critical context.
Therefore, how to rigorously verify and design reliable safety-critical embedded sys-
tems involving delays tends to be a grand challenge in computer science and the control
community.

In contrast to delay-free systems, time-delayed systems yield substantially higher
theoretical complexity thus rendering the underlying design and verification tasks
exceedingly harder, e.g., unlike Ordinary Differential Equations (ODEs) being

This work is partly funded by NSFC under grant No. 61625206 and 61732001.

Xvi N. Zhan

Markovian process, Delay Differential Equations (DDEs) turn out to be
non-Markovian, heavily depending on their execution histories, and consequently any
solution to a DDE is an infinite dimensional functional, rather than a point in the
n-dimensional Hilbert space like ODE’s. The major problems that we faced include the
formal verification and controller synthesis of time-delayed, networked hybrid systems.

Though time delays have been extensively studied in the literature of mathematics
and control theory from a qualitative perspective, automatic verification and synthesis
methods addressing feedback delays in hybrid discrete-continuous systems are still in
their infancy. In this extended abstract, we summarize our recent efforts towards the
above issues, including

— Firstly, we will discuss how to synthesize controllers for time-delayed discrete
systems, based on the work in [3]. The basic idea is to reduce the controller
synthesis problem to a two-player delay safety game, further to a two-player
delay-free safety game with memory. Based on the reduction, an efficient incre-
mental synthesis algorithm is presented. According to the work in [4], we further
discuss generalized settings of controller synthesis where messages may arrive out
of order or even get lost, and show —on top of the incremental synthesis— the
equivalence of qualitative controllability over these settings.

— Then, we discuss bounded reachability analysis of DDEs, mainly focusing on two
approaches: the first one is to extend the technique of simulation plus sensitivity
analysis for ODEs [6] to DDEs [2]; the other is to extend the set-boundary
reachability analysis methods for ODEs [8] to DDEs [7].

— Finally, we discuss unbounded verification of DDEs, mainly focusing on the
following two approaches: the first one is to deal with DDEs of the form

d
Sx(t) = £t -)

by exploiting interval Taylor models and stability analysis. The basic idea can be
sketched as follows:

1. predefine a parametric interval polynomial containing all possible solutions of the
DDE on the given segment,

2. derive an operator between the paramenters of the solution on the previous segment
and the ones on the next segment, forming a time-invariant discrete dynamical
system,

3. exploit the stability analysis of the resulted time-invariant dynamical system, thus
reducing the safety verification and stability analysis to bounded cases.

The detail can be found in [9]; the other approach is to deal with the general DDEs

of the form

%x(t) = f(x(2),x(t — 01),...,x(t = J,))

by using linearisation and spectral analysis. The reader can refer to [5] for the
detail. The basic idea can be sketched as follows:

Taming Delays in Cyber-Physical Systems xvii

1. linearise a non-linear DDE,
2. exploit spectral analysis to obtain the stability of the linear part,
3. reduce unbounded verification and analysis to bounded case.

Finally, we will also discuss trends and challenges in the formal verification and
synthesis of time-delayed systems.

Acknowledgements. First of all, I thank Mingshuai Chen and Bai Xue for their useful
comments on the early version of the manuscript which improve the presentation so
much.

I would like to take this opportunity to thank all collaborators involved in this research,
including Martin Frinzle, Bai Xue, Liang Zou, Mingshuai Chen, Peter Nazier Mosaad, Yangjia
Li, Shenghua Feng, etc.

References

1. Bellman, R., Cooke, K.L.: Differential-difference equations. Technical report R-374-PR,
The RAND Corporation, Santa Monica, California, January 1963

2. Chen, M., Frianzle, M., Li, Y., Mosaad, P.N., Zhan, N.: Validated simulation-based verifi-
cation of delayed differential dynamics. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou,
A. (eds.) FM 2016. LNCS, vol. 9995, pp 137-154. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-48989-6_9

3. Chen, M., Frinzle, M., Li, Y., Mosaad, P.N., Zhan, N.: What’s to come is still unsure -
synthesizing controllers resilient to delayed interaction. In: Lahiri, S., Wang, C. (eds.) ATVA
2018. LNCS, vol. 11138, pp. 56-74. Springer, Cham (2018).https://doi.org/10.1007/978-3-
319-48989-6_9

4. Chen, M., Frénzle, M., Li, Y., Mosaad, P.N., Zhan, N.: Indecision and delays are the parents
of failure: taming them algorithmically by synthesizing delay-resilient control. Acta Infor-
matica (2019). Under minor revision

5. Feng, S., Chen, M., Zhan, N., Frinzle, M., Xue, B.: Taming delays in dynamical systems:
unbounded verification of delay differential equations. In: Dillig, I., Tasiran, S. (eds.) CAV
2019. LNCS, vol. 11561, pp. 650-669. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-25540-4_37

6. Nahhal, T., Dang, T.: Test coverage for continuous and hybrid systems. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 449—462. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-73368-3_47

7. Xue, B., Mosaad, P.N., Frinzle, M., Chen, M., Li, Y., Zhan, N.: Safe over- and
under-approximation of reachable sets for delay differential equations. In: Abate, A.,
Geeraerts, G. (eds.) FORMATS 2017. LNCS, vol. 10419, pp. 281-299. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-65765-3_16

8. Xue, B., She, Z., Easwaran, A.: Under-approximating backward reachable sets by polytopes.
In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 457-476. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-41528-4_25

9. Zou, L., Frianzle, M., Zhan, N., Mosaad, P.N.: Automatic verification of stability and safety
for delay differential equations. In: Kroening, D., Pasdreanu, C. (eds.) CAV 2015. LNCS,
vol. 9207, pp. 338-355. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21668-3_20

http://dx.doi.org/10.1007/978-3-319-48989-6_9
http://dx.doi.org/10.1007/978-3-319-48989-6_9
http://dx.doi.org/10.1007/978-3-319-48989-6_9
http://dx.doi.org/10.1007/978-3-319-48989-6_9
http://dx.doi.org/10.1007/978-3-030-25540-4_37
http://dx.doi.org/10.1007/978-3-030-25540-4_37
http://dx.doi.org/10.1007/978-3-540-73368-3_47
http://dx.doi.org/10.1007/978-3-540-73368-3_47
http://dx.doi.org/10.1007/978-3-319-65765-3_16
http://dx.doi.org/10.1007/978-3-319-41528-4_25
http://dx.doi.org/10.1007/978-3-319-21668-3_20

Secure Deep Learning
Engineering: A Road Towards Quality
Assurance of Intelligent Systems

Yang Liu

Nanyang Technological University, Singapore, Singapore
yvangliu@ntu.edu.sg

Abstract. Over the past decades, deep learning (DL) systems have achieved
tremendous success and gained great popularity in various applications, such as
intelligent machines, image processing, speech processing, and medical diag-
nostics. Deep neural networks are the key driving force behind its recent suc-
cess, but still seem to be a magic black box lacking interpretability and
understanding. This brings up many open safety and security issues with
enormous and urgent demands on rigorous methodologies and engineering
practice for quality enhancement. A plethora of studies have shown that
state-of-the-art DL systems suffer from defects and vulnerabilities that can lead
to severe loss and tragedies, especially when applied to real-world safety-critical
applications.

In this paper, we perform a large-scale study and construct a paper repository
of 223 relevant works to the quality assurance, security, and interpretation of
deep learning. Based on this, we, from a software quality assurance perspective,
pinpoint challenges and future opportunities to facilitate drawing the attention
of the software engineering community towards addressing the pressing
industrial demand of secure intelligent systems.

Contents

Invited Talk

Secure Deep Learning Engineering: A Road Towards Quality
Assurance of Intelligent Systems. 3
Yang Liu, Lei Ma, and Jianjun Zhao

Regular Papers

Using DimSpec for Bounded and Unbounded Software Model Checking. . . . 19
Marko Kleine Biining, Tomads Balyo, and Carsten Sinz

SMTBCEF: Efficient Backbone Computing for SMT Formulas 36
Yueling Zhang, Geguang Pu, and Min Zhang

Automatic Verification for Node-Based Visual Script Notation
Using Model Checking 52
Isamu Hasegawa and Tomoyuki Yokogawa

A Reo Model of Software Defined Networks 69
Hui Feng, Farhad Arbab, and Marcello Bonsangue

Design of Point-and-Click User Interfaces for Proof Assistants 86
Bohua Zhan, Zhenyan Ji, Wenfan Zhou, Chaozhu Xiang, Jie Hou,
and Wenhui Sun

SqlSol: An accurate SQL Query Synthesizer. 104
Lin Cheng

Towards Verifying Ethereum Smart Contracts at Intermediate

Language Level 121
Ximeng Li, Zhiping Shi, Qianying Zhang, Guohui Wang, Yong Guan,
and Ning Han

Simulations for Multi-Agent Systems with Imperfect Information 138
Patrick Gardy and Yuxin Deng

On the Generation of Equational Dynamic Logics for Weighted

Imperative Programs 154
Leandro Gomes, Alexandre Madeira, Manisha Jain,
and Luis S. Barbosa

A Security Calculus for Wireless Networks of Named Data Networking 170
Yuan Fei, Huibiao Zhu, Haiying Sun, and Jiaqi Yin

XX Contents

Automatic Modularization of Large Programs for Bounded
Model Checking 186
Marko Kleine Biining and Carsten Sinz

PDNet: A Programming Language for Software-Defined Networks
with VLAN .. 203
Shuangqing Xiang, Marcello Bonsangue, and Huibiao Zhu

Consistency Enforcement for Static First-Order Invariants in Sequential
Abstract State Machines. L 219
Klaus-Dieter Schewe

Probably Approximate Safety Verification of Hybrid Dynamical Systems. ... 236
Bai Xue, Martin Frénzle, Hengjun Zhao, Naijun Zhan,
and Arvind Easwaran

A Formally Verified Algebraic Approach for Dynamic Reliability
Block Diagrams 253
Yassmeen Elderhalli, Osman Hasan, and Sofiene Tahar

Reasoning About Universal Cubes in MCMT. 270
Sylvain Conchon and Mattias Roux

sCompile: Critical Path Identification and Analysis for Smart Contracts. 286
Jialiang Chang, Bo Gao, Hao Xiao, Jun Sun, Yan Cai, and Zijiang Yang

A Mechanized Theory of Program Refinement 305
Boubacar Demba Sall, Fréderic Peschanski, and Emmanuel Chailloux

A Relational Static Semantics for Call Graph Construction. 322
Xilong Zhuo and Chenyi Zhang

Solution Enumeration Abstraction: A Modeling Idiom to Enhance
a Lightweight Formal Method. 336
Allison Sullivan, Darko Marinov, and Sarfraz Khurshid

Formal Analysis of Qualitative Long-Term Behaviour in Parametrised

Boolean Networks. e 353
Nikola Benes, Lubos Brim, Samuel Pastva, Jakub Polacek,
and David Safrdnek

Combining Parallel Emptiness Checks with Partial Order Reductions. 370

Denis Poitrenaud and Etienne Renault

A Coalgebraic Semantics Framework for Quantum Systems. 387
Ai Liu and Meng Sun

Contents XXi

Parameterized Hardware Verification Through a Term-Level Generalized
Symbolic Trajectory Evaluation 403
Yongjian Li and Bow-yaw Wang

An Axiomatisation of the Probabilistic u-Calculus. 420
Junnan Xu, Wanwei Liu, David N. Jansen, and Lijun Zhang

Synthesizing Nested Ranking Functions for Loop Programs via SVM 438
Yi Li, Xuechao Sun, Yong Li, Andrea Turrini, and Lijun Zhang

A First Step in the Translation of Alloyto Coq 455
Salwa Souaf and Frédéric Loulergue

Assessment of a Formal Requirements Modeling Approach

on a Transportation Systemt 470
Steve Jeffrey Tueno Fotso, Régine Laleau, Marc Frappier,
Amel Mammar, Francois Thibodeau, and Mama Nsangou Mouchili

Doctoral Symposium Papers

Design Model Repair with Formal Verification. 489
Cheng-Hao Cai, Jing Sun, and Gillian Dobbie

A Performance-Sensitive Malware Detection System on Mobile Platform. ... 493
Ruitao Feng, Yang Liu, and Shangwei Lin

Certifying Hardware Model Checking Results. 498
Zhengqi Yu, Armin Biere, and Keijo Heljanko

A Note on Failure Mode Reasoning 503
Hamid Jahanian

Robustness of Piece-Wise Linear Neural Network with Feasible
Region Approaches. 507
Jay Hoon Jung and YoungMin Kwon

Formal Specification and Verification of Smart Contracts. 512
Jiao Jiao

Spatio-Temporal Specification Language for Cyber-Physical Systems 517
Tengfei Li

A Modeling Framework of Cyber-Physical-Social Systems with
Human Behavior Classification Based on Machine Learning. 522
Dongdong An, Jing Liu, Xiaohong Chen, Tengfei Li, and Ling Yin

Author Index e 527

Invited Talk

®

Check for
updates

Secure Deep Learning Engineering:
A Road Towards Quality Assurance
of Intelligent Systems

Yang Liu', Lei Ma?® and Jianjun Zhao?®)

! Nanyang Technological University, Singapore, Singapore
yangliu@ntu.edu.sg
2 Kyushu University, Fukuoka, Japan
{malei,zhao}@ait.kyushu-u.ac.jp

Abstract. Over the past decades, deep learning (DL) systems have
achieved tremendous success and gained great popularity in various
applications, such as intelligent machines, image processing, speech pro-
cessing, and medical diagnostics. Deep neural networks are the key driv-
ing force behind its recent success, but still seem to be a magic black box
lacking interpretability and understanding. This brings up many open
safety and security issues with enormous and urgent demands on rigor-
ous methodologies and engineering practice for quality enhancement. A
plethora of studies have shown that state-of-the-art DL systems suffer
from defects and vulnerabilities that can lead to severe loss and tragedies,
especially when applied to real-world safety-critical applications.

In this paper, we perform a large-scale study and construct a paper
repository of 223 relevant works to the quality assurance, security, and
interpretation of deep learning. Based on this, we, from a software qual-
ity assurance perspective, pinpoint challenges and future opportunities
to facilitate drawing the attention of the software engineering community
towards addressing the pressing industrial demand of secure intelligent
systems.

Keywords: Artificial intelligence + Deep learning - Software
engineering - Security - Quality assurance - Reliability - Deep learning
engineering

1 Introduction

In company with massive data explosion and powerful computational hardware
enhancement, deep learning (DL) has recently achieved substantial strides in
cutting-edge intelligent applications, ranging from virtual assistant (e.g., Alex,
Siri), art design [18], autonomous vehicles [13,19], to medical diagnoses [1,3] —
tasks that until a few years ago could be done only by humans. DL has become
the innovation driving force of many next generation’s technologies. We have
been witnessing on the increasing trend of industry stakeholders’ continuous

© Springer Nature Switzerland AG 2019
Y. Ait-Ameur and S. Qin (Eds.): ICFEM 2019, LNCS 11852, pp. 3-15, 2019.
https://doi.org/10.1007/978-3-030-32409-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32409-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-32409-4_1

4 Y. Liu et al.

investment on DL based intelligent system [5-8,40], penetrating almost every
application domain, revolutionizing industry manufacturing as well as reshaping
our daily life.

However, current DL system development still lacks systematic engineering
guidance, quality assurance standards, as well as mature toolchain support. The
magic box, such as DL training procedure and logic encoding (as high dimensional
weight matrices and complex neural network structures), further poses challenges
to interpret and understand behaviors of derived DL systems [4,16,26]. The
latent software quality and security issues of current DL systems, already started
emerging out as the major vendors, rush in pushing products with higher intel-
ligence (e.g., Google/Uber car accident [21,41], Alexa and Siri could be manipu-
lated with hidden command [39]. A DL image classifier with high test accuracy is
easily fooled by a single-pixel perturbation [2]). Deploying such cocooned DL sys-
tems to the real-world environment without quality and security assurance leaves
high risks, where newly evolved cyber- and adversarial-attacks are inevitable.

To bridge the pressing industry demand and future research directions, this
paper first performs a large-scale empirical study on the most-recent curated 223
relevant works on deep learning engineering from a software quality assurance
perspective. Based on this, we perform a quantitative and qualitative analysis to
identify the common issues that the current research community most dedicated
to. With an in-depth investigation on current works, and our in-company DL
development experience obtained, we find that the development of secure and
high quality deep learning systems requires enormous engineering effort, while
most Al communities focus on the theoretical or algorithmic perspective of deep
learning. Indeed, the development of modern complex deep learning system-
atic solutions could be a challenge for an individual research community alone.
We propose the Secure Deep Learning Engineering (SDLE) development pro-
cess specialized for DL software, which we believe is an interdisciplinary future
direction (e.g., A, SE, security) towards constructing DL applications, in a sys-
tematic method from theoretical foundations, software & system engineering, to
security guarantees. We further discuss current challenges and opportunities in
SDLE from a software quality assurance perspective.

To the best of our knowledge, our work is the first study to vision SDLE,
from the quality assurance perspective, accompanied by a state-of-the-art lit-
erature curation. We hope this work facilitates drawing the attention of the
software engineering community on necessity and demands of quality assurance
for SDLE, which altogether lays down the foundations and conquers technical
barriers towards constructing robust and high-quality DL systems. The reposi-
tory is available at: https://sdle2018.github.io/.

2 Research Methodology

This section summarizes our concerned research questions, and discusses the
detail of paper collection procedure for further analysis.

https://sdle2018.github.io/

Secure Deep Learning Engineering 5

2.1 Research Questions
This paper mainly focuses on following research questions.

— RQ-1: What are mostly studied research topics and the common challenges
relevant to quality assurance of deep learning?

— RQ-2: What is secure deep learning engineering and its future direction in
perspective of quality assurance?

From the RQ-1, we intend to identify the mostly concerned topics in the
research community and their common challenges, while RQ-2 concerns the key
activities in SDLE life cycle, based on which we discuss our vision and future
opportunities.

B Total (223)

200+ B Security and Privacy (86)
B Privacy (17)
Adversarial Attacks (40)
1507 [l Defenses and Detection (29)
B Testing and Verification (53)
Verification for DL Systems (34) °
100+ [Testing for DL Systems (19)
Interpretability and Understanding (65) =
50, B Datasets(19)
0-o

T T
2001 2005 2009 2010 2012 2014 2015 2016 2017 2018

Fig. 1. The accumulative number of selected publications over Years

2.2 Data Collection Methodology

Extensive research contributions are made on deep learning over the past
decades, we adopt the following procedure to select works most relevant to the
theme of this work.

— We first collect papers from conferences listed on the Computer Science Rank-
ings within the scope of Al & machine learning, software engineering, and
security.! To automate the paper collection procedure, we develop a Python-
based crawler to extract paper information of each listed conference since the
year 2000 and filter with keywords.

"http://csrankings.org/# /index?all.

http://csrankings.org/#/index?all

6 Y. Liu et al.

2017 Adversarial attacks
are prevalent and

2005 Adversarial machine 2012 Deep learning wins robustness issues are
Iearnipg on classification ImageNet Challenge dominant
tasks invented) 2017 Verification for deep

2009 Poisoning and 2014 General adversarial learning i

. . g invented

evasion attacks and networks (GANS) invented . »

defenses of and a surge in adversarial 2017 Al interpretability

classification invented = examples proposed

2000 2010 Rise of Al Blowout Year for Al
2001 A deterministic 2016 Deep learning _2018' Safety issues Of'
method for verification (AlphaGo) wins world Go intelligent cyber-physical
used to verify the champion Lee Sedol systems are emerging
accuracy of simple 2018 Testing for deep
neural networks 2016 Deep neural networks learning invented
are vulnerable 2018 Methods of

adversarial examples
generation are still hot

Fig. 2. Milestones of deep learning engineering relevant to security and software quality.

— To further reduce the search space for relevant topics, we use keywords (e.g.,
deep learning, Al security, testing, verification, quality, robustness) to filter
the collected papers.

— Even though, scraping all the listed conferences may still be insufficient, we
therefore crawl outwards — extract all the related work for each keyword-
filtered paper and crawl one level down of these papers.

— This finally results in 223 papers and we manually confirmed and labeled each
paper to form a final categorized list of literature.

Paper Category and Labeling. To categorize the selected papers, we perform
paper clustering by taking into account the title, abstract, and listed keywords.
Based on further discussion of all authors (from both academia and industry
with AI, SE, and security background), we eventually identify four main paper
categories, and seven fine-grained categories in total (see Fig.1). In the next
step, each paper is manually labelled into a target category for further analysis.

The Dataset and the Trend. Figure 1 shows the general trends of publication
on secure deep learning research area, where the publication number (i.e., both
total paper as well as in each category) dramatically increases over years. Such
booming trend becomes even more obvious accompanied with the milestones
of DLs (e.g., DL won ImageNet Challenge in 2012, AlphaGo defeated human
championship in 2016), which is highlighted in Fig.2. For the four main cate-
gories, we find the most publications are relevant to Security and Privacy (SP,
86 papers), followed by Interpretability and Understanding (IU, 65), Testing and
Verification (TV, 53), and Datasets (17).

Secure Deep Learning Engineering 7

= =1> DL Libraries

DNN Design and DL Software Stack
Training Program
\ Implementation
D‘ata-labe;I o = =[> DL Frameworks
Pair Collection

oA

B Training

= ==> Device Drivers
O
\/— = => System
= = ==> Learning Algorithms

Testing/
Verification 5 P
Security Vulnerabilities

L) A\ Noisy Data Attack

Evolution and isoni

Illl’aintlenance Deployment O Poisoning Attack

(Platform @ Evasion Attack

Oe Calibration/ V Incoherent Attack

Requirement Secure Deep Learning
Analysis Engineel’ mg Life (y cle
A

(

Quantization)

Fig. 3. Secure deep learning engineering life cycle

The SP category with the highest paper publication number is not surpris-
ing. Since Goodfellow et al. [20] posted the security issues of DLs, it attracted
both the AI and security communities to escalate and burst a research com-
petition on defending and attacking techniques. Even though, it still lacks a
complete understanding of why current DL systems are still vulnerable against
adversarial attacks. This draws the attention of researchers on interpreting and
understanding how DL works, which would be important for both application
and construction of robust DLs. As the recent emerging investment blowout in
DL applications to safety-critical scenarios (e.g., autonomous driving, medical
diagnose), its software quality has become a big concern, where researchers find
that the different programming paradigm of DL makes existing testing and veri-
fication techniques unable to directly handle DLs [25,30,35]. Therefore, we have
observed that many recent works are proposing novel testing and verification
techniques for DLs, from testing criteria, test generation techniques, test data
quality evaluation, to static analysis. Meanwhile, the dataset benchmarks of dif-
ferent DL application domains emerge to grow as well [15,24,37,42], in order
to facilitate the study of solving domain-specific problems by DLs (e.g., image
classification, 3D object recognition, autonomous driving, skin disease classifica-
tion).

Common Issues. In contrast to traditional software of which the decision logic
is mostly programmed by human developers, deep learning adopts a data-driven
programming paradigm. Specifically, a DL developer’s major effort is to prepare
the training data (including knowledge to resolve a task) and neural network
architecture, after which the decision logic is automatically obtained through

8 Y. Liu et al.

the training procedure. On one hand, this paradigm reduces the burden of a
developer who manually crafts the decision logic. On the other hand, for a DL
developer, the logic training procedure is almost like a magic-box driven by
an optimization technique. Due to the decision logic of DL is encoded into a
DNN with high dimensional matrices, the interpretation and understanding,
training procedure, as well as the obtained decision logic are all very difficult [28],
which could be a root cause and a common challenge among all categories. For
example, without completely understanding the decision logic of DL, it is hard to
know in what particular case an adversarial attack could penetrate, and how we
could defend against such attacks. In the case of testing, extensive studies are
performed on analysis of traditional software bugs, their relations to software
development activities, as well as techniques for defect detection. However, a
comprehensive empirical study and understanding on why DL bugs occur still
could not be well explained, let alone the root case analysis.

3 Secure Deep Learning Engineering Life Cycle

Due to the fundamental different programming paradigms of deep learning and
traditional software, the secure deep learning engineering practice and techniques
are largely different with traditional software engineering, although the major
life cycle phases could still be shared.

We define Secure Deep Learning Engineering (SDLE) as an engineer-
ing discipline of deep learning software production, through a systematic
application of knowledge, methodology, practice on deep learning, software
engineering and security, to requirement analysis, design, implementa-
tion, testing, deployment, and maintenance of deep learning software.

Figure 3 shows the key life cycle phases of SDLE. In the rest of this section,
we first describe each of the key development phases, their uniqueness and dif-
ference compared with traditional practices in software engineering, and then we
discuss the security issues in current SDLE. In the next section, we explain the
quality assurance necessity in SDLE life cycle, and highlight the challenges and
opportunities.

Requirement Analysis. Requirement analysis investigates the needs, deter-
mines, and creates detailed functional documents for the DL products. DL-based
software decision logic is learned from the training data and generalized to the
testing data. Therefore, the requirement is usually measured in terms of an
expected prediction performance, which is often a statistics-based requirement
with uncertainty, as opposed to the rule-based one in traditional SE.

Data-Label Pair Collection. After the requirements of the DL software
become available, a DL developer (potentially with domain experts for super-
vision and labeling) tries to collect representative data that incorporate the
knowledge on a specific target task. For traditional software, a human developer

Secure Deep Learning Engineering 9

needs to understand the specific task, figures out a set of algorithmic operations
to solve the task, and programs such operations in the form of source code for
execution. On the other hand, one of the most important sources of DL soft-
ware is training data. The DL software automatically distills the computational
solutions of a specific task under a designed neural network architecture.

DNN Design and Training Program Implementation. When the training
data become available, a DL developer designs the DNN architecture, taking
into account of requirement, data complexity, as well as the problem domain.
For example, when addressing a general-purpose image processing task, convo-
lutional layer components are often included in the DNN model design, while
recurrent layers are often used to process tasks that has sequential inputs (e.g.,
natural language processing, speech recognition). To concretely implement the
desired DNN architecture, a DL developer often leverages an existing DL frame-
work to encode the designed DNN into a training program. Furthermore, the
runtime training behaviors are also needed to be specified through the APIs
provided by the DL framework (e.g., training epochs, learning rate, GPU/CPU
configurations).

Runtime Training. After the DL programming ingredients (i.e., training data
and training program) are ready. The runtime training procedure starts and sys-
tematically evolves the decision logic learning towards effectively resolving (e.g.,
classification, numerical prediction, synthesis & generation) a target task. The
training procedure and training program adjustment might go back-and-forth
several rounds until a satisfying performance is achieved. Although the training
program itself is often written as traditional software (e.g., in Python, Java,
C++), the obtained DL software is often encoded as a DNN model, consisting of
the DNN architecture and weight matrices. The training process plays a cen-
tral role in the DL software learning, to distill knowledge and solution from the
sources. It involves quite a lot of software and system engineering effort to realize
the learning theory to DL software (see Fig.3) over years.

Testing & Verification. When the DNN model completes training with its
decision logic determined, it goes through the systematic evaluation of its gener-
ality and quality through testing (or verification). Note that the testing activity
in the Al community mainly considers whether the obtained DL model gener-
alizes to the prepared test dataset, to obtain high test accuracy. On the other
hand, the testing activity (or verification) in SDLE considers a more general eval-
uation scope, such as generality, robustness, defect detection, as well as other
nonfunctional requirement (e.g., efficiency). The early weakness detection of the
DL software provides valuable feedback to a DL developer for solution enhance-
ment [47].

Deployment. A DL software passed the testing phase reaches a certain level
of quality standard, and is ready to be deployed to a target platform. However,
due to the platform diversity, DL framework supportability, and computation
limitations of a target device, the DL software often needs to go through the
platform calibration (e.g., compression, quantization, DL framework migration)

10 Y. Liu et al.

procedure for deployment on a target platform. For example, once a DL software
is trained and obtained on the Tensorflow framework, it needs to be successfully
transformed to its counterpart of TensorflowLite (resp. CoreML) framework to
Android (resp. 108) platform. It still needs to go through on-device testing after
deployment [22]. The testing during deployment not only considers the poten-
tially incorrect behaviors that could be triggered at runtime, but also considers
the behavior differences before and after deployment. In particular, whether
a deployed version is an intended version for runtime execution. Due to the
difference in platform, deep learning framework as well as hardware resources
before and after deployment, systematically testing and providing feedback on
the behavior changes of a deployed deep learning software would assist a DL
developer to further enhance its quality.

Evolution and Maintenance. After a DL product is deployed, it might experi-
ence the procedure of modification for bug correction, performance and feature
enhancements, or other attributes. The major effort in evolution and mainte-
nance phases relies on the manual revision on design, source code, documenta-
tion, or other software artifacts. On the other hand, DL software focuses more
on comprehensive data collection, DL model continuous learning (e.g., re-fitting,
retro-fitting, fine-tuning, and re-engineering). For example, it is not uncommon
that the new data are continuously collected that contain more domain-specific
information of a particular task. A DL developer often considers how to incor-
porate the knowledge of such data into a target DL system to further enhance a
DL software. During such a phase, a DL product would experience evolution, to
update the feature, fix bugs, enhance robustness, etc. However, such a procedure
are mostly driven by training data, which guides the direction of a DL produce
enhancement. Furthermore, special engineering methods to better manage the
version variants of a DL product (e.g., DL training program, models), as well as
the data, would also be necessary, which to a large extent differs to those in the
traditional software evolution and maintenance.

Security Issues in DL. The current practice of security in deep learning has
fallen into the trap that many other domains have experienced. Almost every
month new attacks are identified [9,12,14,20,32,33,46] followed by new counter-
measures [34,45] which are subsequently broken [12,23], and so on ad-infinitum.
There is a broad and pressing need for a frontier-level effort on trustworthi-
ness and security in DL to break this cycle of attacks and defenses. We have
a unique opportunity at this time—before deep learning is widely deployed in
critical systems—to develop the theory and practice needed for robust learning
algorithms that provide rigorous and meaningful guarantees. If we rethink the
SDLE life cycle (see Fig.3), security vulnerabilities can happen in almost every
step. For instance, for the training related steps such as Requirement Analysis,
Data-Label Pair Collection and DNN design and training, poisoning attacks can
easily happen via manipulating training data. In the testing related steps, such
as testing & verificationand deployment, evasion attacks can take place by per-
turbing the testing data slightly (e.g. adversarial examples). In addition, when
deploying the DL software to different platforms or with different implementa-

Secure Deep Learning Engineering 11

tion frameworks, there will always be opportunities for adversaries to generate
attacks from one to the other.

We believe many of these security issues are highly intertwined the quality
of current DL software, lacking systematic quality assurance solutions over the
entire SDLE process which is largely missed in research works as described in
the next section.

4 Towards Future Quality Assurance of SDLE

Over the past decades, software quality assurance discipline [36,38] has been
well-established for traditional software, with many experiences and practices
widely applied in the software industry. However, the fundamentally different
programming paradigm and decision logic representation of DL software make
existing quality assurance techniques unable to be directly applied, forcing us
to renovate the entire quality assurance procedure for SDLE. In this section, we
pose our vision and challenges on quality assurance in SDLE to guide future
research.

From the very beginning of SDLE, we need to rethink how to accurately
define, specify, and document the of DL software requirement, especially for the
functional requirements. This leaves us a question of whether we should follow
a statistical-based approach, a rule-based approach, or their combination, which
has not been well investigated yet.

The data play a key role in shaping the learning process and DL decision
logic. However, most current research treats the data (e.g., training data) as high
quality for granted, without a systematic quality control, inspection, and evalu-
ation process. As poisoning attacks show, many incorrect behaviors and security
issues could be introduced with the maliciously tweaked training data. How to
select a suitable size while representative data would be an important ques-
tion. In addition, data supervision and labeling process are also labor-intensive
and error-prone. For example, ImageNet dataset contains more than one million
general-purpose images. We also need to provide assistance and quality control
for the data management (e.g., labeling, versioning, de-noising) procedure.

It becomes even more challenging, when it comes to the implementation of
the training program and framework. Most state-of-the-art DL frameworks are
implemented as traditional software on top of the DL software stack. Even the
learning theory is perfect, it still has a big gap to transfer such ideally designed
DL models to a DL application encoded on top of the DL framework. One big
challenge is how to ensure the software stack (e.g., hardware drivers, DL library,
DL framework) correctly implements the learning algorithm.

Another challenge is to provide useful interactive support to debug and visu-
alize the training process. Most current DL training procedure only shows train-
ing loss (accuracy), validation loss (accuracy), which is mostly a black box to
a DL developer. When the training procedure goes beyond expectation, the
root-cause analysis becomes extremely difficult, which may come from the DL
architecture issue, training program implementation issue, or the hardware con-
figuration issue. Hence, the software engineering community needs to consider

12 Y. Liu et al.

providing the novel debugging, runtime monitoring, and profiling support for
the training procedure, which is involved with non-determinism and runtime
properties hard to specify.

The large input space has already been a challenge for testing and verifying
traditional software. Such a challenge is further escalated for DL software, due
to its high dimensional input space and the internal latent space. Even though,
traditional software testing has already explored many testing criteria as the
goal to guide testing. How to design suitable testing criteria to capture the
testing confidence still remains unclear. Even with some preliminary progress
on testing criteria designed for DLs [27,29,30,35], there are many more testing
issues needed to be addressed, such as how to effectively generate tests [17,29,43,
44], how to measure the test data quality [31], and how to test DL robustness and
vulnerabilities [10,11]. More in-depth empirical studies that uncover the unique
issues (e.g., [48]) of SDLE are also necessary to provide insight and guidance to
build deep learning systems with better quality and reliability.

Further DL challenge comes up with current deployment process: (1) tar-
get device computation limitations, and (2) DL framework compatibility across
platforms and frameworks. The DL software is mostly developed and trained on
the cloud or PCs with powerful GPU support. When it needs to be deployed on
a mobile device or edge-computing device with limited computation power, the
DL software must be optimized or quantized for computation/energy efficiency,
which could introduce defects or behavior differences. How to ensure the quality
and detect the potential issues during this process is an important problem. In
addition, the current DL frameworks might not always be supported by different
platforms. For example, the TensorFlow is not directly supported by Android
or i0S, and how to make DL software cross-platform compatible would be an
important direction.

Last but not least, the quality assurance concerns in DL software evolu-
tion and maintenance are mostly focused on avoiding introducing defects during
change, which might rely on regression testing. However, how to effectively evolve
the DL software and how to engineer the artifacts (e.g., data, training program,
DL model) of a DL product during evolution still remains unknown, which we
leave as an open question for further study.

5 Conclusion

Considering deep learning is likely to be one of the most transformative technolo-
gies in the 21st century, it appears essential that we begin to think about how
to design fully-fledged deep learning systems under a well-tested development
discipline. This paper defines the secure deep learning engineering and discusses
the current challenges, opportunities, and puts forward open questions from the
quality assurance perspective, accompanied by a paper repository. We hope our
work can inspire future studies towards constructing robust, reliable and safe
DL software with high quality.

Secure Deep Learning Engineering 13

Acknowledgments. We thank Felix Juefei-Xu, Xiaofei Xie, Minhui Xue, Qiang Hu,
Xiaoning Du, Yi Li, Sen Chen, Bo Li, Jianxiong Yin, Simon See for their contribution
to initiate the early work of this paper. We also acknowledge the support of NVIDIA
AT Tech Center (NVAITC) to our research, which largely shapes the direction of this
work. This research was supported (in part) by the National Research Foundation,
Prime Ministers Office, Singapore under its National Cybersecurity R&D Program
(Award No. NRF2018NCR-NCRO005-0001), National Satellite of Excellence in Trust-
worthy Software System (Award No. NRF2018NCR-NSOE003-0001) administered by
the National Cybersecurity R&D Directorate; JSPS KAKENHI Grant NO.19H04086,
NO. 18H04097, and Qdai-jump Research Program NO. 01277.

References

1. BBC: Google’s DeepMind to peek at NHS eye scans for disease analysis (2016).
https://www.bbc.com/news/technology-36713308

2. BBC: Al image recognition fooled by single pixel change (2018). https://www.bbc.
com/news/technology-41845878

3. BBC: Artificial intelligence ’did not miss a single urgent case’ (2018). https://www.
bbc.com/news/health-44924948

4. BBC: Can we trust Al if we don’t know how it works? (2018). https://www.bbc.
com/news/business-44466213

5. BBC: General Motors and Fiat Chrysler unveil self-driving deals (2018). https://
www.bbc.com/news/business-44325629

6. BBC: Google cars self-drive to Walmart supermarket in trial (2018). https://www.
bbe.com/news/technology-44957251

7. BBC: Honda to invest $2.8bn in GM’s self-driving car unit (2018). https://www.
bbe.com/news/business-45728169

8. BBC: Jaguar self-drive car revealed in New York (2018). https://www.bbc.com/
news/technology-43557798

9. Biggio, B., et al.: Evasion attacks against machine learning at test time. In: Bloc-
keel, H., Kersting, K., Nijssen, S., Zelezny, F. (eds.) ECML PKDD 2013. LNCS
(LNAI), vol. 8190, pp. 387-402. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40994-3_25

10. Breier, J., Hou, X., Jap, D., Ma, L., Bhasin, S., Liu, Y.: DeepLaser: practical fault
attack on deep neural networks. ArXiv e-prints

11. Breier, J., Hou, X., Jap, D., Ma, L., Bhasin, S., Liu, Y.: Practical fault attack on
deep neural networks. In: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2018 (2018)

12. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
IEEE Symposium on Security and Privacy (SP), pp. 39-57 (2017)

13. Chen, C., Seff, A., Kornhauser, A., Xiao, J.: Deepdriving: learning affordance for
direct perception in autonomous driving. In: 2015 IEEE International Conference
on Computer Vision (ICCV), pp. 2722-2730, December 2015. https://doi.org/10.
1109/ICCV.2015.312

14. Chen, P.Y., Sharma, Y., Zhang, H., Yi, J., Hsieh, C.J.: Ead: elastic-net attacks to
deep neural networks via adversarial examples. arXiv preprint arXiv:1709.04114
(2017)

15. Chen, Y., et al.: Lidar-video driving dataset: Learning driving policies effectively.
In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2018

https://www.bbc.com/news/technology-36713308
https://www.bbc.com/news/technology-41845878
https://www.bbc.com/news/technology-41845878
https://www.bbc.com/news/health-44924948
https://www.bbc.com/news/health-44924948
https://www.bbc.com/news/business-44466213
https://www.bbc.com/news/business-44466213
https://www.bbc.com/news/business-44325629
https://www.bbc.com/news/business-44325629
https://www.bbc.com/news/technology-44957251
https://www.bbc.com/news/technology-44957251
https://www.bbc.com/news/business-45728169
https://www.bbc.com/news/business-45728169
https://www.bbc.com/news/technology-43557798
https://www.bbc.com/news/technology-43557798
https://doi.org/10.1007/978-3-642-40994-3_25
https://doi.org/10.1007/978-3-642-40994-3_25
https://doi.org/10.1109/ICCV.2015.312
https://doi.org/10.1109/ICCV.2015.312
http://arxiv.org/abs/1709.04114

14

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Y. Liu et al.

Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learn-
ing. ArXiv e-prints

Du, X., Xie, X., Li, Y., Ma, L., Liu, Y., Zhao, J.: Deepstellar: model-based quanti-
tative analysis of stateful deep learning systems. In: Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, pp. 477-487. ESEC/FSE 2019
(2019)

Elgammal, A.M., Liu, B., Elhoseiny, M., Mazzone, M.: CAN: creative adversarial
networks, generating “art” by learning about styles and deviating from style norms.
CoRR abs/1706.07068 (2017). http://arxiv.org/abs/1706.07068

Eliot, L.B.: Advances in Al and Autonomous Vehicles: Cybernetic Self-Driving
Cars Practical Advances in Artificial Intelligence (AI) and Machine Learning, 1st
edn. LBE Press Publishing (2017)

Goodfellow, 1.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: ICLR (2015)

Google Accident: A Google self-driving car caused a crash for the first
time (2016). https://www.theverge.com/2016/2/29/11134344/google-self-driving-
car-crash-report

Guo, Q., et al.: An empirical study towards characterizing deep learning develop-
ment and deployment across different frameworks and platforms. In: Proceedings
of the 34rd ACM/IEEE International Conference on Automated Software Engi-
neering, ASE 2019 (2019)

He, W., Wei, J., Chen, X., Carlini, N., Song, D.: Adversarial example defenses:
ensembles of weak defenses are not strong. arXiv preprint arXiv:1706.04701 (2017)
Huang, X., Wang, P., Cheng, X., Zhou, D., Geng, Q., Yang, R.: The ApolloScape
open dataset for autonomous driving and its application. ArXiv e-prints

Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kuncak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3-29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_1

Kim, B., et al.: Interpretability beyond feature attribution: quantitative testing
with concept activation vectors (TCAV). ArXiv e-prints

Kim, J., Feldt, R., Yoo, S.: Guiding deep learning system testing using surprise
adequacy arXiv:1808.08444 (2018)

Lipton, Z.C.: The mythos of model interpretability. CoRR abs/1606.03490 (2016).
http://arxiv.org/abs/1606.03490

Ma, L., et al.: DeepCT: tomographic combinatorial testing for deep learning sys-
tems. In: 2019 IEEE 26th International Conference on Software Analysis, Evolution
and Reengineering (SANER), pp. 614-618, February 2019

Ma, L., et al.: DeepGauge: multi-granularity testing criteria for deep learning sys-
tems. In: Proceedings of the 33rd ACM/IEEE International Conference on Auto-
mated Software Engineering, ASE 2018, pp. 120-131 (2018)

Ma, L., et al.: DeepMutation: mutation testing of deep learning systems. In: The
29th IEEE International Symposium on Software Reliability Engineering (ISSRE)
(2018)

Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: DeepFool: a simple and accurate
method to fool deep neural networks. arXiv preprint arXiv:1511.04599 (2015)
Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The
limitations of deep learning in adversarial settings. In: 2016 IEEE European Sym-
posium on Security and Privacy (EuroS&P), pp. 372-387. IEEE (2016)

http://arxiv.org/abs/1706.07068
https://www.theverge.com/2016/2/29/11134344/google-self-driving-car-crash-report
https://www.theverge.com/2016/2/29/11134344/google-self-driving-car-crash-report
http://arxiv.org/abs/1706.04701
https://doi.org/10.1007/978-3-319-63387-9_1
http://arxiv.org/abs/1808.08444
http://arxiv.org/abs/1606.03490
http://arxiv.org/abs/1511.04599

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Secure Deep Learning Engineering 15

Papernot, N., McDaniel, P.D., Wu, X., Jha, S., Swami, A.: Distillation as a defense
to adversarial perturbations against deep neural networks. In: IEEE Symposium
on Security and Privacy, SP 2016, pp. 582-597 (2016)

Pei, K., Cao, Y., Yang, J., Jana, S.: DeepXplore: automated whitebox testing
of deep learning systems. In: Proceedings of the 26th Symposium on Operating
Systems Principles, pp. 1-18 (2017)

Pressman, R.: Software Engineering: A Practitioner’s Approach, 7th edn. McGraw-
Hill Inc., New York (2010)

Ramanishka, V., Chen, Y.T., Misu, T., Saenko, K.: Toward driving scene under-
standing: a dataset for learning driver behavior and causal reasoning. In: The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2018
Ruparelia, N.B.: Software development lifecycle models. SIGSOFT Softw. Eng.
Notes 35(3), 8-13 (2010). https://doi.org/10.1145/1764810.1764814

The New York Times: Alexa and Siri Can Hear This Hidden Command.
You Can’t (2018). https://www.nytimes.com/2018/05/10/technology/alexa-siri-
hidden-command-audio-attacks.html

The New York Times: Toyota, SoftBank Setting Up Mobility Services Joint Venture
(2018). https://www.nytimes.com/aponline/2018/10/04/world /asia/ap-as-japan-
toyota-softbank.html

Uber Accident: After Fatal Uber Crash, a Self-Driving Start-Up Moves
Forward (2018). https://www.nytimes.com/2018/05/07 /technology/uber-crash-
autonomous-driveai.html

Xiang, Y., et al.: ObjectNet3D: a large scale database for 3D object recognition. In:
Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp.
160-176. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_10
Xie, X., et al.: DeepHunter: a coverage-guided fuzz testing framework for deep neu-
ral networks. In: Proceedings of the 28th ACM SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA 2019, pp. 146-157 (2019)

Xie, X., Ma, L., Wang, H., Li, Y., Liu, Y., Li, X.: DiffChaser: detecting disagree-
ments for deep neural networks. In: Proceedings of the 28th International Joint
Conference on Artificial Intelligence (2019)

Xu, W., Evans, D., Qi, Y.: Feature squeezing: Detecting adversarial examples in
deep neural networks. arXiv preprint arXiv:1704.01155 (2017)

Xu, W., Qi, Y., Evans, D.: Automatically evading classifiers. In: Proceedings of
the 2016 Network and Distributed Systems Symposium (2016)

Zhang, J.M., Harman, M., Ma, L., Liu, Y.: Machine learning testing: survey, land-
scapes and horizons. arXiv e-prints, June 2019

Zhang, T., Gao, C., Ma, L., Lyu, M.R., Kim, M.: An empirical study of common
challenges in developing deep learning applications. In: The 30th IEEE Interna-
tional Symposium on Software Reliability Engineering (ISSRE) (2019)

https://doi.org/10.1145/1764810.1764814
https://www.nytimes.com/2018/05/10/technology/alexa-siri-hidden-command-audio-attacks.html
https://www.nytimes.com/2018/05/10/technology/alexa-siri-hidden-command-audio-attacks.html
https://www.nytimes.com/aponline/2018/10/04/world/asia/ap-as-japan-toyota-softbank.html
https://www.nytimes.com/aponline/2018/10/04/world/asia/ap-as-japan-toyota-softbank.html
https://www.nytimes.com/2018/05/07/technology/uber-crash-autonomous-driveai.html
https://www.nytimes.com/2018/05/07/technology/uber-crash-autonomous-driveai.html
https://doi.org/10.1007/978-3-319-46484-8_10
http://arxiv.org/abs/1704.01155

Regular Papers

®

Check for
updates

Using DimSpec for Bounded
and Unbounded Software Model Checking

Marko Kleine Biining, Tom4s Balyo, and Carsten Sinz®™)

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
{marko.kleinebuening,tomas.balyo,carsten.sinz}@kit.edu

Abstract. This paper describes a unified approach for both bounded
and unbounded software model checking to find errors in programs writ-
ten in the programming language C. It is based on a propositional logic
intermediate representation, called DimSpec, that has been successfully
applied in SAT-based automated planning. Using DimSpec formulas
allows us to exploit the advantages of incremental SAT solving and pro-
vides an alternative approach to using the universal incremental SAT
API IPASIR or native solver APIs. The DimSpec formula can be used
for bounded model checking (via incremental SAT solving) as well as
unbounded model checking (using a backend that implements an IC3-
style algorithm). We also present an implementation of our approach,
called LLUMC, which encodes the presence of certain errors in a C pro-
gram into a DimSpec formula. We evaluate our approach on benchmark
problems from the Software Verification Competition (SV-COMP) and
compare it with other tools to demonstrate runtime and functionality
advantages compared to state-of-the-art solvers.

1 Introduction

A DimSpec formula [30] consists of four CNF formulas Z,U,7 and G which
specify a transition system. The formula Z describes the initial state, G the goal
state, U describes the constraints that must hold in each individual step of the
process and finally 7 describes the relation of each pair of neighboring steps.
DimSpec has been very successfully used for SAT-based automated planning
[16]. In this paper we demonstrate that the DimSpec format is also very useful
for software verification.

Software has become an important part of almost all modern technical
devices, such as cars, airplanes, household appliances, therapy machines, and
many more. The cars of tomorrow will drive on their own, controlled by soft-
ware. As shown by serious accidents like the rocket crash of Ariane flight 501 [24],
the massive overdoses of radiation generated by the therapy machine Therac-25
[25] or the car crash of the Toyota Camry in 2005 [22], software is never perfect
and almost inevitably contains errors and bugs. While testing of software can,

This work was partially supported by Baden-Wiirttemberg Stiftung within project
HIVES.
© Springer Nature Switzerland AG 2019

Y. Ait-Ameur and S. Qin (Eds.): ICFEM 2019, LNCS 11852, pp. 19-35, 2019.
https://doi.org/10.1007 /978-3-030-32409-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32409-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-32409-4_2

20 M. Kleine Biining et al.

in practice, only cover a limited number of program executions, software veri-
fication can guarantee a much higher coverage while producing proofs for the
existence or absence of errors. Many software verification approaches have been
developed, for instance symbolic execution [19], (bounded) model checking [9], or
abstraction and interpolation [1]. In bounded model checking, function calls are
inlined and loops unrolled a finite number of times. This unrolling reduces the
complexity of the problem to a computationally feasible level, though it limits
coverage and thus precision of the approach.

We developed an approach that is suitable for both bounded and unbounded
model checking. To this end, we produce a SAT encoding of a transition system
that is general enough to be solved with different solver back-ends, based on, e.g.,
incremental SAT or on an invariant checking algorithm. We focus on sequential
programs written in C, and use the low-level code representation of the compiler
framework LLVM as an intermediate language. Based on this representation, we
derived an encoding of the program verification task into a DimSpec formula. We
first encode the program into four SMT formulas and, subsequently, generate the
SAT-level representation in the desired DimSpec format. The resulting formula
is then solved by either an incremental SAT solver that unrolls the transition
system to find a path to an error state, or an invariant checking algorithm that
refines an over-approximation.

Our verification system uses Clang and LLVM version 3.7.1 to compile
C-code into LLVM Intermediate Representation. Then our new tool LLUMC
(Low-Level Unbounded Model Checker) translates the LLVM-IR representation
of the program P to be verified to a DimSpec formula with error states that are
reachable iff P contains a corresponding error. To solve the generated formulas
we either use the incremental SAT solver IncPlan [16] or the invariant checking
algorithm implemented in the solver MinireachIC3 [30]. LLUMC was inspired by
the bounded model checker LLBMC [28] but runs independently. Our evaluation
is based on the Software Verification Competition (SV-COMP) and shows the
correctness and feasibility of our approach. LLUMC is available online at [21].

2 The DimSpec Format

We assume the reader to be familiar with propositional logic, first-order-logic
and the Boolean satisfiability problem (SAT), and use definitions and notations
standard in SAT. In this section, for completeness, we introduce incremental
SAT-solving and describe the theory of bit-vectors in the context of SMT-solving.

Incremental SAT-Solving. Incremental SAT-solving is an approach to solve
several related SAT-problems efficiently. In the assumption based interface [14],
two methods are used to describe a related problem relative to a base prob-
lem: add(C) and solve(A), where C is a clause and A a set of literals called
assumptions. Clauses can be added with the add method and their conjunction,
together with previously added clauses, can then be solved under the condition
that all literals in A are true by solve(A). To enable simulating the removal of

Using DimSpec for Bounded and Unbounded Software Model Checking 21

a clause C between invocations of solve(A), a clause C' = C U a is passed to
the solver instead of C, with a (called an activation literal) being an otherwise
unused literal. C' is then effectively taken into account iff —a is present in A.

DimSpec Formulas. A DimSpec formula [31] represents a transition system
with a finite number of states tg, t1,. .., tx, where each state is a full truth assign-
ment on n Boolean variables x4, ..., x,. It consists of four CNF formulas: Z,U, G
and 7, where Z encodes the set of initial states, G describes the set of goal states
(that in our case indicate occurrence of a program error). Formula U encodes
global constraints that have to hold in each state, and finally the transition
clauses 7 are satisfied by each pair of consecutive states ¢;,%;41. The clause
sets 7, U, and G contain variables x1,...,z,, and 7 contains 1, ..., Zs,, where
Z1,...,T, encodes the current and z, 41, .. ., T2, the next state. Testing whether
the goal state is reachable from the initial state within k steps is equivalent to
checking whether the following formula Fj, is satisfiable.

k—1

F, =Z(0) A </\ U@E) AT (iyi+ 1))) ANU(k) A G(K),

=0

where Z(i), G(i), U(i) and T (i,i + 1) denote the respective formulas without
index, where each variable z; is replaced by ;4 ;.x,.

DimSpec formulas have been successfully employed in SAT-based automated
planning [16,30], but they represent a generic approach to utilize incremental
SAT solving for reachability analysis of transition systems. DimSpec solvers can
be developed independently of their usage and also be parallelized, which brings
benefit to all DimSpec applications.

Incremental SAT Solving for DimSpec. The straightforward way to solve
a DimSpec formula is to unroll the transition relation step by step, constructing
and solving the resulting formula F; at each step, until a satisfiable formula is
observed. An efficient way to implement this is to use an incremental SAT solver
with the assumption-based interface via the following steps:

step(0) : add(Z(0) A (ag V G(0)) AU(0))
solve({—ap})

step(k) : add(7(k — 1,k) A (ar V G(k)) NU(K))
solve({—ax}).

This algorithm, in practice, only terminates in reasonable time if the goal
state is reachable from the initial state. Otherwise it searches “endlessly”, i.e.
up to a bound of 2" in the worst case. A more sophisticated approach that can
detect unreachability is described next.

22 M. Kleine Biining et al.

IC3 Algorithm. A different approach to solve a DimSpec formula is
described in [12] and implemented, among others, in the tool IC3 (Incremental
Construction of Inductive Clauses for Indubitable Correctness). Given a tran-
sition system S and a safety property P, the algorithm can prove that P is
S-invariant, meaning that, regarding .S, property P is true in all reachable
states, or produce a counterexample. IC3 incrementally refines a sequence of
formulas F{, Fy, ..., F} that describe over-approximations of the set of states
reachable in at most k steps. It can extend the formula sequence in major steps
that increase k by one. In minor steps the algorithm refines the approximations
F/ with 0 <4 < k by conjoining clauses to the F/. Given a finite transition sys-
tem S and a safety property P, the IC3 algorithm terminates and returns true,
iff P is true in all reachable states of S [12]. The IC3 algorithm was implemented
and adjusted! to the DimSpec format in the tool MinireachIC3 by Suda [30].

Comparison to Other SAT Formats. An alternative approach to DimSpec
for utilizing the benefits of incremental SAT solving is the IPASIR interface
introduced for the 2015 International SAT Race [4]. In contrast to DimSpec,
which is a file format, IPASIR is a collection of C/C++ function prototypes, i.e.,
an application program interface (API). Numerous state-of-the-art SAT solvers
implement the IPASIR interface, which makes it very easy and convenient to
develop applications using incremental SAT solving without committing to any
particular SAT solver.

The advantages of IPASIR over DimSpec are more flexibility (the clauses
for the next incremental SAT call can be constructed dynamically based on
previous results), more functionality (IPASIR provides much more control over
the SAT solver and allows the user to extract more information from the SAT
solving process, such as learned clauses or failed assumptions). On the other
hand, DimSpec is much easier to use since it does not require any programming
and it can be used to express unreachability of transition systems, which is
impossible with IPASIR. Furthermore, any SAT solver supporting IPASIR be can
used in the IncPlan application [16], which renders it into a DimSpec solver. In
summary, DimSpec is a purely declarative approach while IPASIR is procedural.

Another declarative format related to DimSpec is AIGER [10] with safety
invariants. AIGER is the format for representing and-inverter graphs, which
represent a structural implementation of the logical functionality of a circuit or
network. DimSpec and AIGER-safety are mutually translatable?.

3 Encoding for Software Model Checking

We give a short introduction into the Satisfiability Modulo Theories (SMT)
and the LLVM Framework, which are necessary to understand the encoding.

! The clause sets Z,U, 7T represent the transition system S, and G represents the
negation of the invariant property P.
2 We omit the description of these translations due to space limitations.

Using DimSpec for Bounded and Unbounded Software Model Checking 23

Afterwards, we will describe a DimSpec encoding for the software model check-
ing approach in more detail to show the feasibility and advantages of encoding
problems into the DimSpec format.

Satisfiability Modulo Theories (SMT). Due to quantifiers and infinite
domains, first-order-logic is generally undecidable but there are numerous decid-
able sub-theories. As is for example described in [11], the problem of solving
those subsets or theories is called satisfiability modulo theories or SMT. These
theories can be seen as restrictions on possible models of first-order-logic for-
mulas [27]. For our encoding, we will only use the theory of bit-vectors. SMT
was standardized by the SMT-LIB initiative [5]. We will use the same notations,
especially when referring to SMT functions defined in the different theories. Such
an SMT-LIB function could for example be bvadd(by, bs), describing the addition
of two bit-vectors by and by. A more complex function is called if-then-else
(ite) and is defined by:

Ve € BVi,x,y,z € BV; (x =ite(c,y,2) @ cAhx=yV-chz=2z). (1)

We refer to the theory of fized-size bit-vectors defined by the SMT-LIB stan-
dard in [5]. The theory of bit-vectors models finite bit-vectors BV,, of length n
and operations on these vectors in first-order-logic. The set of function symbols
contains standard operations on bit-vectors such as addition or concatenation.

LLVM Representation. LLVM is an open source compiler framework that
consists of a “collection of modular and reusable compiler and tool-chain tech-
nologies” [26]. It supports compilation for a wide range of languages and is
known for its research friendliness and good documentation. To work directly
on C-code is very complex and it is extremely cumbersome to support all lan-
guage features. Thus, we use the intermediate language of LLVM, which allows
for a much simpler characterization of the semantics of statements and pro-
vides a number of optimizations and simplifications suitable for our approach.
We describe the constructs of LLVM bottom up. The smallest executable unit is
called an instruction. An instruction is an atomic unit of execution that performs
a single operation. A basic block is a linear sequence of program instructions hav-
ing one entry point and one exit point. It may have multiple predecessors and
successors and may also be its own successor. The last instruction of every basic
block is called terminator. Every basic block is part of a function. A function
(n, B,e) is a tuple of a name n, a sequence of basic blocks B = (bg, b1, ..., bm),
and an entry block e € B. Hereinafter, we will denote the main function of a
program with fiain. A module m = (F,,,G,,) is a pair of a set of functions F,,
(including finain) and a set of global variables G,,.

To optimize our encoding, we run some predefined optimization passes from
LLVM and LLBMC on the generated LLVM-module. Among other things, these
optimizations handle uninitialized local variables in C-code, promote memory
references to register references (as far as possible) and inline all functions into

24 M. Kleine Biining et al.

one main function. These optimizations are described in more detail in [20]. The
resulting LLVM-module is then used as input for our encoding.

3.1 Idea and Error Definition

A bug or error in a software program is a well-known notion, but there exists no
universal definition. A general concept is that a program has an error, if it does
not act according to its specification. For this paper we concentrate on notions
standardized in the SV-COMP competitions. Thus, we consider calls to assume
and assert and support both standard ANSI-C and notions used in benchmarks
of the competition. We state that a program acts according to its specification
if the assert statements are true if all assume conditions are met. If an assume
condition is not met, the further run of the program is not specified and thus no
€rTors can occur.

Definition 1 (Program Error in LLUMC). Let P be a program. Then there
exists an error in P, if all calls to assume that are prior to an assert statement
are true and a call to assert with a parameter value of false is invoked.

Of course, there are other errors that can happen during a program execution
like irregular bit-shifting, non-termination, or integer and buffer overflows.?

To verify a C program P with respect to Definition 1, we first translate P
to LLVM-IR (i.e. an LLVM-module) using the Clang compiler. After inlining all
function calls, we can concentrate on just the main function. Every basic block
together with its variable assignment can be seen as a state. We then add a
special error state and try to find a path from the entry state, defined by the
entry block of the main function, to the error state.

3.2 State Space

Transitions from one state to a next state will always represent transitions from
one basic block to the next with respect to its current variable assignment. Often
this kind of encoding is called small block encoding [7]. According to the theory
of bit-vectors, we define every state variable as a bit-vector of length n. The
number of bit-vectors in the state, including the bit-vectors representing the
current and previous basic block, define the number of SMT variables that are
needed to encode the state. The number of bits in total, i.e. the sum of the length
of all bit-vectors encoding a state, equals the number of CNF variables needed.

In our approach, we ignore memory accesses by over-approximating them
(i.e. each memory read results in a non-deterministic value). Accesses to stack
variables, which in most cases can be put into virtual registers by LLVM, are
handled precisely, though, and are sufficient in many cases.* First of all, every
state has to save the current basic block. Hereinafter, | B| denotes the number of

3 In our tool LLUMC, we have additionally implemented checks for integer overflows.
These are not part of our experimental evaluation, though.
4 Integrating a full memory model into our approach is part of future work.

Using DimSpec for Bounded and Unbounded Software Model Checking 25

basic blocks of the main function after inlining. For our encoding we need two
additional blocks. The ok block represents a safe state from which no more errors
can occur. This block is reached when the program terminates or when an assume
condition is not met. The second block is called error and is our goal state,
representing that an error occurred. With the function enc(bb) : BasicBlock —
N we injectively map every basic block to a natural number. If there are |B|
basic blocks in main, the required length of the bit-vector encoding a state’s
basic block is [logy(|B| + 2)]. We call the SMT-variable encoding the current
basic block curr. In LLVM, the value of a register can depend on the previous
basic block (more specifically, this is the case for phi instructions) and must
thus also be encoded, resulting in another bit-vector of length [log,(|B| + 2)],
called pred. Furthermore, we need to save the current variable assignment. We
do not need the assignment of all variables, but should focus on those that
will be accessed later on and cannot be eliminated through optimization. Those
variables can be classified by two properties. We call the set of those variables
V', consisting of

1. variables that are used in more than one basic block and
2. variables that are read before written in a basic block that is part of a loop.

The length of the variables depends on their type. The standard integer type
(int) in C has a width of 32 bits on many architectures, long has 64, and Boolean
values have a width of 1. There are other types, but their lengths are always
specified by LLVM and thus can easily be extracted.

Definition 2 (State). The state space is the Cartesian product over the set
V* of all state variables and the two state-encoding basic-block variables: V* =
{curr, pred} UV . Every variable v of the state space has a fized bit-length £,,.
For a specific step k, the state state(k) is the assignment of concrete bit-vector
values to every variable.

3.3 Encoding to DimSpec Format

Our goal is to encode an LLVM-module as defined at the beginning of this
section into DimSpec format. Therefore, we must define the four CNF formulas
{Z,G,U,T} in such a way that if there exists a transition from Z to G defined
by 7 and restricted by U then there exists an error in the given program code.’

The initial formula Z can be created by encoding the entry block of the
LLVM-module. The encoding has to represent the state that we are currently at
the first basic block and that there were no prior actions. We declare the entry
block itself as the predecessor to exclude any prior actions. The entry block
and thus the initial formula is independent from any transition. The rest of the
variable assignment is arbitrary at this point and can be left undeclared. The
encoding of the goal formula G can be defined accordingly.

5 A detailed example of the encoding, starting with C-code, over the LLVM repre-
sentation to the SMT encoding, can be found online at https://baldur.iti.kit.edu/
icfem2019/Appendix.pdf.

https://baldur.iti.kit.edu/icfem2019/Appendix.pdf
https://baldur.iti.kit.edu/icfem2019/Appendix.pdf

26 M. Kleine Biining et al.

Definition 3 (Encoding of the Initial and Goal Formula). Let entry be
the name of the first block and let error be the name of the error block, then the
initial formula Z(k) and the goal formula G(k) for the LLVM-module and for
k € N are defined as:

Z(k) = curr =enc(entry) A pred = enc(entry),

G(k) = curr = enc(error).

The universal formula consists of constraints that have to be true in all states.
In our case, that are boundaries for the variables curr and pred. In the previous
section, the number of bits needed to encode the current and previous basic
block were defined as [log,(|B|+2)]. In most cases |B| + 2 is not a power of two
and thus bigger numbers can be represented. These numbers must be excluded
at all times in the universal formula .

Definition 4 (Encoding of the Universal Formula). Let |B| be the number
of basic blocks in the LLVM-module, then the universal formula U(k) for k € N
is defined as:

Uk)= curr <(|B|+2) A pred < (|B|+2).

At last, we have to define the transition formula. It represents the transition
between state k and state k+ 1. It is important to notice that the transition for-
mula has twice as much variables as the other formulas. To distinguish between
the variables in time-point k and k41 every variable v of our state space is called
v’ at time-point k + 1. Otherwise, every transition formula would be evaluated
to false and thus no transition step could ever be taken. In general, the encoding
of one transition has the form:

state(k) = state(k + 1). (2)

We call state(k) antecedent and state(k + 1) consequent. For each state(k) that
is reachable from our initial state, a transition must be defined. An undefined
transition leads to an undefined state(k + 1) with arbitrary values. Thus, if
there is a reachable, undefined transition all goal states can be reached. For the
same reason, we determine that for each state(k) the transition must be explicit.
Variables that are not important for the transition should not be declared in the
antecedent but should be specified in the consequent to avoid undefined values.
We will use the auxiliary function

same(bb) : Basic Block — SMT-formula

to encode that variables which are not modified in a basic block maintain their
current value. The function same(bb) returns the conjunction of all var = var’,
for all variables in our state space, that have not been modified in the transition
of our basic block bb.

To encode the transition between steps, we take a closer look at the current
basic block, further denoted as bb and customize Eq.2 for different branching
possibilities. We divide basic blocks into three groups and distinguish them by

Using DimSpec for Bounded and Unbounded Software Model Checking 27

means of their terminator. The three different types of terminator instructions
are called unconditional branching, conditional branching and return.

Unconditional Branching (br %bb2): Branches to the basic block with the
label bb2 and creates a transition from the current basic block to bb2. If the
current basic block has no other instructions, only the change of basic block and
the saving of the predecessor have to be encoded. Furthermore, we have to state
that no variables have changed during this transition:

curr = enc(bb) = curr’ = enc(bb2) A pred’ = enc(bb) A same(bb). (3)

This encoding is rarely complete, because it does not regard all other instructions
in the basic block bb. Let rlp, be the ordered list of instructions from bottom
to top in bb. Then we iterate over rly, and regard all instructions inst that are
part of our state variables inst € V' and are not the terminator instruction. The
instruction is then recursively encoded according to its type and its operands.
When an instruction like %tmp3 = add i32 10 %tmp2 is encoded by the method
visitInst (%tmp3), the algorithm checks the operands first. When regarding
the value %tmp2, the algorithm checks whether it is a variable that is part of
our state or a value calculated by an instruction, which the algorithm has to
then encode recursively. The stop criterion is always the occurrence of a state
variable, a constant or a call to assert, assume or error. The encoding then
creates SMT formulas dependent on the operands. Assuming %tmp?2 is a variable
from our state space, the encoding for the add instruction would result in tmp3’
= add (10, tmp2). This generated SMT formula is then conjuncted with the
consequent of Eq.3. The algorithm continues by iterating further through the
list rlp, until there are no instructions left.

Conditional Branching (br %cond, %bbl, %bb2): Creates a transition
to bbl with the condition cond = 1 and a transition to bb2 with the condition
cond = 0. Every conditional branch has a branching condition represented as
a variable (cond). We can extract that condition by visiting and encoding the
variable representing the branching condition. In LLVM this branching condi-
tion is represented as a Boolean value that is assigned by the so called icmp-
instruction. This instruction returns a Boolean value based on the comparison
of two values and it supports equality, unsigned and signed comparison. The
icmp-instruction is then encoded recursively by visiting its two operands with
the same visiting approach as described for the unconditional branching. The
result could for example be the SMT encoding of the mathematical condition
tmp2 > 10. Based on it, the algorithm creates two separate transitions.

curr = enc(bb) A visitInst(cond) =

curr’ = enc(bbl) A pred = enc(bb) A same(bb).
curr = enc(bb) A —(visitInst(cond)) =
curr’ = enc(bb2) A pred’ = enc(bb) A same(bb).
Furthermore, the list rlp, is traversed as described previously resulting in a final
encoding of the current basic block.

28 M. Kleine Biining et al.

Return Value (ret val): The value val can be an arbitrary integer and repre-
sents the return value of the program as usual. This terminator creates a tran-
sition to ok. In an extended and already implemented version, another check is
inserted verifying that the result value of a correct program is 0 and if this does
not hold a transition to error is created.

After encoding branching possibilities, we will look at the calls to assume,
assert, error. During the instruction iteration of a basic block, we regard these
instructions differently because they lead to a split of our transitions.

Method Calls (Error, Assume, Assert): If the error-method, which is used
to specify program errors in C-code, is called inside a basic block, we do not
have to regard any other instructions and thus delete all other transitions from
this basic block. We produce a single transition:

curr = enc(bb) = curr’ = enc(error) A same(().

The other three possibilities lead to a split of our transitions similar to the con-
ditional branching. A call of assume(var) divides the set of current transitions
for our basic block. The condition is var = 0 and leads to a transition to the
ok state with s’ = enc(ok). The call to assert(var) is similar only with the
transition to s’ = enc(error) if var = 0 holds true. In both cases, the encoding
continues normally with the next instruction if the conditions are not met.

All components of the transition formula have now been discussed. To obtain
the complete transition formula the algorithm has to iterate over all basic blocks
of the main function. Depending on their terminator instruction, every basic
block has to be encoded according to the definitions above. To predict which
transition is taken in which step would be equal to solving the whole formula.
Thus, the transition formula is time independent and the transition possibilities
for all time steps are part of the formula.

Definition 5 (Encoding of the Transition Formula). Let BB be the set of
all basic blocks of fmain and let encode(b) with b € BB be the encoding as shown
above, then the transition formula T (k,k + 1) for k € N is defined by:

T(kk+1)= /\ encode(b). 4)

beBB
Claim. There exists an error as defined by Definition 1 in program p iff

1. p is transformed into an LLVM-module ¢ as described in Sect. 3 and
2. there exists a transition path in £ from the initial state to the goal state while
the universal formula holds in all states.

Proof Idea: We forego on a formal proof, because it would require a structural
induction over huge sets of C-Code and the LLVM-language. Instead, we present
short arguments and references for our claim.

(1): Using LLVM as a representation for C-code is widely accepted and used in
research and industry. We assume that the transformation from C-code

Using DimSpec for Bounded and Unbounded Software Model Checking 29

into a LLVM-module does not remove or add any errors based on the
high number of research papers [1,3,6] and tools like LLBMC [27] and
SeaHorn [17].

(2): The error node has two types of incoming edges: from an assert statement
and an edge from the error node itself. We disregard the edge that points
to itself and are left with the option that match the property defined in
Definition 1. If the encoding of the variables is, as we claim, correct and our
state space is closed under 7 and U, we can assume that the a transition
path from the initial state to the error state complies with an error in the
LLVM-module.

From SMT to SAT Formula. The encoding of the LLVM-module gives us
four SMT formulas. Currently, there are no SMT solver that support the Dim-
Spec format and thus these formulas have to be translated into four CNFs in
DimSpec format. The most widespread approach to transform SMT to CNF for-
mulas is called bit-blasting. We have taken one approach implemented in STP [15]
and the ABC-library [18] and modified these algorithms to correspond to some
technical requirements of the DimSpec format. Finally, a CNF in the DimSpec
format is created that can be used as input for a number of SAT solvers.

4 Solving the Formula: Bounded vs. Unbounded Model
Checking

The general idea of bounded model checking (BMC) is to encode paths of a
transition system up to a certain bound. For software, the bound is maintained
by unrolling loops and inlining function calls at most k times. The number k& is
called the bound and is the reason for the decidability of bounded model checking
but also for its limitations. After the unrolling and encoding of the program, a
formula that represents the negation of a desired property is added, and the
formula is solved with an SMT or SAT-solver. If the solver finds a model for
the formula, the approach has found an error and the model can be used as
a counterexample. The loop-bound can be increased step by step until a fixed
bound k is reached. The question to which bound the loops should be unrolled
is complex and further discussed for example by Biere et al. [9].

As mentioned earlier, our encoding to the DimSpec format leads to a unified
encoding for both bounded and unbounded model checking. Whether our app-
roach can be categorized as a bounded or unbounded model checking technique
depends on the kind of solver that is used to solve the generated formula.

A first approach is solving the formula with an incremental SAT-solver as
described in Sect.2. We argue that the approach using an incremental SAT-
solver has to be categorized as bounded, because the problem is unrolled during
solving time and the verification is limited by the number of unrolling steps that
can be performed under time and memory restrictions. However, compared with
state-of-the-art bounded model checkers, there is a crucial difference in how our
verification approach is bounded. Bounded model checkers require a fixed bound

30 M. Kleine Biining et al.

early during their analysis to generate the corresponding problem instance, which
cannot be directly reused for other bound settings. For our approach the encod-
ing itself is independent of any unrolling. Only during solving of the instance the
loop is unrolled leading to the bound that is perceptible through the time and
memory limit which allows us to unroll only a finite number of times.

When solving the generated formula with an invariant checking algorithm as
e.g. the in Sect.2 described 1C3-algorithm, the approach becomes unbounded.
The whole path to the error label is computed using abstractions which are
iteratively refined until either the error path is concrete and no further refinement
is possible or a repetition is detected, from which the absence of errors can be
deduced. Thus, our approach is truly unbounded, but of course limited by time
and memory constraints when solving difficult problems. In summary, our unified
encoding can be used for both unbounded and bounded model checking.

5 Experimental Results

The LLUMC-approach is implemented as a tool chain. The input file, a C source
file, is compiled with Clang (version 3.7.1) and then optimized with LLVM and
LLBMC passes. This optimized LLVM module serves as input for the program
LLUMC, which performs the encoding as described above. We modified the tool
STP to translate SMT formulas to DimSpec problems. The final renaming and
aggregation is implemented directly in LLUMC.

We combined the two different approaches described in Sect.4 to solve the
generated DimSpec/CNF formulas. The tool IncPlan [16] was developed at KIT
and implements the incremental SAT-solving interface described in Sect. 3. It can
be used with every SAT-solver that accepts the Re-entrant Incremental Satisfia-
bility Application Program Interface (IPASIR). We have evaluated IncPlan with
a number of SAT-solvers including Minisat [29], abcdSat [13], Glucose [2] and
Picosat [8]. While Glucose and Minisat produced good results for some bench-
marks, the IncPlan implementation for these solvers exhibited segmentation-
fault errors for some of the benchmark instances. Thus, we focused on the usage
of abedSat and PicoSat. We only show the results of running IncPlan with abed-
Sat as the backend solver since exchanging abcdSat with PicoSAT resulted in
negligible performance differences. For the incremental SAT-solving performed
with IncPlan and abcdSat, we are only able to find errors in programs but cannot
prove their absence. The reason is the design of the incremental solver IncPlan.
It regards the encoding as a path to the error label that has to be found and if
there is no such path, the program does not terminate. To also be able to prove
the nonexistence of errors an analysis for repetition in the state space has to be
performed, which is part of future research.

Secondly, the IC3 algorithm was implemented and adjusted to the DimSpec
format in the tool MinireachIC3 [30]. The safety property P expresses that the
error state should not be reachable, and thus P is given by =G, G being the
goal formula of the DimSpec encoding. Thus, we are not only able to prove the
existence of errors but also their absence.

Using DimSpec for Bounded and Unbounded Software Model Checking 31

We ran both tools in parallel and took the results of the tool that terminated
first. As both tools are sound, this approach guaranteed the correct result while
circumventing disadvantages of each single approach, like the inability to prove
the absence of errors through the tool IncPlan. Thus, we are able to take full
advantage of the usability of the encoding for different solving techniques.

5.1 Benchmarks

We evaluated our approach using benchmarks from the Software Verification
Competition [6]. The SV-COMP is an annual competition for academic software
verification tools, with the aim to compare software verifiers. While we did not
submit our tool to the competition, the collected benchmarks serve as an excel-
lent evaluation basis for every verifier. All benchmarks are available at [32] and
we regarded the sub-folder ¢ with programs written in the language C.

The benchmark problem sets are organized by topics. From these bench-
marks, we selected all problems compatible with our current LLUMC imple-
mentation and thus obtained a total of over 200 problems as a benchmark set.
We excluded some benchmarks that included memory accesses or floating point
arithmetic. Furthermore, we excluded recursive and concurrent tasks due to the
inlining in our approach and thus leaving us with 95 incorrect and 107 correct
programs. The benchmarks vary between 14 and 1500 lines of code (LoC).

The evaluation was performed on a system with 64 CPUs with 2.3 GHz and
126 GB working memory. We set a time limit of 600s (wall-clock time) per bench-
mark problem. We decided to measure the wall-clock-time for the whole LLUMC
tool-chain. Due to using GNU parallel [33], we were able to run benchmarks in
parallel, but decided to use only 8 CPUs to limit run-time noise arising e.g. due to
processes sharing CPU caches. Our approach works sequentially, and parallelism
is only achieved by running several benchmarks at once. The DimSpec format
supports parallelism on the SAT level, the advantages remain to be evaluated
thoroughly in future research.

5.2 Evaluation

We compared our approach to the bounded model checking approach which
is implemented for example in the tools CBMC (C Bounded Model Checker)
[23] and LLBMC (Low Level Bounded Model Checker) [28]. Both tools, CBMC
and LLBMC, are powerful state-of-the-art verification tools, which also earned
a number of gold, silver and bronze medals in the SV-COMP competitions.

We created scripts similar to the respective SV-COMP submissions from
recent years, but handled some configurations differently. Benchmarking with
bounded model checkers requires choosing a suitable loop unroll bound B, result-
ing in a trade off between precision (increases with B) and speed (decreases with
B). For the competition both solvers used specific bounds that were determined
through “educated guesses” [23]. Furthermore, in the competition, if a loop-
bound was reached and the solver failed to produce an answer, an educated
guess was made for the result. In our evaluation, we used the loop unroll bounds

32 M. Kleine Biining et al.

10, 100 and 1000 (in that order), aborting the solving process as soon as a verifi-
cation result was achieved. When reaching a time or memory limit, we classified
the problem instance as unknown. The scripts, benchmark sets and detailed
results are available at [21].

1000

100 ?
"
©
c
o
(9]
(0]
% 10 ?
<
()
£
£
1]
CBMC —— |
LLBMC — |
LLUMC
0.1 | | | | | |
0 20 40 60 80 100 120 140

Problems

Fig. 1. Comparison of LLUMC with CBMC and LLBMC. The x-axis represents the
number of problems the solvers were able to solve and the y-axis the time they needed.

The results of our evaluation are shown in Fig. 1 and indicate both function-
ality and runtime advantages on the chosen benchmarks®. To explain the advan-
tage of our approach and the encoding over the state-of-the-art for bounded
model checking, we have to look at the solving approaches individually.

The advantage of the incremental solving with abcdSAT over bounded model
checking approaches is caused by our new approach of encoding the verification
problem and thereby the bound. With bounded model checking, programs are
unrolled to a fixed bound in an early phase of the analysis and the SAT encoding
is specifically created for this one bound. This fixed bound is mostly given by the
user and when not sufficient enough the verification has to be reattempted for
the new bound. With our approach, an unbounded low-level encoding is used,
with the unrolling bound being iteratively increased by the incremental backend
solver, which is able to reuse facts learned with lower bounds.

The chosen benchmark-set from the SV-COMP includes a large number of
problems with unbounded loops and loops with large bounds. While the basic
bounded model checking approach cannot handle unbounded loops, the abstrac-
tion refinement of MinireachIC3 is able to abstract the state space and prove the
absence of errors better then state-of-the-art tools. The number of benchmark

5 Detailed figures about the single solving approaches can be found online at https: //
baldur.iti.kit.edu/icfem2019/Appendix.pdf.

https://baldur.iti.kit.edu/icfem2019/Appendix.pdf
https://baldur.iti.kit.edu/icfem2019/Appendix.pdf

Using DimSpec for Bounded and Unbounded Software Model Checking 33

problems solved still indicates that proving the absence of errors for programs
with large loops is still a difficult task, but the approach using MinireachIC3
leads to a significant improvement.

This experimental evaluation illustrates the feasibility and potential of our
approach. We show that our flexible encoding supports a variety of different
approaches for solving the generated CNF in DimSpec format. In total, our
algorithm is competitive with existing bounded model checkers and can even
outperform them on some instances, especially ones with large loop bounds or
unbounded loops.

6 Conclusion and Future Work

In this paper we presented the DimSpec format for specifying properties of tran-
sition systems on the SAT level. It has already been successfully employed in
SAT-based automated planning in the past, and we showed that it can also be
advantageous to handle software verification problems. Our new DimSpec-based
encoding tool LLUMC can be used to express software verification problems
independently from loop-bounds, and thus can be used for both bounded and
unbounded model checking. Basing our encoding on DimSpec enables us to lever-
age powerful DimSpec solvers for software verification.

In future work the performance of the LLUMC approach could be improved
by enlarging the incremental steps of the solver. A first evaluation shows that
merging basic blocks in LLVM leads to performance improvements, indicating
that a large block encoding could be advantageous. Furthermore, adding a full
memory model to the LLUMC approach will enable us to support a wider range
of C language constructs.

References

1. Albarghouthi, A., Li, Y., Gurfinkel, A., Chechik, M.: UF0o: a framework for
abstraction- and interpolation-based software verification. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 672—678. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31424-7_48

2. Audemard, G., Simon, L.: Glucose in the SAT 2014 competition. SAT Compet.
2014, 31 (2014)

3. Babié¢, D., Hu, A.J.: Structural abstraction of software verification conditions.
In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 366-378.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73368-3.41

4. Balyo, T., Biere, A., Iser, M., Sinz, C.: SAT race 2015. Artif. Intell. 241, 45-65
(2016)

5. Barrett, C., Stump, A., Tinelli, C., et al.: The SMT-lib standard: version 2.0. In:
Proceedings of the 8th International Workshop on SMT, vol. 13, p. 14 (2010)

6. Beyer, D.: Second competition on software verification. In: Piterman, N., Smolka,
S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 594-609. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36742-7_43

https://doi.org/10.1007/978-3-642-31424-7_48
https://doi.org/10.1007/978-3-540-73368-3_41
https://doi.org/10.1007/978-3-642-36742-7_43

34

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

M. Kleine Biining et al.

Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., Sebastiani, R.: Software
model checking via large-block encoding. In: FMCAD, pp. 25-32. IEEE (2009)
Biere, A.: PicoSAT essentials. J. Satisf. Boolean Model. Comput. 4, 75-97 (2008)
Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. Adv. Comput. 58, 117-148 (2003)

Biere, A., Heljanko, K., Wieringa, S.: AIGER 1.9 and beyond. Technical report,
Johannes Kepler University, FMV Reports Series, Institute for Formal Models and
Verification, Johannes Kepler University, Altenbergerstr. 69, 4040 Linz, Austria
(2011)

Biere, A., Heule, M., van Maaren, H.: Handbook of Satisfiability, vol. 185. IOS
press, Amsterdam (2009)

Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70-87. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18275-4_7

Chen, J.: MiniSAT BCD and abcdSAT: solvers based on blocked clause decompo-
sition. SAT RACE (2015)

Eén, N., Soérensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502-518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3_37

Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519-531. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-73368-3_52

Gocht, S., Balyo, T.: Accelerating SAT based planning with incremental SAT solv-
ing. In: International Conference on Automated Planning and Scheduling (2017)
Gurfinkel, A., Kahsai, T., Navas, J.A.: SeaHorn: a framework for verifying C pro-
grams (competition contribution). In: Baier, C., Tinelli, C. (eds.) TACAS 2015.
LNCS, vol. 9035, pp. 447-450. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46681-0_41

Jha, S., Limaye, R., Seshia, S.A.: Beaver: engineering an efficient SMT solver for
bit-vector arithmetic. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol.
5643, pp. 668-674. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-02658-4_53

Khurshid, S., P/v%sAreanu7 C.S., Visser, W.: Generalized symbolic execution for
model checking and testing. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 553-568. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36577-X_40

Kleine Biining, M.: Unbounded Software Model Checking with Incremental SAT-
Solving. Master Thesis at the Karlsruhe Institute for Technology (2017)

Kleine Biining, M.: LLUMC (Low Level Unbounded Model Checker (2019).
https://github.com/MarkoKleineBuening /LLUMC-Publications

Koopman, P.: A case study of Toyota unintended acceleration and software safety.
Carnegie Mellon University Presentation, September 2014

Kroening, D., Tautschnig, M.: CBMC — C bounded model checker. In: Abrahém,
E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 389-391. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_26

Le Lann, G.: An analysis of the Ariane 5 flight 501 failure-a system engineering
perspective. In: Proceedings of the International Conference and Workshop on
Engineering of Computer-Based Systems, 1997, pp. 339-346 (1997)

Leveson, N.G., Turner, C.S.: An investigation of the Therac-25 accidents. Com-
puter 26(7), 18-41 (1993)

https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-540-73368-3_52
https://doi.org/10.1007/978-3-662-46681-0_41
https://doi.org/10.1007/978-3-662-46681-0_41
https://doi.org/10.1007/978-3-642-02658-4_53
https://doi.org/10.1007/978-3-642-02658-4_53
https://doi.org/10.1007/3-540-36577-X_40
https://doi.org/10.1007/3-540-36577-X_40
https://github.com/MarkoKleineBuening/LLUMC-Publications
https://doi.org/10.1007/978-3-642-54862-8_26

26.
27.

28.

29.

30.

31.

32.

33.

Using DimSpec for Bounded and Unbounded Software Model Checking 35

The LLVM Compiler Infrastructure. http://llvm.org/. Accessed Nov 2018

Merz, F.: Theory and Implementation of Software Bounded Model Checking. Ph.D.
thesis, Dissertation, Karlsruher Institut fir Technologie (KIT) (2016)

Merz, F., Falke, S., Sinz, C.: LLBMC: Bounded model checking of C and C++
programs using a compiler IR. Verified Software: Theories, Tools, Experiments
(2012)

Sorensson, N., Een, N.: An Extensible SAT-solver. In: 6th International Confer-
ence of the Theory and Applications of Satisfiability Testing, SAT 2003, Santa
Margherita Ligure, Italy, 5-8 May 2003, pp. 502-518 (2003)

Suda, M.: Property directed reachability for automated planning. J. Artif. Intell.
Res. (JAIR) 50, 265-319 (2014)

Suda, M.: Dimspec, a format for specifying symbolic transition systems (2016).
http://forsyte.at/dimspec

SV-Benchmarks. https://github.com/sosy-lab/sv-benchmarks/. Accessed 01 Nov
2018

Tange, O., et al.: Gnu parallel-the command-line power tool. USENIX Mag. 36(1),
42-47 (2011)

http://llvm.org/
http://forsyte.at/dimspec
https://github.com/sosy-lab/sv-benchmarks/

l‘)

Check for
updates

SMTBCF: Efficient Backbone Computing
for SM'T Formulas

Yueling Zhang®™), Geguang Pu®™), and Min Zhang®™)

East China Normal University, Shanghai 200062, China
ylzhang.ecnu@gmail.com, {ggpu,mzhang}@sei.ecnu.edu.cn

Abstract. SMT (Satisfiable Module Theory) formulas have been widely
used in practical applications. In some of the applications, including find-
ing program bugs, plainly solving an SMT formula is sufficient. For other
applications, besides solving the SMT formula, backbone variables of the
SMT formulas are also needed in order to tackle the practical problems
including finding invariant of certain properties in program analysis. This
paper proposed a new approach SMTBCF to compute backbone variables
for SMT formulas in order to accelerate the computing of backbone vari-
ables in SMT formulas and increase the efficiency of SMT formulas in
practical applications. SMTBCF is the first algorithm that uses the back-
bone predicates to find part of the backbone variables in the SMT for-
mulas. SMTBCEF is also the first algorithm that uses the constants in
the relating predicates of a backbone variable to quickly find the Unsat-
isfiable Evaluation of the backbone variable. In this way, SMTBCF is
able to find backbone variables of SMT formulas, reduce the number of
SMT solving in SMT backbone computing, and increase the efficiency of
backbone variables in SMT formulas.

Keywords: Backbone - SMT - Verification

1 Introduction

During the years, SAT formulas and its applications have been widely used in
computer science areas. Biere et al. [1] use SAT formulas to prove the correctness
of properties in the systems. By encoding hardware states into SAT formulas,
the BMC (Bounded Model Checking) method is able to prove the correctness
of some properties within the given bounded steps. Bradley [2] also encodes
hardware states into SAT formulas and uses it to check the safety properties of
the system, without unrolling the states, IC3 is able to prove the correctness of
some properties in all the possible states with the help of reachability analysis.

There are backbone variables in SAT formulas that are always assigned to
true in every solution of the formula. Both BMC and IC3 will benefit from back-
bone computing of SAT formulas since the SAT solving in them are incremental,
finding backbone variables in an earlier SAT solving will accelerate the efficiency
of the following SAT solving. The identification of backbone improves the perfor-
mance of random SAT solvers [3,4,6], Lin-Kernighan local search algorithms for

© Springer Nature Switzerland AG 2019
Y. Ait-Ameur and S. Qin (Eds.): ICFEM 2019, LNCS 11852, pp. 36-51, 2019.
https://doi.org/10.1007/978-3-030-32409-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32409-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-32409-4_3

SMTBCF: Efficient Backbone Computing for SMT Formulas 37

Travel Salesman Problem [5] and the post-silicon fault localization in integrated
circuits [7,8]. It also improves the performance of chip verification [9], graph
coloring problems [11], and the artificial intelligence strategies generation [10].
Therefore, computing backbone variables is useful in practice for SAT appli-
cations. Based on the impacts of backbone variables with SAT formulas, it is
convincing that backbone variables are also going to be helpful in SMT formulas
and applications.

Combined with specific background theories (logics) and propositional logic,
SMT formulas are able to express more complicate applications. For example,
Abdulla et al. [12] use SMT formulas and SMT solvers to check the security
of web applications, Barnett et al. [13] use SMT formulas and SMT solvers to
verify the correctness of programs, and Cadar et al. [14] use SMT formulas and
SMT solvers in symbolic execution to automatically generate testing cases for
programs. Katz et al. [15] use SMT formulas and SMT solvers (customized) to
find adversarial examples of Deep Neural Network and verify the robustness of
Deep Neural Network.

There are also backbone variables in SMT formulas, for a backbone variable
z of a given SMT formula F', there must exist at least one assignment s of x,
such that F' is not satisfiable if x is assigned to s. Similar to SAT backbone
variables, SM'T backbone variables are also able to accelerate the following SMT
solving, explain the reasons why a certain property holds or does not hold in an
SMT formula, which is helpful in practice.

For instance, in Linear Optimization applications, given an encoded SMT
formula F' and an object variable o, SMT solving is able to solve the maximum
value of o with the given constraints, but we are not able to find which vari-
ables of F' are important to keep o greater than the threshold ¢. By adding the
constraint v(o) > ¢ to the original SMT formula F' to build F’, and computing
the backbone variables of F’, important factors that keep the value of o greater
than ¢ are recognized, the backbone variables of F’ are exactly the important
factors. In program testing and verification, the reasons that cause certain errors
are able to found by backbone variables. In Deep Neural Network Robustness
verification, the reasons that cause adversarial examples are able to found by
backbone variables.

In this paper, an SMT formula F' is first converted to a corresponding SAT
formula Fy, if Fp, is not satisfiable, then F' is not satisfiable and no backbone
variable is in F. If F, is satisfiable and there are backbone variables in Fy, then
the corresponding predicates p in F' are the backbone predicates. For a backbone
predicate p in F', the SMT variable x € p is a backbone variable of F' if z is the
only variable in p. If there is no backbone variable in Fj, then SMTBCF selects
a variable z in F based on a certain sorting and checks if x is a backbone
variable. If there exists an assignment s of x such that when z is assigned to
s, F' is unsatisfiable, then z is a backbone variable. After finding a backbone
variable, SMTBCF computes the Largest Satisfiable Evaluation Range R% for
every backbone variable 2. There does not exist an assignment s’ of x such that
s’ ¢ R}, and F is satisfiable when the value of z is s'.

38 Y. Zhang et al.

There are 3 main contributions in this paper:

(1) A systematic framework from the view of Evaluation (Range) to define and
describe the backbone variable of SMT formulas has been proposed.

(2) An efficient algorithm to find the backbone variables of SMT formulas has
been proposed.

(3) An efficient algorithm to compute the Largest Satisfiable Evaluation Range
of a given backbone variable z for an SMT formula has been proposed.

2 Preliminaries

A SAT (Satisfiability) formula F' consists of SAT clauses, a SAT clause ¢ consists
of SAT variables, a SAT variable x is a Boolean variable, a literal [is either a
SAT variable x of its negation —z, x = - .

For a given SAT formula F, C(F) represents the set of clauses that are in F,
for a clause c if ¢ € C(F), then ¢ € F. For a given SAT clause ¢, X (c) represents
the set of variables that are in ¢, for a variable z if x € X (c¢), then = € c. For a
given SAT clause ¢, L(c) represents the set of literals that are in ¢, for a literal
lif I € L(c), then [€ c. For a given SAT formula F, X (F) represents the set
of literals that are in F, for a variable z if x € X(F'), the € F. For a given
SAT formula F', L(F) represents the set of literals that are in F', for a literal [
if x € L(F), thel € F.

A SAT formula F' is the conjunction of every clause in C'(F),
ie, F=/\,ce C(F). A SAT clause c is the disjunction of every literal in L(c),
ie, F=\/,l€ X(c).

Ezample 1 (SAT Formula). F = (aV b) A (aV —b) is a SAT formula, the clauses
in F' are a Vb and a V —b, the variables in F' are a and b, the literals in F' are
a, b and —b. The variables in a V —b are a and b and the literals in a V —b are a
and —b.

Similar to SAT formula, an SMT (satisfiable modulo theory) formula con-
sists of SMT constraints ¢, an SMT constraints consists of SMT predicates p,
an SMT predicate consists of SMT variables . an SMT variable is a variable
in the background modulo theory of the SMT formula. In this paper, we focus
on LIA (Linear Integer Arithmetic) Theory, such that an SMT variable is an
Integer variable. A predicate is a sub-formula consisted of SMT variable and
LIA computing symbols (operators), including equals to (=), greater than >,
less than <, addition (+)... A formula is a conjunction of constraints, the con-
junction/disjunction of predicates is a constraint.

X(F) is the set of SMT variables in a given formula F, if z € X (F) then z
is an SMT variable of F', denoted as € F. X(c) is the set of SMT variables
in a given constraint ¢, if € X(c¢) then x is an SMT variable of ¢, denoted as
x € ¢. X(p) is the set of SMT variables in a given predicate p, if © € X (p) then
x is an SMT variable of ¢, denoted as « € p. P(F') is the set of SMT predicates
in a given formula F, if p € P(F') then p is an SMT predicate of F', denoted as
p € F. C(F) is the set of SMT constraints in a given formula F, if ¢ € C(F)
then ¢ is an SMT constraint of F', denoted as ¢ € F.

SMTBCF: Efficient Backbone Computing for SMT Formulas 39

Ezample 2 (SMT Formula). F = ((z > 0)V (z+y > 0)) A (y =2) is an SMT
formula. The set of SMT constraints in F' are (x > 0)V (z+y > 0) and y = 2,
the SMT predicates in (z > 0) V (z +y > 0) are « > 0 and +y > 0, the SMT
variable in > 0 is x, and the SMT variables in z +y > 0 are x and y. > 0 is
an SMT predicate of F' and x + y > 0 is also an SMT predicate of F.

Definition 1 (SAT Assignment). A SAT assignment a is a function that
maps each variable x € F to either true or false, i.e., a : x — {0,1} for every
x € F. An assignment (value) of a variable x is the value of x has been assigned
in the given assignment, i.e., an assignment (value) of x is a(x), a is the given
assignment.

Given an assignment a, the value of F is either true of false, if the value of
F is true, then a is a model of F, denoted as a = F. If F' a satisfiable formula,
there must exist a model v |= F', if F' is an unsatisfiable formula, then for every
assignment a of F, a £ F.

Definition 2 (SMT Assignment). In SMT formulas with LIA as background
theory, an SMT assignment a is a function that maps each variable v € F to
Integers, i.e., a : x — I, for every x € F, where I is the set of all Integers. an
SMT assignment also assigns every predicate p € F to either true or false, i.e.,
a:p— {0,1} for every p € F. An assignment (value) of a variable x is the
value of © has been assigned in the given assignment, i.e., an assignment (value)
of x is a(x), a is the given assignment.

An SMT assignment a is called a model of F' if the value of F' under the
assignment of a is true, i.e., a = F.

For every SMT formula F, there is a corresponding SAT formula Fy of F.
The set of variables X (F}) is the same size as the set of predicates in P(F), i.e.,
for every p € F, there exists a SAT variable x;, € F}, and for every such (p,x)
in F' and Fy, there exists an SMT assignment ¢ and a SAT assignment a; such
that a(p) = a(xp).

Suppose Fp is a corresponding formula of an SMT formula F, F' is unsat-
isfiable if Fj is unsatisfiable, but F' might still be unsatisfiable even if Fj is
satisfiable, because F' needs to satisfy the constraints from the background the-
ory additionally.

Definition 3 (Predicate Valid Evaluation). For an SMT formula F' and a
predicate p € F, the Valid FEvaluation of x € p is an assignment x such that
there exists an assignment a, where a(p) = true and a(z) = s.

A Valid Range of an SMT variable x in a predicate p is the set of all the Valid
Evaluation of = € p. For simplicity, if there is only one SMT variable z in a
predicate p, this paper assumes that the Valid Range of = € p is a subset of the
Range of all the parameters in the background Modulo Theory, otherwise the
predicate p is removed since is trivial.

40 Y. Zhang et al.

Definition 4 (SAT Backbone Variable). For a SAT formula F, x is a back-
bone variable of F', if for every modelv |= F, v(x) = 0 for all the time or v(z) =1
for all the time. v(z) is always assigned to 1 in all the models of F, if x is called
a backbone literal of F', otherwise —x is called a backbone literal of F.

If a SAT variable x is not a backbone variable of F', then x is a non-backbone
variable of F', indicating that there exists at least two models vy, vo of F' such
that vi(x) = 0 and va(z) = 1.

Definition 5 (Satisfiable Evaluation of x). For an SMT formula F', an SMT
variable x € F, and an assignment s}, of x, st is called a satisfiable Evaluation
of z, if there exists a model v = F such that v(x) = s%.

For a constraint c € F', s7 is a satisfiable Evaluation of x to c if there exists
a model v |= ¢ such that v(z) = s%.

Definition 6 (Unsatisfiable Evaluation of z). For an SMT formula F, an
SMT variable v € F, and an assignment s%. of x, st is called the Unsatisfiable

Evaluation of x, if for every assignment a of F' such that a(x) = s%, a is not
the model of F.

For a constraint ¢ € F, s* is a Unsatisfiable Evaluation of x to c if there does
not exist a model v |= ¢ such that v(z) = sZ.

Similarly, for a non-backbone SAT variable x, there does not exist an Unsat-
isfiable Evaluation of x, for a backbone SAT variable x, the Unsatisfiable Eval-
uation of z is 0 (false).

Definition 7 (Satisfiable Evaluation Range of z). For an SMT formula
F, an SMT variable x € F', and a evaluation range r% for x, v is a satisfiable
Evaluation Range of x, if for every s € ri., s is a satisfiable Evaluation of x.

For a constraint ¢ € F, r? is the Satisfiable Evaluation Range of x to c if
Vs € r¥, s is a satisfiable Evaluation of x to c.

For a range r’ if r’ is a continuous sub-range of the Satisfiable Evaluation
Range of x, then 7’ is called a continuous Satisfiable Evaluation Sub-Range of z.

Definition 8 (Unsatisfiable Evaluation Range of). For an SMT formula
F, an SMT variable x € F, and a evaluation range v, for x, v is a Unsatisfiable
Evaluation Range of x, if for every s € 7’7}?, s is a Unsatisfiable Fvaluation of x.

For an SMT formula F' and an SMT variable z € F', the intersection of r%
and 7‘?}; is empyt, because a value s can not be both a satisfiable Evaluation of
z and an Unsatisfiable Evaluation of = at the same time.

For a constraint c € F, r%% is the Unsatisfiable Evaluation Range of x to c if
Vs € rA}%, s is a Unsatisfiable Evaluation of z to c.

For a range r’ if v’ is a continuous sub-range of the Unsatisfiable Evaluation
Range of x, then 7’ is called a continuous Unsatisfiable Evaluation Sub-Range
of x.

SMTBCF: Efficient Backbone Computing for SMT Formulas 41

Definition 9 (SMT Backbone Predicate). For an SMT formula F, p is a
backbone predicate of F, if for every model v = F, v(p) = 1.

Definition 10 (SMT Backbone Variable). For an SMT formula F, x is a
backbone variable of F, if there exists at least exist an assignment s of x, when
the value of x is s, F' is not satisfiable.

Lemma 1. Given an SMT formula F, a backbone variable x of F', there must
exist an Unsatisfiable Evaluation of x.

For every backbone variable x of an SMT formula F, the Largest Satisfi-
able Evaluation Range of z is denoted as R7, there does not exist a satisfiable
Evaluation s of x such that s ¢ R%. For every continuous Satisfiable Evaluation
Sub-Range of r% of x, r% C R%. The Largest Satisfiable Evaluation Range R%
of = is the intersection of the Largest Satisfiable Evaluation Range RY of z to
every clause ¢, i.e., R% =(r¥,ce F.

For every backbone variable x of an SMT formula F', the Least Unsatisfiable
Evaluation Range of z is denoted as Rjg, there does not exist a satisfiable Eval-
uation s of x such that s € RATV For every continuous Unsatisfiable Evaluation
Sub-Range of 7’% of z, r?f, C RA} The Least Unsatisfiable Evaluation Range If“};
of x is the union of the Least Unsatisfiable Evaluation Range Plg of = to every
clause c, i.e., R% =rz,ceF.

Notice that an Unsatisfiable Evaluation § of can not be computed by simply
solve the SMT formula —F'. For example, for the formula x +y > 0, z = 1 and
y = —2 is a model of =F, but x = 1 and y = 2 is also a model of F. Since the
computing of backbone variables only focus on a single variable x, it is easy for
both F' and —F are satisfiable with the same assignment of z. Therefore, the
quantifier SMT solving have to be used without consider the structure of the
SMT formula, in this case, the quantifier SMT formula is 3§Vv, s.t.v(x) = §,v |E
—F. Actually, neither = nor y is a backbone variable of F'.

3 Systematic Framework for Backbone Variables of SMT
Formulas

A systematic framework to define and describe the properties of backbone vari-
ables of SMT formulas form the range interval view is proposed in this section.
Given an SMT formula F', and a variable x, if = is a backbone variable of F,
then there exists at least an Unsatisfiable Evaluation of z, otherwise, there does
not exist an Unsatisfiable Evaluation of .

If = is not a backbone variable of F', the only way to know is using quanti-
fier SMT solving. If = is a backbone variable of F, then the Largest Satisfiable
Evaluation Range of x is a piece-wise interval, separating by the Unsatisfiable
Evaluations. Therefore, by using the constants in the constraints ¢ such that
x € ¢, an Unsatisfiable Evaluation § could be guessed, and the backbone check-
ing of x could be finished without quantifier SMT solving. Since quantifier SMT

42 Y. Zhang et al.

solving is extremely time consuming, by reducing quantifier SMT solving, effi-
ciency has been improved.

Figure 1 shows the Largest Satisfiable Evaluation Range of z in the formula
F=@x<-2AN>-4)V(@@<4Az>2)A(x+y > 0), as observed from
Fig. 1, the Largest Satisfiable Evaluation Range of x in F' are piece-wise intervals.
Actually, in SMT formulas that use Linear Integer Arithmetic as background
Modulo Theory, the evaluation range of an SMT variable = are always piece-
wise intervals. To compute the Largest Satisfiable Evaluation Range R% of z,
only Unsatisfiable Evaluation Ranges RAf; of x is needed, since the complementing

set of R% is RA%

-4 2 2 4

Fig. 1. Largest Satisfiable Evaluation Range of x for a given formula F’

A continuous Unsatisfiable Evaluation Range 7 is able to be computed with
an Unsatisfiable Evaluation § € 7. Therefore, by using the constants in each con-
straint ¢ such that = € ¢, Unsatisfiable Evaluations are computed and Unsatisfi-
able Evaluation Ranges are computed correspondingly. After finding all Unsat-
isfiable Evaluation Ranges from the constant in constraints, only one quantifier
SMT solving is needed to check there is no other Unsatisfiable Evaluation.

For a SAT formula, if 2 is a backbone variable of F', then either true or
false is an Unsatisfiable Evaluation of z, and applications of SAT formulas
are able to accelerate the computing efficiency by avoiding the Unsatisfiable
Evaluation. For an SMT formula, if x is a backbone variable of F', there must
exists at least an Unsatisfiable Evaluation of x, and there must exist at least one
Unsatisfiable Evaluation Range of z. In order to accelerate SMT applications
by avoiding the Unsatisfiable Evaluation Range of z, we need to compute the
Largest Satisfiable Evaluation Range of z, i.e., R%. Figure2 shows the overall
working flow of SMTBCF finding backbone variables in an SMT formulas and
computing the corresponding Largest Satisfiable Evaluation Ranges.

For a given SMT formula F'; SMTBCF first computes the corresponding SAT
formula F; of F. If F; is not satisfiable, SMTBCF terminates since F' is not
satisfiable, otherwise, SMTBCF computes the backbone variables of F},. For every
backbone variable xp, in Fj, there exists a corresponding backbone predicate p in
F, if there is only one single SMT variable z in F', then «x is a backbone variable
of F', and z is in the set of BX(F,0).

The set of backbone variables of F is BX(F), and SMTBCF gradually
finds all variables in BX(F). For the rest of variables X(F)\ BX(F,0)in F,
SMTBCF assigns a certain weight to each variable and sorts them in a descend-
ing order based on their weights. For a variable x, if x appears multiple times
in a constraint ¢ € F, then the weight of = is 3, if x appears in a constraint c
with some other known backbone variables z’, the weight of x is 2, for the rest

SMTBCF: Efficient Backbone Computing for SMT Formulas 43

of the variables, the weight of them are 1. With the computing of SMTBCF |,
the weights of variables may change. SMTBCF then start to check if a variable x
is a backbone variable or not, starting with the variables that have the greatest
weights. Notice that with more and more backbone variables found by SMT-
BCF , the variables that are originally weighted as 1 may increase their weights
to 2 as they may appear in the same constraints with some newly found back-
bone variables. During the checking, SMTBCF uses the constants in the related
constraints of = to find an Unsatisfiable Evaluation s quickly.

4 Design and Implementation of SMTBCF

PI' Find Unsatisfiable

v Evaluation of x

Fy
Unsat <l>ls F, satisfiable?
| SAT backbone computing

BL(F)
| Corresponding predicate in F
BP(F)
| x is the only variable inp
BX(F,0)

| Sorted List of X(F) \ BX(F,0),
X' based on variable weigths

A

End l check if x € X'is backbone with
BX(F) constants in predicates

l compute Ry for every x € BX(F)
RE,
x € BX(F)

Fig. 2. Working flow of SMTBCF

After finding all backbone variables in ', SMTBCF then computes the Largest
Satisfiable Evaluation Range R7 of = using the constants in each related con-
straints and the quantifier SMT solving. For a backbone variable x, SMTBCF uses
the constants in constraints that z appears and the known Largest Satisfiable

44 Y. Zhang et al.

Range of backbone variables that appears in the same constraint ¢ to find the
Unsatisfiable Evaluation Ranges of x, the Unsatisfiable Evaluation Ranges of
x found this way (without quantifier SMT solving) are in the set of —=R. After
finding all ranges in =R, SMTBCF uses only one quantifier SMT solving to check
if all Unsatisfiable Evaluation Ranges of x are found.

4.1 Find Backbone Variables Using Backbone Predicates

To find backbone predicates of a given SMT formula F', the corresponding SAT
formula Fj, of F' need to built. For every p € F, there exists a SAT variable x} in
Fy, the same conjunctions and disjunctions operate on every p are also operate
on every xp. For example, for an SMT formula F = ((z > 2) V (x < 4)) A (y >
3) A (x +y > 0), there are 4 predicates in F, including z > 2, x < 4, y > 3,
x +y > 0, then there are 4 SAT variables in Fy,, and z; denotes z > 2, z?
denotes = < 4, :172 denotes y > 3 and xg‘ denotes z + y > 0. The corresponding
SAT formula Fy, of F is F, = (x} V 22) Az} A x}. After building F}, this paper
uses on-the-shelf tool to compute backbone variables of Fy, including minibones
n [16], and DUCIBone in [17]

Theorem 1. Given an SMT formula F and an SMT predicate p € F, if p is
a backbone predicate of F', and x is the only SMT wvariable in p, then x is a
backbone variable of F.

Proof. For an SMT formula F' and a backbone predicate p € F, then for every
model v = F, v(p) = 1. And if z is the only SMT variable in p, then the
Valid Range of € p is a subset of the background modulo theory. The there
must exist an Unsatisfiable Evaluation s of = such that s is in the range of the
background modulo theory, but s is not in the Valid Range of z € p. Therefore,
x is a backbone variable of F'.

4.2 Intuition of Weighting Variables in SMT Formulas

Although SMTBCEF is able to find backbone variables using backbone predicates,
but there are still backbone variables that can’t be found using backbone pred-
icates. For example, given a formula F = (z > 3) V (z < 1), x is a backbone
variable of F' since when = = 2, F' is not satisfiable, but in the corresponding
SAT formula Fj, = a:é \Y, :cg, neither xé nor x% is a backbone variable of Fy. This
is because that the constraints with the background modulo theory is the reason
that making the SMT variable x as a backbone variable, and the constraints
related with the background modulo theory can not be transferred into the SAT
formula Fp. Therefore, there is no backbone variable in Fj}.

To deal with the constraints lost in the transferring, SMTBCF checks each
variable x € F' to determine if x is a backbone variable or not.

For the variables in X (F) \ BX(F,0), SMTBCF assigns weights to the vari-
ables and sorts the weights in a descending order to generate an ordered list of
X(F)\BX(F,0), which is X;. For a variable z in X§, if # appears multiple times

SMTBCF: Efficient Backbone Computing for SMT Formulas 45

in a constraint ¢ € F, then the weight of = is 3. If x is in the same constraint
¢ € F with a known backbone variable x’, then the weight of x is 2. Otherwise,
the weight of x is 1. With more and more backbone variables in BX (F') known
by SMTBCF , the weight of a variable may change to 2 (for the variables that
has the weight of 1 only).

Observation 1. Given an SMT formula F' and a constraint ¢ € F, if a variable
x appears multiple times in ¢ then x is more likely to be a backbone variable.

There are two kinds of reason for a variable to become a backbone variable in
an SMT formula, propositional logical reasons and modulo theory logical reasons.
In this paper, the modulo theory used is Linear Integer Arithmetic Theory, for
a constraint ¢ € F, if a variable x appears for multiple times, then there is a
chance for = to become a backbone variable because of the modulo theory logical
reasons.

Observation 2. Given an SMT formula F and a constraint ¢ € F, if there is
another known backbone variable x' € ¢, then x is more likely to be a backbone
variable.

For an SMT formula F' and a constraint ¢ € F, if ¢ already has a known
backbone variable 2/, then if 2’ is the only variable in a predicate p € ¢, the value
of p could be false in all the models of F', which may force another predicate p
to be assigned to true in all the models of F'. Therefore, the variable x € p may
become a backbone variable because of the constraint c.

Based on the two observations, the paper weights different variables differ-
ently. The different weighting could be considered as heuristic strategies.

After weighting all the variables in X (F') \ BX(F,0), SMTBCF sorts all the
weighted variables in an descending order based on their weights. The sorted list
of the variables is X;. SMTBCF then decide the variable in X, to be a backbone
variable or not one by one. Algorithm 1 shows the procedure used in SMTBCF to
decide whether a variable z is a backbone variable or not. At Line 2, Algorithm 1
starts a loop for every constraint ¢ € F' that has the current variable z, at Line 3,
Algorithm 1 starts a loop for every predicate p € ¢ that has the current variable
. At Line 4, Algorithm 1 gathers all constants appears in p. For each constant
c in p, Algorithm 1 checks the satisfiability of F' when z is assigned to c¢ at Line
6. If F is unsatisfiable with the current configuration (c), then c is an Unsatisfi-
able Evaluation of x, and x is a backbone variable of F'. Otherwise, at Line 11,
Algorithm 1 finds the constants in the Largest Satisfiable Evaluation Ranges of
all known backbone variables in p. At Line 12, Algorithm 1 then combines the
constants C' found in p, the constants R found in the range r of known backbone
variables in p, and the arithmetic symbols in p together, and generates a set of
new constants. The new constants are generated as follows: Suppose the constant
in p is ¢, a constant in the range of a known backbone variable in p is r, and one
of the symbol is o, the constants are cor, co (r+ 1), and co (r — 1). If there are
k constants in the ranges of known backbone variables and there are m symbols
in p, the number of new constants generated by the combination are 3 * k x m.

46 Y. Zhang et al.

For each new constant generated from Line 12, Algorithm 1 checks the satisfia-
bility of F' when z is assigned to a value const’ in the new constants at Line 14.

If F is satisfiable when z is assigned to const’, then Algorithm 1 uses quanti-
fier SMT solving at Line 19 to confirm that there is no Unsatisfiable Evaluation
of x and z is a non-backbone variable. Otherwise, x is a backbone variable.

If = is a backbone variable, z is added to BX (F') and the Largest Satisfiable
Evaluation Range of = is computed immediately. If = is a non-backbone variable,
z is added to NBX(F).

An example is given for Algorithm 1, for a given formula F' = (z > 3) A
(x +y < 5), Algorithm1 first finds all constants in F, which are 3 and 0.
For the constant 3, SMT(F,x,3) is not satisfiable, therefore, x is a backbone
variable and the valid range of z is (3,00). For the constant 4, SMT(F, z,4) is
satisfiable and SMT(F,y,4) is also satisfiable, the combine strategy is triggered
in Algorithm 1. The symbols (operators) of the combines are + and —, and the
new constants returned by the Combine(Const, R, symbols) are —1, 1, and 7,
and SMT(F,y,7) is not satisfiable, therefore, y is also a backbone variable and
the valid range of y is (—o0,1). Algorithm 1 has now successfully proved that
both x and y are backbone variables.

4.3 Compute Largest Satisfiable Ranges of Backbone Variables

After finding a backbone variable x, SMTBCF immediately computes the Largest
Satisfiable Evaluation Range of x. Since the Largest Satisfiable Evaluation Range
of known backbone variables are useful in the backbone checking of related
variables, i.e., variables that appear in the same constraint with x.

Algorithm 2 shows the procedure to compute the Largest Satisfiable Evalua-
tion Range of a backbone variable z. At Line 2, the Largest Satisfiable Evaluation
Range of x is initialized as the Valid of Range of Parameters in the Background
Theory, in ILA Theory, the valid range is Z. At Line 5, Algorithm 2 finds all
constants appears in the current predicate p, such that =z € p, and at Line 6,
Algorithm 2 finds all constants appears in the Largest Satisfiable Evaluation
Range of known backbone variables that also appears in the predicate, if there
is no known backbone variables in the predicate, then E is an empty set.

Algorithm 2 then combines the set of C, E, and the symbols in p together
to generate a set of new constants Const’, with the same strategy used in
Algorithm 1. Then Algorithm 2 starts a loop to check the satisfiability of F’ when
x is assigned to every new constant in Const’, if F' is not satisfiable when z is
assigned to current const’, it means const’ is an Unsatisfiable Evaluation of z.
Algorithm 2 uses upper boundary SMT solving to find the least Satisfiable Eval-
uation ub(const’) of x such that ub(const’) > const’ (at Line 11), and uses lower
boundary SMT solving to find the largest Satisfiable Evaluation b(const’) of
x such that const’ > Ib(const’) (at Line 12). Then (Ib(const’), ub(const’)) is a
continuous Unsatisfiable Evaluation Range of z, and is excluded from R% at
Line 13.

SMTBCF: Efficient Backbone Computing for SMT Formulas 47

Algorithm 1. Decide a Variable x to Be a Backbone Variable

1 Procedure CHECK(F,z, BX(F))
2 foreach c, s.t.z € c do

3 foreach p € c do
4 Const := Constant(p);
5 foreach const € C do
6 ret := SMT(F, x, const);
7 if /ret then
8 BX(F):= BX(F)U{z};
9 computeRange(x);
10 return true;
11 R := Range(p);
12 Const' := Combine(Const, R, symbols);
13 foreach const’ € Const’ do
14 ret := SMT(F, z, const’);
15 if /ret then
16 BX(F):= BX(F)U{z};
17 computeRange(x);
18 return true;
19 ret := SMT(F,z,q);
20 if /ret then
21 BX(F) := BX(F) U {z};
22 compute Range(x);
23 return true;
24 NBX(F):= NBX(F)U{z};
25 return false;

Algorithm 2 then checks if there still exists an Unsatisfiable Evaluation u in
the current R% at Line 14, if there does not exist such an Unsatisfiable Eval-
uation, then R% is the Largest Satisfiable Evaluation Range of z. Otherwise,
Algorithm 2 uses the Unsatisfiable Evaluation u to compute another continuous
Unsatisfiable Evaluation Range of z, updated R% by excluding the new Unsatis-
fiable Evaluation Range and check if there still exists an Unsatisfiable Evaluation
uw again (from Line 19 to Line 22). A detailed example of how Algorithm 2 works
is given in Sect. 5.1 with Table 2.

5 Efficiency Analysis

5.1 Demo Analysis

Given a formula F' = (x < 7V (z > 11 A2 < 13)V (z < 16 Az > 20)) A
(z +y < 0), the computing procedure of BBopt is shown in Table 1 and the
computing procedure of SMTBCF is shown in Table 2.

In Table 1, there are 11 steps needs to be executed to compute the backbone
variables and the Largest Satisfiable Evaluation Range of backbone variables

48 Y. Zhang et al.

Algorithm 2. Compute the Largest Satisfiable Evaluation Range of a
Backbone x

1 Procedure RANGE(F,)
2 R% :=1Z;

3 foreach c, s.tx € ¢ do
4 foreach p € c do
5 Const := Constant(p);
6 E := Evaluation(p);
7 Const' := Combine(Const, E, symbols);
8 foreach const’ € Const; do
9 ret := SMT(F, z, const’);
10 if Iret then
11 ub(const') := SMT(F, z, const’, u);
12 Ib(const') := SMT(F, z, const’,l);
13 % = R% \ (Ib(const’), ub(const'));
14 (ret,u) := SMT(F,z, R%);
15 if ret then
16 return R%;
17 else
18 while /ret do
19 U:=UU{u};
20 ub:= SMT(F, z,u);
21 Ib:= SMT(F,z,1);
22 % := R% \ (b, ub);
23 (ret,u) := SMT(F,z, R%);
24 return R%;

in F'. The second and third columns show the Satisfiable Evaluation or Unsatis-
fiable Evaluation found by the current SMT solving, the forth and fifth columns
indicate the current SMT solving is a Boundary SMT Solving or a Quantifier
SMT Solving. In total, there are 6 Quantifier SMT Solving and 5 Boundary SMT
solving executed.

In Table2, there are only 10 times of Plain SMT Solving and 1 time of
Quantifier SMT Solving are executed with the help of constants in the predicates.
A Plain SMT Solving is to check if the given SMT formula is satisfiable with the
given assignments to the variable x. The computing of a Plain SMT Solving is
relatively faster than the computing of a Boundary SMT Solving or a computing
of Quantifier SMT Solving. The efficient of SMTBCF is improved by using more
Plain SMT solving and less Boundary or Quantifier SMT Solving.

5.2 General Analysis

Comparing to the existing tool BBopt [18], SMTBCF has three advantages that
improves the efficiency. Firstly, SMTBCF uses the corresponding SAT formula F,
of an SMT formula F', by computing the backbone variables of F,, SMTBCF is

SMTBCF: Efficient Backbone Computing for SMT Formulas

Table 1. Backbone variables computing procedure of F' using BBopt

49

Step | Satisfiable Evaluation Unsatisfiable | B-Solving | Q-Solving
Evaluation

1 21 v

2 Continuous satisfiable range z>21 v

3 14 T <21 v

4 16 z>14

5 Continuous satisfiable range 6<ax<21l |V

6 13 <14

7 8 <13 v

8 11 T >8

9 Continuous satisfiable range 11 <z <13

10 7 T <8

11 | Continuous satisfiable range Tz <7 v

Table 2. Backbone variables computing procedure of F' using SMTBCF

Step | Unsatisfiable Evaluation P-Solving | B-Solving | Q-Solving
1 8,10,14,15,21

2 (7,11),(13,16), (20, +c0) |10

3 Continuous satisfiable range v

able to find backbone predicates in F' and find backbone variables in F' directly
from the backbone predicates, without using additional SMT solving.

Secondly, SMTBCF uses the constants in the predicates to find an Unsatis-
fiable Evaluation of z with a normal SMT solving, instead of a quantifier SMT
solving. Thanks to the efficiency advantage of the normal SMT solving com-
pared to the quantifier efficiency, SMTBCF improves the general efficiency of
SMT backbone computing.

Thirdly, in computing the Largest Satisfiable Evaluation Range of backbone
variables, SMTBCF is still able to use the information of the constants in the
predicates and the ranges of other backbone variables. With the help of these
constants, SMTBCF is able to enumerate large number of continuous Unsatisfi-
able Range of x using upper and lower boundaries SMT solving, which is also
more efficient than the quantifier SMT solving used in other approaches.

6 Conclusion and Discussion

This paper proposed a new method to compute backbone variables of SMT
formulas, using the backbone predicates of SMT formulas computed from the
corresponding SAT formula, constants in the predicates of the SMT formula,

50 Y. Zhang et al.

and constants in the ranges of known backbone variables. SMTBCF is the first
technique that uses backbone predicates and formula constants to compute the
backbone variables of SMT formulas efficiently.

SMTBCEF is designed for the Linear Integer Arithmetic (LIA) theory of SMT,
which is widely used in program analysis and verification industrial, for other
Arithmetic with continuous range for parameter values, SMTBCEF is able to adapt
with them.

Acknowledgements. Yueling Zhang is partially supported by the NSFC Projects
(Nos. 61572197 and 61632005). Geguang Pu was partially supported by NSFC grant
(No. 61572197). Min Zhang is partially supported by the NSFC Project (No. 61672012).

References

1. Biere, A.: Bounded model checking. Adv. Comput. 58(11), 117-148 (2003)

2. Bradley, A.R.: Understanding IC3. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012.
LNCS, vol. 7317, pp. 1-14. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-31612-8_1

3. Selman, B.: Local search strategies for satisfiability testing. Cliques Color. Satisf.
Second DIMACS Implement. Chall. 26, 521-532 (1993)

4. Zhang, W.: Backbone guided local search for maximum satisfiability. In: IJCAI
2013, pp: 1179-1186 (2003)

5. Zhang, W.: A novel local search algorithm for the traveling salesman problem that
exploits backbones. In: IJCAI 2015, pp. 343-350 (2015)

6. Montanari, A.: Solving constraint satisfaction problems through belief propagation-
guided decimation. arXiv preprint arXiv:0709.1667 (2007)

7. Zhu, C.S.: SAT-based techniques for determining backbones for post-silicon fault
localization. In: IEEE International High Level Design Validation and Test Work-
shop (2011)

8. Zhu, C.S.: Post-silicon fault localization using maximum satisfiability and back-
bones. In: FMCAD 2011 (2011)

9. Velev, M.N.: Formal verification of VLIW microprocessors with speculative exe-
cution. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp.
296-311. Springer, Heidelberg (2000). https://doi.org/10.1007/10722167_24

10. Berg, J.: Cost-optimal constrained correlation clustering via weighted partial Max-
imum Satisfiability. Artif. Intell. 244, 110-142 (2017)

11. Culberson, J.: Frozen development in graph coloring. Theor. Comput. Sci. 265(1),
227-264 (2001)

12. Abdulla, P.A., et al.: Norn: an SMT solver for string constraints. In: Kroening, D.,
Pasareanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 462-469. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21690-4_29

13. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364-387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192_17

14. Cadar, C.: KLEE: unassisted and automatic generation of high-coverage tests for
complex systems programs. In: OSDI, pp. 209-224 (2008)

https://doi.org/10.1007/978-3-642-31612-8_1
https://doi.org/10.1007/978-3-642-31612-8_1
http://arxiv.org/abs/0709.1667
https://doi.org/10.1007/10722167_24
https://doi.org/10.1007/978-3-319-21690-4_29
https://doi.org/10.1007/11804192_17

15.

16.

17.
18.

SMTBCF: Efficient Backbone Computing for SMT Formulas 51

Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kuncak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97-117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9_5

Janota, M.: Algorithms for computing backbones of propositional formulae. AT
Commun. 28(2), 161-177 (2015)

Zhang, Y.: Optimizing backbone filtering. In: TASE 2017, pp. 1-8. IEEE (2017)
Previti, A.: On Computing Generalized Backbones. In: ICTAT 2017, pp. 1050-1056.
IEEE (2017)

https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5

l‘)

Check for
updates

Automatic Verification for Node-Based
Visual Script Notation
Using Model Checking

Isamu Hasegawa!®™) and Tomoyuki Yokogawa2(®)
! SQUARE ENIX CO., LTD., Tokyo, Japan
haseisam@square-enix.com
2 Okayama Prefectural University, Okayama, Japan
t-yokoga@cse.oka-pu.ac. jp

Abstract. Visual script languages with a node-based interface have
commonly been used in the video game industry. We examined the
bug database obtained in the development of FINAL FANTASY XV
(FFXYV), and noticed that several types of bugs were caused by simple
mis-descriptions of visual scripts and could therefore be mechanically
detected.

We propose a method for the automatic verification of visual scripts in
order to improve productivity of video game development. Our method
can automatically detect those bugs by using symbolic model check-
ing. We show a translation algorithm which can automatically convert a
visual script to an input model for NuSMV that is an implementation of
symbolic model checking.

For a preliminary evaluation, we applied our method to visual scripts
used in the production for FFXV. The evaluation results demonstrate
that our method can detect bugs of scripts and works well in a reasonable
time.

Keywords: Formal methods - Symbolic model checking - Visual
script - Game development

1 Introduction

In the recent video game industry, game designers write game logic using script
languages. Since most of game designers are not familiar with writing programs,
the use of visual script languages allow designers to perform such scripting oper-
ation, and thus help improve the productivity of game logic development. In
particular, visual script languages with a node-based interface are widely used
in game development.

However, it is hard to maintain game logic written in visual script languages
because they can quickly become large and complicated during the course of
production, and thus become hard to verify or modify, and very prone to human
error.

© Springer Nature Switzerland AG 2019
Y. Ait-Ameur and S. Qin (Eds.): ICFEM 2019, LNCS 11852, pp. 52-68, 2019.
https://doi.org/10.1007/978-3-030-32409-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32409-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-32409-4_4

Automatic Verification for visual scripts using model checking 53

We examined the bug database obtained in the development of FINAL FAN-
TASY XV (FFXV) [7], and noticed that several types of bugs were caused indeed
by simple mis-descriptions of visual scripts. A system that can automatically
detect such mis-descriptions would had been a great help to our production.

Since most visual script implementations could be treated as a kind of state
machine [8], and model checking is a well-researched technique to automatically
verify finite state machines [5], we propose in this paper a method for automatic
verification of visual script notations with symbolic model checking [3] for effi-
cient game production. Our main contributions are the following. (1) To apply
symbolic model checking to verify visual scripts, we provide a translation algo-
rithm from a visual script description to an input model for NuSMV [5], that
is an implementation of symbolic model checking. (2) We show a preliminary
evaluation of our method by applying it to visual scripts which are produced in
the development of FFXV, and demonstrate that most of the verification tasks
are completed in a realistic amount of time.

The rest of this paper is organized as follows. We first introduce prerequisite
topics and show a motivating example in Sect. 2. Section 3 explains the proposed
method. Section 4 provides the translation algorithm from a visual script to an
input model which can be accepted to NuSMV. Section 5 explains how to write
node semantics. We show the results of our preliminary evaluation in Sect. 6 and
conclude our work in Sect. 7.

2 Background

2.1 Model Checking

Model checking is an automatic technique for verifying correctness properties of
a finite-state system [6]. The verification procedure is performed by an exhaus-
tive search over the state space. Since the size of the state space exponentially
increases with the number of system components, it is difficult to apply model
checking to large-scale systems. Symbolic model checking can efficiently han-
dle large-scale systems by replacing explicit state representation with boolean
formula.

NuSMYV [5] is one of the most successful implementations of symbolic model
checking. The model verified by NuSMYV is written by a specific input language
(called SMV language). The properties to be checked is expressed by temporal
logic LTL (Linear Temporal Logic) [14] and CTL (Computational Tree Logic) [1].

MODULE main
VAR
sw : {on, off};
ASSIGN
init(sw) := {on, off};
next (sw) := case
sw = on : off;
TRUE : sw;
esac;
CTLSPEC AG (AF sw = on)

Fig. 1. An example model described in SMV language

54 I. Hasegawa and T. Yokogawa

Figurel is an example of an input model to NuSMV. The input model
described by SMV language is composed of variable declaration part (described
by VAR) and transition relation definition part (described by ASSIGN). The prop-
erty is expressed as a LTL formula (described by LTLSPEC) or a CTL formula
(described by CTLSPEC).

This example has one variable sw which may have one of the two values on and
off. In its initial state, either on or off is assigned to sw non-deterministically.
In the case that sw is on, sw becomes off in the next state, or sw does not
change its value. Thus the sequence of the value of sw can be either on, off,
off ... (when the initial value is on) or off, off ... (when the initial value is
off). The CTL formula in this example has two CTL operators AG and AF.
AG represents “in Any path” and “Globally,” and AF represents “in Any path”
and “in the Future.” This formula expresses the following property: the system
always satisfies that sw necessarily becomes on. When the model is inputted
to NuSMV, NuSMV returns FALSE for this property because there is a path
where sw continues to be off. Figure 2 shows the result and the counterexample
generated by NuSMV. The counterexample shows the path where sw continues
to be off.

-- specification AG (AF sw = on) is false

-- as demonstrated by the following
execution sequence

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

sw = on

-- Loop starts here

-> State: 1.2 <-

sw = off

-> State: 1.3 <-

Fig. 2. A counterexample generated by NuSMV

2.2 Motivating Example

Many game development environments have their own visual scripting system
such as Blueprint in Unreal Engine [9,12,18]. Although there are slight differ-
ences among each visual scripting systems, their syntax and semantics are basi-
cally the same. In this paper, readers can assume Blueprint [18] as the visual
scripting system since its syntax and semantics are very similar to our in-house
visual scripting system.

In the development with node-based visual script languages, logic is described
as a node graph which is composed of nodes and edges. Nodes express values, vari-
ables, arithmetic operators, or control statements of the visual script, which cor-
respond to statements in text-based script languages such as if/while-statements,
assignments, and so on. Since the purpose of visual scripts is to control game
components such as sound, visual effect, and so on, many nodes express invoca-
tions of APIs of those components. For example, “Play SE” node notifies sound

Automatic Verification for visual scripts using model checking 55

component of the game system to start playing sound effect, “Fade Out” node
notifies screen effect component to start fade-out effect!. Edges connect nodes
through input and output ports, and express data and control flows.

Figure 3 shows an example of visual script. Note that we omitted data flow
edges in Fig. 3 such as the condition value inputted to If node. This is because
our method does not address the detection of bugs caused by an illegal data
flow. This example has the following behavior:

— When the Movie Clip node receives an input signal through the Start port, it
starts playing the movie clip, and sends output signal through the Finished
port when it finishes playing. If the movie clip is skipped by a game player,
it sends output signal through the Skipped port instead of the Finished port.

— The Set Event Mode node modifies the global flag variable “event mode”.
When it receives the input signal through the Enable or Disable port, the
event mode flag becomes true or false respectively. This example includes two
Set Event Mode nodes, and both of them modify the same variable instance
since the “event mode” variable is not a variable in the script but a variable
in the external game system.

— The If node is used for conditional branch like if-statement in text-based
languages. Its condition value is inputted through data flow port. As stated
above, we omit such ports.

— The global flag variable “event mode” must be true during playing the movie
clip, and must be false otherwise in order to change some game state during
playing movie such as disabling gamepad, etc.

Note that Movie Clip node has its own state transition, and sends output
Finished or Skipped independently from the original control flow. It means that
there can be multiple activated nodes and multiple activated control signals in
a graph. It is one of the significant differences of visual script languages from
Statecharts and a reason that we can not directly apply prior research to visual
script languages.

Set Event Mode

(OEnable OoutQf
Disable

Script Start Set Event Mode Movie Clip
Out Oy Enable Out OF=POStart Finished O
Disable Skipped g

Fig. 3. An example of node-based visual script (including a typical bug)

This example contains a bug that actually often occurred during the develop-
ment of FFXV. It appears that the False port of the If node has no connection.

1 “fade out” is a gradual transition from the game screen to blank image, used in
movies, games, etc.

56 I. Hasegawa and T. Yokogawa

Therefore, if Movie Clip branches to Skipped and then If branches to False, the
event mode flag is not changed and remains to be true. It causes incorrect behav-
ior since the event mode flag is true after playing the movie.

There were a wide variety of similar bugs during the development of FFXV,
e.g. “BGM is not changed correctly in some cases.”, “Enemy characters never
respawn in a specific condition.”, and so on. Moreover, since many game logic
scripts are written by game designers who are not familiar with writing pro-
grams, scripts often become large and complicated. Therefore, it is tough to find
those bugs by visual inspection, even though these are caused by trivial mis-
descriptions such as missing one node, or missing one edge, and so on. Our goal
is to detect those large amounts of trivial but hard-to-find bugs automatically
and exhaustively. Since our products already have a lot of massive scripts, we
should cover not only newly written scripts but also those existing scripts.

2.3 Related Work

Video games essentially have a large number of combinations of internal states
and external stimuli. This makes it difficult to detect problems which come out
under specific conditions by testing. Model checking has been applied to video
game developments since it can solve such problems by exhaustive verification.
Moreno-Ger et al. [13] proposed a method for verifying game scripts created in
(e-Adventure) platform using NuSMV. Radomski et al. [15] showed a framework
in which video game logics are modeled by State Chart XML (SCXML) formal-
ism and their properties can be checked by the SPIN model checker. Rezin et
al. [16] developed a method to model a multi-player game design as a Kripke
structure and to verify it by NuSMV. These studies show that applying model
checking to video game development is very promising and application to game
logic described by node-based visual scripts is also expected.

There have been a number of studies that have applied model checking to ver-
ification of node-based state transition system designs. Statecharts and its vari-
ants, such as UML state machine [17] and RSML (Requirements State Machine
Language) [11], are one of the most popular notations for describing state tran-
sition systems in a node-based manner. Chan et al. [4] provided a translation
from RSML notation to a model described by SMV language. This translation
procedure encodes components of the inputted RSML by SMV variables and
expresses changes of the components as transition relation. Zhao et al. [19] stud-
ied representation of Statecharts step-semantics as a Kripke structure, which is
a graph-based state transition representation, and carried out verification using
SMV model-checker. Jussila et al. [10] presented a representation of a subset
of UML state machines as Promela which is an input language of SPIN model-
checker.

In the semantics of Statecharts and its variants, their nodes represent states
and only simple actions (enter/exit or do action in the case of UML state
machine) can be assigned to each node. While in the visual script notations
that we focus, each node expresses some game logic computation which can be
performed individually and can have a particular semantics. Thus it is difficult

Automatic Verification for visual scripts using model checking 57

Converter Instance

Visual Specification
Script B Converter SMV model NuSMV Counter

= @a > o [

Fig. 4. System overview

to directly apply the existing procedures to the verification of such a visual script
notation. In this paper, we propose a method to translate from visual scripts to
models by SMV language.

3 Approach

3.1 System Overview

Figure4 shows the system overview of the visual script verification environ-
ment with NuSMV. This environment carries out verification by converting
a visual script into an SMV model. First, the system generates a converter
instance from specifications to be checked and the corresponding node seman-
tics. Then the visual script is converted into an SMV model by using the con-
verter instance. NuSMV can verify whether the inputted visual script satisfies the
specifications or not. When the specifications are not satisfied, NuSMV outputs
counterexamples.

In this section, we explain the overview of the SMV models that our method
generates from visual scripts (Sect. 3.2), specifications to be checked (Sect. 3.3),
and how to detect bugs using counterexamples (Sect. 3.4).

3.2 Model Overview

We first show the overview of SMV model generated by the proposed method
with an example. Figureb is an SMV model converted from the visual script
shown in Fig. 3.

SMYV Variables. We prepare four types of SMV variables to describe the
behavior of a visual script.

— Input and output variables represent activated ports of each node in visual
script. Since only one input/output port can be activated at the same time
in most cases?, we declare just one input/output variable for one node even
if the node has two or more input/output ports. E.g. SetEventMode2In and

2 There are a few exceptions such as a node that can accept 2 inputs simultaneously,
we address them in Sect. 4.2.

58 I. Hasegawa and T. Yokogawa

MODULE main
VAR
ScriptStarti0ut {none, Out};
SetEventMode2In {none, Enable, Disable};
SetEventMode20ut {none, Out};
MovieClip3In {none, Start};
MovieClip30ut {none, Finished, Skipped};
MovieClip3State {Stopped, Playing, Finished, Skipped};
SetEventMode4In {none, Enable, Disablel};
SetEventMode40ut {none, Out};
If5In {none, In};
If50ut {none, True, False};
EventMode : {true, falsel};
FAIRNESS MovieClip3State = Stopped;
ASSIGN
init (ScriptStartiOut) Out;
next (ScriptStarti0ut) none;
init (SetEventMode2In) none;
next (SetEventMode2In) := case
ScriptStarti0ut = Out Enable;
TRUE none;
esac;
init (SetEventMode20ut) := none;
next (SetEventMode20ut) := case
SetEventMode2In = Enable | SetEventMode2In = Disable Out;
TRUE none;
esac;
init (MovieClip3In) := none;
next (MovieClip3In) := case
SetEventMode20ut = Out Start;
TRUE none;
esac;
init (MovieClip30ut) := none;
next (MovieClip30Out) := case
MovieClip3State = Finished : Finished;
MovieClip3State = Skipped : Skipped;
TRUE : none;
esac;
init (MovieClip3State) := Stopped;
next (MovieClip3State) := case
MovieClip3In = Start Playing;
MovieClip3State = Playing {Playing, Finished, Skipped};
TRUE Stopped;
esac;
init (SetEventMode4In) none;
next (SetEventMode4In) := case
MovieClip30ut = Finished Disable;
If50ut = True Disable;
TRUE none;
esac;
init (SetEventMode40ut) := none;
next (SetEventMode40ut) := case
SetEventMode4In = Enable | SetEventMode4In = Disable Out;
TRUE none;
esac;
init (If5In) := none;
next (If5In) := case
MovieClip30ut = Skipped In;
TRUE none;
esac;
init (If50ut) := none;
next (If50ut) := case
If5In = In {True, False};
TRUE none;
esac;
init (EventMode) := false;
next (EventMode) := case
SetEventMode2In = Enable | SetEventMode4In = Enable
SetEventMode2In = Disable | SetEventMode4In = Disable
TRUE EventMode;
esac;
CTLSPEC AG(EventMode = true -> AF(EventMode = false))

true;
false;--

(€9
(1

(2)

(3)
(4)

(5)

(6)
(6)
(6)
(6)

(€8]
7

(8)

9

(10)
(11)
(12)
(13)
(13)
(14)
(15)
(15)

(15)
(15)

(16)

an)

(18)

(19)

Fig. 5. Converted SMV model

Automatic Verification for visual scripts using model checking 59

SetEventMode20ut (Fig.5 (1)) are the input and output variable for the left-
most Set Event Mode node in Fig. 3. The value domains of input/output vari-
ables are the names of ports and special value none which represents that no
port is activated. E.g. since Set Event Mode node has 2 input ports Enable
and Disable, the value domain of SetEventMode2In is none, Enable, and
Disable. When the value of SetEventMode2In is Enable, it means that the
input port Enable is active in the leftmost Set Event Mode node.

— Script variables represent variables used in visual scripts and states of external
components that the visual scripts interact with. E.g. the global flag “event
mode” stated in Sect. 2.2 is a flag variable of the external game system that the
visual scripts interact with, and is declared as a script variable EventMode
(Fig.5 (3)). The specification often specifies the correct behavior of those
variables.

— State variables represent the internal state of each node whose semantics has
state transition. E.g. MovieClip3State is the state variable for Movie Clip
node (Fig.5 (2)).

Control Flow. An edge in visual scripts express a portion of control flow that
is defined as a set of output port O and input port I, where [is activated iff O
is activated. Therefore, we can describe an edge as a value definition of an input
variable according to values of output variables in SMV models. E.g. the value
of SetEventMode2In becomes Enable when the value of ScriptStartiQOut is
Out (Fig.5 (5)). It describes that Out port of Script Start node is connected to
Enable port of the leftmost Set Event Mode node.

Thus the value transitions of input and output variables express the control
flow in visual scripts. For example, assuming that the control flow of Sect. 2.2
is: ScriptStart:0ut — SetEventMode:Enable — SetEventMode:0ut —
MovieClip:Start — MovieClip:Skipped — If:In — If:False , and Fig.6
shows the value transitions in this case.

Node Semantics. Value definition of output variables, script variables and
state variables are specified by semantics of each node. E.g. the node semantics
of Set Event Mode is: “when it receives input signal Enable or Disable, it edits
the global flag EventMode respectively, and immediately output signal through
Out port”. This node semantics corresponds to the definition of the variables
SetEventMode20ut and EventMode (Fig.5 (6), (17)).

3.3 Specification

A specification in this system consists of a specification formula, and the list of
script variable(s) used in the formula. For example, if we want to detect the bugs
stated in Sect. 2.2, the specification can be described as CTL formula Fig. 5 (19),
and the script variable Fig.5 (3). We can expect to verify those kinds of bugs
with symbolic model checking by modeling the visual scripts in SMV language.

60 I. Hasegawa and T. Yokogawa

-> State: 1.1 <- MovieClip3In = Start
ScriptStart10ut = Out -> State: 1.5 <-
SetEventMode2In = none MovieClip3In = none
. MovieClip3State = Playing
MovieClip3State = Stopped -> State: 1.6 <-

EventMode = false MovieClip3State = Skipped

-> State: 1.2 <- -> State: 1.7 <-
ScriptStart10ut = none MovieClip30ut = Skipped
SetEventMode2In = Enable MovieClip3State = Stopped

-> State: 1.3 <- -> State: 1.8 <-
SetEventMode2In = none MovieClip30ut = none
SetEventMode20ut = 0Out If5In = In
EventMode = true -> State: 1.9 <-

-> State: 1.4 <- If5In = none
SetEventMode20ut = none If50ut = False

Fig. 6. Value transition of the example control flow

In our system, users need to write a specification and corresponding node
semantics manually. However, users need to write them just once, and after
that users can verify scripts automatically. Therefore, we don’t think it is a big
problem.

3.4 Bug Detection Using Counterexample

As we stated in Sect. 3.2, a control flow of a node graph correspond to value
transitions of input and output variables. If the property given by CTLSPEC is
violated, NuSMV generates a counterexample which indicates the witness of
property violation. Since the counterexample can be obtained as the form of
the value transitions of SMV variables, we can identify the control flow which
causes the violation from the counterexample. For example, executing the model
in Fig.5 by NuSMV outputs a value transition shown in Fig.6. It means that
the control flow through Skipped port of Movie Clip node and False port of If
node causes violation of the specification. Thus we can detect a bug stated in
Sect. 2.2.

3.5 Scope and Limitations

Soundness. Strictly speaking, the behavior of our model is not exactly the same
as the actual behavior of target visual scripts especially from the viewpoint of
signal propagation delay. This is because our model needs one state transition
to propagate a signal, even though a visual script implementation usually has no
delay. For example, in the case of the following 2 signal propagations in Fig. 3,
the former is faster than the latter in our model, though both of them are the
same in visual script implementation. This difference might cause false positive
and false negative results of the verification.

— Movie Clip:Finished — Set Event Mode:Disable
— Movie Clip:Skipped — If:True — Set Event Mode:Disable

Automatic Verification for visual scripts using model checking 61

External Components. We also only focus on behaviors of scripts which are
independent of external components. This is because such behaviors of external
components are not documented completely and thus it is difficult to model
those behaviors. Even if it is difficult to model such behaviors completely, we
can partially capture them by assuming that those components behave non-
deterministically. For example, the behavior of Movie Clip node in Fig. 3 depends
on the external components such as “movie player” and “game player input”,
and we abstract those behavior as non-deterministic state transition (Fig. 5 (10)).
However, since this assumption allows the model to have non-existent behaviors,
it may cause false positive and negative.

State Explosion. When the SMV model becomes too large, it is impossible to
fully avoid state explosion problem. We address this topic in Sect. 6.

Scope. We might be able to avoid the above limitations by more strict model-
ing. However, since strict modeling can enlarge the model size and causes state
explosion easily, we decided to accept these risks. In fact, we currently target the
detection of obvious mis-descriptions of visual scripts as stated in Sect. 2.2 and
the risk is not a practical problem so far considering the result of our preliminary
evaluation.

4 Translation Algorithm

4.1 Translation Overview

The procedure that converts a visual script to a corresponding SMV model is
shown below with the example of the conversion from the visual script Fig. 3
to the SMV model Fig.5. Note that we can implement this conversion as a
fully automatic process. However we need to describe specifications and node
semantics manually. We explain those issues in Sect. 5.

1. Regarding the VAR section in SMV models, process the following steps for
each node in the visual script:

(a) Declare an input and an output variable for the node. Their value domains
are none and the name of the ports of the node. E.g. Set Event Mode node
in Fig. 3 has 2 input ports Enable and Disable and 1 output port Out, so
the input and output variables are like Fig.5 (1).

(b) If the semantics of the node has state transition, declare a state variable
for the node. E.g. Fig.5 (2) is a state variable for the Movie Clip node.

2. Add declaration of script variable(s) to VAR section according to the specifi-

cation, e.g. Fig.5 (3).

3. Add FAIRNESS constraints for each state variables, e.g. Fig.5 (4) (see also:

Sect. 4.3).

4. Regarding ASSIGN section in SMV models, process the following steps for
each node in the visual script:

62 I. Hasegawa and T. Yokogawa

(a) Convert each input edges of the node to the definition of the input vari-
able, e.g. Fig.5 (5) (see also: Sect. 4.2).
(b) Define the output variable and the state variable by applying the node
semantics, e.g. Fig. 5 (7)—(11) (see also: Sect.4.4).
5. Add the value transition rules for the script variable, e.g. Fig.5 (17)—(18).
6. Insert SPEC in SMV models from the specification (Fig.5 (19)).

4.2 Convert Control Flow Edges

In our SMV model, edges in visual scripts are described as definitions of input
variables as we stated in Sect. 3.2 Control Flow. Consequently, we can convert
edges with the following steps:

1. Define the initial value of the input variable as none, e.g. Fig.5 (12).

2. For each input edge to an input port of the node (from Portl of Nodel to
Port2 of the node), add a rule: Node10ut = Portl : Port2, e.g. Fig.5 (13).

3. Add the default rule that describes the case of no input signal, e.g. Fig. 5 (14).

Thus, we can define all the input variable according to graph structure of visual
scripts automatically.

Handling Simultaneous Inputs. As we stated in the Sect. 2.2, more than one
node in visual scripts can work in parallel. It means that a node might receive
multiple input signals simultaneously. Since only one value can be assigned to
an input variable in our model, other input signals are ignored in such case. It
might cause an incorrect behavior if some nodes are assumed to handle multiple
input signals simultaneously (fortunately these are very rare though).

To avoid this problem, we can declare two input variables for the node whose
semantics require to handle two input signals in parallel.

4.3 FAIRNESS Constraints

Some node semantics has the nondeterministic assignment for their state vari-
ables like MovieClip3State. This model accepts that it continues to have the
value Playing infinitely in the context of NuSMV. However, this model is not
reasonable, and is expected to finish in a short time. To avoid such a problem,
we introduce a fairness constraint which restricts the verification scope to only
“fair” state transition. Since our model intends that all nodes eventually return
to the initial state, we mechanically add fairness constraints for state variables
like Fig.5 (4). By adding this constraint, the behavior where the node never
returns to the initial state is not considered in verification by NuSMV.

Automatic Verification for visual scripts using model checking 63

4.4 Apply Node Semantics

Node semantics are given as templates of definition of output, state (if the node
has state transition) and script variables, e.g. Fig.7. Note that these defini-
tions only depend on the variables of the node itself, so we can define node
semantics independent from graph structure. When our conversion algorithm
add definitions of output and state variables for a node, it selects the appro-
priate templates for the node and applies them according to the context like
the variable names for the node. E.g. there are 2 Set Event Mode nodes, so our
conversion algorithm applies the templates (Fig.7) to SetEventMode20ut and
SetEventMode40ut (Fig.5 (6), (15)). However, writing those node semantics as
templates is a manual process. We address this issue in Sect. 5.

@SetEventMode:define:output_variable
init (<output_variable >) none;
next (<output_variable>) := case
<input_variable> = Enable | <input_variable> = Disable : Out;
TRUE : none;
esac;
@SetEventMode:rule:EventMode
<input_variable> = Enable | <input_variable> = Enable : true;

Fig. 7. An example of node semantics

5 Writing Node Semantics

As we stated in Sect. 4.4, node semantics are described as templates of output,
state and script variables definitions. We show how to describe those definitions
in this section.

Writing the semantics for every kind of nodes sounds very hard. However,
we can classify most of nodes into five types empirically (Sect.6). Since these
semantics are very similar in each class, we can describe node semantics for those
classified nodes with a small human cost.

5.1 Output Variables

In our model, value of an output variable describes when and how the node sends
output signals. The definition of an output variable is described according to
the semantics of the node. E.g. Set Event Mode nodes output signal immediately
when they receive input, so the value of SetEventMode20ut is changed to Out
when its input variable SetEventMode2In has the value except none (Fig. 5 (6)).
On the other hand, a Movie Clip node output signal after it finishes playing movie,
so the value of MovieClip30ut is not changed immediately (Fig.5 (7)).

64 I. Hasegawa and T. Yokogawa

Nondeterministical Branch. In the case of If node in Fig.3, it branches
True or False according to the condition value. A typical approach to model
this branch is to decide the output signal non-deterministically since we do not
consider data flow and external behavior which affects the condition value. As
shown in Fig.5 (16), the next value of If50ut is assigned to True or False
non-deterministically. Thus, NuSMV verifies the both branch of True and False
exhaustively.

5.2 State Transition

Some nodes have state transition semantics where the node differently behaves
for the same stimuli depending on its internal state. To model such a node, we
introduce the state variable that represents the internal state of the node.

In the case of Movie Clip node in Fig. 3, it starts playing the movie clip when
it receives an input signal, and then outputs Skipped if the game player skips
playing the movie, otherwise it outputs Finished when it finishes playing the
movie. With this behavior in mind, we can define the following four states for
the state variable MovieClip3State:

— Stopped: the node is in the initial state.

— Playing: the node receives input and playing the movie clip.

— Finished: playing movie has finished, and the node sends output through
Finished.

— Skipped: a game player has skipped playing the movie, and the node sends
output through Skipped.

With these states, we can model the semantics of the Movie Clip node with
the following steps:

1. The initial state is Stopped (Fig.5 (8)).

2. When the node receives the input signal through Start, the state is changed
to Playing (Fig.5 (9)).

3. When the state is Playing, the next state is either Playing, Finished, or
Skipped non-deterministically. This description represents the behavior of
waiting for completion of the movie playback (Fig.5 (10)).

4. When the state becomes Finished or Skipped, the node outputs signal
through Finished or Skipped respectively (Fig.5 (7)), and the state is back
to Stopped (Fig.5 (11)).

5.3 Script Variables

Script variables represent variables used in visual scripts and states of exter-
nal components that visual scripts interact. By defining Script variables and
describing the conditions for those variables, we can verify those conditions with
NuSMV. Note that we need not to define all the variables in visual scripts, but
minimum variables that we want to verify in the specification.

Automatic Verification for visual scripts using model checking 65

Table 1. Preliminary evaluation of our method

| # of nodes | # of vars | conv. timels] | eval. time[s] | detected?
#1| 156 356 5.434 192.786 False

#2| 94 214 3.878 3.330 False

#3| 37 84 1.746 0.056 False

#4 | 49 119 2.301 0.111 False

#5| 177 414 6.625 36.675 True

#6| 73 162 2.768 0.173 False
#7162 408 9.187 98.102 True
#8430 980 13.286 -

Env.: Intel(R) Core(TM) i7-3770 CPU @ 3.40 GHz/32 GB/Windows
7 (64 bit)/NuSMV 2.6.0

Figure5 contains a script variable EventMode that expresses the global flag
variable “event mode” in the game system. The value of EventMode is defined
according to the input of Set Event Mode nodes (Fig.5 (17)). The specification
for the script variable can be described in CTLSPEC description, we can check the
specification stated in Sect. 2.2 with NuSMV.

6 Preliminary Evaluation

For a preliminary evaluation, we implemented a prototype and applied it to the
visual scripts that are randomly selected from the scripts used in the production
for FFXV. However, we arbitrarily selected a very large script only as #8 so that
we can identify the limitation on the script size of our method. Table1 shows
the results of the evaluation. The column descriptions are the following:

— # of nodes: The number of visual script nodes in the target script.

— # of vars: The number of SMV variables in the generated SMV model.

— conv. time: Conversion time from the visual script to the SMV model. We
tried 5 times for each script and adopted a median value of those trial.

— eval. time: Execution time of NuSMV for the model. We tried 5 times for
each script and adopted a median value of those trial.

— detected?: Whether NuSMV detected a problem in the script or not.

Node Semantics. We prepared an encoding by SMV language for each node
in the scripts. As stated in Sect. 5, we can straightforwardly prepare an encoding
for nodes with simplified semantics. The eight scripts shown in Table 1 have 164
kinds of nodes, and they are classified as follows:

1. single output: 98 kinds of nodes.
2. multi-outputs with conditions (non-deterministic choice): 7 kinds of nodes.
3. multi-outputs with state-transition: 14 kinds of nodes.

66 I. Hasegawa and T. Yokogawa

4. multi-outputs with conditions (non-deterministic choice) and state-transition:
12 kinds of nodes.

5. entry point: 3 kinds of nodes.

6. node with custom semantics: 30 kinds of nodes.

30 kinds of nodes have custom semantics and we manually prepared encodings
for them. However, we can mechanically translate the 134 kinds of nodes (82%)
which are classified to (1) to (5) into the SMV model. This result demonstrates
that our translation method has enough availability in practical use.

Results. Regarding precision, our method found counterexamples on two scripts
during the preliminary evaluation. We confirmed with the game designers that
the counterexamples are not false positives.? This result demonstrates that our
method can detect the specific types of bugs that we are focusing on.

Regarding recall, we also checked these scripts by visual inspection. As long
as our inspection, there was no false negative.

Limitation. It appeared that our algorithm cannot handle very large scripts,
since the verification of #8 had not finished within 3 h. Improving our algorithm
to handle those large scripts is future work.

7 Summary and Future Work

We described an automatic verification method for node-based visual script nota-
tion for efficient game production. Our method automatically converts visual
script implementation to the input model for NuSMV. We confirmed through
a preliminary evaluation that our method can detect the specific types of bugs
that we are focusing on in realistic time on most of the visual scripts used in the
production for FFXV.

A next step for extending this work would be compositional verification [2].
It appears that there are some very large scripts used in the production for
FFXV, that our method cannot handle. If we can split the model and verify
those sub-models separately, we can reduce the exponential order of the verifi-
cation and expect that those verifications can be handled in a reasonable time.
Also, if we can verify more than one script together, we can track the control flow
across the scripts and can expect to reduce false positives/negatives. Composi-
tional verification might make it possible to verify multiple models too. Another
next step would be the automated generation of node semantics. Currently, we
need to write node semantics manually. If we can extract semantics from node
implementation, we can increase the range of automation of our method.

3 According to the game designers, those scripts are used only in the trial version, so
they will not fix the bugs though.

Automatic Verification for visual scripts using model checking 67

Acknowledgment. We wish to thank the collaborative researchers for helpful dis-
cussions. We also wish to thank the FINAL FANTASY XV development team for
supporting our research. UNREAL ENGINE is a trademark or registered trademark
of Epic Games, Inc. Windows is a trademark or registered trademark of Microsoft
Corporation. All other trademarks are the property of their respective owners.

References

10.

11.

12.

13.

14.

15.

16.

17.

Ben-Ari, M., Pnueli, A., Manna, Z.: The temporal logic of branching time. Acta
Informatica 20(3), 207-226 (1983)

Berezin, S., Campos, S., Clarke, E.M.: Compositional reasoning in model checking.
In: de Roever, W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS,
vol. 1536, pp. 81-102. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-
49213-5_4

Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hawng, L..J.: Symbolic model
checking: 10%° states and beyond. Inf. Comput. 98(2), 142-170 (1992)

Chan, W., et al.: Model checking large software specifications. IEEE Trans. Softw.
Eng. 24(7), 498-520 (1998)

Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: a new symbolic model
verifier. In: Halbwachs, N., Peled, D. (eds.) CAV 1999. LNCS, vol. 1633, pp. 495—
499. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48683-6_44
Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

FINAL FANTASY XV. http://www.jp.square-enix.com/ff15/

Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Pro-
gram. 8(3), 231-274 (1987)

Hasegawa, 1., Nozoe, R., Ono, T., Koyama, M., Ishida, T.: Visual effects of final
fantasy XV: concept, environment and implementation. In: ACM SIGGRAPH 2016
Talks, SIGGRAPH 2016, pp. 23:1-23:2. ACM, New York (2016)

Jussila, T., et al.: Model checking dynamic and hierarchical UML state machines.
In: Proceedings of the 3rd International Workshop on Model Development, Vali-
dation and Verification (MoDeVa 2006), pp. 94-110 (2006)

Leveson, N.G., Heimdahl, M.P.E., Hildreth, H., Reese, J.D.: Requirements specifi-
cation for process-control systems. IEEE Trans. Softw. Eng. 20(9), 684-707 (1994)
Lumberyard Script Canvas. https://docs.aws.amazon.com/lumberyard/latest/
userguide/script-canvas-intro.html

Moreno-Ger, P., Fuentes-Fernandez, R., Sierra-Rodriguez, J.L., Fernandez-Manjoén,
B.: Model-checking for adventure videogames. Inf. Softw. Technol. 51(3), 564-580
(2009)

Pnueli, A.: A temporal logic of concurrent programs. Theor. Comput. Sci. 13,
45-60 (1981)

Radomski, S., Neubacher, T.: Formal verification of selected game-logic specifi-
cations. In: Proceedings of the 2nd EICS Workshop on Engineering Interactive
Computer Systems with SCXML, pp. 30-34 (2015)

Rezin, R., Afanasyev, 1., Mazzara, M., Rivera, V.: Model checking in multiplayer
games development. In: 2018 IEEE 32nd International Conference on Advanced
Information Networking and Applications (AINA), pp. 826-833 (2018)
Rumbaugh, J., Jacobson, 1., Booch, G.: The Unified Modeling Language Reference
Manual, 2nd edn. Pearson Higher Education, London (2004)

https://doi.org/10.1007/3-540-49213-5_4
https://doi.org/10.1007/3-540-49213-5_4
https://doi.org/10.1007/3-540-48683-6_44
http://www.jp.square-enix.com/ff15/
https://docs.aws.amazon.com/lumberyard/latest/userguide/script-canvas-intro.html
https://docs.aws.amazon.com/lumberyard/latest/userguide/script-canvas-intro.html

68 I. Hasegawa and T. Yokogawa

18. Unreal Engine 4 Blueprints. https://docs.unrealengine.com/en-US/Engine/
Blueprints/

19. Zhao, Q., Krogh, B.H.: Formal verification of statecharts using finite-state model
checkers. IEEE Trans. Control. Syst. Technol. 14(5), 943-950 (2006)

https://docs.unrealengine.com/en-US/Engine/Blueprints/
https://docs.unrealengine.com/en-US/Engine/Blueprints/

®

Check for
updates

A Reo Model of Software Defined
Networks

Hui Feng!®™, Farhad Arbab'2, and Marcello Bonsangue'+?

1 LIACS, Leiden University, Leiden, The Netherlands
2 CWI, Amsterdam, The Netherlands
{h.feng,f.arbab,m.m.bonsangue}@liacs.leidenuniv.nl

Abstract. Reo is a compositional coordination language for component
connectors with a formal semantics based on automata. In this paper,
we propose a formal model of software defined networks (SDNs) based
on Reo where declarative constructs comprising of basic Reo primitives
compose to specify descriptive models of both data and control planes of
SDNs. We first describe the model of an SDN switch which can be com-
pactly represented as a single state constraint automaton with a memory
storing its flow table. A full network can then be compositionally con-
structed by composing the switches with basic communication channels.
The reactive and proactive behaviour of the controllers in the control
plane of an SDN can also be modelled by Reo connectors, which can
compose the connectors representing data plane. The resulting model is
suitable for testing, simulation, visualization, verification, and ultimately
compilation into SDN switch code using the standard tools already avail-
able for Reo.

Keywords: Formal model - Software defined networks * Reo -
Constraint automata - Component composition - Coordination

1 Introduction

Since the concept of software defined network (SDN) was introduced in 2006 [9]
it has become increasingly popular in both academia and industry as a new
architecture for operating and managing computer networks via the OpenFlow
protocol [19]. In traditional networks, the control plane (where the packet for-
warding strategy is set up) is tightly coupled with the data plane (where the
actual packet forwarding happens) and distributed in a multitude of hardware
devices. Because no entity has a global view of the network, and the size and
complexity of today’s networks are very large, it has become extremely compli-
cated to program network-wide decisions for end-to-end policies and to verify
their compliance with global objectives.

Different from traditional network, SDN offers a network architecture that
decouples data from its routing control, and places network intelligence and

This research is supported by China Scholarship Council.

© Springer Nature Switzerland AG 2019
Y. Ait-Ameur and S. Qin (Eds.): ICFEM 2019, LNCS 11852, pp. 69-85, 2019.
https://doi.org/10.1007/978-3-030-32409-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32409-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-32409-4_5

70 H. Feng et al.

states in a logically centralized routing control entity, the so called controllers.
Controllers operate independently from network switches which contain pro-
grammable forwarding tables that are set up and managed by the controllers.
Since controllers can be programmed, SDN enables the application of formal
methods to prove the correctness of computer networks. In the recent years sev-
eral formal models of SDN (e.g. [2,15,16]) have been proposed in order to test
or check that a network behave correctly.

In this paper we present a formal model of SDN based on Reo [3], a graphical
language for compositional construction of interaction protocols, manifested as
connectors. A connector consist of several typed channel and nodes, arranged in
a graph of edges and vertices. Every edge in this graph represents a channel of
a specific type and every vertex represents a node. The type of a channel deter-
mines its data-flow behaviour. Nodes regulate data-flow by non-deterministically
selecting data items available through their incoming channel ends and replicat-
ing them through their outgoing channel ends. Nodes with both incoming and
outgoing channel ends are called mixed nodes. Nodes with no incoming channel
end are called source nodes, and those with no outgoing channel end are called
sink nodes. Source and sink nodes collectively comprise the boundary nodes of
a connector, forming the interface that regulates its communication with the
environment. Every connector can be described by functional constraints that
relate the timing and the contents of the data-flows at its interface [7]. Reo was
originally introduced as a coordination language. Since its introduction, how-
ever, Reo has become a domain-specific language for compositional specification
of protocols based on an interaction-centric model of concurrency [4,14].

Using Reo we regard components in an SDN as constraints imposed on the
interactions of parties engaged in the processing of network packets. Starting
with a small set of simple constraints, we obtain a declarative descriptions of
switches in the data plane as well as controllers in the control plane. Composition
of these components is supported through other simpler connectors which give
a global description of the topology of the network.

The formal semantics of Reo is based on automata [7] and as such it supports
formal analysis, testing and verification as well as distributed automatic code
generation [14]. For a more compact representation and for enabling constraints
depending on stored data we consider basic channels with memory, and as such
we present a variation of the original semantics of Reo to support constraints on
stored and to be stored data. The result is a compact finite state model for SDN
particularly suited for formal verification using techniques as in [17]. While we are
only considering functional modelling in this paper, extensions for capturing the
notions of time, quality of service, resources, as well as probabilistic behaviour
can be captured by similar extension of the underlying Reo model [6].

In order to scale up to handle large networks, our resulting SDN model is
compositional in the sense that the meaning of the entire computer network is
obtained by composing that of the individual models of the switches, network
topology, and controllers. The resulting model is independent from the possibly
infinite sequences of packets traversing the network.

A Reo Model of Software Defined Networks 71

Recent interest in the application of formal methods to software defined net-
works started with VeriCon [8], an interactive verification system based on first
order logic to model admissible network topologies and network invariants. Sim-
ilar to our model is a finite state machine model of SDN introduced in [25]. In
this work model checking is possible via a translation to binary decision dia-
grams, under a similar assumption to ours: controllers are described as finite
state machines. Another relevant work on automated verification is [22]. Our
approach however is based on a declarative descriptions of controllers, switches,
and network topology as a Reo circuits, whose automatic composition yields a
finite automaton.

Different from our declarative approach, [1] proposes an actor-based mod-
elling to verify concurrent features of SDN via the ABS toolsuite. The use of
automata in our work instead of actors make it easier to specify real time and
other quantitative properties of SDN. We do not explore this direction in this
paper, leaving it for future work. Variation of regular expressions have been very
successful in modelling network programming languages [2,21,23]. In particular
NetKAT offers a sound and complete algebraic reasoning systems with an inter-
esting coalgebraic decision procedure. However NetKAT models only a stateless
snapshot of the data plane traversed by a single packet. It does not support
update of flow tables nor routing of multiple packets. TLA+ [18] has also been
used to model the behaviour of SDN but in a very restrictive manner, allowing
only a single switch [16]. Formal models are used not only to verify properties
of an SDN such as consistency of flow tables, violation of safety policies, or for-
warding loops, but also for finding flaws in security protocols using CSP and the
model checker PAT [24].

This paper proceed as follows. In Sect.2 we give a brief introduction to the
main concepts of software defined networks, while in Sect.3 we introduce Reo
and give a new automata based semantics using memory cells for storing data.
This model is used in Sect.4 where we present a Reo circuit for the data plane
and the control plane of an SDN. We conclude with an example showing the
semantic difference between two controllers.

2 A Primer on Software Defined Networks

Network management includes many different tasks that, traditionally, have been
realized through manufacturer-specific low-level languages for the configuration
of hardware network devices, e.g., switches and routers. The primary function
of a network management task is to ensure transport of packets, and entails
two planes: the control plane for making routing decisions and the data plane
concerned with packet forwarding. In traditional networks, the control plane is
coupled with the data plane on each hardware device. As such the control plane
is highly distributed, with no global view of the network, making it impossi-
ble to program network-wide decisions and verify their compliance with global
specifications.

72 H. Feng et al.

SDN offers a network architecture that simplifies the design and deployment
of network management tasks: the control plane is a logically centralized con-
troller that gathers information from the data plane and provides a global view
to applications running on top of the controller. These applications make packet
routing decisions based on the global view and distribute the decisions to the
data plane via the controller using the OpenFlow protocol [19].

Each switch in the data plane consists of a number of ports where packets
are received or forwarded. Further, each switch is connected to at least one
controller, from which it may receive or to which it may send messages. The
basic messages forwarded from switch to switch are packets. A packet consists
of a finite set of fields, grouped in header information and pure data, as the two
packets in the example below show, where the header of each packet contains
the information about the tcp and ethernet destination address of the packet:

[tcp_dst:22, eth_dst:11[data: d1| [tcp_dst:23, eth_dst:11[data: d2]

Forwarding of packets is implemented in each switch through a flow table,
a memory store consisting of an ordered set of pairs (b, a). Here b is a Boolean
condition on the packet fields (the so called matching criteria) and a is the
corresponding action to be executed on the matching packet. The order of the
matching-action pairs gives a priority on the application of the matching condi-
tion. There are basically three types of actions: forwarding a packet to one or
more ports of the switch, dropping a packet, and updating a field of a packet
with some value. For example, the leftmost packet above matches the first rule
of table below and it is forwarded to the output ports 3 and 4. The rightmost
packet however matches only the last rule and it is forwarded to port 1 after its
field tcp-dst is updated to 22.

Matching condition Action
tcp_dst:22 Forward[3, 4]
tcp-dst:23, eth_dst:12 | drop

true tcp-dst := 22; Forward[l]

Controllers and switches communicate through messages. A PktIn message
is a packet sent from a switch to a controller, typically to be processed there or to
trigger an update of the flow tables. A PktOut message sent from the controller
to a switch consists of a packet together with a flow table action to be executed
by the switch. This way a packet need not pass through the flow table but is,
for example, immediately forwarded to other switches.

The flow table of a switch is updated by FlowMod messages, another type
of message from a controller to a switch. Each FlowMod message consists of a
ModType t (Add, Remove, Modify), a matching condition b and an action a. If ¢
= Add then the pair (b,a) is added on top of the table (higher priority), while
if ¢ = Modify then the first pair in the flow table (V',a’) with b implying b’ is

A Reo Model of Software Defined Networks 73

substituted with the pair (b,a). In remaining case when with ¢ = Remove the
first pair in the flow table (b',a’) with b implying b is removed from the table.
In this case the action a does not play any role and therefore can be considered
empty. Those three types of messages plus dedicated packets to communicate
data allow controllers to gather information about the network and manage it.

3 Reo and Constraint Automata

Reo is a coordination language for compositional construction of component con-
nectors [3]. The emphasis in Reo is on connectors, their behaviour and composi-
tion out of simple channels. Reo can also be used to define an interaction proto-
col as a connector, a graph-like structure that enables (a)synchronous data flow
along its edges. Each edge is called a channel and it specifies constraints on the
flows of data at its ends. A channel end is either a source end through which the
channel accepts data, or a sink end through which the channel offers data. Mul-
tiple channel ends coincident at a vertex of the connector together form a node.
Nodes have predefined ‘merge-replicate’ behaviour: a node repeatedly accepts a
datum from one of its coincident sink ends, chosen non-deterministically, and
offers that datum through all of its coincident source ends.

3.1 Constraint Automata

Constraint automata are a formalism to describe the “behaviour” of Reo chan-
nels and their composition as connectors [7]. Constraint automata can be thought
of as conceptual generalizations of finite state automata where data constraints
influence applicable state transitions.

We assume a finite set D of data ranged over by d, a finite set P of ports
ranged over by p,q (note that ports in Reo are distinct from ports in SDN
switches), and a finite set M of memory cells ranged over by m. Further, let F
be a set of function symbols and P a set of predicate symbols. Each predicate
symbol and each function symbol comes with an arity, the number of arguments
it expects. A term is defined as follows:

te=d|p|m|m®| ft,..,1t)
Terms are used in constraints defined by the following predicate formulas:
¢ = Tlp=tim=t|m*=t|Plt,..t) [9N | 0

The constraint p = ¢ denotes the equality between the value passing through the
port p, and the value obtained by evaluating the term ¢; m = t is the equality
between the value stored in the memory m before evaluating the constraint and
the value denoted by t; m*® = t is equality between the value stored in the memory
m immediately after the evaluation of the constraint and the value denoted by
t. The others are just the usual constraints.

74 H. Feng et al.

In order to define the satisfaction of constraints, we assume the existence of
a function f :D® — D for each f € F of arity n, and a subset P C D™ for
each predicate symbol P € P of arity m. For fixed sets of input ports I, output
ports O and hidden ports H, the evaluation of constraint is defined by using the
function a:IUOUM — D, , and an environment 1: H — D, assigning values to
hidden ports. « is used for the visible components of a Reo connector. Here (A)
represents the value passing though the port A unless a(A) =L that denotes the
absence of flow of data though port A. Similarly «(m) denotes the value stored
in the memory cell m.

We denote by At the set of all atoms «. Note that m® is not a part of an
atom, because it refer to the value of m after the evaluation of a transition.
Therefore we need pairs of atoms, one for the current values stored in memory
cells, and another for storing the side effect of evaluation, i.e., the value of a
memory cell after the evaluation. Evaluations of guards is defined inductively as
follow:

a1 F:n T

aoy Ey p=t it ai(p) = [t]3, a,

ajog =y, m=t ifft ai(m) = [t]7, 4,

ajog =, m* =t iff ao(m) = [t]7, 4,

10):77 P(tl,...,tn) iff <[[t1]]glo¢27"‘7[[tn]]1o7qa2> cP
aray =, o1 A do iff ooy @1 and aras =, @0
109):17 ﬂ(ﬁ iff 1009 bén ¢

Finally, we define the evaluation of a guard without hidden ports as follows:
a1z = ¢ if and only if there is n such that cias =, ¢.

Here [[t]2. . denotes the value of the term ¢ and is defined inductively by:

o
[=d
bl = {00 PS40
n(p) ,if peH
[m]2,a, = c1(m)
(] e = ax(m)
(

Hf(tlv "'vtn)]]glaz =

We are now ready for the definition of constraint automata with memory
cells describing operationally the behaviour of a Reo connector.

Definition 1. A constraint automaton is a tuple (Q,I,0,H, M,—, qo) where
Q is a finite set of states with qo € Q the initial state, 1,0, H C P are sets of

ports known by the automaton, M C M is the set of memory cells, and — is a

transition relation with q e, q' denoting a transition from q to q¢' synchronizing

a set of ports N C I UO U H under the data constraint ¢. We assume that the
ports appearing in ¢ are a subset of N and the memory cells occurring in ¢ are
a subset of M.

A Reo Model of Software Defined Networks 75

An ezxecution of a constraint automaton is described by means of infinite
strings [12] in A¢“. An infinite string « - w is an execution from the state g,

denoted by o - w € E(q) if and only if there is a transition ¢ 22, ¢ such that

the following three conditions hold:

1. VpeIUO, p¢ N iff a(p) =1;
2. w=da -w and ad | ¢;
3. we E([)

By the above definition a constraint of a transition ¢ e, ¢’ is evaluated in an
execution « - w starting from ¢ with respect to its first two atoms. Furthermore,
only the ports in NV fire, meaning that a value passes through them as recorded
by a, and the rest of the string w is an execution of the target state ¢’.

Consider the following constraint automaton:

(A7), m®* = A

start @.@ (A?,BL,C}, m* =CAm=BAC=A
{B!}, n=B

Here “?” and “!” are syntactic means for indicating which ports belong to

I and O, respectively. The unmarked ports belong to H. An example of an
execution of the above automaton starting from g is the infinite string:

[A=1,B=1,m=22-[A=3,B=1m=1]-[A=5B=3m=3]
[A=L,B=5m=5]-[A=7,B=1L,m=33]-...

Note that the value of the memory of the second element of the string is equal
to the value at port A of the first element, and the value of port B of the second
element. Similarly for the value of A in the second element and the value of B
and the memory m in the third element.

The above automaton has the same executions from the initial state as the
following automaton without hidden ports.

(A7}, m* = A
start @.@ {A?,B!}, m*=AAm=B
{Bl}, m=B

While in general it is not always possible to remove all hidden ports without
modifying the set of executions, for simplicity and when there is no problem,
in the sequel we will simplify a constraint automaton by removing hidden ports
obtaining an automaton with the same structure (states and transitions) and
the same executions from its initial state.

76 H. Feng et al.

The language of a constraint automaton consists of the projection with
respect to the ports of all executions starting from the initial state. A language
represents the behaviour of the automaton as visible from the environment.
Therefore, only input and output ports are visible, but not hidden ports or
memory cells. For example, the language accepted by the above two constraint
automata is the same and it includes the following infinite string:

[A=1,B=1]-[A=3,B=1]-[A=5B=3]-[A=L,B=5]....

3.2 Basic Channels and More Complex Connectors

Next, we briefly introduce the constraint automata and the their graphical rep-
resentation for all basic Reo channels [3,17] we use in this paper.

The synchronous channel accepts data from {ﬁ?’:B[!g}’
o>———>0 its input port A, and it passes them syn-
A B chronously to its output port B. (%

The synchronous drain has two input ports A

and B, from which it accepts any data, but
Z)—(E only when the two ports can be synchronized. &

The data received as input is not important,

only the ports’ synchronization matters.

A The non-deterministic merger receives data {Ar,ch,
° from either A or B and sends them to the =4
>_’Q sink node C synchronously. If data is avail- @
o C able from both A and B at the same time,
B one of them is chosen non-deterministically. {g?LCl!;}’
B (42, B,C1},

The replicator receives data from A and repli- BC::AAA
o cates them to both sink nodes B and C. C%
C

The FIFO1 channel receives data from the

m input port A if the internal buffer m is empty. farh,_ A =m*
o o The data is stored in the buffer, which can
A B only contain at most one data item. When
{Bl}, B=m

m is full its content flows to the output port
B and it becomes empty. The behavior of a
similar channel with dot inside is represented
by the automaton with the other state as the
starting state.

The transformer channel applies a user- {A?,BI}
o defined function f to a data item consumed B=f(A
B from its source end A, and synchronously {l)
offers f(A) through its channel end B.

A Reo Model of Software Defined Networks 77

The pattern of filter channel P C Data spec-

p ifies the type of data items that can be trans- p i/};{’ /j\B '1%(A)
o—AM\N—o mitted through the channel. Any value d € P
A B is accepted through its source end if its sink @
end can simultaneously dispense d; all data

items d ¢ P are always accepted through the — {A?}, ~P(4)
source end but are immediately lost.

A The PairMerger accepts two data items d; {A?,B?,C"},
OW_’O and dy through the source ends A and B, C=(A,B)
o C merges them and synchronously offers the &
B pair {(dy,ds) through its sink end C.
The wariable can accept a data item d (A7, B}, 7 = BA

- through source end A, update its memory 7%=
o—C >0 7, synchronously offer the data stored in 7 {47},
A B through sink end B if B fires; also it can @DT =4

directly synchronously offer 7 through B if {Bl},7=BA
B fires but A doesn’t fire, 7 remains in the T
buffer.

Note that the PairMerger uses a binary function symbol (—, —) interpreted
as the usual pairing. In all automata in the table, we assume that the ports
known by each automaton are those used in the channels.

A Reo circuit is built out of some basic channels via the join operation which
is performed by joining common ports of the channels. On the automata level,
the join operation is realized by the following product construction.

Definition 2. The product of the two constraint automata A; = (Q1, I1, O1,
Hy, My, —1, ¢1) and As = (Q2, Iz, O2, Ha, Mo, —9, q2) with disjoint sets
of states Q1 and Q2, and disjoint sets of memory cells My and My is:

Al NAQ = (Qa-LOvHle UM27_>7<q17q2>)

where Q = Ql X QQ, I = (Il — 02) U (Ig — 01), O = (01 — IQ) U (02 — Il),
H=(I1nNn0O)U({I2N01)UH; UH,, and — is defined by the following rules:
qlml qll and qgmg q/2 andPrt1 n N2 = P’I’tQ N N1
N1uN2, p1 P2
) (

<Q1,QQ q/17QQ>
Here PT‘tl :11U01 UHl, andPrtg :IQUOQUHQ.

Figure 1 shows an example of composition of a non-deterministic merger (on
the left) on ports {A?, B?,C!} with a synchronous channel (second automata
from the left) acting on port {C?, D!}. The result is a new automaton with
C as hidden port (third automaton from the left), which however is language
equivalent to the automaton of a non-deterministic merger (the rightmost one)
on ports {A?, B?, D!}.

78 H. Feng et al.

Note that the port C is a hidden port in the resulting automaton because
it is an output port of one channel and input of the other. It is not hard to see
that the join operation is associative and commutative.

As another example, in Fig.2 we introduce the circuit of a three-port
sequencer and its corresponding constraint automaton [11]. This three-port-
sequencer regulates the flow of data from ports A, B and C, in a sequential
order. Similar sequencers can be defined for any number of ports.

{A2,C1}, {cv Dy, {A2,C, D'}, {A? D‘}
C=A D C=ANC=D

{B?,C1}, {B?,C, D!}, {B" D‘},
C=B C=BAC=D -

Fig. 1. The example of automata conjunction

A ; ¢ ©
[{4 (B}
\%\5 start e e
5 1
{c}

(a) Circuit (b) Constraint automaton

Fig. 2. A three-port sequencer

4 A Reo Model of Software Defined Networks

In this section, we present an SDN model based on the Reo language. First, we
describe the switches of the data plane as Reo circuits, and we translate it into
its corresponding constraint automaton. Afterwards, we describe two examples
of controllers managing a simple network with two switches. The goal is to send
packets from one host to another. We conclude by combining the automata of
these two layers with a network topology.

4.1 Data Plane

The basic data type we use is that of a packet. We see a packet as a record
7 : Fields — Data assigning fields from a finite set of Fields to data in Data.
We denote a packet by 71 = [fo = do, f1 = d1, ..., fn = dy], and use the notation
7. f to denote the value of the field f of the packet w. The set Fields is assumed
to include a field I Pt for storing the identity of the input port of the switch

A Reo Model of Software Defined Networks 79

where the packet is received, OPt for the output port of the switch where the
packet is forwarded.

Figure 3 introduces the Reo circuit representing a switch with an interface
consisting of input ports { Py, Py, ..., P, } and output ports {Qq, @1, ..., Qm }. Here
both n and m are greater than or equal to 0 so that a switch has always at least
two ports: Py and Qg. Port P, is used to receive messages from the controller
supervising the switch, whereas port @)y is meant for sending packets to the
controller. All other ports are connected to other switches or open to the envi-
ronment for communication with hosts. The input ports receive packets, and the
output ports send packets.

Cut1 O Ql

Selo S(,ll

D Mtc

Cutmo Q@m

el

Fig. 3. Reo circuit of one switch

We can describe the behaviour of the circuit representing a switch by means
of three scenarios.

1. The first one is when a packet 7 is received from a host or another switch. In
this case the input port is P; for some 1 <14 < n, The transformer AddIpt_i
of the channel connected to P; assign w.I Pt to i and outputs to A a triple
(FlowMsg, m,0). The first component of the triple is the tag FlowM sg indi-
cating that 7 is an ordinary network packet with no side effect on the flow
table. The last component is the subset of output ports of the switch where
the packet needs to be forwarded.

The above triple is paired with the current flow table stored in 7 and received
by the filters FM and Msg. These filters check the first component of the
triple. In our case only the filter Msg will succeed, and will pass the triple
(FlowM sg, m, () together with the table T to the transformer Mtc via node
D. This transformer matches the packet m against the table 7, executes the
corresponding field assignment modifying 7 into a new packet 7’ and outputs
the pair (7', F) to node E. Here the set F' contains all output ports where

80 H. Feng et al.

the packet 7’ needs to be forwarded, according to the action of the matching
pair in the flow table 7.

The filters Sel; regulate the forwarding by outputting the pair (7/, F) to node
R; if i € F. Note that the same pair may be duplicated to many nodes, and
in case F' = () it will be dropped. Also, If 0 € F then the packet is forwarded
to the controller. From the node R; the transformer C'ut; receiving as input
the pair (7', F) will output the packet #n’, removing the information about
the forwarding ports.

2. The second situation is when a PktOut message from the controller is received
at the input port Py. A PktOut message is a triple (FlowMsg, 7, F') consist-
ing of a tag FlowM sg as in the previous case, a packet pi and a set of output
ports F where 7 needs to be forwarded. Only the filter PktOut lets this triple
flow to the node G, where a transformer receives it, removes the tag, and out-
puts the pair (7, F') to node E. The selection and forwarding of 7 to each
port in F' is as before.

3. The third and last situation is when a FlowM od message from the controller
is received at the input port Py. Also in this case it consist of a triple (¢, B, A),
but unlike the previous cases, this message is meant to update the table stored
in 7. More specifically, B is a Boolean condition on F'ields matching the pair of
T to be updated, and A is the action for field updating and packet forwarding.
The tag ¢ can be either add, remove or modify to add (B, A) on top of table
7, remove the first pair (b,a) of 7 with b implying B, or to modify the first
pair (b,a) of 7 with b implying B into the new pair (b, A). Note that in the
case of t = remove, the action A does not play any role.

Of the two filters with input at Py only the filter FlowM od will succeed, so
the triple (¢, B, A) can be paired with the current flow table 7 and reach node
C'. Here the filter Msg will fail but FM will succeed, passing all (¢, B, A)
and 7 to the transformer Upd. This transformer will update the table 7 as
described in the triple (¢, B, A), and will output a new table 7. The latter is
stored as the new current table by the variable channel with input node F'

While the Reo circuit of a switch may look complicated, its actual constraint
automaton is rather simple. It consists of only one state (because all channels
used have one single state) and three types of transitions (see Fig. 4).

{Po?},Co

(P7YU{Q;]j € F}.Co G&Q {7} u{Qslly € F}Ch

Fig. 4. Constraint automaton of a switch

A Reo Model of Software Defined Networks 81

The conditions Cy, C; and C5 are:

1. Co: Py = (t,B,A) ANt # Msg A7T* = Upd((t, Py));
Ci: Py = <Msga7TvF>/\/\‘eFQj =T
3. Cy: Mte((r, (Msg,ﬂ'[i/lptj,@») = (M, F)AT* =T AN\jerp @i =7

N

Condition Cy specifies when a FlowMod message is received by a switch
so that the flow table is updated. Transitions labelled by condition C; or Cy
are dependent on the subset of output ports F' received as input from Py or
assigned after a matching action. This means that there is a concrete transition
for each possible subset of the output ports, but only one will eventually be
chosen. Condition C; concerns FlowM sg messages received by a controller, while
condition Cy defines the handling of a packet received from a host or another
switch.

If we assume that in a switch the number of input ports is n, and that the
number of output ports is m, then the resulting constraint automata will have
one state and 14 2™ + (n — 1) * 2™ transitions.

Each switch in the data plane can be considered as a Reo connector inter-
acting with others only via its input and output ports, while all other nodes
and memory cells of the components are hidden. For example, while too large to
depict here, the constraint automaton of the data plane composed of two simple
switches connected by a synchronous channel as described in Fig.5 consists of
one state, two memory cells (one for each switch flow table) and 26 transitions,
which can be generated using automated tools [5].

Controller
O 1 02
Py Qo QE) Py Py A/\O Py
o P * 0 P, » '
Py Switch 1 ! 2 Switch 2 ¢ Qs Py Switch 1 ! 2 Switch 2 ¢ Q-
Fig. 5. Data plane Fig. 6. A simple example

4.2 Control Plane and the Whole SDN Model

The SDN control plane contains a set of controllers. Each controller behaves as a
reactive system, responding to PktIn messages received from switches by sending
either Pkt0Out or FlowMod messages. We assume controllers to be specified as Reo
circuits, and thus with a behaviour described by means of constraint automata.
Input ports and output ports represent the connection of a controller with the
switches under its control. Figure 6 shows a simple example of a controller with
two switches. A controller need not know the operational details of any of the
switches that it controls (e.g., their automata); its concern consists of deciding
when to update the flow table of a switch, and what modification constitutes
that update. For instance, it may decide to modify the flow table of a switch

82 H. Feng et al.

in reaction to the switch receiving (and escalating) a packet for which it has no
matching condition.

For example, the controller described in Fig. 7 guarantees a flow of messages
from the host connected to port P; to the host connected to port Q2. It updates
the flow table of a switch every time a new packet is received that does not
match any condition of the table. In the second controller shows in Fig. 8, we see
a similar specification of a controller flowing a packet from P; to @2, but each
time it updates switches apart.

We combine constraint automata of controllers and switches together to get a
complete model of an SDN. Because the rate of forwarding by a switch is different
from the rate of processing by a controller, we put a Queue channel between
output ports of each switch and input ports of the controller (like channels
{Qo, I'} and {Q[, I} in Fig. 6), a synchronous channel between input ports of each
switch and output ports of the controller (like channels {O1, Py} and {O2, P}}).
Here are the description of Queue.

B PktOut p

O1

——o, M

Iq EO _H \
ﬂ

S5 FIFO B, Pk’{)ut D>

o) O2
As v

FlowMod 02/
X
B e mencer > 2

Fig. 7. Reo circuit of controller 1

B PktOut p

FIEQ

A
o O

S
FlowMod

Er° Sequencer 21"
4

FIFO By PktOut D,

o N 0.
1> 2

Az

Flowl\lodiéi/
X
BarCSequencer o1 2

S2

Fig. 8. Reo circuit of controller 2

A Reo Model of Software Defined Networks 83

The Queue channel behaves as a FIFOI1,
but it has an unbounded internal buffer. As (A}, ¢"=A-q
a such, data can always be received from the
A g input port A and stored in the buffer. If the §
buffer is non empty then the first element
received by A flows from the buffer to the
output port B.

{B},q=q¢"-B

While the two models guarantee packets to flow from one host to another,
they have different semantics and therefore they are language distinguishable.
The two cases have different behaviours because in the first case when the con-
troller receive a PktIn message, it sends a FlowMod message to switch one and
another FlowMod to switch two, so that the packet 7 can pass the two switches
directly. But in the second case, every time the controller receives a PktIn mes-
sage, it just sends a FlowMod message to the current switch, so = can only pass
the current switch.

5 Conclusion

In this paper we presented a Reo model of SDN, based on a novel semantics for
constraint automata with memory, recently studied in [13]. The difference is in
a neater treatment of the values in the memory before and after the execution
of a transition. The model is stateful, and allows concurrency at the level of
controllers but also at the level of the packets. The model can immediately be
used for verification of quantitative and qualitative properties of SDN, such as
consistency of flow tables, violation of safety policies, or forwarding loops. In
the future, we plan to verify these properties by using tools like ReoLive [10], or
mCRL2 [17], which are part of the Reo framework [20] and can directly generate
executable code for the switches. Another line of research easily supported by
our model is the development of simulation and visualization tools for packets
flowing into the network.

References

1. Albert, E., Gémez-Zamalloa, M., Rubio, A., Sammartino, M., Silva, A.: SDN-
actors: modeling and verification of SDN programs. In: Havelund, K., Peleska, J.,
Roscoe, B., de Vink, E. (eds.) FM 2018. LNCS, vol. 10951, pp. 550-567. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-95582-7_33

2. Anderson, C.J., et al.: NetKAT: semantic foundations for networks. ACM Sigplan
Not. 49(1), 113-126 (2014)

3. Arbab, F.: Reo: a channel-based coordination model for component composition.
Math. Struct. Comput. Sci. 14(3), 329-366 (2004)

4. Arbab, F.: Proper protocol. In: Abrahdm, E., Bonsangue, M., Johnsen, E.B. (eds.)
Theory and Practice of Formal Methods. LNCS, vol. 9660, pp. 65-87. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-30734-3_7

https://doi.org/10.1007/978-3-319-95582-7_33
https://doi.org/10.1007/978-3-319-30734-3_7

84

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

H. Feng et al.

Arbab, F., Koehler, C., Maraikar, Z., Moon, Y.J., Proenga, J.: Modeling, testing
and executing Reo connectors with the eclipse coordination tools. Presented at the
5th International Workshop on Formal Aspects of Component Systems (2008)
Arbab, F., Meng, S., Moon, Y.J., Kwiatkowska, M., Qu, H.: Reo2MC: a tool chain
for performance analysis of coordination models. In: van Vliet, H., Issarny, V. (eds.)
Proceedings of the of the 7th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pp. 287-288. ACM (2009)

Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in
Reo by constraint automata. Sci. Comput. Program. 61(2), 75-113 (2006)

Ball, T., et al.: Vericon: towards verifying controller programs in software-defined
networks. SIGPLAN Not. 49(6), 282-293 (2014)

Casado, M., et al.: SANE: a protection architecture for enterprise networks. In:
Keromytis, A.D. (ed.) USENIX Security Symposium, p. 50. USENIX Association
(2006)

Cruz, R., Proenca, J.: ReoLive: analysing connectors in your browser. In: Maz-
zara, M., Ober, 1., Salaiin, G. (eds.) STAF 2018. LNCS, vol. 11176, pp. 336-350.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04771-9_25

Ghassemi, F., Tasharofi, S., Sirjani, M.: Automated mapping of Reo circuits to
constraint automata. Electron. Notes Theor. Comput. Sci. 159, 99-115 (2006)
Izadi, M., Bonsangue, M.M.: Recasting constraint automata into Biichi automata.
In: Fitzgerald, J.S., Haxthausen, A.E., Yenigun, H. (eds.) ICTAC 2008. LNCS,
vol. 5160, pp. 156-170. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-85762-4_11

Jongmans, S.S., Kappé, T., Arbab, F.: Constraint automata with memory cells
and their composition. Sci. Comput. Program. 146, 50-86 (2017)

Jongmans, S.S.T.Q.: Automata-theoretic protocol programming. Ph.D. thesis, Lei-
den University (2016)

Kang, M., et al.: Formal modeling and verification of SDN-openflow. In: 6th Inter-
national Conference on Software Testing, Verification and Validation, pp. 481-482.
IEEE (2013)

Kim, Y.M., Kang, M., Choi, J.Y.: Formal specification and verification of firewall
using TLA+. In: Daimi, K., Arabnia, H.R. (eds.) Proceedings of the International
Conference on Security and Management (SAM), pp. 247-251 (2017)

Kokash, N., Krause, C., de Vink, E.P.: Data-aware design and verification of service
compositions with Reo and mCRL2. In: Shin, S.Y., Ossowski, S., Schumacher,
M., Palakal, M.J., Hung, C. (eds.) Proceedings of the 2010 ACM Symposium on
Applied Computing, pp. 2406-2413. ACM (2010)

Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley (2002)

McKeown, N., et al.: Openflow: enabling innovation in campus networks. Comput.
Commun. Rev. 38(2), 69-74 (2008)

Proenga, J., Clarke, D., De Vink, E., Arbab, F.: Dreams: a framework for dis-
tributed synchronous coordination. In: Ossowski, S., Lecca, P. (eds.) Proceedings
of the 27th Annual ACM Symposium on Applied Computing, pp. 1510-1515. ACM
(2012)

Reitblatt, M., Canini, M., Guha, A., Foster, N.: FatTire: declarative fault tolerance
for software-defined networks. In: Foster, N., Sherwood, R. (eds.) Proceedings of
the 2nd ACM SIGCOMM Workshop on Hot topics in Software Defined Networking,
pp. 109-114. ACM (2013)

https://doi.org/10.1007/978-3-030-04771-9_25
https://doi.org/10.1007/978-3-540-85762-4_11
https://doi.org/10.1007/978-3-540-85762-4_11

22.

23.

24.

25.

A Reo Model of Software Defined Networks 85

Schnepf, N., Badonnel, R., Lahmadi, A., Merz, S.: Automated verification of secu-
rity chains in software-defined networks with synaptic. In: 2017 IEEE Conference
on Network Softwarization (NetSoft), pp. 1-9. IEEE (2017)

Soulé, R., et al.: Merlin: a language for provisioning network resources. In: Senevi-
ratne, A., Diot, C., Kurose, J., Chaintreau, A., Rizzo, L. (eds.) Proceedings of the
10th ACM International Conference on Emerging Networking Experiments and
Technologies, pp. 213-226. ACM (2014)

Xiang, S., Zhu, H., Xiao, L., Xie, W.: Modeling and verifying TopoGuard in
OpenFlow-based software defined networks. In: Pang, J., Zhang, C., He, J., Weng,
J. (eds.) 2018 International Symposium on Theoretical Aspects of Software Engi-
neering (TASE), pp. 84-91. IEEE Computer Society (2018)

Zakharov, V.A., Smelyansky, R.L., Chemeritsky, E.V.: A formal model and ver-
ification problems for software defined networks. Autom. Control. Comput. Sci.
48(7), 398-406 (2014)

l‘)

Check for
updates

Design of Point-and-Click User Interfaces
for Proof Assistants

Bohua Zhan'®) Zhenyan Ji?®), Wenfan Zhou?, Chaozhu Xiang?,
Jie Hou?, and Wenhui Sun?

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China
bzhan@ios.ac.cn
2 Beijing Jiaotong University, Beijing, China
{zhyji,zhouwenfan,czxiang,houjie,whsunl}@bjtu.edu.cn

Abstract. In interactive theorem proving, human users interact with
proof assistants to construct and verify formal proofs. The most popular
proof assistants today all have user interfaces that are largely text-based.
This leads to a steep learning curve for new users of these tools. In this
paper, we propose a framework for designing user interfaces for proof
assistants based on pointing and clicking. While a main goal of the design
is ease of learning for new users, we intend for the design to be suitable
for real verification tasks. The design is also extensible, allowing cus-
tom proof methods and search functionality to be added in a convenient
way. We implement our ideas in a web interface, with backend provided
by holpy, a new system for interactive theorem proving implemented in
Python. The resulting user interface is tested on theorems in logic, sets,
functions, Peano arithmetic, and lists, demonstrating its applicability in
a wide range of areas.

Keywords: Proof assistants + User interface - Tactics

1 Introduction

Interactive theorem proving aims to construct and verify formal proofs via inter-
action between the computer and the human user. In recent years, it has seen
several major accomplishments, including formal verification of the sel.4 micro-
kernel [13], verification of a realistic C compiler [14], and formal proofs of the
Feit-Thompson theorem [11] and Kepler’s conjecture [10]. These works show
that interactive theorem proving can be applied to very complex mathematical
theorems and computer systems. However, verification projects still take con-
siderable human effort. Work on the selL4 project, the Feit-Thompson theorem,
and Kepler’s conjecture each have an estimated cost of over 20 person years. In
addition, the proof assistants used — HOL Light [12], Coq [4], and Isabelle [15],
are generally considered to have a steep learning curve for new users, making it
difficult and time consuming to form and train new teams. These factors can be
© Springer Nature Switzerland AG 2019

Y. Ait-Ameur and S. Qin (Eds.): ICFEM 2019, LNCS 11852, pp. 86-103, 2019.
https://doi.org/10.1007/978-3-030-32409-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32409-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-32409-4_6

Design of Point-and-Click User Interfaces for Proof Assistants 87

seen as a major obstacle to more widespread application of interactive theorem
proving. Hence, how to design proof assistants to make it more accessible to
users is an important problem for this field.

The most popular proof assistants today have user interfaces that are largely
text-based. The main form of interaction consists of the user editing a text
file containing the proof, either as a sequence of tactics or (as in Isabelle/Isar
[17]) written in a structured proof language. During editing, the user interface
displays the state of the proof at the current location of the proof text. To use the
proof assistant, the user needs to be familiar with names of the major tactics, as
well as some of the commonly used theorems. The Isabelle/Isar language makes
the resulting proof text more readable. However, it requires the user to further
understand the use of a number of keywords for structuring the proof.

Naturally, we may ask whether it is realistic to have user interfaces for proof
assistants that is based on pointing and clicking. In an ideal setting, most of
the interaction with the user interface should consist of choosing which facts
to consider, and which actions to take through clicks of the mouse. The user
interface performs the selected actions, and offers suggestions for future actions.
Only occasionally will the user need to enter text using the keyboard, and even
then only mathematical expressions rather than names of tactics or theorems.

While there have been attempts to build point-and-click user interfaces in
the past, they have not gained widespread adoptance for general-purpose the-
orem proving. Potential problems with existing designs include limited search
functionality — the user still need to find names of theorems to use, and limited
extensibility — there is usually a fixed set of proof methods, with no easy way to
grow them for new application domains. This limits the use of user interfaces to
simple examples, or to the special domains for which they are designed.

In this paper, we propose a new framework for designing user interfaces for
proof assistants that is based on pointing and clicking. In this design, the user
interacts with the interface mainly in three ways. First, at each step of the
proof, the user chooses which goal to consider and which facts in the proof to
use. Second, the user chooses an action from the list of actions suggested by the
computer. The suggestion process may involve (but is not limited to) matching
the chosen facts and goal with existing theorems. Third, the user annotates each
proved theorem, to tell the computer which directions for applying the theorem
are the most common, and should be considered during the suggestion process
in future proofs. We give a general definition of proof methods. Any function
satisfying this general definition can be added as a method in the user interface.
This makes the design extensible: new proof methods reflecting domain-specific
knowledge can be added in a convenient way.

We implement our design in a web interface!. The backend for the interface
is provided by holpy, a new system for interactive theorem proving implemented
in Python [18]. There are several aspects in holpy’s design that are different from
systems such as Isabelle and Coq, including a format for explicit representation of
proofs and theories based on JSON [8]. The format for theory files is not designed

! Code available at https://gitee.com/bhzhan /holpy.

https://gitee.com/bhzhan/holpy

88 B. Zhan et al.

for direct editing by the user. This means any user interface must interpret the
theory files for display in a more readable form, and reflect user changes back
to the file. While this makes user interfaces more difficult to implement at first,
it has the long-term advantage of allowing more flexibility in its design. The
current work can be viewed as a first attempt to implement a user interface for
holpy, justifying its choice of the theory format.

We now give an outline for the rest of this paper. In Sect.2, we give an
overview of the holpy system, focusing on those aspects of design that are differ-
ent from the major proof assistants, and which are relevant to the current work.
In Sect. 3, we describe the design of the user interface on an abstract level, then
present the concrete implementation in Sect.4, and give some statistics from
tests on theorems from various domains. In Sect. 5, we present the proof of the
Knaster-Tarski fixed point theorem as a detailed example. Finally, we conclude
in Sect. 6 with a discussion of future work.

Related Work. There have been a few early attempts to build point-and-click
user interfaces for proof assistants. The work of Bertot et al. in [5], and extended
in [6], introduced the idea of “Proof by Pointing”. In this framework, the user can
trigger deduction rules in logic by pointing to specific parts of the goal formula.
The latter work also studied how to implement script management (including
undoing and redoing steps), and textual explanation of proofs. Another line of
work by Abrial et al. [2] developed a user interface for Atelier B to perform formal
proofs in set theory. The work by Breitner in [7] constructed a visual theorem
proving interface based on connecting blocks, albeit also limited to proofs in
logic.

In the area of program and system verification, several tools have user inter-
faces that allow proofs to be conducted by pointing-and-clicking. These include
KeY [3] and KeYmaera/KeYmaera X [9,16]. These tools allow users to choose
subgoals and select which actions to take from a menu. There is some similarity
in the mode of interaction between our work and these systems. However, our
focus is on general-purpose theorem proving in higher-order logic, rather than
for specific program logics.

2 Overview of holpy

In this section, we give an overview of the holpy system, focusing on aspects that
are different from systems such as Isabelle and Coq, and which are relevant to
the current work. More details on the design of holpy can be found in [18].
holpy is a new system for interactive theorem proving implemented in
Python. Its logical foundation is higher-order logic, similar to existing proof assis-
tants such as Isabelle/HOL [15], HOL Light [12], and HOL4 [1]. On the other
hand, holpy makes major changes to how proofs and theories are represented. In
particular, it exports explicit proofs, with abbreviations by macros so they can
be stored and checked by third-party tools without running into the usual scala-
bility problems. For representing theories, holpy chooses a JSON-based format.

Design of Point-and-Click User Interfaces for Proof Assistants 89

This format is not designed for direct human editing, but is convenient to read
and write by computer programs. Finally, holpy provides an API in Python for
implementing proof automation (as well as other tools). A major goal of holpy’s
design is to show that with export of explicit proofs, the type and memory safety
issues of Python does not pose any problems for the soundness of proof-checking.

In the remainder of this section, we discuss various aspects of holpy in more
detail, in particular the concepts of macros, proof representation, and tactics as
it relates to holpy.

2.1 Proof Rules and Macros

Proofs in holpy are conducted in natural deduction style. The basic objects are
sequents with a number of antecedents and a single consequent. A sequent with
antecedent Ajp,..., A, and consequent C' is written in the usual notation as
Ay, AL EC.

The logical foundation fixes a set of primitive deduction rules, with each rule
taking a number of input sequents and possibly additional arguments, and out-
puts a sequent (or raises an exception). Examples of primitive deduction rules
include introduction and elimination rules for implication and forall quantifica-
tion, congruence properties of equality, substitution of type and term variables,
and so on.

Proof rules can be considered as a generalization of primitive deduction rules.
They are intended to represent a number of more basic steps of proof. In gen-
eral, a proof rule takes as input the current theory environment (list of existing
constants, theorems, etc.), a list of input sequents, and possibly additional argu-
ments, and outputs a single sequent (or raises an exception). Each proof rule
defines a precise signature for its additional arguments.

Primitive deduction rules form one class of proof rules. Another fundamental
proof rule is theorem, which takes no input sequents and a theorem name as
additional argument. If there exists a theorem with that name in the current
theory environment, it outputs that theorem as a sequent. Otherwise, it raises
an exception.

The other proof rules are called macros. They represent multiple steps of
proof as a single step. In addition to the function returning the output sequent
directly, each macro may also specify an expansion function which, given the
same inputs, returns the invocations of proof rules used to obtain the output
sequent (or raises an exception). The expanded proof can be used during proof
checking, so the implementation of the macro need not be trusted. The use of
macros means any portion of proof that can be algorithmically generated can be
stored as a single step, so large proofs can be stored for proof-checking by third-
party tools, without encountering the usual scalability issues. Some examples of
common macros will be given in the following sections.

90 B. Zhan et al.

2.2 Format for Proofs

Proofs in holpy are exported into a linear form. A linear proof consists of an
ordered list of proof items. Each proof item consists of an identifier, the name of
a proof rule, additional arguments for the proof rule, and a list of identifiers of
earlier proof items, representing the input sequents. A linear proof can be checked
(within a theory environment) by reading the proof items in order, computing
the sequent for each proof item by invoking the corresponding proof rule. The
result of a linear proof is the sequent corresponding to the last proof item.

How to represent identifiers is largely conventional. We choose to represent
each identifier as a tuple of natural numbers, written in dot-separated form (e.g.
0.2.1). This allows us to express sub-proofs. For example, steps in the main trunk
of the proof have identifiers 0, 1, 2, etc. Proving the sequent in the proof item with
identifier 1 may take place outside the main trunk, with steps having identifiers
1.0, 1.1, 1.2, and so on. In practice, we use sub-proofs when introducing variables
and assumptions, as will be seen in the examples in the next subsection.

Internally for proof automation, holpy works with another form of proof
representation: as directed acyclic graphs located in memory. Each vertex of
the graph is a proof item, where the input sequents are referenced directly (so
identifiers are not needed). There is a standard algorithm for converting proof
terms to linear proofs. Hence, the general idea for proof automation in holpy is
to first construct proof terms, then convert them to linear proofs for storage and
viewing by the user.

2.3 Examples of Proofs

We give two simple examples of proofs for illustration. First, consider the propo-
sition A A B — B A A. The linear proof is as follows:

AANBFEF AN B by assume AA B

AN BF A by apply_theorem conjD1 from 0

AN B+ B by apply_theorem conjD2 from 0
ANBFE BA A by apply_theorem conjl from 2, 1
FAAB — BA A by implies_intr from 3.

= W=

Each line in the above text represents a proof item. It starts with the identifier
of the proof item. The part before by is the computed sequent. The part after
by specifies the proof rule, the additional arguments, and identifiers of the input
sequents. The proof rules assume and implies_intr are primitive deduction
rules. The proof rule apply_theorem is the macro for applying a single theorem.
It can be expanded into theorem rule for obtaining the theorem with the given
name, subst_type (resp. substitution) for substituting the type (resp. term)
variables, and implies_elim for discharging the assumptions.

Design of Point-and-Click User Interfaces for Proof Assistants 91

As another example, consider the proof by induction of n + 0 = n in Peano
arithmetic.

0. F 0 4+ 0 = 0 by rewrite_goal plus_def_1, (goal)
1.0. + _VAR n by variable n ::nat
1.1. n+0=nFn+0=nbyassumen+0=n
1.2. n4+0=nF Suc (n+0) = Suc n by rewrite_goal_with_prev (goal) from 1.1
1.3. n+0=nt Suc n+ 0= Suc n by rewrite_goal plus_def 2, (goal) from 1.2
1. FVn.n+0=mn — Suc n+ 0 = Suc n by intros from 1.0, 1.1, 1.3
2. F n+ 0 = n by apply_theorem_for nat_induct, {P: An. n +0 = n, x: n}
from 0, 1.

Here (goal) is an abbreviation for the goal statement, the trivial rule variable
designate new variables, and macro intros introduces variables and assumptions
(expanding into forall intr and implies_intr). The macro rewrite_goal as
well as rewrite_goal with prev are for rewriting (using a theorem and using
a previous fact). Items 1.1 to 1.3 should be read in the backward direction: the
goal from applying induction is Suc n 4+ 0 = Suc n. Rewriting using plus_def_2
(inductive definition of +) changes it to Suc (n + 0) = Suc n, which is resolved
by rewriting using the inductive hypothesis.

This format for displaying linear proofs is still not easy to read. We choose
to use this format in this and the next section in order to show the workings
of tactics and methods more clearly. An improved format will be introduced in
Sect. 4.

2.4 Format for Theories

In holpy, as in other proof assistants such as Isabelle and Coq, mathematical
knowledge is organized as a collection of theories. Each theory imports a list
of other theories, and may define new types, constants, and theorems. Proof of
theorems are also contained in theories. The format for theories in holpy is based
on JSON, hence holpy theory files have extension . json.

The main part of the theory file consists of a list of items, where each item
represent a new type, constant, theorem, and so on. Each item is a dictionary
consisting of both required and optional data for the item. For example, a the-
orem item may contain the proof of the theorem. It may also contain theorem
attributes: a list of strings indicating (among others) how the theorem is usually
used in proofs (the name is taken from a similar notion in Isabelle). For example,
the attribute backward means the theorem is usually applied in the backward
direction. This information is used during the search for suggested actions, in
order to limit the number of suggestions (see Sect. 3.4).

Storing theories as a JSON file, rather than as a text file to be edited directly,
makes the initial implementation of a user interfaces more difficult. However, it
also creates more flexibility when designing the user interface. In particular,
not all information in the JSON file has to be displayed. Some information can
be hidden depending on the context. Another advantage is that it is easier to

92 B. Zhan et al.

develop other tools to analyze theories — for example, to profile the performance
of proof automation or the search functionality. In particular, we make use of
this to produce the test results shown in Table 1.

2.5 Tactics

The notion of tactics in holpy is analogous, but not exactly the same, to tactics
in Isabelle and Coq. In holpy, a tactic is a function taking as input a sequent
to be proved, a list of input sequents, and possibly additional arguments (with
fixed signature for each tactic), and returns a proof whose output is the target
sequent (or raises an exception). The resulting proof may refer to input sequents,
and it may also contain holes: sequents whose proof is left for later, indicated by
the sorry proof rule. Intuitively, a tactic converts the current goal (the sequent
to be proved) to a list of subgoals (those proof items with rule sorry), possibly
making use of other known facts (the input sequents).

We give two examples for illustration. First, consider the introduction tactic,
which takes a goal in the forall-implies form, and introduces the variables and
assumptions in a sub-proof. It takes as additional arguments the names of the
new variables (and no input sequents). For example, given the goal

FvYn.n+0=n— Sucn—+ 0= Sucn,
and name n for the new variable, the tactic returns the proof

0.0. F _VARn by variable n ::nat
01. n+0=nkn+0=nby assumen+0=n
0.2. n+0=nkt Suc n+ 0= Suc n by sorry
0. FVn.n+0=n — Suc n+ 0 = Suc n by intros from 0.0, 0.1, 0.2.

As a second example, consider the tactic for applying a theorem in the back-
ward direction. Given the goal AA B+ B A A, a theorem name conjI, and no
input sequents, the tactic produces the following proof:

0. AA BF B by sorry
1. AN BF A by sorry
2. AN BF B A A by apply_theorem conjl from 0, 1.

Note how the macro apply_theorem is used in the last step of the proof generated
by the tactic for applying a theorem. If A A B - B is given as an input sequent,
the resulting proof has only one sorry, and the invocation of apply_theorem
refers to that input sequent.

3 Design of the User Interface

In this section, we describe the overall design of the user interface on an abstract
level, leaving the concrete implementation to the next section.

The basic principle of the design is as follows: we primarily allow user inter-
action with the interface in the following three ways:

Design of Point-and-Click User Interfaces for Proof Assistants 93

1. During the proof, choose the current goal to consider and a list of facts avail-
able in the proof to use.

2. After choosing the current goal and a list of facts, choose an action to perform
from the list of suggestions or from the menu, entering additional arguments
for the action if necessary.

3. After a theorem is proved, annotate the theorem with how it should be used
in future proofs (for example, direction of rule application or rewriting).

A key component of the user interface is the search functionality. Depending
on the user annotations, the system searches in the list of existing theorems to
see which ones are applicable to the current goal and selected facts, and display
the results among the list of suggestions.

3.1 Methods

The central concept in this design is that of methods. Our definition of methods
has some similarities to that in Isabelle, but there are also some important
differences.

In our framework, the proof state is simply a linear proof with gaps. These
gaps can be considered as the remaining goals. A method defines a transforma-
tion on the proof state. More precisely, it is a function taking the following input
arguments, and either returns a new proof state or raises an exception:

— The current proof state.

— One selected goal in the proof state.

— A list of selected facts in the proof state (which must occur before the goal).
— Some additional arguments, with signature fixed by the method.

Unlike macros and tactics, the additional arguments for methods are always
strings indexed by a set of keys (as determined by the method). Each method is
responsible for parsing the input strings to the right kinds of objects (e.g. types
and terms).

The above definition of methods is quite general. A method can literally
make any change to the proof state. In practice, most methods fall into one of
two common forms, corresponding to backward and forward reasoning. We now
describe these two kinds of methods in more detail.

3.2 Backward Reasoning

Methods for backward reasoning take the selected goal, and attempt to replace
it by a number of simpler goals. Such methods can be constructed directly from
tactics. Given a tactic, the corresponding method performs the following actions:

1. Lookup the selected goal and facts in the proof state, to obtain the sequent
to be proved and the list of input sequents.
2. Parse the input strings to the right kinds of objects (e.g. types and terms).

94 B. Zhan et al.

3. Apply the tactic on these inputs (and the theory environment of the proof),
yielding a proof (possibly with holes) of the goal.

4. Splice the proof into the proof state. This involves modifying the proof item
for the goal so it is no longer a sorry, and possibly inserting proof items
before the goal.

The last splicing process is easy to understand intuitively, but can be quite
tricky to implement. Inserting proof items in the middle of a proof involves
changing the identifiers in the output of the tactic, and also in the part of the
proof state after the goal (if we wish to keep the identifiers in order). It also
needs to link up references to input sequents in the output of the tactic. We give
two examples for illustration.

Introduction. Consider the proof of n + 0 = n by induction. After applying
induction, we have the following proof state:

0. F 0+ 0 =0 by sorry

1. FV¥n.n+4+0=mn — Suc n+ 0 = Suc n by sorry

2. F n+0 = n by apply_theorem_for nat_induct, { P: An. n4+0 =n, z: n} from
0, 1.

We invoke the method corresponding to the introduction tactic, with item 1
as the goal, and n as the additional argument for the name of the new variable.
The result is:

0. F 0 4+ 0 = 0 by sorry
1.0. - _VARn by variable n ::nat
1.1.n+0=nFn+0=nbyassumen+0=n
1.2. n4+0=nk Suc n + 0 = Suc n by sorry
1. FV¥n.n+0=mn — Suc n+ 0 = Suc n by intros from 1.0, 1.1, 1.2
2. F n+ 0 = n by apply_theorem_for nat_induct, {P: An. n +0 = n, a: n}
from 0, 1.

Note the output of the tactic (shown in Sect.2.5) is modified to start with
identifier 1, and spliced into the proof state.

Applying a Theorem. For this example, consider again the proof of AANB —
B A A. Suppose we are at the following intermediate stage of the proof:

. AANBF AN B by assume A A B

. AN BF B by apply_theorem conjD2 from 0
. ANBF BA A by sorry

. FAANB — B A A by implies_intr from 2.

w N = O

Invoking the method corresponding to backward application of a theorem, with
item 2 as the selected goal, item 1 as (the only) selected fact, and conjI as the
name of the theorem, the result is:

Design of Point-and-Click User Interfaces for Proof Assistants 95

AANBFEF AA B by assume AA B

AN B+ B by apply_theorem conjD2 from 0

AN BF A by sorry

AN B¢ BA A by apply_theorem conjl from 1, 2
FAAB — BA A by implies_intr from 3.

e

Note items 2 and 3 in the original proof state are automatically re-numbered,
along with their references.

3.3 Forward Reasoning

Methods for forward reasoning considers only the selected facts. It can be created

directly from a macro: the selected facts become the input sequents to the macro,

and the input strings are parsed to the arguments for the macro. The output of

the macro is added as a new proof item directly in front of the selected goal.
For example, given the following initial proof state:

0. ANBF AN B by assume AN B
1. ANBF B A A by sorry
2. W ANB — B A A by implies_intr from 1.

We invoke the method corresponding to the macro apply_theorem, with item 1
as goal, item 0 as fact, and conjD2 for the theorem name. The resulting proof
state is as follows.

. ANBF AAB by assume AA B

. AN BF B by apply_theorem conjD2 from 0
. ANBF BA A by sorry

. FAAB — BA A by implies_intr from 2.

W N = O

Again, note the re-numbering of proof items 1 and 2 and their references after
adding a new proof item before 1.

3.4 Search for Suggestions

In addition to the function transforming the proof state, each method also pro-
vides a search function. The search function takes as input the current proof
state, the selected goal, and the list of selected facts, and outputs a list of
suggested invocations of the method. Each suggested invocation provides input
strings for some (but not necessarily all) of the required arguments.

For example, the method applying a single theorem in the forward (resp.
backward) direction has search function that iterates through theorems hav-
ing the forward (resp. backward) attribute. For each theorem, it matches the
selected facts and goal with the assumptions and conclusion of the theorem,
and returns a suggestion whenever the match succeeds. Likewise, the method
for rewriting a fact (resp. goal) using a theorem has search function matching

96 B. Zhan et al.

the left side of each theorem having the rewrite attribute with subterms of the
selected fact (resp. goal).

The search function for methods is an important part of the system. The
output of all search functions are combined to form the list of suggestions to
the user. For methods applying a theorem in the forward/backward direction
or for rewriting, this means the user does not need to lookup the name of the
theorem, but the system will find it automatically based on the selected goal
and facts. For methods requiring no input arguments (for example, automation
that attempts to directly resolve the goal), the search function tests whether the
method can be applied.

3.5 Summary

We now summarize the three notions of macros, tactics, and methods. All of
them can be defined by the user, through which the system can be extended
with domain-specific functionality. All three take as side inputs the current the-
ory environment and additional arguments (where the signature is specified by
individual functions). They are distinguished by their main input and output.
We summarize these below.

— Macros take a list of sequents and return a new sequent. They may also return
a proof of the new sequent when desired. They are mainly used to abbreviate
a proof.

— Tactics take a sequent and return a proof (possibly with holes) of the sequent.
A common pattern is to use a macro in the last step of the output proof.

— Methods take a proof state with selected goal and facts and apply a transfor-
mation to the proof state, and may provide a search functionality. Common
patterns include applying a tactic at some goal, or applying a macro to obtain
a new sequent just before the goal. They form the direct link to the user inter-
face.

4 Implementation

We implemented the above design in a web interface. The main reason for build-
ing a user interface from scratch (as well as using the new holpy system as
backend) is to allow full flexibility in its design. In principle, the core ideas can
be applied to other proof assistants, perhaps with additional work on creating
another layer of proof representation in these systems.

Besides functionality for constructing a proof, the user interface handles dis-
play and editing of theory files. In particular, it allows the user to manage the list
of theories, and the list of items in a theory. The user may also specify attributes
for theorems in the edit area. Hence, it provides all of the necessary functionality
for interactive theorem proving based on holpy.

Design of Point-and-Click User Interfaces for Proof Assistants 97

File~ Action ¥ Items ~

bnd_mono h « (VW. VX. W € X
R Ifp_unfold x
— h WEhX
assume bnd_mono h
have VW. VX. WS X — h W € h X by rewrite_fact bnd_mono_def from 0
have VX. h X € X — h (1fp h) € X with

fix X :: ’a set

definition 1fp:: (a set = ’a set)
= ’'a set where

Ifp h=N{& hXcx
assume h X € X
have h (1fp h) € h X by
show h (1fp h) € X by sorry

theorem 1fp_lowerbound: proof
hAcCA—>1IfphcA

theorem 1fp_greatest: proof have h (1fp h) € 1fp h by apply_theorem 1fp_greatest from 2
(WX. hXSX—>ACX —AC have 1fp h € h (1fp h) by sorry
1o h A VN O W VN W leeil L : s 4
SAVE RESET

theorem 1fp_unfold: proof .
OK. 3 gap(s) remaining.
bnd_mono h — h (1fp h) = 1fp h
Apply fact (b): lfp h € X
constant finite::'a set = bool .
1fp_def (r): h (N{X. hX<cX})) €hX

axiom finite_empty: forall elimination

finite (@::"a set)

Fig. 1. Screenshot showing an intermediate stage in the proof of 1fp_unfold.

Figure 1 shows a screenshot of the user interface. At the top, there is a menu
of commands for file management, actions during a proof, and managing the list
of items in a theory. The left panel displays the content of the current theory
(it can also be changed to display the list of theories, or show more information
about the current state of the proof). On the right side, the top panel displays
the current state of the proof. The user selects goal and facts in the proof by
clicking on the corresponding lines. The selected goal and facts are colored in red
and yellow, respectively. After each change of selection, the user interface queries
the backend for a list of suggestions of method applications, and displays them
in the bottom panel, together with their expected effects. The user performs one
of the suggested actions by clicking on the corresponding line. If the suggestion
does not provide all of the required arguments, the user is prompted to enter
the missing arguments.

Occasionally, the user will want to invoke a method not among the sugges-
tions. Two common methods that are not searched are cases and cut. Both
take a string which is parsed into a term A of boolean type. The cases method
reduces the selected goal C' into two goals A — C and -A — C. The cut
method inserts A as a new goal right before the current goal. When A is proved,
it can be used in the proof of the original goal. The user can select invoca-
tion of these (and other) methods from the menu, and then enter the required
arguments.

When displaying the proof, the user interface converts the proof to a more
readable form compared to that used in Sects.2 and 3. The basic transforms
applied include the following. Examples will be given in Sect. 5.

— Use fix and assume for variable and assume rules.
— Hide antecedents of sequents (which can be inferred from previous assumes).

98 B. Zhan et al.

Change invocations of intros to with blocks.

— Add show for the last sequent of a block, and have for other intermediate
sequents.

— Indentation according to with blocks.

We applied our tool to a selection of theorems about logic, sets, functions,
Peano arithmetic, and lists. The results are given in Table 1. In the table, #S
is the total number of steps to prove the theorem, #Y is the number of steps
that are among the suggestions, and #N is the number of steps that must

Table 1. Statistics on the test suite.

Name Proposition #S | #Y | #N
double_neg ——A—— A 9 8 1
disj_conv_imp -AVB+«—— A— B 12 11 1
ex_conj_distrib (3z. Az AB) — (3z. Az)A(3z. B x) 6 6 0
all_conj_distrib (Vz. Az ANBz) — (V. Az)A(Vz. B x) 7 7 0
conj_disj_distribL1 AN(BVC)+—— ANBVAANC 23 23 0
pierce (A—B)— A) — A 5 4 1
drinker Jz. P x — (Vz. P z) 11 8 3
subset_antisym ACB—BCA—A=B 7 7 0
subset_trans ACB—BCC—ACC 4 4 0
cantor AS. Va. ~f z =S 13 12 1
Inter_subset AeS—NSCA 4 4 0
subset_Inter (VvC.CceS— ACC)— ACNS 6 6 0
Union_union UAuB)=UJAUUB 43 43 0
Ifp_lowerbound hACA—IlfphCA 3 3 0
Ifp_greatest VX.hXCX —ACX)— ACIlfph 5 5 0
Ifp_unfold bnd_mono h — h (lfph) = lfph 10 9 1
fun_upd_triv (Ha:=fa)=7f 8 7 1
fun_upd_upd (fHHla:=b,a:=c)=(f)(a:=c) 9 8 1
fun_upd_twist c=a— (f)(a:=b,c:=d)=(f)(c:=d,a:=0b)| 19 17 2
comp_fun_assoc (fog)oh=fogoh 4 4 0
injective_comp_fun injective f — injective g — injective(g o f) 5 5 0
surjective_.comp_fun | surjective f — surjective g — surjective(g o f) 11 9 2
add_comm r+y=y+a 7 6 1
add_assoc c+y+tz=z+ (y+2) 6 6 0
distrib_l zx(y+z)=zxy+z*z 7 7 0
mult_assoc Txy*xz=2x*(y*2z) 7 6 1
mult_comm TRY=YyxT 7 6 1
less_eq_trans k<m-—m<n—k<n 9 9 0
append._right_neutral | zs @ [| = xs 5 5 0
append_assoc (zs @ ys) @ zs = xs @ ys Q zs 6 6 0
length_append length (zs @Q ys) = length zs + length ys 9 9 0
rev_append rev (zs @ ys) = revys @ revuzs 9 8 1
rev_rev rev (revzs) = xs 12 12 0
rev_length length (rev zs) = length s 10 10 0
Total: 34 theorems 318 | 300 18

Design of Point-and-Click User Interfaces for Proof Assistants 99

be invoked from the menu. The results show that the current user interface is
already applicable to a wide range of areas, allowing proofs of basic results to
be conducted largely by choosing from the suggestions.

5 Case Study: Knaster-Tarski Theorem

In this section, we use the proof of the Knaster-Tarski fixed point theorem
to demonstrate how user interaction works in practice for a nontrivial result.
Roughly speaking, the theorem states that any bounded monotone function has
a (smallest) fixpoint. We state and prove a basic version of the theorem using
our user interface.

The definition of bounded monotone functions is given as follows (here h is
of type 'a set = 'a set, and we assume the bound on A is given by the type ‘a).

bnd_mono h «—— (VW.VX. W C X — hW C h X)

Given a bounded monotone function, its least fixed point is constructed using
the following definition:

lfph=[{X. hX C X}

Two properties of 1fp h follow immediately from the definition. The first says
that Ifp h is contained in any set A satisfying h A C A. The second says that in
order to show any set A is a subset of lfp h, it suffices to show A is a subset of
any X satisfying h X C X. These properties are stated in higher-order logic as
follows.

1fp_ lowerbound: hAC A —lfph C A
1fp greatest : (VX. h X CX — ACX)— ACIlph

The main theorem states that 1fp h is in fact a fixed point of h:
1fp.unfold: bnd-mono h — h(lfph) =1liph

We now show how to prove this theorem using our user interface. The initial
state of the proof is:

0 assume bnd_mono h
1 show h (Ifp h) = lfp h by sorry.

First, select item 0 as a fact, and apply the suggestion to rewrite the fact using
theorem bnd mono_def. Next, select item 1 (now item 2) as the goal (without
selecting any facts), and use the suggestion to apply subset_antisym, to reduce
the goal to two subset relations. The resulting state after these two operations
is:

100 B. Zhan et al.

0 assume bnd_mono h

1 have VW. VX. W C X — hW C h X by rewrite_fact bnd_mono_def from
0

2 have h (lfp h) C lfp h by sorry

3 have lfph C h (Ifp h) by sorry

4 show h (Ifp h) = lfp h by apply_theorem subset_antisym from 2, 3.

Next, select item 2 and follow the suggestion to apply 1fp_greatest. This
results in a forall goal. Select the goal and using the introduction method, enter-
ing X for the name of the new variable, we get the following proof state:

0 assume bnd_mono h
1 have VYW.VX. W C X — hW C h X by rewrite_fact bnd_mono_def from 0
2 have VX. h X C X — h(lfph) C X with
2.0 fix X :'aset
2.1 assume h X C X
2.2 show h(lfph) C X by sorry
3 have h (lfp h) C lfp h by apply_theorem lfp_greatest from 2
4 have lfph C h (lfp h) by sorry
5 show h (Ifp h) = lfp h by apply_theorem subset_antisym from 3, 4.

Next, we perform the only manual step in this proof, inserting an intermediate
goal h (lfph) C h X before h (lfph) C X (choose “Insert goal” from the menu
with item 2.2 selected as goal). The resulting proof state is (now showing only
the block for proof of item 2):

2 have VX. h X C X — h(lfph) C X with
2.0 fix X ::'aset
2.1 assume h X C X
2.2 have h(lfph) C h X by sorry
2.3 show h(lfph) C X by sorry.

Next, select goal 2.2 and fact 1, and follow the suggestion to apply fact 1 to
goal 2.2, resulting in a new goal Ifph C X:

2 have VX. h X C X — h(lfph) C X with
2.0 fix X ::'aset
2.1 assume h X C X
2.2 have lfph C X by sorry
2.3 have h(lfph) C h X by apply_fact_for Ifp h, X from 1, 2.2
2.4 show h(lfph) C X by sorry.

Select item 2.2, the wuser interface suggests using the theorem
1fp_lowerbound, reducing the goal to h X C X, which is already available as a
fact. This proves 2.2. Next, select goal 2.4 and fact 2.3, the user interface sug-
gests use of the theorem subset_trans, again reducing the goal to h X C X.
Performing these two steps finishes the proof of item 2. The resulting proof state
is:

Design of Point-and-Click User Interfaces for Proof Assistants 101

2 have VX. h X C X — h(lfph) C X with
2.0 fix X ::'aset
2.1 assume h X C X
2.2 have lfph C X by apply_theorem for Ifp_lowerbound, ... from 2.1
2.3 have h(lfph) C h X by apply_fact_for Ifp h, X from 1, 2.2
2.4 show h(lfph) C X by apply_theorem subset_trans from 2.3, 2.1.

Two more steps are needed to finish the overall proof: reducing goal 4 to
showing h (h (fph)) C h (fp k) using 1fp_lowerbound, then using item 1 and 3
to resolve the goal. The user interaction is similar to before. The final state of
the proof is:

0 assume bnd_mono h
1 have VW.VX. W C X — hW C h X by rewrite_fact bnd_mono_def from 0
2 have VX. hX C X — h(lfph) C X with
2.0 fix X ::'aset
2.1 assume h X C X
2.2 have lfph C X by apply_theorem _for Ifp_lowerbound, ... from 2.1
2.3 have h(Ifph) C h X by apply_fact_for lfph, X from 1, 2.2
2.4 show h(lfph) C X by apply_theorem subset_trans from 2.3, 2.1
3 have h (lfph) C lfp h by apply_theorem lfp_greatest from 2
4 have h (h(lifph)) C h(Ifp h) by apply_fact_for ... from 1, 3
5 have lfph C h (Ifp h) by apply_theorem_for lfp_lowerbound, ... from 4
6 show h (Ifph) = lfp h by apply_theorem subset_antisym from 3, 5.

As we can see, the resulting proof is quite readable, similar to a proof written
in Isabelle/Isar. All intermediate conclusions are shown, as well as the name of
each theorem and proof rule used. However, the entire proof is constructed using
just a few clicks, occasionally entering names of variables, instantiations (when
it cannot be derived by matching), and intermediate goals.

6 Conclusion

In this paper, we presented a framework for designing point-and-click user inter-
faces in interactive theorem proving. While a major goal of the design is ease of
learning for newcomers to this field, we also intend to produce a fully functional
system, able to be used for general purpose theorem proving. We implemented
a prototype user interface based on this framework, and tested it on theorems
about logic, sets, functions, Peano arithmetic, and lists, showing that these theo-
rems can be proved largely by clicking on suggestions, and occasionally entering
additional information.

We intend the current work to be the beginning of a long-term project to build
a proof assistant that is both easy to use and scalable to large formalizations.
Immediate next steps include extending the prover to make it work smoothly over
a larger variety of domains. In addition, we envision two major improvements to
the user interface. First, we currently lack strong proof automation in the system.
This can be seen in the examples above, where the resulting proof consists of

102 B. Zhan et al.

low-level theorem applications. Proof assistants such as Isabelle benefit from
powerful tactics (such as auto and blast), as well as calls to external provers
via Sledgehammer. In the future, we intend to incorporate both powerful internal
automation, as well as connection to external provers. They fit nicely into the
current framework as follows: the user selects the goal and a number of facts
to use, and the system invokes proof automation in the background to check
whether the goal can be solved using the selected facts. In this way, we intend
to allow proofs that are a mix of high-level and low-level steps, where the user
can choose the granularity of the argument.

Second, we currently make no attempt to order the list of suggestions of
method applications. This does not pose a problem so far, since the test examples
are still in the beginning stages of mathematical development, so there are few
options at each step. As we move to formalizing deeper mathematical theories,
it is expected that the number of options at each step will increase, even as we
try to control it with theorem annotations and allowing the user to select which
facts in the proof to use. One potentially promising approach is to use machine
learning models for ordering the suggestions.

Acknowledgements. We would like to thank the referees for their helpful comments.
This work is supported by the CAS Pioneer Hundred Talents Program under grant No.
Y9RC585036.

References

1. The HOL 4 system. http://hol.sourceforge.net/

2. Abrial, J.-R., Cansell, D.: Click’n prove: interactive proofs within set theory. In:
Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 1-24. Springer,
Heidelberg (2003). https://doi.org/10.1007/10930755_1

3. Ahrendt, W., Beckert, B., Bubel, R., Hahnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book - From Theory to Practice. LNCS,
vol. 10001. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49812-6

4. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development -
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science An EATCS Series. Springer, Heidelberg (2004). https://doi.org/10.1007/
978-3-662-07964-5

5. Bertot, Y., Kahn, G., Théry, L.: Proof by pointing. In: Hagiya, M., Mitchell,
J.C. (eds.) TACS 1994. LNCS, vol. 789, pp. 141-160. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-57887-0_94

6. Bertot, Y., Théry, L.: A generic approach to building user interfaces for theorem
provers. J. Symb. Comput. 25(2), 161-194 (1998)

7. Breitner, J.: Visual theorem proving with the incredible proof machine. In:
Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS, vol. 9807, pp. 123-139. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-43144-4_8

8. The JSON data interchange syntax, December 2017. http://ecma-international.
org/publications/files/ECMA-ST/ECMA-404.pdf

http://hol.sourceforge.net/
https://doi.org/10.1007/10930755_1
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/3-540-57887-0_94
https://doi.org/10.1007/978-3-319-43144-4_8
http://ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

10.

11.

12.

13.

14.

15.

16.

17.

18.

Design of Point-and-Click User Interfaces for Proof Assistants 103

Fulton, N., Mitsch, S., Quesel, J., Volp, M., Platzer, A.: KeYmaera X: an axiomatic
tactical theorem prover for hybrid systems. In: Automated Deduction - CADE-25
- 25th International Conference on Automated Deduction, Berlin, Germany, 1-7
August 2015, Proceedings, pp. 527-538 (2015)

Gonthier, G., et al.: A machine-checked proof of the odd order theorem. In: Blazy,
S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 163—
179. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39634-2_14
Hales, T., et al.: A formal proof of the Kepler conjecture. Forum Math. Pi 5, e2
(2017)

Harrison, J.: HOL light: an overview. In: Berghofer, S., Nipkow, T., Urban, C.,
Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 60—-66. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03359-9_4

Klein, G., et al.: Comprehensive formal verification of an OS microkernel. ACM
Trans. Comput. Syst. 32(1), 2:1-2:70 (2014)

Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107-
115 (2009)

Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for
Higher-Order Logic. Lecture Notes in Computer Science, vol. 2283. Springer, Hei-
delberg (2002). https://doi.org/10.1007/3-540-45949-9

Platzer, A., Quesel, J.-D.: KeYmaera: a hybrid theorem prover for hybrid systems
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNATI), vol. 5195, pp. 171-178. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-71070-7-15

Wenzel, M.: Isar — a generic interpretative approach to readable formal proof
documents. In: Bertot, Y., Dowek, G., Théry, L., Hirschowitz, A., Paulin, C. (eds.)
TPHOLs 1999. LNCS, vol. 1690, pp. 167-183. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48256-3_12

Zhan, B.: holpy: Interactive Theorem Proving in Python. arXiv e-prints
arXiv:1905.05970, May 2019

https://doi.org/10.1007/978-3-642-39634-2_14
https://doi.org/10.1007/978-3-642-03359-9_4
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1007/3-540-48256-3_12
https://doi.org/10.1007/3-540-48256-3_12
http://arxiv.org/abs/1905.05970

l‘)

Check for
updates

SqlSol: An accurate SQL Query
Synthesizer

Lin Cheng®™

Western Michigan University, Kalamazoo, USA
lin.cheng@umich.edu

Abstract. SQL is the programming language for communicating with
relational databases, but writing SQL queries is challenging for many end
users due to lack of programming knowledge. In this paper, we present
an efficient and accurate algorithm that helps users to synthesize SQL
queries from 1O examples, which is the first algorithm to encode SQL syn-
thesis problem into constraint-solving problem. We propose an axiom that
encodes the semantics of a SQL query into logic constraints, and decom-
pose the SQL synthesis problem into two parts: problem-encoding and
constraint-solving. For the problem-encoding part, we use a SQL template
that is same as prior work and parameterize it, then based on this axiom,
we encode the parameters into logic constraints. For the constraint-solving
part, we use the off-the-shelf modern SMT solvers. Our algorithm supports
multiple IO examples, therefore users can add more examples to refine
the solution until a correct one is found. We implemented a tool, SqlSol,
and evaluated it on 171 benchmarks. The results showed that it efficiently
solved 68% of the benchmarks in 3s in average. For those SqlSol cannot
solve, SqlSol terminated in 4s in average.

Keywords: SQL + SMT solver + Program synthesis + Program by
example

1 Introduction

Relational database is one of the most important data management infrastruc-
ture in the modern era of data technology. Structured query language (SQL)
is the language that is used to manipulate relational databases. According to
TIOBE index [4], SQL is one of the top 10 ranked programming languages, the
best-ranked database query language in the year of 2018. However, writing SQL
queries is difficult because of the high expressiveness of the language structs.
Searching on Stack Overflow with the keyword SQL, we got over 30000 pages of
results, each of which contains 15 questions. That is, more than 450K questions
about writing SQL queries asked.

Programming By Example (PBE) has attracted research interests as a tech-
nique to help end-user programming computers by demonstrating concrete exam-
ples [8,9,11,12]. Observing users usually provide input-output (IO) tables as
© Springer Nature Switzerland AG 2019

Y. Ait-Ameur and S. Qin (Eds.): ICFEM 2019, LNCS 11852, pp. 104-120, 2019.
https://doi.org/10.1007/978-3-030-32409-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32409-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-32409-4_7

SqlSol: An Accurate SQL Query Synthesizer 105

/IO Example/—»{Synthesize .]oin]—»[Deﬁne Unknowns]

¥
10 Example [EIO Cons} EDomain Cons] [Semantics Cons}]
!
,
‘Accept? AT
Y
Y N

Fig. 1. The architecture of SqlSol

examples when raising questions, researchers have proposed different algorithms
to synthesize SQL queries by examples [15,16].

The state-of-the-art SQL synthesizers, SQLSynthesizer [16] and Scythe [15],
use hand-crafted search algorithms to automatically generate SQL queries from
input-output examples. SQLSynthesizer uses a parameterized SQL template,
which is showed by a survey that it supports the mostly wide used SQL features,
and uses a decision tree to decide the parameters, and uses an online database to
validate the result. Scythe enlarges the supported SQL subset by allowing nested
queries, and uses abstract SQL query to prune the search space, and manually
implements SQL semantics to validate the result. Both SQLSynthesizer and
Scythe support one 10 example and use heuristics to rank solutions because
there may be many SQL queries that satisfy the IO example.

Instead of manually creating search algorithms, we propose an axiom which
encodes the semantics of a SQL query and a new algorithm that encodes the SQL
synthesis problem into logic constraints and uses the off-the-shelf satisfiability
modulo theory (SMT) solvers to solve for the solution. Nowadays, SMT solvers,
Z3 [7) and CVC4 [5] et al., have become the corner stones of modern computer
science. The rich features of modern SMT solvers allow us to express complicate
datatypes, like table. For example, in this paper, we encode table as a datatype
of Array(String Int Cell), Where Cell is a datatype which can hold int,
float, string or null values of a table cell.

Our algorithm enjoys the following benefits brought by the logic constraints
based approach. First, it inherits the theoretic properties from the formal meth-
ods. That is, because the logic constraints are sound and complete, if the algo-
rithm of SMT solver is sound and complete, the whole algorithm is sound and
complete. Second, our algorithm enjoys performance improvement, because the
implementations of modern SMT solvers focus on performance and are battle-
hardened, [3]. Third, it is made easy for our approach to support multiple I0
examples, because our algorithm decomposes the SQL synthesis problem into two
parts: logic encoding and logic solving. Actually, we only need to conjuncture the
logic constraints for all IO examples. Therefore, instead of heuristically ranking

106 L. Cheng

Select t2.student,t2.avg_score
From
(Select t4.student, t4.level, t4.avg_score,
t5.student As studentil,
t5.level As levell, t5.course, t5.score
From ((Select
t3.student, t3.level, Avg(t3.score) As avg_score
From
(Select *
From
input_table_0
Where input_table_0.score > 59.0) As t3
Group By
t3.student, t3.level) As t4 Join
(Select *
From
input_table_0
Where input_table_0.score = 59.0) As t5)) As t2
Where t2.level = t2.levell;

Fig. 2. Solution generated by Scythe. It has 3 levels of nested queries and 4 sub-queries.

solution to match an IO example, our algorithm is able to synthesize the correct
SQL query, i.e., capture the user intent. For example, in our motivating example
in Sect. 2, our algorithm generates the SQL query that matches the specification
in natural words exactly. However, the state-of-the-art tool, Scythe, generates
the solution, Fig. 2, which is more complicate and semantically different because
its predicate is score > 59 instead of average(score) > 59.

Figure 1 is the overall flow of our tool, SqlSol. It starts with one IO example
provided by the user, and synthesizes the JOIN conditions. Then, it determines
the number and types of the unknowns in a parameterized SQL query, and
encodes IO constrains, domain constraints, and semantics constraints. Then, it
sends all constraints to an SMT solver to check for satisfiability. If the solver
returns unsatisfiable, it declares failure. If the solver returns satisfiable, it fetches
the model generated by the solver and compiles a SQL query and asks the user
to decide whether to accept or not. If yes, the algorithm returns; Otherwise,
the algorithm asks the user to add new IO examples to refine the solution until
a solution is accepted or failure declared. Note that our algorithm joins input
tables same way and supports same SQL subset as SQLSynthesizer.

We evaluated SqlSol on two benchmark sets used by previous work, SQL-
Synthesizer and Scythe [15,16]. Under a reasonable setting, on SQLSynthesizer
benchmark set, SqlSol solved more problems than both SQLSynthesizer and
Scythe. On Scythe benchmark set, although SqlSol solved less problems than
Scythe because the supported SQL subset is smaller, SqlSol is faster for both
solved and unsolved problems. Specially, for unsolved problems, SqlSol termi-
nates in seconds, while Scythe only terminates after time out of 120s. We eval-
uated the scalability of SqlSol and Scythe on another 25 hand-written bench-
marks, and the result showed that SqlSol is 2X to 10X faster than Scythe. Our
evaluation also showed that supporting multiple IO examples not only help user
to find the correct SQL query, but also can speedup the algorithm.

SqlSol: An Accurate SQL Query Synthesizer 107

SELECT student.name AS name, average(grade.score) AS average
FROM student

JOIN grade

ON student.id = grade.s_id

WHERE student.level = ’senior’

GROUP BY student.name

HAVING average(grade.score) > 59.

Fig. 3. Hand-written solution for the motivating example

We have the following contributions:

— We propose an axiom to model the SQL semantics for SQL synthesis. We
propose an innovative algorithm which encodes SQL synthesis problem into
logic constraints, then solve it with modern SMT solvers.

— Our algorithm supports multiple examples and iteratively refines the solu-
tion space to find a solution accepted by the user, in addition to a solution
satisfying one IO example.

— We implemented an end-to-end synthesis tool, SqlSol, and evaluated the
results experimentally.

The rest of the paper is organized as follows: In Sect. 2, we use a motivating
example to demonstrate our algorithm step by step. In Sect. 3, we introduce our
SQL subset. In Sect. 4, we present our technique in details. In Sect. 5, we evaluate
our algorithm and compare to the state-of-the-art SQL synthesizing tools.

2 Motivating Example

In this section, we use an example to demonstrate our algorithm. Consider the
following SQL writing problem, which is taken from a classic database manage-
ment textbook [13] and modified for the purpose of illustration.

Find the name and average score of each senior student whose average score
1s greater than 59.

Figure 3 is our hand-written solution of the problem. The SQL query first
joins two tables on the columns student.id and grade.student_id. Then, it
selects all senior students using the condition in the WHERE clause. Next, it
computes the average score for each student and selects those rows where the
average scores are greater than 59 using the condition in the HAVING clause.
Finally, it projects the selected columns to the columns name and average of
the output table.

Figure4 is an IO example we manually wrote for the input of the synthesis
algorithm. It includes two input tables, Student and Grade, and one output
table, Output. The column s_id of table Grade is a foreign key of the column id
of table Student. The goal of the SQL synthesizer is to automatically generate a
SQL query which satisfies the IO example. Ideally, it returns the exact solution,
Fig. 3, instead of other solutions like Fig. 2.

108 L. Cheng

Student Grade Output
id[name| level s_id| course |[score name|average
1| stul [senior 1 Math 70 stul 75
2| stu2 |senior 1 English 80 stub 60
3| stu3 |senior 2 Math 59 stu7 90
4 | stud |junior 3 English 40
5 | stub [junior 4 Math 70
6 | stub |senior 5 English | 85
7| stu7 |senior 6 English | 60

7 |Computer| 90

Fig. 4. Input-output tables for motivation example

Input Output
id|name| level | course |[score name|average
1| stul [senior| Math 70 stul 75
1| stul [senior| English 80 stub 60
2 | stu2 |senior| Math 59 stu7 90
3 | stu3 [senior| English | 40
4 | stud [junior| Math 70
5| stub |junior| English 85
6 | stub [senior| English | 60
7 | stu7 [senior | Computer| 90

Fig. 5. Input-output tables after join in motivation example

Our tool, SqlSol, joins the two input tables on the foreign key relation, and
creates a parameterized SQL query, Fig. 6. Then, it encodes constraints for the IO
example, the domain of the unknowns, and the semantics of the SQL query, and
then it sends the constraints to a SMT solver, Z3 we used, to check satisfiability.
After the SMT solver returns satisfiable, it fetches the models of the unknowns
from the solver and compiles a SQL query, Fig. 3. The user accepts the solution,
and the algorithm terminates.

2.1 Join Conditions

For the purpose of simplifying the synthesis algorithm, without loss of informa-
tion, we join the input tables using two heuristic rules same as SQLSynthesizer.
The first rule is to match the column names and types; the second rule is to
compare the constants in the columns. Figure 5 shows the 10 example after the
input tables are joined. The join condition is student.id = grade.s_id, which
is a foreign key constraint of the schema of the two input tables.

2.2 Parameterized SQL Query

We create a parameterized SQL query, Fig. 6, for the motivating example. A
parameterized SQL query is a SQL query skeleton that has unknowns regarding
to the 10 table schema and constants et al. The unknowns can be represented
by uninterpreted variables when encoded into logic constraints.

In Fig.6, there are two unknowns, ??! and ??2, for there are two columns
in table Output. The tuple (??ypop, ? Twpes ? Lwpw) 18 the predicate in the WHERE

SqlSol: An Accurate SQL Query Synthesizer 109

SELECT ??! AS name, ??2 AS average FROM input
WHERE (??wpop ?7wpe ?Twpw) GROUP BY ??75. HAVING (??hpop ??hpe ?Thpo)

Fig. 6. Parameterized SQL query for motivation example

clause, and the unknowns stand for the logic comparator, column name in table
Input and a constant. The tuple (??npop, ?%hpes ?Thpo) is the predicate in the
HAVING clause, and the unknowns stand for the logic comparator, column name
of the aggregation column and a constant. We set the upper bound of length of
the predicates in both WHERE and HAVING clause to be 1. Note that the constant
?7hpv 18 & constant in the aggregation column, and has to be computed before it
can be used.

2.3 Auxiliary Columns

We add an auxiliary aggregation column, to encode the SQL query with an
aggregation column. An aggregation column depends on three variables: the
aggregation function ??,y, the aggregation column ?7,., and the group column
?74¢, which are all unknowns in our synthesis algorithm. The aggregation column
can be computed with the unknowns in the SMT language, as presented in details
in Sect. 4.4.

2.4 Logic Constraints for SQL Synthesis Problem

The logic constraints for SQL synthesis problem fall into three categories:
I0 constraints, domain constrains, and semantics constraints. IO con-
straints encode the IO examples into logic constraints. However, because there
is no Table data structure and no polymorphism support in SMT language, we
define an innovative Table and Cell data structure, to effectively implement the
constraints of IO examples in SMT language.

Domain constraints are the domains of the unknowns. In Fig. 6, the unknowns
7?1 and 7?2 in the SELECT clause are column names or aggregation column names
of table input. The unknown 77, is an aggregation function. The unknowns
??a¢s TTwpe, T7hpe are column names. The unknowns ?7,,p0p and 7?p,p0p are logic
comparators. The unknowns ?7?,,,, and ?7p,, are constants in the columns of
77 wpe and 77ppe.

Let input.cols be the column names of table input, input.acols be the
aggregation column names acol, afs be the set of aggregation functions, ops be
the set of logic comparators. We have

input.cols = {id, name, level, course, score}
input.acols = {acol}

afs = {count, sum, avg, min, max}

ops = {=,>, <, 7, <, 2}

110 L. Cheng

The domain constraints for the unknowns are

271,272 € input.cols U input.acols
.5 €afs

?acs P Twpey 11 ge € input.cols
??hpe € input.acols

77 wpop> ! Thpop € OPS

7 wpv € nput.??ype

P hpo € INput.??ppe

The semantics constraints encode the semantics of a SQL query with respect
to the 10 example. For each row r in the table input, the SQL query first checks
the predicates in the WHERE and HAVING clause. If they are both true, the columns
of the row in the SELECT clause will form a row s in the table output. Otherwise
the row will be skipped. In the other direction, for a row s in the table output,
there exists a row in the table input that satisfies the predicates in the WHERE
and HAVING clause. The semantic constraints for the parameterized SQL query
are

V1 <r <8, (Pwpop ?Twpe TTwpu) A (P hpop ?Thpe T Thpw))
= 31 < s <3, (input(??c,r) = output(name, s))
A (input(??.,1) = output(average, s))
Vi<s<3 =
1 <r <8, (wpop TTwpe TTwpr) A (P hpop PThpe TThp))
(input(??.1,7) = output(name, s))

(input(??.1,7) = output(name, s))

2.5 Solve

We sent the constraints above to an SMT solver, Z3, to check for satisfiability,
and the solver returned satisfiable. Then, we fetched the model from the solver
and substituted the unknowns in the abstract query with the model, and a con-
crete SQL query was generated. We manually checked and accepted the solution,
since it is exactly the one that solves the question of this motivating example.
Then the algorithm terminated. The computation took less than 1s.

3 SQL Subset Syntax

Figure 7 shows the syntax of the standard SQL subset supported by our tool
SqlSol, which is similar to the state-of-the-art tool, SQLSynthesizer [16]. This
subset is designed to support the most widely used SQL features according to a
survey by Zhang et al. [16].

SqlSol: An Accurate SQL Query Synthesizer 111

(query) == (sfw) | (sfwgh)

(sfw) = SELECT (ezpr)™ FROM (table)™ WHERE (wp)™

(sfwgh) = SELECT (ezpr)™ FROM (table)™ WHERE (wp)™ GROUP BY (col)™
HAVING (hp)*

(table) ::= atom

(col) = (table).atom

(af) == COUNT | SUM | AVG | MIN | MAX

(acol) == ({af) (col))

(op) n==[>[<[#]|2>]<

(expr) = (col) | {acol)

(wp) == (wp) A (wp) | {wp) V (wp) | = (wp) | ((op) (col) atom) | true | false
(hp) == (hp) A (hp) | {hp) V (hp) | = (hp) | ({op) (acol) atom) | true | false

Fig. 7. Syntax of the supported SQL subset in SqlSol: atom is a table name, or column
name, or a cell value.

While mostly same, there are two differences between SqlSol and SQLSyn-
thesizer. One difference is that the logic constraints in SqlSol cannot support
DISTINCT and ORDER BY. That is because SqlSol models tables as sets, which
is common in formal methods. For example, relational algebra is defined based
on sets [1]; previous work, [14], models tables as sets. Fortunately, because both
DISTINCT and ORDER BY are of arity 0, synthesis of them only needs to compare
rows of the result table and the output table in the IO example, therefore can
be done in a post-process step.

Another difference is that, in addition to the three logic comparators =, >, <
supported by SQLSynthesizer, SqlSol also supports #, >, <.

4 Technique

In this section, we present the technique details of our algorithm.

4.1 Overview

Algorithm 1 is the high-level algorithm of SqlSol. Line 2 joins all input tables into
one input table. Line 3 declares all unknowns in the parameterized SQL query as
uninterpreted functions in SMT language. Line 4-6 add the domain constraints
for all unknowns. Line 7-22 are the iteration process that adds one new example
each time. For every example, line 8-9 encode it with our new Table datatype
in SMT language; line 10 encodes the semantics of parameterized SQL query
into constraints with respect to the input-output tables. In line 10-22, we send
all constraints to the SMT solver to check for satisfiability. If the solver returns
satisfiable, we fetch the model and compile a concrete SQL query, which satisfies
the 10 examples. Then, instead of stopping here, we let the user decide whether
to accept the query or not: if yes, the algorithm returns with success; otherwise,
the user can add a new 10 example, and the loop continues. If the solver returns
unsatisfiable, the algorithm declares failure.

112 L. Cheng

Algorithm 1. SqlSol SQL Synthesizer

1: Let (I1,01) be the Input Output example, X = @) be the set of unknowns, B =) be the set of
constraints, S be the SMT solver

2: T = join(I1), O = Oy

3: X = makeUnknowns(I,O)

4: for z € X do -

5: B.add(encodeDomain(I, O, x))

6: end for

7: while True do B

8: B.add(encodeTable(I))

9: B.add(encodeT able(O))

10: B.add(encodeSemantics(I, 0, X))

11: if S.solve(B) == SAT then

12: m = S.model()

13: if m.accepted() then

14: return // solution

15: else

16: (I,0) = addExzample()

17: I = join(I)

18: continue

19: end if

20: else

21: return // no solution

22: end if

23: end while

4.2 New SMT Datatype for Table Encoding and I0 Constraints

Satisfiability modulo theories (SMT) solve decision problems using background
theories expressed in logic constraints. Though modern SMT solvers have the-
ories of various data structures such as List, Array, Bit Vector, they do not
have theories for Table. Veanes et al., [14], proposed a theory which uses a list of
tuples to model Table. The unknowns in this theory are table cells, therefore the
theory is able to synthesize input tables given a SQL query. However, because
our algorithm synthesizes a SQL query given 10 examples and the unknowns
are elements in the SQL query, we can not simply use the theory.

We use a new Table SMT datatype to model input-output tables. The table
datatype is a customized 2-dimension Array. Because we handle different types
of table cells, including Int, Float, String, and Null, but SMT language does
not support polymorphism, we work around by using the datatype feature of
the latest SMT-lib standard [6]. We define a new datatype Cell and define
the Table datatype as Array(String Int Cell), where the elements are the
column name, row index, and cell value of the table, respectively.

With our new Table datatype, we can efficiently encode the 10 constrains of
the input-output tables in SMT language. The IO constraints of each table is the
union of the constraints of all table cells. An example use of the table datatype
is (assert (= (select table col 1) (String John))), which asserts that
the cell value of table at column col and row 1 equals to John of String type.

SqlSol: An Accurate SQL Query Synthesizer 113

4.3 Parameterize SQL Query and Domain Constraints

A parameterized SQL Query is a SQL query that has unknowns in the SELECT,
WHERE, GROUP BY, HAVING clauses. In this section, we define the unknowns and
their domain constraints.

Parameterize SELECT Clause. The unknowns in the SELECT clause define the
original or aggregated column names in the input table that are projected to
the output table. The number of unknowns in the SELECT clause equal to the
number of columns in the output table. Each unknown is of String type. The
domain of the unknowns is the set of original and aggregated column names.
Let input.cols and input.acols be the set of original and aggregated column
names of table input. Let noc be the number of columns of table output. Let
7?1 be the i — th unknown in the SELECT clause. The domain constraints of an
unknown in the SELECT clause is the union of input.cols and input.acols.

??% € input.cols Uinput.acols, i = 1,--- ,noc (1)

Parameterize WHERE Clause. The predicate in the WHERE clause is a boolean
expression which decides whether a row in the table input will be selected to the
table output. The boolean expression is comparison patterns connected by logic
conjunctive connector A or logic disjunctive connector V. A comparison pattern
is a basic pattern or logic constant true or false.

Let nwp be the upper bound of the number of basic comparison patterns.
Let ?7i,,,, be the unknowns for logic comparators of Enumeration type, 77%, .
be the unknowns for column names of String type, ??iupv be the unknowns for
values of the columns of Cell type, ?7;,,,, be unknowns of Boolean type, 777, ,
be unknowns of Enumeration type {A, V}.

A basic comparison pattern is of form bep = (?7ypop Twpe L Twpv), Whose
semantics is executing the comparator 77,0, With operands 77, and 77,,p,. A
comparison pattern is defined as c¢p = (??,, bep), whose semantics is when ??¢,
is true, it evaluates to true, otherwise bep. The predicate wp is defined in such
a way that it covers basic predicates of length from 0 to nwp. The definition of

wp is wp = wp™™P, where wp® is defined recursively:

true 1=10
wp® = { ept 1=1 (2)
(??iupb ept wptTl) i=2,--- nwp

Let ops be the set of logic comparators, input.??fupc be the cell values of
column ?7% .. cs be the set of logic connectors {A, V}. The domain constraints

in the WHERE clause are

291
* T wpop

??fupc € input.cols

€ ops

770 € input.?? 1=1,--- ,nwp (3)

S wpv fwpce

J -
??wprCS ,J=2,--- ,nwp

114 L. Cheng

Parameterize GROUP BY Clause. The unknowns in the GROUP BY clause define
the columns by which the output table is grouped. In addition to original columns
of the input table, we added special columns to the input table to support
special groups. Particularly, we added two special group-by columns: ucol and
scol. The column ucol has values that are all unique. Grouping by ucol means
every row is one group. Therefore, queries with GROUP BY clause generalize to
queries without GROUP BY clause. The column scol has values that are all equal.
Grouping by scol means all rows is one group.

Let ng be the upper bound of the number of group-by columns, input.cols
and input.hcols be the original columns and added group-by columns. Let 77196
be the unknown in the GROUP BY clause. The domain constraints for the GROUP
BY clause are

7! . € input.cols U {input.heols}, i =1,--- ,ng (4)

Parameterize HAVING Clause. The predicate in the HAVING clause is the same
as the predicate in the WHERE clause except that it only applies to the aggregation
column, i.e., input.acols, while the predicate in the WHERE clause only applies
to the original column, i.e., input.cols.

Let nhp be the upper bound of the number of basic comparison pattern
Let ‘?7’ » be the unknowns for logic comparators of Enumeration type, ? 7 hpe
be the unknowns for column names of String type, 7‘?hpv be the unknowns for
values of the columns of Cell type, ??}wm be unknowns of Boolean type, ??ﬁlpb
be unknowns of Enumeration type {A, V}.

Let a basic comparison pattern be bep = (?7hp0p ??hpe ?7hpo), & comparison
pattern be cp = (??,, bep). The definition of predicate hp is hp = hp™"?, where
hp® is defined recursively:

true 1=
hp' = < ept i=1 (5)
(P25, c0* hp'™') i=2,--- nhp

The domain constraints in the HAVING clause are

77 hpop € ops

?7? hpc € input.cols

2P po € input. 2%, i =1,--- nhp (6)
7?]b€cs,]—2 - ,nhp

4.4 Compute Aggregation Columns

Aggregation columns are computed before semantics constraints are encoded.
Unlike explicit search algorithms enumerate all combinations of group-by
columns and aggregation columns, our algorithm computes the aggregation
columns only once with the unknowns defined before.

SqlSol: An Accurate SQL Query Synthesizer 115

Let r be a row index, n be the number of rows, ite be the if-then-else
struct, wp be the predicate in the WHERE clause, col be the columns in the GROUP
BY clause, col(r) be the cell value of column col at row r.

Compute Aggregation COUNT. Let count be the aggregation column for
aggregation function COUNT. The formula to compute count is

count(r) = Z ite(wp(r) A (col(i) = col(r)),1,0) (7)

1<i<n

Compute Aggregation SUM. Let acol be the column to apply the aggrega-
tion function SUM on, sum be the aggregation column for aggregation function
SUM. The formula to compute sum is

sum(r) = Z ite(wp(r) A (col(i) = col(r)), acol(r),0) (8)

1<i<n

The aggregation column AVERAGE is computed as the division of SUM and
COUNT.

Compute Aggregation MAX. Let acol be the column to apply the aggrega-
tion function MAX on, maz be the aggregation column for aggregation function
MAX. The formula to compute the aggregation column max is recursive:

max(r) = ite((wp(r) A (acol(r) > maz(r — 1)),
acol(r), maz(r — 1)) (9)

Compute Aggregation MIN. Let acol be the column to apply the aggrega-
tion function MIN on, min be the aggregation column for aggregation function
MIN. The formula to compute the aggregation column min is recursive:

min(r) = ite((wp(r) A (acol(r) > min(r — 1)),
acol(r), min(r — 1)) (10)

4.5 Encode Semantics Constraints

In this section, we introduce the axiom that models the semantics of SQL queries
in logic language. On one hand, the axiom considers the direction from input to
output. For each row in the table input, if it satisfies the predicate wp in the
WHERE clause and the predicate hp in the HAVING clause, it should be selected
into table output, i.e., there exists a row in the table output that contains the
selected columns. On the other hand, the axiom considers the direction from
output to input. For each row in the table output, there exists a row in the
table input which satisfies the predicate wp and hp and the selected column
equals to the column in the output row.

116 L. Cheng

Table 1. Statistics of numbers of solved (unsolved) benchmarks, percentage, time
usage, average time usage on SQLSynthesizer and Scythe benchmark set. Columns
marked by sqlsyn, scythe, sqlsoll, sqlsol2, and sqlsol3 are the results of the algorithms
SQLSynthesizer, Scythe, SqlSol with the number of predicates in the WHERE clause, wp,
set to 1, 2, and 3. Timeout for Scythe is 120s.

SqlSynthesizer Scythe
sqlsyn | scythe | sqlsoll | sqlsol2 | sqlsol3 | scythe | sqlsoll | sqlsol2 | sqlsol3
Solved Count 20 20 17 22 25 150 93 112 116
% 71 71 61 79 89 88 54 65 68
Time 176 254 48 170 239 983 103 265 396
Average 9 13 3 8 10 7 1 2 3
Unsolved | Count 8 8 11 6 3 21 78 59 55
% 29 29 39 21 11 12 46 35 32
Time 24 960 T 65 123 2520 | 233 221 266
Average 3 120 7 11 41 120 3 4 5
Total Time 200 1214 125 235 362 3503 | 336 487 662
Average 7 43 4 8 13 20 2 3 4

Let nrow be the number of rows of a table, let wp be the predicates in the
WHERE clause, let hp be the predicates in the HAVING clause, let PC be set of the
selected columns. The axiom for the semantics of the SQL query is:

Vr € input.nrow, wp(r) A hp(r) =
Js € output.nrow,Ve € PC,input(c,r) = output(c, s)
Vs € output.nrow = (11)
Ir € input.now,Ve € PC,wp(r) A hp(r)
Ainput(c,r) = output(c, s)

5 Evaluation

We implemented our algorithm, SqlSol, in Java. We use Z3, [7], as the backend
SMT solver. In this section, We present our evaluation of SqlSol.

We set the upper bound of GROUP BY columns be 1, the upper bound of
aggregation column be 1, The upper bound of basic predicates in the WHERE
clause be 1, 2, or 3. the upper bound of basic predicates in the HAVING clause
be 1. The evaluation was conducted on a quad-core Intel Core i7 3.3 GHz CPU
with 8 GB memory.

5.1 Experiments on SQLSynthesizer and Scythe benchmarks

We evaluated SqlSol on two open-source benchmark sets: SQLSynthesizer bench-
mark set and Scythe benchmark set. The benchmarks were downloaded from the
site [2] of the open-source project Scythe. All benchmarks in both benchmark sets

SqlSol: An Accurate SQL Query Synthesizer 117

have one 10 example. The SQLSynthesizer benchmark set contains 28 bench-
marks, including 23 benchmarks collected from the classic database textbook
[13], and 5 ones collected from forums. The average number of table cells of an
10 example in SQLSynthesizer benchmark set is 57. The Scythe benchmark set
has three folders: dev-set, top-rated, recent-posts. We combined all the bench-
marks in the three folders, and removed some empty files. The final benchmark
set has 143 benchmarks. The average number of table cells in one benchmark in
the final set is 29. We downloaded Scythe from its github page [2]. However, we
could not obtain an effectively working software of SQLSynthesizer, so the data
of SQLSynthesizer was from its paper [16].

Table 1 shows the result of evaluation. On the SQLSynthesizer benchmark
set, SqlSol solved up to 5, 18%, more problems than SQLSynthesizer and Scythe,
while the average time usage is comparable to SQLSynthesizer, but smaller than
Scythe. On the Scythe benchmark set, for the solved benchmarks SqlSol is over
2X faster than Scythe; for the unsolved case, SqlSol is 44X faster than Scythe.
Overall, SqlSol is over 8X times faster than Scythe.

Note that on Scythe benchmark set, the number of problems solved by SqlSol
is less than by Scythe. We manually checked the unsolved problems, and found
that all are not in our SQL subset, mostly are nested queries. We leave nested
queries support for future work.

5.2 Scalability Comparison of SqlSol and Scythe

We created 25 benchmarks, each of 3009eeeeseesesssssessssssssss
which is an IO example to solve the - SqlSol
. h . —=— Scythe with Constants

problem in the motlvatlng example —e— Scythe without Constants
in Sect.2. The number of rows in 200
the input tables in the benchmarks
increases from 5 to 30, and each row
contains 5 constants. Constants are
unique except those in the first 5 rows.
The output tables in all benchmarks
are the same, containing 3 rows.

We tested Scythe with two set-
tings. One is Scythe with all con- Input Size
straints provided: constants senior,
59, and the aggregation function
average. The other is Scythe with no
constraints provided. The timeout is set to be 300s. In SqlSol, the wp is set to
be 2.

Figure 8 plots the result. The x-axis is the number of rows in the input table,
and the y-axis is the time usage. We can see that Scythe without constants
cannot solve any problem before timeout. SqlSol performs better than Scythe at
every input size and the speedup is between 2X to 10X.

Time Usage

100

10 15 20 25 30

(S

Fig. 8. Time usage with increasing number
of rows in input table.

118 L. Cheng

Single Input Multi Input: 1
id|name 1)John
1|Rose 2| Bob
2 | John Multi Input: 2
3 [Mary 1| Bob
2| Bob 2|John
Fig. 9. Single input Fig. 10. Multi inputs Fig. 11. Statistics comparison

5.3 Benefits from Multiple IO Examples Support

Given an 10 example, there are many SQL queries that satisfy them, but only
one is the user intention. In this section, we first evaluate how many 10 examples
are needed to find the user intention. We picked 6 benchmarks, whose solutions
fall into our SQL subset, from the SQLSynthesizer benchmark set and manu-
ally wrote solution for them. The numbers of 10 examples that SqlSol took to
synthesize the solution are: 5,4, 1, 1, 1, 1.

Another benefit from multiple IO examples support is that multiple exam-
ples contain less constants than single example, therefore can speed up the algo-
rithm. For example, consider the synthesis problem: SELECT id, name FROM
input where id = 2. Figure9 is the input table of one IO example, and Fig. 10
is two IO examples derived from Fig.9. Although the output of SqlSol are the
same, but the number of constants in Figs.9 and 10 are different: 7 in single
input, 4 in multiple inputs. We ran SqlSol with the two cases and fetched the
statistics data from Z3 solver. The result, Fig. 11, shows that in the number of
added equations, the number of decisions, the memory used (in MB), the time
used (in mini-seconds), multiple IO examples require less and perform better.

6 Related Work

Program Synthesis is the task that automatically generates programs that
satisfy some high-level specifications. Our synthesis algorithm belongs to SMT-
solver aided program synthesis, is particularly inspired by [10]. In [10], Gulwani
etc. parameterized sequential programs by making the line numbers of a pro-
gram symbolic variables, and encoded the syntax and semantics of a sequential
program into logic constraints. Their algorithm lets the user refine the solution
by providing more examples. Our algorithm differs from [10] in that it is the
first to encode the syntax and semantics of SQL queries for inductive SQL query
synthesis, to our knowledge.

SQL Query Synthesis. Paper [15,16] use search algorithms to synthesize SQL
queries from IO examples. Our work differs from those in that we delegate the

SqlSol: An Accurate SQL Query Synthesizer 119

searching algorithm to modern SMT solvers, so we can focus on a sound and
complete logic encoding of the SQL semantics and at the same time enjoys the
performance of state-of-the-art SMT solvers. Paper [14] proposes axiom system
for SQL semantics to synthesize input tables from SQL queries. Our work solves
the reverse problem that synthesizes SQL queries from input-output examples.

7 Conclusion

We present an algorithm, SqlSol, which encodes the semantics of a SQL query
into logic constraints, and leverages SMT solvers to synthesize SQL queries from
IO examples. The evaluation shows that SqlSol outperforms the state-of-the-art
tools, SQLSynthesizer and Scythe. Furthermore, by supporting multiple exam-
ples, SqlSol is able to find the user-intended solution and improve the speed at
the same time.

References

Relatioal algebra. https://en.wikipedia.org/wiki/Relational_algebra

Scythe. https://github.com/Mestway /Scythe

SMT-COMP. https://smt-comp.github.io

TIOBE. https://www.tiobe.com/tiobe-index/

Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171-177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1_14

6. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Techni-
cal report, Department of Computer Science, The University of Iowa (2017). www.
SMT-LIB.org

7. de Moura, L., Bjgrner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337-340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

8. Feng, Y., Martins, R., Van Geffen, J., Dillig, I., Chaudhuri, S.: Component-based
synthesis of table consolidation and transformation tasks from examples. ACM
SIGPLAN Not. 52(6), 422-436 (2017)

9. Gulwani, S.: Dimensions in program synthesis. In: Proceedings of the 12th Inter-
national ACM SIGPLAN Symposium on Principles and Practice of Declarative
Programming, pp. 13-24. ACM (2010)

10. Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of loop-free programs.
ACM SIGPLAN Not. 46(6), 62-73 (2011)

11. Halbert, D.C.: Programming by example. Ph.D. thesis, University of California,
Berkeley (1984)

12. Lieberman, H.: Programming by example. Commun. ACM 43(3), 72 (2000)

13. Ramakrishnan, R., Gehrke, J.: Database Management Systems, 3rd edn. McGraw-
Hill Inc., New York (2003)

14. Veanes, M., Tillmann, N., de Halleux, J.: Qex: symbolic SQL query explorer. In:

Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp. 425

446. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-4_24

Crs W=

https://en.wikipedia.org/wiki/Relational_algebra
https://github.com/Mestway/Scythe
https://smt-comp.github.io
https://www.tiobe.com/tiobe-index/
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
www.SMT-LIB.org
www.SMT-LIB.org
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-17511-4_24

120

15.

16.

L. Cheng

Wang, C., Cheung, A., Bodik, R.: Synthesizing highly expressive sql queries from
input-output examples. In: Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation, pp. 452-466. ACM (2017)
Zhang, S., Sun, Y.: Automatically synthesizing SQL queries from input-output
examples. In: 2013 IEEE/ACM 28th International Conference on Automated Soft-
ware Engineering (ASE), pp. 224-234. IEEE (2013)

®

Check for
updates

Towards Verifying Ethereum Smart
Contracts at Intermediate Language Level

Ximeng Li'3®) | Zhiping Shi'®™?, Qianying Zhang?, Guohui Wang?,
Yong Guan®?, and Ning Han'

! Beijing Key Laboratory of Electronic System Reliability and Prognostics,
Capital Normal University, Beijing, China
{1ixm,shizp,2181002006}@cnu.edu.cn
2 Beijing Engineering Research Center of High Reliable Embedded System,
Capital Normal University, Beijing, China
{qyzhang,ghwang}@cnu.edu.cn
3 Beijing Advanced Innovation Center for Imaging Theory and Technology,
Capital Normal University, Beijing, China
guanyong@cnu.edu.cn
4 International Science and Technology Cooperation Base of Electronic System
Reliability and Mathematical Interdisciplinary,

Capital Normal University, Beijing, China

Abstract. Smart contracts have exhibited great potential in a spec-
trum of applications, ranging from digital currency to online gaming.
Yet smart contracts are known to be prone to errors and vulnerable to
attacks. The validation of smart contracts before their deployment is
an indispensable step for their correctness and security, and the high-
est level of guarantee can be provided using formal verification. The
level of difficulty, reliability, etc., of the formal verification of a smart
contract is deeply affected by the programming language in which the
contract is implemented. In this paper, we discuss the benefits of verify-
ing smart contracts at the level of intermediate languages, in comparison
with machine-level languages and user-level languages. We augment the
existing formalization of Yul — the intermediate language of Ethereum,
realize an ERC20 token contract in this language, and verify the guaran-
tees of all the functions provided by this contract. All this development
has been performed in the proof assistant Isabelle/HOL. It demonstrates
the feasibility and some of the most important advantages of mechanized
verification for smart contracts at the intermediate-language level, such
as a balance between the intuitiveness of the verification target and the
ability to validate lower-level mechanisms like the function dispatcher.

1 Introduction

The blockchain technology [29] has raised a significant amount of attention both
from the technological community specifically and from the society at large.
A blockchain is a digital ledger consisting of blocks of records, which are linked
together through hash values. Copies of the same ledger are maintained at a great

© Springer Nature Switzerland AG 2019
Y. Ait-Ameur and S. Qin (Eds.): ICFEM 2019, LNCS 11852, pp. 121-137, 2019.
https://doi.org/10.1007/978-3-030-32409-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32409-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-32409-4_8

122 X. Li et al.

number of network nodes. The ledger is append-only, with a consensus mecha-
nism guaranteeing a unified view of newly appended blocks. This design enables
distributed consensus over data, while providing guarantees such as tamper-
resistance, denial-resistance, and backward-traceability.

The blockchain hosts not only plain data but also executable programs. The
programs executed over the blockchain are often called smart contracts (as was
conceptualized in [25]). Typically, they prescribe the actions performed (e.g.,
money transfer between accounts) under a number of predefined conditions.
Owing to the guarantees provided by the underlying blockchain, distributed con-
sensus is obtained over the outcome of the execution of smart contracts. Smart
contracts have found application in numerous areas, such as financing, supply-
chain management, smart manufacturing, health information management, etc.

While adding much to the versatility and power of the blockchain, smart
contracts can be prone to errors, and vulnerable to security attacks — just like
ordinary computer programs. Since they often deal with monetary concerns,
the misbehaviors of smart contracts could directly cause harm to the economic
rights of the participants. The fact that smart contracts are often written in an
unconventional language (e.g., Solidity), and run on unconventional infrastruc-
ture, invites further possibilities of attack. One of the most notorious attacks on
smart contracts is the DAO attack, which caused ~$60M to be lost (e.g., [11])
by the legitimate participants of the DAO contract [6].

To minimize the chances of errors and attacks, smart contracts must be thor-
oughly validated before being deployed. Formal verification provides the highest
level of correctness and security guarantees in the validation of IT systems, smart
contracts included. When formally verifying a smart contract, the abstraction
level of the contract is a critical factor to be considered. This abstraction level is
determined by the language in which the contract is to be realized. For Ethereum
smart contracts, verification has been attempted both for high-level languages
such as Solidity (e.g., [30]), and low-level languages such as EVM (Ethereum
Virtual Machine) bytecode (e.g., [19]). In general, the use of a high-level lan-
guage adds to the intuitiveness and manageability of the verification, while the
use of a low-level language minimizes the trust base of the verification. Neither
approach tends to enjoy the most important benefits of both.

In this paper, we explore the middle ground — the verification of smart con-
tracts in an intermediate language (IL). This helps strike a balance between the
intuitiveness of the verification, and the ability to reduce the needed trust base,
in ensuring the safety and security of smart contracts. Based on formal semantics,
we conduct a substantial case study for IL-level verification of smart contracts.
The verification is performed in a proof assistant (Isabelle/HOL), adding to the
confidence level on the results obtained. Our main technical contributions are:

— revised formalization of the Yul language (the IL of Ethereum), including
the formalization of function lookup due to observed mismatch between the
specification of Yul in English and its existing formalization (Sect. 3),

— realization of an ERC20 token contract [2] in Isabelle/HOL, in the formalized
Yul language (Sect. 4), and

Towards Verifying Ethereum Smart Contracts 123

contract Token {
mapping (address=uint256) public balances;

function balanceOf(address _owner) public view returns(uint256) {
return balances [_owner];
}

Fig. 1. The token contract with Balance-retrieval Functionality in solidity

— mechanized proofs of the guarantees provided by each function in the
contract — in the form of pre/post-conditions for the body of each function,
and for the external call invoking each function (Sect. 5).

Our development totals ~10k lines of code in Isabelle/HOL, of which ~500
lines correspond to the realization of the token contract, ~4k lines correspond to
the specification and proof for the function definitions in this contract, and the
rest correspond to the specification and proof for the calls to these functions.

2 Verifying Smart Contracts at the IL Level

In this section, we discuss the comparative benefits of formally verifying smart
contracts at the intermediate-language level. We use Solidity [4], EVM byte-
code [28], and Yul [8] as representative examples for smart contract languages
at the high level, the low level, and the intermediate level, respectively.

Verifying Contracts in Solidity. Solidity is the official programming lan-
guage of Ethereum. It offers contracts, balances, transfers, etc., as programming
abstractions. A contract allowing for the retrieval of the balances of all the par-
ticipants in some token could be implemented as in Fig.1. In this figure, the
contract is represented by the contract construct of Solidity, the balances are
maintained in a mapping (from the address of each owner of the token to the
current balance of the owner), and the operation retrieving the balance of a
specific owner is implemented as a function.

As a structured, user-level language for smart contracts, Solidity allows for
intuitive representation of the business logic of each contract. This facilitates the
development of a specification in a formal verification (e.g., preconditions, post-
conditions, loop invariants, etc.). On the other hand, as a high-level language, the
features of Solidity are relatively complicated (with static and dynamic arrays,
mappings, inheritable contracts, access modifiers, imports, etc.). Furthermore,
the language is partly in its maturing process, and, hence, the evolvement of its
features is relatively fast. These two facts pose great challenges to the develop-
ment and stabilization of a formal semantics for Solidity, and the implementation
of a verification system on top of the semantics.

124 X. Li et al.

function balanceOf(owner) — bal {
bal := sload(accountToStorageOffset(owner))

}

Fig. 2. The Balance-retrieving function of token contract in Yul

Verifying Contracts in EVM Bytecode. EVM bytecode is the language
of the execution engine of Ethereum — the Ethereum Virtual Machine (EVM).
Implementing the contract of Fig.1 in EVM bytecode requires the implemen-
tation of e.g., a function dispatcher that directs each call to the contract to
a specific function using the JUMPI instruction, the computation of the stor-
age location of a specific owner’s balance using arithmetic and stack-operating
instructions, the retrieval of the balance of the specified owner using the SLOAD
instruction, etc.

As a machine-level language, EVM bytecode does not permit a verification
engineer to clearly see the business logic of the smart contract to be verified. This
could lead to difficulties in developing the specification for the verification, and in
coming up with the necessary auxiliary information to guide the verification. On
the other hand, EVM bytecode is much less involved and more stable in terms of
language features, than a user-level language such as Solidity. This facilitates the
development and stabilization of a formal semantics. Furthermore, verifying the
bytecode excludes the possibilities for errors introduced by the compiler, adding
to the level of confidence on the verification result.

Verifying Contracts in Yul. Yul is the intermediate language of Ethereum, it
enables structured programming with constructs for contracts, functions, condi-
tional branches, and loops. At the same time, it supports the direct programming
of low-level mechanisms such as the dispatcher of calls to specific contract func-
tions, and the direct obtainment of the return data from calls.

An implementation of the balance-retrieval function in Fig.1 in the Yul lan-
guage is shown in Fig. 2. The computation of the storage address for the owner’s
balance is performed using the auxiliary function accountToStorageOffset, the
implementation of which is elided from the figure.

The aforementioned characteristics of Yul indicate that it would not be diffi-
cult to comprehend the business logic of a smart contract while making a formal
specification for the code of the contract (as is the case for a high-level language
such as Solidity). At the same time, Yul supports functionalities that are occa-
sionally necessary in the implementation of smart contracts, but are not directly
offered by a high-level language (e.g., retrieval of resulting data of contract calls).
Furthermore, the function dispatcher and other low-level mechanisms explicitly
contained in a contract implemented in Yul can be directly examined in a formal
verification, excluding the chances for the introduction of errors into these mech-
anisms by a compiler. Finally, the feature set of Yul is succinct and stable in
comparison to that of Solidity, which reduces the difficulty level of formalization.

Towards Verifying Ethereum Smart Contracts 125

3 The Formalization of Yul

The formalization of the Yul language in Isabelle/HOL serves as the (only) basis
of our verification of the ERC20 token contract. A preliminary formalization of
Yul (previously called Julia) has been performed by Hirai [3] in the Lem tool [22].
From Lem, we generate definitions of the syntax and (big-step) semantics of Yul
in Isabelle/HOL, and we revise the formalization for use as a basis of our work.
In this section, we first briefly introduce the basics of Isabelle/HOL, and then
describe the formalization of Yul by Hirai and our revision of it.

3.1 The Basics of Isabelle/HOL

Isabelle/HOL is an environment that provides the ability to reason formally in
Higher Order Logic inside the Isabelle framework [27]. System verification using
Isabelle/HOL reduces the verification problem to the construction of a formal
proof. The modeling of the system is often performed by functional program-
ming, and the proofs are often constructed by applying predefined tactics, or
using the declarative-style language Isar.

For simple definitions, the keyword definition is used. In case the definition
involves pattern matching or recursion, the keyword function or fun is needed.
In lemmas and theorems, all the hypotheses can be listed between a pair of
semantic brackets [...] and separated with semicolons.

The notation [| represents an empty list, and e#l represents the list that
results from prepending the element e to the list . The term Map.empty rep-
resents an empty map (the map that takes each key to None), mp[k — v]

datatype expression =
FunctionCall id0 “expression list”
| Identifier id0
| Literal “literal_kind” “type_name”

Fig. 3. The existing formalization of Yul expressions

datatype statement =

Block “statement list”

| FunctionDefinition id0 “(id0 X type-name) list”
“(1d0 x type_name) list” statement

| VariableDeclaration “(id0 X type_name) list” expression
| Assignment “id0 list” expression
| If expression statement
| ForLoop expression statement statement
| Expression expression

Fig. 4. The existing formalization of Yul statements

126 X. Li et al.

represents the map that results from updating the map mp by mapping k to
Some(v), and mp,; ++ mp, represents the map that results from updating the
map mp; according to the map mp,, i.e., for each key k, if mp, takes k to
Some(v), then mp, ++ mp, takes k to Some(v); otherwise mp, ++ mp, takes k
to (mpy k). For a record red with field fd, (fd red) represents the value of fd in
red, and red(fd := v) represents the record red with the field fd updated to the
value v.

3.2 The Original, and Revised, Formalization of Yul

The two main syntactical categories of Yul are expressions and statements. Their
formalizations are shown in Figs.3 and 4, respectively. In both figures, id0 is
the type for the identifiers of variables and functions. There are two types of
function calls — the call to a function in the current contract (internal calls), and
the call to a different contract (external calls). Both are supported by the type
FunctionCall id0 “expression list” in Fig. 3: if a function defined in the current
scope is associated with the function identifier, then an internal call is performed,
while if the builtin function Call is associated with the function identifier, an
external call is performed. Since a function may have a list of return values
(in addition to a list of parameters), the type constructor FunctionDefinition
in Fig.4 has two lists as arguments. Although Fig. 4 is non-exhaustive in the
statements of Yul, the full definition of statement is not much more involved
than what is shown. It can be seen that the language has a succinct syntax.

fun func_map :: “statement = ((id0,value0) Map.map)” where
“func-map (Block []) = Map.empty”
| “func_map (Block (stmt # stmts)) =
(func_map stmt ++ func_map (Block stmts))”
| “func_map (FunctionDefinition f params rets stmt) =
(Map. empty) (f — FunctionV f params rets stmt)”
| “func_map _ = (Map.empty)”

Fig. 5. The definition of func_map

A global state g of a contract contains the address of the currently executing
contract address g, the currently executing contract current g, the memory of
the execution engine memory g, the active number of bytes in the memory
memory_size g, the value transfered with the call invoking the execution of the
current contract tmoney g, the input data of this call calldata g, the current
log content logs g, the function from account addresses (modeled by integers)
to the corresponding accounts accounts g, and other components relevant to the
execution of contracts. A local state | is a map from identifiers (of type id0)
to values of type value0. For each account at address addr (a 160-bit address),
i.e., acc = accounts g addr, storage acc represents the storage of the account,

Towards Verifying Ethereum Smart Contracts 127

balance acc represents the balance of the account, and code acc represents the
code of the account. A contract is an account with non-empty code.

The existing formalization of Yul also contains the big-step semantics for
expressions and statements, defined using two evaluation functions. The function
eval_expression takes a global state, a local state, an expression, and a natural
number as arguments, and returns the final result of evaluating the expression.
Here, the natural number is a counter introduced only to facilitate a termination
proof for the well-definedness of eval_expression in Isabelle/HOL. The function
eval_statement takes a global state, a local state, a statement and a natural
number (serving also as a counter for proving termination), and returns the
result of executing the statement. The two functions are mutually recursive since
a statement may have in it a function call (an expression), and an expression
may be the invocation of a function whose body is a statement.

In the original formalization [3], the functions that can be internally called
in the current scope are maintained by associating each such function to its
identifier in the local state, after processing the function definition. However,
this only allows for calling functions whose definitions are syntactically located
before the calls. Nonetheless, as mandated in the informal specification of Yul [§]

“Functions can be referenced already before their declaration (if they are
visible).”

To rectify this mismatch between the official documentation of Yul, and its
existing formalization, we define the function func_map to build a map fctz for
all the functions defined in a statement (see Fig. 5). We augment the parameter
list of the functions eval_statement and eval_expression to contain this map,
thereby recording which functions are defined in the current scope, both before
and after the point where a function is called. With this revision, the terms

eval_expression gl fctx expr n
eval_statement gl fctx stmt n

represent the evaluation of expressions and execution of statements, respectively,
with knowledge of the available functions in the current scope. We inductively
prove that the result of evaluation a statement or an expression does not depend
on the value of the counter n, as long as n is sufficiently large for the evaluation
function to be fully unrolled.

Our revision of the formalization of Yul also contains the addition of a num-
ber of definitions for the evaluation of builtin functions, such as subtraction,
multiplication, division, the function retrieving the value transfered with the
current call, the function returning the address of the caller account, etc. Most
of these additions to the original formalization are used in our realization of the
token contract in the formal Yul language.

4 Realizing the Token Contract in Yul

A token contract keeps track of the total supply of a token, its current distri-
bution among its owners, and its flow between its owners. The ERC20 standard

128 X. Li et al.

for token contracts mandates a number of interfaces to be provided, such as
querying the total supply of the token and the current balances of the owners,
and transferring a specified amount of tokens to a specified user [2].

We realize a version of ERC20 token contract in the formalized Yul language
in Isabelle/HOL. However, in the presentation of this section, we refrain from
using the Isabelle syntax due to its verbosity.

4.1 The Storage Layout of the Contract

The storage of an Ethereum smart contract is arranged in slots that are addressed
by 256-bit integers. We model the storage layout of the token contract as follows,
where keccak is the keccak-256 hash function, and wint256 (n) is the bit string
of length 256 for the unsigned integer n.

— The owner of the contract is stored at slot 0.
— The total supply of the token is stored at slot 1.
— The balance of the account at address addr is stored at slot

keccak (uint256 (addr).uint256(2))

— The allowance for token transfer from the account at address addr; by the
account at address addrs is stored at slot

keccak (uint256 (addrs).keccak (uint256 (addri).wint256(3)))

In the above, the use of the keccak function to obtain the storage locations of
the balances and allowance mimics how the storage is allocated by a compiler
of the Solidity language. It utilizes the fact that the population of data in the
storage space is sparse, and properties of a secure hash function such as collision
avoidance, to avoid the mapping of different data to the same storage slot.

Table 1. The functions provided by the token contract to its users

total_supply_func | Query the total supply of the token

balance_of _func Query the balance of a specific owner of the token
allowance_func Query the amount of tokens an owner allows a spender to spend
transfer_func Transfer a specified amount of tokens to a specified user

transfer_from_func | Transfer a specified amount of tokens from a specified user to a
specified second user

approve_func Approve transfer of a specified amount of tokens by a spender

Towards Verifying Ethereum Smart Contracts 129

4.2 The Code Layout of the Contract

The code layout of the token contract is shown in Fig. 6.
The code is organized as a Block (cf. Fig. 4) consisting
of the functions in the user interface, the utility func-
tions that support the implementation of the contract,
and the dispatcher statement that directs each contract | Interface Functions |
call to the specific function invoked. There are alto-
gether 19 functions. The functions in the user interface
and their description are given in Table 1. Below, we
selectively elaborate on the dispatcher statement and

the interface function transfer_func. Fig. 6. The code layout
of the token contract

token_contract =

{

| Dispatcher |

| Auxiliary Functions |

}

if gt(callvalue(), 0) { revert(0, 0) }

switch selector_func()

case 0r10991a86 /+ “balance_of_func(address)” x/ {
return_uint_func (balance_of_func(decode_as_address_func(0)))

}

case 0zb513186f /+ “transfer_func(address,uint256)” =/ {
transfer_func(decode_as_address_func(0), decode_as_uint_func(1))

}
default { revert(0, 0) }

Fig. 7. The dispatcher statement

The Dispatcher. A call to the token contract essentially triggers the execution of
the dispatcher statement. The code of the dispatcher statement is given in Fig. 7.
It is first checked that no money is transfered to the contract using the condition
that the value of the call should not be greater than zero. The value of the call
as an unsigned integer is retrieved using the builtin function callvalue. Then,
the function to which a call should be directed is obtained using the function
selector_func and the switch statement. The function selector_func (also included
in the implementation) computes the first 4 bytes of the input data to the call —
these 4 bytes represent the keccak-256 hash of the signature of the function to be
invoked. The subsequent chunks of the input data (of 32 bytes each) contain the
arguments to be passed to the specific function invoked. The i-th argument is
retrieved using decode_as_uint_func(i) or decode_as_address_func(i). In addition
to decoding an argument from the input data (or call data), the latter also
checks that the decoded argument is in the form of an account address (of 160
bits). The function return_uint_func signals the exit of the currently executing
contract, with the result placed at bit 0 in the memory of the execution engine.
In case the caller attempts to send ether to the contract, or the invoked function
is not found, the state is reverted using the builtin function revert.

130 X. Li et al.

function transfer_func(to, amount) {
deduct_from_balance_func(caller (), amount)
add_to_balance_func(to, amount)
log(1, caller(), to, amount)

}

Fig. 8. The function transfer_func

The Function transfer_func. The code of the function transfer_func (the func-
tionality of which is informally explained in Tablel) is given in Fig.8. In
the function body, the function deduct_from_balance_func is first invoked to
deduce the specified amount of tokens from the caller account. The function
add_to_balance_func is then invoked to add the same amount of tokens to the
destination account of the transfer. Finally, the transfer event is logged with
topic 1, together with the caller of transfer_func, the destination of the transfer,
and the amount of transfered tokens as parameters.

In Fig. 8, log is a builtin function [8]. On the other hand, deduct_from_balance-
func and add_to_balance_func are part of the contract implementation. The lat-
ter function makes use of a function for safe addition (safe_add_func) to avoid
overflow when increasing the balance of the destination account.

The Readability of Yul Code. It is demonstrated by Figs.7 and 8 that smart
contract code in Yul has a greater level of readability than low-level instructions.
This benefits the intuitiveness level of formal verification.

5 Verification of the Token Contract

We prove the guarantees of calling each function of the token contract in the
ERC20 interface (c.f., Table1) in Isabelle/HOL. To this end, we first establish
the guarantees of all the utility functions that are used to implement the interface
functions. Below, we selectively present our results.

5.1 The Guarantees of the Utility Functions

Below, we present the theoretical result about the guarantees of the utility func-
tion for safe addition. This function is used by the function add_to_balance_func
that increases the balance of a specified account by a specified amount (cf. Fig. 8).

Towards Verifying Ethereum Smart Contracts 131

lemma safe_add_body_correct: 1
“In>4;
Vfid. builtin_ctx fid # None
— (context0 g ++ fctz) fid = builtin_ctz fid; 4

I a_id = Some (IntV a); | b_id = Some (IntV b);

is_uint256 a; is_uint256 b
] = 7
(a + b < two256 N

eval_statement g 1| fctx (body-of safe_add_func) n

= Normal (g, l(r-id:=Some (IntV (a+b))), RegularMode) 10
V
a + b > two256 A
eval_statement g | fctz (body_of safe_add_func) n 13
= Ezit (RevertEzit g 0 0)
)77

In the above, the identifiers a_id and b_id are the parameters of the function
safe_add_func. The lemma safe_add_body_correct asserts that if a_id and b_id have
values a and b, respectively, that are 256-bit unsigned integers, then evaluating
the body of safe_add_func yields a+b (that is stored in the return variable r_id)
if a 4+ b does not exceed 22°6 — 1, and an exception reverting the state otherwise.
The condition n > 4 is imposed only because when fully evaluating the body of
safe_add_func in the semantics, the counter n decreases 5 times. The evaluation
would result in an error for any n < 4. The condition at lines 3 and 4, on the
other hand, requires that each identifier of a builtin function should indeed be
mapped to the right builtin function by contextO g ++ fctx. Here, builtin_ctx
is a pre-defined mapping from each identifier of a builtin function to the builtin
function, and context0 g is the map for all the globally available identifiers.
The proof of the lemma safe_add_body_correct is by case analysis on the truth
of a+b < two256, and by simplification using the semantics of Yul. We omit the
discussion of the statement /proof of the lemmas for the other utility functions.

Remark 1. The guarantees for the functions of the token contract (e.g., safe_add_
func) correspond to the notion of total correctness [10] — it is stated that under
specific conditions the execution terminates, resulting in global and local states
that satisfy specific conditions.

5.2 The Guarantees of Calls to the Token Contract

We first introduce a series of definitions that are used to formulate the theoretical
results about the calls to the contract. The term “keccak_base_key base key” is
defined to give the keccak-256 hash value of the list of 64 bytes where the first
32 bytes are those of the value key and the next 32 bytes are those of the
value base. The term “memory_values m addr sz” is defined to give the list of
bytes (each as an integer) in the memory m starting at the address addr and
ending at the address addr + sz — 1. The term “sel_val cd val” is defined to say
that the signature hash of the function to which the current call is dispatched
is wal. The term “uint_arg_idx cd idx val” is defined to say that the idx-th

132 X. Li et al.

argument value in the input data cd of the call is the unsigned integer wval.
The term “addr_arg_idx cd idz val” is defined to require that in addition to
wint_arg_idx cd idx val, the idz-th argument has the form of an account address.
For the account acc, storage offsets 07 and oo, balances b; and by, and the
amount a of tokens, “upd_bal acc 01 09 by ba a” is written for acc(storage :=
(storage acc)(o1 := IntV (b1 — a), 09 := IntV (b2 + a))).

n> k; length args =7; length gs = 8; length ls =8§;
argvs = [IntV gas, IntV addr, IntV wval, 2
IntV offtin, IntV szin, IntV offtouws, IntV szout/;
Vi. 120 N 1 <7 —
eval_expression (gsli) (Isli) fctx (args!i) n 5
= Normal (gs!(i+1), Is!(i+1), (argvs!i));
g =gs!7; 17 =1s!7;
(context0 g’ ++ fctz) b_call_id = Some (GBuiltinV Call); 8
Vfid. context0 g’ fid = builtin_ctx fid

Fig. 9. The list assms of assumptions

A number of conditions are shared as assumptions by multiple theoretical
results about calls to contracts. We write

assms args argus gas addr val offt,, szin offt,., $zous g5 Is g’ ' fctz n k

for the list of assumptions shown in Fig.9. Here, args is a list of 7 argument
expressions for a contract call, argvs is a list of 7 argument values for the same
call, addr is an account address, val is an amount of money, offt;, and offt,, are
two memory offsets, szi, and sz,ut are two counts of memory bytes, gs is a list
of global states, Is is a list of local states, and n and k are two natural numbers.
The condition spanning lines 2 and 3 says that the list argvs is obtained by
wrapping the series of integer values provided using the type constructor IntV.
The condition spanning lines 4-6 says that the evaluation of the i-th argument
expression yields the i-th argument value, turning the global and local states to
the next ones in the respective lists gs and ls. The condition at line 8 says that
after evaluating all the arguments (thereby reaching the global state ¢'), the
identifier for the builtin function C'all is still properly mapped to Call according
to ¢’ and the local function context fctz’. The condition at line 9 says that the
global state ¢’ properly maintains the mapping for the builtin functions.

Below, we present the theorem about the guarantees of each call to the token
contract that invokes the function transfer_func (cf. Table1), when the source
account (the caller) has a sufficient amount of tokens to transfer, and the transfer
does not lead to an overflow of the balance at the destination.

Towards Verifying Ethereum Smart Contracts 133

theorem normal_call_transfer:

“I assms args argvs gas addr 0 offt;, szin Offtous Szous gs ls g’ U fetx n 17;
current g’ = accounts g’ (address g’); 3
balance ((accounts g’) (address g’)) > 0;
code ((accounts g’) addr) = Some token_contract;
cdp = memory-values (memory g’) offty, (nat |szinl); 6
valid-mem (list_to_map cdp) 4 64;
sel_val cdy 0xb513186f; addr_arg-idz cdp 0 top; wint_arg-idz cdp 1 ao;
o1 = keccak_base_key 2 (address g’); o2 = keccak_base_key 2 tog; 9
storage (accounts g’ addr) o1 = IntV bi;
((storage (accounts g’ addr)) (o1 := IntV (bi—ap))) o2 = IntV ba;

is_uint256 ap; is-uint256 ba; b1 > ag; b2+ ap < two256 12
] =
eval_expression (gs!0) (I1s!'0) fectx (FunctionCall b_call_id args) (no+1)
= Normal (15
g’ (memory_size := maz (maz (memory_sizeg’) (offtin+5zin)) (0fftout+SZout),
current := if address g’= addr then upd_bal(current g’,o01,02,b1,b2,a0)
else current g’, 18
accounts := (accounts g’)(addr:=upd_bal(accounts g’ addr,o1,02,b1,b2,a0))
logs := ListV (memory_values
(mem_upda (memory g’) 1 (address g’) too ag) 21

0 128) # logs g’),
context0 g’ ++ fetz_erc20, TrueV)”

In the theorem statement, the condition at line 3 says that address g’ is indeed
the address of the currently executing account in ¢’. The condition at line 5
requires that the code being called is that of the token contract (c.f. Fig.6).
The condition at line 6 says that the input data to the call (as obtained from
the global state g’ reached after the evaluation of the arguments) is cdy. The
condition at line 7 says that the input data to the call contains valid data after
four initial bytes, for 64 bytes in a row — the argument values are contained in
these bytes. The conditions at line 8 say that the signature hash for the function
to be executed is the one for transfer_func, and the 0-th and 1-th arguments
in the input data of the call are toy (the address of the destination account of
the transfer) and ag (the amount of tokens to be transfered), respectively. The
conditions at line 9 say that the storage offsets for the balances of the source and
destination accounts of the transfer are o, and os, respectively. The conditions
at line 10 and line 11 say that these two balances are b, and by, respectively. The
latter condition is stated with consideration of the fact that if the destination
account is the same as the source account, then the balance of the destination
account decreases when the tokens have been sent but not received. The updated
global state described in lines 16-22 reflects the change in the account balances
due to the transfer, and the recording of the transfer in the log.

The proof of theorem normal_call_transfer is conducted using lemmas that
connect the result of calling the token contract to the result of evaluating
the function transfer_func. These latter lemmas are in turn based on lemmas
about the guarantees of the utility functions (e.g., for safe addition, as shown in
Sect. 5.1). Transformations are performed such that the resulting global state is
described directly wrt. ¢’ that is reached after evaluating the arguments for the
call. Hence, for side-effectless argument expressions, it is also directly in terms of

134 X. Li et al.

the initial global state gs!0. The case where the source account does not have a
sufficient amount of tokens to be transfered, or the transfer leads to an overflow
of the balance at the destination, is covered by a separate theorem.

As a corollary, we have formally shown that a token transfer preserves the
total amount of tokens, provided that there is no collision of the keccak-256 hash
values of the addresses for all the accounts that own the token.

Remark 2. Asis demonstrated in the theorem normal_call_transfer, the guaran-
tees for the calls to the contract functions are formulated to precisely reflect all
changes in the global and local states. This provides a solid basis for establishing
further safety and security properties in a broad range (e.g., [15]).

Finally, if the caller of the contract attempts to send money to the contract,
then the call is terminated with the effects on the states reverted.

theorem call_with-money:
“[valo > 0;
assms args argus gas addr valy offt;, szin offt.. SZous gs ls g’ U fetx n 7
] =
eval_expression (gs!0) (1s!'0) fctz (FunctionCall b_call_id args) (no+1)
= Normal (g’(memory_size := max (max (memory-size g’)(offt,, + szin))

(Oﬁtout + SZOUt) D’
1’, FalseV)”

Note that the potential increase in the number of active memory bytes is not
canceled, which is consistent with the semantics described in [17,28].

In the verification of the token contract in Isabelle/HOL, the contract code
in Yul has been sufficiently comprehensible for it to be used as the reference for
specifying the initial pre/post-conditions. These pre/post-conditions are further
revised in the proving process — the formal proof helps make all the assumptions
and effects associated with an invocation of the token contract explicit. Further-
more, since the dispatching logic of calls to specific functions is an integral part
of the token contract at the IL-level, the dispatcher is naturally covered by the
verification. This provides added confidence that the dispatcher does not contain
errors that could have otherwise been introduced by a compiler.

6 Related Work

Verification of Smart Contracts by Theorem Proving. The strongly neg-
ative impact of errors and flaws of smart contracts motivated their verification
by theorem proving. In [19], the EVM is formalized in Lem [22], and a few safety
properties of simple contracts are proven in Isabelle/HOL based on formal def-
initions generated in this proof assistant. In [9], a program logic is defined to
syntactically reason about properties of EVM bytecode. This development is
based on the formalization of [19]. In [18], a semantics of EVM bytecode is
defined in the K-framework, which provides the basis for program analysis and

Towards Verifying Ethereum Smart Contracts 135

theorem proving [23] for Ethereum smart contracts. In [17], a small-step seman-
tics of EVM bytecode is defined (with partial mechanization in the F* language),
and a few security properties are defined on the basis of this semantics for the
verification of Ethereum smart contracts. In [5], a library of formal proofs is
developed for Ethereum smart contracts in the Coq proof assistant, based on a
demand-driven formalization of a Solidity-like language. In [30], a type system
and a big-step semantics are defined (in Coq) for Lolisa — a Solidity-like pro-
gramming language developed by the authors. In [14], an approach to verifying
Hyperledger Fabric chaincode (in Java) in the KeY prover is proposed. The main
idea is to extend KeY to handle the major API methods that are provided by
the Hyperledger blockchain and used for writing the chaincode.

The developments mentioned above formalize smart contracts and prove their
properties at either the user-language level or the machine-language level. In [24],
an intermediate language, Scilla, is defined in Coq, for the analysis and verifi-
cation of smart contracts. Unlike our development that leverages the existing
intermediate language in the ecosystem of Ethereum, Scilla is a new language
for which the translation from high-level languages like Solidity, and into low-
level languages like EVM bytecode is yet to be defined.

Validation of Smart Contracts in General. Numerous developments have
been carried out to validate smart contracts by non-theorem-proving means. For
space reasons, the following discussion is non-exhaustive on these developments.

In [13], the role of refinement in verifying and preserving the correctness of
smart contract designs (e.g., in the Event-B formalism) is discussed. In [20], the
problem of verifying smart contracts is addressed by generating and solving horn
clauses. In [16], a static analysis is proposed for Ethereum smart contracts, and
the analysis comes with a soundness proof. In [12], the SPIN tool is leveraged
to model check smart contracts. In [26], the target properties of a smart con-
tract is expressed as patterns, and the verification/falsification of properties is
performed by finding the corresponding patterns. In [21], a method of finding
bugs in smart contracts via symbolic execution is proposed. In addition, hybrid
approaches to the verification of smart contracts are proposed and used in the
VaaS framework [7] and the CertiK project [1].

7 Conclusion

Formal verification can be applied to provide the highest level of correctness
and security guarantee for smart contracts. The language used to realize the
smart contract affects multiple aspects of the verification. Specifically, the use
of an intermediate language (IL) ensures a relatively low level of complexity
in formalizing the language itself (owing to the succinctness of the language
features), a relatively high level of intuitiveness of the verification (owing to the
existence of structured programming constructs), and a relatively high level of
confidence on the verification result (owing to the partially reduced trust base).

To demonstrate some of these benefits, we present a concrete formal verifi-
cation of an Ethereum smart contract at the IL-level, in a proof assistant. The

136 X. Li et al.

smart contract is an ERC20 token contract, which we realize in the Yul language,
the formalization of which we revise to rectify its observed deviation from its
informal specification. We prove the guarantees of calls to all the interface func-
tions of the token contract in Isabelle/HOL. The development totals ~10k lines
of code (excl. code generated from Lem). In the verification, we take advan-
tage of the good level of comprehensibility of Yul to devise the initial pre/post-
conditions for the contract functions. These pre/post-conditions are then revised
in the proving process, such that all the assumptions and effects for the contract
functions are precisely identified. The complexity of the formal proof is partially
reduced by the simplicity of Yul and its formal semantics relative to a high-level
language. The overall approach applies easily to other Ethereum contracts.
Potential directions for future work include support for easier smart contract
proofs for Yul via proof automation and program logics, as well as refinement
verification of Yul contracts to preserve guarantees down to the lowest level.

Acknowledgments. This work was supported by the National Key R&D Plan
(2017YFB1301100), National Natural Science Foundation of China (61876111,
61572331, 61602325), Capacity Building for Sci-Tech Innovation — Fundamental Sci-
entific Research Funds (025185305000), and the Youth Innovative Research Team of
Capital Normal University. We thank the anonymous reviewers for their valuable com-
ments that helped with the improvement of this paper.

References

1. CertiK. https://certik.org/

ERC20 standard. https://theethereum.wiki/w/index.php/ERC20_Token_

Standard

Eth-isabelle. https://github.com/pirapira/eth-isabelle

Solidity (v0.5.8). https://solidity.readthedocs.io/en/v0.5.8/

Token libraries with proofs. https://github.com/sec-bit/tokenlibs-with-proofs

Understanding the DAO attack. http://www.coindesk.com/understanding-dao-

hack-journalists/

VaaS. https://sso.beosin.com/#/?vaas

Yul. https://solidity.readthedocs.io/en/v0.5.8 /yul.html

9. Amani, S., Bégel, M., Bortin, M., Staples, M.: Towards verifying Ethereum smart
contract bytecode in Isabelle/HOL. In: 7th ACM SIGPLAN International Confer-
ence on Certified Programs and Proofs (CPP), pp. 66-77 (2018)

10. Apt, K.R.: Ten years of Hoare’s logic: a survey - part 1. ACM Trans. Program.
Lang. Syst. 3(4), 431-483 (1981)

11. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on Ethereum smart con-
tracts (SoK). In: 6th International Conference on Principles of Security and Trust
(POST), pp. 164-186 (2017)

12. Bai, X., Cheng, Z., Duan, Z., Hu, K.: Formal modeling and verification of smart
contracts. In: 7th International Conference on Software and Computer Applications
(ICSCA), pp. 322-326 (2018)

13. Banach, R.: Verification-led smart contracts. In: Proceedings of 3rd Workshop on
Trusted Smart Contracts (2019)

B

S Ok

% =~

https://certik.org/
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://theethereum.wiki/w/index.php/ERC20_Token_Standard
https://github.com/pirapira/eth-isabelle
https://solidity.readthedocs.io/en/v0.5.8/
https://github.com/sec-bit/tokenlibs-with-proofs
http://www.coindesk.com/understanding-dao-hack-journalists/
http://www.coindesk.com/understanding-dao-hack-journalists/
https://sso.beosin.com/#/?vaas
https://solidity.readthedocs.io/en/v0.5.8/yul.html

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Towards Verifying Ethereum Smart Contracts 137

Beckert, B., Herda, M., Kirsten, M., Schiffl, J.: Formal specification and verifica-
tion of Hyperledger Fabric chaincode. In: Third Symposium on Distributed Ledger
Technology (SDLT) (2018)

Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157—
1210 (2010)

Grishchenko, 1., Maffei, M., Schneidewind, C.: Foundations and tools for the static
analysis of Ethereum smart contracts. In: Chockler, H., Weissenbacher, G. (eds.)
CAV 2018. LNCS, vol. 10981, pp. 51-78. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-96145-3_4

Grishchenko, I., Maffei, M., Schneidewind, C.: A semantic framework for the secu-
rity analysis of Ethereum smart contracts. In: Bauer, L., Kiisters, R. (eds.) POST
2018. LNCS, vol. 10804, pp. 243-269. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89722-6_10

Hildenbrandt, E., et al.: KEVM: a complete formal semantics of the Ethereum
virtual machine. In: 31st IEEE Computer Security Foundations Symposium (CSF),
pp. 204-217 (2018)

Hirai, Y.: Defining the Ethereum virtual machine for interactive theorem provers.
In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 520-535. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70278-0_33

Kalra, S., Goel, S., Dhawan, M., Sharma, S.: ZEUS: analyzing safety of smart
contracts. In: 25th Network and Distr. System Security Symposium (NDSS) (2018)
Luu, L., Chu, D., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: ACM SIGSAC Conference on Computer and Communications Security
(CCS), pp. 254-269 (2016)

Owens, S., Bohm, P., Nardelli, F. Z., Sewell, P.: Lem: a lightweight tool for heavy-
weight semantics. In: van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.)
ITP 2011. LNCS, vol. 6898, pp. 363-369. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-22863-6_27

Park, D., Zhang, Y., Saxena, M., Daian, P., Rosu, G.: A formal verification tool
for Ethereum VM bytecode. In: ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT (FSE), pp. 912-915 (2018)

Sergey, 1., Kumar, A., Hobor, A.: Scilla: a smart contract intermediate-level lan-
guage. CoRR, abs/1801.00687 (2018)

Szabo, N.: Smart contracts (1994). http://www.fon.hum.uva.nl/rob/Courses/
InformationInSpeech/ CDROM/Literature/LOTwinterschool2006 /szabo.best.
vwh.net/smart.contracts.html

Tsankov, P., Dan, A.M., Drachsler-Cohen, D., Gervais, A., Biinzli, F., Vechev,
M.T.: Securify: practical security analysis of smart contracts. In: ACM SIGSAC
Conference on Computer and Communications Security (CCS), pp. 67-82 (2018)
Wenzel, M., Paulson, L.C., Nipkow, T.: The Isabelle framework. In: Mohamed,
O.A., Muiioz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 33-38.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71067-7_7

Wood, G.: Ethereum: a secure decentralised generlised transaction ledger. https://
gavwood.com /paper.pdf

Yaga, D., Mell, P., Roby, N., Scarfone, K.: Blockchain technology overview. Tech-
nical report, NISTIR 8202 (2018)

Yang, Z., Lei, H.: Lolisa: formal syntax and semantics for a subset of the solidity
programming language. CoRR, abs/1803.09885 (2018)

https://doi.org/10.1007/978-3-319-96145-3_4
https://doi.org/10.1007/978-3-319-96145-3_4
https://doi.org/10.1007/978-3-319-89722-6_10
https://doi.org/10.1007/978-3-319-89722-6_10
https://doi.org/10.1007/978-3-319-70278-0_33
https://doi.org/10.1007/978-3-642-22863-6_27
https://doi.org/10.1007/978-3-642-22863-6_27
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://doi.org/10.1007/978-3-540-71067-7_7
https://gavwood.com/paper.pdf
https://gavwood.com/paper.pdf

q

Check for
updates

Simulations for Multi-Agent Systems
with Imperfect Information

Patrick Gardy®™ and Yuxin Deng

Shanghai Key Laboratory of Trustworthy Computing,
East China Normal University, Shanghai, China
{gardy.patrick,yxdeng}@sei.ecnu.edu.cn

Abstract. Equivalence-checking and simulations are well-known meth-
ods used to reduce the size of a system in order to verify it more effi-
ciently. While Alur et al. proposed a notion of simulation sound and
complete for ATL as early as 1998, there have been very few works on
equivalence-checking performed on extensions of ATL* with probabili-
ties, imperfect information, counters etc. In the case of multi-agent sys-
tems (MASs) with imperfect information, the lack of sound and complete
algorithm mostly follows from the undecidability of ATL model-checking.
However, while ATL is undecidable overall, there exist sub-classes of
MASs for which ATL becomes decidable. In this paper, we propose a
notion of simulation sound for ATL/ATL* on any MASs and complete
on naive MASs. Using our simulations we design an equivalence-checking
algorithm sound and complete for MASs with public actions.

1 Introduction

With the rise of multi-agent systems (MASs), the software verification commu-
nity has tried to extend methods useful for the verification of closed systems
to multi-agent systems. The usual model represents each agent’s local control
through a transition graph with the edges labeled by the actions of all agents
involved in the system. This way the agents may influence the state of one
another, but each has its own separate control-graph. The overall system is then
built as the product of all the agents’ local systems. In many practical cases,
some agents have only a partial view of the overall system and may not know
the control-graph or the exact state of other agents. This can either follow from
a faulty communication or be a design choice, either for security or cost pur-
poses. To model this imperfect information, some partial observation relations
are attached to each agent.

Many formalisms have been proposed in order to specify expected behav-
iors of MASs. Among the most famous ones we cite w-regular conditions [1]
and ATL, ATL* [2,13,15], the go-to adaptation of CTL, CTL* to multi-agent
systems. Initially defined on MASs with perfect information, these formalisms
were quickly adapted and studied in the context of imperfect information (for
example in [11,14] for ATL").

Supported by the National Natural Science Foundation of China (61672229, 61832015).

© Springer Nature Switzerland AG 2019
Y. Ait-Ameur and S. Qin (Eds.): ICFEM 2019, LNCS 11852, pp. 138-153, 2019.
https://doi.org/10.1007/978-3-030-32409-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32409-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-32409-4_9

Simulations for Multi-Agent Systems with Imperfect Information 139

A Need for Equivalence-Checking. Simpler formalisms like Buchi conditions and
ATL enjoy a polynomial model-checking for perfect information, making them
target choices for practical applications. The situation is however drastically dif-
ferent in the presence of imperfect information. Thereby ATL goes from polyno-
mial to exponential time model-checking (A% to be precise) for positional strate-
gies while it is outright undecidable for perfect recall strategies. The algorithm
for positional strategies scales poorly and methods of minimizing the models are
necessary to improve the practical uses. In this line of work, a proven concept
consists in finding smaller and smaller models of the system and proving at each
step that the new model despite its reduced size satisfies the same properties as
the bigger one. Such method makes heavy use of an equivalence-check subrou-
tine between two models. There are many ways to perform an equivalence-check:
simulations [9,12], trace-equivalence [3], testing [17], etc. This idea was put in
application in [5]. In their paper, Belardinelli et al. proposed a notion of sim-
ulation sound for ATL and discussed different modelizations of the three-ballot
voting protocol (3BVP). ATL was shown to be a logic of choice to model security
properties of voting protocols [4,23]. The authors of [5] proposed three models
of the 3BVP and showed that each model can simulate the others. We can then
check ATL security properties on the smallest model, gaining a considerable
amount of time and space.

Contributions. We propose a notion of simulation for games with imperfect infor-
mation by extending the one of [5]. This simulation is sound for ATL/ATL", works
with both positional and perfect recall strategies, and (with a minor change in
the definition) works for both the objective and subjective semantics. Our notion,
unlike the one in [5], does not require perfect replication of the partial obser-
vation but instead focuses on similarity of results. To be more precise, for four
states q, s, q’, s’ with g, ¢’ similar, s, s’ similar and s’ ~¢ ¢, we do not require the
states ¢, s to have the same observation C'. This makes our notion of simulation
coarser than the only other existing one.

Due to the undecidability of ATL with perfect recall strategies and imper-
fect information, our notion is not proven to be complete!. We however prove
completeness on naive games, a subclass of MASs with imperfect information.
A naive game is one where by design the imperfect information is “state based”
in the sense that no history can augment the information of an agent. The con-
cept is illustrated later in Fig.4. Using our result on naive games, we develop
an equivalence-checking algorithm for MASs with public actions, which is both
sound and complete. The proof proceeds by restructuring public-actions MASs
into naive MASs equivalent on all ATL formulas. To perform equivalence check-
ing, both public-actions MASs are transformed into naive games which are then
checked using our notion of simulation.

Related Works. ATL was proven undecidable in perfect recall strategies and
AP with positional strategies [11,14]. To regain decidability for perfect recall

! Continuing the tradition in multi-agent systems with the exception of the initial
paper on alternating refinement relations [3].

140 P. Gardy and Y. Deng

strategies, there are two possibilities. The first option is to restrict the MASs
to public actions [6]. A MAS has public actions whenever any agent can see
the actions played by all other agents. In such case, ATL* model-checking is
2-EXPTIME. The second option is to use hierarchical observations (and other
derivative options) for which ATL/ATL"* model-checking is Non-Elementary. A
MAS has hierarchical observation whenever there is an order on the agents such
that an agent A dominated by another agent B has a strictly less complicated
partial observation relation than B.

In a slightly more distant fashion, we mention the work of Berthon et al. [7]
on strategy logic with imperfect information and also the work of Laroussinie
et al. [16] on ATL with strategy contexts and partial observations (both logics
extend ATL™). Each paper proposes small fragments on which the model-checking
is decidable in the presence of partial observations.

There are two main related works on equivalence-checking. The first is by
Alur et al. [3] on alternating refinement relations with two main contributions:
alternating simulations (sound and complete for ATL/ATL*) and alternating
trace containment (sound and complete for LTL). The second [5] proposes a
simulation sound for ATL* in the presence of imperfect information with an
application to model the 3BVP. The protocol is a voting process that does not
rely on cryptographic methods for its security [25]. Interestingly, some practical
problems and security failures were quickly detected in the 3BVP following its
presentation [22]. In [5], the authors proposed different modelizations possible
for the protocol as MASs with imperfect information. They discussed the size
of each modelization before showing all the models to be equivalent. In a more
distant fashion we also cite [26] which proposes a concept of simulation sound
for ATL on probabilistic MASs.

Outline. In Sect.2, we introduce games with imperfect information (used to
represent MASs) and ATL". Section3 covers the notion of simulation with its
soundness relative to ATL* for games with imperfect information. Section 4 dis-
cusses the completeness of our notion for the subclass of naive games. In Sect. 5,
we present an algorithm to perform equivalence checking on games with public
actions based on the work done in previous sections. Finally, we conclude in
Sect. 6.

2 Games, Imperfect Information and ATL*

Games with Imperfect Information

For the rest of the paper, fix AP a finite set of atomic propositions. A multi-
agent system is usually represented in the following way: each agent has its own
control-graph whose edges are labeled by tuples of actions (one per agent), the
overall system is then represented by a product of all local control-graphs of the
agents. To model this product, we use the notion of concurrent game structures.
This is the method used in the open-source tool MCMAS [18,24] and the ISPL
language it uses.

Simulations for Multi-Agent Systems with Imperfect Information 141

Definition 1. A concurrent game structure with imperfect information
(CGS for short) is a tuple G := (S, Agt,Act,Label, A, {~p}pcagt) where S is
a nonempty set of states; Agt = {P1,..., P,} is a nonempty finite set of agents;
Act is a nonempty finite set of actions; Label : S — 247 is a labeling function;
A S x JAct — S is a transition function with JAct := HieAgt Act the set of

joint actions (where the it" component represents the choice of the agent P;);
and for each P € Agt, ~pe S x S is an equivalence relation marking the partial
observation of agent P.

A CGS is said to have perfect information when ~p= {(s,s) | s € S} for each
P < Agt. A path (or outcome) p = sps1... in a CGS G is a (finite or infinite)
sequence of states such that for every j > 0, s;41 = A(s;,a;) for some joint
action @; € JAct. We let Pathg denote the set of paths in G. When clear from
context, we will drop the game from the notation. We write |p| € NU {co} for
the length of p, last(p) for the last state of p (when it is finite), and Prefix(p)
for the set of all prefixes of p. Finally, we write p<;41 for the prefix of length ¢
of p. Given two paths p and p’, and an agent P we write p ~p p’ if for all index
i, p(i) ~p p'(7). We then call a set of agents with common knowledges the set
of agents A such that p ~p p' iff P € A.

A function § : ST — Act is called a strategy (with perfect recall and no
randomness). We denote by Stratg the set of strategies. We say that a strategy
0 conforms to the partial observation of a player P if for any two paths p and 7 of
the same length such that p(i) ~p 7(7) for any 4, we have é(m) = d(p). Consider
a state s, a coalition of agents C C Agt and a set of strategies dc = (0p)pec
for players in C. A path p is compatible with ¢ and s when p(1) = s and for
all 0 < i < |p| there exists a joint action @ such that a(P) = dp(p<,) for each
agent P in C and p(i + 1) = A(last(p<;),a). There are two ways to define
outcomes in games with imperfect information: objective and subjective. The
objective outcome Outyp; (8¢, s) is the set of all paths compatible with dc starting
from s, thus it differentiates the initial state from similar states. The subjective
semantics makes no such distinction, Out (6, s) = Us’Nps,Pec Outepj (0c, 8')-
In order to analyze outcomes, we need the last concept: traces. A trace of a path
is the projection of the path onto the set of atomic propositions AP.

ATL* on Games with Imperfect Information

ATL* is a well-known and widely used logic introduced in [2] for games with
perfect information as an extension of the logic CTL* for closed systems. It
extends relatively simply to games with imperfect information, only using a little
semantic change on the quantification operator. ATL* is defined with respect to
a set, of agents Agt and a set of atomic propositions AP by the following grammar
(note that as usual we do not allow the universal quantifier when dealing with
simulations):

ATL" 3¢ = <C> 9 | dANd| PV
o =p | P |XeleUp|loAp|oVelo

142 P. Gardy and Y. Deng

where p is an atomic proposition and C is a subset of Agt.

The ¢-type formulas are state formulas and are evaluated on a state s of
a CGS G. The semantic interpretation of boolean operators is as usual. We
recall that there are two semantics to define outcomes, subjective and objective.
This gives rise to two semantics for the quantification, with the first being the
objective definition and the second being the subjective definition:

35 = {6p}pec € Strat s.t. VP € C, §p conforms to the

g,s i KC> iff -
Fobs ? {information of P and Vp € Outyy;(9,s) it holds G,p,1 = ¢

30 = {p}pec € Strat s.t. VP € C, §p conforms to the

G,s Fsub <C> iff -
Foub ¢ {information of P and Vp € Outgyp(d,s) it holds G, p, 1 = ¢

The ¢-type formulas are called path-formulas and are evaluated with respect to
a path within the C'GS. The semantics of the boolean operators and the atomic
propositions is standard. The other operators follow the semantics below.

G.piEXep ifft GpitlEe
gap’i'chlUQDQ iff 3j>i'gap7j):¢Qandvi<k<j'g7pak’:§01
G.pikEo iff G, p(i) = ¢

We call ATL the fragment of ATL* obeying the syntax

ATL 5 ¢
@

KC>p | <C>Xgp| | <C>pUyp
PlPlerploVelo

3 Simulation in Games with Imperfect Information

In [5] the authors propose a notion of equivalence sound for ATL that works for
both the subjective and the objective semantics. This notion is however rather
restrictive. We develop our own notion, which shares some similarities with the
one of [5], yet is more general. The simulation we propose is also sound for
ATL*, works on both subjective and objective semantics. Besides those properties
already present in [5], our simulations do not require a perfect replication of
the partial information. By “replication of partial information”, we mean the
following. Consider three states q,s’,q with ¢,q’ similar and s’ ~p ¢', there
is no need for the existence of a state s with s ~p ¢ and s, ¢ similar. Finally
our notion is complete on a small class of games: naive games, and from this
completeness one can deduce an equivalence-checking algorithm for games with
public actions.

For the rest of the paper, we consider two games G, G’ that build upon the
same atomic propositions and upon the same set Agt of agents. Simulation —
or equivalence-checking in general — in multi-agent systems is parameterized by
a coalition of agents (made of all agents to be existentially quantified in the
formulas we are interested in). Therefore we also fix a coalition C C Agt as

Simulations for Multi-Agent Systems with Imperfect Information 143

a parameter. We first describe the simulation and soundness for the objective
semantics. The case for the subjective semantics is similar and will be discussed
in the end. The main idea behind our algorithm is to keep track of all imper-
fect information scenarios possible through a tracker. We represent the tracker,
written A, as a relation on S x S x 288t x §' x §' x 248t

Definition 2. A simulation of G by G' for C is a relation R C S x S’ such that
there is another relation A C S x S x 288 x §' x §' x 248 where

1. for each (q,q') € R, Label(q) = Label(q).
2. for any (¢,q') in R, we have (¢,q,C,q¢,¢',C) € A
3. — for each (q,q') € R, there is a function Ty 4 : JActG +— JActS,

— for each (q,q') € R and each a € JActg there exists a function

Agt\C Agt\C
Z/{q g P JActy — JActg

such that the following two properties hold: B
(a) consider any (ql,q?, A, 4,45, B) € A, any two joz'niactz'ozs a,b e JActéj
such that a(A) = b(A), and any two joint actions ¢’ and d € JActég,t\C.

Write ki for the successor of q1 by a - Z/{qa1 7 (c"), kg for the successor
of @2 by b - quz,qé (d'), k\ for the successor of ¢; by Ty, g (@) - ¢, ky for
the successor of g4 by Tgs.q,(b b) - d C the set of agent with information
common to ki, ko; and D the set of agents with information common to

1, kb, Then (kyi, ko, E k|, k5, F) € A where E=ANC and F=BND.
(b) for each (q,q") € R, each joint action @ € JActS, there is a joint action

d e JActAgt\C such that the pair consistmg of a successor of q by @ -
ug () and a successor of ¢ by Ty 4 (@) - ¢ isin R.
4' fOT each (q17q2aA7Q17q27) EA

va,b € Jhctg. [a(A) =b(A)] = [T4q(@)(B) =T, 0)(B)] (1)

The above definition of simulations may look complicated but is in fact rel-
atively similar to the one of ATL* with the addition of the syntactic sugar to
manage the tracker A. Indeed, Points 1 and 3.b are similar to the requirements
of the simulations for ATL with perfect information [3]. Points 2 and 3.a are
there to build the tracker properly. Intuitively, the tracker can be built based
on R by a fix-point algorithm using Point 2 for initialization and Point 3.a as
recurrence relation. Point 4 enforces the simulation to make coherent choices for
the scenarios in the tracker. Note that if the tracker is larger than the one of the
definition above, but the property in Point 4 still holds for the larger tracker,
then the soundness for ATL will also hold. Note also that, while it may not look
obvious, this kind of simulations is closed by union. The tracker for the union of
two simulations is simply the union of the trackers from each simulation.

We provide a small example for the games on Fig. 1. There exists a simulation
of domain (where we omit the last states for clarity)

R:={(A,4),(B,B"),(B,C"),(C,B"),(C,C")}

144 P. Gardy and Y. Deng

and where the tracker is made of

(A, A {P;}i<s, A, A" {Pi}i<3)
(B,C,{P},B,C" {Ps})
A=< (C,B,{P},B,C" {P}
(
(

)
C,B,{P,},C",B' {P})
B,C,{P.},C', B, {P})

game G game G

Fig. 1. Two games bisimilar, each with 3 agents. The bisimilarity is relatively trivial
as only the third player is active on the B, C, B’ and C’ states.

Remark 1. Using a naive approach, finding if there exists a simulation takes an
exponential time.

Strategic Characterization. To establish the soundness of simulations for ATL",
we restate simulations as relations between strategies. We need a few notations
first. An existential profile § is a set of strategies (dp,,...,dp,), one per agents
in C. Universal profiles are defined similarly as sets of strategies from the agents
in Agt\C. We write Profile} with * € {C, Agt\C} and * € {G, G’} for the set of
s-profiles in the x-game. A strategic characterization is a set {Sg, SAgt\C}%q/eZ
of functions on some domain Z C S x S’ where the functions are of the form
SC, : Profile§ v Profile§ and S15\C : Profilef v Profileff"\® that

obey two features:

Feat.1 for all ¢,q’, any two profiles 6,+', and any two states s, s’ belonging to
the objective outcomes of § and SAg;\C(") and of SC (6) and 7/, the
pair (s, s’) belongs to the domain Z of the strategic proﬁle

Feat.2 for any pair of states g, q’, any two profiles 8,7/, the objective outcomes

of § and SAgt\C(") and of SC (6) and 7/ have the same traces starting
from ¢ and q', respectively.

Simulations can be linked to strategic characterizations via Theorem 1 below.

Theorem 1. If there exists a simulation R of G by G’, then there is a strategic
characterization defined on R.

Simulations for Multi-Agent Systems with Imperfect Information 145

Game G Assume a simulation R: Game G’
(A,A") (B,B') (C,B)

B S ASC Al

U Condition 2 U

for objective semantics:

(A, A Age, A, A, Agt)
(B7 B7 Agt7 Bl? Bl’ Agt)

(C’ C’ Agt7 Bl’ Bl? Agt)

B’

For subjective semantics, we add
(A,C, {P1}7A/,A/7Agt) (A,C, {P1}7BlvB/aAgt)
(C, A, {P1}, A, A, Agt) (C, A, {P}, B', B, Agt)

Fig. 2. Illustration of Point 2 of simulation for the subjective semantic.

Simulation Soundness for ATL

Theorem 2. Let R be a simulation of G by G'. For any (q,q') € R and any
& € ATL", if ¢ = @ then ¢’ = @ (for the objective semantics).

Proof. Assume there is a simulation R of G by G’. The proof is by induction
on the nesting of quantifier operators. Consider the case where @ has no nested
quantification. If @ holds on G, then there is an existential winning strategy
profile §. Using Theorem 1, we obtain a strategy S=(9). Then S7(6) is a winning
strategy in G’ for the temporal property of @. Indeed, if there was a universal
strategy 7/ falsifying @ against S=(8), we could use S¥(7') to get a strategy
falsifying the temporal property of & against &, which would contradict the
hypothesis that ¢ is winning for ®. The case where @ has nested quantifications
is similar, only using the induction hypothesis to check the sub-formulas. O

Simulation in the Subjective Semantics. The notion of simulation in the subjec-
tive semantics is similar with the exception of the requirement on the tracker A
(the second point of the definition). In the objective semantic, Point 2 provides
an initialization of the tracker for the different possible starting states while
Point 3.a provides a recurrence condition. Subjective semantics do not make a
difference between a starting state ¢ in G and a state h indistinguishable from ¢
for some agent P. Thus a strategy ¢ for P must be conform to ¢ ~p h. Something
similar occurs in G’. The tracker in a simulation between G and G’ must handle
this potential scenario, hence we adapt the tracker initialization (Point 2).

2. for any (¢,¢') in R, any h € Upec{h | ¢ ~p h}, B € Upec{h' | ¢ ~p I'},
the following holds

A={Pehgt|q~ph}

,h, A, ¢\, B) € A wh
(0.5 4.g) € A where {B—{PeAgth’ ~p '}

146 P. Gardy and Y. Deng

The proof of soundness is similar, using a definition of strategic characterization
with subjective outcomes (in both features). The change in definition is illus-
trated in Fig. 2. In the figure, we can see two games (on the left and on the right)
with the imperfect information described just below (in G, the information is for
player P between A and C; in G’ there is no imperfect information). For the
relation R, we describe the initialization of the tracker for both the objective
and subjective semantics in the central part of the figure.

Remark 2. In the subjective semantics, it may be necessary to have some degree
of imperfect information replication in order to establishing a simulation (some
knowledge operators of epistemic logics can be expressed by subjective ATL).
This is however covered through the definition: the tracker will enforce a mini-
mum replication required.

Comparison to the FExisting Notion of Simula- q q

tion. Our notion is more general than the one

of [5] as it needs not to reproduce similar obser- 0/ \1 “'/1 l ¢
vations. This way the game on the right of Fig.3, s rolst N
defined over a single (existential) agent P, is not l * l - l A
similar for [5] to the game on the left since there p1 D2 p1 P2 P

is no state similar to A’ in both the possibilities
and the observation: r lacks the similar obser-
vation while s lacks the successor with similar
label. Trivially, the games satisfy the same for-
mulas with existential quantification over the single agent P. The two games
are also similar for our notion. Indeed, we can build a relation R with (g, q’),
(r,r"), (s,8") and (r,h'). The A relation follows trivially with (x,*, P, ', %', P)
for (x,+') € R and (r,s,0,h',s', P). Take 7 as the identity function plus
T 1(2) — 0. With this choice, the fourth condition is trivially satisfied.

Fig. 3. Two games similar with
common observation in color.
(Color figure online)

4 Naive Games and Completeness

As ATL with perfect recall is undecidable [21], it is very unlikely that there exists
a notion of simulation provably sound and complete for ATL. There exist some
model restrictions which make the ATL model-checking decidable: hierarchical
observations and the many derivatives (hierarchical information, dynamic hier-
archies) [8,21], public actions [6]. The search for completeness relative to these
fragments is not a vain quest, unlike the general case. In this section we identify a
small subclass of games, naive games, for which our concept of simulation is com-
plete. This concept will also prove itself crucial to develop an equivalence-checking
algorithm in games with public actions in the next section. A game is naive when
the imperfect information is state-based, meaning that two states can or cannot
be distinguished by the same agents regardless of the histories; a formal definition
is given below and an illustration in Fig.4. From the definition, any game with
a tree-shape structure is de-facto naive (see Fig. 3 for example). This approach
(restriction) on imperfect information is also used in the MCMAS tool [18].

Simulations for Multi-Agent Systems with Imperfect Information 147

A potential scenario Only scenario possible
p in non-naive game p in naive game
q ~p T q~pT q ~p r qNPTj
and) (s, t) and ‘
loss of naivety
S #p t sopt . S on path ¢ V(s,t)swpt
naivety preserved
so s~pt S0
q T prgsq 76P th’f‘ q T pgsq ~p th’f’

Fig. 4. History influence on partial observation in both non-naive and naive games.

Definition 3. A naive game is a game in which for any two finite paths pa, pB,

{PeAgt]|pa~ppp}={PcAhgt|last(pa) ~p last(pp)}

Note that the left-to-right inclusion is always true in C'GS, naive games
guarantee that the converse inclusion (right-to-left) also holds. Naive games
are interesting for simulations because they have a very simplified tracker. The
inputs are all of shape (h,k, A,h', k', B) where A = {P € Agt | h ~p k} and
B = {P € Agt | b/ ~p k'} whereas general inputs for non-naive games can also
be of shape (h,k,C,h', k', D) with C C A and D C B. They are incomparable
with both games with public actions and games with hierarchical observations.
On them, ATL model-checking is decidable.

Theorem 3. ATL and ATL* model-checking are decidable on naive games with
imperfect information.

Proof (Sketch). The result is relatively trivial so we only provide a sketch of the
proof. Transform the temporal objective into a parity automaton A and cross
it with the CGS. Let G4 be the result. We get a parity game with imperfect
information for which the property of naive games still applies. On G 4, optimal
strategies can be chosen positional even if we allow perfect recall strategies. This
is because the imperfect information is fixed and will not evolve with the choices
made previously by either player. We can then simply enumerate the positional
strategies conform to imperfect information in G4 and see if some works. O

Proving the completeness of our simulation on non-naive games seems an
herculean task. It requires to build a formula which can fully encode all scenarios
possible from an initial state. Such formula would require to not only handle
the atomic propositions seen along the way but also the potential changes in
imperfect information with other paths. With naive games, there are no changes
in the imperfect information. This brings us back to a situation close to games
with perfect information for which there exist sound and complete notions of
alternating simulations [3]. Using similar ideas to the ones used to prove the
completeness of alternating simulations for ATL, we prove that our simulations
are complete for naive games.

148 P. Gardy and Y. Deng

Theorem 4. Fiz two naive games G and G'. Let R be the set

R = {(q,q’)|q€5’, qd €8 stVoe ATL [q):¢:>q/)=¢]}

then R is the domain of a simulation.

5 Equivalence Checking in Games with Public Actions

Games with public actions are games on which agents have perfect visibility of
the other agents actions. On them, ATL enjoys a decidable model-checking [6].
Using the completeness of our simulations for naive games, we develop a sound
and complete algorithm to check simulations on public action games.

Definition 4. A game G has public actions when

VP € Agt
Vg,q' €G [@#a and g ~pq = 6(q,a) #p o(¢,d)]
Va,a' € Acthet

From the definition, any two histories of equal length are distinguishable as long
as they start in the same initial state. So, in the objective semantics, games with
public actions are equivalent to games with perfect information. Games with
public actions are only interesting in that semantics if multiple starting states
are considered. In the setting of this paper, it corresponds to using subjective
semantics. In such cases, games with public actions are strictly more expressive
than perfect information games. For the rest of this section we fix a game G with
public actions and a coalition C' of agents.

Lemma 1. (Consequence of Remark 2 in [6]). Consider a strategy profile
dc for the coalition C, a starting state q, and a finite path p compatible with ¢
starting in q. Then p has at most |{q¢' | ¢ ~p q, P € C}| outcomes indistinguish-
able from p in Out (6, q).

Intuitively, there is only a finite number of paths indistinguishable from the
“objective” path. Each of theses paths can be identified by its starting state
(within {¢’ | ¢ ~p q, P € C}) and the sequence of actions played (common to
all these paths).

So, as there are only a finite number of paths indistinguishable, we can track
them easily within the state space. By doing so, we can go from public action
games to naive games; this is what the lemma below does. In it we call an
ATL formula principal when it has no closed sub-formula.

Theorem 5. For each public action game G, there exists a naive game H such
that G and H satisfy exactly the same ATL principal formulas ezistentially quan-
tifying over the coalition C of agents.

Simulations for Multi-Agent Systems with Imperfect Information 149

Construction of the Naive Game

‘H is a version of G which records all possible paths indistinguishable from the
current one for each agent. Each indistinguishable path will be summarized
by the starting and finishing states. Each state ¢ in G is augmented with a
function f : Agt — 2¢*¢ making the state space of H equal to G x (26*)het,
Intuitively, if a path ends in a state ¢ augmented by f, with (r,s) € fy(P), then
it means there is a path indistinguishable from the current one starting in » and
ending in s.

Remark 3. The construction can be seen as building an information set of a tree
automaton for games with perfect information [10,19,20].

Formally, the state space of H is G x (2*&)**_ For each joint action @ for
Agt, we create an edge from (q, f) to (¢, f') when

~q¢5qding -
~ f1(P) :=={(r,s") | 3(r,s) € f(P) and s’ ~p ¢’ and s % s'} for every agent P.

The imperfect information is created inductively. Initially, it follows from ¢ ~p ¢
in G that

(@.f: P=A(rr) [r~pa})) ~p (¢ f P A0) [~pd}) inH, (2)

then inductively,

(qaf) ~P (q/7f/) (qa f) i (T’ g)
(. f) 5 (g r~pringG

The induction trivially reaches a fixed point and terminates. The initial relation
is reflexive (inherited from the relation on G), symmetric (by definition) and
transitive (inherited from the relation on G and the definition). At each step of
the induction, these three properties are preserved. Indeed reflexivity is trivially
preserved. The definition of (3) is symmetric, so the relation is also symmetric.
Finally, the transitivity is preserved through the use of similar joint actions, as
in lines 2 and 3 in (3). The relation thus defined is indeed an equivalence relation
on states of H and therefore an imperfect information relation.

The set of initial states we consider in His {(q, f) | f : P — {(r,7) | r ~p ¢} }.
By definition of the imperfect information in H:

V(. f), (¢, f) e H.VP ergt. [(g,.f) ~p (¢, f') in H=gq~pq ing]
(4)
The idea is partially illustrated in Fig.5, with the public-actions game on
the left and the naive game on the right. The functions f and g are described
at the top.

= (ng)~r('g) 3)

Correctness of the Construction

Notations: In the following we write a state (g, x) of H for a pair of shape (g, f)
for some function f, and write a state of H (x, f) for a pair (g, f) for some state
q of G. This allows us to ease the reading.

150 P. Gardy and Y. Deng

Game with
public actions

Naive Game [(b, 5) € f((P)} [(by t) e 9(P>}

outcome under focus (7

v ((0%) (4. /)
E @)

il :) (r9)
® @ _—
subjective outcome
a a a (bv*) (57*) (t7*)
o o subjective outcome (77
(c,%) (u, %) (v, %)

Fig. 5. Construction (with a single agent P). The imperfect information on the public
action game is represented by colored areas. (Color figure online)

Lemma 2. The following holds for any two paths p,p’ and any agent P. Write
§(1) = (¢,), pllpl) == (x.9) and p'(|pl) = (s',%). Then

Iifp~pyp then (¢,s) € g(P).
I if pop p' then (¢',s") & g(P).

Lemma 3. Let P be any agent, (r,f) and (t,g) be any two states such that
(r, f) ~p (t,g). There are two paths pc and pp of shapes pc : (u,x) —* (r, f)
and pp = (v, %) —* (t,g) such that (v,t) € f(P) and (u,r) € g(P).

Lemma 4. H is a naive game.

Proof. Toward a contradiction, suppose the game is not naive. Then there must
be two finite paths p4,pp and an agent P € Agt such that pa %p pp but
last(pa) ~p last(pp). Write last(pa) = (r, f) and last(pp) = (,g). Since
(r,f) ~p (t,g), by Lemma 3, there are two paths pc and pp of the shapes
pc ¢ (u,*x) —* (r,f) and pp = (v,x) —* (t,g) such that (v,t) € f(P) and
(u,r) € g(P). By Lemma 2, since (v,t) € f(P), we have py ~p pp. Then
by Lemma 2 once again, since last(pp) = (t,g), we have (first(pa),r) € g.
Applying one last time Lemma 2, since (first(pa),r) € g and last(pp) = (¢,9)
we get pa ~p pp, which is a contradiction. O

Lemma 5. A principal formula ¢ € ATL existentially quantifying C holds from
state q in G if and only if ¢ holds from (q,) in H with f : P — {(r,r) | r ~p ¢}.

Proof. For this we simply show an equivalence between paths in G and paths in
H (from the starting states), in which a state ¢ in G is always linked to a state of
shape (g, *) in H. We proceed by induction on the length of the paths. First note
that for a state ¢ in G there is a single initial state (g, f) in H. We can therefore
establish an equivalence between starting states. For the induction case, consider
a path p in H and 7 in H and write last(p) = (g, f) and last(m) = ¢. For each

Simulations for Multi-Agent Systems with Imperfect Information 151

joint-action @ there is a single ¢’ such that ¢ % ¢/ in G, and a single (¢/, f') such
that (¢, f) = (¢, f'). We can therefore extend the correspondence one more
step. And with the induction step sorted out, we can conclude the existence of
a one-to-one correspondence between paths in both G and H. Through a simple
induction, we obtain that two paths (from the starting state) are indistinguish-
able in H if and only if their counterparts in G are indistinguishable. From the
path correspondence, it is trivial to establish a correspondence between conform
strategies, and to establish an equivalence between the formulas that can be
satisfied (as long as we start from the appropriate starting state in H). a

Theorem 5 then follows from the construction and Lemmas 4 and 5.

Sound and Complete Checking of Public-Actions Games

By combining Theorems 4 and 5, we can obtain a sound and complete way for
ATL principal formulas to check simulation on public-action games. The process
is presented in Algorithm 1. The correctness of the algorithm is ensured by the
following lemma whose proof is in annex:

Lemma 6. In Algorithm 1, define Ry as the largest simulation of H' by H.
Then
{(¢,d') | ¥¢ principal in ATL [q = ¢ = ¢' =]}
(¢, fini) is an initial state of H
={(q,4") | 3 fini, [ini 5t (¢ f1;) is an initial state of H' }
((a, fini), (d', fini)) € Rt

Algorithm 1 does not work for non-principal ATL formulas. Indeed, two ele-
ments in the simulation relation R may not be starting states of H, and therefore
the correctness which only applies from starting states may not hold. The lemma
below tells us precisely when our algorithm extends to non-principal formulas.

Lemma 7. In Algorithm 1, if R satisfies
((Ta fini)a (5; gini)) cR

Y((r, f),(s,9)) €ER finis Gini such that < (v, fini) is an initial state in H
(S, gini) is an initial state in H

then
{(q,q") | Yé (principal or not) in ATL [q = ¢ = ¢ = ¢]}

(q, fini) is an initial state
={(q,4") | 3 fini, [ini 5t < (¢, fl,;) is an initial state }
((¢; fini), (¢ fini)) € R
The proof follows from the definition of the condition and Theorem 5. With the
lemma above, we can develop an algorithm for non-principal formulas simply by

requiring step 3 to find the maximal simulation relation R which satisfies the
condition of the lemma above.

152 P. Gardy and Y. Deng

Algorithm 1. Check for principal formulas in public-action games.

INPUT: Two games G and G’ and two initial states ¢, ¢’ respectively in G and G'.
OUTPUT: Does G and G’ satisfy the same principal formulas from ¢ and ¢'.

1: 'H — naive game satisfying the same ATL formulas as G through Theorem 5
2: H' — naive game satisfying the same ATL formulas as G’ through Theorem 5
3: Find the maximal simulation relation R of ‘H by H’

4: if Ifing, fin: such that ((q, fini), (¢s fini)) € R then

5: return True

6: else

7: return False

8: end if

6 Concluding Remarks

We have proposed a notion of simulation sound for ATL on multi-agent systems
in general and complete on naive systems where the information is state-based.
Using the completeness of our concept of simulation for naive games, we have
designed a simulation-checking algorithm for public-action games. A remaining
interrogation is whether there is an equivalence-checking algorithm that is both

sound and complete for ATL on hierarchical information systems.

References

1. de Alfaro, L., Henzinger, T.A.: Concurrent omega-regular games. In: Proceedings

of LICS 2000 (2000)

2. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. In: de
Roever, W.-P., Langmaack, H., Pnueli, A. (eds.) COMPOS 1997. LNCS, vol. 1536,
pp. 23-60. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49213-5_2

3. Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.Y.: Alternating refinement
relations. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466,

pp. 163-178. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055622

4. Baskar, A., Ramanujam, R., Suresh, S.P.: Knowledge-based modelling of voting

protocols. In: Proceedings of TARK 2007 (2007)

5. Belardinelli, F., Condurache, R., Dima, C., Jamroga, W., Jones, A.V.: Bisimula-
tions for verifying strategic abilities with an application to ThreeBallot. In: Pro-

ceedings of AAMAS 2017 (2017)

6. Belardinelli, F., Lomuscio, A., Murano, A., Rubin, S.: Verification of multi-agent
systems with imperfect information and public actions. In: Proceedings AAMAS
2017. International Foundation for Autonomous Agents and Multiagent Systems

(2017)

7. Berthon, R., Maubert, B., Murano, A., Rubin, S., Vardi, M.Y.: Strategy logic with

imperfect information. In: Proceedings of LICS 2017, pp. 1-12 (2017)

8. Berwanger, D., Mathew, A.B., van den Bogaard, M.: Hierarchical information and

the synthesis of distributed strategies. Acta Informatica 55, 669-701 (2018)

9. Blackburn, P., Rijke, M.D., Venema, Y.: Modal Logic. Cambridge Tracts in The-

oretical Computer Science. Cambridge University Press, Cambridge (2001)

https://doi.org/10.1007/3-540-49213-5_2
https://doi.org/10.1007/BFb0055622

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

Simulations for Multi-Agent Systems with Imperfect Information 153

Chatterjee, K., Doyen, L.: The complexity of partial-observation parity games.
In: Fermiiller, C.G., Voronkov, A. (eds.) LPAR 2010. LNCS, vol. 6397, pp. 1-14.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16242-8_1

Dima, C., Tiplea, F.L.: Model-checking ATL under imperfect information and per-
fect recall semantics is undecidable. CoRR (2011)

Goltz, U., Kuiper, R., Penczek, W.: Propositional temporal logics and equivalences.
In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 222-236. Springer,
Heidelberg (1992). https://doi.org/10.1007/BFb0084794

Goranko, V., van Drimmelen, G.: Complete axiomatization and decidability of
alternating-time temporal logic. Theor. Comput. Sci. 353, 93-117 (2006)
Jamroga, W., Dix, J.: Model checking abilities under incomplete information is
indeed delta2-complete. In: Proceedings of EUMAS 2006 (2006)

Laroussinie, F., Markey, N., Oreiby, G.: On the expressiveness and complexity of
ATL. In: Seidl, H. (ed.) FoSSaCS 2007. LNCS, vol. 4423, pp. 243-257. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-71389-0-18

Laroussinie, F., Markey, N., Sangnier, A.: ATLsc with partial observation. In: Pro-
ceedings of GandALF 2015 (2015)

Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput.
94, 1-28 (1991)

Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: an open-source model checker for
the verification of multi-agent systems. Int. J. Softw. Tools Technol. Transf. 19,
9-30 (2017)

van der Meyden, R., Vardi, M.Y.: Synthesis from knowledge-based specifications.
In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 34—49.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055614

van der Meyden, R., Wilke, T.: Synthesis of distributed systems from knowledge-
based specifications. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS,
vol. 3653, pp. 562-576. Springer, Heidelberg (2005). https://doi.org/10.1007/
11539452_42

Peterson, G.L., Reif, J.H.: Multiple-person alternation. In: Proceedings of FOCS
1979 (1979)

Strauss, C.: A critical review of the triple ballot voting system, part2: cracking the
triple ballot encryption (2006)

Tabatabaei, M., Jamroga, W., Ryan, P.Y.: Expressing receipt freeness and
coercion-resistance in logics of strategic ability preliminary attempt. In: Proceed-
ings of PrAISe 2016 (2016)

VAS-Group. In: Imperial college of London. https://vas.doc.ic.ac.uk/software/
mcmas/

Wikipedia: Three ballot voting system. https://en.wikipedia.org/wiki/threeballot
Zhang, C., Pang, J.: On probabilistic alternating simulations. In: Calude, C.S.,
Sassone, V. (eds.) TCS 2010. IAICT, vol. 323, pp. 71-85. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15240-5_6

https://doi.org/10.1007/978-3-642-16242-8_1
https://doi.org/10.1007/BFb0084794
https://doi.org/10.1007/978-3-540-71389-0_18
https://doi.org/10.1007/BFb0055614
https://doi.org/10.1007/11539452_42
https://doi.org/10.1007/11539452_42
https://vas.doc.ic.ac.uk/software/mcmas/
https://vas.doc.ic.ac.uk/software/mcmas/
https://en.wikipedia.org/wiki/threeballot
https://doi.org/10.1007/978-3-642-15240-5_6

l‘)

Check for
updates

On the Generation of Equational
Dynamic Logics for Weighted Imperative
Programs

Leandro Gomes' (™) Alexandre Madeira!-2, Manisha Jain?,
and Luis S. Barbosa!*3

1 HASLab INESC TEC - Univ. Minho, Braga, Portugal
leandro.r.gomes@inesctec.pt
2 CIDMA - Univ. Aveiro, Aveiro, Portugal
3 QuantaLab, INL, Braga, Portugal

Abstract. Dynamic logic is a powerful framework for reasoning about
imperative programs. This paper extends previous work [9] on the sys-
tematic generation of dynamic logics from the propositional to the equa-
tional case, to capture ‘full-fledged’ imperative programs. The genera-
tion process is parametric on a structure specifying a notion of ‘weight’
assigned to programs. The paper introduces also a notion of bisimilar-
ity on models of the generated logics, which is shown to entail modal
equivalence with respect to the latter.

1 Introduction

The development of dynamic logic [3] along the past twenty years went hand-
in-hand with the evolution of its object, i.e. the very notion of a program. The
result was the emergence of a plethora of dynamic logics tailored to specific pro-
gramming paradigms. This ranges from the well-known classical case [2] to less
conventional examples for which e.g. programs are compositions of actions in
UML state machines [6] or event/actions regular expressions [4]. Other rephras-
ing of what should count for a program in each specific context, lead to different
variants of dynamic logics: Examples include probabilistic [7], fuzzy, concurrent
[10], quantum [1] and continuous [11] computations, and combinations thereof.

Reference [9] initiated a research agenda on the systematic development of
propositional, multi-valued dynamic logics parametric on an algebraic struc-
ture, actually an action lattice, which defines both the computational paradigm

This work was founded by the ERDF—FEuropean Regional Development Fund through
the Operational Programme for Competitiveness and Internationalisation - COMPETE
2020 Programme and by National Funds through the Portuguese funding agency, FCT
- Fundagéo para a Ciéncia e a Tecnologia, within project POCI-01-0145-FEDER-030947.
The second author is supported in the scope of the framework contract foreseen in the
numbers 4, 5 and 6 of the article 23, of the Decree-Law 57/2016, of August 29, changed
by Portuguese Law 57/2017, of July 19 and by UID/MAT/04106/2019 at CIDMA.

© Springer Nature Switzerland AG 2019

Y. Ait-Ameur and S. Qin (Eds.): ICFEM 2019, LNCS 11852, pp. 154-169, 2019.
https://doi.org/10.1007/978-3-030-32409-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32409-4_10&domain=pdf
https://doi.org/10.1007/978-3-030-32409-4_10

On the Generation of Equational Dynamic Logics 155

where programs live, and the truth space where assertions take value. This paper
extends this agenda to a new level, taking computational states as valuations
of variables over a given domain, and programs as their modifiers. The idea is
to capture typical imperative programs and their interpretation over different
notions of ‘weighted’ computation—the very notion of weight being brought to
scene as a parameter, encoded in the action lattice, for the generation of the cor-
responding dynamic logic. Depending on each action lattice chosen, such weights
will be interpreted as e.g. vagueness degree associated to the effectiveness of a
particular computation, or a measure of the resources consumed in it, or even
the associated cost or execution time.

Note that in all approaches discussed in the literature, even when some form
of structured computation is considered, validity of assertions is always stated
in classical terms. The approach proposed here goes a step further in the sense
that validity of structured computation (e.g. fuzzy, costed, timed) is discussed
in a logic capturing itself the corresponding notion of behaviour.

Differently from our previous work [9], ‘fully-fledged’ programs are considered
here. This means that assignment of values from a data space to a variable is
taken as the elementary construction, programs being defined over an equational
signature of program variables, predicate and function symbols. Thus, in the
sequel, programs are expressions generated by the following grammar:

mu=x:=t|mn| if ¢ then 7 else # fi | while ¢ do 7 od (1)

where ¢ denote terms with variables from a set X.

Bisimulation is defined parametrically on an action lattice, over the resulting
computational models. Finally, bisimilarity is shown to entail modal equivalence
for the corresponding dynamic logic.

The remaining of this paper is organised as follows. After a brief background
overview in Sect. 2, to recap the definition of an action lattice and some of its fun-
damental properties, Sect. 3 extends the method proposed in [9] to incorporate
‘fully-fledged’ imperative programs, i.e. program variables and assignments. All
constructions are illustrated in detail for three paradigmatic parameters: classi-
cal Boolean lattices, Godel algebras to capture vagueness in computation, and
the tropical semiring to reason about resource consumption. Bisimilarity and an
invariance result is discussed, as a second contribution of the paper, in Sect. 4.
Finally, Sect. 5 concludes, and enumerates topics for future work.

2 Action Lattices

As explained in the Introduction, the construction of multi-valued, equational,
dynamic logics is parametric on an action lattice which induces both the compu-
tational model for programs and the truth space for logics. This section recalls
the relevant definition and properties [9)].

Definition 1. An action lattice is a tuple

A:<A7+a;a0a17*7_>?')

156 L. Gomes et al.

where A is a set, 0 and 1 constants, and +,;,— and - binary operations and *
a unary operation in A satisfying the axioms in Fig. 1, where the relation < is
induced by +: a <biffa+b=0b.

a+(b+c)=(a+b)+c (2) 1+a+(a*;a") < a* (11)
at+b=b+a (3) ar<zr=ad;z<z (12)
at+a=a (4) sa<z=za <z (13)
a+0=0+a=a (5) ix<ber<a—b (14)

& (b;) = (asB)sc (©) e (i) =(ab)c (1)
a;l=1a=a (7) a-b=b-a (16)
G+ = (@b +(@e) (®) aa=a (17)
(a+b);c=(a;c) + (bic) (9) at(a-b) =a (18)
a;0=0;a=0 (10) a-(a+b) =a (19)

Fig. 1. A possible axiomatisation of action lattices.

An action lattice A is complete when every subset of its carrier A has both
supremum and infimum with respect to <. The greatest and least elements are
denoted in the sequel by T and L, respectively. Note that in any action lattice
1 =0, since for any a € A, a+ 0 = a, i.e. 0 < a. Consider a non-empty set I.
We say that A is linear if it satisfies, for any set {a;|i € I}, the property

Zai = a;, for some j € I (20)

iel
Since operators +, ; and - are associative, they admit a n-ary iterated version,
represented by >, [and A, respectively. Note that the structure (4, +,;,0,1,*)
axiomatised by (2)—(13) forms a Kleene algebra. The following handy properties

are easily proved [9]:

r<y=ralya (21)
a<b&c<d=a+c<b+d (22)
The generation of dynamic logics illustrated in the following sections will
be parametric on the class of complete action lattices. Actually, completeness
is required to guarantee the existence of infinite sums. The following are exam-

ples of complete action lattices, with which the proposed constructions will be
illustrated along the paper.

Ezample 1. The first example is the Boolean lattice
2=({T,LLV.A LT, =)

with the standard interpretation of Boolean connectives. Operator * maps each
element of {T, L} to T, and — corresponds to logical implication.

On the Generation of Equational Dynamic Logics 157

Example 2. Godel algebras are the locally finite variety of Heyting algebras.
Formally,
G = ([0, 1], mazx, min,0g, 1,* , —,min)

{1, ife <y
rT—=Y= .
y, ify <z

where

Ezample 3. Finally, the (min, +) Kleene algebra [8], known as the tropical semir-
ing, can be extended to an action lattice through the introduction of residuation
—

R= (Ra' U {+o0}, min, +r, +00,0R,* , —,min)

where, for any z,y € R{ U {400}, 2* = Or and z — y = maz{y — z,0}, with
R ={zeR|z>0}

3 Generation of Equational, Dynamic Logics

Each complete action lattice A induces a multi-valued, equational dynamic logic
I'(A) to reason, as explained above, about ‘full-fledged’ imperative programs
with weighted computations interpreted over A. Such programs are generated
as indicated in (1).

Ezample 4. This toy program over a set of variables {z, y} and the real numbers
as data space will be used for illustration purposes in the sequel.

x:=2%x:=x+y; (if <3 then z:=z+1 else y:=y x2)

Note that its execution can be represented by the following transition system,
where the conditional statement is encoded as a sum of alternatives guarded by

a test.
< ;m::z+1

=2 Ti=x+yY
start —»@ ? @
i :y::yx?

Let us start by carefully fixing the syntactic support for the generated log-
ics. Programs are defined over a data signature ¥ = (F,P), where F and P
denote sets of function and predicate symbols, respectively. As usual, let nota-
tion T (X) stand for the set of Y-terms with variables in X, and represent by
TE(X) (respectively, TE£ (X)) its restriction to functional (respectively, predi-
cate) terms. Thus,

Prgg(X, X)={z:=t|ze X and t € T5(X)}

158 L. Gomes et al.

defines the set of atomic programs for the pair (X, X), from which an arbitrary
(composed) program is generated as an expression described by the following
rule

Tu=m|@? | mw| 7| w"

with 7y € Prgy (X, X), and ¢? standing for a suitable notion of test. The latter,
however, needs to be handled with some care: indeed the meaning of a test
depends on the logic I'(A), and therefore on A itself, as we will discuss below
on defining its semantics in terms of the satisfaction relation for I'(A). For the
moment, it is enough to notice that choice (+), iteration (*) and tests (¢7) encode
the usual ‘syntactic sugar’ constructs for conditionals and loops as considered in
rule (1). The set of composed programs for (X, X) is denoted by Prg(X, X).

Once a language for programs is fixed, the set of formulas for I'(A) intro-
duces, as expected, the universal and existential modalities over programs. For-
mally,

Definition 2. A signature for I'(A) is a tuple
A= (X 0)

where X is a data signature and IT C Prgy (X, X) is a set of variable assignments.
The set of formulas for A, denoted by FmF(A)(A), are the ones generated by
the rule

pu=TI|LpleVeleAele—ol(melrle
forp € TE(X) and 7 is a program in Prg(X, X) that only uses atomic programs
i I1.

Note that we sometimes make use of - as an abbreviation for ¢ — 1, as in
Example 4.

We can now turn to semantics. For each A, models are defined over state
spaces whose elements are graded valuations of variables, i.e. functions w : X X
R — A, where A is the carrier of action lattice A. We denote the set of all states
by AX*E,

Definition 3 (Models). Let A = (X, II) be a signature and X a set of vari-
ables. A T'(A)-model for A is a structure

M= (W,E)
where

- W C AX*R s a set of states;
- E:II x (W xW)— A is a program grading function.

The set of I'(A)-models for A is denoted by Mod! ™) (A).

On the Generation of Equational Dynamic Logics 159

Intuitively the value of E(m, (wp,w)) represents the graded execution of
program 7 from state wg to wi, i.e. the weight associated to corresponding
transition. For instance, in Example 4, taking A as a Godel algebra (Example 2),
the expression E(x := 2, (wp,w;)) = 0.6 would mean that the system allows
the execution of the assignment x := 3 from state wg to w; with 0.6 as a
degree of certainty. Note that these values are attributed in the model. The
interpretation of functional terms and predicates becomes as detailed in the
following definitions.

Definition 4 (Interpretation of functional terms). Let A = (X, II) be
a signature and M € ModF(A)(A). The interpretation of a functional term
t € TE(X) in M, for each w € W, is given by the map

[t]w: TE(X) — A%
defined recursively as follows:
= [2]w(r) = w(x,r)
() = {1 ifr=c

0 otherwise

Gt () = e AT 51w () | £, o) = 1}, where 1 is
the cardinality of the set of all possible solutions of f(ri,...,rL) = r in R,
with each f of arity n being interpreted as a function on real numbers R™ — R

(e.g. +, %, 2, Vo el

where x € X and c is the syntactic representation of the constant ¢ € R.

Example 4 may also help in illustrating this issue. Consider a model M =
(W, E), wg, wy, wy € W, X = {z,y}, and the complete action lattice G =
([0, 1], maz, min,0,1,* , —, min) of Example 2. Take [z]uw, (1) = wo(z,1) = 0.5,
[#]wo (2) = wo(z,2) = 0.2, [y]w, (1) = woly,1) = 0.1, [y]w,(2) = wo(y,2) = 0.4
and 0 otherwise for state wg. The interpretation of the term 2 in wy is given by
[2]w,(2) = 1 and 0 otherwise. The interpretation of the term x +y in wy is given
by:

[+ ylwo (2) =[%]wo (1); [¥]wo (1) = min{0.5,0.1} = 0.1

[2 + Yl (3) =[] wo (1); [¥lwo (2) + [2]w, (2); [¥]wo (1)
=wo(x,1);wo(y,2) + wo(x,2); wo(y, 1)
=max{min{0.5;0.4}},min{0.2;0.1}} = 04

[+ Ylw, (4) =[2]wo (2); [Y]w, (2) = min{0.2,0.4} = 0.2

and 0 otherwise.

Definition 5 (Interpretation of predicates). Let A be a signature and M €
ModF(A)(A). The interpretations of a predicate p € TE(X) in M is given by
the map

[p)w: TS5 (X) — A

160 L. Gomes et al.

defined by

[p(t1,. .., tn Z{H[[t |pr1,...7r;) is true}

el j=1
where I is the cardinality of the set of all possible values (rt,...,ri) € R"
satisfying p(rt, ... rl), with each p of arity n being interpreted as a function
over terms TE (X)) like boolean predicate symbols (e.g. <, =, ...).

Again this can be illustrated by computing the truth degree of predicate x < 3
in state way, of Example 4. [z < 3](w2) = [#]w, (3); [3]w, (3)

G: min{0.3,1} = 0.3. The value 0.3 means that the predicate is true with a
certainty 0.3.

R: 1.24x 3.7 = 4.9. This interpretation corresponds to the energy consumed
by evaluating the predicate.

Definition 6 (Interpretation of atomic programs). The interpretation of
atomic programs in a I'(A)-model M € Mod” ™ (A) is a map

[Jo: T — AW>W
mapping each x =t € II into function

E(z:=t,(w,w)) if (w,w') € (xz:=t)
0 otherwise

where (x := t)) is the standard relational semantics of a program assignment,
typically given by:

/ _ w'y,r) =wly,r) fy#z
(ww) € o=t < {w’(x r) = [t]w(r) otherwise

This is made concrete by interpretation in each of the three distinct models
of computation considered in the paper, as captured in the action lattices of
Examples 1, 2 and 3, respectively.

2: The degree of certainty of execution is bivalente: either T or 1, coinciding
with the classical setting where an action simply may or may not execute.
G: Assume [z = 2]o(wo,w1) = E(x = 2,(wp,wy1)) = 0.8, [z := = +
ylo(wi, w2) = E(z := x +y, (w1,wz)) = 0.4, [v 1=z + 1]o(we, w3) = E(x :=
x+1, (wa,ws)) = 0.7 and [y := yx2]o(we,w3) = E(y := yx2, (wa, w3)) = 0.9.
Such values are regarded as degrees of certainty, or, in a complementary read-
ing, vagueness, associated to the execution of actions z := 2, z := x + v,
z:=x+ 1 and y :=y X 2, respectively.

On the Generation of Equational Dynamic Logics 161

As a consequence of executing these assignments, the weights of the variables
are updated accordingly in the next state. That is the case of = in state wi,
by assuming the value wi(z,1) = [2]w,(2) = 1, and 0 otherwise, according
to Definition 6. The weights of ¢y are maintained, since the assignment x := 2
does not modify the value of y. The situation may be interpreted as follows:
from a state where property x = 1 has a truth degree of 0.5 and z = 2 has
a truth degree of 0.2, the execution of action z := 2 with a certainty value
of 0.8, whenever occurs, leads to a state where x = 2 is true (i.e. has 1 as its
truth degree). The weights of the variable z in wy are updated as follows:

wa(z,3) = [z + Y]w, 3) = [2]w, (2); [y]w, (1) = min{1,0.1} = 0.1
wa(z,4) = [+ Ylw, (4) = [2]w, (2); [y]w, (2) = min{1,0.4} = 0.4

R: Consider, for example, E(z := 2, (wo,w1)) =8, E(x :=x +y, (w1, wy)) =
4, E(x = x4 1,(wa,w3)) = 7 and E(y := y x 2,(wz,w3)) = 9. These
values can be regarded as resources (e.g. energy) consumed by executing the
associated actions. Analogously to the previous case, the weights associated
to y are kept.

Finally, to interpret an arbitrary program in Prg(X, X) one proceeds in two
steps. First, the semantics of composed program constructs is given directly in
terms of operations on A-valued binary relations A" >*W: union, composition,
and Kleene closure. To interpret such operators, we define the following algebra:

Definition 7. Let A = (A,+,;,0,1,%,—,-) be an action lattice and W be a
finite set of states. The algebra of program grading functions is the structure

E = (Z(E)7 U7 O7 ®7 X7 *)
where:

— Z(E) is the universe of all the program grading functions
- (E(m) U E(m2))(w, w') = E(my, (w, w')) + E(m, (w, w'))

- (E(m) o E(m2))(w, w') = %WE(M, (w,w")); E(m2, (w”,w’))
- @ w w

=0
~ w,w') = 1, ifw=w
0, otherwzse

- w,w') = >O (E(m)) (w,w") = (E(n))’(w,w') 4+ (E(r))" (w,w’) +
(B(m))?(w,w') +
with E(m), E(my) € Z(E).

Note that operator * can be defined as an infinite sum due to the completeness
of the action lattice.

162 L. Gomes et al.

Definition 8. Let M € Mod” ™ (A) be a model of I'(A). The interpretation of
a program m € Prg(X, X) is a map

[-]: Prg(Z, X) — AWV
recursively defined by

— [mo] = [7o]o, for each my € Prgy(A)
= [m7] = [r] o []

- [r+n] =[r]U[r]

=[] = [=]".

where, for r € AWVW ¥ (ww') = 3 rF(w,w’).

Again Example 4 can be called to illustrate choice and sequential composition
by interpreting fragments (z :=2);(z:=z+y) and (z:=x+ 1)+ (y:=y x 2).
The first one yields,

[z :=2;2 := 2+ y](wo,w2) = ([x:=2]p 0 [z := 2z + y]o)(wo, wa)
= [z = 2]o(wo, w1); [z := z + ylo(w1, w2)
= E(z:=2,(wo,w1)); B(x := 2 + y, (w1, w2))

which can be instantiated within the three usual lattices we have been
considering:

2: Under this interpretation programs either fail or succeed. In the absence of
failure execution proceeds sequentially; otherwise, if one (or both) fails (takes
‘weight’ L), so does the composite.

G: In this case a degree of confidence, or certainty, is associated to the com-
position based on the corresponding degree for the atomic components. This
is computed as a minimum. For example, if E(x := 2, (wg,w1)) = 0.8 and
E(z := z+y, (w1, ws)) = 0.4 the overall confidence degree for the composition
becomes min{0.8,0.4} = 0.4.

R: Computations have a cost, under this interpretation, for example the
amount of energy dissipated. Thus, E(z := 2, (wg,w1));E(x = z +
y, (w1, ws2)) = 8 +r 4 = 12 represents the sum of the energy consumed by
both atomic programs z :=2 and z :=z + y.

The interpretation of (z := x + 1) + (y := y X 2), on the other hand, is given by

[(z:=2+1)+ (y:=y x2(wz,w3) = ([z:=z+ 1o U [y :=y x 2]o) (w2, ws)
[z := 2z 4+ 1]o (w2, w3) + [y := y X 2]o (w2, w3)

E(x:=z+1,(w2,w3)) + E(y :=y X 2, (w2, ws3))

On the Generation of Equational Dynamic Logics 163

Again,

2: In this case choice is exactly nondeterministic choice: either one of x :=
z + 1 ory:=y x 2 will be executed.

G: This interpretation yields the maximum certainty degree of executing
the composition, e.g. F(x := z + 1, (wq,w3)) + E(y := y X 2, (wa,w3)) =
max{0.7,0.9} = 0.9.

R: In this action lattice, operator + picks the minimum value. This cor-
responds to choose the path that consumes less energy, e.g. F(x := x +
1, (w2, w3)) + E(y := y x 2, (wa,ws)) = min{0.7,0.9} = 0.7.

Note that nothing prevents the state space W from being infinite, because

of completeness enforced upon A. However, one may only compute explicitly a
truth value associated with a program execution when W is finite.

The second element to care about when computing the semantics is the

interpretation of tests. Our goal is to introduce a notion of a test in an arbitrary
dynamic logic generated by a parameter A. As mentioned above, tests are written
as o?, for o € Fm! (A)(A). Their semantics resort, therefore, to the satisfaction
relation for Fm!’) (A), which is defined as follows:

Definition 9. Given a complete action lattice A over a carrier A, the graded
satisfaction relation for a model M € ModF(A)(A), consists of a function

Era) : W x Fm" ™ (A) - A

recursively defined by

ra) 1)=T
ra) L)
ra) D) = [Plw, for any p € TE(X)

eN¢')=(wEram) ¢) - (wEra) ¢)

eV =(wEra) e+ (w ?—r) #')

¢ —¢')=(wFEra) 90)—>(w|= (A ¢)

A) (T)e) :waew ([[W]](w'); (w):F(A) ¥))
A) [T19) = Awew ([[ﬂ](waw) = (W' Era) 9)

The interpretation of tests in the classical, Boolean case is given by co-

™
>

S5
LA AR AR AN AN AN

g gegeegeegeges
ITTT]JTTTT

Py

reflexive relations Ry» = {(w,w)|w = ¢}. In the generic setting of the present
work this generalises to

(wEray ¢) ifw=w
1 otherwise

[e?(w, w') = {

Let us revisit Example 4 to interpret the conditional statement

if <3 then z:=z+1 else y: =y x2

164 L. Gomes et al.

translated to ((z < 3?);z:=xz+ 1)+ ((((x < 3) — L)?);y := y x 2). Using the
value computed for predicate = < 3, this leads to

(z<3)hz =+ 1)+ (((z <3) = L)%y =y x 2)] (w2, ws)

(z <3)%z:=x+ 1](we, ws) + [((z < 3) = L)%y :=y X 2] (w2, ws)

(z < 3)? (w2, w2); [z := = + 1o (w2, w3) + [((x < 3) — L)?](w2, w2); [y := y X 2]o (w2, w3)
=(wFz<3);E(x:=x+1,(w2,ws)) + (w2 E (£ <3) = 0); E(y :=y X 2, (w2, ws3))

= (s & < 3) Bz i= o+ 1, (wa,ws) + (ws =7 < 3) — (w b= 0)); Bly 1=y x 2, (ws, ws))

Il
— = =

which can be, once again, instantiated for the three action lattices under con-
sideration, yielding

2: (TAT)V((T — L)AT)=T. This interpretation coincides, as expected,
with the standard if-then-else statement. In this case, only program x :=
x + 1 is executed, since y = y x 2 is guarded by the test ((x < 3) — 1)?
which has the value L at state ws.

G: mar{min{0.3,0.7}, min{0.3 — 0,0.9}} = 0.3, which expresses the
weighted choice of executing z := = + 1.

R: min{3+ 7,0+ 9} = 9. In this situation, contrary to what happens in the
previous cases, the assignment y := y x 2 is executed. The value 9 stands for
the energy consumed by the machine when executing such an assignment.

4 Bisimulation

The characterisation of relations that identify states with equivalent behaviours
is crucial to support a set of development practices, including reuse, refinement
and minimization of programs and models. On the logic view, these relations
usually enjoy a modal invariance property, i.e. they preserve the satisfaction of
formulas. We introduce in this section a parametric notion of bisimulation, and
we prove its modal invariant for any I'(A). The bisimulation generalises the
notion recently introduced by the authors in [5] in the context of fuzzy modal
logic.

Definition 10 (II-Bisimulation). Let A = (X, II) be a signature, X a set of
variables, and M = (W, E) and M’ = (W', E’) two I'(A)-models, for any linear
action lattice A.

A II-bisimulation from M to M’ is a non empty relation B C W x W' such
that whenever w B w', the following conditions hold:

(Atoms) for any x € X, r € R, [2]w(r) = [2]w (r)
and, for any p € TE(X), [plw = [Pl

(Fzig) for anyu e W and w € II, [r]o(w,u) < [7]o(w’, u’)
u'e Bl{u}]
(Fzag) for any v’ € W' and w € II, [r]o(w’,u') < [7]o(w,u)
ueB~1[{u'}]

We write w ~ w' whenever, there is a bisimulation B such that (w,w') € B.

On the Generation of Equational Dynamic Logics 165

Next result establishes the well-known word bisimulation result on this generic
graded settings. This result reduces the invariance property of formulas involving
composed programs in Prg(X, X) to the one involving just the set of atomic pro-
grams I1. In other words, it reduces the modal invariance problem of a generated
dynamic logic to the modal invariance of the underlying multi-valued logic.

Proposition 1. Let A be a linear action lattice and (X, X) a data signature.
Then, any II-bisimulation over I'(A)-models is a Prg(X, X)-bisimulation.

Proof. The proof is done by induction over the programs structure. Let B C
W x W' be a bisimulation and w € W, w’ € W' such that (w,w’) € B.

The result for atomic programs is given by hypothesis. Let us prove the
(Fzig) condition for programs m;7’. By induction hypothesis, let us assume
that (Fzig) of B for m and n’. Hence, for any v € W

[7](w,v) Z [7](w',v") (23)
v'€B(v)

holds. By (20) we have also that, for any v € W there is a v € B(v) such
that 37, c gy [7](w',0") = [r](w’, v;,). Moreover, since (v,v;,) € B, we have by
(Fzig) of B for 7’ that

A [CRDES N cl [T (24)

u’€B(u)

By (21) in (23) we get, for any v € W,

[7](w, v); [[W/]](vvu) < ﬂ?T]]('w/,U;); Z [[Wl]](v;vul) (25)

u’€B(u)
and by (22),
Y Indw, o) [l) < Y [nd(w',ol); D [I(en,w’) (26)
veW v, €W’ u'€B(u)

Moreover, since {v, : v € W} C {v' : v/ € W'}, and by (8), (2) and (3), we have
that

Y I v) Y I < D (Y ([) [W)

vl €W’ u'€B(u) u’eB(u) v’ eW’
(27)

By (26) and (27), we achieve [m;7'](w,u) < 32, ¢ p()[m: 7] (w0, w'). The prove
of (Fzag) condition is analogous.
For programs m + 7/, we observe that
[+ '] (w, u)
= { interpretation of programs}| >_,/cpeu) 7] (w',u") + Zu'eB(u)[[W/]] (w',u")
[7](w, w) + [7'](w, u) = { definition of +}
< { (Fzig) and (22)} Swenlm + 7w, u')

166 L. Gomes et al.

Finally, for programs n* we observe that by definition of *

[7*)(w, u) = Z[["T]]k(w»u) = Hﬂﬂo(wa u) + [7](w, u) + [[Wﬂz(wvu) T

k>0

But for each k, [r]*(w,u) < 2 ueBw) [7]*(w',u’) by Fzig.
Hence,

Zkzo[[ﬂ]k(wau)

< { 22)} Zu’GB(u) (Zkzol[w]]k(w/7 ’U,/))

< (
Zk-zo (Zu’EB(u) [[W]]k(w/,ul)) = { definition of *}
= {¢ Zu,eB(u)[[w*]](w',u’)
2)and(3)

O
Now we are in conditions to prove the modal invariance for I'(A) with A linear.

Theorem 1 (Modal invariance). Let A = (X, X) be a signature, A a linear
action lattice, and M = (W, E) and M' = (W', E’) two I'(A)-models for A.
Then, for any w € W, w' € W’ such that w ~ w' and for all formulas ¢ €
Fm!' &) (A),

(M,w) = (M/’w/ E»)

Proof. We prove this result by induction on the structure of formulas.

For the invariance of the formula T, note that (M, w ET)=T = (M, v’ = T)
and similarly for the formula L.

Invariance of p € TE(X) is a direct consequence of (Atoms),

(M, w |=p) = [plw = [plw = (M, 0" |= p).

For the invariance of formulas ¢ A 1, we observe that
(M,w E@AY) = (MwE) (Mwy) ="

(Mlvw/): (P) : (M,’w/ |: w) = (M/’w/): 90/\'(/})
and the proof for the invariance of formulas ¢ V ¥ and ¢ — % can be proved
similarly.

Now it just remains to prove sentences (m)p and [r]p. Since A is linear, we
have by Proposition 1 that, it is enough to prove the invariance for formulas
involving atomic programs my € Prgy(X, X). For the invariance of formulas
(o), we observe that By (Fzig) condition we have

Yu € W, [mo]o(w,u) < Z [mo]o(w’,u") = [mo]o(w’, ul,) for some ul, € W’
u' € E[{u}]
(28)

On the Generation of Equational Dynamic Logics 167

Since for every u € W, u!, € E[{u}], we have v E u/,. By I. H., we have (M, u |=
¢) = (M', u, |= ¢) and, by (28),

Vu € W, [molo(w,u) - (M, u = @) < [molo(w’,uy,) - (M, uy, =) (29)

and, in particular,

Y (Imolo(w,w) - (M @) < Y (Imolo(w'1,) - (M,w,, | 9)) (30)
ueW wy ueW
Since {u!, :u € W} C{uv : v € W'} we have > {u, :u e W} <> {u :u €
W’} and by 30

> ([molo(w,u) - (Myu = @) < D ([rolo(w,w') - (Mo’ = 9)) (31)
ueW u EW
e M,w = (m)p) < (M',w' = (m)p). Similarly we can prove (M,w =
(mo)p) > (M',w' = (mo)p) by using (Fzag) condition.
For the invariance of formulas [mo]p, with mg € II, since w E w’ we have by
(Fzig)

Yu € W, [mo]o(w,u) < Z [7o]o(w',u") = [mo]o(w', ul,) for some u., € W’

u'€ E[{u}]
(32)
Since for every u € W,u!, € E[{u}], we have u € W, u E u.,. Hence, by L.H.
(M,ul= @) = (M, u, = ¢) (33)

It follows from the definition of I that zo < x; implies I(xg,y) > I(x1,y). Then,
from (32) and (33) we have

Yu € WI([[TF()]]Q(U),U), (Mvu }: 90)) 2 I([[WO]]O(U)/?u;)? (M/7u; }: 90))

and, in particular

H (I([[WO]]O(w»u)v(Mvu ':90 H [[WO wvu;)v(M,vu; ’:SD)))

ueW weWw
(34)
Since {u!, :u € W} C{u : v € W'}, we have [[{u,, :ue W} >[[{v : v €

W'} and hence

T d(molo(w. w). (M u = 9))) = T (([molo(w’,u'), (M', 4’ = 2))) (35)

uceWw u' eWw’

Therefore (M, w = [mo]p) > (M',w" = [mo]e). The proof for (M, w [= [m]p) <
(M',w" & [m]p) is analogous. O

We now provide an illustration for the introduced notion of bisimulation.

168 L. Gomes et al.

Ezample 5. Consider the I'(G)-models M = (W,V,E), with W = {w,ws,
ws,wa} and M’ = (W', V' E’), with W' = {w},w),w},w,}, and the pro-
grams I1 = {z := z + 1,2 := 3}, with E(z := z + 1, (w1,wz2)) = 0.9, E(z :=
3, (wy,w3)) = 0.8, E(x := 3,(w1,wyq)) = 0.7, E(x := = + 1, (w],w}))) = 0.9,
E(z := 3, (w},w})) = 0.8, E(x :=z + 1, (w},w))) = 0.6.

To show that the relation B = {(wy,w)), (wa,w}), (wa,w}), (ws,ws),
(wy, wh)} is a bisimulation from M to M’, the (Fzig) and (Fzag) conditions of
Definition 10 need to be satisfied. To exemplify, only the calculations for the case
wy ~ w} are provided, since the other pairs can be verified analogously (Fig.2).

(Fzig):

[z := 2+ 1]o(w1,w2) < maz{[z := x + 1]o(w},w)), [z := z + 1]o(w},w))}
0.9 < maz{0.9,0.6} < 0.9 < 0.9

[# := 3Jo(w1,ws) < & := 3o(w), ws) < 0.8 < 0.8

[z = 3]o(w1,ws) < [z := 3]o(w}, ws) & 0.7 < 0.8

Fig. 2. Two bisimilar I'(G) — models

[x =2+ 1]o(w}, wh) < [z := 2 + 1]o(wy,ws) = 0.9

[z =2+ 1]o(w],w}) < [z := 2 + 1]o(w1, ws) = 0.9

[z := 3]o(w}, wh) < max{[z := 3]o (w1, ws), [z := 3]o(wi,ws)
<0.8 < maxz{0.8,0.7} < 0.8 < 0.8

5 Conclusions and Future Work

This paper extended the process of systematic generation of multi-valued
dynamic logics from the original propositional case [9], to ‘fully-fledged’ pro-
grams, which incorporate variables and assignments. As before, the method is
parametric on an action lattice which supports both a computational model
in which programs are defined, and a truth space, suitable to handle different

On the Generation of Equational Dynamic Logics 169

aspects of the application domain. Both states, specified by assignments of real
values to variables, and transitions between them have an associated ‘weight’,
i.e. a value taken from the carrier of a action lattice. As detailed in the examples
discussed, the notion of ‘weight’ as formalised in an action lattice, is the real
parameter of this process. Actually, they can capture quite a range of effects:
from the degree of vagueness of an execution, to the cost of resources. The notion
of bisimulation presented in Sect. 4 generalises previous work done by the authors
[5], in the sense that a generic action lattice is considered as a parameter of the
generated logics. A prominent application of dynamic logic lies in the field of
formal verification of programs, as a simplification of the deductive apparatus of
Hoare logic. In such formalism, the correctness of a program is proved by stating
the validity of an Hoare triple ¢{m}1. As it is well known, the validity of the
dynamic logic formula w | ¢ — [x]), is an abstraction of such proof. In this
sense, the multi-valued nature of the logics generated in this paper may present a
proper formalism to state program correctness in a multi-valued setting as well:
the “degree of correctness” of a program may be computed as the value, in the
parameter A, of the above dynamic logic formula. Motivated by this example, it
is our intention to include a calculi for such logics as part of our research agenda.

References

1. Baltag, A., Smets, S.: The dynamic turn in quantum logic. Synthese 186(3), 753—
773 (2012). https://doi.org/10.1007/511229-011-9915-7

2. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs.
J. Comput. Syst. Sci. 18(2), 194-211 (1979). https://doi.org/10.1016/0022-
0000(79)90046-1

3. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)

4. Hennicker, R., Madeira, A., Knapp, A.: A hybrid dynamic logic for event/data-
based systems. In: Hahnle, R., van der Aalst, W. (eds.) FASE 2019. LNCS,
vol. 11424, pp. 79-97. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
16722-6_5

5. Jain, M., Madeira, A., Martins, M.A.: A fuzzy modal logic for fuzzy transition
systems. Electr. Notes Theor. Comput. Sci. (in print)

6. Knapp, A., Mossakowski, T., Roggenbach, M., Glauer, M.: An institution for simple
UML state machines. In: Egyed, A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033,
pp. 3-18. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46675-
9.1

7. Kozen, D.: A probabilistic PDL. J. Comput. Syst. Sci. 30(2), 162-178 (1985).
https://doi.org/10.1016/0022-0000(85)90012-1

8. Kozen, D.: The Design and Analysis of Algorithms. Springer, New York (1992).
https://doi.org/10.1007/978-1-4612-4400-4

9. Madeira, A., Neves, R., Martins, M.A.: An exercise on the generation of many-
valued dynamic logics. J. Log. Algebr. Methods Program. 1, 1-29 (2016). https://
doi.org/10.1016/j.jlamp.2016.03.004

10. Peleg, D.: Concurrent dynamic logic. J. ACM 34(2), 450-479 (1987). https://doi.
org/10.1145/23005.23008

11. Platzer, A.: Logical Analysis of Hybrid Systems - Proving Theorems for Complex
Dynamics. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14509-4

https://doi.org/10.1007/s11229-011-9915-7
https://doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/10.1007/978-3-030-16722-6_5
https://doi.org/10.1007/978-3-030-16722-6_5
https://doi.org/10.1007/978-3-662-46675-9_1
https://doi.org/10.1007/978-3-662-46675-9_1
https://doi.org/10.1016/0022-0000(85)90012-1
https://doi.org/10.1007/978-1-4612-4400-4
https://doi.org/10.1016/j.jlamp.2016.03.004
https://doi.org/10.1016/j.jlamp.2016.03.004
https://doi.org/10.1145/23005.23008
https://doi.org/10.1145/23005.23008
https://doi.org/10.1007/978-3-642-14509-4

l‘)

Check for
updates

A Security Calculus for Wireless
Networks of Named Data Networking

Yuan Fei'®) | Huibiao Zhu?®™) | Haiying Sun?, and Jiaqi Yin?

L College of Information, Mechanical and Electrical Engineering,
Shanghai Normal University, Shanghai, China
yuanfei@shnu.edu.cn
2 Shanghai Key Laboratory of Trustworthy Computing,
East China Normal University, Shanghai, China
hbzhu@sei.ecnu.edu.cn

Abstract. Named Data Networking (NDN) is an architecture of
Information-Centric Networking (ICN). The application of NDN on wire-
less networks is an important area. In this paper, we propose a Security
Calculus for Wireless Networks of Named Data Networking (SCWN).
Security feature is implemented by using different channel symbols to
describe wireless network node. The feature of NDN is introduced by
using particular sets to express the environment. We introduce the syn-
tax and the operational semantics of SCWN calculus. By a rewriting
logic-based language Maude, we support the automatic implementation
of our SCWN calculus, which enhances its practicability. Finally, we
apply SCWN calculus to LFBL protocol with its automatic implemen-
tation. It indicates that SCWN calculus is useful to describe realistic
cases.

Keywords: NDN - Calculus of wireless networks - Maude

1 Introduction

Named Data Networking (NDN) [13] is an architecture of Information-Centric
Networking (ICN). ICN aims to offer solutions to problems existing in TCP /TP
Internet. Nowadays users pay more attention to named content rather than its
location. Though TCP/IP Internet has shown great resilience over the years, it
cannot support the newly evolving content distribution model successfully. One
of the promising candidates of ICN is NDN, which supports multicast of data and
adopts the publish/subscribe model. The data producers mean publishers and
the data consumers represent subscribers in NDN. When data consumer needs
data, it sends out an Interest packet with a required name of the data; according
to the name, routers forward the packet over the network; and a Data packet is
returned to the consumer when a data produced by the data producer is matched.
As wireless network has a wide range of applications in daily life, there are
several applications of NDN concept applied to wireless network. Meisel et al. [§]

© Springer Nature Switzerland AG 2019
Y. Ait-Ameur and S. Qin (Eds.): ICFEM 2019, LNCS 11852, pp. 170-185, 2019.
https://doi.org/10.1007/978-3-030-32409-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32409-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-32409-4_11

A Security Calculus for Wireless Networks of Named Data Networking 171

adapted NDN to Ad Hoc Network to improve the efficiency and effectiveness of
it. Li et al. [7] introduced hybrid wireless networks with FIB-based Named Data
Networking, in which a novel FIB named MaFIB is proposed. In order to carry
the signaling part of NDN, Bazzi et al. [2] proposed the use of cellular networks
and wireless communications of the content distribution.

To the best of our knowledge, no process calculus is proposed for NDN in
the field of wireless network applications currently. However, there are already a
lot of process calculus for general wireless networks. The calculus CBS# [11] is
proposed by Hanz and Hankin, which is extended from CBS [12]. It introduces
local storage components, and adds the source of the information to describe
some key security attributes. The calculus CMN [10] presented a bisimulation
to prove some properties of the network. The calculus CMAN [4] is a broadcast
calculus proposed by Godskesen that supports wireless network dynamic change
topologies. It captures the mobility and the local broadcast mechanism of nodes.

The application of NDN on wireless networks becomes important. In this
paper, we propose a calculus called SCWN (Security Calculus for Wireless Net-
works of Named Data Networking). Wireless network is described at both process
level and network level. Our calculus will implement a special forwarding mech-
anism and a data caching mechanism for NDN. It is supported by particular sets
to express the environment. The security feature is introduced by using different
channel symbols to describe wireless network node. Furthermore, we give the
predefined label transfer semantic of SCWN. It has detailed the internal behav-
ior of the system and the interaction between the system and the environment.
Using a rewriting logic-based language Maude [3], we support automatic imple-
mentation of our SCWN calculus, which is also applied to LFBL protocol. It
illustrates SCWN calculus can be applied into real-world scenes.

The remainder of this paper is organized as follows. Section?2 introduces
the SCWN syntax and its operational semantics. Section 3 gives the automatic
implementation of SCWN calculus by a rewriting logic-based language Maude.
Section 4 applies SCWN calculus to LFBL protocol. Section5 concludes the
paper and discusses the future work.

2 The SCWN Calculus

In this section, we present our SCWN calculus by introducing its syntax and the
operational semantics.

2.1 The Syntax of SCWN

The syntax of process is used to characterize the actions of wireless nodes. Here
we describe the detail cases of process P.

— nil means the process terminates.
— send(k,v).P is a ready sending process, indicating that the current process is
ready to broadcast a message. The message is denoted by a pair (k, v), where k

172 Y. Fei et al.

Table 1. SCWN syntax

Processes P ::=nil (termination)
! send(k,v).P (pre-output)
| (k,v).P (output)
‘ receive(k, v)".P (input)
| lreceive(z, y)™.send(w, y)].P (forward)

Networks N ::= n[P] (ordinary wireless node)
| n[P]Y° (protected wireless node)
| N|IN (parallel combination)

represents the type of message and v represents the content of message. When
the ready action is completed, the process becomes the form of (k,v).P. It
gives information to environment for forwarding mechanism.

— (k,v).P is a sending process that indicates the current process is broadcasting
a message. When the sending is completed, the process changes to P. The
environment will be changed according to the forwarding mechanism.

— receive(x,y)™. P is a receiving process. It illustrates that the process of wire-
less node n is receiving a message from other processes. If there is a node
sending acceptable messages around node n, the process evolves to P. The
variable z and y in process P will be replaced with the values in the received
message.

— |receive(x,y)™.send({x,y)|.P is a receiving-forwarding process. It only
appears on the node bearing the forwarding task. If it receives a message
from neighbor nodes, the process decides whether to forward or discard the
message according to its type. If the message is forwarded, the process evolves
to send{x,y).P, in which variable 2 and y are replaced by the values in the
message. If the message is discarded, the process changes to P.

The syntax of network expresses the basic information of each wireless node.
Meanwhile, it illustrates how they communicate with each other. Explanations
of network N are given here.

— n[P]; represents a normal wireless node in a wireless network, where n rep-
resents name of the current node, ¢ means the name of the channel and s is
a node set containing the nodes in the communication range of the current
node. Channels are classified into normal channels and protected channels.

— n[P];° shows a protected wireless node in a wireless network. Except using
symbol v to denote the protected channel, the rest of the symbols are the same
as n[P]z The protected channel can only communicate with other protected
channels, which indicates the security feature.

— N||N indicates that wireless nodes can be combined with each other to form
a wireless network.

A Security Calculus for Wireless Networks of Named Data Networking 173

2.2 Particular Set

In order to formalise the operational semantics, we need to define some particular
sets in advance.

— Normal sending record set: Normal sending record set is to record the rel-
evant information of nodes using normal channels to send a message. It is
represented by Ty. The element in the set is in the form (n, s, ¢), indicating
that node n is sending a message to node set s via the normal channel c.

— Protected sending record set: Protected sending record set is to record the
relevant information of nodes using protected channels to send a message. It
is represented by T;. The element in the set is in the form (n, s, ¢), indicating
that node n is sending a message to node set s via the protected channel c.

— Neighbor normal sending record set: It records the message being sent around
a node using a normal channel.

Ty

ne=daf { (n',s',) | (n,s,)yeTpAnes Nd =c}

The element in set T¥|,. is the message being sent around node n using
normal channel c¢. That is, once a node around node n uses normal channel ¢
to send a message, the message will be added into set Ts|, -

— Neighbor protected sending record set: It records the message being sent
around a node using a protected channel.

Ty

ne=ar { (',s",)| (0, s,)YeT,Anes' N =c}

The element in set Ti|,. is the message being sent around node n using
protected channel c. In other words, when a node around node n sends a
message by protected channel ¢, the message will be put into set Tj |, .

— Message record set: It supports PIT (Pending Interest Table) and CS (Content
Store) in NDN, denoted by C. The element in the set is in the form (n, I, v)
or (n, D,v), which represents node n has received Interest package or Data
package carrying value wv.

2.3 Operational Semantics

In this subsection, we introduce the operational semantics of our SCWN calculus
at process level and network level respectively.

Process Level of Label Transition Semantics. The transition rule of a
process is P < P’, in which the definition of « is given as below.

a:=!|lkv | ko

! represents a ready sending event. !k.v means a sending event. ?k.v indicates
a receiving event.

It should be noted here that once the process sends, receives and forwards
message C, the corresponding (n, I,v) or (n, D,v) is added to the message record

174 Y. Fei et al.

set according to the specific situation. In addition, once (n, D,v) is added into C,
the corresponding (n, I, v) will be deleted. It simulates the forwarding mechanism
of NDN.

Table 2 represents the label transition semantics at process level, where I P
stands for the set of processes whose form are as |receive(z,y)".send(z,y)|.P
and receive(z,y)".P.

Rule (PS-RECI1, PS-RECI2 and PS-RECI3) are for the processes running
on forwarding nodes when they receives an Interest packet. For example, the
rule (PS-RECIL) represents the situation that a receiving-forwarding process
receives an Interest packet received before, then the message is discarded.

Rule (PS-RECD1 and PS-RECD2) describe the situation that the processes
run on forwarding nodes when they receive a Data packet. For example, the rule
(PS-RECD1) denotes that a receiving-forwarding process receives a Data packet
received before, then the message is discarded.

Table 2. Process level of label transition semantics

(PS-PSEND) send(k,v).P — (k,v).P (PS-SEND) (k,v).P £ p
(n,k,v) ¢ C
(PS-REC) receive(z,y)" . P ey P{k/z,v/y}
(n,I,v) € C
(PS-RECI1)

|receive(x, y)" .send(z,y)|.P RTINS
(n,I,v) ¢ CA(n,D,v) ¢ C

PS-RECI2 .
() |receive(x, y)" .send(z,y)|.P v, send(I,v).P
(n,I,v) ¢ CA(n,D,v) €C
(PS-RECIS) |receive(x, y)" .send(x,y)|.P o, send(D,v).P
(n,1,0) ¢ C
(PS-RECD1) receive(z,y)".send{x, P2, p
Yy Yy
(n,I,v) € CA(n,D,v) ¢C
PS-RECD2
() lreceive(z, y)".send(x,y)|.P IDw, send(D,v).P
a € {?kwv} P¢IP
(PS-NOIN)

PSP

Network Level of Label Transition Semantics. The transition rule of net-
work level is T3, T, C'> N £, N’. Tt gives normal sending record set T}, protected
sending record set 1y and message record set C. T3, T, C indicate the environ-
ment of network IV is running in to support the transition. Network N changes
to network N/ when event p happens. The event p is defined as below.

wi=c()kv | c@)?kv | T

where, 6 can be true or false. When normal channel ¢ in network N is used, then
0 is false. When protected channel ¢ in network N is used, then 0 is true. ¢(6)!k.v
is a broadcast sending event. It means a node in network NN is using channel ¢
to broadcast a message with type p and value v. ¢(0)7k.v is a receiving event.

A Security Calculus for Wireless Networks of Named Data Networking 175

It describes nodes in network N are using channel ¢ to receive a message with
type k and value v. In addition, 7 means an internal event.

Table 3 lists the label transition semantics at the network level. For example,
the rule (NS-SEND1) describes a wireless network node with name n and node
set s, uses normal channel ¢ to send a message with type p and value v, and the
process inside changes from P to P’. The rules (NS-COMI1 and NS-COM?2) are
applied to the parallel composition between networks. They describe message
communications between nodes. Meanwhile, they characterize how a broadcast
sending event generated from one network affects a broadcast receiving event in
another network in parallel.

Table 3. Network level of label transition semantics

1
kv

c(false)k.v
= e

P
(NS-SEND1)

Ty, Tf,C > TL[P](‘

s

n[P']%

k.1
P 'k.v P’

(NS-SEND2) crue)k o

Ty, Ty, C > n[P]°

Tk.v

P—% P 3m € Tfln,c, n € ma2(m)

n[P)2

(NS-REC1) —
Ty, Ty, C 1 n[P)e ST, o prye

7k.v
_—

P P’ HmETflnyc, n € ma(m)

(NS-REC2)

c(true)7k.v
R

T:, Ty, C > n[P]5°

c#c
NS-REC3 /(false)?k.v
(oy, o ey A
c#c
NS-REC4 ¢/ (true)?k.v
() Ty, C b nlp]re Sl
vYm € T¢|n,c, n ¢ m2(m)
NS-REC5 se)7k.
() T Ty, C o Py ST
vm € Ti|n,c, n & m2(m)
NS-REC6 —
() TtaT_LCDn[P]ZC%
c(0)7k.v
—_

n[P]Le

n[Plg

n[P]Y¢

s

n[P]¢

n[P]L°
c(0)1k.v
RaS2ALTIN

T:,Ty,C1 > Ny N; T, Tf,C2> N2 N
(NS-COM1) c(O) kv N
T, Ty, C1 U C2 > Ni||[N2 ——— N{||N,
Ty, Ty, Cr > Ny S5 NG T, Ty 0> Ny SO, Ny
(NS-COM2) cOkv
T¢, Ty, C1 U Cy > N1|[Np ——— N[N,
Ty, Ty, Cr > Ny SO NE Ty Ty 0o > Ny 2O, Ny
(NS-COM3) c(0)7k.v f ,
T:, Ty, C1 U Ca > Ni||[No ——— Ny|N,
T:, Ty, C1 > N1 — Ny c(0)?k.v
(NS-COM4) (NS-NULL) T, Ty, C >0 =22, 0

Tt,Tf,Cl ucCs > N1HN2 N N{HNQ

PSP Pl P
_ —_ (NS-PSEND2) _ _—
Ty, Ty, C > n[P]; — n[P'] T:, Ty, C > n[P]Y¢ = n[P']}¢

(NS-PSEND1)

176 Y. Fei et al.

Example 1. Consider a network with four nodes. Node n; is the source node
to send Interest package. Node ny and node n3 are forwarders. Node ny is the
target node to receive Interest package. The network topology is given in Fig. 1.
We assume that node n; has node ny and node ng in its transmission range, and
node no has node ny4 in its transmission range. Meanwhile, node n3 and node
n4 have no node in their transmission ranges. Mathematically, s; = {nz2,n3},
so = {n4}, s3 = 0 and s4 = 0. In the following two cases of forwarding Interest
package, the network topology of nodes are the same but with the different
channel types.

- ~, - ~
e //\\ ~o
7 7 \ AN
/ il \ \
/ , \ N
'I //n \‘ \
3
\ ;e | P R
e ~
\ / / s \ N
[/ / AN
\ , [\
AN JSne [\
e’ / | \
\ I / \
\ (n.z/ !
\ 7 |
\ \ // |
\
N \\ // //
\\\ AN TR /
4
S~ _ - ~ (e ,
\:\/ ///

Fig. 1. Network topology

(a) Four nodes are using the protected channel c:

ve
82

N =45 ni[send(I,v).0]5¢ || na[[receive(xy,y1)"*.send(x1,y1)].0]

|| na[|receive(xa, yo)™ .send(wa, y2) | .0]%5 || nareceive(xs,ys)™* . PlLS

The migration path is described as below.
Step 1:

0,0,0> N 5 ni[(1,0).0]5° || no[receive(x1,y1)" .send(z1, y1).0]5

S2

|| na[|receive(zz, yo)™* .send(wa, y2)].0]%s
|| na[receive(xs,ys)™* . Pl4S def Ny

Step 2:

{(n1,{na, na}k,)}, 0,0 & Ny S 1 [0)57 || mafsend(1,v) 012
|| ns[send(I,v).0l5; || na[receive(xzs,ys)™ . Pls; “f N,

A Security Calculus for Wireless Networks of Named Data Networking 177

Step 3:
0,0, {(n1,1,v), (n2,I,v), (n3, I,0)} > N2 =5 na (0] || n2[(1,0).0]%; || nal(1,v).05,

|| na[receive(xs, ys)™* . P|%s af N,

Step 4:

c(true)l.v
—

{(ns,0,0)},0,{(n1,1,v), (n2,I,v), (n3, I,v)} > N3 n1 0571 n2[{I, v).0]%]

[l n3l0]7; || nalreceive(zs,ys)™*.Ply; el Ny

Step 5:

c(true)!l.v
—_—

{(77’2: {n4}7c)}7®’{(nl’I)v)»(n%I"U)) (77‘3’[7 1))} > Ny nl[o]:f || nZ[O]:QC H 77’3[0](5:3

| na[P{I/xs,v/ys}e]

(b) Node n3 uses the normal channel ¢ and other three nodes use the protected
channel c:

ve
52

M =4 na[send(I,v).0]57 || na[|receive(wy,y1)"?.send(x1,y1)].0]

|| na[|receive(xs, y2)™* .send(xa, y2) | 0], || nalreceive(ws, y3)™*. PlyS

The migration path is depicted as below.
Step 1:
0,0,0 > M 5 ny[(1,0).0]5 || nafreceive(zy, y1)™.send(x1,y1).0]5¢

S2
c

|| na[|receive(xz, y2)™* .send(xa, y2)].0]5,

|| na[receive(xs,yz)"*.Pl5S “f
Step 2:

c(true)!ll.v
—_

{(n1,{n2,n3},¢)},0,0 > M, n1[0]57 || naf[send(I,v).0];

52

|| na[|receive(zs, y2)™*.send(xa, y2)].0],

|| na[receive(xs,yz)"* . PlyS “l
Step 3:

0,0,{(n1,I,v), (ng, I,v)} > My =5 n1[015¢ || n2[(I,v).0]%¢

52

|| na[|receive(zs, y2)™*.send(xa, y2)].0],
|| nalreceive(xs,yz)"*. PS¢ def M,

Step 4:

{(n2, {na},)}, 0, {(n1, 1,v), (n2, I,0)} > Mz S0 0 10]2¢ || ngf0]S
|| ng[|receive(xa, y2)™3 .send(z2, y2)] 40]§3

| na[P{I/xs, v/ys}]2;

178 Y. Fei et al.

After applying our operational semantics, we can see that node n; success-
fully transmits message to node n4 in both case (a) and case (b). The only
difference is that in case (a) the message is transmitted to both node ny and
node ns. However, in case (b), the message is only transmitted to node ny not
to node n3. The reason is that node ny can not communicate with other nodes,
for they own different channel types.

3 Automatic Implementation of SCWN

In this section, we give the automatic implementation of SCWN using a rewriting
logic-based language Maude. We list several operations and objects to support
the preparation of formalization of SCWN. Meanwhile, we also introduce the
definition of variables, the declaration of the set of messages and the feature of
multimessages. Then, the syntax and the semantics rules of SCWN calculus in
Sect. 2 are formalized.

3.1 Preparation of Formalization of SCWN

In order to give the automatic implementation of SCWN, we need some prepa-
ration definitions. Using the object-oriented module in Maude, our definition of
wireless node can be supported. With the predefined module QID, 0id stands
for object identifier. Message, Type, Value, Process and Variable represent
message, type, value, process and variable respectively. 0idSet and MSet mean
the set of 0id and the set of Message respectively. SChannel and NChannel are
subsorts for Channel. SChannel is the protected channel. NChannel represents
the normal channel. Type and Value are subsorts for Variable. We put Type
and Value together to be recognized as Message.

1 protecting QID .

2 subsort Qid < 0id .

3 sorts 0idSet Message MSet Type Value Process Variable Channel SChannel
NChannel .

subsort 0id < 0idSet .

subsort Message < MSet .

subsorts SChannel NChannel < Channel .

subsorts Type Value < Variable .

op __ : Type Value -> Message .

I

©o N o a

The definition of messages is also important to depict our SCWN calculus
by Maude. It is declared as below.
1 msg Msg.value_type_channel_from_to_ :
2 Value Type Channel 0id 0id -> Msg .
where (msg v type t channel c from A to B) indicates a message with
value v type t using channel ¢ sent from A to B.

We first give the variable declarations.

vars A B : 0id . vars N N’ : 0idSet .
vars M1 M2 : Message . var MS : MSet .
vars P P’ : Process . vars V1 V2 : Variable .

var CH : Channel . var SC : SChannel .
var NC : NChannel . var T : Type . var VA : Value .

SISV S

A Security Calculus for Wireless Networks of Named Data Networking 179

In order to simulate the broadcasting mechanism of SCWN, we introduce the
feature of “multimessages”. A message

1 (Multimsg.value v type t channel ¢ from A to N)
can be defined as denoting the construct below, in which set N represents the
union of set B1, B2, ..., Bn.

(Msg.value v type t channel c¢ from A to B1)
(Msg.value v type t channel c¢ from A to B2)

ISR

(Msg.value v type t channel c¢ from A to Bn)

The feature of “multimessages” can be formalized in Maude concisely.

eq Multimsg.value VA type T channel CH from A to (B N) =
(Msg.value VA type T channel CH from A to B)
(Multimsg.value VA type T channel CH from A to (N - B))

eq Multimsg.value VA type T channel CH from A to nil = none

AW N e

In order to deal with the relationship between object and object set, we
introduce the definition of the object set as well as the set operations.

1 op nil : -> 0idSet

2 op __ : 0idSet 0idSet -> 0idSet [assoc comm id: nill]
3 op in : 0id 0idSet -> Bool

4 op _-_ : 0idSet 0id -> 0idSet

5 eq A A=A

6 eq in(A, B N) = A == B or in(A,N)

7 eq in(A,nil) = false .

8 eq (AN) - A=0N- 4.

9 ceq N - A =N if not in(A,N)

To handle the storage mechanism of node, we also define the message set and
its set operations. As it is almost the same with object set, the detail is omitted.

3.2 Formalization of the Syntax

In order to describe the processes and networks in Table 1, the following opera-
tors are declared. They are inspired by the syntax of SCWN. We first give the
operators for the process parts.

1 op send(_,_) : Type Value -> Process

2 op <_,_> : Type Value -> Process

3 op receive(_,_) : Variable Variable -> Process

4 op [receive(_,_)#send(_,_)] : Variable Variable Variable Variable ->
Process

5 op _{_/_,_/_} : Process Type Variable Value Variable -> Process

The operator send(_,_) is defined to describe the pre-output action. The
operator <_, > describes the output action. The operator receive(_,_) describes
the input action. The operator [receive(_,_)#send(_,_)] illustrates the for-
ward action. In addition, the operator _{_/_,_/_} depicts the renaming of the
process.

The class Node is declared to describe wireless network node.

1 class Node | snbs : 0idSet, rnbs : 0idSet, pro : Process,

2 mset : MSet, ch : Channel

where snbs denotes the set of nodes that can receive message sent by the node,
rnbs is the set of nodes that the node can receive message from, pro represents
the process running on the node, mset is the set of message including type and
value, ch means the channel of the node.

180 Y. Fei et al.

3.3 Formalization of the Semantics Rules

We formalize the operational semantics in Table3 by rewrite rules in Maude.
Due to space limitations, we only take several typical rewrite rules of the pro-
tected node as examples. The rewrite rule RECI1-S, RECI2-S and RECI3-S specify
the protected node with the forward action to be done when receiving Interest
packet.

1 crl [RECI1-S]

2 (Msg.value VA type T channel SC from A to B)

3 < B : Node | smbs : N, rnbs : A N’, pro : [receive(V1l, V2)#send(V1l, V2)]
P, ms : MS, ch : SC >

4 => < B : Node | snbs : N, rnbs : A N’, pro : P, ms : MS, ch : SC >

5 if in((T VA),MS) == true /\ T == Interest

The rewrite rule RECI1-S is for the case that the protected node receives
Interest packet which belongs to the set of messages. The packet will be dis-
carded.

1 crl [RECI2-S]

2 (Msg.value VA type T channel SC from A to B)

3 < B : Node | smbs : N, rnbs : A N’, pro : [receive(V1l, V2)#send(V1l, V2)]

P, ms : MS, ch : SC >
4 => < B : Node | smbs : N, rnbs : A N’, pro : send(T, VA) . P, ms : MS, ch
SC >

if in((Interest VA),MS) == false /\ in((Data VA),MS) == false /\ T ==

Interest

o

1 crl [RECI3-S]

2 (Msg.value VA type T channel SC from A to B)

3 < B : Node | smbs : N, rnbs : A N’, pro : [receive(V1l, V2)#send(V1l, V2)]
P, ms : MS, ch : SC >

4 => < B : Node | snbs : N, rnbs : A N’, pro : send(Data, VA) . P, ms : MS,
ch : SC >

5 if in((Interest VA),MS) == false /\ in((Data VA),MS) == true /\ T ==
Interest

The rewrite rule RECI2-S and RECI3-S are for the situation that the protected
node receives Interest packet which has not been received before. For the rewrite
rule RECI2-S, if the corresponding Data packet is missing, the node performs
the output action with Interest packet. For the rewrite rule RECI3-S, if its
corresponding Data packet has been received, the node performs the output
action with Data packet.

The rewrite rule RECD1-S and RECD2-S mean the protected node with the
forward action when receiving Data packet.

1 crl [RECD1-S]

2 (Msg.value VA type T channel SC from A to B)

3 < B : Node | smbs : N, rnbs : A N’, pro : [receive(V1, V2)#send(V1, V2)]
P, ms : MS, ch : SC >

B : Node | snbs : N, rnbs : A N’ pro : P, ms : MS, ch : SC >

4 = 5
i = Data /\ in((Interest VA),MS) == false

> <
5 if T

1 crl [RECD2-S]

2 (Msg.value VA type T channel SC from A to B)

3 < B : Node | snbs : N, rnbs : A N’, pro : [receive(V1l, V2)#send(V1, V2)]
P, ms : MS, ch : SC >

4 => < B : Node | snbs : N, rnbs : A N’, pro : send(Data, VA) . P, ms : MS -
(Interest VA), ch : SC >

5 if in((T VA),MS) == false /\ T == Data /\ in((Interest VA),MS) == true

A Security Calculus for Wireless Networks of Named Data Networking 181

For the rule RECD1-8, if the corresponding Interest packet has not been
received before, the Data packet is discarded. For the rule RECD2-S, if the cor-
responding Interest packet has been received, the node performs the output
action with Data packet and removes the Interest packet.

4 Applying SCWN Calculus to LFBL Protocol

In this section, we apply our SCWN calculus to LFBL protocol, which is a
forwarding protocol for NDN wireless networks. Then the two cases in Example 1
are also implemented in Maude with LFBL protocol. According to the features
of LFBL protocol, we update the Maude implementation of SCWN calculus to
describe the data phase.

4.1 LFBL Protocol

Meisel et al. [9] proposed Listen First, Broadcast Later (LFBL). It is a forwarding
protocol for NDN wireless networks. It uses a data-centric approach and therefore
supports the applications in NDN. In LFBL protocol, each communication at
runtime is divided into two phases: a request phase and a data phase.

The request phase is similar to the route request phase of the traditional on-
demand routing protocols. Assuming that the requester has no prior knowledge,
it will broadcast Interest packet over the network by flooding. Interest package
carries the name of the requested data, and responds to the request if the receiv-
ing node has data with the corresponding name. The data phase begins when
the response arrives at the requester. In the data phase, the responder returns
Data packet corresponding to Interest packet by using special forwarding, so
that the requester will eventually receive the required data.

Here we focus on this special forwarding. Each node will calculate the distance
before forwarding after receiving Data packet from the neighbor node. If it is
closer to the target node than the neighbor node, it is an eligible forwarder and
continues to forward. If the neighbor node is closer to the target node, it is not
an eligible forwarder and discards the packet.

4.2 Application of SCWN Calculus to the Request Phase

First, we apply the SCWN calculus to the request phase of LFBL protocol,
according to the two cases in Example 1. test1 implements case (a) by Maude.
It describes a network with four nodes using protected channels. Node n; is the
source node to send Interest package. Node ns and node ng are forwarders. Node
ny4 is the target node to receive Interest package.

1 eq testl =

2 < nl : Node | snbs : n2 n3, rnbs : nil, pro : send(Interest, va) . p, ms :
nil, ch : sc >
3 < n2 : Node | snbs : n4, rnbs : nl, pro : [receive(vl, v2)#send(vl, v2)] .
p, ms : nil, ch : sc >
4 < n3 : Node | snbs : nil, rnbs : nl, pro : [receive(vl, v2)#send(vl, v2)]
. p, ms : nil, ch : sc >
5 < n4 : Node | smbs : nil, rnbs : n2, pro : receive(vl, v2) . p, ms : nil,

ch : sc >

182 Y. Fei et al.

Figure 2 illustrates the result of running test1 in Maude. First of all, node
n; is sending a message to node ns and node n3. Then node ny and node nj
receive the message. Node ny forwards the message to node n4. Finally, node ny
receives the message. The message is in ms of the four nodes.

aude> (rew testl .)
SCWN
testl
Configuration

Node | ch : sc,ms : Interest va,pro : p,rnbs : nil,snbs : n2 n3 > < n2
ch : sc,ms : Interest va,pro
nl,snbs : n4d > < n3 : Node | ch : sc,ms : Interest va,pro : p,rnbs
nil > < nd : Node | ch :
sc,ms : Interest va,pro :(p{Interest / vl,va / v2}),rnbs : n2,snbs : nil >

Fig. 2. The result of running test1 in Maude

Case (b) is implemented by test2. The only difference between case (a) and
case (b) is node n3 uses the normal channel. This is also described by test2.

1 eq test2 =

2 < nl : Node | snbs : n2 n3, rnbs : nil, pro : send(Interest, va) . p, ms
nil, ch : sc >

3 < n2 : Node | snbs : n4, rmbs : nl, pro : [receive(vl, v2)#send(vl, v2)]
p, ms : nil, ch : sc >

4 < n3 : Node | snbs : nil, rnbs : nl, pro : [receive(vl, v2)#send(vl, v2)]

p, ms : nil, ch : nc >

5 < n4 : Node | snbs : nil, rnbs : n2, pro : receive(vl, v2) . p, ms : nil,

ch : sc >

Figure 3 shows the result of running test2 in Maude. First, node n; is sending
message to node ny and node n3. Only node ns receives the message. The message
is forwarded by node ngy, which is then received by node n4. The message only
appears in ms of the three nodes.

aude> (rew test2 .)
SCWN

test2
Configuration
<nl : Node | ch : sc,ms : Interest va,pro : p,rnbs : nil,snbs : n2 n3 > < n2

ode | ch : sc,ms : Interest va,pro :
p,rnbs : nl,snbs : nd > < n3 : Node | ch : nc,ms : nil,pro :([receive(vl,v2)#s
end(vl,v2)]. p),rnbs : nl,snbs : nil
> <nd : Node | ch : sc,ms : Interest va,pro :(p{Interest / vl,va / v2}),rnbs
n2,snbs : nil >

Fig. 3. The result of running test2 in Maude

Figures2 and 3 show that automatic implementation of SCWN calculus is
done successfully, and the results of the running test1 and test2 are consistent
with the results by manual deduction in Example 1. It embodies that our SCWN
calculus can be applied to realistic cases, which not only implements the special
mechanism of NDN, but also supports the security feature.

A Security Calculus for Wireless Networks of Named Data Networking 183

4.3 Application of SCWN Calculus to the Data Phase

In order to describe the data phase of LFBL protocol, we update the definition
of the node by adding an argument to describe the distance between the current
node to the target node.

1 class NodeN | snbs : 0idSet, rnbs : 0idSet, pro : Process, ms : MSet, ch
Channel, d : Nat

We add new operators for the process parts to support the special forwarding.
Compared with the operators defined previously, the new operators add new
arguments to describe the node and the distance between the node itself and the
target node.

1 op send(_,_,_(_)) : Type Value 0id Nat -> Process

2 op <_,_,_(_)> : Type Value 0id Nat =-> Process

3 op receive(_,_,_(_)) : Variable Variable 0id Nat -> Process

4 op [receive(_,_,_(_))#send(_,_,_(_))] : Variable Variable 0id Nat Type

Value 0id Nat -> Process

We also update the rewrite rules of the new type of node. Because of the
space constraints, we only give severl rules. The rule N-DIS-S indicates that if
the node A is not closer to the target node C compared with its neighbour node
B, the message is not forwarded.

1 crl [N-DIS-S]
2 (Msg.value VA type T channel SC from A(DI1) to B end C(DI2))
3 < B : NodeN | snbs : N, rnbs : A N’, pro : [receive(V1, V2, V3(V4))#send(
Vi, v2, Vv3(V4))] . P, ms : MS, ch : SC, 4 : DI >
4 => < B : NodeN | snbs : N, rnbs : A N’, pro : P, ms : MS, ch : SC , 4 : DI
>
5 if DI1 <= DI

The rule N-RECD1-S is almost the same as the rule RECD1-S. As the related
Interest packet is not in the set of messages, the node discards Data packet.

1 crl [N-RECD1-S]

2 (Msg.value VA type T channel SC from A(DI1) to B end C(DI2))

3 < B : NodeN | snbs : N, rnbs : A N’, pro : [receive(V1, V2, V3(V4))#send(
Vi, V2, v3(v4))] . P, ms : MS, ch : SC, 4 : DI >

4 => < B : NodeN | snbs : N, rnbs : A N’, pro : P, ms : MS, ch : SC, d : DI
>

5 if T == Data /\ in((Interest VA),MS) == false

The rule N-RECD2-S is similar with the rule RECD2-S. The only difference is
that the judgment of the distance is added.

1 crl [N-RECD2-S]

2 (Msg.value VA type T channel SC from A(DI1) to B end C(DI2))

3 < B : NodeN | snbs : N, rnbs : A N’, pro : [receive(V1l, V2, V3(V4))#send(
Vi, V2, v3(v4))] . P, ms : MS, ch : SC, 4 : DI >

4 => < B : NodeN | snbs : N, rnbs : A N’, pro : send(Data, VA, C(DI2)) . P,
ms : MS - (Interest VA), ch : SC, d : DI >

5 if in((T VA),MS) == false /\ T == Data /\ in((Interest VA),MS) == true /\
DI1 > DI

Then we can describe the data phase with the update of SCWN calculus.

1 eq test3 =

2 < nl : NodeN | snbs : n2 n3, rnbs : nil, pro : send(Data, va, n4(0)) . p,
ms : nil, ch : sc, 4 : 20 >

3 < n2 : NodeN | snbs : n4, rnbs : nl, pro : [receive(vl, v2, v3(v4))#send(
vi, v2, v3(v4))] . p, ms : Interest va, ch : sc, d : 10 >

184 Y. Fei et al.

4 < n3 : NodeN | snbs : nil, rnbs : nl, pro : [receive(vl, v2, v3(v4))#send(
vi, v2, v3(v4))] . p, ms : Interest va, ch : sc, d : 30 >

5 < n4 : NodeN | snbs : nil, rmnbs : n2, pro : receive(vl, v2, v3(v4)) . p,
ms : nil, ch : sc, d : 0 > .

test3 also focuses on the network topology in Example 1, considering that
the data phase is transmitting Data packet and the distance feature is added.
Distance variable d for each node is introduced to give the distance from the
destination node n4 to the node itself.

aude> (rew test3 .)
CWN
test3
Configuration
<nl : NodeN | ch : sc,d : 20,ms : Data va,pro : p,rnbs : nil,snbs : n2 n3 > <
n2 : NodeN | ch : sc,d : 10,ms : Data va,pro : p,rnbs : nl,snbs : n4d > < n3 :

NodeN | ch : sc,d : 30,ms : Interest va,pro : p,rnbs : nl,snbs : nil > < n4 :
NodeN | ch : sc,d : O,ms : Data va,pro :(p{pata / vl,va / v2}),rnbs : n2,snbs
:nil >

Fig. 4. The result of running test3 in Maude

Figure 4 shows the result of running test3 in Maude. First, node n; is sending
message to node ns and node nz. Only node ny receives the message. Node nj
discards the message, because it is farther to node ng than node n;. Node ny
forwards the message to node ny. Finally, node ny receives the message. This
indicates that updated SCWN calculus can describe the request phase of the
LFBL protocol. It illustrates that our SCWN calculus is extensible to more
realistic cases.

5 Conclusion

In this paper, we introduced a process algebra called SCWN calculus. It charac-
terizes special forwarding mechanism and data caching mechanism of NDN. The
feature of NDN is implemented by introducing particular sets. Security feature is
implemented using different channel symbols. We presented the automatic imple-
mentation of SCWN calculus to make it convenient and useful. Then SCWN
calculus is applied to the LFBL protocol and several cases are implemented. It
illustrates that our SCWN calculus is extensible to real-world scenes.

In the future, we plan to do the verification for NDN based on our SCWN
calculus. It is a challenge to design a set of verification rules [1,6] for our SCWN
calculus. Meanwhile, it is also interesting to study the denotational semantics and
algebraic semantics for our SCWN calculus based on the UTP approaches [5].

Acknowledgement. This work was partly supported by National Natural Science
Foundation of China (Grant No. 61872145), National Key Research and Development
Program of China (Grant No. 2018 YFB2101300), Shanghai Collaborative Innovation
Center of Trustworthy Software for Internet of Things (Grant No. ZF1213) and the
Fundamental Research Funds for the Central Universities of China.

A Security Calculus for Wireless Networks of Named Data Networking 185

References

10.

11.

12.

13.

Apt, K.R., de Boer, F.S., Olderog, E.: Verification of Sequential and Concurrent
Programs. Texts in Computer Science. Springer, London (2009). https://doi.org/
10.1007/978-1-84882-745-5

Bazzi, A., Masini, B.M., Zanella, A., Castro, C.D., Raffaelli, C., Andrisano, O.:
Cellular aided vehicular named data networking. In: ICCVE 2014, pp. 747-752
(2014)

Clavel, M., et al.: All About Maude - A High-Performance Logical Framework:
How to Specify, Program and Verify Systems in Rewriting Logic. LNCS, vol. 4350.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71999-1
Godskesen, J.C.: A calculus for mobile ad hoc networks. In: Murphy, A.L., Vitek, J.
(eds.) COORDINATION 2007. LNCS, vol. 4467, pp. 132-150. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-72794-1_8

He, J., Hoare, C.A.R.: Unifying theories of programming. In: ReIMiCS 1998, pp.
97-99 (1998)

Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576-580 (1969)

Li, Z., Liu, K., Liu, D., Shi, H., Chen, Y.: Hybrid wireless networks with fib-based
named data networking. EURASIP J. Wirel. Commun. Netw. 2017, 54 (2017)
Meisel, M., Pappas, V., Zhang, L.: Ad hoc networking via named data. In: Pro-
ceedings of the Fifth ACM International Workshop on Mobility in the Evolving
Internet Architecture, pp. 3-8 (2010)

Meisel, M., Pappas, V., Zhang, L.: Listen first, broadcast later: topology-agnostic
forwarding under high dynamics. Technical report, Los Angeles, CA, USA (2010)
Merro, M.: An observational theory for mobile ad hoc networks (full version). Inf.
Comput. 207(2), 194-208 (2009)

Nanz, S., Hankin, C.: Formal security analysis for ad-hoc networks. Electr. Notes
Theor. Comput. Sci. 142, 195-213 (2006)

Prasad, K.V.S.: A calculus of broadcasting systems. Sci. Comput. Program. 25(2—
3), 285-327 (1995)

Zhang, L., et al.: Named data networking (NDN) project. Technical report NDN-
0001, PARC (2010)

https://doi.org/10.1007/978-1-84882-745-5
https://doi.org/10.1007/978-1-84882-745-5
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-72794-1_8

q

Check for
updates

Automatic Modularization of Large
Programs for Bounded Model Checking

Marko Kleine Biining and Carsten Sinz®

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
{marko.kleinebuening,carsten.sinz}@kit.edu

Abstract. The verification of real-world applications is a continuous
challenge which yielded numerous different methods and approaches.
However, scalability of precise analysis methods on large programs is
still limited. We thus propose a formal definition of modules that allows
a partitioning of the program into smaller code fragments suitable for
verification by bounded model checking. We consider programs written
in C/C++ and use LLVM as an intermediate representation. A formal
trace semantics for LLVM program runs is defined that also takes mod-
ularization into account. Using different abstractions and a selection of
fragments of a program for each module, we describe four different modu-
larization approaches. We define desirable properties of modularizations,
and show how a bounded model checking approach can be adapted for
modularization. Two modularization approaches are implemented within
the tool QPR-Verify, which is based on the bounded model checker
LLBMC. We evaluate our approach on a medium-sized embedded system
software encompassing approximately 160 KLoC.

1 Introduction

The increasing number of safety and security critical systems yields the need
for software verification for real-world applications. Studies about the cost of
software errors like [20] show the necessity of precise and thorough verification
and are backed up by catastrophic experiences in past and present like the rocket
crash of Ariane flight 501 [16] or the car crash of the Toyota Camry in 2005 [15].
Software verification approaches are making continuous progress, but at the same
time the size of the systems embedded in aircrafts, cars, or mobile phones grow
even faster. Modern cars are currently at around 100 MLoC and are estimated
to go up to a total of 300 MLoC in the next years. Even current audio control
software in a car can have several millions LoC and is thereby hardly verifiable
by most if not all approaches.

For bounded model checking, a program under verification has to be encoded
into a logical formula. Even when ignoring time constraints, the memory require-
ments to encode millions of lines of code is not attainable by state-of-the-art
systems. A well-known approach to increase scalability of software verification
is to partition the program into smaller modules that can then be solved indi-
vidually. Such modularization typically requires formalization of interfaces and

© Springer Nature Switzerland AG 2019
Y. Ait-Ameur and S. Qin (Eds.): ICFEM 2019, LNCS 11852, pp. 186-202, 2019.
https://doi.org/10.1007/978-3-030-32409-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32409-4_12&domain=pdf
https://doi.org/10.1007/978-3-030-32409-4_12

Automatic Modularization of Large Programs for Bounded Model Checking 187

dependencies between modules. Under the headline of compositional verification
or assume-guarantee reasoning several approaches for modular verification have
been proposed in the past [5,9,12]. This work, however, generally does not cover
the aspect of how to generate modules; instead it relies on manual approaches for
partitioning. There exist frameworks that automate part of the modularization
task, e.g., by creating necessary preconditions automatically through an incre-
mental learning algorithm [6], or by deducting modules from program design [8].
However, these approaches do not provide a framework for fully automatic ver-
ification of large systems. The same applies to modular interactive approaches
like [3,18], where the user has to manually write interface specifications. The
number of lines of specification that has to be written for one line of source code
varies depending on approach and application. Typical factors range between 2
for specialized [19], 5 for SMT-based [11] or up to 20 for interactive theorem
prover approaches [14], which is not feasible for large code bases.

To automatically verify large projects, an automatic modularization is
needed. We first introduce definitions of program semantics and modules to then
describe automatic modularization approaches based on abstractions. Then we
define a general model for program modularization, followed by four concrete
modularization techniques in the context of bounded model checking. We then
define mandatory and desirable properties of an automatic modularization pro-
cedure for software verification, and report on the implementation and evaluation
of a global and two modular approaches using a state-of-the art bounded model
checker on a real-world application of approx. 160 KLoC.

2 Theoretical Foundations

In the following, we introduce the LLVM intermediate representation (IR) and its
instruction set. We define a program trace semantics for LLVM IR and thereupon
modularization of programs in LLVM IR for software verification.

2.1 Programs in LLVM Intermediate Representation

LLVM is a compiler framework that also provides an intermediate representa-
tion (IR) for programs written in C, C++, and other high-level languages, e.g.
Rust. LLVM’s IR is an abstract, RISC-like assembler language for a register
machine with an unbounded number of registers. IR programs are always kept
in static single assignment (SSA) form, meaning that each register is assigned
exactly once. A program in LLVM-IR consists of type definitions, global variable
declarations, and the program itself, which is represented as a set of functions,
each consisting of a graph of basic blocks. Each basic block in turn is a list of
instructions, where the instruction set, as of interest in this paper, can broadly
be split into four types (see also Table 1):

— Memory-related instructions such as load, store, stack allocation (alloca)
and address calculation via base pointer and offsets (getelptr)!;

! For brevity, we use getelptr instead of LLVM’s name getelementptr.

188 M. Kleine Biining and C. Sinz

— Three-address-code (TAC) instructions working on registers or constants,
mainly for arithmetical and logical operations.

— Bit-level conversion instructions like extensions, truncations, and type casts.

— Control-flow related instructions for conditional and unconditional branching,
the phi instruction (which is typical for SSA form) to conditionally select a
value, as well as function-call and return (ret) instructions.

All (conditional and unconditional) branch instructions are only allowed as the
last instruction of a basic block. The branch instructions induce a basic block
graph (a.k.a. control-flow graph), in which edges are annotated with the condi-
tion under which the transition between two basic blocks is taken.

Table 1. LLVM IR instructions

MEMORY OPERATIONS:

p = alloca t allocate stack memory for type t

q = getelptr p,01,...,0n address calc. (base pointer, offsets)
x = load p load from memory address p

store =, p store x at address p

ARITHMETICAL / LOGICAL OPERATIONS:

z =a <op>y where <op> € {+, —,*,...,[],&&,...}
c=x <op>y where <op> € {<,=,>,<,...}

CONVERSION OPERATIONS:

y = sext/zext x to t sign/zero extend x to width of type ¢

Yy = trunc x to t truncate x to width of type ¢

y = ptrtoint p to i; convert a ptr. value p to integer type t;
p = inttoptr x to), convert an int. value = to pointer type t,

CONTROL FLOW:

br bb unconditional branch to basic block bb
br c, bby, bba conditionally branch to bb; or bba
call f(xz1,...,@pn) call (void) func. f with par. z1,...

y =call f(z1,...,Tn) call func. f returning y

ret y / ret void return value y / nothing

y = phi [z1,bb1], ..., [Tn, bb,] conditional selection of value z;

VERIFICATION EXTENSIONS:

assert ¢ assert that condition c is true
x = nondet t set « to a non-determ. value of type t

For the exposition of our approach, we have extended the IR language by
two verification-related instructions (in the implementation these are modeled
as intrinsic functions instead of instructions), one for checking assertions and
another one to set a variable to a non-deterministic value.

2.2 Program Semantics of LLVM

We define the semantics of an LLVM IR program as a set of program
traces. A trace T is a (possibly infinite) sequence of program states T =
(50,815 -+, Sn,- ..), and the trace semantics of a program encompasses all traces
the program can take. We denote the set of all such traces by 7p. The set S of
states is defined as S = (Var — Val) x (Adr — Val) x Loc*. A state s = (v, m,1)

Automatic Modularization of Large Programs for Bounded Model Checking 189

is thus a triple consisting of a variable-value-map v, a representation m of the
memory content (including stack variables generated by LLVM’s alloca), and a
representation [for a program location, which is a sequence of triples t = (f, b, 1)
encoding the call stack. Each triple consists of a function f, a basic block b and
an instruction number ¢, consecutively numbering the instructions within basic
block b, starting from 0. The first element in sequence [is the stack top, which
we also denote by leop, Or liop(s), if we want to denote the topmost frame in the
location stack of state s.

We assume that Var = GVar U LVar is the set of program variables, split
into local and global variables; LVar = Loc* x Name characterizes a local
variable consisting of a call stack and a name; GVar = Name denotes a global
variable (which, in LLVM, is always a pointer variable); Val = Int U Adr is the
set of variable values, consisting of integer variables and pointer variables?. To
simplify access to both local and global variables by name n in a given call stack
I, we define a variable’s stack-related name n' by n if n € GVar and by (I,n) if
n € LVar.

Each trace has to start in an initial state sq € I, and the effects of LLVM
operations is defined via transition relations 7 : S — P(S). We define transition
relations for instructions and functions. As the transition relation may be non-
deterministic, each state can have multiple successors (next-states).

For an instruction I and a state s; = (v, m,l) we have, e.g.,

{(wlz" = m(v(p")],m, next(1))}
{(wv,mu(p') v(z")], next(1))}
Taz=a <op> y(V, M, 1) :{ o[zt — v(zh) <op> v(y')], m, neat(l))}

,(f,bb1,0) : 1s)} ifw(c) #£0
(v, m, (f,bb2,0) : 1s)} ifw(c) =0

Tzr=1load p(U, m, l)

Tstore ac,p('U m, l)

Tor c,bby ,bbo (U> m, (f: b Z 21

Ty—=call g(z1,....wn) (U, M, 1) = { v ,m, %) |V eV}
where I" = ((g, bbentry, 0) : 1),
v =olpi e v(@)] -l — o),
V = {v" updated with local variables set to
arbitrary values in the topmost stack frame},
and p; are the actual parameters of the called function g
Troty (v, m, t 2 Is) = {(v[ret(y) — v(y"*"*)], m, next(ls))}
where ret(y) = the return var. in the call instr. at loc. ¢

To=nondet t(V, m, 1) = {(v[z «— i],m,next(l)) | i € Val}

2 For simplicity, we assume that integer and pointer variables have the same bit-
width, and that all program variables are of type integer. We also identify pointer
values with integers, such that Val = Adr. A more refined model would differentiate
between different data types stored in memory (including floating-point). In practice,
a byte-oriented memory model is often used [17].

190 M. Kleine Biining and C. Sinz

Here, f[x < y] stands for updating the function f at location z to a new value
y; next : Loc® — Loc* : ((f,b,7) : ls) — ((f,b,74+ 1) : Is) computes the next
location within the top-most basic block of the call stack (“:” shall denote the
list constructor) for a non-terminator instruction.

We define the set of initial states I by

I ={(v,m,l) | v(g) = address of global variable g for all globals

v(z!) = arbitrary value for local variable z
m : any function Adr — Val, respecting initializers for globals
| = (main, bbggery, 0)}

A trace T for an LLVM program P is then defined as a sequence sq, s1, . . .
of states with so € I and s;41 € 77(s;), where I is the instruction at lyop(s;), i.e.
the program location of the top-most stack frame. The semantics of program P
is the set of all such traces.

In our modularization approach, we also want to define traces that start at
the entry of a particular function up to the execution of the last instruction in
this function. We thus define trace sets 7 for functions f in a program P:

Ty ={(si,.-.,85) | (S0,---,n,...) € Tp and
s; = (v,m, (f, bbgntry, 0) : 1) and s; = (v, m/, (f, bbret, kret) : 1)
J > i is the smallest index such that (f,bbret, kret)
is the location of a ret instruction

for some v, v, m, m’, 1, bbyer and kyet }

2.3 Modularization

There are several possible views on what a module in a program is. We thus
want to give, in a first step, a very general definition of a module. In a later step,
we will identify desirable properties of a modularization and refine our definition
accordingly.

Definition 1 (Program). A (LLVM) program P = (F,G) is a tupel of a
non-empty set of functions F = {f1,....,fn} (n>1) and a set G = {g1, ..., gm }
(m > 0) of global variables that may be referenced in the functions f;.

We do not demand that there is unique entry point in the program (a main
function) nor that the program is “closed” in the sense that all functions called
in F are contained in F. A module is then just a subset of the functions and
global variables in a program.

Definition 2 (Module). Given a program P = (F,G) and sets F',G' with
0CcF CFand G CG, Mp = (F',G') is a module for program P.

Automatic Modularization of Large Programs for Bounded Model Checking 191

Note that a module is itself a program according to our definition. We assume
that program properties to be verified are included in the program in the form of
assert instructions. Thus, a module “inherits” the assertions (which we will also
call checks in the following) from the program that it is a part of via assertions
present in F’. In some decompositions we do not require that all checks are
inherited from the original program. Instead we sometimes will allow that we
only inherit checks for a subset of the functions F’.

3 Decomposition of Programs

We will introduce four modularization approaches which partition a program P
into a set of modules Mp, ..., M3 such that a bounded model checker can derive
results about program P by verifying each Mp individually. Dropping parts of
the program in a module of course loses information. In our modularization
approaches we do not require to add specifications about missing parts of the
program. Instead, we want to make sure that a module represents an over-
approximation (i.e. abstraction) of the original program.

3.1 Abstractions

Abstractions are an important technique to simplify verification tasks. Most
often abstractions are over-approximations of variable values (such as in abstract
interpretation [7]). The abstractions that we are interested in are different and
of a “structural” kind. We abstract function calls and replace them by over-
approximations of the function behavior, or we ignore the calling context of
a function in a larger program. In applying these structural abstractions, we
distinguish between abstracting the program “bottom up”, where we abstract
away called functions, and “top down”, where we abstract away the calling
context. We will now describe our four abstraction approaches in detail.

Havoc Called Functions. The first approach abstracts away calls to func-
tions outside of the chosen module Mp. At first, assume that Mp only contains
one function f and all global variables that are either read or written in f:
Mp = ({f},G"). We only keep checks (assertions) in function f, and abstract
away all functions calls in f. When abstracting a function call without any fur-
ther knowledge, an over-approximation of its behavior has to be assumed. Next
to the return value (if existent), memory content (including global variables) can
be altered by the called function, and thus have to be assumed to be arbitrary.
Therefore, to abstract away a function call in the context of LLVM means to set
the return value and the memory content to a nondeterministic value (nondet).
Referencing the trace semantics of a program, the abstraction updates all tran-
sition relations T,_ca11 p+(...) Where f* is not part of the function set of Mp. The

transition relation for such a call to f* is replaced by the following:

Ty=call f*(ml,...,zn)(v7 m, l)

= {(v[y' < i],m',next(l)) | i € Val,m' € (Adr — Val)}

192 M. Kleine Biining and C. Sinz

Le., the variable that takes the value returned by f* can be an arbitrary value
and the memory in the follow-up state can be an arbitrary function Adr — Val.

The updated transition relation 7 allows a higher number of possible runs and
is thus a clear over-approximation of the program semantics. Therefore, updating
T guarantees soundness of the approach. The cost of such an over approximation
is the possibility of false positives — error reports where there actually is no error.

In the havoc-approach, we do not abstract away function call contexts. There-
fore, the approach includes any function with a (transitive) call to function f
into the module Mp, together with accessed global variables. Thus the module
contains the main function, which is used as an entry point for analysis. A coarse
slicing algorithm can improve the creation of Mp by removing function calls that
are not needed to verify the checks in f and to thus minimize the module size.

Figure 1 shows the modularization of a simple program with four functions
with the use of the described abstraction. The green arrows represent the entry
point for verification. The triangles represent the checks that are verified and
the boxes represent the modules Mp. The dotted boxes are parts of the program
that are likely to be removed by a coarse slicing algorithm dependent on the
implementation.

SAH

O@

Fig. 1. Modularization into four independent modules based on abstraction of called
functions. The entry point for every module (indicated by a green arrow) is the main
function and the abstraction of called functions starts depending on the location of the
assertions (indicated by a green triangle). (Color figure online)

We see that verifying a module created in this way encompasses fewer func-
tions and thus increases scalability compared to a global analysis. For functions
deep in the call graph the module size can still be too large. The abstraction
can of course lead to false positives. In particular when checking for memory
properties, the complete havoc of the heap at each call to a function outside
of the module can lead to false error reports. Therefore, the goal of our next
approach is to reduce the number of false positives.

Use Postconditions of Abstracted Functions. As a refinement of the first
abstraction, we can create postconditions of called functions and replace the call
of a function outside a module with the function’s postcondition. While general
postconditions might be used, we focus here on memory-related postconditions
that result from an automatic analysis of memory locations that are written in

Automatic Modularization of Large Programs for Bounded Model Checking 193

functions abstracted away. The modularization itself stays the same as in the
earlier approach, only the abstraction is refined.

As a first refinement step, we analyze memory accesses in the called function
f* with the aim of reducing memory locations we have to set to nondet. A
rather simple analysis over the LLVM IR gives us all accesses of pointer and
global variables in f* and further called functions. After gaining all relevant
memory changes, we have to obtain points-to information so that we can havoc
only those memory locations written to by possible executions of f*. This points-
to information can be gained through a scalable and flow-sensitive alias analysis
like e.g. described in [10]. The alias analysis has to be scalable to be run on large
programs without negating the scalability benefit. Furthermore, a flow-sensitive
approach takes the program flow into account and ignores the later-on called
functions providing the necessary level of precision for our postconditions.

We denote the set of memory locations that have to be abstracted by AbsM.
We then update the transition relation for a call instruction to a function f*
outside of the module 7,_ca11 f+(...) to

Ty=call f*(acl,...,:cn)(vvmv l) = {(v[yl — i],m/,nemt(l))
| i€ Val,m'(a) = j with j € Val, if a € AbsM,
and m'(a) = m(a) for all a &€ AbsM}

Again, it is clear that the update of 7 leads to more traces of P and is thus
an over-approximation guaranteeing soundness.

The generation of such postconditions is feasible in reasonable time and
mostly depends on the scalability of the alias analysis used. An adjusted alias
analysis optimized specially for this use case is part of current work. Such cre-
ated postcondition refines the abstraction of called functions but can further
be improved by the more detailed calculation of values and the potential return
value. Through symbolic execution one can extract formulas representing the val-
ues generated by the function. Such automatic and exact generation of postcon-
ditions is currently not feasible for large verification tasks. Still one can improve
the postconditions through value ranges that are possible and thus further nar-
row the search space of the bounded model checking approach and excluding false
positives. Such efficient generation is for example possible by the use abstract
interpretation approaches.

Start Analysis at Entry of a Particular Function. The first approaches
abstracted the program bottom up by regarding function calls. The next two
approaches address the problem by abstracting the caller of module Mp. We
again start with the assumption that the function set of Mp consists of one
function f and the global variable set G’ is created accordingly. We again insert
checks only into f. In contrast to the earlier approaches, we do not abstract the
transition relation 7 of instructions, but the initial states I of the analysis. Thus
we abstract the call context and the input parameters of f. We thereby do not
have to include all functions of the call graph prior to f and can thus modularize
the problem. The abstraction of the initial states I’ for f is done by setting

194 M. Kleine Biining and C. Sinz

I'={(v,m,1) |
v(g) = address of global variable g for all globals
v(z') = arbitrary value for local variable z for all local vars.

v(pl,) = arbitrary value for parameter k of function f

m : any function Adr — Val
l= (fv bbEntrya 0)}

and considering function f as the start of the program. Note that we do not
initialize global variables here, as their values may have changed before entering
function f.

The new set of initial states is a superset of possible states that would be
calculated during a normal program execution. Thus, the abstraction is again
an over-approximation guaranteeing the soundness of the approach. For Mp to
be verifiable, the approach has to include all called functions in Mp because
no abstraction is defined and the transition relation 7 needs the exact function
semantics. The approach iteratively adds called functions while also adding all
global variables that are needed. It thereby creates the final Mp. The modular-
ization is demonstrated on the same abstract program in Fig.2. The notations
are equal to the figure above.

O O

O
! ¢
O\ /O »/G)\ /N
~8]o d-0)|3 oj|dio

Fig. 2. Modularization into four independent modules based on abstraction of call
environment. The entry point for every module is the function containing the assertion.
Through the abstraction of the call environment no callers of the entry point functions
have to be included.

Compared to the over-approximation of function calls, which can happen
any number of times inside a module, the abstraction of the initial function call
over-approximates the state only once. Furthermore, such an analysis can match
user concepts. If a function is proven correct using this abstraction, the function
is safe from error in every call environment. Such statements are recommended
for library functions or functions that are accessible throughout the system.

Generate Preconditions for Entry Function. Similar to the previous refine-
ment, we refine the abstraction using additional conditions that hold when the
entry function is called. We create preconditions to restrict possible inputs to
minimize the amount of false positives. To generate exhaustive preconditions

Automatic Modularization of Large Programs for Bounded Model Checking 195

for a function is a field of research on its own. The automatic generation of
precise preconditions for large programs is currently not feasible in reasonable
time. Preconditions that represent all possible call environments would have to
encapsulate the complete prior program execution and are thus very costly. Nev-
ertheless an automatic generation of such preconditions is possible using coarse
approaches like abstract interpretation with an interval domain to generate value
ranges for possible inputs.

Nevertheless, the approach we chose is to create preconditions not based on
the prior program execution but based on the erroneous checks of our function f.
First, we perform an analysis without preconditions possibly resulting in failed
assertions of two kinds: globally unsafe and locally unsafe. Globally unsafe checks
are such checks that will fail independent of the input, a simplified example
would be the statement (x = y/0). The locally unsafe status is given to checks
for which an error is found that dependents on input values of f (parameters and
memory state). The precondition generation only regards locally unsafe checks.
For every check, we create a precondition representing the input for which the
error arises.

Bounded model checking can create an exact error trace for a failed assertion
in the abstracted program. Using a symbolic execution approach can gener-
ate preconditions by following constraints backwards from the location of the
failed assertion up to the start of function f. The transition relation 7 is there-
fore inverted and symbolically executed. The symbolic execution is built upon
the earlier executed bounded model checking attempt. The program is already
inlined and the loops are unrolled up to a given bound. Furthermore, the exact
error trace gives restrictions on branching possibilities. After the creation of
such a (partial) precondition for a trace, the function has to be re-verified and
the procedure to be repeated until all traces that lead to a failed assertion are
covered. The amount of traces are assumed to be small because simple errors
that occur on all traces are found earlier and marked globally unsafe while only
locally unsafe locations, which only appear for a subset of traces, are checked for
false positives. The conjunction of the resulting constraints is negated to form
the precondition for f and thereby represents all input values for which there is
no error in the module Mp. After generating such an over-approximating pre-
condition for a check, the precondition is inserted into the initial state formula
for module Mp. The approach iteratively chooses all modules containing the
precondition and verifies the module while deactivating all internal checks. If
the precondition holds, we have proven that the check is globally safe. If the
precondition does not hold, the process is repeated iteratively until we reached
the main function.

Extension and Combination of Abstractions. The four modularization
approaches were described by starting with a single function in which checks are
inserted. As mentioned earlier, the approach works the same way when starting
with modules of bigger size. These enlargements of modules reduce the amount
of abstractions and thereby the amount of false positives generated. The cost of

196 M. Kleine Biining and C. Sinz

such larger modules is the scalability of the approach. In reality an upper bound
for the module size is manually given (dependent on the program code and time
and memory constraints of the user). An algorithm for generating larger initial
modules is given in Sect. 4.1.

Furthermore, a combination of the above abstractions is possible to improve
scalability or to refine the verification. For programs with a deep call graph the
inclusion of either the functions calling the module or all the called functions
can still lead to formulas which are too large to be handled by an SMT solver.
Thus, we can separate the program into three parts based on the call graph to
further improve scalability: Top level modules are verified using the postcondi-
tion abstractions and bottom level modules are solved using the precondition
abstraction. For modules found in the middle part of the call graph both pre-
and post-conditions are necessary. Another possibility is to run the different
approaches one after each other to refine the analysis result stepwise. For every
analysis only the checks which are marked locally unsafe are rechecked using a
different abstraction.

3.2 Properties of Modularization

We want to define properties that every module and the total modularization
should strive towards. We divide them into mandatory properties that are nec-
essary to guarantee the soundness of the verification approach and success prop-
erties that every module should strive towards for a high probability of optimal
modularization for verification.

Mandatory Properties: Given a program P and a modularization M p. Fol-
lowing properties have to hold for every valid modularization.

Total-Coverage: The union of all modules has to cover the whole program, and
each check has to be included at least once in every function. Every function has
to appear in at least one module and thus the union of all functions included in
modules represent the complete function set of P. The same is not required for
the set of global variable symbols, because of, e.g., unused symbols that do not
influence the program.

Single-Entry: Every module M; € Mp should have one single entry point
from which the verification starts. For verification methods like bounded model
checking the encoding of the program has to start at one entry point. When
verifying a program with multiple entry functions, for example a library with a
number of API functions, several verification jobs have to be run. These jobs can
be run independently and also in parallel. To make the modules larger and to
simplify the human understanding of the modularization, one could summarize
modules with more then one entry point.

Information-Principle: All information that is needed for the sound verifica-
tion of the module is included in the module itself. Meaning that all functions

Automatic Modularization of Large Programs for Bounded Model Checking 197

and global variables that are written to or read from are included in the verifica-
tion task. Furthermore, the input of the entry point function or an abstraction
of it has to be included.

Computable: The modularization should be computable in polynomial time
with respect to the size of the input program. The separation of graphs into a
fixed number of partitions that have minimal amount of edges between them is
closely related to our partitioning. Edges in this case can be regarded as call or
data dependencies. The so-called k-partitioning problem itself is NP-hard and
thus one can assume that also precise algorithms for the efficient modularization
of a program will have a similar complexity. Most likely, as in the case of the
k-partitioning problem, we have to use abstractions and approximations of an
ideal modularization that are computable in reasonable time.

Success Properties: Given a program P and a modularization Mp. The fol-
lowing properties should be striven towards by every efficient modularization.

Solvable: The size and complexity of a module should be manageable by the
chosen verification approach, in our case bounded model checking. The module
size that is manageable by a given approach depends on the programming style
and the design of single functions. The scalability of bounded model checking
approaches limits at program sizes of about 10-100 KLoC of C code. On the
other hand there are examples where a single function containing only a few
lines of code is not manageable in reasonable time [2].

Minimal Dependencies: The second success property addresses the amount
of dependencies between modules and thus the quantity of pre-/post-conditions
or nondet-abstractions generated. We distinguish between call and data depen-
dencies based on a graph structure. Let there be a node for every function in
P, and let edges describe either call or data dependencies, then a directed edge
in graph Gp from function f; to function fo represents one of the following: (1)
function call from f; to f2, (2) memory read in fy after a memory write in f;
at the same location. The modularization of a program summarizes nodes and
thereby also incoming and outgoing edges into modules. The minimal dependen-
cies property states that the overall number of edges between modules should
be as low as possible.

It should not be the aim of any modularization to minimize the dependencies
for large programs. For a modularization Mp = {P}, there would be no depen-
dencies, but M p would not be solvable in reasonable time. With equal intention
one should be careful optimizing only scalability by analyzing every function
by itself, which would lead to the maximal number of dependencies between
the modules. One has to find a balance between these two properties. Current
practical implementations for modularization have a tendency towards regard-
ing every function by itself. Furthermore, while the sizes of modules can vary
considerably, so can the complexity of the included functions. Finding heuristics
for optimal module sizes considering both properties is part of future work.

198 M. Kleine Biining and C. Sinz

4 FEvaluation

For the evaluation, we have implemented a global analysis without any modu-
larization. Additionally, we have implemented the abstraction of the call envi-
ronment as described in Sect. 3.1 for every function and for modules of chosen
size based on the call graph. The approaches will be compared in this section
based on a real-world embedded software project of around 160 KLoC.

4.1 Implementation

All implementations are incorporated in the tool QPR-Verify, which is based on
the bounded model checker LLBMC. There are several optimizations, parameters
and features not relevant for the comparison to other approaches and are thus
not described here. Further details can be found in [17].

Global Analysis. At first, the LLVM IR program is gener-

ated with the clang compiler. The global analysis then encodes »®

the program starting at a given entry point. The entry point is |
normally set to the main function. Starting at the entry point, @

the whole program is encoded from the LLVM IR into an SMT /N
formula containing both the program semantics and all inserted ® ®
checks (Fig. 3). During encoding, loops are unrolled and functions

inlined up to a bound b. Also checks (assertions) are added as Fig. 3. Global
special function calls into the bitcode. This formula is then given
to an SMT solver. If the SMT solver finds a model, a possible pro-
gram error has been detected. After finding the model, the specific check is deac-
tivated and the altered formula is checked again. The check states are set to either
safe, loopbound safe (safe up to loop bound)7 loopbound unsafe, unsafe or
undecidable.

analysis

Local Analysis. The local analysis implements the call context abstraction
from Sect.3.1. It starts a verification job for every function while abstracting
input parameters and memory content at the beginning of the function. For
every function f, the analysis sets f as the entry point and starts encoding
of the program at f. All called function are thereby automatically included.
The approach then activates only the checks in f, one by one. Every check is
individually inserted into the program and checked. Additional to the states of
the global analysis, the status locally unsafe can be taken by a check for
which an error was found. To further optimize the analysis, we implemented
a slicing algorithm. Starting at the individual check that is to be verified the
algorithm collects statements influencing the check statement. The algorithm
thus traverses the program backwards, up to the entry point. The encoding of
the program is then optimized by only regarding collected statements.

Automatic Modularization of Large Programs for Bounded Model Checking 199

Call Graph Analysis. The third implemented approach extends the local anal-
ysis to modules of size m based on a created call graph Gp. Nodes are functions
and edges are call dependencies as described in Sect. 3.2. First, the approach
removes “utility-functions” (functions that have a high amount of incoming
edges from all parts of the graph). The filtered call graph G has a tree-like
structure starting at the main function. We decided to take advantage of this
property by running our modularization algorithm in a bottom-up fashion from
the leaves of the tree, and looking for subtrees that are smaller then a given
bound bgs. Furthermore, we chose not to enforce the tree-property by cutting
edges but accepting the imperfections of the tree-approximation and considering
them in our module creation by putting functions into more then one module if
needed. If a leaf is called for example from two different functions f; and fo and
f1 and f> do not have a joint parent within bound bg/, we have to verify the leaf
starting from both functions. The adjustments of entry points and module size
can still be improved using abstraction refinement techniques [1].

4.2 Evaluation Results

For the evaluation of global, local and call-graph analysis, we selected an open-
source project from the embedded system domain, Connection Manager (Conn-
Man) [13]. This library handles internet connections within embedded systems.
The tool is mainly developed by Intel Cooperation and further used by big auto-
motive manufactures like BMW CarIT GmbH [4]. While, in general, bounded
model checking is optimized for arithmetic operations, which are more common
in systems like motor controls, the connection manager contains a high number
of checks to be verified.

We base our evaluation on ConnMan version 1.36 with 471 files, approx. 160
KLoC, and 3,025 functions. In our experiments, we determined the number of
checks that could be solved by the three implemented approaches. First, our tool
builds and compiles the application while inserting 27,402 checks for typical
runtime errors, including 11,164 checks for overflows on implicit type casts and
2,405 checks for overflow on arithmetic operations. In a preprocessing phase,
QPR-Verify handles simple checks that can be solved by constant propagation
and bit-width reasoning without the use of an SMT solver. This analysis was able
to prove safe 25,833 out of the given 27,402 checks. 13 checks were shown to be
unsafe by the preprocessor, and 1,556 checks remained open. These remain-
ing checks are hard verification problems that we handled with our different
modularization approaches. Table 2 shows the summarized results.

For the global analysis we chose 1 as a loop bound and gave a timeout of
1,200s for all three approaches. The global approach was not able to transform
the program into an SMT formula even for the loop bound of one (due to out-
of-memory situations). (We tested the global analysis on a range of smaller
programs up to 20 KLoC with success, but larger programs are often not feasible
for a global analysis.) Thus the global analysis produces the same result as the
preprocessor-only analysis.

200 M. Kleine Biining and C. Sinz

Table 2. Results of three different solving approaches.

Results/approach Global | Local | Call graph
Safe 0 108 212
Safe up to loop bound 0 43 43
Locally unsafe 0 | 1,351 | 1,247
Unsafe 0 0 0
Undecided 1,556 54 54

The local analysis was performed with a loop bound of 6 and was able to
handle most of the open checks. Out of the 1,556 open problems 108 could be
verified as safe. 43 checks are verified to be loop bound safe meaning that within
the given loop bound of 6 there is no error. To label these checks as safe, one
would have to increase the loop bound incrementally. Furthermore, 1,351 checks
were moved to the category locally unsafe, meaning that the approach found
an error while abstracting all input parameters. For some checks in the main
function or other high level functions most of the program has to be encoded,
and thus there are still 54 open checks that could not be classified. The local
analysis creates good results, where a global approach was not able to verify a
single property. The disadvantage lies in locally unsafe checks. Potential false
positives have been generated due to our abstraction being quite coarse.

Finally, the call graph analysis tries to classify locally unsafe checks by
extending the context of the functions containing a check. The modularization,
as described in Sect. 4.1, is created based on the bitcode created by the LLVM
compiler. We chose a bound bg = 15 for the creation of entry points. Our pursu-
ing ambition is to set bounds up to hundreds of functions, but the transformation
of the program into SMT formulas is still limited. A bound of 15 produced best
results for our approach. The modularization regarded 2,961 functions after fil-
tering. For these functions 1,103 entry points for modules were created including
2,074 functions and leaving 887 functions in a single-function module (i.e. local
analysis is applied). The analysis was able to move 104 locally safe checks to the
category of (globally) safe. Yet being a moderate improvement, one can see the
advantage of the call graph modularization.

5 Conclusion and Future Work

We defined a denotational program semantics for LLVM as well as notions for
modularization of LLVM programs. Based on these notions, we developed four
fully automatic modularization approaches. The discussion of mandatory and
success properties for a modularization in the context of software verification is
a foundation for further future modularization approaches. We implemented a
global analysis and compared it to a local analysis (abstracting away the call
context of a function) and a call graph analysis (extending the local verification

Automatic Modularization of Large Programs for Bounded Model Checking 201

approach). We show, that for moderately-sized real-world software the global
approach is not sufficient. The modularization approaches, in comparison, can
deliver much more successful verification results.

To further improve automatic verification of large programs, future work

includes implementation of the remaining two modularization approaches
described above. The automatic creation of pre- and postconditions will likely
reduce the amount of false positives. Additionally, we want to develop a cus-
tomized alias analysis to argue about and refine data dependencies of programs.

References

10.

11.

12.

13.

. Ball, T., Bounimova, E., Kumar, R., Levin, V.: SLAM2: static driver verification

with under 4% false alarms. In: Proceedings of the 2010 Conference on Formal
Methods in Computer-Aided Design, pp. 35-42. FMCAD Inc. (2010)

Balyo, T., Heule, M.J., Jarvisalo, M. (eds.): Proceedings of SAT Competition 2017:
Solver and Benchmark Descriptions. University of Helsinki (2017)

Beckert, B., Hahnle, R., Schmitt, P.H.: Verification of Object-Oriented Software:
The KeY Approach. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-69061-0

BMW CarIT GmbH: Open Source ConnMan (2019). http://www.bmw-carit.de/
open-source/connman.php. Accessed 10 June 2019

Clarke, E.M., Long, D.E., McMillan, K.L.: Compositional model checking. In:
Fourth Annual Symposium on Logic in Computer Science, pp. 353-362 (1989)
Cobleigh, J.M., Giannakopoulou, D., PAsAreanu, C.S.: Learning assumptions for
compositional verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331-346. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36577-X_24

Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th Annual Symposium on Principles of Programming Languages, pp. 238—
252 (1977)

Giannakopoulou, D., Pasareanu, C.S., Cobleigh, J.M.: Assume-guarantee verifica-
tion of source code with design-level assumptions. In: Proceedings of 26th Interna-
tional Conference on Software Engineering, pp. 211-220. IEEE (2004)

Grumberg, O., Long, D.E.: Model checking and modular verification. In: Baeten,
J.C.M., Groote, J.F. (eds.) CONCUR 1991. LNCS, vol. 527, pp. 250-265. Springer,
Heidelberg (1991). https://doi.org/10.1007/3-540-54430-5_93

Hardekopf, B., Lin, C.: Flow-sensitive pointer analysis for millions of lines of code.
In: Proceedings of the 9th Annual IEEE/ACM International Symposium on Code
Generation and Optimization, pp. 289-298. IEEE Computer Society (2011)
Hawblitzel, C., et al.: Ironclad apps: end-to-end security via automated full-system
verification. In: 11th Symposium on Operating Systems Design and Implementa-
tion, pp. 165-181 (2014)

Henzinger, T.A., Qadeer, S., Rajamani, S.K.: You assume, we guarantee: method-
ology and case studies. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427,
pp. 440-451. Springer, Heidelberg (1998). https://doi.org/10.1007 /BFb0028765
Intel Corporation: Connection Manager (2019). https://git.kernel.org/pub/scm/
network/connman/connman.git/tag/?h=1.36. Accessed 10 June 2019

https://doi.org/10.1007/978-3-540-69061-0
https://doi.org/10.1007/978-3-540-69061-0
http://www.bmw-carit.de/open-source/connman.php
http://www.bmw-carit.de/open-source/connman.php
https://doi.org/10.1007/3-540-36577-X_24
https://doi.org/10.1007/3-540-36577-X_24
https://doi.org/10.1007/3-540-54430-5_93
https://doi.org/10.1007/BFb0028765
https://git.kernel.org/pub/scm/network/connman/connman.git/tag/?h=1.36
https://git.kernel.org/pub/scm/network/connman/connman.git/tag/?h=1.36

202

14.

15.

16.

17.

18.

19.

20.

M. Kleine Biining and C. Sinz

Kaiser, J.O., Dang, H.H., Dreyer, D., Lahav, O., Vafeiadis, V.: Strong logic for weak
memory: reasoning about release-acquire consistency in Iris. In: 31st European
Conference on Object-Oriented Programming (2017)

Koopman, P.: A case study of Toyota unintended acceleration and software safety.
Carnegie Mellon University Presentation, September 2014

Le Lann, G.: An analysis of the Ariane 5 flight 501 failure-a system engineering
perspective. In: Proceedings of International Conference and Workshop on Engi-
neering of Computer-Based Systems, pp. 339-346 (1997)

Merz, F., Falke, S., Sinz, C.. LLBMC: bounded model checking of C and C++
programs using a compiler IR. In: Joshi, R., Miiller, P., Podelski, A. (eds.) VSTTE
2012. LNCS, vol. 7152, pp. 146-161. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-27705-4_12

Miiller, P.: Modular Specification and Verification of Object-Oriented Programs.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45651-1

Miiller, P.: The binomial heap verification challenge in Viper. In: Miiller, P.,
Schaefer, 1. (eds.) Principled Software Development, pp. 203-219. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-98047-8_13

Westland, J.C.: The cost of errors in software development: evidence from industry.
J. Syst. Softw. 62(1), 1-9 (2002)

https://doi.org/10.1007/978-3-642-27705-4_12
https://doi.org/10.1007/978-3-642-27705-4_12
https://doi.org/10.1007/3-540-45651-1
https://doi.org/10.1007/978-3-319-98047-8_13

®

Check for
updates

PDNet: A Programming Language for
Software-Defined Networks with VLAN

Shuangqing Xiang!®), Marcello Bonsangue?, and Huibiao Zhu!

! Shanghai Key Laboratory of Trustworthy Computing,
East China Normal University, Shanghai, China
xiangsqing@aliyun.com, hbzhu@sei.ecnu.edu.cn
2 LIACS, Leiden University, Niels Bohrweg 1, 2333CA Leiden, The Netherlands
m.m.bonsangue@liacs.leidenuniv.nl

Abstract. Software-Defined Networking (SDN) is an emerging network-
ing paradigm, which separates the network’s control logic from the under-
lying routers and switches, providing the ability to program network,
simplifying network management and creating an environment for net-
work evolution. NetKAT is a domain-specific language for specifying
and verifying packet-processing functions in software-defined networks
(SDNs). This paper proposes a more powerful programming language,
PDNet, extending NetKAT to specify the behaviors of SDNs that sup-
port virtual local area network (VLAN) tags. We present the operational
semantics of PDNet in terms of automata and a syntactic derivatives.
When comparing PDNet and NetKAT we show that PDNet is strictly
more expressive than NetKAT. As expected, we also show that PDNet
is as expressive as NetKAT when describing SDNs without VLAN.

Keywords: Software Defined Networks - VLAN + Pushdown systems -
NetKAT

1 Introduction

Traditional network devices, such as switches, routers, firewalls, etc. are built by
different vendors out of special purposes. Due to all kinds of custom hardware
and interfaces, it is hard to configure traditional networks. Besides, the control
plane (that decide how to handle network traffic) and the data plane (that
forwards traffic) are bundled inside the networking devices, reducing flexibility
and hindering innovation and evolution of the networking infrastructure [1]. The
emergence of Software-Defined Networking (SDN) [2], a new network paradigm,
has brought a foundational shift on this respect.

It is impossible to reason precisely about legacy network behaviors, which
makes it hard to apply formal methods to verify network correctness. SDN offers
the Internet community another chance to develop the right kind of architecture
and abstractions. This has also led to a great resurgence in interest of applying
formal methods to specification, verification, and synthesis of networking proto-
cols and applications [3]. NetKAT [4] is a network programming language, which

© Springer Nature Switzerland AG 2019
Y. Ait-Ameur and S. Qin (Eds.): ICFEM 2019, LNCS 11852, pp. 203-218, 2019.
https://doi.org/10.1007/978-3-030-32409-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32409-4_13&domain=pdf
https://doi.org/10.1007/978-3-030-32409-4_13

204 S. Xiang et al.

is used for specifying and verifying the packet-processing behavior of software-
defined networks (SDNs). The operational semantic of NetKAT has been pre-
sented in [5] in terms of deterministic NetKAT automata. Given a NetKAT
expression, a corresponding deterministic NetKAT automaton can be built fol-
lowing the syntactic derivative. The language accepted by a NetKAT automaton
is a regular language, which makes it possible to reason about the correctness of
a NetKAT program using the equational theory presented in [4].

However, regular expressions are not enough to describe some network behav-
iors especially when it include the usage of virtual local area network (VLAN). A
VLAN is a broadcast domain that is partitioned and isolated in a computer net-
work at the data link layer (OSI layer 2) [6]. It is commonly used in all network
virtualization technologies because of its dynamic character. VLAN tags are a
useful mechanism for limiting the scope of broadcast traffic, enforcing security
and privacy policies, simplifying access control, decentralizing network manage-
ment, and enabling host mobility [7]. In a SDN, network administrators can
configure and manage VLANSs more flexibly and efficiently using the OpenFlow
protocol [8], the de-facto standard communication protocol between a controller
and a switch. The newest edition of the OpenFlow protocol supports adding,
modifying and removing VLAN tags. A packet may have one or more VLAN
tags stored in a stack so that only the outermost (newest) tag can be modify or
delete.

In this paper we extend NetKAT with packets supporting a stack to store
VLAN tags. We use three actions in PDNet (push(v), fo < v, and pop) to add,
modify and remove a tag separately. The main contributions of our work are
listed as below:

— Propose a new programming language, PDNet, to describe the behaviors of
SDNs based on NetKAT. The ability to describe VLANs makes our language
more expressive than NetKAT.

— Study the operational semantics of PDNet, presented in terms of PDNet
automata. A PDNet automaton can be built from a PDNet expression fol-
lowing the syntactic derivatives.

— Prove that PDNet is as expressive as NetKAT when restricting the syntax to
no VLAN stack manipulating actions.

— Show that PDNet is more expressive than NetKAT.

To help the proofs, we will give a novel definition of nondeterministic NetKAT
automata and the corresponding syntactic derivatives.

2 Preliminaries

2.1 SDN and OpenFlow

As shown in Fig. 1, a SDN has three layers. A single-controller OpenFlow-based
network has one controller, some switches and some hosts. When a switch
receives a packet, it will search its flow table to find a matching rule for the

PDNet: A Programming Language for SDNs with VLAN 205

packet. If the matching rule exists, then the switch will forward the packet out
through the port specified by the rule. Otherwise, the switch will inform the
controller of receiving an unmatched packet, and then the controller will insert
a rule into the flow table of the switch to tell the switch how to deal with the
packet.

Management Network mmss Load
Plane Application (_Control Balancing

Northbound Interface

Control SDN v [Routing
Plane Controller Dicover Service

Southbound Interface (OpenFlow)
SDN
Data Plane Switches ﬂ

Fig. 1. SDN structure

2.2 VLAN

A VLAN allows to break one physical switch into smaller mini-switches, or
extend a smaller virtual switch across multiple physical switches. In Fig.2 we
show an example of a network where there are two physical switches and three
VLANs (VLAN 10, VLAN 20, and VLAN 30). Notice that VLAN 10 has been
extended onto a second switch, which enables Host B and Host C to exist in the
same VLAN, despite being connected to different physical switches. Assuming
that host C is sending a packet to host B. The packet header C|B|(VLAN)|Type
is a standard Layer 2 header. At first, the packet enters VLAN 10 through the
access port on switch Y (Y:1), and a tag #10 is added into its header. Then the
tagged packet is flooded to all the ports inside the red circle of switch Y except
the port that received the packet. Port Y:2 is an access port that connects to

VLAN 10
uﬁ*“- SwichX VLAN 20
QA
Host B @& 112/ N “
Switch Y
\)
Host C ‘@ 1% %@ Host A

OO ODEET DR

Fig. 2. An example of VLANs

206 S. Xiang et al.

switch X, the VLAN tag of every packet that leaves VLAN 10 through Y:2 will
be removed. When the packet from host C to host B arrives at port X:2, the tag
#10 is added into its header again.

Notice that, in nested VLANS, it is possible that a packet has more than one
VLAN tag, and any action on VLAN tags only acts on the outermost (newest)
tag. In the OpenFlow protocol, there are three actions that are related to VLAN.

— Push_tag: Push a new VLAN tag onto the packet. A newly pushed tag should
always be inserted in the outermost valid location of the VLAN field.

— Pop_tag: Pop the outermost VLAN tag from the packet.

— Set_tag: Set the ID of the outermost VLAN tag.

2.3 Syntax of NetKAT

Forwarding a packet from node to node in a network can be seen as moving
from state to state in an automaton. Therefore, it is natural to use regular
expression to describe the forwarding behavior of a network. For example, the
concatenation of a series of forwarding behaviors specifies a path. Moreover,
Kleene algebra (KA) [9], a sound and complete equational theory for regular
expressions, can be used to reason about properties of networks.

NetKAT is an instance of Kleene algebra with tests (KAT) [10]. KAT is a
two-sorted algebra (K, B,+,-,*,50,1), where B C K:

(K,+,-,%,0,1) is a Kleene algebra and
(B,+,,,0,1) is a Boolean algebra .

A Kleene algebra consists of three operators and two constants: choice (4),
sequential composition operator (-), iteration (x), fail (0) and skip (1). (-) is
usually elided in expressions. B is the set of tests. When applied to tests, (+) and
(+) act as disjunction and conjunction respectively. () is the Boolean negation
operator defined only on B. We let p,q,r, s,t range over arbitrary elements of
K and a,b, c,d over tests in.

The syntax of NetKAT is shown in Table 1. A packet pk is a packet record that
composes of k fields, including the header values and the location information.
A sequence of packet forms a history, which records the states of a packet as it
travels in the network. A policy specifies the behaviors of a switch. A predicate
models the filtering process of a switch. Predicates may have true (1), false
(0), test (f = v), conjunctions, disjunction, and negation (—a). An assignment
(f <« v) assigns value v to the field f. A test (f = v) checks whether the
field f is equal to v. (dup) records the current state of a packet into the history.
« is a complete test, and 7 is a complete assignment. fi1,---, fx are in some
arbitrary but fixed order. . is the complete test corresponding to the complete
assignment 7, and 7, is the complete assignment corresponding to the complete
test a. The operator precedence is: (x) > (-) > (+).

PDNet: A Programming Language for SDNs with VLAN 207

Table 1. Syntax and operational semantics of NetKAT

NetKAT Syntax

Fields f:u= fi]...|fx
Packets pk = {fi =v1,..., [t = vk}
Histories h = pk :<> |pk = h
Predicates b= 1|0|f=n|b-b|b+b|—b
Policies p:=b|f <+ n|ldup|p*|p+p|p-p
«
T

n=fi=v1-fao=vo fi =g
n=fie v favae iy v

Complete Test
Complete Assignment

Deterministic NetKAT automata

My = (S,9,¢,50) Language : Lg C At x At x At*

0: S X At x At — S |Accepty : S x I — 2:

e: S x At x At — 2 |Acceptq(s,af) = (s, a,)

50 €S Acceptq(s, afw) = Acceptq(§(t, o, B), fw)
where w € At x At* «, € At

Example 1. As shown in Fig.3, Host Hj sends packets to host H; via two
switches: Sy and S;. A packet is composed of source address (src), destina-
tion address and two fields: switch (sw) and port (pt). The policy for switch Sy
is encoded as:

Po £ (sw=25y - pt="P - dst=H; - pt — Py)

It specifies that for a packet whose current location is port P; of switch Sy, and
its destination address is Hi, forward the packet out through port Ps.

N e BN

Ho So Sy Hq

Fig. 3. Example network for NetKAT

2.4 Operational Semantics of NetKAT
The definition of deterministic NetKAT automata is illustrated in Table 1.

— S is a finite set of states;
— ¢ is a continuation map, which specifies transitions from one state to another
state;

208 S. Xiang et al.

— € is an observation map, which records information of each state;
— So is a distinguished start state.

Every NetKAT expression (policy) p can be interpreted as a subset of At - IT -
(dup - IT)*. Here At is the set of complete tests, and IT is the set of complete
assignments. The language G(p) of a NetKAT expression p is the set of strings
accepted by the finite NetKAT automaton associated with p [5].

Observing the string a m dup 72, we can think of it as a 8, Br,, where « is
the precondition and 3, denotes the postcondition after doing the assignment
m1. The placeholder dup is used to record the postcondition after the first assign-
ment. We can write postconditions explicitly and omit assignments as well as
duplications, and as a result, the language accepted by a deterministic NetKAT
automaton is just a subset of At x At x At*.

Accepted strings:

a1y,

azas,
as, a3 a1 a1y,
a,a030q,
a1 X303,
a1 Q3030301

Else

aq, Ay

Y
Qy, Ay Or A, “3\\@1

Fig. 4. An example of deterministic NetKAT automata

Ezxample 2. Figure4 shows a simple deterministic NetKAT automaton and the
strings it accepts. There are four states (X,Y, Z,0). The three vertical arrows
without subsequent states represent observation map, and the other arrows
stand for continuation map. Assuming the packet consists of two fields, and
each field has two possible values, then there are four possible complete tests
(a1, a0, a3, ay).

— Accepty(X,a1a1) = (X, a1, 1) = 1, and thus the string ayaq is accepted.
— Accepty(X, anan0n) = Acceptq(d(X, a1, az), azar) = Accepty(Y, an0n) =
e(Y,as, 1) = 1, and hence the string ;s is accepted.

3 Nondeterministic Net KAT Automata

In order to prove the relation between NetKAT and PDNet in Sect.5, next
we propose a novel definition of nondeterministic NetKAT automata as well as
a corresponding syntactic derivatives. An example of nondeterministic NetKAT
automata presented in this section will help understand the semantics of PDNet.

PDNet: A Programming Language for SDNs with VLAN 209

3.1 Automata Definition

As shown in Table 2, a nondeterministic NetKAT automaton (M,,) is a 4-tuple
(T, A, E, ty) where

— T is a finite set of states;

— A is a continuation map;

— F is a observation map;

— tp is a distinguished start state.

Table 2. Nondeterministic NetKAT automata

Automata definition

M, = (T,A,E, tg) Accepty, : T x I —2:

A:T x At — P(T x At) Accept, (t,af) = E(t, o,)

E:T x At x At — 2 Accept, (t,afv) =1

Language : L, C At x At x At* where v € At X At™ «, 3 € At
—

(', B) € A(t,) - Accept, (t', Bv) =1

Syntactic derivatives

D,, : Exp x At — P(Exp x At) E, : Exp x At x At — 2
Dyn(b,a) ={} Dn(m a)={} En(b,a,B) =[a =B <

Dy (dup, o) = {(a, a)} By (7, a,) = [m = mg]

Dy (e1 + e2,a) = Dy (e1,a) U Dy (e2,) | E,(dup,a, 3) =0

D, (e1-eq,a) = E,(e1 +ea,,8) = Ey(er, o, B)
{(e- ez, B)l(e, B) € Dn(e1,)} + Ey(e2, a,)
u{(1-¢,63ne E,(e1,a,m) =1 Ep(er-es,a,8) = Z(En(eha,ﬂ)
A(€,€) € Dylea,n)}

Dy (e, a) = - En(e2,n,8))
{(ex-e*,B)l(e1,B) € Dn(e,a)} En(e*,a,B) =[a =]
U{(L-e2,8)[Fne Eyle,a,n) =1 +Z w(e,a,m) - En(e*,n, B))

A (e2,€) € Dn(e”,n))}

3.2 Syntactic Derivatives

In the bottom of Table 2, we define the non deterministic automata generated by
the syntactic derivatives of a NetKAT expression. Exp is a superset of reduced
NetKAT expressions that include arbitrary tests b. Every NetKAT expression is
provable equivalent to a reduced NetKAT expression, where each assignment is
a complete assignment and each test is a complete test.

210 S. Xiang et al.

Example 8. An example is shown below to explain how to build a corresponding
nondeterministic automaton from a reduced NetKAT expression. Let the packet
have two fields (f1, f2), and each field has two possible values ({0,1}). Thus the
set of possible complete tests is At = {f1 =0-fo=0,f1=1-fo=0, f1 =
0-fo=1,f1 =1-fy = 1}. Let the start expression be ay m dupme, where
the complete test oy is f1 = 1 fo = 0, the complete assignment 7; denotes
fi<—0-fy«0,and my is f; < 0- fy < 1. Note that «, represents the complete
test that is corresponding to m. When we use o without any subscript, it stands
for any complete test that belongs to At.

The first step is to compute all the states. The computing process is given as
below. The start expression aq 7 dup o is the initial state, and its subsequent
state is the expression o, ms.

D, (anmduprms, @) = {(e - mdupma, B)|(e,) € Dy(aq,)}
U{(€,)13 Bnlar,a,m) = 1A (€,€) € Dy (mydupms, 1)}
For D,(aq,) = {}, En(ar,a,m) =1 <= a=n=ouo
Thus D, (agmdupns,) = {} U Dy (m1dupma, o)
Then
D, (m dupma, o) = {(e - dupms, 3)|(e, B) € Dy (71, 1)}
U{(e",&)[Fn @ En(m1,a1,m) = 1A (€', §) € Dn(dupma,)}
For D, (71, 1) = {}, En(m,0a1,m) =1IFF ap, =1
Thus D(midupma, a1) = {} U Dy, (dupma, aur,)
Then
Dy (dupms, ar,) = {(e - 72, 8)|(e, B) € Dy(dup, oz,)}
U{(e",&)[Fn @ En(dup, ary,m) = 1A (€', €) € Dy (m2,m)}
For D,,(dup, ar,) = {(cr,, n,)}, En(dup,a,n) =0
Thus D(dupma, ar,) = {(aq, 72, ar,)} U{}
Then
D (ar, w2, an,) = {(e - 72, B) (e, B) € Dn(any, o0,)}
U{(e,)Fn e En(an,,a,n) = 1A (€,€) € Dn(mz,m)}
For D, (ar,,) ={}, En(ny,) =1 IFF apy, =1 = iy
Thus Dy, (e, w2,) = {} U Dy (72, ar,) = {}

The second step is to check whether a state can accept the string that is
associated with the state. E,(dup,a,) = 0, and therefore the computation
result for any string that combines with dup using the composition operator is
0. Thus, E,(ai1mdupmse,a,) = 0, and it means that the start state does not
accept any string. The computation for the second state is as follows:

En(awlﬂ-%aaﬁ) = Z(En(aﬂlaaan) : En(7r27777/6)) =11IFF ﬁ = 0571'2
n

PDNet: A Programming Language for SDNs with VLAN 211

Finally, according to the computations above, we illustrate the nondeter-
ministic automata for the expression oy 7 dup 7o in Fig. 5. We only draw those
arrows that lead to accepted strings. The two complete tests on the transition
arrow can be thought of the precondition and the postcondition after the assign-
ment 7. The postcondition of the first state should be passed to the subsequent
state, and that is, o, is passed to the second state as its precondition.

@ . an1 @

Urys Ap,

Fig. 5. The nondeterministic NetKAT automaton for oy w1 dup 72

4 PDNet

4.1 PDNet Syntax

When the network to be programmed is simple, regular expressions are able to
specify VLAN fields as long as the programmer remembers the indexes and orders
of all the operations on VLAN tags. However, when the network topology is more
complex, or there are some changes that need be made (switch functionalities or
network structures that involve operations of VLAN tags) in the network, it is
tedious to modify all the related policies, since the index of the field that denotes
the outermost VLAN tag always needs to be counted carefully.

Instead of using regular expressions, we use a more intuitive and flexible
structure to model VLAN tags, and that is stack. As shown in the top of Table 2,
we add a field named fy to store VLAN tags for each packet. Fields f; to fx
are mapping to integers, while field fy is mapping to a stack. When a packet
traverses VLANS, it at least has one VLAN tag, and therefore, the stack has at
least one element. f; = v denotes checking the top (outermost) tag of the stack,
and fy < v stands for assigning v to the top tag. We also have push(v) and
pop that are corresponding