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Preface

The International Conference on Formal Engineering Methods (ICFEM) gathers
researchers and practitioners interested in the recent progress in the use and
development of formal engineering methods for software and system design. It records
the latest development in formal engineering methods.

The 21st edition of ICFEM took place in Shenzhen, China during November 5–9,
2019. ICFEM 2019 received 94 submissions covering theory and applications of formal
engineering methods together with case studies. Each paper was reviewed by at least
three reviewers and the Program Committee accepted 28 long papers leading to an
attractive scientific program.

ICFEM 2019 was marked by the presence of four keynote speakers. The first two
talks dealt with machine learning techniques. Yang Liu from Nanyang Technological
University, Singapore gave a talk entitled “Secure Deep Learning Engineering: a Road
towards Quality Assurance of Intelligent Systems.” The second talk, entitled
“Probabilistic Programming for Bayesian Machine Learning,” was given by Luke Ong
from Oxford University, United Kingdom. Zhendong Su, from the Swiss Federal
Institute of Technology Zurich, Switzerland, gave a talk entitled “Specification-less
Semantic Bug Detection” addressing rigorous software bug detection. Finally, with his
talk entitled “Taming Delays in Cyber-Physical Systems,” Naijun Zhan from the state
key laboratory of Computer Science of the Chinese Academy of Sciences, China
addressed formal engineering of Cyber-Physical Systems. The four talks covered
current hot research topics. In addition to the mentioned obtained results, these talks
revealed many research directions.

After the success of the doctoral symposium of the previous edition, ICFEM 2019
decided to host it again. The doctoral symposium Program Committee chaired by Yi Li
from Nanyang Technological University, Singapore and Xin Peng from Fudan
University, China accepted eight doctoral papers to be included in the ICFEM 2019
proceedings.

ICFEM 2019 would not have been successful without the deep investment and
involvement of the Program Committee members and the external reviewers who
contributed by reviewing (with more than 260 reviews) and selecting the best
contributions. This event would not exist if authors and contributors did not submit
their proposals. We address our thanks to every person, reviewer, author, Program
Committee member, and Organization Committee member involved in the success of
ICFEM 2019.

The EasyChair system was set up for the management of ICFEM 2019, supporting
submission, review, and volume preparation processes. It proved to be a powerful
framework.

ICFEM 2019 had three affiliated workshops: the 9th International Workshop on
SOFL+MSVL for Reliability and Security (SOFL+MSVL 2019), the 7th International
Workshop on Formal Techniques for Safety-Critical Systems (FTSCS 2019), and the



first International Workshop on Artificial Intelligence and Formal Methods (AI&FM
2019). These workshops brought in additional participants to the ICFEM week and
helped make it an interesting and successful event. We thank all the workshop
organizers and authors for their hard work.

ICFEM 2019 was hosted and sponsored by Shenzhen University, China. The local
Organization Committee offered all the facilities to run the conference in a lovely and
friendly atmosphere. Many thanks to all the local organizers.

Lastly, we wish to express our special thanks to the general co-chairs Jifeng He and
Zhong Ming, and to the Steering Committee members in particular Shaoying Liu and
Jin Song Dong for their valuable support.

November 2019 Yamine Ait-Ameur
Shengchao Qin
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Probabilistic Programming for Bayesian
Machine Learning

Luke Ong

University of Oxford
Luke.Ong@cs.ox.ac.uk

Abstract. Probabilistic programming is a general-purpose means of expressing
probabilistic models as computer programs, and automatically performing
Bayesian inference such as posterior probability and marginalisation. By
providing implementations of these generic inference algorithms, probabilistic
programming systems enable data scientists and domain experts to focus on
what they can do best, i.e., utilising their domain knowledge to design good
models; the task of constructing efficient inference engines can be left to
researchers with expertise in statistical machine learning and programming
languages. By promoting the separation between model construction and
inference procedures, probabilistic programming can democratise access to
Bayesian machine learning, with potentially huge benefits to AI and scientific
modelling. Because of their generality, probabilistic programming poses inter-
esting and challenging research problems for (both pragmatic and semantic
aspects of) programming languages, Bayesian statistics, and machine learning.
In this talk I will introduce probabilistic programming for Bayesian machine

learning as a general concept, and explain a number of research directions
unique to probabilistic programming.



Specification-Less Semantic Bug Detection

Zhendong Su

Swiss Federal Institute of Technology – ETHZ, Zurich, Switzerland
zhendong.su@inf.ethz.ch

Abstract. The lack of specifications has been the most difficult practical and
technical obstacle to software reliability. Without detailed application-specific
properties, one cannot utilize formal verification and is confined to detecting
generic bugs such as program crashes and memory safety violations, rather than
deeper semantic bugs. Breaking this paradoxical impasse is very difficult, and
impossible in general. This talk shows how to mitigate it via effective techniques
for constructing tests with expected results, thus tackling both test and oracle
generation. It illustrates this view with recent successful attacks on difficult
testing and analysis problems from diverse domains, ranging from compilers,
database engines, to deep learning systems. The talk discusses

1. the high-level principles and core techniques,
2. their significant practical successes—hundreds and thousands of confirmed/

fixed bugs in the most widely-used software, and
3. future opportunities and challenges.



Taming Delays in Cyber-Physical Systems

Naijun Zhan

State Key Lab. of Comput. Sci., Institute of Software, CAS
znj@ios.ac.cn

Extended Abstract

Historical motivation (predating digital control):

“Despite […] very satisfactory state of affairs as far as [ordinary]
differential equations are concerned, we are nevertheless forced to turn to
the study of more complex equations. Detailed studies of the real world
impel us, albeit reluctantly, to take account of the fact that the rate of change
of physical systems depends not only on their present state, but also on their
past history.”

[Richard Bellman and Kenneth L. Cooke, 1963, see [1]]

Conventional embedded systems have over the past two decades vividly evolved
into an open, interconnected form that integrates capabilities of computing, commu-
nication and control, thereby triggering yet another round of global revolution of the
information technology. This form, now known as cyber-physical systems (CPS), has
witnessed an increasing number of safety-critical systems particularly in major scien-
tific projects vital to people’s livelihood. Prominent examples include automotive
electronics, health care, nuclear reactors, high-speed trains, aircrafts, spacecrafts, etc.,
in which a malfunction of any software or hardware component would potentially lead
to catastrophic consequences. Meanwhile with the rapid development of feedback
control, sensor techniques and computer control, time delays have become an essential
feature underlying both the continuous evolution of physical plants and the discrete
transition of computer programs, which may well annihilate the stability/safety
certificate and control performance of embedded systems. Traditional engineering
methods, e.g., testing and simulations, are nevertheless argued insufficient for the
zero-tolerance of failures incurred in time-delayed systems in a safety-critical context.
Therefore, how to rigorously verify and design reliable safety-critical embedded sys-
tems involving delays tends to be a grand challenge in computer science and the control
community.

In contrast to delay-free systems, time-delayed systems yield substantially higher
theoretical complexity thus rendering the underlying design and verification tasks
exceedingly harder, e.g., unlike Ordinary Differential Equations (ODEs) being

This work is partly funded by NSFC under grant No. 61625206 and 61732001.



Markovian process, Delay Differential Equations (DDEs) turn out to be
non-Markovian, heavily depending on their execution histories, and consequently any
solution to a DDE is an infinite dimensional functional, rather than a point in the
n-dimensional Hilbert space like ODE’s. The major problems that we faced include the
formal verification and controller synthesis of time-delayed, networked hybrid systems.

Though time delays have been extensively studied in the literature of mathematics
and control theory from a qualitative perspective, automatic verification and synthesis
methods addressing feedback delays in hybrid discrete-continuous systems are still in
their infancy. In this extended abstract, we summarize our recent efforts towards the
above issues, including

– Firstly, we will discuss how to synthesize controllers for time-delayed discrete
systems, based on the work in [3]. The basic idea is to reduce the controller
synthesis problem to a two-player delay safety game, further to a two-player
delay-free safety game with memory. Based on the reduction, an efficient incre-
mental synthesis algorithm is presented. According to the work in [4], we further
discuss generalized settings of controller synthesis where messages may arrive out
of order or even get lost, and show –on top of the incremental synthesis– the
equivalence of qualitative controllability over these settings.

– Then, we discuss bounded reachability analysis of DDEs, mainly focusing on two
approaches: the first one is to extend the technique of simulation plus sensitivity
analysis for ODEs [6] to DDEs [2]; the other is to extend the set-boundary
reachability analysis methods for ODEs [8] to DDEs [7].

– Finally, we discuss unbounded verification of DDEs, mainly focusing on the
following two approaches: the first one is to deal with DDEs of the form

d
dt
xðtÞ ¼ f ðxðt � dÞÞ

by exploiting interval Taylor models and stability analysis. The basic idea can be
sketched as follows:

1. predefine a parametric interval polynomial containing all possible solutions of the
DDE on the given segment,

2. derive an operator between the paramenters of the solution on the previous segment
and the ones on the next segment, forming a time-invariant discrete dynamical
system,

3. exploit the stability analysis of the resulted time-invariant dynamical system, thus
reducing the safety verification and stability analysis to bounded cases.

The detail can be found in [9]; the other approach is to deal with the general DDEs
of the form

d
dt
xðtÞ ¼ f ðxðtÞ; xðt � d1Þ; . . .; xðt � dnÞÞ

by using linearisation and spectral analysis. The reader can refer to [5] for the
detail. The basic idea can be sketched as follows:

xvi N. Zhan



1. linearise a non-linear DDE,
2. exploit spectral analysis to obtain the stability of the linear part,
3. reduce unbounded verification and analysis to bounded case.

Finally, we will also discuss trends and challenges in the formal verification and
synthesis of time-delayed systems.

Acknowledgements. First of all, I thank Mingshuai Chen and Bai Xue for their useful
comments on the early version of the manuscript which improve the presentation so
much.

I would like to take this opportunity to thank all collaborators involved in this research,
including Martin Fränzle, Bai Xue, Liang Zou, Mingshuai Chen, Peter Nazier Mosaad, Yangjia
Li, Shenghua Feng, etc.
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Secure Deep Learning
Engineering: A Road Towards Quality

Assurance of Intelligent Systems

Yang Liu

Nanyang Technological University, Singapore, Singapore
yangliu@ntu.edu.sg

Abstract. Over the past decades, deep learning (DL) systems have achieved
tremendous success and gained great popularity in various applications, such as
intelligent machines, image processing, speech processing, and medical diag-
nostics. Deep neural networks are the key driving force behind its recent suc-
cess, but still seem to be a magic black box lacking interpretability and
understanding. This brings up many open safety and security issues with
enormous and urgent demands on rigorous methodologies and engineering
practice for quality enhancement. A plethora of studies have shown that
state-of-the-art DL systems suffer from defects and vulnerabilities that can lead
to severe loss and tragedies, especially when applied to real-world safety-critical
applications.

In this paper, we perform a large-scale study and construct a paper repository
of 223 relevant works to the quality assurance, security, and interpretation of
deep learning. Based on this, we, from a software quality assurance perspective,
pinpoint challenges and future opportunities to facilitate drawing the attention
of the software engineering community towards addressing the pressing
industrial demand of secure intelligent systems.
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Abstract. Over the past decades, deep learning (DL) systems have
achieved tremendous success and gained great popularity in various
applications, such as intelligent machines, image processing, speech pro-
cessing, and medical diagnostics. Deep neural networks are the key driv-
ing force behind its recent success, but still seem to be a magic black box
lacking interpretability and understanding. This brings up many open
safety and security issues with enormous and urgent demands on rigor-
ous methodologies and engineering practice for quality enhancement. A
plethora of studies have shown that state-of-the-art DL systems suffer
from defects and vulnerabilities that can lead to severe loss and tragedies,
especially when applied to real-world safety-critical applications.

In this paper, we perform a large-scale study and construct a paper
repository of 223 relevant works to the quality assurance, security, and
interpretation of deep learning. Based on this, we, from a software qual-
ity assurance perspective, pinpoint challenges and future opportunities
to facilitate drawing the attention of the software engineering community
towards addressing the pressing industrial demand of secure intelligent
systems.

Keywords: Artificial intelligence · Deep learning · Software
engineering · Security · Quality assurance · Reliability · Deep learning
engineering

1 Introduction

In company with massive data explosion and powerful computational hardware
enhancement, deep learning (DL) has recently achieved substantial strides in
cutting-edge intelligent applications, ranging from virtual assistant (e.g., Alex,
Siri), art design [18], autonomous vehicles [13,19], to medical diagnoses [1,3] –
tasks that until a few years ago could be done only by humans. DL has become
the innovation driving force of many next generation’s technologies. We have
been witnessing on the increasing trend of industry stakeholders’ continuous
c© Springer Nature Switzerland AG 2019
Y. Ait-Ameur and S. Qin (Eds.): ICFEM 2019, LNCS 11852, pp. 3–15, 2019.
https://doi.org/10.1007/978-3-030-32409-4_1
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investment on DL based intelligent system [5–8,40], penetrating almost every
application domain, revolutionizing industry manufacturing as well as reshaping
our daily life.

However, current DL system development still lacks systematic engineering
guidance, quality assurance standards, as well as mature toolchain support. The
magic box, such as DL training procedure and logic encoding (as high dimensional
weight matrices and complex neural network structures), further poses challenges
to interpret and understand behaviors of derived DL systems [4,16,26]. The
latent software quality and security issues of current DL systems, already started
emerging out as the major vendors, rush in pushing products with higher intel-
ligence (e.g., Google/Uber car accident [21,41], Alexa and Siri could be manipu-
lated with hidden command [39]. A DL image classifier with high test accuracy is
easily fooled by a single-pixel perturbation [2]). Deploying such cocooned DL sys-
tems to the real-world environment without quality and security assurance leaves
high risks, where newly evolved cyber- and adversarial-attacks are inevitable.

To bridge the pressing industry demand and future research directions, this
paper first performs a large-scale empirical study on the most-recent curated 223
relevant works on deep learning engineering from a software quality assurance
perspective. Based on this, we perform a quantitative and qualitative analysis to
identify the common issues that the current research community most dedicated
to. With an in-depth investigation on current works, and our in-company DL
development experience obtained, we find that the development of secure and
high quality deep learning systems requires enormous engineering effort, while
most AI communities focus on the theoretical or algorithmic perspective of deep
learning. Indeed, the development of modern complex deep learning system-
atic solutions could be a challenge for an individual research community alone.
We propose the Secure Deep Learning Engineering (SDLE) development pro-
cess specialized for DL software, which we believe is an interdisciplinary future
direction (e.g., AI, SE, security) towards constructing DL applications, in a sys-
tematic method from theoretical foundations, software & system engineering, to
security guarantees. We further discuss current challenges and opportunities in
SDLE from a software quality assurance perspective.

To the best of our knowledge, our work is the first study to vision SDLE,
from the quality assurance perspective, accompanied by a state-of-the-art lit-
erature curation. We hope this work facilitates drawing the attention of the
software engineering community on necessity and demands of quality assurance
for SDLE, which altogether lays down the foundations and conquers technical
barriers towards constructing robust and high-quality DL systems. The reposi-
tory is available at: https://sdle2018.github.io/.

2 Research Methodology

This section summarizes our concerned research questions, and discusses the
detail of paper collection procedure for further analysis.

https://sdle2018.github.io/
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2.1 Research Questions

This paper mainly focuses on following research questions.

– RQ-1: What are mostly studied research topics and the common challenges
relevant to quality assurance of deep learning?

– RQ-2: What is secure deep learning engineering and its future direction in
perspective of quality assurance?

From the RQ-1, we intend to identify the mostly concerned topics in the
research community and their common challenges, while RQ-2 concerns the key
activities in SDLE life cycle, based on which we discuss our vision and future
opportunities.

2001 2005 2009 2010 2012 2014 2015 2016 2017 2018
0

50

100

150

200
Total (223)
Security and Privacy (86)

Privacy (17)
Adversarial Attacks (40)
Defenses and Detection (29)

Testing and Verification (53)
Verification for DL Systems (34)
Testing for DL Systems (19)

Interpretability and Understanding (65)
Datasets(19)

Fig. 1. The accumulative number of selected publications over Years

2.2 Data Collection Methodology

Extensive research contributions are made on deep learning over the past
decades, we adopt the following procedure to select works most relevant to the
theme of this work.

– We first collect papers from conferences listed on the Computer Science Rank-
ings within the scope of AI & machine learning, software engineering, and
security.1 To automate the paper collection procedure, we develop a Python-
based crawler to extract paper information of each listed conference since the
year 2000 and filter with keywords.

1http://csrankings.org/#/index?all.

http://csrankings.org/#/index?all
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2000 2010    Rise of AI           Blowout Year for AI

2001  A deterministic 
method for verification 
used to verify the 
accuracy of simple 
neural networks

2005  Adversarial machine 
learning on classification 
tasks invented

2009 Poisoning and 
evasion attacks and 
defenses of 
classification invented

2012 Deep learning wins 
ImageNet Challenge

2014  General adversarial 
networks (GANS) invented 
and a surge in adversarial 
examples

2016  Deep learning 
(AlphaGo) wins world Go 
champion Lee Sedol

2017 AI interpretability 
proposed

2017 Verification for deep 
learning invented

2018 Testing for deep 
learning invented

2018 Safety issues of 
intelligent cyber-physical 
systems are emerging

2016  Deep neural networks 
are vulnerable

2017 Adversarial attacks 
are prevalent and 
robustness issues are 
dominant

2018 Methods of 
adversarial examples 
generation are still hot

Fig. 2. Milestones of deep learning engineering relevant to security and software quality.

– To further reduce the search space for relevant topics, we use keywords (e.g.,
deep learning, AI, security, testing, verification, quality, robustness) to filter
the collected papers.

– Even though, scraping all the listed conferences may still be insufficient, we
therefore crawl outwards – extract all the related work for each keyword-
filtered paper and crawl one level down of these papers.

– This finally results in 223 papers and we manually confirmed and labeled each
paper to form a final categorized list of literature.

Paper Category and Labeling. To categorize the selected papers, we perform
paper clustering by taking into account the title, abstract, and listed keywords.
Based on further discussion of all authors (from both academia and industry
with AI, SE, and security background), we eventually identify four main paper
categories, and seven fine-grained categories in total (see Fig. 1). In the next
step, each paper is manually labelled into a target category for further analysis.

The Dataset and the Trend. Figure 1 shows the general trends of publication
on secure deep learning research area, where the publication number (i.e., both
total paper as well as in each category) dramatically increases over years. Such
booming trend becomes even more obvious accompanied with the milestones
of DLs (e.g., DL won ImageNet Challenge in 2012, AlphaGo defeated human
championship in 2016), which is highlighted in Fig. 2. For the four main cate-
gories, we find the most publications are relevant to Security and Privacy (SP,
86 papers), followed by Interpretability and Understanding (IU, 65), Testing and
Verification (TV, 53), and Datasets (17).
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Deployment 

(Platform 

Calibration /  
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System
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Non-Convex Optimization

DL Optimized OS

Noisy Data Attack

Poisoning Attack

Evasion Attack

Incoherent Attack

Security Vulnerabilities

DL Software Stack

Fig. 3. Secure deep learning engineering life cycle

The SP category with the highest paper publication number is not surpris-
ing. Since Goodfellow et al. [20] posted the security issues of DLs, it attracted
both the AI and security communities to escalate and burst a research com-
petition on defending and attacking techniques. Even though, it still lacks a
complete understanding of why current DL systems are still vulnerable against
adversarial attacks. This draws the attention of researchers on interpreting and
understanding how DL works, which would be important for both application
and construction of robust DLs. As the recent emerging investment blowout in
DL applications to safety-critical scenarios (e.g., autonomous driving, medical
diagnose), its software quality has become a big concern, where researchers find
that the different programming paradigm of DL makes existing testing and veri-
fication techniques unable to directly handle DLs [25,30,35]. Therefore, we have
observed that many recent works are proposing novel testing and verification
techniques for DLs, from testing criteria, test generation techniques, test data
quality evaluation, to static analysis. Meanwhile, the dataset benchmarks of dif-
ferent DL application domains emerge to grow as well [15,24,37,42], in order
to facilitate the study of solving domain-specific problems by DLs (e.g., image
classification, 3D object recognition, autonomous driving, skin disease classifica-
tion).

Common Issues. In contrast to traditional software of which the decision logic
is mostly programmed by human developers, deep learning adopts a data-driven
programming paradigm. Specifically, a DL developer’s major effort is to prepare
the training data (including knowledge to resolve a task) and neural network
architecture, after which the decision logic is automatically obtained through
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the training procedure. On one hand, this paradigm reduces the burden of a
developer who manually crafts the decision logic. On the other hand, for a DL
developer, the logic training procedure is almost like a magic-box driven by
an optimization technique. Due to the decision logic of DL is encoded into a
DNN with high dimensional matrices, the interpretation and understanding,
training procedure, as well as the obtained decision logic are all very difficult [28],
which could be a root cause and a common challenge among all categories. For
example, without completely understanding the decision logic of DL, it is hard to
know in what particular case an adversarial attack could penetrate, and how we
could defend against such attacks. In the case of testing, extensive studies are
performed on analysis of traditional software bugs, their relations to software
development activities, as well as techniques for defect detection. However, a
comprehensive empirical study and understanding on why DL bugs occur still
could not be well explained, let alone the root case analysis.

3 Secure Deep Learning Engineering Life Cycle

Due to the fundamental different programming paradigms of deep learning and
traditional software, the secure deep learning engineering practice and techniques
are largely different with traditional software engineering, although the major
life cycle phases could still be shared.

We define Secure Deep Learning Engineering (SDLE) as an engineer-
ing discipline of deep learning software production, through a systematic
application of knowledge, methodology, practice on deep learning, software
engineering and security, to requirement analysis, design, implementa-
tion, testing, deployment, and maintenance of deep learning software.

Figure 3 shows the key life cycle phases of SDLE. In the rest of this section,
we first describe each of the key development phases, their uniqueness and dif-
ference compared with traditional practices in software engineering, and then we
discuss the security issues in current SDLE. In the next section, we explain the
quality assurance necessity in SDLE life cycle, and highlight the challenges and
opportunities.

Requirement Analysis. Requirement analysis investigates the needs, deter-
mines, and creates detailed functional documents for the DL products. DL-based
software decision logic is learned from the training data and generalized to the
testing data. Therefore, the requirement is usually measured in terms of an
expected prediction performance, which is often a statistics-based requirement
with uncertainty, as opposed to the rule-based one in traditional SE.

Data-Label Pair Collection. After the requirements of the DL software
become available, a DL developer (potentially with domain experts for super-
vision and labeling) tries to collect representative data that incorporate the
knowledge on a specific target task. For traditional software, a human developer
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needs to understand the specific task, figures out a set of algorithmic operations
to solve the task, and programs such operations in the form of source code for
execution. On the other hand, one of the most important sources of DL soft-
ware is training data. The DL software automatically distills the computational
solutions of a specific task under a designed neural network architecture.

DNN Design and Training Program Implementation. When the training
data become available, a DL developer designs the DNN architecture, taking
into account of requirement, data complexity, as well as the problem domain.
For example, when addressing a general-purpose image processing task, convo-
lutional layer components are often included in the DNN model design, while
recurrent layers are often used to process tasks that has sequential inputs (e.g.,
natural language processing, speech recognition). To concretely implement the
desired DNN architecture, a DL developer often leverages an existing DL frame-
work to encode the designed DNN into a training program. Furthermore, the
runtime training behaviors are also needed to be specified through the APIs
provided by the DL framework (e.g., training epochs, learning rate, GPU/CPU
configurations).

Runtime Training. After the DL programming ingredients (i.e., training data
and training program) are ready. The runtime training procedure starts and sys-
tematically evolves the decision logic learning towards effectively resolving (e.g.,
classification, numerical prediction, synthesis & generation) a target task. The
training procedure and training program adjustment might go back-and-forth
several rounds until a satisfying performance is achieved. Although the training
program itself is often written as traditional software (e.g., in Python, Java,
C++), the obtained DL software is often encoded as a DNN model, consisting of
the DNN architecture and weight matrices. The training process plays a cen-
tral role in the DL software learning, to distill knowledge and solution from the
sources. It involves quite a lot of software and system engineering effort to realize
the learning theory to DL software (see Fig. 3) over years.

Testing & Verification. When the DNN model completes training with its
decision logic determined, it goes through the systematic evaluation of its gener-
ality and quality through testing (or verification). Note that the testing activity
in the AI community mainly considers whether the obtained DL model gener-
alizes to the prepared test dataset, to obtain high test accuracy. On the other
hand, the testing activity (or verification) in SDLE considers a more general eval-
uation scope, such as generality, robustness, defect detection, as well as other
nonfunctional requirement (e.g., efficiency). The early weakness detection of the
DL software provides valuable feedback to a DL developer for solution enhance-
ment [47].

Deployment. A DL software passed the testing phase reaches a certain level
of quality standard, and is ready to be deployed to a target platform. However,
due to the platform diversity, DL framework supportability, and computation
limitations of a target device, the DL software often needs to go through the
platform calibration (e.g., compression, quantization, DL framework migration)
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procedure for deployment on a target platform. For example, once a DL software
is trained and obtained on the Tensorflow framework, it needs to be successfully
transformed to its counterpart of TensorflowLite (resp. CoreML) framework to
Android (resp. iOS) platform. It still needs to go through on-device testing after
deployment [22]. The testing during deployment not only considers the poten-
tially incorrect behaviors that could be triggered at runtime, but also considers
the behavior differences before and after deployment. In particular, whether
a deployed version is an intended version for runtime execution. Due to the
difference in platform, deep learning framework as well as hardware resources
before and after deployment, systematically testing and providing feedback on
the behavior changes of a deployed deep learning software would assist a DL
developer to further enhance its quality.

Evolution and Maintenance. After a DL product is deployed, it might experi-
ence the procedure of modification for bug correction, performance and feature
enhancements, or other attributes. The major effort in evolution and mainte-
nance phases relies on the manual revision on design, source code, documenta-
tion, or other software artifacts. On the other hand, DL software focuses more
on comprehensive data collection, DL model continuous learning (e.g., re-fitting,
retro-fitting, fine-tuning, and re-engineering). For example, it is not uncommon
that the new data are continuously collected that contain more domain-specific
information of a particular task. A DL developer often considers how to incor-
porate the knowledge of such data into a target DL system to further enhance a
DL software. During such a phase, a DL product would experience evolution, to
update the feature, fix bugs, enhance robustness, etc. However, such a procedure
are mostly driven by training data, which guides the direction of a DL produce
enhancement. Furthermore, special engineering methods to better manage the
version variants of a DL product (e.g., DL training program, models), as well as
the data, would also be necessary, which to a large extent differs to those in the
traditional software evolution and maintenance.

Security Issues in DL. The current practice of security in deep learning has
fallen into the trap that many other domains have experienced. Almost every
month new attacks are identified [9,12,14,20,32,33,46] followed by new counter-
measures [34,45] which are subsequently broken [12,23], and so on ad-infinitum.
There is a broad and pressing need for a frontier-level effort on trustworthi-
ness and security in DL to break this cycle of attacks and defenses. We have
a unique opportunity at this time—before deep learning is widely deployed in
critical systems—to develop the theory and practice needed for robust learning
algorithms that provide rigorous and meaningful guarantees. If we rethink the
SDLE life cycle (see Fig. 3), security vulnerabilities can happen in almost every
step. For instance, for the training related steps such as Requirement Analysis,
Data-Label Pair Collection and DNN design and training, poisoning attacks can
easily happen via manipulating training data. In the testing related steps, such
as testing & verificationand deployment, evasion attacks can take place by per-
turbing the testing data slightly (e.g. adversarial examples). In addition, when
deploying the DL software to different platforms or with different implementa-



Secure Deep Learning Engineering 11

tion frameworks, there will always be opportunities for adversaries to generate
attacks from one to the other.

We believe many of these security issues are highly intertwined the quality
of current DL software, lacking systematic quality assurance solutions over the
entire SDLE process which is largely missed in research works as described in
the next section.

4 Towards Future Quality Assurance of SDLE

Over the past decades, software quality assurance discipline [36,38] has been
well-established for traditional software, with many experiences and practices
widely applied in the software industry. However, the fundamentally different
programming paradigm and decision logic representation of DL software make
existing quality assurance techniques unable to be directly applied, forcing us
to renovate the entire quality assurance procedure for SDLE. In this section, we
pose our vision and challenges on quality assurance in SDLE to guide future
research.

From the very beginning of SDLE, we need to rethink how to accurately
define, specify, and document the of DL software requirement, especially for the
functional requirements. This leaves us a question of whether we should follow
a statistical-based approach, a rule-based approach, or their combination, which
has not been well investigated yet.

The data play a key role in shaping the learning process and DL decision
logic. However, most current research treats the data (e.g., training data) as high
quality for granted, without a systematic quality control, inspection, and evalu-
ation process. As poisoning attacks show, many incorrect behaviors and security
issues could be introduced with the maliciously tweaked training data. How to
select a suitable size while representative data would be an important ques-
tion. In addition, data supervision and labeling process are also labor-intensive
and error-prone. For example, ImageNet dataset contains more than one million
general-purpose images. We also need to provide assistance and quality control
for the data management (e.g., labeling, versioning, de-noising) procedure.

It becomes even more challenging, when it comes to the implementation of
the training program and framework. Most state-of-the-art DL frameworks are
implemented as traditional software on top of the DL software stack. Even the
learning theory is perfect, it still has a big gap to transfer such ideally designed
DL models to a DL application encoded on top of the DL framework. One big
challenge is how to ensure the software stack (e.g., hardware drivers, DL library,
DL framework) correctly implements the learning algorithm.

Another challenge is to provide useful interactive support to debug and visu-
alize the training process. Most current DL training procedure only shows train-
ing loss (accuracy), validation loss (accuracy), which is mostly a black box to
a DL developer. When the training procedure goes beyond expectation, the
root-cause analysis becomes extremely difficult, which may come from the DL
architecture issue, training program implementation issue, or the hardware con-
figuration issue. Hence, the software engineering community needs to consider
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providing the novel debugging, runtime monitoring, and profiling support for
the training procedure, which is involved with non-determinism and runtime
properties hard to specify.

The large input space has already been a challenge for testing and verifying
traditional software. Such a challenge is further escalated for DL software, due
to its high dimensional input space and the internal latent space. Even though,
traditional software testing has already explored many testing criteria as the
goal to guide testing. How to design suitable testing criteria to capture the
testing confidence still remains unclear. Even with some preliminary progress
on testing criteria designed for DLs [27,29,30,35], there are many more testing
issues needed to be addressed, such as how to effectively generate tests [17,29,43,
44], how to measure the test data quality [31], and how to test DL robustness and
vulnerabilities [10,11]. More in-depth empirical studies that uncover the unique
issues (e.g., [48]) of SDLE are also necessary to provide insight and guidance to
build deep learning systems with better quality and reliability.

Further DL challenge comes up with current deployment process: (1) tar-
get device computation limitations, and (2) DL framework compatibility across
platforms and frameworks. The DL software is mostly developed and trained on
the cloud or PCs with powerful GPU support. When it needs to be deployed on
a mobile device or edge-computing device with limited computation power, the
DL software must be optimized or quantized for computation/energy efficiency,
which could introduce defects or behavior differences. How to ensure the quality
and detect the potential issues during this process is an important problem. In
addition, the current DL frameworks might not always be supported by different
platforms. For example, the TensorFlow is not directly supported by Android
or iOS, and how to make DL software cross-platform compatible would be an
important direction.

Last but not least, the quality assurance concerns in DL software evolu-
tion and maintenance are mostly focused on avoiding introducing defects during
change, which might rely on regression testing. However, how to effectively evolve
the DL software and how to engineer the artifacts (e.g., data, training program,
DL model) of a DL product during evolution still remains unknown, which we
leave as an open question for further study.

5 Conclusion

Considering deep learning is likely to be one of the most transformative technolo-
gies in the 21st century, it appears essential that we begin to think about how
to design fully-fledged deep learning systems under a well-tested development
discipline. This paper defines the secure deep learning engineering and discusses
the current challenges, opportunities, and puts forward open questions from the
quality assurance perspective, accompanied by a paper repository. We hope our
work can inspire future studies towards constructing robust, reliable and safe
DL software with high quality.
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(LNAI), vol. 8190, pp. 387–402. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40994-3 25

10. Breier, J., Hou, X., Jap, D., Ma, L., Bhasin, S., Liu, Y.: DeepLaser: practical fault
attack on deep neural networks. ArXiv e-prints

11. Breier, J., Hou, X., Jap, D., Ma, L., Bhasin, S., Liu, Y.: Practical fault attack on
deep neural networks. In: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2018 (2018)

12. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
IEEE Symposium on Security and Privacy (SP), pp. 39–57 (2017)

13. Chen, C., Seff, A., Kornhauser, A., Xiao, J.: Deepdriving: learning affordance for
direct perception in autonomous driving. In: 2015 IEEE International Conference
on Computer Vision (ICCV), pp. 2722–2730, December 2015. https://doi.org/10.
1109/ICCV.2015.312

14. Chen, P.Y., Sharma, Y., Zhang, H., Yi, J., Hsieh, C.J.: Ead: elastic-net attacks to
deep neural networks via adversarial examples. arXiv preprint arXiv:1709.04114
(2017)

15. Chen, Y., et al.: Lidar-video driving dataset: Learning driving policies effectively.
In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
June 2018

https://www.bbc.com/news/technology-36713308
https://www.bbc.com/news/technology-41845878
https://www.bbc.com/news/technology-41845878
https://www.bbc.com/news/health-44924948
https://www.bbc.com/news/health-44924948
https://www.bbc.com/news/business-44466213
https://www.bbc.com/news/business-44466213
https://www.bbc.com/news/business-44325629
https://www.bbc.com/news/business-44325629
https://www.bbc.com/news/technology-44957251
https://www.bbc.com/news/technology-44957251
https://www.bbc.com/news/business-45728169
https://www.bbc.com/news/business-45728169
https://www.bbc.com/news/technology-43557798
https://www.bbc.com/news/technology-43557798
https://doi.org/10.1007/978-3-642-40994-3_25
https://doi.org/10.1007/978-3-642-40994-3_25
https://doi.org/10.1109/ICCV.2015.312
https://doi.org/10.1109/ICCV.2015.312
http://arxiv.org/abs/1709.04114


14 Y. Liu et al.

16. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learn-
ing. ArXiv e-prints

17. Du, X., Xie, X., Li, Y., Ma, L., Liu, Y., Zhao, J.: Deepstellar: model-based quanti-
tative analysis of stateful deep learning systems. In: Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, pp. 477–487. ESEC/FSE 2019
(2019)

18. Elgammal, A.M., Liu, B., Elhoseiny, M., Mazzone, M.: CAN: creative adversarial
networks, generating “art” by learning about styles and deviating from style norms.
CoRR abs/1706.07068 (2017). http://arxiv.org/abs/1706.07068

19. Eliot, L.B.: Advances in AI and Autonomous Vehicles: Cybernetic Self-Driving
Cars Practical Advances in Artificial Intelligence (AI) and Machine Learning, 1st
edn. LBE Press Publishing (2017)

20. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. In: ICLR (2015)

21. Google Accident: A Google self-driving car caused a crash for the first
time (2016). https://www.theverge.com/2016/2/29/11134344/google-self-driving-
car-crash-report

22. Guo, Q., et al.: An empirical study towards characterizing deep learning develop-
ment and deployment across different frameworks and platforms. In: Proceedings
of the 34rd ACM/IEEE International Conference on Automated Software Engi-
neering, ASE 2019 (2019)

23. He, W., Wei, J., Chen, X., Carlini, N., Song, D.: Adversarial example defenses:
ensembles of weak defenses are not strong. arXiv preprint arXiv:1706.04701 (2017)

24. Huang, X., Wang, P., Cheng, X., Zhou, D., Geng, Q., Yang, R.: The ApolloScape
open dataset for autonomous driving and its application. ArXiv e-prints

25. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
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Abstract. This paper describes a unified approach for both bounded
and unbounded software model checking to find errors in programs writ-
ten in the programming language C. It is based on a propositional logic
intermediate representation, called DimSpec, that has been successfully
applied in SAT-based automated planning. Using DimSpec formulas
allows us to exploit the advantages of incremental SAT solving and pro-
vides an alternative approach to using the universal incremental SAT
API IPASIR or native solver APIs. The DimSpec formula can be used
for bounded model checking (via incremental SAT solving) as well as
unbounded model checking (using a backend that implements an IC3-
style algorithm). We also present an implementation of our approach,
called LLUMC, which encodes the presence of certain errors in a C pro-
gram into a DimSpec formula. We evaluate our approach on benchmark
problems from the Software Verification Competition (SV-COMP) and
compare it with other tools to demonstrate runtime and functionality
advantages compared to state-of-the-art solvers.

1 Introduction

A DimSpec formula [30] consists of four CNF formulas I,U , T and G which
specify a transition system. The formula I describes the initial state, G the goal
state, U describes the constraints that must hold in each individual step of the
process and finally T describes the relation of each pair of neighboring steps.
DimSpec has been very successfully used for SAT-based automated planning
[16]. In this paper we demonstrate that the DimSpec format is also very useful
for software verification.

Software has become an important part of almost all modern technical
devices, such as cars, airplanes, household appliances, therapy machines, and
many more. The cars of tomorrow will drive on their own, controlled by soft-
ware. As shown by serious accidents like the rocket crash of Ariane flight 501 [24],
the massive overdoses of radiation generated by the therapy machine Therac-25
[25] or the car crash of the Toyota Camry in 2005 [22], software is never perfect
and almost inevitably contains errors and bugs. While testing of software can,
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in practice, only cover a limited number of program executions, software veri-
fication can guarantee a much higher coverage while producing proofs for the
existence or absence of errors. Many software verification approaches have been
developed, for instance symbolic execution [19], (bounded) model checking [9], or
abstraction and interpolation [1]. In bounded model checking, function calls are
inlined and loops unrolled a finite number of times. This unrolling reduces the
complexity of the problem to a computationally feasible level, though it limits
coverage and thus precision of the approach.

We developed an approach that is suitable for both bounded and unbounded
model checking. To this end, we produce a SAT encoding of a transition system
that is general enough to be solved with different solver back-ends, based on, e.g.,
incremental SAT or on an invariant checking algorithm. We focus on sequential
programs written in C, and use the low-level code representation of the compiler
framework LLVM as an intermediate language. Based on this representation, we
derived an encoding of the program verification task into a DimSpec formula. We
first encode the program into four SMT formulas and, subsequently, generate the
SAT-level representation in the desired DimSpec format. The resulting formula
is then solved by either an incremental SAT solver that unrolls the transition
system to find a path to an error state, or an invariant checking algorithm that
refines an over-approximation.

Our verification system uses Clang and LLVM version 3.7.1 to compile
C-code into LLVM Intermediate Representation. Then our new tool LLUMC
(Low-Level Unbounded Model Checker) translates the LLVM-IR representation
of the program P to be verified to a DimSpec formula with error states that are
reachable iff P contains a corresponding error. To solve the generated formulas
we either use the incremental SAT solver IncPlan [16] or the invariant checking
algorithm implemented in the solver MinireachIC3 [30]. LLUMC was inspired by
the bounded model checker LLBMC [28] but runs independently. Our evaluation
is based on the Software Verification Competition (SV-COMP) and shows the
correctness and feasibility of our approach. LLUMC is available online at [21].

2 The DimSpec Format

We assume the reader to be familiar with propositional logic, first-order-logic
and the Boolean satisfiability problem (SAT), and use definitions and notations
standard in SAT. In this section, for completeness, we introduce incremental
SAT-solving and describe the theory of bit-vectors in the context of SMT-solving.

Incremental SAT-Solving. Incremental SAT-solving is an approach to solve
several related SAT-problems efficiently. In the assumption based interface [14],
two methods are used to describe a related problem relative to a base prob-
lem: add(C) and solve(A), where C is a clause and A a set of literals called
assumptions. Clauses can be added with the add method and their conjunction,
together with previously added clauses, can then be solved under the condition
that all literals in A are true by solve(A). To enable simulating the removal of
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a clause C between invocations of solve(A), a clause C ′ = C ∪ a is passed to
the solver instead of C, with a (called an activation literal) being an otherwise
unused literal. C is then effectively taken into account iff ¬a is present in A.

DimSpec Formulas. A DimSpec formula [31] represents a transition system
with a finite number of states t0, t1, . . . , tk, where each state is a full truth assign-
ment on n Boolean variables x1, . . . , xn. It consists of four CNF formulas: I,U ,G
and T , where I encodes the set of initial states, G describes the set of goal states
(that in our case indicate occurrence of a program error). Formula U encodes
global constraints that have to hold in each state, and finally the transition
clauses T are satisfied by each pair of consecutive states ti, ti+1. The clause
sets I, U , and G contain variables x1, . . . , xn, and T contains x1, . . . , x2n, where
x1, . . . , xn encodes the current and xn+1, . . . , x2n the next state. Testing whether
the goal state is reachable from the initial state within k steps is equivalent to
checking whether the following formula Fk is satisfiable.

Fk = I(0) ∧
(

k−1∧
i=0

(
U(i) ∧ T (i, i + 1)

))
∧ U(k) ∧ G(k),

where I(i), G(i), U(i) and T (i, i + 1) denote the respective formulas without
index, where each variable xj is replaced by xj+i·n.

DimSpec formulas have been successfully employed in SAT-based automated
planning [16,30], but they represent a generic approach to utilize incremental
SAT solving for reachability analysis of transition systems. DimSpec solvers can
be developed independently of their usage and also be parallelized, which brings
benefit to all DimSpec applications.

Incremental SAT Solving for DimSpec. The straightforward way to solve
a DimSpec formula is to unroll the transition relation step by step, constructing
and solving the resulting formula Fi at each step, until a satisfiable formula is
observed. An efficient way to implement this is to use an incremental SAT solver
with the assumption-based interface via the following steps:

step(0) : add(I(0) ∧ (a0 ∨ G(0)) ∧ U(0))
solve({¬a0})

step(k) : add(T (k − 1, k) ∧ (ak ∨ G(k)) ∧ U(k))
solve({¬ak}) .

This algorithm, in practice, only terminates in reasonable time if the goal
state is reachable from the initial state. Otherwise it searches “endlessly”, i.e.
up to a bound of 2n in the worst case. A more sophisticated approach that can
detect unreachability is described next.
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IC3 Algorithm. A different approach to solve a DimSpec formula is
described in [12] and implemented, among others, in the tool IC3 (Incremental
Construction of Inductive Clauses for Indubitable Correctness). Given a tran-
sition system S and a safety property P , the algorithm can prove that P is
S-invariant, meaning that, regarding S, property P is true in all reachable
states, or produce a counterexample. IC3 incrementally refines a sequence of
formulas F ′

0, F
′
1, . . . , F

′
k that describe over-approximations of the set of states

reachable in at most k steps. It can extend the formula sequence in major steps
that increase k by one. In minor steps the algorithm refines the approximations
F ′
i with 0 ≤ i ≤ k by conjoining clauses to the F ′

i . Given a finite transition sys-
tem S and a safety property P , the IC3 algorithm terminates and returns true,
iff P is true in all reachable states of S [12]. The IC3 algorithm was implemented
and adjusted1 to the DimSpec format in the tool MinireachIC3 by Suda [30].

Comparison to Other SAT Formats. An alternative approach to DimSpec
for utilizing the benefits of incremental SAT solving is the IPASIR interface
introduced for the 2015 International SAT Race [4]. In contrast to DimSpec,
which is a file format, IPASIR is a collection of C/C++ function prototypes, i.e.,
an application program interface (API). Numerous state-of-the-art SAT solvers
implement the IPASIR interface, which makes it very easy and convenient to
develop applications using incremental SAT solving without committing to any
particular SAT solver.

The advantages of IPASIR over DimSpec are more flexibility (the clauses
for the next incremental SAT call can be constructed dynamically based on
previous results), more functionality (IPASIR provides much more control over
the SAT solver and allows the user to extract more information from the SAT
solving process, such as learned clauses or failed assumptions). On the other
hand, DimSpec is much easier to use since it does not require any programming
and it can be used to express unreachability of transition systems, which is
impossible with IPASIR. Furthermore, any SAT solver supporting IPASIR be can
used in the IncPlan application [16], which renders it into a DimSpec solver. In
summary, DimSpec is a purely declarative approach while IPASIR is procedural.

Another declarative format related to DimSpec is AIGER [10] with safety
invariants. AIGER is the format for representing and-inverter graphs, which
represent a structural implementation of the logical functionality of a circuit or
network. DimSpec and AIGER-safety are mutually translatable2.

3 Encoding for Software Model Checking

We give a short introduction into the Satisfiability Modulo Theories (SMT)
and the LLVM Framework, which are necessary to understand the encoding.

1 The clause sets I,U , T represent the transition system S, and G represents the
negation of the invariant property P .

2 We omit the description of these translations due to space limitations.
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Afterwards, we will describe a DimSpec encoding for the software model check-
ing approach in more detail to show the feasibility and advantages of encoding
problems into the DimSpec format.

Satisfiability Modulo Theories (SMT). Due to quantifiers and infinite
domains, first-order-logic is generally undecidable but there are numerous decid-
able sub-theories. As is for example described in [11], the problem of solving
those subsets or theories is called satisfiability modulo theories or SMT. These
theories can be seen as restrictions on possible models of first-order-logic for-
mulas [27]. For our encoding, we will only use the theory of bit-vectors. SMT
was standardized by the SMT-LIB initiative [5]. We will use the same notations,
especially when referring to SMT functions defined in the different theories. Such
an SMT-LIB function could for example be bvadd(b1, b2), describing the addition
of two bit-vectors b1 and b2. A more complex function is called if-then-else
(ite) and is defined by:

∀c ∈ BV1, x, y, z ∈ BVi (x = ite(c, y, z) ⇔ c ∧ x = y ∨ ¬c ∧ x = z) . (1)

We refer to the theory of fixed-size bit-vectors defined by the SMT-LIB stan-
dard in [5]. The theory of bit-vectors models finite bit-vectors BVn of length n
and operations on these vectors in first-order-logic. The set of function symbols
contains standard operations on bit-vectors such as addition or concatenation.

LLVM Representation. LLVM is an open source compiler framework that
consists of a “collection of modular and reusable compiler and tool-chain tech-
nologies” [26]. It supports compilation for a wide range of languages and is
known for its research friendliness and good documentation. To work directly
on C-code is very complex and it is extremely cumbersome to support all lan-
guage features. Thus, we use the intermediate language of LLVM, which allows
for a much simpler characterization of the semantics of statements and pro-
vides a number of optimizations and simplifications suitable for our approach.
We describe the constructs of LLVM bottom up. The smallest executable unit is
called an instruction. An instruction is an atomic unit of execution that performs
a single operation. A basic block is a linear sequence of program instructions hav-
ing one entry point and one exit point. It may have multiple predecessors and
successors and may also be its own successor. The last instruction of every basic
block is called terminator. Every basic block is part of a function. A function
(n,B, e) is a tuple of a name n, a sequence of basic blocks B = (b0, b1, ..., bm),
and an entry block e ∈ B. Hereinafter, we will denote the main function of a
program with fmain. A module m = (Fm, Gm) is a pair of a set of functions Fm

(including fmain) and a set of global variables Gm.
To optimize our encoding, we run some predefined optimization passes from

LLVM and LLBMC on the generated LLVM-module. Among other things, these
optimizations handle uninitialized local variables in C-code, promote memory
references to register references (as far as possible) and inline all functions into
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one main function. These optimizations are described in more detail in [20]. The
resulting LLVM-module is then used as input for our encoding.

3.1 Idea and Error Definition

A bug or error in a software program is a well-known notion, but there exists no
universal definition. A general concept is that a program has an error, if it does
not act according to its specification. For this paper we concentrate on notions
standardized in the SV-COMP competitions. Thus, we consider calls to assume
and assert and support both standard ANSI-C and notions used in benchmarks
of the competition. We state that a program acts according to its specification
if the assert statements are true if all assume conditions are met. If an assume
condition is not met, the further run of the program is not specified and thus no
errors can occur.

Definition 1 (Program Error in LLUMC). Let P be a program. Then there
exists an error in P , if all calls to assume that are prior to an assert statement
are true and a call to assert with a parameter value of false is invoked.

Of course, there are other errors that can happen during a program execution
like irregular bit-shifting, non-termination, or integer and buffer overflows.3

To verify a C program P with respect to Definition 1, we first translate P
to LLVM-IR (i.e. an LLVM-module) using the Clang compiler. After inlining all
function calls, we can concentrate on just the main function. Every basic block
together with its variable assignment can be seen as a state. We then add a
special error state and try to find a path from the entry state, defined by the
entry block of the main function, to the error state.

3.2 State Space

Transitions from one state to a next state will always represent transitions from
one basic block to the next with respect to its current variable assignment. Often
this kind of encoding is called small block encoding [7]. According to the theory
of bit-vectors, we define every state variable as a bit-vector of length n. The
number of bit-vectors in the state, including the bit-vectors representing the
current and previous basic block, define the number of SMT variables that are
needed to encode the state. The number of bits in total, i.e. the sum of the length
of all bit-vectors encoding a state, equals the number of CNF variables needed.

In our approach, we ignore memory accesses by over-approximating them
(i.e. each memory read results in a non-deterministic value). Accesses to stack
variables, which in most cases can be put into virtual registers by LLVM, are
handled precisely, though, and are sufficient in many cases.4 First of all, every
state has to save the current basic block. Hereinafter, |B| denotes the number of
3 In our tool LLUMC, we have additionally implemented checks for integer overflows.

These are not part of our experimental evaluation, though.
4 Integrating a full memory model into our approach is part of future work.
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basic blocks of the main function after inlining. For our encoding we need two
additional blocks. The ok block represents a safe state from which no more errors
can occur. This block is reached when the program terminates or when an assume
condition is not met. The second block is called error and is our goal state,
representing that an error occurred. With the function enc(bb) : BasicBlock →
N we injectively map every basic block to a natural number. If there are |B|
basic blocks in main, the required length of the bit-vector encoding a state’s
basic block is 
log2(|B| + 2)�. We call the SMT-variable encoding the current
basic block curr. In LLVM, the value of a register can depend on the previous
basic block (more specifically, this is the case for phi instructions) and must
thus also be encoded, resulting in another bit-vector of length 
log2(|B| + 2)�,
called pred. Furthermore, we need to save the current variable assignment. We
do not need the assignment of all variables, but should focus on those that
will be accessed later on and cannot be eliminated through optimization. Those
variables can be classified by two properties. We call the set of those variables
V , consisting of

1. variables that are used in more than one basic block and
2. variables that are read before written in a basic block that is part of a loop.

The length of the variables depends on their type. The standard integer type
(int) in C has a width of 32 bits on many architectures, long has 64, and Boolean
values have a width of 1. There are other types, but their lengths are always
specified by LLVM and thus can easily be extracted.

Definition 2 (State). The state space is the Cartesian product over the set
V ∗ of all state variables and the two state-encoding basic-block variables: V ∗ =
{curr, pred} ∪ V . Every variable v of the state space has a fixed bit-length �v.
For a specific step k, the state state(k) is the assignment of concrete bit-vector
values to every variable.

3.3 Encoding to DimSpec Format

Our goal is to encode an LLVM-module as defined at the beginning of this
section into DimSpec format. Therefore, we must define the four CNF formulas
{I,G,U , T } in such a way that if there exists a transition from I to G defined
by T and restricted by U then there exists an error in the given program code.5

The initial formula I can be created by encoding the entry block of the
LLVM-module. The encoding has to represent the state that we are currently at
the first basic block and that there were no prior actions. We declare the entry
block itself as the predecessor to exclude any prior actions. The entry block
and thus the initial formula is independent from any transition. The rest of the
variable assignment is arbitrary at this point and can be left undeclared. The
encoding of the goal formula G can be defined accordingly.
5 A detailed example of the encoding, starting with C-code, over the LLVM repre-

sentation to the SMT encoding, can be found online at https://baldur.iti.kit.edu/
icfem2019/Appendix.pdf.

https://baldur.iti.kit.edu/icfem2019/Appendix.pdf
https://baldur.iti.kit.edu/icfem2019/Appendix.pdf
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Definition 3 (Encoding of the Initial and Goal Formula). Let entry be
the name of the first block and let error be the name of the error block, then the
initial formula I(k) and the goal formula G(k) for the LLVM-module and for
k ∈ N are defined as:

I(k) = curr = enc(entry) ∧ pred = enc(entry),
G(k) = curr = enc(error).

The universal formula consists of constraints that have to be true in all states.
In our case, that are boundaries for the variables curr and pred. In the previous
section, the number of bits needed to encode the current and previous basic
block were defined as 
log2(|B|+2)�. In most cases |B|+2 is not a power of two
and thus bigger numbers can be represented. These numbers must be excluded
at all times in the universal formula U .

Definition 4 (Encoding of the Universal Formula). Let |B| be the number
of basic blocks in the LLVM-module, then the universal formula U(k) for k ∈ N

is defined as:

U(k) = curr ≤ (|B| + 2) ∧ pred ≤ (|B| + 2) .

At last, we have to define the transition formula. It represents the transition
between state k and state k +1. It is important to notice that the transition for-
mula has twice as much variables as the other formulas. To distinguish between
the variables in time-point k and k+1 every variable v of our state space is called
v′ at time-point k + 1. Otherwise, every transition formula would be evaluated
to false and thus no transition step could ever be taken. In general, the encoding
of one transition has the form:

state(k) ⇒ state(k + 1). (2)

We call state(k) antecedent and state(k + 1) consequent. For each state(k) that
is reachable from our initial state, a transition must be defined. An undefined
transition leads to an undefined state(k + 1) with arbitrary values. Thus, if
there is a reachable, undefined transition all goal states can be reached. For the
same reason, we determine that for each state(k) the transition must be explicit.
Variables that are not important for the transition should not be declared in the
antecedent but should be specified in the consequent to avoid undefined values.
We will use the auxiliary function

same(bb) : Basic Block → SMT-formula

to encode that variables which are not modified in a basic block maintain their
current value. The function same(bb) returns the conjunction of all var = var′,
for all variables in our state space, that have not been modified in the transition
of our basic block bb.

To encode the transition between steps, we take a closer look at the current
basic block, further denoted as bb and customize Eq. 2 for different branching
possibilities. We divide basic blocks into three groups and distinguish them by
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means of their terminator. The three different types of terminator instructions
are called unconditional branching, conditional branching and return.

Unconditional Branching (br %bb2): Branches to the basic block with the
label bb2 and creates a transition from the current basic block to bb2. If the
current basic block has no other instructions, only the change of basic block and
the saving of the predecessor have to be encoded. Furthermore, we have to state
that no variables have changed during this transition:

curr = enc(bb) ⇒ curr′ = enc(bb2) ∧ pred′ = enc(bb) ∧ same(bb). (3)

This encoding is rarely complete, because it does not regard all other instructions
in the basic block bb. Let rlbb be the ordered list of instructions from bottom
to top in bb. Then we iterate over rlbb and regard all instructions inst that are
part of our state variables inst ∈ V and are not the terminator instruction. The
instruction is then recursively encoded according to its type and its operands.
When an instruction like %tmp3 = add i32 10 %tmp2 is encoded by the method
visitInst(%tmp3), the algorithm checks the operands first. When regarding
the value %tmp2, the algorithm checks whether it is a variable that is part of
our state or a value calculated by an instruction, which the algorithm has to
then encode recursively. The stop criterion is always the occurrence of a state
variable, a constant or a call to assert, assume or error. The encoding then
creates SMT formulas dependent on the operands. Assuming %tmp2 is a variable
from our state space, the encoding for the add instruction would result in tmp3’
= add(10, tmp2). This generated SMT formula is then conjuncted with the
consequent of Eq. 3. The algorithm continues by iterating further through the
list rlbb until there are no instructions left.

Conditional Branching (br %cond, %bb1, %bb2): Creates a transition
to bb1 with the condition cond = 1 and a transition to bb2 with the condition
cond = 0. Every conditional branch has a branching condition represented as
a variable (cond). We can extract that condition by visiting and encoding the
variable representing the branching condition. In LLVM this branching condi-
tion is represented as a Boolean value that is assigned by the so called icmp -
instruction. This instruction returns a Boolean value based on the comparison
of two values and it supports equality, unsigned and signed comparison. The
icmp-instruction is then encoded recursively by visiting its two operands with
the same visiting approach as described for the unconditional branching. The
result could for example be the SMT encoding of the mathematical condition
tmp2 > 10. Based on it, the algorithm creates two separate transitions.

curr = enc(bb) ∧ visitInst(cond) ⇒
curr′ = enc(bb1) ∧ pred′ = enc(bb) ∧ same(bb).

curr = enc(bb) ∧ ¬(visitInst(cond)) ⇒
curr′ = enc(bb2) ∧ pred′ = enc(bb) ∧ same(bb).

Furthermore, the list rlbb is traversed as described previously resulting in a final
encoding of the current basic block.
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Return Value (ret val): The value val can be an arbitrary integer and repre-
sents the return value of the program as usual. This terminator creates a tran-
sition to ok. In an extended and already implemented version, another check is
inserted verifying that the result value of a correct program is 0 and if this does
not hold a transition to error is created.

After encoding branching possibilities, we will look at the calls to assume,
assert, error. During the instruction iteration of a basic block, we regard these
instructions differently because they lead to a split of our transitions.

Method Calls (Error, Assume, Assert): If the error-method, which is used
to specify program errors in C-code, is called inside a basic block, we do not
have to regard any other instructions and thus delete all other transitions from
this basic block. We produce a single transition:

curr = enc(bb) ⇒ curr′ = enc(error) ∧ same(∅).

The other three possibilities lead to a split of our transitions similar to the con-
ditional branching. A call of assume(var) divides the set of current transitions
for our basic block. The condition is var = 0 and leads to a transition to the
ok state with s′ = enc(ok). The call to assert(var) is similar only with the
transition to s′ = enc(error) if var = 0 holds true. In both cases, the encoding
continues normally with the next instruction if the conditions are not met.

All components of the transition formula have now been discussed. To obtain
the complete transition formula the algorithm has to iterate over all basic blocks
of the main function. Depending on their terminator instruction, every basic
block has to be encoded according to the definitions above. To predict which
transition is taken in which step would be equal to solving the whole formula.
Thus, the transition formula is time independent and the transition possibilities
for all time steps are part of the formula.

Definition 5 (Encoding of the Transition Formula). Let BB be the set of
all basic blocks of fmain and let encode(b) with b ∈ BB be the encoding as shown
above, then the transition formula T (k, k + 1) for k ∈ N is defined by:

T (k, k + 1) =
∧

b∈BB

encode(b). (4)

Claim. There exists an error as defined by Definition 1 in program p iff

1. p is transformed into an LLVM-module � as described in Sect. 3 and
2. there exists a transition path in � from the initial state to the goal state while

the universal formula holds in all states.

Proof Idea: We forego on a formal proof, because it would require a structural
induction over huge sets of C-Code and the LLVM-language. Instead, we present
short arguments and references for our claim.

(1): Using LLVM as a representation for C-code is widely accepted and used in
research and industry. We assume that the transformation from C-code
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into a LLVM-module does not remove or add any errors based on the
high number of research papers [1,3,6] and tools like LLBMC [27] and
SeaHorn [17].

(2): The error node has two types of incoming edges: from an assert statement
and an edge from the error node itself. We disregard the edge that points
to itself and are left with the option that match the property defined in
Definition 1. If the encoding of the variables is, as we claim, correct and our
state space is closed under T and U , we can assume that the a transition
path from the initial state to the error state complies with an error in the
LLVM-module.

From SMT to SAT Formula. The encoding of the LLVM-module gives us
four SMT formulas. Currently, there are no SMT solver that support the Dim-
Spec format and thus these formulas have to be translated into four CNFs in
DimSpec format. The most widespread approach to transform SMT to CNF for-
mulas is called bit-blasting. We have taken one approach implemented in STP [15]
and the ABC-library [18] and modified these algorithms to correspond to some
technical requirements of the DimSpec format. Finally, a CNF in the DimSpec
format is created that can be used as input for a number of SAT solvers.

4 Solving the Formula: Bounded vs. Unbounded Model
Checking

The general idea of bounded model checking (BMC) is to encode paths of a
transition system up to a certain bound. For software, the bound is maintained
by unrolling loops and inlining function calls at most k times. The number k is
called the bound and is the reason for the decidability of bounded model checking
but also for its limitations. After the unrolling and encoding of the program, a
formula that represents the negation of a desired property is added, and the
formula is solved with an SMT or SAT-solver. If the solver finds a model for
the formula, the approach has found an error and the model can be used as
a counterexample. The loop-bound can be increased step by step until a fixed
bound k is reached. The question to which bound the loops should be unrolled
is complex and further discussed for example by Biere et al. [9].

As mentioned earlier, our encoding to the DimSpec format leads to a unified
encoding for both bounded and unbounded model checking. Whether our app-
roach can be categorized as a bounded or unbounded model checking technique
depends on the kind of solver that is used to solve the generated formula.

A first approach is solving the formula with an incremental SAT-solver as
described in Sect. 2. We argue that the approach using an incremental SAT-
solver has to be categorized as bounded, because the problem is unrolled during
solving time and the verification is limited by the number of unrolling steps that
can be performed under time and memory restrictions. However, compared with
state-of-the-art bounded model checkers, there is a crucial difference in how our
verification approach is bounded. Bounded model checkers require a fixed bound
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early during their analysis to generate the corresponding problem instance, which
cannot be directly reused for other bound settings. For our approach the encod-
ing itself is independent of any unrolling. Only during solving of the instance the
loop is unrolled leading to the bound that is perceptible through the time and
memory limit which allows us to unroll only a finite number of times.

When solving the generated formula with an invariant checking algorithm as
e.g. the in Sect. 2 described IC3-algorithm, the approach becomes unbounded.
The whole path to the error label is computed using abstractions which are
iteratively refined until either the error path is concrete and no further refinement
is possible or a repetition is detected, from which the absence of errors can be
deduced. Thus, our approach is truly unbounded, but of course limited by time
and memory constraints when solving difficult problems. In summary, our unified
encoding can be used for both unbounded and bounded model checking.

5 Experimental Results

The LLUMC-approach is implemented as a tool chain. The input file, a C source
file, is compiled with Clang (version 3.7.1) and then optimized with LLVM and
LLBMC passes. This optimized LLVM module serves as input for the program
LLUMC, which performs the encoding as described above. We modified the tool
STP to translate SMT formulas to DimSpec problems. The final renaming and
aggregation is implemented directly in LLUMC.

We combined the two different approaches described in Sect. 4 to solve the
generated DimSpec/CNF formulas. The tool IncPlan [16] was developed at KIT
and implements the incremental SAT-solving interface described in Sect. 3. It can
be used with every SAT-solver that accepts the Re-entrant Incremental Satisfia-
bility Application Program Interface (IPASIR). We have evaluated IncPlan with
a number of SAT-solvers including Minisat [29], abcdSat [13], Glucose [2] and
Picosat [8]. While Glucose and Minisat produced good results for some bench-
marks, the IncPlan implementation for these solvers exhibited segmentation-
fault errors for some of the benchmark instances. Thus, we focused on the usage
of abcdSat and PicoSat. We only show the results of running IncPlan with abcd-
Sat as the backend solver since exchanging abcdSat with PicoSAT resulted in
negligible performance differences. For the incremental SAT-solving performed
with IncPlan and abcdSat, we are only able to find errors in programs but cannot
prove their absence. The reason is the design of the incremental solver IncPlan.
It regards the encoding as a path to the error label that has to be found and if
there is no such path, the program does not terminate. To also be able to prove
the nonexistence of errors an analysis for repetition in the state space has to be
performed, which is part of future research.

Secondly, the IC3 algorithm was implemented and adjusted to the DimSpec
format in the tool MinireachIC3 [30]. The safety property P expresses that the
error state should not be reachable, and thus P is given by ¬G, G being the
goal formula of the DimSpec encoding. Thus, we are not only able to prove the
existence of errors but also their absence.
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We ran both tools in parallel and took the results of the tool that terminated
first. As both tools are sound, this approach guaranteed the correct result while
circumventing disadvantages of each single approach, like the inability to prove
the absence of errors through the tool IncPlan. Thus, we are able to take full
advantage of the usability of the encoding for different solving techniques.

5.1 Benchmarks

We evaluated our approach using benchmarks from the Software Verification
Competition [6]. The SV-COMP is an annual competition for academic software
verification tools, with the aim to compare software verifiers. While we did not
submit our tool to the competition, the collected benchmarks serve as an excel-
lent evaluation basis for every verifier. All benchmarks are available at [32] and
we regarded the sub-folder c with programs written in the language C.

The benchmark problem sets are organized by topics. From these bench-
marks, we selected all problems compatible with our current LLUMC imple-
mentation and thus obtained a total of over 200 problems as a benchmark set.
We excluded some benchmarks that included memory accesses or floating point
arithmetic. Furthermore, we excluded recursive and concurrent tasks due to the
inlining in our approach and thus leaving us with 95 incorrect and 107 correct
programs. The benchmarks vary between 14 and 1500 lines of code (LoC).

The evaluation was performed on a system with 64 CPUs with 2.3 GHz and
126 GB working memory. We set a time limit of 600s (wall-clock time) per bench-
mark problem. We decided to measure the wall-clock-time for the whole LLUMC
tool-chain. Due to using GNU parallel [33], we were able to run benchmarks in
parallel, but decided to use only 8 CPUs to limit run-time noise arising e.g. due to
processes sharing CPU caches. Our approach works sequentially, and parallelism
is only achieved by running several benchmarks at once. The DimSpec format
supports parallelism on the SAT level, the advantages remain to be evaluated
thoroughly in future research.

5.2 Evaluation

We compared our approach to the bounded model checking approach which
is implemented for example in the tools CBMC (C Bounded Model Checker)
[23] and LLBMC (Low Level Bounded Model Checker) [28]. Both tools, CBMC
and LLBMC, are powerful state-of-the-art verification tools, which also earned
a number of gold, silver and bronze medals in the SV-COMP competitions.

We created scripts similar to the respective SV-COMP submissions from
recent years, but handled some configurations differently. Benchmarking with
bounded model checkers requires choosing a suitable loop unroll bound B, result-
ing in a trade off between precision (increases with B) and speed (decreases with
B). For the competition both solvers used specific bounds that were determined
through “educated guesses” [23]. Furthermore, in the competition, if a loop-
bound was reached and the solver failed to produce an answer, an educated
guess was made for the result. In our evaluation, we used the loop unroll bounds
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10, 100 and 1000 (in that order), aborting the solving process as soon as a verifi-
cation result was achieved. When reaching a time or memory limit, we classified
the problem instance as unknown. The scripts, benchmark sets and detailed
results are available at [21].

Fig. 1. Comparison of LLUMC with CBMC and LLBMC. The x-axis represents the
number of problems the solvers were able to solve and the y-axis the time they needed.

The results of our evaluation are shown in Fig. 1 and indicate both function-
ality and runtime advantages on the chosen benchmarks6. To explain the advan-
tage of our approach and the encoding over the state-of-the-art for bounded
model checking, we have to look at the solving approaches individually.

The advantage of the incremental solving with abcdSAT over bounded model
checking approaches is caused by our new approach of encoding the verification
problem and thereby the bound. With bounded model checking, programs are
unrolled to a fixed bound in an early phase of the analysis and the SAT encoding
is specifically created for this one bound. This fixed bound is mostly given by the
user and when not sufficient enough the verification has to be reattempted for
the new bound. With our approach, an unbounded low-level encoding is used,
with the unrolling bound being iteratively increased by the incremental backend
solver, which is able to reuse facts learned with lower bounds.

The chosen benchmark-set from the SV-COMP includes a large number of
problems with unbounded loops and loops with large bounds. While the basic
bounded model checking approach cannot handle unbounded loops, the abstrac-
tion refinement of MinireachIC3 is able to abstract the state space and prove the
absence of errors better then state-of-the-art tools. The number of benchmark
6 Detailed figures about the single solving approaches can be found online at https://

baldur.iti.kit.edu/icfem2019/Appendix.pdf.

https://baldur.iti.kit.edu/icfem2019/Appendix.pdf
https://baldur.iti.kit.edu/icfem2019/Appendix.pdf
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problems solved still indicates that proving the absence of errors for programs
with large loops is still a difficult task, but the approach using MinireachIC3
leads to a significant improvement.

This experimental evaluation illustrates the feasibility and potential of our
approach. We show that our flexible encoding supports a variety of different
approaches for solving the generated CNF in DimSpec format. In total, our
algorithm is competitive with existing bounded model checkers and can even
outperform them on some instances, especially ones with large loop bounds or
unbounded loops.

6 Conclusion and Future Work

In this paper we presented the DimSpec format for specifying properties of tran-
sition systems on the SAT level. It has already been successfully employed in
SAT-based automated planning in the past, and we showed that it can also be
advantageous to handle software verification problems. Our new DimSpec-based
encoding tool LLUMC can be used to express software verification problems
independently from loop-bounds, and thus can be used for both bounded and
unbounded model checking. Basing our encoding on DimSpec enables us to lever-
age powerful DimSpec solvers for software verification.

In future work the performance of the LLUMC approach could be improved
by enlarging the incremental steps of the solver. A first evaluation shows that
merging basic blocks in LLVM leads to performance improvements, indicating
that a large block encoding could be advantageous. Furthermore, adding a full
memory model to the LLUMC approach will enable us to support a wider range
of C language constructs.
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Abstract. SMT (Satisfiable Module Theory) formulas have been widely
used in practical applications. In some of the applications, including find-
ing program bugs, plainly solving an SMT formula is sufficient. For other
applications, besides solving the SMT formula, backbone variables of the
SMT formulas are also needed in order to tackle the practical problems
including finding invariant of certain properties in program analysis. This
paper proposed a new approach SMTBCF to compute backbone variables
for SMT formulas in order to accelerate the computing of backbone vari-
ables in SMT formulas and increase the efficiency of SMT formulas in
practical applications. SMTBCF is the first algorithm that uses the back-
bone predicates to find part of the backbone variables in the SMT for-
mulas. SMTBCF is also the first algorithm that uses the constants in
the relating predicates of a backbone variable to quickly find the Unsat-
isfiable Evaluation of the backbone variable. In this way, SMTBCF is
able to find backbone variables of SMT formulas, reduce the number of
SMT solving in SMT backbone computing, and increase the efficiency of
backbone variables in SMT formulas.

Keywords: Backbone · SMT · Verification

1 Introduction

During the years, SAT formulas and its applications have been widely used in
computer science areas. Biere et al. [1] use SAT formulas to prove the correctness
of properties in the systems. By encoding hardware states into SAT formulas,
the BMC (Bounded Model Checking) method is able to prove the correctness
of some properties within the given bounded steps. Bradley [2] also encodes
hardware states into SAT formulas and uses it to check the safety properties of
the system, without unrolling the states, IC3 is able to prove the correctness of
some properties in all the possible states with the help of reachability analysis.

There are backbone variables in SAT formulas that are always assigned to
true in every solution of the formula. Both BMC and IC3 will benefit from back-
bone computing of SAT formulas since the SAT solving in them are incremental,
finding backbone variables in an earlier SAT solving will accelerate the efficiency
of the following SAT solving. The identification of backbone improves the perfor-
mance of random SAT solvers [3,4,6], Lin-Kernighan local search algorithms for
c© Springer Nature Switzerland AG 2019
Y. Ait-Ameur and S. Qin (Eds.): ICFEM 2019, LNCS 11852, pp. 36–51, 2019.
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Travel Salesman Problem [5] and the post-silicon fault localization in integrated
circuits [7,8]. It also improves the performance of chip verification [9], graph
coloring problems [11], and the artificial intelligence strategies generation [10].
Therefore, computing backbone variables is useful in practice for SAT appli-
cations. Based on the impacts of backbone variables with SAT formulas, it is
convincing that backbone variables are also going to be helpful in SMT formulas
and applications.

Combined with specific background theories (logics) and propositional logic,
SMT formulas are able to express more complicate applications. For example,
Abdulla et al. [12] use SMT formulas and SMT solvers to check the security
of web applications, Barnett et al. [13] use SMT formulas and SMT solvers to
verify the correctness of programs, and Cadar et al. [14] use SMT formulas and
SMT solvers in symbolic execution to automatically generate testing cases for
programs. Katz et al. [15] use SMT formulas and SMT solvers (customized) to
find adversarial examples of Deep Neural Network and verify the robustness of
Deep Neural Network.

There are also backbone variables in SMT formulas, for a backbone variable
x of a given SMT formula F , there must exist at least one assignment s of x,
such that F is not satisfiable if x is assigned to s. Similar to SAT backbone
variables, SMT backbone variables are also able to accelerate the following SMT
solving, explain the reasons why a certain property holds or does not hold in an
SMT formula, which is helpful in practice.

For instance, in Linear Optimization applications, given an encoded SMT
formula F and an object variable o, SMT solving is able to solve the maximum
value of o with the given constraints, but we are not able to find which vari-
ables of F are important to keep o greater than the threshold t. By adding the
constraint v(o) > t to the original SMT formula F to build F ′, and computing
the backbone variables of F ′, important factors that keep the value of o greater
than t are recognized, the backbone variables of F ′ are exactly the important
factors. In program testing and verification, the reasons that cause certain errors
are able to found by backbone variables. In Deep Neural Network Robustness
verification, the reasons that cause adversarial examples are able to found by
backbone variables.

In this paper, an SMT formula F is first converted to a corresponding SAT
formula Fb, if Fb is not satisfiable, then F is not satisfiable and no backbone
variable is in F . If Fb is satisfiable and there are backbone variables in Fb, then
the corresponding predicates p in F are the backbone predicates. For a backbone
predicate p in F , the SMT variable x ∈ p is a backbone variable of F if x is the
only variable in p. If there is no backbone variable in Fb, then SMTBCF selects
a variable x in F based on a certain sorting and checks if x is a backbone
variable. If there exists an assignment s of x such that when x is assigned to
s, F is unsatisfiable, then x is a backbone variable. After finding a backbone
variable, SMTBCF computes the Largest Satisfiable Evaluation Range Rx

F for
every backbone variable x. There does not exist an assignment s′ of x such that
s′ /∈ Rx

F and F is satisfiable when the value of x is s′.
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There are 3 main contributions in this paper:

(1) A systematic framework from the view of Evaluation (Range) to define and
describe the backbone variable of SMT formulas has been proposed.

(2) An efficient algorithm to find the backbone variables of SMT formulas has
been proposed.

(3) An efficient algorithm to compute the Largest Satisfiable Evaluation Range
of a given backbone variable x for an SMT formula has been proposed.

2 Preliminaries

A SAT (Satisfiability) formula F consists of SAT clauses, a SAT clause c consists
of SAT variables, a SAT variable x is a Boolean variable, a literal l is either a
SAT variable x of its negation ¬x, x = ¬¬x.

For a given SAT formula F , C(F ) represents the set of clauses that are in F ,
for a clause c if c ∈ C(F ), then c ∈ F . For a given SAT clause c, X(c) represents
the set of variables that are in c, for a variable x if x ∈ X(c), then x ∈ c. For a
given SAT clause c, L(c) represents the set of literals that are in c, for a literal
l if l ∈ L(c), then l ∈ c. For a given SAT formula F , X(F ) represents the set
of literals that are in F , for a variable x if x ∈ X(F ), the x ∈ F . For a given
SAT formula F , L(F ) represents the set of literals that are in F , for a literal l
if x ∈ L(F ), the l ∈ F .

A SAT formula F is the conjunction of every clause in C(F ),
i.e., F =

∧
, c ∈ C(F ). A SAT clause c is the disjunction of every literal in L(c),

i.e., F =
∨
, l ∈ X(c).

Example 1 (SAT Formula). F = (a∨ b) ∧ (a∨ ¬b) is a SAT formula, the clauses
in F are a ∨ b and a ∨ ¬b, the variables in F are a and b, the literals in F are
a, b and ¬b. The variables in a ∨ ¬b are a and b and the literals in a ∨ ¬b are a
and ¬b.

Similar to SAT formula, an SMT (satisfiable modulo theory) formula con-
sists of SMT constraints c, an SMT constraints consists of SMT predicates p,
an SMT predicate consists of SMT variables x. an SMT variable is a variable
in the background modulo theory of the SMT formula. In this paper, we focus
on LIA (Linear Integer Arithmetic) Theory, such that an SMT variable is an
Integer variable. A predicate is a sub-formula consisted of SMT variable and
LIA computing symbols (operators), including equals to (=), greater than >,
less than <, addition (+)... A formula is a conjunction of constraints, the con-
junction/disjunction of predicates is a constraint.

X(F ) is the set of SMT variables in a given formula F , if x ∈ X(F ) then x
is an SMT variable of F , denoted as x ∈ F . X(c) is the set of SMT variables
in a given constraint c, if x ∈ X(c) then x is an SMT variable of c, denoted as
x ∈ c. X(p) is the set of SMT variables in a given predicate p, if x ∈ X(p) then
x is an SMT variable of c, denoted as x ∈ p. P (F ) is the set of SMT predicates
in a given formula F , if p ∈ P (F ) then p is an SMT predicate of F , denoted as
p ∈ F . C(F ) is the set of SMT constraints in a given formula F , if c ∈ C(F )
then c is an SMT constraint of F , denoted as c ∈ F .
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Example 2 (SMT Formula). F = ((x > 0) ∨ (x + y > 0)) ∧ (y = 2) is an SMT
formula. The set of SMT constraints in F are (x > 0) ∨ (x + y > 0) and y = 2,
the SMT predicates in (x > 0) ∨ (x + y > 0) are x > 0 and x + y > 0, the SMT
variable in x > 0 is x, and the SMT variables in x+ y > 0 are x and y. x > 0 is
an SMT predicate of F and x + y > 0 is also an SMT predicate of F .

Definition 1 (SAT Assignment). A SAT assignment a is a function that
maps each variable x ∈ F to either true or false, i.e., a : x → {0, 1} for every
x ∈ F . An assignment (value) of a variable x is the value of x has been assigned
in the given assignment, i.e., an assignment (value) of x is a(x), a is the given
assignment.

Given an assignment a, the value of F is either true of false, if the value of
F is true, then a is a model of F , denoted as a |= F . If F a satisfiable formula,
there must exist a model v |= F , if F is an unsatisfiable formula, then for every
assignment a of F , a �|= F .

Definition 2 (SMT Assignment). In SMT formulas with LIA as background
theory, an SMT assignment a is a function that maps each variable x ∈ F to
Integers, i.e., a : x → I, for every x ∈ F , where I is the set of all Integers. an
SMT assignment also assigns every predicate p ∈ F to either true or false, i.e.,
a : p → {0, 1} for every p ∈ F . An assignment (value) of a variable x is the
value of x has been assigned in the given assignment, i.e., an assignment (value)
of x is a(x), a is the given assignment.

An SMT assignment a is called a model of F if the value of F under the
assignment of a is true, i.e., a |= F .

For every SMT formula F , there is a corresponding SAT formula Fb of F .
The set of variables X(Fb) is the same size as the set of predicates in P (F ), i.e.,
for every p ∈ F , there exists a SAT variable xb ∈ Fb, and for every such (p, x)
in F and Fb, there exists an SMT assignment a and a SAT assignment ab such
that a(p) = a(xb).

Suppose Fb is a corresponding formula of an SMT formula F , F is unsat-
isfiable if Fb is unsatisfiable, but F might still be unsatisfiable even if Fb is
satisfiable, because F needs to satisfy the constraints from the background the-
ory additionally.

Definition 3 (Predicate Valid Evaluation). For an SMT formula F and a
predicate p ∈ F , the Valid Evaluation of x ∈ p is an assignment x such that
there exists an assignment a, where a(p) = true and a(x) = s.

A Valid Range of an SMT variable x in a predicate p is the set of all the Valid
Evaluation of x ∈ p. For simplicity, if there is only one SMT variable x in a
predicate p, this paper assumes that the Valid Range of x ∈ p is a subset of the
Range of all the parameters in the background Modulo Theory, otherwise the
predicate p is removed since is trivial.
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Definition 4 (SAT Backbone Variable). For a SAT formula F , x is a back-
bone variable of F , if for every model v |= F , v(x) = 0 for all the time or v(x) = 1
for all the time. v(x) is always assigned to 1 in all the models of F , if x is called
a backbone literal of F , otherwise ¬x is called a backbone literal of F .

If a SAT variable x is not a backbone variable of F , then x is a non-backbone
variable of F , indicating that there exists at least two models v1, v2 of F such
that v1(x) = 0 and v2(x) = 1.

Definition 5 (Satisfiable Evaluation of x). For an SMT formula F , an SMT
variable x ∈ F , and an assignment sxF of x, sxF is called a satisfiable Evaluation
of x, if there exists a model v |= F such that v(x) = sxF .

For a constraint c ∈ F , sxc is a satisfiable Evaluation of x to c if there exists
a model v |= c such that v(x) = sxc .

Definition 6 (Unsatisfiable Evaluation of x). For an SMT formula F , an
SMT variable x ∈ F , and an assignment ŝxF of x, ŝxF is called the Unsatisfiable
Evaluation of x, if for every assignment a of F such that a(x) = ŝxF , a is not
the model of F .

For a constraint c ∈ F , ŝxc is a Unsatisfiable Evaluation of x to c if there does
not exist a model v |= c such that v(x) = ŝxc .

Similarly, for a non-backbone SAT variable x, there does not exist an Unsat-
isfiable Evaluation of x, for a backbone SAT variable x, the Unsatisfiable Eval-
uation of x is 0 (false).

Definition 7 (Satisfiable Evaluation Range of x). For an SMT formula
F , an SMT variable x ∈ F , and a evaluation range rxF for x, rxF is a satisfiable
Evaluation Range of x, if for every s ∈ rxF , s is a satisfiable Evaluation of x.

For a constraint c ∈ F , rxc is the Satisfiable Evaluation Range of x to c if
∀s ∈ rxc , s is a satisfiable Evaluation of x to c.

For a range r′ if r′ is a continuous sub-range of the Satisfiable Evaluation
Range of x, then r′ is called a continuous Satisfiable Evaluation Sub-Range of x.

Definition 8 (Unsatisfiable Evaluation Range of x). For an SMT formula
F , an SMT variable x ∈ F , and a evaluation range r̂xF for x, r̂xF is a Unsatisfiable
Evaluation Range of x, if for every s ∈ r̂xF , s is a Unsatisfiable Evaluation of x.

For an SMT formula F and an SMT variable x ∈ F , the intersection of rxF
and r̂xF is empyt, because a value s can not be both a satisfiable Evaluation of
x and an Unsatisfiable Evaluation of x at the same time.

For a constraint c ∈ F , r̂xF is the Unsatisfiable Evaluation Range of x to c if
∀s ∈ r̂xF , s is a Unsatisfiable Evaluation of x to c.

For a range r′ if r′ is a continuous sub-range of the Unsatisfiable Evaluation
Range of x, then r′ is called a continuous Unsatisfiable Evaluation Sub-Range
of x.
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Definition 9 (SMT Backbone Predicate). For an SMT formula F , p is a
backbone predicate of F , if for every model v |= F , v(p) = 1.

Definition 10 (SMT Backbone Variable). For an SMT formula F , x is a
backbone variable of F , if there exists at least exist an assignment s of x, when
the value of x is s, F is not satisfiable.

Lemma 1. Given an SMT formula F , a backbone variable x of F , there must
exist an Unsatisfiable Evaluation of x.

For every backbone variable x of an SMT formula F , the Largest Satisfi-
able Evaluation Range of x is denoted as Rx

F , there does not exist a satisfiable
Evaluation s of x such that s /∈ Rx

F . For every continuous Satisfiable Evaluation
Sub-Range of rxF of x, rxF ⊆ Rx

F . The Largest Satisfiable Evaluation Range Rx
F

of x is the intersection of the Largest Satisfiable Evaluation Range Rx
c of x to

every clause c, i.e., Rx
F =

⋂
rxc , c ∈ F .

For every backbone variable x of an SMT formula F , the Least Unsatisfiable
Evaluation Range of x is denoted as R̂x

F , there does not exist a satisfiable Eval-
uation s of x such that s ∈ R̂x

F . For every continuous Unsatisfiable Evaluation
Sub-Range of r̂xF of x, r̂xF ⊆ R̂x

F . The Least Unsatisfiable Evaluation Range R̂x
F

of x is the union of the Least Unsatisfiable Evaluation Range R̂x
c of x to every

clause c, i.e., R̂x
F =

⋃
r̂xc , c ∈ F .

Notice that an Unsatisfiable Evaluation ŝ of x can not be computed by simply
solve the SMT formula ¬F . For example, for the formula x + y > 0, x = 1 and
y = −2 is a model of ¬F , but x = 1 and y = 2 is also a model of F . Since the
computing of backbone variables only focus on a single variable x, it is easy for
both F and ¬F are satisfiable with the same assignment of x. Therefore, the
quantifier SMT solving have to be used without consider the structure of the
SMT formula, in this case, the quantifier SMT formula is ∃ŝ∀v, s.t.v(x) = ŝ, v |=
¬F . Actually, neither x nor y is a backbone variable of F .

3 Systematic Framework for Backbone Variables of SMT
Formulas

A systematic framework to define and describe the properties of backbone vari-
ables of SMT formulas form the range interval view is proposed in this section.
Given an SMT formula F , and a variable x, if x is a backbone variable of F ,
then there exists at least an Unsatisfiable Evaluation of x, otherwise, there does
not exist an Unsatisfiable Evaluation of x.

If x is not a backbone variable of F , the only way to know is using quanti-
fier SMT solving. If x is a backbone variable of F , then the Largest Satisfiable
Evaluation Range of x is a piece-wise interval, separating by the Unsatisfiable
Evaluations. Therefore, by using the constants in the constraints c such that
x ∈ c, an Unsatisfiable Evaluation ŝ could be guessed, and the backbone check-
ing of x could be finished without quantifier SMT solving. Since quantifier SMT
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solving is extremely time consuming, by reducing quantifier SMT solving, effi-
ciency has been improved.

Figure 1 shows the Largest Satisfiable Evaluation Range of x in the formula
F = (x ≤ −2 ∧ x ≥ −4) ∨ (x ≤ 4 ∧ x ≥ 2) ∧ (x + y > 0), as observed from
Fig. 1, the Largest Satisfiable Evaluation Range of x in F are piece-wise intervals.
Actually, in SMT formulas that use Linear Integer Arithmetic as background
Modulo Theory, the evaluation range of an SMT variable x are always piece-
wise intervals. To compute the Largest Satisfiable Evaluation Range Rx

F of x,
only Unsatisfiable Evaluation Ranges R̂x

F of x is needed, since the complementing
set of Rx

F is R̂x
F .

Fig. 1. Largest Satisfiable Evaluation Range of x for a given formula F

A continuous Unsatisfiable Evaluation Range r̂ is able to be computed with
an Unsatisfiable Evaluation ŝ ∈ r̂. Therefore, by using the constants in each con-
straint c such that x ∈ c, Unsatisfiable Evaluations are computed and Unsatisfi-
able Evaluation Ranges are computed correspondingly. After finding all Unsat-
isfiable Evaluation Ranges from the constant in constraints, only one quantifier
SMT solving is needed to check there is no other Unsatisfiable Evaluation.

For a SAT formula, if x is a backbone variable of F , then either true or
false is an Unsatisfiable Evaluation of x, and applications of SAT formulas
are able to accelerate the computing efficiency by avoiding the Unsatisfiable
Evaluation. For an SMT formula, if x is a backbone variable of F , there must
exists at least an Unsatisfiable Evaluation of x, and there must exist at least one
Unsatisfiable Evaluation Range of x. In order to accelerate SMT applications
by avoiding the Unsatisfiable Evaluation Range of x, we need to compute the
Largest Satisfiable Evaluation Range of x, i.e., Rx

F . Figure 2 shows the overall
working flow of SMTBCF finding backbone variables in an SMT formulas and
computing the corresponding Largest Satisfiable Evaluation Ranges.

For a given SMT formula F , SMTBCF first computes the corresponding SAT
formula Fb of F . If Fb is not satisfiable, SMTBCF terminates since F is not
satisfiable, otherwise, SMTBCF computes the backbone variables of Fb. For every
backbone variable xb in Fb, there exists a corresponding backbone predicate p in
F , if there is only one single SMT variable x in F , then x is a backbone variable
of F , and x is in the set of BX(F, 0).

The set of backbone variables of F is BX(F ), and SMTBCF gradually
finds all variables in BX(F ). For the rest of variables X(F ) \ BX(F, 0) in F ,
SMTBCF assigns a certain weight to each variable and sorts them in a descend-
ing order based on their weights. For a variable x, if x appears multiple times
in a constraint c ∈ F , then the weight of x is 3, if x appears in a constraint c
with some other known backbone variables x′, the weight of x is 2, for the rest
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of the variables, the weight of them are 1. With the computing of SMTBCF ,
the weights of variables may change. SMTBCF then start to check if a variable x
is a backbone variable or not, starting with the variables that have the greatest
weights. Notice that with more and more backbone variables found by SMT-
BCF , the variables that are originally weighted as 1 may increase their weights
to 2 as they may appear in the same constraints with some newly found back-
bone variables. During the checking, SMTBCF uses the constants in the related
constraints of x to find an Unsatisfiable Evaluation s quickly.

4 Design and Implementation of SMTBCF

Fig. 2. Working flow of SMTBCF

After finding all backbone variables in F , SMTBCF then computes the Largest
Satisfiable Evaluation Range Rx

F of x using the constants in each related con-
straints and the quantifier SMT solving. For a backbone variable x, SMTBCF uses
the constants in constraints that x appears and the known Largest Satisfiable
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Range of backbone variables that appears in the same constraint c to find the
Unsatisfiable Evaluation Ranges of x, the Unsatisfiable Evaluation Ranges of
x found this way (without quantifier SMT solving) are in the set of ¬R. After
finding all ranges in ¬R, SMTBCF uses only one quantifier SMT solving to check
if all Unsatisfiable Evaluation Ranges of x are found.

4.1 Find Backbone Variables Using Backbone Predicates

To find backbone predicates of a given SMT formula F , the corresponding SAT
formula Fb of F need to built. For every p ∈ F , there exists a SAT variable xb in
Fb, the same conjunctions and disjunctions operate on every p are also operate
on every xb. For example, for an SMT formula F = ((x > 2) ∨ (x < 4)) ∧ (y >
3) ∧ (x + y > 0), there are 4 predicates in F , including x > 2, x < 4, y > 3,
x + y > 0, then there are 4 SAT variables in Fb, and x1

b denotes x > 2, x2
b

denotes x < 4, x3
b denotes y > 3 and x4

b denotes x + y > 0. The corresponding
SAT formula Fb of F is Fb = (x1

b ∨ x2
b) ∧ x3

b ∧ x4
b . After building Fb, this paper

uses on-the-shelf tool to compute backbone variables of Fb, including minibones
in [16], and DUCIBone in [17]

Theorem 1. Given an SMT formula F and an SMT predicate p ∈ F , if p is
a backbone predicate of F , and x is the only SMT variable in p, then x is a
backbone variable of F .

Proof. For an SMT formula F and a backbone predicate p ∈ F , then for every
model v |= F , v(p) = 1. And if x is the only SMT variable in p, then the
Valid Range of x ∈ p is a subset of the background modulo theory. The there
must exist an Unsatisfiable Evaluation s of x such that s is in the range of the
background modulo theory, but s is not in the Valid Range of x ∈ p. Therefore,
x is a backbone variable of F .

4.2 Intuition of Weighting Variables in SMT Formulas

Although SMTBCF is able to find backbone variables using backbone predicates,
but there are still backbone variables that can’t be found using backbone pred-
icates. For example, given a formula F = (x > 3) ∨ (x < 1), x is a backbone
variable of F since when x = 2, F is not satisfiable, but in the corresponding
SAT formula Fb = x1

b ∨ x2
b , neither x1

b nor x2
b is a backbone variable of Fb. This

is because that the constraints with the background modulo theory is the reason
that making the SMT variable x as a backbone variable, and the constraints
related with the background modulo theory can not be transferred into the SAT
formula Fb. Therefore, there is no backbone variable in Fb.

To deal with the constraints lost in the transferring, SMTBCF checks each
variable x ∈ F to determine if x is a backbone variable or not.

For the variables in X(F ) \ BX(F, 0), SMTBCF assigns weights to the vari-
ables and sorts the weights in a descending order to generate an ordered list of
X(F )\BX(F, 0), which is Xs. For a variable x in Xs, if x appears multiple times
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in a constraint c ∈ F , then the weight of x is 3. If x is in the same constraint
c ∈ F with a known backbone variable x′, then the weight of x is 2. Otherwise,
the weight of x is 1. With more and more backbone variables in BX(F ) known
by SMTBCF , the weight of a variable may change to 2 (for the variables that
has the weight of 1 only).

Observation 1. Given an SMT formula F and a constraint c ∈ F , if a variable
x appears multiple times in c then x is more likely to be a backbone variable.

There are two kinds of reason for a variable to become a backbone variable in
an SMT formula, propositional logical reasons and modulo theory logical reasons.
In this paper, the modulo theory used is Linear Integer Arithmetic Theory, for
a constraint c ∈ F , if a variable x appears for multiple times, then there is a
chance for x to become a backbone variable because of the modulo theory logical
reasons.

Observation 2. Given an SMT formula F and a constraint c ∈ F , if there is
another known backbone variable x′ ∈ c, then x is more likely to be a backbone
variable.

For an SMT formula F and a constraint c ∈ F , if c already has a known
backbone variable x′, then if x′ is the only variable in a predicate p ∈ c, the value
of p could be false in all the models of F , which may force another predicate p
to be assigned to true in all the models of F . Therefore, the variable x ∈ p may
become a backbone variable because of the constraint c.

Based on the two observations, the paper weights different variables differ-
ently. The different weighting could be considered as heuristic strategies.

After weighting all the variables in X(F ) \ BX(F, 0), SMTBCF sorts all the
weighted variables in an descending order based on their weights. The sorted list
of the variables is Xs. SMTBCF then decide the variable in Xs to be a backbone
variable or not one by one. Algorithm1 shows the procedure used in SMTBCF to
decide whether a variable x is a backbone variable or not. At Line 2, Algorithm1
starts a loop for every constraint c ∈ F that has the current variable x, at Line 3,
Algorithm 1 starts a loop for every predicate p ∈ c that has the current variable
x. At Line 4, Algorithm 1 gathers all constants appears in p. For each constant
c in p, Algorithm 1 checks the satisfiability of F when x is assigned to c at Line
6. If F is unsatisfiable with the current configuration (c), then c is an Unsatisfi-
able Evaluation of x, and x is a backbone variable of F . Otherwise, at Line 11,
Algorithm 1 finds the constants in the Largest Satisfiable Evaluation Ranges of
all known backbone variables in p. At Line 12, Algorithm 1 then combines the
constants C found in p, the constants R found in the range r of known backbone
variables in p, and the arithmetic symbols in p together, and generates a set of
new constants. The new constants are generated as follows: Suppose the constant
in p is c, a constant in the range of a known backbone variable in p is r, and one
of the symbol is ◦, the constants are c ◦ r, c ◦ (r+ 1), and c ◦ (r− 1). If there are
k constants in the ranges of known backbone variables and there are m symbols
in p, the number of new constants generated by the combination are 3 ∗ k ∗ m.
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For each new constant generated from Line 12, Algorithm 1 checks the satisfia-
bility of F when x is assigned to a value const′ in the new constants at Line 14.

If F is satisfiable when x is assigned to const′, then Algorithm 1 uses quanti-
fier SMT solving at Line 19 to confirm that there is no Unsatisfiable Evaluation
of x and x is a non-backbone variable. Otherwise, x is a backbone variable.

If x is a backbone variable, x is added to BX(F ) and the Largest Satisfiable
Evaluation Range of x is computed immediately. If x is a non-backbone variable,
x is added to NBX(F ).

An example is given for Algorithm 1, for a given formula F = (x > 3) ∧
(x + y < 5), Algorithm 1 first finds all constants in F , which are 3 and 0.
For the constant 3, SMT (F, x, 3) is not satisfiable, therefore, x is a backbone
variable and the valid range of x is (3,∞). For the constant 4, SMT (F, x, 4) is
satisfiable and SMT (F, y, 4) is also satisfiable, the combine strategy is triggered
in Algorithm 1. The symbols (operators) of the combines are + and −, and the
new constants returned by the Combine(Const,R, symbols) are −1, 1, and 7,
and SMT (F, y, 7) is not satisfiable, therefore, y is also a backbone variable and
the valid range of y is (−∞, 1). Algorithm 1 has now successfully proved that
both x and y are backbone variables.

4.3 Compute Largest Satisfiable Ranges of Backbone Variables

After finding a backbone variable x, SMTBCF immediately computes the Largest
Satisfiable Evaluation Range of x. Since the Largest Satisfiable Evaluation Range
of known backbone variables are useful in the backbone checking of related
variables, i.e., variables that appear in the same constraint with x.

Algorithm 2 shows the procedure to compute the Largest Satisfiable Evalua-
tion Range of a backbone variable x. At Line 2, the Largest Satisfiable Evaluation
Range of x is initialized as the Valid of Range of Parameters in the Background
Theory, in ILA Theory, the valid range is Z. At Line 5, Algorithm 2 finds all
constants appears in the current predicate p, such that x ∈ p, and at Line 6,
Algorithm 2 finds all constants appears in the Largest Satisfiable Evaluation
Range of known backbone variables that also appears in the predicate, if there
is no known backbone variables in the predicate, then E is an empty set.

Algorithm 2 then combines the set of C, E, and the symbols in p together
to generate a set of new constants Const′, with the same strategy used in
Algorithm 1. Then Algorithm 2 starts a loop to check the satisfiability of F when
x is assigned to every new constant in Const′, if F is not satisfiable when x is
assigned to current const′, it means const′ is an Unsatisfiable Evaluation of x.
Algorithm 2 uses upper boundary SMT solving to find the least Satisfiable Eval-
uation ub(const′) of x such that ub(const′) > const′ (at Line 11), and uses lower
boundary SMT solving to find the largest Satisfiable Evaluation lb(const′) of
x such that const′ > lb(const′) (at Line 12). Then (lb(const′), ub(const′)) is a
continuous Unsatisfiable Evaluation Range of x, and is excluded from Rx

F at
Line 13.
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Algorithm 1. Decide a Variable x to Be a Backbone Variable
1 Procedure Check(F, x,BX(F ))
2 foreach c, s.t.x ∈ c do
3 foreach p ∈ c do
4 Const := Constant(p);
5 foreach const ∈ C do
6 ret := SMT (F, x, const);
7 if !ret then
8 BX(F ) := BX(F ) ∪ {x};
9 computeRange(x);

10 return true;

11 R := Range(p);
12 Const′ := Combine(Const,R, symbols);
13 foreach const′ ∈ Const′ do
14 ret := SMT (F, x, const′);
15 if !ret then
16 BX(F ) := BX(F ) ∪ {x};
17 computeRange(x);
18 return true;

19 ret := SMT (F, x, q);
20 if !ret then
21 BX(F ) := BX(F ) ∪ {x};
22 computeRange(x);
23 return true;

24 NBX(F ) := NBX(F ) ∪ {x};
25 return false;

Algorithm 2 then checks if there still exists an Unsatisfiable Evaluation u in
the current Rx

F at Line 14, if there does not exist such an Unsatisfiable Eval-
uation, then Rx

F is the Largest Satisfiable Evaluation Range of x. Otherwise,
Algorithm 2 uses the Unsatisfiable Evaluation u to compute another continuous
Unsatisfiable Evaluation Range of x, updated Rx

F by excluding the new Unsatis-
fiable Evaluation Range and check if there still exists an Unsatisfiable Evaluation
u again (from Line 19 to Line 22). A detailed example of how Algorithm2 works
is given in Sect. 5.1 with Table 2.

5 Efficiency Analysis

5.1 Demo Analysis

Given a formula F = (x ≤ 7 ∨ (x ≥ 11 ∧ x ≤ 13) ∨ (x ≤ 16 ∧ x ≥ 20)) ∧
(x + y ≤ 0), the computing procedure of BBopt is shown in Table 1 and the
computing procedure of SMTBCF is shown in Table 2.

In Table 1, there are 11 steps needs to be executed to compute the backbone
variables and the Largest Satisfiable Evaluation Range of backbone variables
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Algorithm 2. Compute the Largest Satisfiable Evaluation Range of a
Backbone x
1 Procedure Range(F, x)
2 Rx

F := Z;
3 foreach c, s.tx ∈ c do
4 foreach p ∈ c do
5 Const := Constant(p);
6 E := Evaluation(p);
7 Const′ := Combine(Const, E, symbols);
8 foreach const′ ∈ Const; do
9 ret := SMT (F, x, const′);

10 if !ret then
11 ub(const′) := SMT (F, x, const′, u);
12 lb(const′) := SMT (F, x, const′, l);
13 Rx

F := Rx
F \ (lb(const′), ub(const′));

14 (ret, u) := SMT (F, x,Rx
F );

15 if ret then
16 return Rx

F ;
17 else
18 while !ret do
19 U := U ∪ {u};
20 ub := SMT (F, x, u);
21 lb := SMT (F, x, l);
22 Rx

F := Rx
F \ (lb, ub);

23 (ret, u) := SMT (F, x,Rx
F );

24 return Rx
F ;

in F . The second and third columns show the Satisfiable Evaluation or Unsatis-
fiable Evaluation found by the current SMT solving, the forth and fifth columns
indicate the current SMT solving is a Boundary SMT Solving or a Quantifier
SMT Solving. In total, there are 6 Quantifier SMT Solving and 5 Boundary SMT
solving executed.

In Table 2, there are only 10 times of Plain SMT Solving and 1 time of
Quantifier SMT Solving are executed with the help of constants in the predicates.
A Plain SMT Solving is to check if the given SMT formula is satisfiable with the
given assignments to the variable x. The computing of a Plain SMT Solving is
relatively faster than the computing of a Boundary SMT Solving or a computing
of Quantifier SMT Solving. The efficient of SMTBCF is improved by using more
Plain SMT solving and less Boundary or Quantifier SMT Solving.

5.2 General Analysis

Comparing to the existing tool BBopt [18], SMTBCF has three advantages that
improves the efficiency. Firstly, SMTBCF uses the corresponding SAT formula Fb

of an SMT formula F , by computing the backbone variables of Fb, SMTBCF is
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Table 1. Backbone variables computing procedure of F using BBopt

Step Satisfiable Evaluation Unsatisfiable
Evaluation

B-Solving Q-Solving

1 21 �
2 Continuous satisfiable range x > 21 �
3 14 x < 21 �
4 16 x > 14

5 Continuous satisfiable range 16 < x < 21 �
6 13 x < 14

7 8 x < 13 �
8 11 x > 8

9 Continuous satisfiable range 11 < x < 13

10 7 x < 8

11 Continuous satisfiable range x < 7 �

Table 2. Backbone variables computing procedure of F using SMTBCF

Step Unsatisfiable Evaluation P-Solving B-Solving Q-Solving

1 8, 10, 14, 15, 21

2 (7, 11), (13, 16), (20,+∞) 10

3 Continuous satisfiable range �

able to find backbone predicates in F and find backbone variables in F directly
from the backbone predicates, without using additional SMT solving.

Secondly, SMTBCF uses the constants in the predicates to find an Unsatis-
fiable Evaluation of x with a normal SMT solving, instead of a quantifier SMT
solving. Thanks to the efficiency advantage of the normal SMT solving com-
pared to the quantifier efficiency, SMTBCF improves the general efficiency of
SMT backbone computing.

Thirdly, in computing the Largest Satisfiable Evaluation Range of backbone
variables, SMTBCF is still able to use the information of the constants in the
predicates and the ranges of other backbone variables. With the help of these
constants, SMTBCF is able to enumerate large number of continuous Unsatisfi-
able Range of x using upper and lower boundaries SMT solving, which is also
more efficient than the quantifier SMT solving used in other approaches.

6 Conclusion and Discussion

This paper proposed a new method to compute backbone variables of SMT
formulas, using the backbone predicates of SMT formulas computed from the
corresponding SAT formula, constants in the predicates of the SMT formula,
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and constants in the ranges of known backbone variables. SMTBCF is the first
technique that uses backbone predicates and formula constants to compute the
backbone variables of SMT formulas efficiently.

SMTBCF is designed for the Linear Integer Arithmetic (LIA) theory of SMT,
which is widely used in program analysis and verification industrial, for other
Arithmetic with continuous range for parameter values, SMTBCF is able to adapt
with them.
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Abstract. Visual script languages with a node-based interface have
commonly been used in the video game industry. We examined the
bug database obtained in the development of FINAL FANTASY XV
(FFXV), and noticed that several types of bugs were caused by simple
mis-descriptions of visual scripts and could therefore be mechanically
detected.

We propose a method for the automatic verification of visual scripts in
order to improve productivity of video game development. Our method
can automatically detect those bugs by using symbolic model check-
ing. We show a translation algorithm which can automatically convert a
visual script to an input model for NuSMV that is an implementation of
symbolic model checking.

For a preliminary evaluation, we applied our method to visual scripts
used in the production for FFXV. The evaluation results demonstrate
that our method can detect bugs of scripts and works well in a reasonable
time.

Keywords: Formal methods · Symbolic model checking · Visual
script · Game development

1 Introduction

In the recent video game industry, game designers write game logic using script
languages. Since most of game designers are not familiar with writing programs,
the use of visual script languages allow designers to perform such scripting oper-
ation, and thus help improve the productivity of game logic development. In
particular, visual script languages with a node-based interface are widely used
in game development.

However, it is hard to maintain game logic written in visual script languages
because they can quickly become large and complicated during the course of
production, and thus become hard to verify or modify, and very prone to human
error.
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We examined the bug database obtained in the development of FINAL FAN-
TASY XV (FFXV) [7], and noticed that several types of bugs were caused indeed
by simple mis-descriptions of visual scripts. A system that can automatically
detect such mis-descriptions would had been a great help to our production.

Since most visual script implementations could be treated as a kind of state
machine [8], and model checking is a well-researched technique to automatically
verify finite state machines [5], we propose in this paper a method for automatic
verification of visual script notations with symbolic model checking [3] for effi-
cient game production. Our main contributions are the following. (1) To apply
symbolic model checking to verify visual scripts, we provide a translation algo-
rithm from a visual script description to an input model for NuSMV [5], that
is an implementation of symbolic model checking. (2) We show a preliminary
evaluation of our method by applying it to visual scripts which are produced in
the development of FFXV, and demonstrate that most of the verification tasks
are completed in a realistic amount of time.

The rest of this paper is organized as follows. We first introduce prerequisite
topics and show a motivating example in Sect. 2. Section 3 explains the proposed
method. Section 4 provides the translation algorithm from a visual script to an
input model which can be accepted to NuSMV. Section 5 explains how to write
node semantics. We show the results of our preliminary evaluation in Sect. 6 and
conclude our work in Sect. 7.

2 Background

2.1 Model Checking

Model checking is an automatic technique for verifying correctness properties of
a finite-state system [6]. The verification procedure is performed by an exhaus-
tive search over the state space. Since the size of the state space exponentially
increases with the number of system components, it is difficult to apply model
checking to large-scale systems. Symbolic model checking can efficiently han-
dle large-scale systems by replacing explicit state representation with boolean
formula.

NuSMV [5] is one of the most successful implementations of symbolic model
checking. The model verified by NuSMV is written by a specific input language
(called SMV language). The properties to be checked is expressed by temporal
logic LTL (Linear Temporal Logic) [14] and CTL (Computational Tree Logic) [1].

MODULE main
VAR

sw : {on , off};
ASSIGN

init(sw) := {on, off};
next(sw) := case

sw = on : off;
TRUE : sw;

esac;
CTLSPEC AG (AF sw = on)

Fig. 1. An example model described in SMV language
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Figure 1 is an example of an input model to NuSMV. The input model
described by SMV language is composed of variable declaration part (described
by VAR) and transition relation definition part (described by ASSIGN). The prop-
erty is expressed as a LTL formula (described by LTLSPEC) or a CTL formula
(described by CTLSPEC).

This example has one variable sw which may have one of the two values on and
off. In its initial state, either on or off is assigned to sw non-deterministically.
In the case that sw is on, sw becomes off in the next state, or sw does not
change its value. Thus the sequence of the value of sw can be either on, off,
off . . . (when the initial value is on) or off, off . . . (when the initial value is
off). The CTL formula in this example has two CTL operators AG and AF.
AG represents “in Any path” and “Globally,” and AF represents “in Any path”
and “in the Future.” This formula expresses the following property: the system
always satisfies that sw necessarily becomes on. When the model is inputted
to NuSMV, NuSMV returns FALSE for this property because there is a path
where sw continues to be off. Figure 2 shows the result and the counterexample
generated by NuSMV. The counterexample shows the path where sw continues
to be off.

-- specification AG (AF sw = on) is false
-- as demonstrated by the following

execution sequence
Trace Description: CTL Counterexample
Trace Type: Counterexample
-> State: 1.1 <-
sw = on
-- Loop starts here
-> State: 1.2 <-
sw = off
-> State: 1.3 <-

Fig. 2. A counterexample generated by NuSMV

2.2 Motivating Example

Many game development environments have their own visual scripting system
such as Blueprint in Unreal Engine [9,12,18]. Although there are slight differ-
ences among each visual scripting systems, their syntax and semantics are basi-
cally the same. In this paper, readers can assume Blueprint [18] as the visual
scripting system since its syntax and semantics are very similar to our in-house
visual scripting system.

In the development with node-based visual script languages, logic is described
as a node graph which is composed of nodes and edges. Nodes express values, vari-
ables, arithmetic operators, or control statements of the visual script, which cor-
respond to statements in text-based script languages such as if/while-statements,
assignments, and so on. Since the purpose of visual scripts is to control game
components such as sound, visual effect, and so on, many nodes express invoca-
tions of APIs of those components. For example, “Play SE” node notifies sound
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component of the game system to start playing sound effect, “Fade Out” node
notifies screen effect component to start fade-out effect1. Edges connect nodes
through input and output ports, and express data and control flows.

Figure 3 shows an example of visual script. Note that we omitted data flow
edges in Fig. 3 such as the condition value inputted to If node. This is because
our method does not address the detection of bugs caused by an illegal data
flow. This example has the following behavior:

– When the Movie Clip node receives an input signal through the Start port, it
starts playing the movie clip, and sends output signal through the Finished
port when it finishes playing. If the movie clip is skipped by a game player,
it sends output signal through the Skipped port instead of the Finished port.

– The Set Event Mode node modifies the global flag variable “event mode”.
When it receives the input signal through the Enable or Disable port, the
event mode flag becomes true or false respectively. This example includes two
Set Event Mode nodes, and both of them modify the same variable instance
since the “event mode” variable is not a variable in the script but a variable
in the external game system.

– The If node is used for conditional branch like if-statement in text-based
languages. Its condition value is inputted through data flow port. As stated
above, we omit such ports.

– The global flag variable “event mode” must be true during playing the movie
clip, and must be false otherwise in order to change some game state during
playing movie such as disabling gamepad, etc.

Note that Movie Clip node has its own state transition, and sends output
Finished or Skipped independently from the original control flow. It means that
there can be multiple activated nodes and multiple activated control signals in
a graph. It is one of the significant differences of visual script languages from
Statecharts and a reason that we can not directly apply prior research to visual
script languages.

Fig. 3. An example of node-based visual script (including a typical bug)

This example contains a bug that actually often occurred during the develop-
ment of FFXV. It appears that the False port of the If node has no connection.
1 “fade out” is a gradual transition from the game screen to blank image, used in

movies, games, etc.
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Therefore, if Movie Clip branches to Skipped and then If branches to False, the
event mode flag is not changed and remains to be true. It causes incorrect behav-
ior since the event mode flag is true after playing the movie.

There were a wide variety of similar bugs during the development of FFXV,
e.g. “BGM is not changed correctly in some cases.”, “Enemy characters never
respawn in a specific condition.”, and so on. Moreover, since many game logic
scripts are written by game designers who are not familiar with writing pro-
grams, scripts often become large and complicated. Therefore, it is tough to find
those bugs by visual inspection, even though these are caused by trivial mis-
descriptions such as missing one node, or missing one edge, and so on. Our goal
is to detect those large amounts of trivial but hard-to-find bugs automatically
and exhaustively. Since our products already have a lot of massive scripts, we
should cover not only newly written scripts but also those existing scripts.

2.3 Related Work

Video games essentially have a large number of combinations of internal states
and external stimuli. This makes it difficult to detect problems which come out
under specific conditions by testing. Model checking has been applied to video
game developments since it can solve such problems by exhaustive verification.
Moreno-Ger et al. [13] proposed a method for verifying game scripts created in
〈e-Adventure〉 platform using NuSMV. Radomski et al. [15] showed a framework
in which video game logics are modeled by State Chart XML (SCXML) formal-
ism and their properties can be checked by the SPIN model checker. Rezin et
al. [16] developed a method to model a multi-player game design as a Kripke
structure and to verify it by NuSMV. These studies show that applying model
checking to video game development is very promising and application to game
logic described by node-based visual scripts is also expected.

There have been a number of studies that have applied model checking to ver-
ification of node-based state transition system designs. Statecharts and its vari-
ants, such as UML state machine [17] and RSML (Requirements State Machine
Language) [11], are one of the most popular notations for describing state tran-
sition systems in a node-based manner. Chan et al. [4] provided a translation
from RSML notation to a model described by SMV language. This translation
procedure encodes components of the inputted RSML by SMV variables and
expresses changes of the components as transition relation. Zhao et al. [19] stud-
ied representation of Statecharts step-semantics as a Kripke structure, which is
a graph-based state transition representation, and carried out verification using
SMV model-checker. Jussila et al. [10] presented a representation of a subset
of UML state machines as Promela which is an input language of SPIN model-
checker.

In the semantics of Statecharts and its variants, their nodes represent states
and only simple actions (enter/exit or do action in the case of UML state
machine) can be assigned to each node. While in the visual script notations
that we focus, each node expresses some game logic computation which can be
performed individually and can have a particular semantics. Thus it is difficult
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Fig. 4. System overview

to directly apply the existing procedures to the verification of such a visual script
notation. In this paper, we propose a method to translate from visual scripts to
models by SMV language.

3 Approach

3.1 System Overview

Figure 4 shows the system overview of the visual script verification environ-
ment with NuSMV. This environment carries out verification by converting
a visual script into an SMV model. First, the system generates a converter
instance from specifications to be checked and the corresponding node seman-
tics. Then the visual script is converted into an SMV model by using the con-
verter instance. NuSMV can verify whether the inputted visual script satisfies the
specifications or not. When the specifications are not satisfied, NuSMV outputs
counterexamples.

In this section, we explain the overview of the SMV models that our method
generates from visual scripts (Sect. 3.2), specifications to be checked (Sect. 3.3),
and how to detect bugs using counterexamples (Sect. 3.4).

3.2 Model Overview

We first show the overview of SMV model generated by the proposed method
with an example. Figure 5 is an SMV model converted from the visual script
shown in Fig. 3.

SMV Variables. We prepare four types of SMV variables to describe the
behavior of a visual script.

– Input and output variables represent activated ports of each node in visual
script. Since only one input/output port can be activated at the same time
in most cases2, we declare just one input/output variable for one node even
if the node has two or more input/output ports. E.g. SetEventMode2In and

2 There are a few exceptions such as a node that can accept 2 inputs simultaneously,
we address them in Sect. 4.2.
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MODULE main
VAR

ScriptStart1Out : {none , Out};
)1(--;}elbasiD,elbanE,enon{:nI2edoMtnevEteS
)1(--;}tuO,enon{:tuO2edoMtnevEteS

MovieClip3In : {none , Start };
MovieClip3Out : {none , Finished , Skipped };
MovieClip3State : {Stopped , Playing , Finished , Skipped }; -- (2)
SetEventMode4In : {none , Enable , Disable };
SetEventMode4Out : {none , Out};
If5In : {none , In};
If5Out : {none , True , False};
EventMode : {true , false}; -- (3)

FAIRNESS MovieClip3State = Stopped; -- (4)
ASSIGN

init(ScriptStart1Out) := Out;
next(ScriptStart1Out) := none;
init(SetEventMode2In) := none;
next(SetEventMode2In) := case

ScriptStart1Out = Out : Enable; -- (5)
TRUE : none;

esac;
init(SetEventMode2Out) := none; -- (6)
next(SetEventMode2Out) := case -- (6)

SetEventMode2In = Enable | SetEventMode2In = Disable : Out; -- (6)
TRUE : none; -- (6)

esac;
init(MovieClip3In) := none;
next(MovieClip3In) := case

SetEventMode2Out = Out : Start;
TRUE : none;

esac;
init(MovieClip3Out) := none;
next(MovieClip3Out) := case

)7(--;dehsiniF:dehsiniF=etatS3pilCeivoM
)7(--;deppikS:deppikS=etatS3pilCeivoM

TRUE : none;
esac;
init(MovieClip3State) := Stopped; -- (8)
next(MovieClip3State) := case

MovieClip3In = Start : Playing; -- (9)
MovieClip3State = Playing : {Playing , Finished , Skipped }; -- (10)
TRUE : Stopped; -- (11)

esac;
init(SetEventMode4In) := none; -- (12)
next(SetEventMode4In) := case

MovieClip3Out = Finished : Disable; -- (13)
If5Out = True : Disable; -- (13)
TRUE : none; -- (14)

esac;
init(SetEventMode4Out) := none; -- (15)
next(SetEventMode4Out) := case -- (15)

SetEventMode4In = Enable | SetEventMode4In = Disable : Out; -- (15)
TRUE : none; -- (15)

esac;
init(If5In) := none;
next(If5In) := case

MovieClip3Out = Skipped : In;
TRUE : none;

esac;
init(If5Out) := none;
next(If5Out) := case

If5In = In : {True , False}; -- (16)
TRUE : none;

esac;
init(EventMode) := false;
next(EventMode) := case

SetEventMode2In = Enable | SetEventMode4In = Enable : true; -- (17)
SetEventMode2In = Disable | SetEventMode4In = Disable : false;-- (18)
TRUE : EventMode;

esac;

CTLSPEC AG(EventMode = true -> AF(EventMode = false)) -- (19)

Fig. 5. Converted SMV model
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SetEventMode2Out (Fig. 5 (1)) are the input and output variable for the left-
most Set Event Mode node in Fig. 3. The value domains of input/output vari-
ables are the names of ports and special value none which represents that no
port is activated. E.g. since Set Event Mode node has 2 input ports Enable
and Disable, the value domain of SetEventMode2In is none, Enable, and
Disable. When the value of SetEventMode2In is Enable, it means that the
input port Enable is active in the leftmost Set Event Mode node.

– Script variables represent variables used in visual scripts and states of external
components that the visual scripts interact with. E.g. the global flag “event
mode” stated in Sect. 2.2 is a flag variable of the external game system that the
visual scripts interact with, and is declared as a script variable EventMode
(Fig. 5 (3)). The specification often specifies the correct behavior of those
variables.

– State variables represent the internal state of each node whose semantics has
state transition. E.g. MovieClip3State is the state variable for Movie Clip
node (Fig. 5 (2)).

Control Flow. An edge in visual scripts express a portion of control flow that
is defined as a set of output port O and input port I, where I is activated iff O
is activated. Therefore, we can describe an edge as a value definition of an input
variable according to values of output variables in SMV models. E.g. the value
of SetEventMode2In becomes Enable when the value of ScriptStart1Out is
Out (Fig. 5 (5)). It describes that Out port of Script Start node is connected to
Enable port of the leftmost Set Event Mode node.

Thus the value transitions of input and output variables express the control
flow in visual scripts. For example, assuming that the control flow of Sect. 2.2
is: ScriptStart:Out → SetEventMode:Enable → SetEventMode:Out →
MovieClip:Start → MovieClip:Skipped → If:In → If:False , and Fig. 6
shows the value transitions in this case.

Node Semantics. Value definition of output variables, script variables and
state variables are specified by semantics of each node. E.g. the node semantics
of Set Event Mode is: “when it receives input signal Enable or Disable, it edits
the global flag EventMode respectively, and immediately output signal through
Out port”. This node semantics corresponds to the definition of the variables
SetEventMode2Out and EventMode (Fig. 5 (6), (17)).

3.3 Specification

A specification in this system consists of a specification formula, and the list of
script variable(s) used in the formula. For example, if we want to detect the bugs
stated in Sect. 2.2, the specification can be described as CTL formula Fig. 5 (19),
and the script variable Fig. 5 (3). We can expect to verify those kinds of bugs
with symbolic model checking by modeling the visual scripts in SMV language.
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-> State: 1.1 <-
ScriptStart1Out = Out
SetEventMode2In = none
...
MovieClip3State = Stopped
EventMode = false

-> State: 1.2 <-
ScriptStart1Out = none
SetEventMode2In = Enable

-> State: 1.3 <-
SetEventMode2In = none
SetEventMode2Out = Out
EventMode = true

-> State: 1.4 <-
SetEventMode2Out = none

MovieClip3In = Start
-> State: 1.5 <-

MovieClip3In = none
MovieClip3State = Playing

-> State: 1.6 <-
MovieClip3State = Skipped

-> State: 1.7 <-
MovieClip3Out = Skipped
MovieClip3State = Stopped

-> State: 1.8 <-
MovieClip3Out = none
If5In = In

-> State: 1.9 <-
If5In = none
If5Out = False

Fig. 6. Value transition of the example control flow

In our system, users need to write a specification and corresponding node
semantics manually. However, users need to write them just once, and after
that users can verify scripts automatically. Therefore, we don’t think it is a big
problem.

3.4 Bug Detection Using Counterexample

As we stated in Sect. 3.2, a control flow of a node graph correspond to value
transitions of input and output variables. If the property given by CTLSPEC is
violated, NuSMV generates a counterexample which indicates the witness of
property violation. Since the counterexample can be obtained as the form of
the value transitions of SMV variables, we can identify the control flow which
causes the violation from the counterexample. For example, executing the model
in Fig. 5 by NuSMV outputs a value transition shown in Fig. 6. It means that
the control flow through Skipped port of Movie Clip node and False port of If
node causes violation of the specification. Thus we can detect a bug stated in
Sect. 2.2.

3.5 Scope and Limitations

Soundness. Strictly speaking, the behavior of our model is not exactly the same
as the actual behavior of target visual scripts especially from the viewpoint of
signal propagation delay. This is because our model needs one state transition
to propagate a signal, even though a visual script implementation usually has no
delay. For example, in the case of the following 2 signal propagations in Fig. 3,
the former is faster than the latter in our model, though both of them are the
same in visual script implementation. This difference might cause false positive
and false negative results of the verification.

– Movie Clip:Finished → Set Event Mode:Disable
– Movie Clip:Skipped → If:True → Set Event Mode:Disable
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External Components. We also only focus on behaviors of scripts which are
independent of external components. This is because such behaviors of external
components are not documented completely and thus it is difficult to model
those behaviors. Even if it is difficult to model such behaviors completely, we
can partially capture them by assuming that those components behave non-
deterministically. For example, the behavior of Movie Clip node in Fig. 3 depends
on the external components such as “movie player” and “game player input”,
and we abstract those behavior as non-deterministic state transition (Fig. 5 (10)).
However, since this assumption allows the model to have non-existent behaviors,
it may cause false positive and negative.

State Explosion. When the SMV model becomes too large, it is impossible to
fully avoid state explosion problem. We address this topic in Sect. 6.

Scope. We might be able to avoid the above limitations by more strict model-
ing. However, since strict modeling can enlarge the model size and causes state
explosion easily, we decided to accept these risks. In fact, we currently target the
detection of obvious mis-descriptions of visual scripts as stated in Sect. 2.2 and
the risk is not a practical problem so far considering the result of our preliminary
evaluation.

4 Translation Algorithm

4.1 Translation Overview

The procedure that converts a visual script to a corresponding SMV model is
shown below with the example of the conversion from the visual script Fig. 3
to the SMV model Fig. 5. Note that we can implement this conversion as a
fully automatic process. However we need to describe specifications and node
semantics manually. We explain those issues in Sect. 5.

1. Regarding the VAR section in SMV models, process the following steps for
each node in the visual script:
(a) Declare an input and an output variable for the node. Their value domains

are none and the name of the ports of the node. E.g. Set Event Mode node
in Fig. 3 has 2 input ports Enable and Disable and 1 output port Out, so
the input and output variables are like Fig. 5 (1).

(b) If the semantics of the node has state transition, declare a state variable
for the node. E.g. Fig. 5 (2) is a state variable for the Movie Clip node.

2. Add declaration of script variable(s) to VAR section according to the specifi-
cation, e.g. Fig. 5 (3).

3. Add FAIRNESS constraints for each state variables, e.g. Fig. 5 (4) (see also:
Sect. 4.3).

4. Regarding ASSIGN section in SMV models, process the following steps for
each node in the visual script:
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(a) Convert each input edges of the node to the definition of the input vari-
able, e.g. Fig. 5 (5) (see also: Sect. 4.2).

(b) Define the output variable and the state variable by applying the node
semantics, e.g. Fig. 5 (7)–(11) (see also: Sect. 4.4).

5. Add the value transition rules for the script variable, e.g. Fig. 5 (17)–(18).
6. Insert SPEC in SMV models from the specification (Fig. 5 (19)).

4.2 Convert Control Flow Edges

In our SMV model, edges in visual scripts are described as definitions of input
variables as we stated in Sect. 3.2 Control Flow. Consequently, we can convert
edges with the following steps:

1. Define the initial value of the input variable as none, e.g. Fig. 5 (12).
2. For each input edge to an input port of the node (from Port1 of Node1 to

Port2 of the node), add a rule: Node1Out = Port1 : Port2, e.g. Fig. 5 (13).
3. Add the default rule that describes the case of no input signal, e.g. Fig. 5 (14).

Thus, we can define all the input variable according to graph structure of visual
scripts automatically.

Handling Simultaneous Inputs. As we stated in the Sect. 2.2, more than one
node in visual scripts can work in parallel. It means that a node might receive
multiple input signals simultaneously. Since only one value can be assigned to
an input variable in our model, other input signals are ignored in such case. It
might cause an incorrect behavior if some nodes are assumed to handle multiple
input signals simultaneously (fortunately these are very rare though).

To avoid this problem, we can declare two input variables for the node whose
semantics require to handle two input signals in parallel.

4.3 FAIRNESS Constraints

Some node semantics has the nondeterministic assignment for their state vari-
ables like MovieClip3State. This model accepts that it continues to have the
value Playing infinitely in the context of NuSMV. However, this model is not
reasonable, and is expected to finish in a short time. To avoid such a problem,
we introduce a fairness constraint which restricts the verification scope to only
“fair” state transition. Since our model intends that all nodes eventually return
to the initial state, we mechanically add fairness constraints for state variables
like Fig. 5 (4). By adding this constraint, the behavior where the node never
returns to the initial state is not considered in verification by NuSMV.
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4.4 Apply Node Semantics

Node semantics are given as templates of definition of output, state (if the node
has state transition) and script variables, e.g. Fig. 7. Note that these defini-
tions only depend on the variables of the node itself, so we can define node
semantics independent from graph structure. When our conversion algorithm
add definitions of output and state variables for a node, it selects the appro-
priate templates for the node and applies them according to the context like
the variable names for the node. E.g. there are 2 Set Event Mode nodes, so our
conversion algorithm applies the templates (Fig. 7) to SetEventMode2Out and
SetEventMode4Out (Fig. 5 (6), (15)). However, writing those node semantics as
templates is a manual process. We address this issue in Sect. 5.

@SetEventMode:define:output_variable
init(<output_variable >) := none;
next(<output_variable >) := case

<input_variable > = Enable | <input_variable > = Disable : Out;
TRUE : none;

esac;
@SetEventMode:rule:EventMode

<input_variable > = Enable | <input_variable > = Enable : true;

Fig. 7. An example of node semantics

5 Writing Node Semantics

As we stated in Sect. 4.4, node semantics are described as templates of output,
state and script variables definitions. We show how to describe those definitions
in this section.

Writing the semantics for every kind of nodes sounds very hard. However,
we can classify most of nodes into five types empirically (Sect. 6). Since these
semantics are very similar in each class, we can describe node semantics for those
classified nodes with a small human cost.

5.1 Output Variables

In our model, value of an output variable describes when and how the node sends
output signals. The definition of an output variable is described according to
the semantics of the node. E.g. Set Event Mode nodes output signal immediately
when they receive input, so the value of SetEventMode2Out is changed to Out
when its input variable SetEventMode2In has the value except none (Fig. 5 (6)).
On the other hand, a Movie Clip node output signal after it finishes playing movie,
so the value of MovieClip3Out is not changed immediately (Fig. 5 (7)).
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Nondeterministical Branch. In the case of If node in Fig. 3, it branches
True or False according to the condition value. A typical approach to model
this branch is to decide the output signal non-deterministically since we do not
consider data flow and external behavior which affects the condition value. As
shown in Fig. 5 (16), the next value of If5Out is assigned to True or False
non-deterministically. Thus, NuSMV verifies the both branch of True and False
exhaustively.

5.2 State Transition

Some nodes have state transition semantics where the node differently behaves
for the same stimuli depending on its internal state. To model such a node, we
introduce the state variable that represents the internal state of the node.

In the case of Movie Clip node in Fig. 3, it starts playing the movie clip when
it receives an input signal, and then outputs Skipped if the game player skips
playing the movie, otherwise it outputs Finished when it finishes playing the
movie. With this behavior in mind, we can define the following four states for
the state variable MovieClip3State:

– Stopped: the node is in the initial state.
– Playing: the node receives input and playing the movie clip.
– Finished: playing movie has finished, and the node sends output through
Finished.

– Skipped: a game player has skipped playing the movie, and the node sends
output through Skipped.

With these states, we can model the semantics of the Movie Clip node with
the following steps:

1. The initial state is Stopped (Fig. 5 (8)).
2. When the node receives the input signal through Start, the state is changed

to Playing (Fig. 5 (9)).
3. When the state is Playing, the next state is either Playing, Finished, or

Skipped non-deterministically. This description represents the behavior of
waiting for completion of the movie playback (Fig. 5 (10)).

4. When the state becomes Finished or Skipped, the node outputs signal
through Finished or Skipped respectively (Fig. 5 (7)), and the state is back
to Stopped (Fig. 5 (11)).

5.3 Script Variables

Script variables represent variables used in visual scripts and states of exter-
nal components that visual scripts interact. By defining Script variables and
describing the conditions for those variables, we can verify those conditions with
NuSMV. Note that we need not to define all the variables in visual scripts, but
minimum variables that we want to verify in the specification.
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Table 1. Preliminary evaluation of our method

# # of nodes # of vars conv. time[s] eval. time[s] detected?

#1 156 356 5.434 192.786 False

#2 94 214 3.878 3.330 False

#3 37 84 1.746 0.056 False

#4 49 119 2.301 0.111 False

#5 177 414 6.625 36.675 True

#6 73 162 2.768 0.173 False

#7 162 408 9.187 98.102 True

#8 430 980 13.286 - -

Env.: Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz/32GB/Windows
7 (64 bit)/NuSMV 2.6.0

Figure 5 contains a script variable EventMode that expresses the global flag
variable “event mode” in the game system. The value of EventMode is defined
according to the input of Set Event Mode nodes (Fig. 5 (17)). The specification
for the script variable can be described in CTLSPEC description, we can check the
specification stated in Sect. 2.2 with NuSMV.

6 Preliminary Evaluation

For a preliminary evaluation, we implemented a prototype and applied it to the
visual scripts that are randomly selected from the scripts used in the production
for FFXV. However, we arbitrarily selected a very large script only as #8 so that
we can identify the limitation on the script size of our method. Table 1 shows
the results of the evaluation. The column descriptions are the following:

– # of nodes: The number of visual script nodes in the target script.
– # of vars: The number of SMV variables in the generated SMV model.
– conv. time: Conversion time from the visual script to the SMV model. We

tried 5 times for each script and adopted a median value of those trial.
– eval. time: Execution time of NuSMV for the model. We tried 5 times for

each script and adopted a median value of those trial.
– detected?: Whether NuSMV detected a problem in the script or not.

Node Semantics. We prepared an encoding by SMV language for each node
in the scripts. As stated in Sect. 5, we can straightforwardly prepare an encoding
for nodes with simplified semantics. The eight scripts shown in Table 1 have 164
kinds of nodes, and they are classified as follows:

1. single output: 98 kinds of nodes.
2. multi-outputs with conditions (non-deterministic choice): 7 kinds of nodes.
3. multi-outputs with state-transition: 14 kinds of nodes.
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4. multi-outputs with conditions (non-deterministic choice) and state-transition:
12 kinds of nodes.

5. entry point: 3 kinds of nodes.
6. node with custom semantics: 30 kinds of nodes.

30 kinds of nodes have custom semantics and we manually prepared encodings
for them. However, we can mechanically translate the 134 kinds of nodes (82%)
which are classified to (1) to (5) into the SMV model. This result demonstrates
that our translation method has enough availability in practical use.

Results. Regarding precision, our method found counterexamples on two scripts
during the preliminary evaluation. We confirmed with the game designers that
the counterexamples are not false positives.3 This result demonstrates that our
method can detect the specific types of bugs that we are focusing on.

Regarding recall, we also checked these scripts by visual inspection. As long
as our inspection, there was no false negative.

Limitation. It appeared that our algorithm cannot handle very large scripts,
since the verification of #8 had not finished within 3 h. Improving our algorithm
to handle those large scripts is future work.

7 Summary and Future Work

We described an automatic verification method for node-based visual script nota-
tion for efficient game production. Our method automatically converts visual
script implementation to the input model for NuSMV. We confirmed through
a preliminary evaluation that our method can detect the specific types of bugs
that we are focusing on in realistic time on most of the visual scripts used in the
production for FFXV.

A next step for extending this work would be compositional verification [2].
It appears that there are some very large scripts used in the production for
FFXV, that our method cannot handle. If we can split the model and verify
those sub-models separately, we can reduce the exponential order of the verifi-
cation and expect that those verifications can be handled in a reasonable time.
Also, if we can verify more than one script together, we can track the control flow
across the scripts and can expect to reduce false positives/negatives. Composi-
tional verification might make it possible to verify multiple models too. Another
next step would be the automated generation of node semantics. Currently, we
need to write node semantics manually. If we can extract semantics from node
implementation, we can increase the range of automation of our method.

3 According to the game designers, those scripts are used only in the trial version, so
they will not fix the bugs though.
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Abstract. Reo is a compositional coordination language for component
connectors with a formal semantics based on automata. In this paper,
we propose a formal model of software defined networks (SDNs) based
on Reo where declarative constructs comprising of basic Reo primitives
compose to specify descriptive models of both data and control planes of
SDNs. We first describe the model of an SDN switch which can be com-
pactly represented as a single state constraint automaton with a memory
storing its flow table. A full network can then be compositionally con-
structed by composing the switches with basic communication channels.
The reactive and proactive behaviour of the controllers in the control
plane of an SDN can also be modelled by Reo connectors, which can
compose the connectors representing data plane. The resulting model is
suitable for testing, simulation, visualization, verification, and ultimately
compilation into SDN switch code using the standard tools already avail-
able for Reo.

Keywords: Formal model · Software defined networks · Reo ·
Constraint automata · Component composition · Coordination

1 Introduction

Since the concept of software defined network (SDN) was introduced in 2006 [9]
it has become increasingly popular in both academia and industry as a new
architecture for operating and managing computer networks via the OpenFlow
protocol [19]. In traditional networks, the control plane (where the packet for-
warding strategy is set up) is tightly coupled with the data plane (where the
actual packet forwarding happens) and distributed in a multitude of hardware
devices. Because no entity has a global view of the network, and the size and
complexity of today’s networks are very large, it has become extremely compli-
cated to program network-wide decisions for end-to-end policies and to verify
their compliance with global objectives.

Different from traditional network, SDN offers a network architecture that
decouples data from its routing control, and places network intelligence and
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states in a logically centralized routing control entity, the so called controllers.
Controllers operate independently from network switches which contain pro-
grammable forwarding tables that are set up and managed by the controllers.
Since controllers can be programmed, SDN enables the application of formal
methods to prove the correctness of computer networks. In the recent years sev-
eral formal models of SDN (e.g. [2,15,16]) have been proposed in order to test
or check that a network behave correctly.

In this paper we present a formal model of SDN based on Reo [3], a graphical
language for compositional construction of interaction protocols, manifested as
connectors. A connector consist of several typed channel and nodes, arranged in
a graph of edges and vertices. Every edge in this graph represents a channel of
a specific type and every vertex represents a node. The type of a channel deter-
mines its data-flow behaviour. Nodes regulate data-flow by non-deterministically
selecting data items available through their incoming channel ends and replicat-
ing them through their outgoing channel ends. Nodes with both incoming and
outgoing channel ends are called mixed nodes. Nodes with no incoming channel
end are called source nodes, and those with no outgoing channel end are called
sink nodes. Source and sink nodes collectively comprise the boundary nodes of
a connector, forming the interface that regulates its communication with the
environment. Every connector can be described by functional constraints that
relate the timing and the contents of the data-flows at its interface [7]. Reo was
originally introduced as a coordination language. Since its introduction, how-
ever, Reo has become a domain-specific language for compositional specification
of protocols based on an interaction-centric model of concurrency [4,14].

Using Reo we regard components in an SDN as constraints imposed on the
interactions of parties engaged in the processing of network packets. Starting
with a small set of simple constraints, we obtain a declarative descriptions of
switches in the data plane as well as controllers in the control plane. Composition
of these components is supported through other simpler connectors which give
a global description of the topology of the network.

The formal semantics of Reo is based on automata [7] and as such it supports
formal analysis, testing and verification as well as distributed automatic code
generation [14]. For a more compact representation and for enabling constraints
depending on stored data we consider basic channels with memory, and as such
we present a variation of the original semantics of Reo to support constraints on
stored and to be stored data. The result is a compact finite state model for SDN
particularly suited for formal verification using techniques as in [17]. While we are
only considering functional modelling in this paper, extensions for capturing the
notions of time, quality of service, resources, as well as probabilistic behaviour
can be captured by similar extension of the underlying Reo model [6].

In order to scale up to handle large networks, our resulting SDN model is
compositional in the sense that the meaning of the entire computer network is
obtained by composing that of the individual models of the switches, network
topology, and controllers. The resulting model is independent from the possibly
infinite sequences of packets traversing the network.
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Recent interest in the application of formal methods to software defined net-
works started with VeriCon [8], an interactive verification system based on first
order logic to model admissible network topologies and network invariants. Sim-
ilar to our model is a finite state machine model of SDN introduced in [25]. In
this work model checking is possible via a translation to binary decision dia-
grams, under a similar assumption to ours: controllers are described as finite
state machines. Another relevant work on automated verification is [22]. Our
approach however is based on a declarative descriptions of controllers, switches,
and network topology as a Reo circuits, whose automatic composition yields a
finite automaton.

Different from our declarative approach, [1] proposes an actor-based mod-
elling to verify concurrent features of SDN via the ABS toolsuite. The use of
automata in our work instead of actors make it easier to specify real time and
other quantitative properties of SDN. We do not explore this direction in this
paper, leaving it for future work. Variation of regular expressions have been very
successful in modelling network programming languages [2,21,23]. In particular
NetKAT offers a sound and complete algebraic reasoning systems with an inter-
esting coalgebraic decision procedure. However NetKAT models only a stateless
snapshot of the data plane traversed by a single packet. It does not support
update of flow tables nor routing of multiple packets. TLA+ [18] has also been
used to model the behaviour of SDN but in a very restrictive manner, allowing
only a single switch [16]. Formal models are used not only to verify properties
of an SDN such as consistency of flow tables, violation of safety policies, or for-
warding loops, but also for finding flaws in security protocols using CSP and the
model checker PAT [24].

This paper proceed as follows. In Sect. 2 we give a brief introduction to the
main concepts of software defined networks, while in Sect. 3 we introduce Reo
and give a new automata based semantics using memory cells for storing data.
This model is used in Sect. 4 where we present a Reo circuit for the data plane
and the control plane of an SDN. We conclude with an example showing the
semantic difference between two controllers.

2 A Primer on Software Defined Networks

Network management includes many different tasks that, traditionally, have been
realized through manufacturer-specific low-level languages for the configuration
of hardware network devices, e.g., switches and routers. The primary function
of a network management task is to ensure transport of packets, and entails
two planes: the control plane for making routing decisions and the data plane
concerned with packet forwarding. In traditional networks, the control plane is
coupled with the data plane on each hardware device. As such the control plane
is highly distributed, with no global view of the network, making it impossi-
ble to program network-wide decisions and verify their compliance with global
specifications.
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SDN offers a network architecture that simplifies the design and deployment
of network management tasks: the control plane is a logically centralized con-
troller that gathers information from the data plane and provides a global view
to applications running on top of the controller. These applications make packet
routing decisions based on the global view and distribute the decisions to the
data plane via the controller using the OpenFlow protocol [19].

Each switch in the data plane consists of a number of ports where packets
are received or forwarded. Further, each switch is connected to at least one
controller, from which it may receive or to which it may send messages. The
basic messages forwarded from switch to switch are packets. A packet consists
of a finite set of fields, grouped in header information and pure data, as the two
packets in the example below show, where the header of each packet contains
the information about the tcp and ethernet destination address of the packet:

tcp dst:22, eth dst:11 data: d1 tcp dst:23, eth dst:11 data: d2

Forwarding of packets is implemented in each switch through a flow table,
a memory store consisting of an ordered set of pairs (b, a). Here b is a Boolean
condition on the packet fields (the so called matching criteria) and a is the
corresponding action to be executed on the matching packet. The order of the
matching-action pairs gives a priority on the application of the matching condi-
tion. There are basically three types of actions: forwarding a packet to one or
more ports of the switch, dropping a packet, and updating a field of a packet
with some value. For example, the leftmost packet above matches the first rule
of table below and it is forwarded to the output ports 3 and 4. The rightmost
packet however matches only the last rule and it is forwarded to port 1 after its
field tcp dst is updated to 22.

Matching condition Action

tcp dst:22 Forward[3, 4]

tcp dst:23, eth dst:12 drop

true tcp dst := 22; Forward[1]

Controllers and switches communicate through messages. A PktIn message
is a packet sent from a switch to a controller, typically to be processed there or to
trigger an update of the flow tables. A PktOut message sent from the controller
to a switch consists of a packet together with a flow table action to be executed
by the switch. This way a packet need not pass through the flow table but is,
for example, immediately forwarded to other switches.

The flow table of a switch is updated by FlowMod messages, another type
of message from a controller to a switch. Each FlowMod message consists of a
ModType t (Add, Remove, Modify), a matching condition b and an action a. If t
= Add then the pair (b, a) is added on top of the table (higher priority), while
if t = Modify then the first pair in the flow table (b′, a′) with b implying b′ is
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substituted with the pair (b, a). In remaining case when with t = Remove the
first pair in the flow table (b′, a′) with b implying b′ is removed from the table.
In this case the action a does not play any role and therefore can be considered
empty. Those three types of messages plus dedicated packets to communicate
data allow controllers to gather information about the network and manage it.

3 Reo and Constraint Automata

Reo is a coordination language for compositional construction of component con-
nectors [3]. The emphasis in Reo is on connectors, their behaviour and composi-
tion out of simple channels. Reo can also be used to define an interaction proto-
col as a connector, a graph-like structure that enables (a)synchronous data flow
along its edges. Each edge is called a channel and it specifies constraints on the
flows of data at its ends. A channel end is either a source end through which the
channel accepts data, or a sink end through which the channel offers data. Mul-
tiple channel ends coincident at a vertex of the connector together form a node.
Nodes have predefined ‘merge-replicate’ behaviour: a node repeatedly accepts a
datum from one of its coincident sink ends, chosen non-deterministically, and
offers that datum through all of its coincident source ends.

3.1 Constraint Automata

Constraint automata are a formalism to describe the “behaviour” of Reo chan-
nels and their composition as connectors [7]. Constraint automata can be thought
of as conceptual generalizations of finite state automata where data constraints
influence applicable state transitions.

We assume a finite set D of data ranged over by d, a finite set P of ports
ranged over by p, q (note that ports in Reo are distinct from ports in SDN
switches), and a finite set M of memory cells ranged over by m. Further, let F
be a set of function symbols and P a set of predicate symbols. Each predicate
symbol and each function symbol comes with an arity, the number of arguments
it expects. A term is defined as follows:

t:: = d | p | m | m• | f(t, ..., t)

Terms are used in constraints defined by the following predicate formulas:

φ:: = � | p = t | m = t | m• = t | P (t, ..., t) | φ ∧ φ | ¬φ

The constraint p = t denotes the equality between the value passing through the
port p, and the value obtained by evaluating the term t; m = t is the equality
between the value stored in the memory m before evaluating the constraint and
the value denoted by t; m• = t is equality between the value stored in the memory
m immediately after the evaluation of the constraint and the value denoted by
t. The others are just the usual constraints.
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In order to define the satisfaction of constraints, we assume the existence of
a function f̂ : Dn → D for each f ∈ F of arity n, and a subset P̂ ⊆ D

m for
each predicate symbol P ∈ P of arity m. For fixed sets of input ports I, output
ports O and hidden ports H, the evaluation of constraint is defined by using the
function α:I ∪ O ∪M → D⊥, and an environment η:H → D⊥ assigning values to
hidden ports. α is used for the visible components of a Reo connector. Here α(A)
represents the value passing though the port A unless α(A) =⊥ that denotes the
absence of flow of data though port A. Similarly α(m) denotes the value stored
in the memory cell m.

We denote by At the set of all atoms α. Note that m• is not a part of an
atom, because it refer to the value of m after the evaluation of a transition.
Therefore we need pairs of atoms, one for the current values stored in memory
cells, and another for storing the side effect of evaluation, i.e., the value of a
memory cell after the evaluation. Evaluations of guards is defined inductively as
follow:

α1α2 |=η �
α1α2 |=η p = t iff α1(p) = �t�η

α1α2

α1α2 |=η m = t iff α1(m) = �t�η
α1α2

α1α2 |=η m• = t iff α2(m) = �t�η
α1α2

α1α2 |=η P (t1, ..., tn) iff 〈�t1�η
α1α2

, ..., �tn�η
α1α2

〉 ∈ P̂
α1α2 |=η φ1 ∧ φ2 iff α1α2 |=η φ1 and α1α2 |=η φ2

α1α2 |=η ¬φ iff α1α2 �|=η φ

Finally, we define the evaluation of a guard without hidden ports as follows:

α1α2 |= φ if and only if there is η such that α1α2 |=η φ.

Here �t�η
α1α2

denotes the value of the term t and is defined inductively by:

�d�η
α1α2

= d

�p�η
α1α2

=
{

α1(p) , if p ∈ I ∪ O
η(p) , if p ∈ H

�m�η
α1α2

= α1(m)
�m•�η

α1α2
= α2(m)

�f(t1, ..., tn)�η
α1α2

= P̂ (�t1�η
α1α2

, ..., �tn�η
α1α2

)

We are now ready for the definition of constraint automata with memory
cells describing operationally the behaviour of a Reo connector.

Definition 1. A constraint automaton is a tuple (Q, I,O,H,M,−→, q0) where
Q is a finite set of states with q0 ∈ Q the initial state, I,O,H ⊆ P are sets of
ports known by the automaton, M ⊆ M is the set of memory cells, and −→ is a
transition relation with q

N,φ−−→ q′ denoting a transition from q to q′ synchronizing
a set of ports N ⊆ I ∪ O ∪ H under the data constraint φ. We assume that the
ports appearing in φ are a subset of N and the memory cells occurring in φ are
a subset of M .
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An execution of a constraint automaton is described by means of infinite
strings [12] in Atω. An infinite string α · w is an execution from the state q,

denoted by α · w ∈ E(q) if and only if there is a transition q
N,φ−−→ q′ such that

the following three conditions hold:

1. ∀p ∈ I ∪ O, p �∈ N iff α(p) =⊥;
2. w = α′ · w′ and αα′ |= φ;
3. w ∈ E(q′)

By the above definition a constraint of a transition q
N,φ−−→ q′ is evaluated in an

execution α · w starting from q with respect to its first two atoms. Furthermore,
only the ports in N fire, meaning that a value passes through them as recorded
by α, and the rest of the string w is an execution of the target state q′.

Consider the following constraint automaton:

q0start q1

{A?}, m• = A

{B!}, m = B

{A?, B!, C}, m• = C ∧ m = B ∧ C = A

Here “?” and “!” are syntactic means for indicating which ports belong to
I and O, respectively. The unmarked ports belong to H. An example of an
execution of the above automaton starting from q0 is the infinite string:

[A = 1, B =⊥,m = 22] · [A = 3, B = 1,m = 1] · [A = 5, B = 3,m = 3]·
[A =⊥, B = 5,m = 5] · [A = 7, B =⊥,m = 33] · . . .

Note that the value of the memory of the second element of the string is equal
to the value at port A of the first element, and the value of port B of the second
element. Similarly for the value of A in the second element and the value of B
and the memory m in the third element.

The above automaton has the same executions from the initial state as the
following automaton without hidden ports.

q0start q1

{A?}, m• = A

{B!}, m = B

{A?, B!}, m• = A ∧ m = B

While in general it is not always possible to remove all hidden ports without
modifying the set of executions, for simplicity and when there is no problem,
in the sequel we will simplify a constraint automaton by removing hidden ports
obtaining an automaton with the same structure (states and transitions) and
the same executions from its initial state.
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The language of a constraint automaton consists of the projection with
respect to the ports of all executions starting from the initial state. A language
represents the behaviour of the automaton as visible from the environment.
Therefore, only input and output ports are visible, but not hidden ports or
memory cells. For example, the language accepted by the above two constraint
automata is the same and it includes the following infinite string:

[A = 1, B =⊥] · [A = 3, B = 1] · [A = 5, B = 3] · [A =⊥, B = 5] · . . . .

3.2 Basic Channels and More Complex Connectors

Next, we briefly introduce the constraint automata and the their graphical rep-
resentation for all basic Reo channels [3,17] we use in this paper.

A B

The synchronous channel accepts data from
its input port A, and it passes them syn-
chronously to its output port B.

{A?, B!},
A = B

A B

The synchronous drain has two input ports A
and B, from which it accepts any data, but
only when the two ports can be synchronized.
The data received as input is not important,
only the ports’ synchronization matters.

{A?, B?}

A

B

C

The non-deterministic merger receives data
from either A or B and sends them to the
sink node C synchronously. If data is avail-
able from both A and B at the same time,
one of them is chosen non-deterministically.

{A?, C!},
C = A

{B?, C!},
C = B

A

B

C

The replicator receives data from A and repli-
cates them to both sink nodes B and C.

{A?, B!, C!},
B = A ∧
C = A

A B
•
m

The FIFO1 channel receives data from the
input port A if the internal buffer m is empty.
The data is stored in the buffer, which can
only contain at most one data item. When
m is full its content flows to the output port
B and it becomes empty. The behavior of a
similar channel with dot inside is represented
by the automaton with the other state as the
starting state.

{A?}, A = m•

{B!}, B = m

A B

f The transformer channel applies a user-
defined function f to a data item consumed
from its source end A, and synchronously
offers f(A) through its channel end B.

{A?, B!},
B = f(A)
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A B

P

The pattern of filter channel P ⊆ Data spec-
ifies the type of data items that can be trans-
mitted through the channel. Any value d ∈ P
is accepted through its source end if its sink
end can simultaneously dispense d; all data
items d /∈ P are always accepted through the
source end but are immediately lost.

{A?, B!},
B = A ∧ P (A)

{A?}, ¬P (A)

A

C
B

The PairMerger accepts two data items d1
and d2 through the source ends A and B,
merges them and synchronously offers the
pair 〈d1, d2〉 through its sink end C.

{A?, B?, C!},
C = 〈A,B〉

A B

τ

The variable can accept a data item d
through source end A, update its memory
τ , synchronously offer the data stored in τ
through sink end B if B fires; also it can
directly synchronously offer τ through B if
B fires but A doesn’t fire, τ remains in the
buffer.

{A?, B!}, τ = B ∧
τ• = A

{A?},
τ• = A

{B!}, τ = B ∧
τ• = τ

Note that the PairMerger uses a binary function symbol 〈−,−〉 interpreted
as the usual pairing. In all automata in the table, we assume that the ports
known by each automaton are those used in the channels.

A Reo circuit is built out of some basic channels via the join operation which
is performed by joining common ports of the channels. On the automata level,
the join operation is realized by the following product construction.

Definition 2. The product of the two constraint automata A1 = (Q1, I1, O1,
H1, M1, −→1, q1) and A2 = (Q2, I2, O2, H2, M2, −→2, q2) with disjoint sets
of states Q1 and Q2, and disjoint sets of memory cells M1 and M2 is:

A1 �� A2 = (Q, I,O,H,M1 ∪ M2,−→, 〈q1, q2〉)
where Q = Q1 × Q2, I = (I1 − O2) ∪ (I2 − O1), O = (O1 − I2) ∪ (O2 − I1),
H = (I1 ∩ O2) ∪ (I2 ∩ O1) ∪ H1 ∪ H2, and −→ is defined by the following rules:

q1
N1,φ1−−−−→1 q′

1 and q2
N2,φ2−−−−→2 q′

2 andPrt1 ∩ N2 = Prt2 ∩ N1

〈q1, q2〉 N1∪N2, φ1∧φ2−−−−−−−−−→ 〈q′
1, q

′
2〉

Here Prt1 = I1 ∪ O1 ∪ H1, and Prt2 = I2 ∪ O2 ∪ H2.

Figure 1 shows an example of composition of a non-deterministic merger (on
the left) on ports {A?, B?, C!} with a synchronous channel (second automata
from the left) acting on port {C?,D!}. The result is a new automaton with
C as hidden port (third automaton from the left), which however is language
equivalent to the automaton of a non-deterministic merger (the rightmost one)
on ports {A?, B?,D!}.
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Note that the port C is a hidden port in the resulting automaton because
it is an output port of one channel and input of the other. It is not hard to see
that the join operation is associative and commutative.

As another example, in Fig. 2 we introduce the circuit of a three-port
sequencer and its corresponding constraint automaton [11]. This three-port-
sequencer regulates the flow of data from ports A, B and C, in a sequential
order. Similar sequencers can be defined for any number of ports.

{A?, C!},
C = A

{B?, C!},
C = B

��

{C?, D!},
C = D

=

{A?, C, D!},
C = A ∧ C = D

{B?, C, D!},
C = B ∧ C = D

≡

{A?, D!},
A = D

{B?, D!},
B = D

Fig. 1. The example of automata conjunction

BA C

• •

•

(a) Circuit

1start

2

3

{A} {B}

{C}
(b) Constraint automaton

Fig. 2. A three-port sequencer

4 A Reo Model of Software Defined Networks

In this section, we present an SDN model based on the Reo language. First, we
describe the switches of the data plane as Reo circuits, and we translate it into
its corresponding constraint automaton. Afterwards, we describe two examples
of controllers managing a simple network with two switches. The goal is to send
packets from one host to another. We conclude by combining the automata of
these two layers with a network topology.

4.1 Data Plane

The basic data type we use is that of a packet. We see a packet as a record
π : Fields → Data assigning fields from a finite set of Fields to data in Data.
We denote a packet by π = [f0 = d0, f1 = d1, ..., fn = dn], and use the notation
π.f to denote the value of the field f of the packet π. The set Fields is assumed
to include a field IP t for storing the identity of the input port of the switch
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where the packet is received, OPt for the output port of the switch where the
packet is forwarded.

Figure 3 introduces the Reo circuit representing a switch with an interface
consisting of input ports {P0, P1, ..., Pn} and output ports {Q0, Q1, ..., Qm}. Here
both n and m are greater than or equal to 0 so that a switch has always at least
two ports: P0 and Q0. Port P0 is used to receive messages from the controller
supervising the switch, whereas port Q0 is meant for sending packets to the
controller. All other ports are connected to other switches or open to the envi-
ronment for communication with hosts. The input ports receive packets, and the
output ports send packets.

P0

P1

Pn

A CB D E

H
F

R0

Q0

R1

Rm

Q1

Qm

GFlowMod
PktOut

AddIpt1

AddIptn

Msg

FM

Mtc

Upd

Sel0

Cut

Sel1

Selm

Cut1

Cutmτ

Fig. 3. Reo circuit of one switch

We can describe the behaviour of the circuit representing a switch by means
of three scenarios.

1. The first one is when a packet π is received from a host or another switch. In
this case the input port is Pi for some 1 ≤ i ≤ n, The transformer AddIpt i
of the channel connected to Pi assign π.IP t to i and outputs to A a triple
(FlowMsg, π, ∅). The first component of the triple is the tag FlowMsg indi-
cating that π is an ordinary network packet with no side effect on the flow
table. The last component is the subset of output ports of the switch where
the packet needs to be forwarded.

The above triple is paired with the current flow table stored in τ and received
by the filters FM and Msg. These filters check the first component of the
triple. In our case only the filter Msg will succeed, and will pass the triple
(FlowMsg, π, ∅) together with the table τ to the transformer Mtc via node
D. This transformer matches the packet π against the table τ , executes the
corresponding field assignment modifying π into a new packet π′ and outputs
the pair (π′, F ) to node E. Here the set F contains all output ports where
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the packet π′ needs to be forwarded, according to the action of the matching
pair in the flow table τ .

The filters Seli regulate the forwarding by outputting the pair (π′, F ) to node
Ri if i ∈ F . Note that the same pair may be duplicated to many nodes, and
in case F = ∅ it will be dropped. Also, If 0 ∈ F then the packet is forwarded
to the controller. From the node Ri the transformer Cuti receiving as input
the pair (π′, F ) will output the packet π′, removing the information about
the forwarding ports.

2. The second situation is when a PktOut message from the controller is received
at the input port P0. A PktOut message is a triple 〈FlowMsg, π, F 〉 consist-
ing of a tag FlowMsg as in the previous case, a packet pi and a set of output
ports F where π needs to be forwarded. Only the filter PktOut lets this triple
flow to the node G, where a transformer receives it, removes the tag, and out-
puts the pair (π, F ) to node E. The selection and forwarding of π to each
port in F is as before.

3. The third and last situation is when a FlowMod message from the controller
is received at the input port P0. Also in this case it consist of a triple 〈t, B,A〉,
but unlike the previous cases, this message is meant to update the table stored
in τ . More specifically, B is a Boolean condition on Fields matching the pair of
τ to be updated, and A is the action for field updating and packet forwarding.
The tag t can be either add, remove or modify to add (B,A) on top of table
τ , remove the first pair (b, a) of τ with b implying B, or to modify the first
pair (b, a) of τ with b implying B into the new pair (b, A). Note that in the
case of t = remove, the action A does not play any role.

Of the two filters with input at P0 only the filter FlowMod will succeed, so
the triple 〈t, B,A〉 can be paired with the current flow table τ and reach node
C. Here the filter Msg will fail but FM will succeed, passing all 〈t, B,A〉
and τ to the transformer Upd. This transformer will update the table τ as
described in the triple 〈t, B,A〉, and will output a new table τ ′. The latter is
stored as the new current table by the variable channel with input node F .

While the Reo circuit of a switch may look complicated, its actual constraint
automaton is rather simple. It consists of only one state (because all channels
used have one single state) and three types of transitions (see Fig. 4).

{P0?},C0

{Pi?} ∪ {Qj !|j ∈ F},C2
{P0?} ∪ {Qj !|j ∈ F},C1

Fig. 4. Constraint automaton of a switch
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The conditions C0, C1 and C2 are:

1. C0: P0 = 〈t, B,A〉 ∧ t �= Msg ∧ τ• = Upd(〈τ, P0〉);
2. C1: P0 = 〈Msg, π, F 〉 ∧ ∧

j∈F Qj = π;
3. C2: Mtc(〈τ, 〈Msg, π[i/Ipt], ∅〉〉) = 〈π′, F 〉 ∧ τ• = τ ∧ ∧

j∈F Qj = π′.

Condition C0 specifies when a FlowMod message is received by a switch
so that the flow table is updated. Transitions labelled by condition C1 or C2

are dependent on the subset of output ports F received as input from P0 or
assigned after a matching action. This means that there is a concrete transition
for each possible subset of the output ports, but only one will eventually be
chosen. Condition C1 concerns FlowMsg messages received by a controller, while
condition C2 defines the handling of a packet received from a host or another
switch.

If we assume that in a switch the number of input ports is n, and that the
number of output ports is m, then the resulting constraint automata will have
one state and 1 + 2m + (n − 1) ∗ 2m transitions.

Each switch in the data plane can be considered as a Reo connector inter-
acting with others only via its input and output ports, while all other nodes
and memory cells of the components are hidden. For example, while too large to
depict here, the constraint automaton of the data plane composed of two simple
switches connected by a synchronous channel as described in Fig. 5 consists of
one state, two memory cells (one for each switch flow table) and 26 transitions,
which can be generated using automated tools [5].

P0 Q0 P ′
0Q′

0

P1 Q2

Q1 P2
Switch 1 Switch 2

Fig. 5. Data plane

O1 I O2

Controller

P0 Q0 P ′
0Q′

0

P1 Q2

Q1 P2
Switch 1 Switch 2

Fig. 6. A simple example

4.2 Control Plane and the Whole SDN Model

The SDN control plane contains a set of controllers. Each controller behaves as a
reactive system, responding to PktIn messages received from switches by sending
either PktOut or FlowMod messages. We assume controllers to be specified as Reo
circuits, and thus with a behaviour described by means of constraint automata.
Input ports and output ports represent the connection of a controller with the
switches under its control. Figure 6 shows a simple example of a controller with
two switches. A controller need not know the operational details of any of the
switches that it controls (e.g., their automata); its concern consists of deciding
when to update the flow table of a switch, and what modification constitutes
that update. For instance, it may decide to modify the flow table of a switch
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in reaction to the switch receiving (and escalating) a packet for which it has no
matching condition.

For example, the controller described in Fig. 7 guarantees a flow of messages
from the host connected to port P1 to the host connected to port Q2. It updates
the flow table of a switch every time a new packet is received that does not
match any condition of the table. In the second controller shows in Fig. 8, we see
a similar specification of a controller flowing a packet from P1 to Q2, but each
time it updates switches apart.

We combine constraint automata of controllers and switches together to get a
complete model of an SDN. Because the rate of forwarding by a switch is different
from the rate of processing by a controller, we put a Queue channel between
output ports of each switch and input ports of the controller (like channels
{Q0, I} and {Q′

0, I} in Fig. 6), a synchronous channel between input ports of each
switch and output ports of the controller (like channels {O1, P0} and {O2, P

′
0}).

Here are the description of Queue.

I

A

A2

B

C

D

B2

C2

D2

O1

E FSequencer

G

H

M

O2

E2 F2Sequencer

S1

S2

FlowMod

FlowMod

•
FIFO

•
FIFO

PktOut

PktOut

FlowMod

Fig. 7. Reo circuit of controller 1
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B2

C2

D2

O1

E FSequencer

O2

E2 F2Sequencer

S1

S2

FlowMod

FlowMod

•
FIFO

•
FIFO

PktOut

PktOut

Fig. 8. Reo circuit of controller 2
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A B
• ...

q
•

The Queue channel behaves as a FIFO1,
but it has an unbounded internal buffer. As
such, data can always be received from the
input port A and stored in the buffer. If the
buffer is non empty then the first element
received by A flows from the buffer to the
output port B.

{A}, q• = A · q

{B}, q = q• · B

While the two models guarantee packets to flow from one host to another,
they have different semantics and therefore they are language distinguishable.
The two cases have different behaviours because in the first case when the con-
troller receive a PktIn message, it sends a FlowMod message to switch one and
another FlowMod to switch two, so that the packet π can pass the two switches
directly. But in the second case, every time the controller receives a PktIn mes-
sage, it just sends a FlowMod message to the current switch, so π can only pass
the current switch.

5 Conclusion

In this paper we presented a Reo model of SDN, based on a novel semantics for
constraint automata with memory, recently studied in [13]. The difference is in
a neater treatment of the values in the memory before and after the execution
of a transition. The model is stateful, and allows concurrency at the level of
controllers but also at the level of the packets. The model can immediately be
used for verification of quantitative and qualitative properties of SDN, such as
consistency of flow tables, violation of safety policies, or forwarding loops. In
the future, we plan to verify these properties by using tools like ReoLive [10], or
mCRL2 [17], which are part of the Reo framework [20] and can directly generate
executable code for the switches. Another line of research easily supported by
our model is the development of simulation and visualization tools for packets
flowing into the network.
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4. Arbab, F.: Proper protocol. In: Ábrahám, E., Bonsangue, M., Johnsen, E.B. (eds.)
Theory and Practice of Formal Methods. LNCS, vol. 9660, pp. 65–87. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-30734-3 7

https://doi.org/10.1007/978-3-319-95582-7_33
https://doi.org/10.1007/978-3-319-30734-3_7


84 H. Feng et al.

5. Arbab, F., Koehler, C., Maraikar, Z., Moon, Y.J., Proença, J.: Modeling, testing
and executing Reo connectors with the eclipse coordination tools. Presented at the
5th International Workshop on Formal Aspects of Component Systems (2008)

6. Arbab, F., Meng, S., Moon, Y.J., Kwiatkowska, M., Qu, H.: Reo2MC: a tool chain
for performance analysis of coordination models. In: van Vliet, H., Issarny, V. (eds.)
Proceedings of the of the 7th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pp. 287–288. ACM (2009)

7. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in
Reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006)

8. Ball, T., et al.: Vericon: towards verifying controller programs in software-defined
networks. SIGPLAN Not. 49(6), 282–293 (2014)

9. Casado, M., et al.: SANE: a protection architecture for enterprise networks. In:
Keromytis, A.D. (ed.) USENIX Security Symposium, p. 50. USENIX Association
(2006)

10. Cruz, R., Proença, J.: ReoLive: analysing connectors in your browser. In: Maz-
zara, M., Ober, I., Salaün, G. (eds.) STAF 2018. LNCS, vol. 11176, pp. 336–350.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04771-9 25

11. Ghassemi, F., Tasharofi, S., Sirjani, M.: Automated mapping of Reo circuits to
constraint automata. Electron. Notes Theor. Comput. Sci. 159, 99–115 (2006)

12. Izadi, M., Bonsangue, M.M.: Recasting constraint automata into Büchi automata.
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Abstract. In interactive theorem proving, human users interact with
proof assistants to construct and verify formal proofs. The most popular
proof assistants today all have user interfaces that are largely text-based.
This leads to a steep learning curve for new users of these tools. In this
paper, we propose a framework for designing user interfaces for proof
assistants based on pointing and clicking. While a main goal of the design
is ease of learning for new users, we intend for the design to be suitable
for real verification tasks. The design is also extensible, allowing cus-
tom proof methods and search functionality to be added in a convenient
way. We implement our ideas in a web interface, with backend provided
by holpy, a new system for interactive theorem proving implemented in
Python. The resulting user interface is tested on theorems in logic, sets,
functions, Peano arithmetic, and lists, demonstrating its applicability in
a wide range of areas.

Keywords: Proof assistants · User interface · Tactics

1 Introduction

Interactive theorem proving aims to construct and verify formal proofs via inter-
action between the computer and the human user. In recent years, it has seen
several major accomplishments, including formal verification of the seL4 micro-
kernel [13], verification of a realistic C compiler [14], and formal proofs of the
Feit-Thompson theorem [11] and Kepler’s conjecture [10]. These works show
that interactive theorem proving can be applied to very complex mathematical
theorems and computer systems. However, verification projects still take con-
siderable human effort. Work on the seL4 project, the Feit-Thompson theorem,
and Kepler’s conjecture each have an estimated cost of over 20 person years. In
addition, the proof assistants used – HOL Light [12], Coq [4], and Isabelle [15],
are generally considered to have a steep learning curve for new users, making it
difficult and time consuming to form and train new teams. These factors can be
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seen as a major obstacle to more widespread application of interactive theorem
proving. Hence, how to design proof assistants to make it more accessible to
users is an important problem for this field.

The most popular proof assistants today have user interfaces that are largely
text-based. The main form of interaction consists of the user editing a text
file containing the proof, either as a sequence of tactics or (as in Isabelle/Isar
[17]) written in a structured proof language. During editing, the user interface
displays the state of the proof at the current location of the proof text. To use the
proof assistant, the user needs to be familiar with names of the major tactics, as
well as some of the commonly used theorems. The Isabelle/Isar language makes
the resulting proof text more readable. However, it requires the user to further
understand the use of a number of keywords for structuring the proof.

Naturally, we may ask whether it is realistic to have user interfaces for proof
assistants that is based on pointing and clicking. In an ideal setting, most of
the interaction with the user interface should consist of choosing which facts
to consider, and which actions to take through clicks of the mouse. The user
interface performs the selected actions, and offers suggestions for future actions.
Only occasionally will the user need to enter text using the keyboard, and even
then only mathematical expressions rather than names of tactics or theorems.

While there have been attempts to build point-and-click user interfaces in
the past, they have not gained widespread adoptance for general-purpose the-
orem proving. Potential problems with existing designs include limited search
functionality – the user still need to find names of theorems to use, and limited
extensibility – there is usually a fixed set of proof methods, with no easy way to
grow them for new application domains. This limits the use of user interfaces to
simple examples, or to the special domains for which they are designed.

In this paper, we propose a new framework for designing user interfaces for
proof assistants that is based on pointing and clicking. In this design, the user
interacts with the interface mainly in three ways. First, at each step of the
proof, the user chooses which goal to consider and which facts in the proof to
use. Second, the user chooses an action from the list of actions suggested by the
computer. The suggestion process may involve (but is not limited to) matching
the chosen facts and goal with existing theorems. Third, the user annotates each
proved theorem, to tell the computer which directions for applying the theorem
are the most common, and should be considered during the suggestion process
in future proofs. We give a general definition of proof methods. Any function
satisfying this general definition can be added as a method in the user interface.
This makes the design extensible: new proof methods reflecting domain-specific
knowledge can be added in a convenient way.

We implement our design in a web interface1. The backend for the interface
is provided by holpy, a new system for interactive theorem proving implemented
in Python [18]. There are several aspects in holpy’s design that are different from
systems such as Isabelle and Coq, including a format for explicit representation of
proofs and theories based on JSON [8]. The format for theory files is not designed

1 Code available at https://gitee.com/bhzhan/holpy.

https://gitee.com/bhzhan/holpy
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for direct editing by the user. This means any user interface must interpret the
theory files for display in a more readable form, and reflect user changes back
to the file. While this makes user interfaces more difficult to implement at first,
it has the long-term advantage of allowing more flexibility in its design. The
current work can be viewed as a first attempt to implement a user interface for
holpy, justifying its choice of the theory format.

We now give an outline for the rest of this paper. In Sect. 2, we give an
overview of the holpy system, focusing on those aspects of design that are differ-
ent from the major proof assistants, and which are relevant to the current work.
In Sect. 3, we describe the design of the user interface on an abstract level, then
present the concrete implementation in Sect. 4, and give some statistics from
tests on theorems from various domains. In Sect. 5, we present the proof of the
Knaster-Tarski fixed point theorem as a detailed example. Finally, we conclude
in Sect. 6 with a discussion of future work.

Related Work. There have been a few early attempts to build point-and-click
user interfaces for proof assistants. The work of Bertot et al. in [5], and extended
in [6], introduced the idea of “Proof by Pointing”. In this framework, the user can
trigger deduction rules in logic by pointing to specific parts of the goal formula.
The latter work also studied how to implement script management (including
undoing and redoing steps), and textual explanation of proofs. Another line of
work by Abrial et al. [2] developed a user interface for Atelier B to perform formal
proofs in set theory. The work by Breitner in [7] constructed a visual theorem
proving interface based on connecting blocks, albeit also limited to proofs in
logic.

In the area of program and system verification, several tools have user inter-
faces that allow proofs to be conducted by pointing-and-clicking. These include
KeY [3] and KeYmaera/KeYmaera X [9,16]. These tools allow users to choose
subgoals and select which actions to take from a menu. There is some similarity
in the mode of interaction between our work and these systems. However, our
focus is on general-purpose theorem proving in higher-order logic, rather than
for specific program logics.

2 Overview of holpy

In this section, we give an overview of the holpy system, focusing on aspects that
are different from systems such as Isabelle and Coq, and which are relevant to
the current work. More details on the design of holpy can be found in [18].

holpy is a new system for interactive theorem proving implemented in
Python. Its logical foundation is higher-order logic, similar to existing proof assis-
tants such as Isabelle/HOL [15], HOL Light [12], and HOL4 [1]. On the other
hand, holpy makes major changes to how proofs and theories are represented. In
particular, it exports explicit proofs, with abbreviations by macros so they can
be stored and checked by third-party tools without running into the usual scala-
bility problems. For representing theories, holpy chooses a JSON-based format.
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This format is not designed for direct human editing, but is convenient to read
and write by computer programs. Finally, holpy provides an API in Python for
implementing proof automation (as well as other tools). A major goal of holpy’s
design is to show that with export of explicit proofs, the type and memory safety
issues of Python does not pose any problems for the soundness of proof-checking.

In the remainder of this section, we discuss various aspects of holpy in more
detail, in particular the concepts of macros, proof representation, and tactics as
it relates to holpy.

2.1 Proof Rules and Macros

Proofs in holpy are conducted in natural deduction style. The basic objects are
sequents with a number of antecedents and a single consequent. A sequent with
antecedent A1, . . . , An and consequent C is written in the usual notation as
A1, . . . , An � C.

The logical foundation fixes a set of primitive deduction rules, with each rule
taking a number of input sequents and possibly additional arguments, and out-
puts a sequent (or raises an exception). Examples of primitive deduction rules
include introduction and elimination rules for implication and forall quantifica-
tion, congruence properties of equality, substitution of type and term variables,
and so on.

Proof rules can be considered as a generalization of primitive deduction rules.
They are intended to represent a number of more basic steps of proof. In gen-
eral, a proof rule takes as input the current theory environment (list of existing
constants, theorems, etc.), a list of input sequents, and possibly additional argu-
ments, and outputs a single sequent (or raises an exception). Each proof rule
defines a precise signature for its additional arguments.

Primitive deduction rules form one class of proof rules. Another fundamental
proof rule is theorem, which takes no input sequents and a theorem name as
additional argument. If there exists a theorem with that name in the current
theory environment, it outputs that theorem as a sequent. Otherwise, it raises
an exception.

The other proof rules are called macros. They represent multiple steps of
proof as a single step. In addition to the function returning the output sequent
directly, each macro may also specify an expansion function which, given the
same inputs, returns the invocations of proof rules used to obtain the output
sequent (or raises an exception). The expanded proof can be used during proof
checking, so the implementation of the macro need not be trusted. The use of
macros means any portion of proof that can be algorithmically generated can be
stored as a single step, so large proofs can be stored for proof-checking by third-
party tools, without encountering the usual scalability issues. Some examples of
common macros will be given in the following sections.
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2.2 Format for Proofs

Proofs in holpy are exported into a linear form. A linear proof consists of an
ordered list of proof items. Each proof item consists of an identifier, the name of
a proof rule, additional arguments for the proof rule, and a list of identifiers of
earlier proof items, representing the input sequents. A linear proof can be checked
(within a theory environment) by reading the proof items in order, computing
the sequent for each proof item by invoking the corresponding proof rule. The
result of a linear proof is the sequent corresponding to the last proof item.

How to represent identifiers is largely conventional. We choose to represent
each identifier as a tuple of natural numbers, written in dot-separated form (e.g.
0.2.1). This allows us to express sub-proofs. For example, steps in the main trunk
of the proof have identifiers 0, 1, 2, etc. Proving the sequent in the proof item with
identifier 1 may take place outside the main trunk, with steps having identifiers
1.0, 1.1, 1.2, and so on. In practice, we use sub-proofs when introducing variables
and assumptions, as will be seen in the examples in the next subsection.

Internally for proof automation, holpy works with another form of proof
representation: as directed acyclic graphs located in memory. Each vertex of
the graph is a proof item, where the input sequents are referenced directly (so
identifiers are not needed). There is a standard algorithm for converting proof
terms to linear proofs. Hence, the general idea for proof automation in holpy is
to first construct proof terms, then convert them to linear proofs for storage and
viewing by the user.

2.3 Examples of Proofs

We give two simple examples of proofs for illustration. First, consider the propo-
sition A ∧ B −→ B ∧ A. The linear proof is as follows:

0. A ∧ B � A ∧ B by assume A ∧ B
1. A ∧ B � A by apply theorem conjD1 from 0
2. A ∧ B � B by apply theorem conjD2 from 0
3. A ∧ B � B ∧ A by apply theorem conjI from 2, 1
4. � A ∧ B → B ∧ A by implies intr from 3.

Each line in the above text represents a proof item. It starts with the identifier
of the proof item. The part before by is the computed sequent. The part after
by specifies the proof rule, the additional arguments, and identifiers of the input
sequents. The proof rules assume and implies intr are primitive deduction
rules. The proof rule apply theorem is the macro for applying a single theorem.
It can be expanded into theorem rule for obtaining the theorem with the given
name, subst type (resp. substitution) for substituting the type (resp. term)
variables, and implies elim for discharging the assumptions.
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As another example, consider the proof by induction of n + 0 = n in Peano
arithmetic.

0. � 0 + 0 = 0 by rewrite goal plus def 1, 〈goal〉
1.0. � VAR n by variable n :: nat
1.1. n + 0 = n � n + 0 = n by assume n + 0 = n
1.2. n + 0 = n � Suc (n + 0) = Suc n by rewrite goal with prev 〈goal〉 from 1.1
1.3. n + 0 = n � Suc n + 0 = Suc n by rewrite goal plus def 2, 〈goal〉 from 1.2

1. � ∀n. n + 0 = n −→ Suc n + 0 = Suc n by intros from 1.0, 1.1, 1.3
2. � n + 0 = n by apply theorem for nat induct, {P : λn. n + 0 = n, x: n}

from 0, 1.

Here 〈goal〉 is an abbreviation for the goal statement, the trivial rule variable
designate new variables, and macro intros introduces variables and assumptions
(expanding into forall intr and implies intr). The macro rewrite goal as
well as rewrite goal with prev are for rewriting (using a theorem and using
a previous fact). Items 1.1 to 1.3 should be read in the backward direction: the
goal from applying induction is Suc n + 0 = Suc n. Rewriting using plus def 2
(inductive definition of +) changes it to Suc (n + 0) = Suc n, which is resolved
by rewriting using the inductive hypothesis.

This format for displaying linear proofs is still not easy to read. We choose
to use this format in this and the next section in order to show the workings
of tactics and methods more clearly. An improved format will be introduced in
Sect. 4.

2.4 Format for Theories

In holpy, as in other proof assistants such as Isabelle and Coq, mathematical
knowledge is organized as a collection of theories. Each theory imports a list
of other theories, and may define new types, constants, and theorems. Proof of
theorems are also contained in theories. The format for theories in holpy is based
on JSON, hence holpy theory files have extension .json.

The main part of the theory file consists of a list of items, where each item
represent a new type, constant, theorem, and so on. Each item is a dictionary
consisting of both required and optional data for the item. For example, a the-
orem item may contain the proof of the theorem. It may also contain theorem
attributes: a list of strings indicating (among others) how the theorem is usually
used in proofs (the name is taken from a similar notion in Isabelle). For example,
the attribute backward means the theorem is usually applied in the backward
direction. This information is used during the search for suggested actions, in
order to limit the number of suggestions (see Sect. 3.4).

Storing theories as a JSON file, rather than as a text file to be edited directly,
makes the initial implementation of a user interfaces more difficult. However, it
also creates more flexibility when designing the user interface. In particular,
not all information in the JSON file has to be displayed. Some information can
be hidden depending on the context. Another advantage is that it is easier to
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develop other tools to analyze theories – for example, to profile the performance
of proof automation or the search functionality. In particular, we make use of
this to produce the test results shown in Table 1.

2.5 Tactics

The notion of tactics in holpy is analogous, but not exactly the same, to tactics
in Isabelle and Coq. In holpy, a tactic is a function taking as input a sequent
to be proved, a list of input sequents, and possibly additional arguments (with
fixed signature for each tactic), and returns a proof whose output is the target
sequent (or raises an exception). The resulting proof may refer to input sequents,
and it may also contain holes: sequents whose proof is left for later, indicated by
the sorry proof rule. Intuitively, a tactic converts the current goal (the sequent
to be proved) to a list of subgoals (those proof items with rule sorry), possibly
making use of other known facts (the input sequents).

We give two examples for illustration. First, consider the introduction tactic,
which takes a goal in the forall-implies form, and introduces the variables and
assumptions in a sub-proof. It takes as additional arguments the names of the
new variables (and no input sequents). For example, given the goal

� ∀n. n + 0 = n −→ Suc n + 0 = Suc n,

and name n for the new variable, the tactic returns the proof

0.0. � VAR n by variable n :: nat
0.1. n + 0 = n � n + 0 = n by assume n + 0 = n
0.2. n + 0 = n � Suc n + 0 = Suc n by sorry

0. � ∀n. n + 0 = n −→ Suc n + 0 = Suc n by intros from 0.0, 0.1, 0.2.

As a second example, consider the tactic for applying a theorem in the back-
ward direction. Given the goal A ∧ B � B ∧ A, a theorem name conjI, and no
input sequents, the tactic produces the following proof:

0. A ∧ B � B by sorry
1. A ∧ B � A by sorry
2. A ∧ B � B ∧ A by apply theorem conjI from 0, 1.

Note how the macro apply theorem is used in the last step of the proof generated
by the tactic for applying a theorem. If A ∧ B � B is given as an input sequent,
the resulting proof has only one sorry, and the invocation of apply theorem
refers to that input sequent.

3 Design of the User Interface

In this section, we describe the overall design of the user interface on an abstract
level, leaving the concrete implementation to the next section.

The basic principle of the design is as follows: we primarily allow user inter-
action with the interface in the following three ways:
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1. During the proof, choose the current goal to consider and a list of facts avail-
able in the proof to use.

2. After choosing the current goal and a list of facts, choose an action to perform
from the list of suggestions or from the menu, entering additional arguments
for the action if necessary.

3. After a theorem is proved, annotate the theorem with how it should be used
in future proofs (for example, direction of rule application or rewriting).

A key component of the user interface is the search functionality. Depending
on the user annotations, the system searches in the list of existing theorems to
see which ones are applicable to the current goal and selected facts, and display
the results among the list of suggestions.

3.1 Methods

The central concept in this design is that of methods. Our definition of methods
has some similarities to that in Isabelle, but there are also some important
differences.

In our framework, the proof state is simply a linear proof with gaps. These
gaps can be considered as the remaining goals. A method defines a transforma-
tion on the proof state. More precisely, it is a function taking the following input
arguments, and either returns a new proof state or raises an exception:

– The current proof state.
– One selected goal in the proof state.
– A list of selected facts in the proof state (which must occur before the goal).
– Some additional arguments, with signature fixed by the method.

Unlike macros and tactics, the additional arguments for methods are always
strings indexed by a set of keys (as determined by the method). Each method is
responsible for parsing the input strings to the right kinds of objects (e.g. types
and terms).

The above definition of methods is quite general. A method can literally
make any change to the proof state. In practice, most methods fall into one of
two common forms, corresponding to backward and forward reasoning. We now
describe these two kinds of methods in more detail.

3.2 Backward Reasoning

Methods for backward reasoning take the selected goal, and attempt to replace
it by a number of simpler goals. Such methods can be constructed directly from
tactics. Given a tactic, the corresponding method performs the following actions:

1. Lookup the selected goal and facts in the proof state, to obtain the sequent
to be proved and the list of input sequents.

2. Parse the input strings to the right kinds of objects (e.g. types and terms).
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3. Apply the tactic on these inputs (and the theory environment of the proof),
yielding a proof (possibly with holes) of the goal.

4. Splice the proof into the proof state. This involves modifying the proof item
for the goal so it is no longer a sorry, and possibly inserting proof items
before the goal.

The last splicing process is easy to understand intuitively, but can be quite
tricky to implement. Inserting proof items in the middle of a proof involves
changing the identifiers in the output of the tactic, and also in the part of the
proof state after the goal (if we wish to keep the identifiers in order). It also
needs to link up references to input sequents in the output of the tactic. We give
two examples for illustration.

Introduction. Consider the proof of n + 0 = n by induction. After applying
induction, we have the following proof state:

0. � 0 + 0 = 0 by sorry
1. � ∀n. n + 0 = n −→ Suc n + 0 = Suc n by sorry
2. � n+0 = n by apply theorem for nat induct, {P : λn. n+0 = n, x: n} from

0, 1.

We invoke the method corresponding to the introduction tactic, with item 1
as the goal, and n as the additional argument for the name of the new variable.
The result is:

0. � 0 + 0 = 0 by sorry
1.0. � VAR n by variable n :: nat
1.1. n + 0 = n � n + 0 = n by assume n + 0 = n
1.2. n + 0 = n � Suc n + 0 = Suc n by sorry

1. � ∀n. n + 0 = n −→ Suc n + 0 = Suc n by intros from 1.0, 1.1, 1.2
2. � n + 0 = n by apply theorem for nat induct, {P : λn. n + 0 = n, x: n}

from 0, 1.

Note the output of the tactic (shown in Sect. 2.5) is modified to start with
identifier 1, and spliced into the proof state.

Applying a Theorem. For this example, consider again the proof of A∧B −→
B ∧ A. Suppose we are at the following intermediate stage of the proof:

0. A ∧ B � A ∧ B by assume A ∧ B
1. A ∧ B � B by apply theorem conjD2 from 0
2. A ∧ B � B ∧ A by sorry
3. � A ∧ B → B ∧ A by implies intr from 2.

Invoking the method corresponding to backward application of a theorem, with
item 2 as the selected goal, item 1 as (the only) selected fact, and conjI as the
name of the theorem, the result is:
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0. A ∧ B � A ∧ B by assume A ∧ B
1. A ∧ B � B by apply theorem conjD2 from 0
2. A ∧ B � A by sorry
3. A ∧ B � B ∧ A by apply theorem conjI from 1, 2
4. � A ∧ B → B ∧ A by implies intr from 3.

Note items 2 and 3 in the original proof state are automatically re-numbered,
along with their references.

3.3 Forward Reasoning

Methods for forward reasoning considers only the selected facts. It can be created
directly from a macro: the selected facts become the input sequents to the macro,
and the input strings are parsed to the arguments for the macro. The output of
the macro is added as a new proof item directly in front of the selected goal.

For example, given the following initial proof state:

0. A ∧ B � A ∧ B by assume A ∧ B
1. A ∧ B � B ∧ A by sorry
2. � A ∧ B → B ∧ A by implies intr from 1.

We invoke the method corresponding to the macro apply theorem, with item 1
as goal, item 0 as fact, and conjD2 for the theorem name. The resulting proof
state is as follows.

0. A ∧ B � A ∧ B by assume A ∧ B
1. A ∧ B � B by apply theorem conjD2 from 0
2. A ∧ B � B ∧ A by sorry
3. � A ∧ B → B ∧ A by implies intr from 2.

Again, note the re-numbering of proof items 1 and 2 and their references after
adding a new proof item before 1.

3.4 Search for Suggestions

In addition to the function transforming the proof state, each method also pro-
vides a search function. The search function takes as input the current proof
state, the selected goal, and the list of selected facts, and outputs a list of
suggested invocations of the method. Each suggested invocation provides input
strings for some (but not necessarily all) of the required arguments.

For example, the method applying a single theorem in the forward (resp.
backward) direction has search function that iterates through theorems hav-
ing the forward (resp. backward) attribute. For each theorem, it matches the
selected facts and goal with the assumptions and conclusion of the theorem,
and returns a suggestion whenever the match succeeds. Likewise, the method
for rewriting a fact (resp. goal) using a theorem has search function matching
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the left side of each theorem having the rewrite attribute with subterms of the
selected fact (resp. goal).

The search function for methods is an important part of the system. The
output of all search functions are combined to form the list of suggestions to
the user. For methods applying a theorem in the forward/backward direction
or for rewriting, this means the user does not need to lookup the name of the
theorem, but the system will find it automatically based on the selected goal
and facts. For methods requiring no input arguments (for example, automation
that attempts to directly resolve the goal), the search function tests whether the
method can be applied.

3.5 Summary

We now summarize the three notions of macros, tactics, and methods. All of
them can be defined by the user, through which the system can be extended
with domain-specific functionality. All three take as side inputs the current the-
ory environment and additional arguments (where the signature is specified by
individual functions). They are distinguished by their main input and output.
We summarize these below.

– Macros take a list of sequents and return a new sequent. They may also return
a proof of the new sequent when desired. They are mainly used to abbreviate
a proof.

– Tactics take a sequent and return a proof (possibly with holes) of the sequent.
A common pattern is to use a macro in the last step of the output proof.

– Methods take a proof state with selected goal and facts and apply a transfor-
mation to the proof state, and may provide a search functionality. Common
patterns include applying a tactic at some goal, or applying a macro to obtain
a new sequent just before the goal. They form the direct link to the user inter-
face.

4 Implementation

We implemented the above design in a web interface. The main reason for build-
ing a user interface from scratch (as well as using the new holpy system as
backend) is to allow full flexibility in its design. In principle, the core ideas can
be applied to other proof assistants, perhaps with additional work on creating
another layer of proof representation in these systems.

Besides functionality for constructing a proof, the user interface handles dis-
play and editing of theory files. In particular, it allows the user to manage the list
of theories, and the list of items in a theory. The user may also specify attributes
for theorems in the edit area. Hence, it provides all of the necessary functionality
for interactive theorem proving based on holpy.
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Fig. 1. Screenshot showing an intermediate stage in the proof of lfp unfold.

Figure 1 shows a screenshot of the user interface. At the top, there is a menu
of commands for file management, actions during a proof, and managing the list
of items in a theory. The left panel displays the content of the current theory
(it can also be changed to display the list of theories, or show more information
about the current state of the proof). On the right side, the top panel displays
the current state of the proof. The user selects goal and facts in the proof by
clicking on the corresponding lines. The selected goal and facts are colored in red
and yellow, respectively. After each change of selection, the user interface queries
the backend for a list of suggestions of method applications, and displays them
in the bottom panel, together with their expected effects. The user performs one
of the suggested actions by clicking on the corresponding line. If the suggestion
does not provide all of the required arguments, the user is prompted to enter
the missing arguments.

Occasionally, the user will want to invoke a method not among the sugges-
tions. Two common methods that are not searched are cases and cut. Both
take a string which is parsed into a term A of boolean type. The cases method
reduces the selected goal C into two goals A −→ C and ¬A −→ C. The cut
method inserts A as a new goal right before the current goal. When A is proved,
it can be used in the proof of the original goal. The user can select invoca-
tion of these (and other) methods from the menu, and then enter the required
arguments.

When displaying the proof, the user interface converts the proof to a more
readable form compared to that used in Sects. 2 and 3. The basic transforms
applied include the following. Examples will be given in Sect. 5.

– Use fix and assume for variable and assume rules.
– Hide antecedents of sequents (which can be inferred from previous assumes).
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– Change invocations of intros to with blocks.
– Add show for the last sequent of a block, and have for other intermediate

sequents.
– Indentation according to with blocks.

We applied our tool to a selection of theorems about logic, sets, functions,
Peano arithmetic, and lists. The results are given in Table 1. In the table, #S
is the total number of steps to prove the theorem, #Y is the number of steps
that are among the suggestions, and #N is the number of steps that must

Table 1. Statistics on the test suite.

Name Proposition #S #Y #N

double neg ¬¬A ←→ A 9 8 1

disj conv imp ¬A ∨ B ←→ A −→ B 12 11 1

ex conj distrib (∃x. A x ∧ B x) −→ (∃x. A x) ∧ (∃x. B x) 6 6 0

all conj distrib (∀x. A x ∧ B x) −→ (∀x. A x) ∧ (∀x. B x) 7 7 0

conj disj distribL1 A ∧ (B ∨ C) ←→ A ∧ B ∨ A ∧ C 23 23 0

pierce ((A −→ B) −→ A) −→ A 5 4 1

drinker ∃x. P x −→ (∀x. P x) 11 8 3

subset antisym A ⊆ B −→ B ⊆ A −→ A = B 7 7 0

subset trans A ⊆ B −→ B ⊆ C −→ A ⊆ C 4 4 0

cantor ∃S. ∀x. ¬f x = S 13 12 1

Inter subset A ∈ S −→ ⋂
S ⊆ A 4 4 0

subset Inter (∀C. C ∈ S −→ A ⊆ C) −→ A ⊆ ⋂
S 6 6 0

Union union
⋃
(A ∪ B) =

⋃
A ∪ ⋃

B 43 43 0

lfp lowerbound hA ⊆ A −→ lfph ⊆ A 3 3 0

lfp greatest (∀X. hX ⊆ X −→ A ⊆ X) −→ A ⊆ lfph 5 5 0

lfp unfold bnd mono h −→ h (lfph) = lfph 10 9 1

fun upd triv (f)(a := f a) = f 8 7 1

fun upd upd (f)(a := b, a := c) = (f)(a := c) 9 8 1

fun upd twist ¬c = a −→ (f)(a := b, c := d) = (f)(c := d, a := b) 19 17 2

comp fun assoc (f ◦ g) ◦ h = f ◦ g ◦ h 4 4 0

injective comp fun injective f −→ injective g −→ injective(g ◦ f) 5 5 0

surjective comp fun surjective f −→ surjective g −→ surjective(g ◦ f) 11 9 2

add comm x + y = y + x 7 6 1

add assoc x + y + z = x + (y + z) 6 6 0

distrib l x ∗ (y + z) = x ∗ y + x ∗ z 7 7 0

mult assoc x ∗ y ∗ z = x ∗ (y ∗ z) 7 6 1

mult comm x ∗ y = y ∗ x 7 6 1

less eq trans k ≤ m −→ m ≤ n −→ k ≤ n 9 9 0

append right neutral xs @ [] = xs 5 5 0

append assoc (xs @ ys) @ zs = xs @ ys @ zs 6 6 0

length append length (xs @ ys) = length xs + length ys 9 9 0

rev append rev (xs @ ys) = rev ys @ rev xs 9 8 1

rev rev rev (rev xs) = xs 12 12 0

rev length length (rev xs) = length xs 10 10 0

Total: 34 theorems 318 300 18
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be invoked from the menu. The results show that the current user interface is
already applicable to a wide range of areas, allowing proofs of basic results to
be conducted largely by choosing from the suggestions.

5 Case Study: Knaster-Tarski Theorem

In this section, we use the proof of the Knaster-Tarski fixed point theorem
to demonstrate how user interaction works in practice for a nontrivial result.
Roughly speaking, the theorem states that any bounded monotone function has
a (smallest) fixpoint. We state and prove a basic version of the theorem using
our user interface.

The definition of bounded monotone functions is given as follows (here h is
of type ′a set ⇒ ′a set, and we assume the bound on h is given by the type ′a).

bnd mono h ←→ (∀W. ∀X. W ⊆ X −→ hW ⊆ hX)

Given a bounded monotone function, its least fixed point is constructed using
the following definition:

lfph =
⋂

{X. hX ⊆ X}

Two properties of lfph follow immediately from the definition. The first says
that lfph is contained in any set A satisfying hA ⊆ A. The second says that in
order to show any set A is a subset of lfp h, it suffices to show A is a subset of
any X satisfying hX ⊆ X. These properties are stated in higher-order logic as
follows.

lfp lowerbound : hA ⊆ A −→ lfph ⊆ A

lfp greatest : (∀X. hX ⊆ X −→ A ⊆ X) −→ A ⊆ lfph

The main theorem states that lfp h is in fact a fixed point of h:

lfp unfold : bnd mono h −→ h (lfp h) = lfph

We now show how to prove this theorem using our user interface. The initial
state of the proof is:

0 assume bnd mono h
1 show h (lfp h) = lfph by sorry.

First, select item 0 as a fact, and apply the suggestion to rewrite the fact using
theorem bnd mono def. Next, select item 1 (now item 2) as the goal (without
selecting any facts), and use the suggestion to apply subset antisym, to reduce
the goal to two subset relations. The resulting state after these two operations
is:
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0 assume bnd mono h
1 have ∀W. ∀X. W ⊆ X −→ hW ⊆ hX by rewrite fact bnd mono def from

0
2 have h (lfp h) ⊆ lfph by sorry
3 have lfph ⊆ h (lfph) by sorry
4 show h (lfph) = lfph by apply theorem subset antisym from 2, 3.

Next, select item 2 and follow the suggestion to apply lfp greatest. This
results in a forall goal. Select the goal and using the introduction method, enter-
ing X for the name of the new variable, we get the following proof state:

0 assume bnd monoh
1 have ∀W. ∀X. W ⊆ X −→ hW ⊆ hX by rewrite fact bnd mono def from 0
2 have ∀X. hX ⊆ X −→ h (lfph) ⊆ X with

2.0 fix X :: ′a set
2.1 assume hX ⊆ X
2.2 show h (lfph) ⊆ X by sorry

3 have h (lfph) ⊆ lfph by apply theorem lfp greatest from 2
4 have lfph ⊆ h (lfph) by sorry
5 show h (lfph) = lfph by apply theorem subset antisym from 3, 4.

Next, we perform the only manual step in this proof, inserting an intermediate
goal h (lfph) ⊆ hX before h (lfp h) ⊆ X (choose “Insert goal” from the menu
with item 2.2 selected as goal). The resulting proof state is (now showing only
the block for proof of item 2):

2 have ∀X. hX ⊆ X −→ h (lfph) ⊆ X with
2.0 fix X :: ′a set
2.1 assume hX ⊆ X
2.2 have h (lfph) ⊆ hX by sorry
2.3 show h (lfph) ⊆ X by sorry.

Next, select goal 2.2 and fact 1, and follow the suggestion to apply fact 1 to
goal 2.2, resulting in a new goal lfph ⊆ X:

2 have ∀X. hX ⊆ X −→ h (lfph) ⊆ X with
2.0 fix X :: ′a set
2.1 assume hX ⊆ X
2.2 have lfph ⊆ X by sorry
2.3 have h (lfph) ⊆ hX by apply fact for lfph,X from 1, 2.2
2.4 show h (lfph) ⊆ X by sorry.

Select item 2.2, the user interface suggests using the theorem
lfp lowerbound, reducing the goal to hX ⊆ X, which is already available as a
fact. This proves 2.2. Next, select goal 2.4 and fact 2.3, the user interface sug-
gests use of the theorem subset trans, again reducing the goal to hX ⊆ X.
Performing these two steps finishes the proof of item 2. The resulting proof state
is:
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2 have ∀X. hX ⊆ X −→ h (lfph) ⊆ X with
2.0 fix X :: ′a set
2.1 assume hX ⊆ X
2.2 have lfph ⊆ X by apply theorem for lfp lowerbound, . . . from 2.1
2.3 have h (lfph) ⊆ hX by apply fact for lfph,X from 1, 2.2
2.4 show h (lfph) ⊆ X by apply theorem subset trans from 2.3, 2.1.

Two more steps are needed to finish the overall proof: reducing goal 4 to
showing h (h (lfp h)) ⊆ h (lfp h) using lfp lowerbound, then using item 1 and 3
to resolve the goal. The user interaction is similar to before. The final state of
the proof is:

0 assume bnd monoh
1 have ∀W. ∀X. W ⊆ X −→ hW ⊆ hX by rewrite fact bnd mono def from 0
2 have ∀X. hX ⊆ X −→ h (lfph) ⊆ X with

2.0 fix X :: ′a set
2.1 assume hX ⊆ X
2.2 have lfph ⊆ X by apply theorem for lfp lowerbound, . . . from 2.1
2.3 have h (lfph) ⊆ hX by apply fact for lfph,X from 1, 2.2
2.4 show h (lfph) ⊆ X by apply theorem subset trans from 2.3, 2.1

3 have h (lfph) ⊆ lfph by apply theorem lfp greatest from 2
4 have h (h (lfph)) ⊆ h (lfph) by apply fact for . . . from 1, 3
5 have lfph ⊆ h (lfph) by apply theorem for lfp lowerbound, . . . from 4
6 show h (lfph) = lfph by apply theorem subset antisym from 3, 5.

As we can see, the resulting proof is quite readable, similar to a proof written
in Isabelle/Isar. All intermediate conclusions are shown, as well as the name of
each theorem and proof rule used. However, the entire proof is constructed using
just a few clicks, occasionally entering names of variables, instantiations (when
it cannot be derived by matching), and intermediate goals.

6 Conclusion

In this paper, we presented a framework for designing point-and-click user inter-
faces in interactive theorem proving. While a major goal of the design is ease of
learning for newcomers to this field, we also intend to produce a fully functional
system, able to be used for general purpose theorem proving. We implemented
a prototype user interface based on this framework, and tested it on theorems
about logic, sets, functions, Peano arithmetic, and lists, showing that these theo-
rems can be proved largely by clicking on suggestions, and occasionally entering
additional information.

We intend the current work to be the beginning of a long-term project to build
a proof assistant that is both easy to use and scalable to large formalizations.
Immediate next steps include extending the prover to make it work smoothly over
a larger variety of domains. In addition, we envision two major improvements to
the user interface. First, we currently lack strong proof automation in the system.
This can be seen in the examples above, where the resulting proof consists of
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low-level theorem applications. Proof assistants such as Isabelle benefit from
powerful tactics (such as auto and blast), as well as calls to external provers
via Sledgehammer. In the future, we intend to incorporate both powerful internal
automation, as well as connection to external provers. They fit nicely into the
current framework as follows: the user selects the goal and a number of facts
to use, and the system invokes proof automation in the background to check
whether the goal can be solved using the selected facts. In this way, we intend
to allow proofs that are a mix of high-level and low-level steps, where the user
can choose the granularity of the argument.

Second, we currently make no attempt to order the list of suggestions of
method applications. This does not pose a problem so far, since the test examples
are still in the beginning stages of mathematical development, so there are few
options at each step. As we move to formalizing deeper mathematical theories,
it is expected that the number of options at each step will increase, even as we
try to control it with theorem annotations and allowing the user to select which
facts in the proof to use. One potentially promising approach is to use machine
learning models for ordering the suggestions.
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Abstract. SQL is the programming language for communicating with
relational databases, but writing SQL queries is challenging for many end
users due to lack of programming knowledge. In this paper, we present
an efficient and accurate algorithm that helps users to synthesize SQL
queries from IO examples, which is the first algorithm to encode SQL syn-
thesis problem into constraint-solving problem. We propose an axiom that
encodes the semantics of a SQL query into logic constraints, and decom-
pose the SQL synthesis problem into two parts: problem-encoding and
constraint-solving. For the problem-encoding part, we use a SQL template
that is same as prior work and parameterize it, then based on this axiom,
we encode the parameters into logic constraints. For the constraint-solving
part, we use the off-the-shelf modern SMT solvers. Our algorithm supports
multiple IO examples, therefore users can add more examples to refine
the solution until a correct one is found. We implemented a tool, SqlSol,
and evaluated it on 171 benchmarks. The results showed that it efficiently
solved 68% of the benchmarks in 3 s in average. For those SqlSol cannot
solve, SqlSol terminated in 4 s in average.

Keywords: SQL · SMT solver · Program synthesis · Program by
example

1 Introduction

Relational database is one of the most important data management infrastruc-
ture in the modern era of data technology. Structured query language (SQL)
is the language that is used to manipulate relational databases. According to
TIOBE index [4], SQL is one of the top 10 ranked programming languages, the
best-ranked database query language in the year of 2018. However, writing SQL
queries is difficult because of the high expressiveness of the language structs.
Searching on Stack Overflow with the keyword SQL, we got over 30000 pages of
results, each of which contains 15 questions. That is, more than 450K questions
about writing SQL queries asked.

Programming By Example (PBE) has attracted research interests as a tech-
nique to help end-user programming computers by demonstrating concrete exam-
ples [8,9,11,12]. Observing users usually provide input-output (IO) tables as
c© Springer Nature Switzerland AG 2019
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Fig. 1. The architecture of SqlSol

examples when raising questions, researchers have proposed different algorithms
to synthesize SQL queries by examples [15,16].

The state-of-the-art SQL synthesizers, SQLSynthesizer [16] and Scythe [15],
use hand-crafted search algorithms to automatically generate SQL queries from
input-output examples. SQLSynthesizer uses a parameterized SQL template,
which is showed by a survey that it supports the mostly wide used SQL features,
and uses a decision tree to decide the parameters, and uses an online database to
validate the result. Scythe enlarges the supported SQL subset by allowing nested
queries, and uses abstract SQL query to prune the search space, and manually
implements SQL semantics to validate the result. Both SQLSynthesizer and
Scythe support one IO example and use heuristics to rank solutions because
there may be many SQL queries that satisfy the IO example.

Instead of manually creating search algorithms, we propose an axiom which
encodes the semantics of a SQL query and a new algorithm that encodes the SQL
synthesis problem into logic constraints and uses the off-the-shelf satisfiability
modulo theory (SMT) solvers to solve for the solution. Nowadays, SMT solvers,
Z3 [7] and CVC4 [5] et al., have become the corner stones of modern computer
science. The rich features of modern SMT solvers allow us to express complicate
datatypes, like table. For example, in this paper, we encode table as a datatype
of Array(String Int Cell), Where Cell is a datatype which can hold int,
float, string or null values of a table cell.

Our algorithm enjoys the following benefits brought by the logic constraints
based approach. First, it inherits the theoretic properties from the formal meth-
ods. That is, because the logic constraints are sound and complete, if the algo-
rithm of SMT solver is sound and complete, the whole algorithm is sound and
complete. Second, our algorithm enjoys performance improvement, because the
implementations of modern SMT solvers focus on performance and are battle-
hardened, [3]. Third, it is made easy for our approach to support multiple IO
examples, because our algorithm decomposes the SQL synthesis problem into two
parts: logic encoding and logic solving. Actually, we only need to conjuncture the
logic constraints for all IO examples. Therefore, instead of heuristically ranking
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Select t2.student ,t2.avg_score
From
(Select t4.student , t4.level , t4.avg_score ,

t5.student As student1 ,
t5.level As level1 , t5.course , t5.score

From (( Select
t3.student , t3.level , Avg(t3.score) As avg_score

From
(Select *

From
input_table_0

Where input_table_0.score > 59.0) As t3
Group By

t3.student , t3.level) As t4 Join
(Select *

From
input_table_0

Where input_table_0.score = 59.0) As t5)) As t2
Where t2.level = t2.level1;

Fig. 2. Solution generated by Scythe. It has 3 levels of nested queries and 4 sub-queries.

solution to match an IO example, our algorithm is able to synthesize the correct
SQL query, i.e., capture the user intent. For example, in our motivating example
in Sect. 2, our algorithm generates the SQL query that matches the specification
in natural words exactly. However, the state-of-the-art tool, Scythe, generates
the solution, Fig. 2, which is more complicate and semantically different because
its predicate is score > 59 instead of average(score) > 59.

Figure 1 is the overall flow of our tool, SqlSol. It starts with one IO example
provided by the user, and synthesizes the JOIN conditions. Then, it determines
the number and types of the unknowns in a parameterized SQL query, and
encodes IO constrains, domain constraints, and semantics constraints. Then, it
sends all constraints to an SMT solver to check for satisfiability. If the solver
returns unsatisfiable, it declares failure. If the solver returns satisfiable, it fetches
the model generated by the solver and compiles a SQL query and asks the user
to decide whether to accept or not. If yes, the algorithm returns; Otherwise,
the algorithm asks the user to add new IO examples to refine the solution until
a solution is accepted or failure declared. Note that our algorithm joins input
tables same way and supports same SQL subset as SQLSynthesizer.

We evaluated SqlSol on two benchmark sets used by previous work, SQL-
Synthesizer and Scythe [15,16]. Under a reasonable setting, on SQLSynthesizer
benchmark set, SqlSol solved more problems than both SQLSynthesizer and
Scythe. On Scythe benchmark set, although SqlSol solved less problems than
Scythe because the supported SQL subset is smaller, SqlSol is faster for both
solved and unsolved problems. Specially, for unsolved problems, SqlSol termi-
nates in seconds, while Scythe only terminates after time out of 120 s. We eval-
uated the scalability of SqlSol and Scythe on another 25 hand-written bench-
marks, and the result showed that SqlSol is 2X to 10X faster than Scythe. Our
evaluation also showed that supporting multiple IO examples not only help user
to find the correct SQL query, but also can speedup the algorithm.
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SELECT student.name AS name , average(grade.score) AS average
FROM student
JOIN grade
ON student.id = grade.s_id
WHERE student.level = ’senior ’
GROUP BY student.name
HAVING average(grade.score) > 59.

Fig. 3. Hand-written solution for the motivating example

We have the following contributions:

– We propose an axiom to model the SQL semantics for SQL synthesis. We
propose an innovative algorithm which encodes SQL synthesis problem into
logic constraints, then solve it with modern SMT solvers.

– Our algorithm supports multiple examples and iteratively refines the solu-
tion space to find a solution accepted by the user, in addition to a solution
satisfying one IO example.

– We implemented an end-to-end synthesis tool, SqlSol, and evaluated the
results experimentally.

The rest of the paper is organized as follows: In Sect. 2, we use a motivating
example to demonstrate our algorithm step by step. In Sect. 3, we introduce our
SQL subset. In Sect. 4, we present our technique in details. In Sect. 5, we evaluate
our algorithm and compare to the state-of-the-art SQL synthesizing tools.

2 Motivating Example

In this section, we use an example to demonstrate our algorithm. Consider the
following SQL writing problem, which is taken from a classic database manage-
ment textbook [13] and modified for the purpose of illustration.

Find the name and average score of each senior student whose average score
is greater than 59.

Figure 3 is our hand-written solution of the problem. The SQL query first
joins two tables on the columns student.id and grade.student id. Then, it
selects all senior students using the condition in the WHERE clause. Next, it
computes the average score for each student and selects those rows where the
average scores are greater than 59 using the condition in the HAVING clause.
Finally, it projects the selected columns to the columns name and average of
the output table.

Figure 4 is an IO example we manually wrote for the input of the synthesis
algorithm. It includes two input tables, Student and Grade, and one output
table, Output. The column s id of table Grade is a foreign key of the column id
of table Student. The goal of the SQL synthesizer is to automatically generate a
SQL query which satisfies the IO example. Ideally, it returns the exact solution,
Fig. 3, instead of other solutions like Fig. 2.
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Student
id name level
1 stu1 senior
2 stu2 senior
3 stu3 senior
4 stu4 junior
5 stu5 junior
6 stu6 senior
7 stu7 senior

Grade
s id course score
1 Math 70
1 English 80
2 Math 59
3 English 40
4 Math 70
5 English 85
6 English 60
7 Computer 90

Output
name average
stu1 75
stu6 60
stu7 90

Fig. 4. Input-output tables for motivation example

Input
id name level course score
1 stu1 senior Math 70
1 stu1 senior English 80
2 stu2 senior Math 59
3 stu3 senior English 40
4 stu4 junior Math 70
5 stu5 junior English 85
6 stu6 senior English 60
7 stu7 senior Computer 90

Output
name average
stu1 75
stu6 60
stu7 90

Fig. 5. Input-output tables after join in motivation example

Our tool, SqlSol, joins the two input tables on the foreign key relation, and
creates a parameterized SQL query, Fig. 6. Then, it encodes constraints for the IO
example, the domain of the unknowns, and the semantics of the SQL query, and
then it sends the constraints to a SMT solver, Z3 we used, to check satisfiability.
After the SMT solver returns satisfiable, it fetches the models of the unknowns
from the solver and compiles a SQL query, Fig. 3. The user accepts the solution,
and the algorithm terminates.

2.1 Join Conditions

For the purpose of simplifying the synthesis algorithm, without loss of informa-
tion, we join the input tables using two heuristic rules same as SQLSynthesizer.
The first rule is to match the column names and types; the second rule is to
compare the constants in the columns. Figure 5 shows the IO example after the
input tables are joined. The join condition is student.id = grade.s id, which
is a foreign key constraint of the schema of the two input tables.

2.2 Parameterized SQL Query

We create a parameterized SQL query, Fig. 6, for the motivating example. A
parameterized SQL query is a SQL query skeleton that has unknowns regarding
to the IO table schema and constants et al. The unknowns can be represented
by uninterpreted variables when encoded into logic constraints.

In Fig. 6, there are two unknowns, ??1s and ??2s, for there are two columns
in table Output. The tuple (??wpop, ??wpc, ??wpv) is the predicate in the WHERE
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SELECT ??1s AS name , ??2s AS average FROM input
WHERE (??wpop ??wpc ??wpv) GROUP BY ??gc HAVING (??hpop ??hpc ??hpv)

Fig. 6. Parameterized SQL query for motivation example

clause, and the unknowns stand for the logic comparator, column name in table
Input and a constant. The tuple (??hpop, ??hpc, ??hpv) is the predicate in the
HAVING clause, and the unknowns stand for the logic comparator, column name
of the aggregation column and a constant. We set the upper bound of length of
the predicates in both WHERE and HAVING clause to be 1. Note that the constant
??hpv is a constant in the aggregation column, and has to be computed before it
can be used.

2.3 Auxiliary Columns

We add an auxiliary aggregation column, to encode the SQL query with an
aggregation column. An aggregation column depends on three variables: the
aggregation function ??af , the aggregation column ??ac, and the group column
??gc, which are all unknowns in our synthesis algorithm. The aggregation column
can be computed with the unknowns in the SMT language, as presented in details
in Sect. 4.4.

2.4 Logic Constraints for SQL Synthesis Problem

The logic constraints for SQL synthesis problem fall into three categories:
IO constraints, domain constrains, and semantics constraints. IO con-
straints encode the IO examples into logic constraints. However, because there
is no Table data structure and no polymorphism support in SMT language, we
define an innovative Table and Cell data structure, to effectively implement the
constraints of IO examples in SMT language.

Domain constraints are the domains of the unknowns. In Fig. 6, the unknowns
??1s and ??2s in the SELECT clause are column names or aggregation column names
of table input. The unknown ??af is an aggregation function. The unknowns
??ac, ??wpc, ??hpc are column names. The unknowns ??wpop and ??hpop are logic
comparators. The unknowns ??wpv and ??hpv are constants in the columns of
??wpc and ??hpc.

Let input.cols be the column names of table input, input.acols be the
aggregation column names acol, afs be the set of aggregation functions, ops be
the set of logic comparators. We have

input.cols = {id, name, level, course, score}
input.acols = {acol}
afs = {count, sum, avg,min,max}
ops = {=, >,<, �=,≤,≥}
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The domain constraints for the unknowns are

??1s, ??
2
s ∈ input.cols ∪ input.acols

??af ∈ afs

??ac, ??wpc, ??gc ∈ input.cols

??hpc ∈ input.acols

??wpop, ??hpop ∈ ops

??wpv ∈ input.??wpc

??hpv ∈ input.??hpc

The semantics constraints encode the semantics of a SQL query with respect
to the IO example. For each row r in the table input, the SQL query first checks
the predicates in the WHERE and HAVING clause. If they are both true, the columns
of the row in the SELECT clause will form a row s in the table output. Otherwise
the row will be skipped. In the other direction, for a row s in the table output,
there exists a row in the table input that satisfies the predicates in the WHERE
and HAVING clause. The semantic constraints for the parameterized SQL query
are

∀1 ≤ r ≤ 8, (??wpop ??wpc ??wpv) ∧ (??hpop ??hpc ??hpv))
=⇒ ∃1 ≤ s ≤ 3, (input(??c1, r) = output(name, s))

∧ (input(??c2, r) = output(average, s))
∀1 ≤ s ≤ 3 =⇒
∃1 ≤ r ≤ 8, (??wpop ??wpc ??wpv) ∧ (??hpop ??hpc ??hpv))

(input(??c1, r) = output(name, s))
(input(??c1, r) = output(name, s))

2.5 Solve

We sent the constraints above to an SMT solver, Z3, to check for satisfiability,
and the solver returned satisfiable. Then, we fetched the model from the solver
and substituted the unknowns in the abstract query with the model, and a con-
crete SQL query was generated. We manually checked and accepted the solution,
since it is exactly the one that solves the question of this motivating example.
Then the algorithm terminated. The computation took less than 1 s.

3 SQL Subset Syntax

Figure 7 shows the syntax of the standard SQL subset supported by our tool
SqlSol, which is similar to the state-of-the-art tool, SQLSynthesizer [16]. This
subset is designed to support the most widely used SQL features according to a
survey by Zhang et al. [16].
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〈query〉 ::= 〈sfw〉 | 〈sfwgh〉
〈sfw〉 ::= SELECT 〈expr〉+ FROM 〈table〉+ WHERE 〈wp〉+
〈sfwgh〉 ::= SELECT 〈expr〉+ FROM 〈table〉+ WHERE 〈wp〉+ GROUP BY 〈col〉+

HAVING 〈hp〉+
〈table〉 ::= atom
〈col〉 ::= 〈table〉.atom
〈af 〉 ::= COUNT | SUM | AVG | MIN | MAX
〈acol〉 ::= (〈af 〉 〈col〉)
〈op〉 ::= = | >| <| �= | ≥ | ≤
〈expr〉 ::= 〈col〉 | 〈acol〉
〈wp〉 ::= 〈wp〉 ∧ 〈wp〉 | 〈wp〉 ∨ 〈wp〉 | ¬ 〈wp〉 | (〈op〉 〈col〉 atom) | true | false
〈hp〉 ::= 〈hp〉 ∧ 〈hp〉 | 〈hp〉 ∨ 〈hp〉 | ¬ 〈hp〉 | (〈op〉 〈acol〉 atom) | true | false

Fig. 7. Syntax of the supported SQL subset in SqlSol: atom is a table name, or column
name, or a cell value.

While mostly same, there are two differences between SqlSol and SQLSyn-
thesizer. One difference is that the logic constraints in SqlSol cannot support
DISTINCT and ORDER BY. That is because SqlSol models tables as sets, which
is common in formal methods. For example, relational algebra is defined based
on sets [1]; previous work, [14], models tables as sets. Fortunately, because both
DISTINCT and ORDER BY are of arity 0, synthesis of them only needs to compare
rows of the result table and the output table in the IO example, therefore can
be done in a post-process step.

Another difference is that, in addition to the three logic comparators =, >,<
supported by SQLSynthesizer, SqlSol also supports �=,≥,≤.

4 Technique

In this section, we present the technique details of our algorithm.

4.1 Overview

Algorithm 1 is the high-level algorithm of SqlSol. Line 2 joins all input tables into
one input table. Line 3 declares all unknowns in the parameterized SQL query as
uninterpreted functions in SMT language. Line 4–6 add the domain constraints
for all unknowns. Line 7–22 are the iteration process that adds one new example
each time. For every example, line 8–9 encode it with our new Table datatype
in SMT language; line 10 encodes the semantics of parameterized SQL query
into constraints with respect to the input-output tables. In line 10–22, we send
all constraints to the SMT solver to check for satisfiability. If the solver returns
satisfiable, we fetch the model and compile a concrete SQL query, which satisfies
the IO examples. Then, instead of stopping here, we let the user decide whether
to accept the query or not: if yes, the algorithm returns with success; otherwise,
the user can add a new IO example, and the loop continues. If the solver returns
unsatisfiable, the algorithm declares failure.
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Algorithm 1. SqlSol SQL Synthesizer
1: Let (I1, O1) be the Input Output example, X = ∅ be the set of unknowns, B = ∅ be the set of

constraints, S be the SMT solver
2: Ĩ = join(I1), O = O1

3: X = makeUnknowns(Ĩ, O)
4: for x ∈ X do
5: B.add(encodeDomain(Ĩ, O, x))
6: end for
7: while True do
8: B.add(encodeTable(Ĩ))
9: B.add(encodeTable(O))

10: B.add(encodeSemantics(Ĩ, O,X))
11: if S.solve(B) == SAT then
12: m = S.model()
13: if m.accepted() then
14: return // solution
15: else
16: (I, O) = addExample()

17: Ĩ = join(I)
18: continue
19: end if
20: else
21: return // no solution
22: end if
23: end while

4.2 New SMT Datatype for Table Encoding and IO Constraints

Satisfiability modulo theories (SMT) solve decision problems using background
theories expressed in logic constraints. Though modern SMT solvers have the-
ories of various data structures such as List, Array, Bit Vector, they do not
have theories for Table. Veanes et al., [14], proposed a theory which uses a list of
tuples to model Table. The unknowns in this theory are table cells, therefore the
theory is able to synthesize input tables given a SQL query. However, because
our algorithm synthesizes a SQL query given IO examples and the unknowns
are elements in the SQL query, we can not simply use the theory.

We use a new Table SMT datatype to model input-output tables. The table
datatype is a customized 2-dimension Array. Because we handle different types
of table cells, including Int, Float, String, and Null, but SMT language does
not support polymorphism, we work around by using the datatype feature of
the latest SMT-lib standard [6]. We define a new datatype Cell and define
the Table datatype as Array(String Int Cell), where the elements are the
column name, row index, and cell value of the table, respectively.

With our new Table datatype, we can efficiently encode the IO constrains of
the input-output tables in SMT language. The IO constraints of each table is the
union of the constraints of all table cells. An example use of the table datatype
is (assert (= (select table col 1) (String John))), which asserts that
the cell value of table at column col and row 1 equals to John of String type.
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4.3 Parameterize SQL Query and Domain Constraints

A parameterized SQL Query is a SQL query that has unknowns in the SELECT,
WHERE, GROUP BY, HAVING clauses. In this section, we define the unknowns and
their domain constraints.

Parameterize SELECT Clause. The unknowns in the SELECT clause define the
original or aggregated column names in the input table that are projected to
the output table. The number of unknowns in the SELECT clause equal to the
number of columns in the output table. Each unknown is of String type. The
domain of the unknowns is the set of original and aggregated column names.

Let input.cols and input.acols be the set of original and aggregated column
names of table input. Let noc be the number of columns of table output. Let
??is be the i − th unknown in the SELECT clause. The domain constraints of an
unknown in the SELECT clause is the union of input.cols and input.acols.

??is ∈ input.cols ∪ input.acols, i = 1, · · · , noc (1)

Parameterize WHERE Clause. The predicate in the WHERE clause is a boolean
expression which decides whether a row in the table input will be selected to the
table output. The boolean expression is comparison patterns connected by logic
conjunctive connector ∧ or logic disjunctive connector ∨. A comparison pattern
is a basic pattern or logic constant true or false.

Let nwp be the upper bound of the number of basic comparison patterns.
Let ??iwpop be the unknowns for logic comparators of Enumeration type, ??iwpc

be the unknowns for column names of String type, ??iwpv be the unknowns for
values of the columns of Cell type, ??iwpm be unknowns of Boolean type, ??iwpb

be unknowns of Enumeration type {∧,∨}.
A basic comparison pattern is of form bcp = (??wpop ??wpc ??wpv), whose

semantics is executing the comparator ??wpop with operands ??wpc and ??wpv. A
comparison pattern is defined as cp = (??m bcp), whose semantics is when ??im
is true, it evaluates to true, otherwise bcp. The predicate wp is defined in such
a way that it covers basic predicates of length from 0 to nwp. The definition of
wp is wp = wpnwp, where wpi is defined recursively:

wpi =

⎧
⎪⎨

⎪⎩

true i = 0
cp1 i = 1
(??iwpb cpi wpi−1) i = 2, · · · , nwp

(2)

Let ops be the set of logic comparators, input.??iwpc be the cell values of
column ??iwpc, cs be the set of logic connectors {∧,∨}. The domain constraints
in the WHERE clause are

??iwpop ∈ ops

??iwpc ∈ input.cols

??iwpv ∈ input.??iwpc , i = 1, · · · , nwp (3)

??jwpb ∈ cs , j = 2, · · · , nwp



114 L. Cheng

Parameterize GROUP BY Clause. The unknowns in the GROUP BY clause define
the columns by which the output table is grouped. In addition to original columns
of the input table, we added special columns to the input table to support
special groups. Particularly, we added two special group-by columns: ucol and
scol. The column ucol has values that are all unique. Grouping by ucol means
every row is one group. Therefore, queries with GROUP BY clause generalize to
queries without GROUP BY clause. The column scol has values that are all equal.
Grouping by scol means all rows is one group.

Let ng be the upper bound of the number of group-by columns, input.cols
and input.hcols be the original columns and added group-by columns. Let ??igc
be the unknown in the GROUP BY clause. The domain constraints for the GROUP
BY clause are

??igc ∈ input.cols ∪ {input.hcols}, i = 1, · · · , ng (4)

Parameterize HAVING Clause. The predicate in the HAVING clause is the same
as the predicate in the WHERE clause except that it only applies to the aggregation
column, i.e., input.acols, while the predicate in the WHERE clause only applies
to the original column, i.e., input.cols.

Let nhp be the upper bound of the number of basic comparison pattern.
Let ??ihpop be the unknowns for logic comparators of Enumeration type, ??ihpc
be the unknowns for column names of String type, ??ihpv be the unknowns for
values of the columns of Cell type, ??ihpm be unknowns of Boolean type, ??ihpb
be unknowns of Enumeration type {∧,∨}.

Let a basic comparison pattern be bcp = (??hpop ??hpc ??hpv), a comparison
pattern be cp = (??m bcp). The definition of predicate hp is hp = hpnhp, where
hpi is defined recursively:

hpi =

⎧
⎪⎨

⎪⎩

true i = 0
cp1 i = 1
(??ihpb cpi hpi−1) i = 2, · · · , nhp

(5)

The domain constraints in the HAVING clause are

??ihpop ∈ ops

??ihpc ∈ input.cols

??ihpv ∈ input.??ihpc , i = 1, · · · , nhp (6)

??jhpb ∈ cs , j = 2, · · · , nhp

4.4 Compute Aggregation Columns

Aggregation columns are computed before semantics constraints are encoded.
Unlike explicit search algorithms enumerate all combinations of group-by
columns and aggregation columns, our algorithm computes the aggregation
columns only once with the unknowns defined before.
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Let r be a row index, n be the number of rows, ite be the if-then-else
struct, wp be the predicate in the WHERE clause, col be the columns in the GROUP
BY clause, col(r) be the cell value of column col at row r.

Compute Aggregation COUNT. Let count be the aggregation column for
aggregation function COUNT. The formula to compute count is

count(r) =
∑

1≤i≤n

ite(wp(r) ∧ (col(i) = col(r)), 1, 0) (7)

Compute Aggregation SUM. Let acol be the column to apply the aggrega-
tion function SUM on, sum be the aggregation column for aggregation function
SUM. The formula to compute sum is

sum(r) =
∑

1≤i≤n

ite(wp(r) ∧ (col(i) = col(r)), acol(r), 0) (8)

The aggregation column AVERAGE is computed as the division of SUM and
COUNT.

Compute Aggregation MAX. Let acol be the column to apply the aggrega-
tion function MAX on, max be the aggregation column for aggregation function
MAX. The formula to compute the aggregation column max is recursive:

max(r) = ite((wp(r) ∧ (acol(r) > max(r − 1)),
acol(r),max(r − 1)) (9)

Compute Aggregation MIN. Let acol be the column to apply the aggrega-
tion function MIN on, min be the aggregation column for aggregation function
MIN. The formula to compute the aggregation column min is recursive:

min(r) = ite((wp(r) ∧ (acol(r) > min(r − 1)),
acol(r),min(r − 1)) (10)

4.5 Encode Semantics Constraints

In this section, we introduce the axiom that models the semantics of SQL queries
in logic language. On one hand, the axiom considers the direction from input to
output. For each row in the table input, if it satisfies the predicate wp in the
WHERE clause and the predicate hp in the HAVING clause, it should be selected
into table output, i.e., there exists a row in the table output that contains the
selected columns. On the other hand, the axiom considers the direction from
output to input. For each row in the table output, there exists a row in the
table input which satisfies the predicate wp and hp and the selected column
equals to the column in the output row.



116 L. Cheng

Table 1. Statistics of numbers of solved (unsolved) benchmarks, percentage, time
usage, average time usage on SQLSynthesizer and Scythe benchmark set. Columns
marked by sqlsyn, scythe, sqlsol1, sqlsol2, and sqlsol3 are the results of the algorithms
SQLSynthesizer, Scythe, SqlSol with the number of predicates in the WHERE clause, wp,
set to 1, 2, and 3. Timeout for Scythe is 120 s.

SqlSynthesizer Scythe

sqlsyn scythe sqlsol1 sqlsol2 sqlsol3 scythe sqlsol1 sqlsol2 sqlsol3

Solved Count 20 20 17 22 25 150 93 112 116

% 71 71 61 79 89 88 54 65 68

Time 176 254 48 170 239 983 103 265 396

Average 9 13 3 8 10 7 1 2 3

Unsolved Count 8 8 11 6 3 21 78 59 55

% 29 29 39 21 11 12 46 35 32

Time 24 960 77 65 123 2520 233 221 266

Average 3 120 7 11 41 120 3 4 5

Total Time 200 1214 125 235 362 3503 336 487 662

Average 7 43 4 8 13 20 2 3 4

Let nrow be the number of rows of a table, let wp be the predicates in the
WHERE clause, let hp be the predicates in the HAVING clause, let PC be set of the
selected columns. The axiom for the semantics of the SQL query is:

∀r ∈ input.nrow,wp(r) ∧ hp(r) =⇒
∃s ∈ output.nrow,∀c ∈ PC, input(c, r) = output(c, s)

∀s ∈ output.nrow =⇒ (11)
∃r ∈ input.now,∀c ∈ PC,wp(r) ∧ hp(r)
∧ input(c, r) = output(c, s)

5 Evaluation

We implemented our algorithm, SqlSol, in Java. We use Z3, [7], as the backend
SMT solver. In this section, We present our evaluation of SqlSol.

We set the upper bound of GROUP BY columns be 1, the upper bound of
aggregation column be 1, The upper bound of basic predicates in the WHERE
clause be 1, 2, or 3. the upper bound of basic predicates in the HAVING clause
be 1. The evaluation was conducted on a quad-core Intel Core i7 3.3 GHz CPU
with 8 GB memory.

5.1 Experiments on SQLSynthesizer and Scythe benchmarks

We evaluated SqlSol on two open-source benchmark sets: SQLSynthesizer bench-
mark set and Scythe benchmark set. The benchmarks were downloaded from the
site [2] of the open-source project Scythe. All benchmarks in both benchmark sets
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have one IO example. The SQLSynthesizer benchmark set contains 28 bench-
marks, including 23 benchmarks collected from the classic database textbook
[13], and 5 ones collected from forums. The average number of table cells of an
IO example in SQLSynthesizer benchmark set is 57. The Scythe benchmark set
has three folders: dev-set, top-rated, recent-posts. We combined all the bench-
marks in the three folders, and removed some empty files. The final benchmark
set has 143 benchmarks. The average number of table cells in one benchmark in
the final set is 29. We downloaded Scythe from its github page [2]. However, we
could not obtain an effectively working software of SQLSynthesizer, so the data
of SQLSynthesizer was from its paper [16].

Table 1 shows the result of evaluation. On the SQLSynthesizer benchmark
set, SqlSol solved up to 5, 18%, more problems than SQLSynthesizer and Scythe,
while the average time usage is comparable to SQLSynthesizer, but smaller than
Scythe. On the Scythe benchmark set, for the solved benchmarks SqlSol is over
2X faster than Scythe; for the unsolved case, SqlSol is 44X faster than Scythe.
Overall, SqlSol is over 8X times faster than Scythe.

Note that on Scythe benchmark set, the number of problems solved by SqlSol
is less than by Scythe. We manually checked the unsolved problems, and found
that all are not in our SQL subset, mostly are nested queries. We leave nested
queries support for future work.

5.2 Scalability Comparison of SqlSol and Scythe
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Fig. 8. Time usage with increasing number
of rows in input table.

We created 25 benchmarks, each of
which is an IO example to solve the
problem in the motivating example
in Sect. 2. The number of rows in
the input tables in the benchmarks
increases from 5 to 30, and each row
contains 5 constants. Constants are
unique except those in the first 5 rows.
The output tables in all benchmarks
are the same, containing 3 rows.

We tested Scythe with two set-
tings. One is Scythe with all con-
straints provided: constants senior,
59, and the aggregation function
average. The other is Scythe with no
constraints provided. The timeout is set to be 300 s. In SqlSol, the wp is set to
be 2.

Figure 8 plots the result. The x-axis is the number of rows in the input table,
and the y-axis is the time usage. We can see that Scythe without constants
cannot solve any problem before timeout. SqlSol performs better than Scythe at
every input size and the speedup is between 2X to 10X.
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Single Input
id name
1 Rose
2 John
3 Mary
2 Bob

Fig. 9. Single input

Multi Input: 1
1 John
2 Bob

Multi Input: 2
1 Bob
2 John

Fig. 10. Multi inputs
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5.3 Benefits from Multiple IO Examples Support

Given an IO example, there are many SQL queries that satisfy them, but only
one is the user intention. In this section, we first evaluate how many IO examples
are needed to find the user intention. We picked 6 benchmarks, whose solutions
fall into our SQL subset, from the SQLSynthesizer benchmark set and manu-
ally wrote solution for them. The numbers of IO examples that SqlSol took to
synthesize the solution are: 5, 4, 1, 1, 1, 1.

Another benefit from multiple IO examples support is that multiple exam-
ples contain less constants than single example, therefore can speed up the algo-
rithm. For example, consider the synthesis problem: SELECT id, name FROM
input where id = 2. Figure 9 is the input table of one IO example, and Fig. 10
is two IO examples derived from Fig. 9. Although the output of SqlSol are the
same, but the number of constants in Figs. 9 and 10 are different: 7 in single
input, 4 in multiple inputs. We ran SqlSol with the two cases and fetched the
statistics data from Z3 solver. The result, Fig. 11, shows that in the number of
added equations, the number of decisions, the memory used (in MB), the time
used (in mini-seconds), multiple IO examples require less and perform better.

6 Related Work

Program Synthesis is the task that automatically generates programs that
satisfy some high-level specifications. Our synthesis algorithm belongs to SMT-
solver aided program synthesis, is particularly inspired by [10]. In [10], Gulwani
etc. parameterized sequential programs by making the line numbers of a pro-
gram symbolic variables, and encoded the syntax and semantics of a sequential
program into logic constraints. Their algorithm lets the user refine the solution
by providing more examples. Our algorithm differs from [10] in that it is the
first to encode the syntax and semantics of SQL queries for inductive SQL query
synthesis, to our knowledge.

SQL Query Synthesis. Paper [15,16] use search algorithms to synthesize SQL
queries from IO examples. Our work differs from those in that we delegate the
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searching algorithm to modern SMT solvers, so we can focus on a sound and
complete logic encoding of the SQL semantics and at the same time enjoys the
performance of state-of-the-art SMT solvers. Paper [14] proposes axiom system
for SQL semantics to synthesize input tables from SQL queries. Our work solves
the reverse problem that synthesizes SQL queries from input-output examples.

7 Conclusion

We present an algorithm, SqlSol, which encodes the semantics of a SQL query
into logic constraints, and leverages SMT solvers to synthesize SQL queries from
IO examples. The evaluation shows that SqlSol outperforms the state-of-the-art
tools, SQLSynthesizer and Scythe. Furthermore, by supporting multiple exam-
ples, SqlSol is able to find the user-intended solution and improve the speed at
the same time.
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Abstract. Smart contracts have exhibited great potential in a spec-
trum of applications, ranging from digital currency to online gaming.
Yet smart contracts are known to be prone to errors and vulnerable to
attacks. The validation of smart contracts before their deployment is
an indispensable step for their correctness and security, and the high-
est level of guarantee can be provided using formal verification. The
level of difficulty, reliability, etc., of the formal verification of a smart
contract is deeply affected by the programming language in which the
contract is implemented. In this paper, we discuss the benefits of verify-
ing smart contracts at the level of intermediate languages, in comparison
with machine-level languages and user-level languages. We augment the
existing formalization of Yul – the intermediate language of Ethereum,
realize an ERC20 token contract in this language, and verify the guaran-
tees of all the functions provided by this contract. All this development
has been performed in the proof assistant Isabelle/HOL. It demonstrates
the feasibility and some of the most important advantages of mechanized
verification for smart contracts at the intermediate-language level, such
as a balance between the intuitiveness of the verification target and the
ability to validate lower-level mechanisms like the function dispatcher.

1 Introduction

The blockchain technology [29] has raised a significant amount of attention both
from the technological community specifically and from the society at large.
A blockchain is a digital ledger consisting of blocks of records, which are linked
together through hash values. Copies of the same ledger are maintained at a great
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number of network nodes. The ledger is append-only, with a consensus mecha-
nism guaranteeing a unified view of newly appended blocks. This design enables
distributed consensus over data, while providing guarantees such as tamper-
resistance, denial-resistance, and backward-traceability.

The blockchain hosts not only plain data but also executable programs. The
programs executed over the blockchain are often called smart contracts (as was
conceptualized in [25]). Typically, they prescribe the actions performed (e.g.,
money transfer between accounts) under a number of predefined conditions.
Owing to the guarantees provided by the underlying blockchain, distributed con-
sensus is obtained over the outcome of the execution of smart contracts. Smart
contracts have found application in numerous areas, such as financing, supply-
chain management, smart manufacturing, health information management, etc.

While adding much to the versatility and power of the blockchain, smart
contracts can be prone to errors, and vulnerable to security attacks – just like
ordinary computer programs. Since they often deal with monetary concerns,
the misbehaviors of smart contracts could directly cause harm to the economic
rights of the participants. The fact that smart contracts are often written in an
unconventional language (e.g., Solidity), and run on unconventional infrastruc-
ture, invites further possibilities of attack. One of the most notorious attacks on
smart contracts is the DAO attack, which caused ∼$60M to be lost (e.g., [11])
by the legitimate participants of the DAO contract [6].

To minimize the chances of errors and attacks, smart contracts must be thor-
oughly validated before being deployed. Formal verification provides the highest
level of correctness and security guarantees in the validation of IT systems, smart
contracts included. When formally verifying a smart contract, the abstraction
level of the contract is a critical factor to be considered. This abstraction level is
determined by the language in which the contract is to be realized. For Ethereum
smart contracts, verification has been attempted both for high-level languages
such as Solidity (e.g., [30]), and low-level languages such as EVM (Ethereum
Virtual Machine) bytecode (e.g., [19]). In general, the use of a high-level lan-
guage adds to the intuitiveness and manageability of the verification, while the
use of a low-level language minimizes the trust base of the verification. Neither
approach tends to enjoy the most important benefits of both.

In this paper, we explore the middle ground – the verification of smart con-
tracts in an intermediate language (IL). This helps strike a balance between the
intuitiveness of the verification, and the ability to reduce the needed trust base,
in ensuring the safety and security of smart contracts. Based on formal semantics,
we conduct a substantial case study for IL-level verification of smart contracts.
The verification is performed in a proof assistant (Isabelle/HOL), adding to the
confidence level on the results obtained. Our main technical contributions are:

– revised formalization of the Yul language (the IL of Ethereum), including
the formalization of function lookup due to observed mismatch between the
specification of Yul in English and its existing formalization (Sect. 3),

– realization of an ERC20 token contract [2] in Isabelle/HOL, in the formalized
Yul language (Sect. 4), and
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contract Token {
mapping(address=>uint256) public balances ;
. . .
function balanceOf(address owner) public view returns(uint256) {

return balances [ owner ] ;
}
. . .

}

Fig. 1. The token contract with Balance-retrieval Functionality in solidity

– mechanized proofs of the guarantees provided by each function in the
contract – in the form of pre/post-conditions for the body of each function,
and for the external call invoking each function (Sect. 5).

Our development totals ∼10k lines of code in Isabelle/HOL, of which ∼500
lines correspond to the realization of the token contract, ∼4k lines correspond to
the specification and proof for the function definitions in this contract, and the
rest correspond to the specification and proof for the calls to these functions.

2 Verifying Smart Contracts at the IL Level

In this section, we discuss the comparative benefits of formally verifying smart
contracts at the intermediate-language level. We use Solidity [4], EVM byte-
code [28], and Yul [8] as representative examples for smart contract languages
at the high level, the low level, and the intermediate level, respectively.

Verifying Contracts in Solidity. Solidity is the official programming lan-
guage of Ethereum. It offers contracts, balances, transfers, etc., as programming
abstractions. A contract allowing for the retrieval of the balances of all the par-
ticipants in some token could be implemented as in Fig. 1. In this figure, the
contract is represented by the contract construct of Solidity, the balances are
maintained in a mapping (from the address of each owner of the token to the
current balance of the owner), and the operation retrieving the balance of a
specific owner is implemented as a function.

As a structured, user-level language for smart contracts, Solidity allows for
intuitive representation of the business logic of each contract. This facilitates the
development of a specification in a formal verification (e.g., preconditions, post-
conditions, loop invariants, etc.). On the other hand, as a high-level language, the
features of Solidity are relatively complicated (with static and dynamic arrays,
mappings, inheritable contracts, access modifiers, imports, etc.). Furthermore,
the language is partly in its maturing process, and, hence, the evolvement of its
features is relatively fast. These two facts pose great challenges to the develop-
ment and stabilization of a formal semantics for Solidity, and the implementation
of a verification system on top of the semantics.
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function balanceOf(owner) −> bal {
bal := sload(accountToStorageOffset(owner))

}

Fig. 2. The Balance-retrieving function of token contract in Yul

Verifying Contracts in EVM Bytecode. EVM bytecode is the language
of the execution engine of Ethereum – the Ethereum Virtual Machine (EVM).
Implementing the contract of Fig. 1 in EVM bytecode requires the implemen-
tation of e.g., a function dispatcher that directs each call to the contract to
a specific function using the JUMPI instruction, the computation of the stor-
age location of a specific owner’s balance using arithmetic and stack-operating
instructions, the retrieval of the balance of the specified owner using the SLOAD
instruction, etc.

As a machine-level language, EVM bytecode does not permit a verification
engineer to clearly see the business logic of the smart contract to be verified. This
could lead to difficulties in developing the specification for the verification, and in
coming up with the necessary auxiliary information to guide the verification. On
the other hand, EVM bytecode is much less involved and more stable in terms of
language features, than a user-level language such as Solidity. This facilitates the
development and stabilization of a formal semantics. Furthermore, verifying the
bytecode excludes the possibilities for errors introduced by the compiler, adding
to the level of confidence on the verification result.

Verifying Contracts in Yul. Yul is the intermediate language of Ethereum, it
enables structured programming with constructs for contracts, functions, condi-
tional branches, and loops. At the same time, it supports the direct programming
of low-level mechanisms such as the dispatcher of calls to specific contract func-
tions, and the direct obtainment of the return data from calls.

An implementation of the balance-retrieval function in Fig. 1 in the Yul lan-
guage is shown in Fig. 2. The computation of the storage address for the owner’s
balance is performed using the auxiliary function accountToStorageOffset , the
implementation of which is elided from the figure.

The aforementioned characteristics of Yul indicate that it would not be diffi-
cult to comprehend the business logic of a smart contract while making a formal
specification for the code of the contract (as is the case for a high-level language
such as Solidity). At the same time, Yul supports functionalities that are occa-
sionally necessary in the implementation of smart contracts, but are not directly
offered by a high-level language (e.g., retrieval of resulting data of contract calls).
Furthermore, the function dispatcher and other low-level mechanisms explicitly
contained in a contract implemented in Yul can be directly examined in a formal
verification, excluding the chances for the introduction of errors into these mech-
anisms by a compiler. Finally, the feature set of Yul is succinct and stable in
comparison to that of Solidity, which reduces the difficulty level of formalization.
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3 The Formalization of Yul

The formalization of the Yul language in Isabelle/HOL serves as the (only) basis
of our verification of the ERC20 token contract. A preliminary formalization of
Yul (previously called Julia) has been performed by Hirai [3] in the Lem tool [22].
From Lem, we generate definitions of the syntax and (big-step) semantics of Yul
in Isabelle/HOL, and we revise the formalization for use as a basis of our work.
In this section, we first briefly introduce the basics of Isabelle/HOL, and then
describe the formalization of Yul by Hirai and our revision of it.

3.1 The Basics of Isabelle/HOL

Isabelle/HOL is an environment that provides the ability to reason formally in
Higher Order Logic inside the Isabelle framework [27]. System verification using
Isabelle/HOL reduces the verification problem to the construction of a formal
proof. The modeling of the system is often performed by functional program-
ming, and the proofs are often constructed by applying predefined tactics, or
using the declarative-style language Isar.

For simple definitions, the keyword definition is used. In case the definition
involves pattern matching or recursion, the keyword function or fun is needed.
In lemmas and theorems, all the hypotheses can be listed between a pair of
semantic brackets �. . .� and separated with semicolons.

The notation [] represents an empty list, and e#l represents the list that
results from prepending the element e to the list l. The term Map.empty rep-
resents an empty map (the map that takes each key to None), mp[k �→ v]

datatype expression =
FunctionCall id0 “expression l i s t ”

| Identifier id0
| Literal “ l i teral kind” “type name”

Fig. 3. The existing formalization of Yul expressions

datatype statement =
Block “statement l i s t ”

| FunctionDefinition id0 “(id0 × type name) l i s t ”
“(id0 × type name) l i s t ” statement

| VariableDeclaration “(id0 × type name) l i s t ” expression
| Assignment “id0 l i s t ” expression
| I f expression statement
| ForLoop expression statement statement
| Expression expression
. . . . . .

Fig. 4. The existing formalization of Yul statements
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represents the map that results from updating the map mp by mapping k to
Some(v), and mp1 ++ mp2 represents the map that results from updating the
map mp1 according to the map mp2, i.e., for each key k, if mp2 takes k to
Some(v), then mp1 ++ mp2 takes k to Some(v); otherwise mp1 ++ mp2 takes k
to (mp1 k). For a record rcd with field fd , (fd rcd) represents the value of fd in
rcd , and rcd�fd := v� represents the record rcd with the field fd updated to the
value v.

3.2 The Original, and Revised, Formalization of Yul

The two main syntactical categories of Yul are expressions and statements. Their
formalizations are shown in Figs. 3 and 4, respectively. In both figures, id0 is
the type for the identifiers of variables and functions. There are two types of
function calls – the call to a function in the current contract (internal calls), and
the call to a different contract (external calls). Both are supported by the type
FunctionCall id0 “expression list” in Fig. 3: if a function defined in the current
scope is associated with the function identifier, then an internal call is performed,
while if the builtin function Call is associated with the function identifier, an
external call is performed. Since a function may have a list of return values
(in addition to a list of parameters), the type constructor FunctionDefinition
in Fig. 4 has two lists as arguments. Although Fig. 4 is non-exhaustive in the
statements of Yul, the full definition of statement is not much more involved
than what is shown. It can be seen that the language has a succinct syntax.

fun func map : : “statement ⇒ (( id0 , value0) Map.map)” where
“func map (Block [ ] ) = Map.empty”

| “func map (Block (stmt # stmts)) =
(func map stmt ++ func map (Block stmts))”

| “func map (FunctionDefinition f params rets stmt) =
(Map.empty)( f �→ FunctionV f params rets stmt)”

| “func map = (Map.empty)”

Fig. 5. The definition of func map

A global state g of a contract contains the address of the currently executing
contract address g, the currently executing contract current g, the memory of
the execution engine memory g, the active number of bytes in the memory
memory size g, the value transfered with the call invoking the execution of the
current contract tmoney g, the input data of this call calldata g, the current
log content logs g, the function from account addresses (modeled by integers)
to the corresponding accounts accounts g, and other components relevant to the
execution of contracts. A local state l is a map from identifiers (of type id0 )
to values of type value0 . For each account at address addr (a 160-bit address),
i.e., acc = accounts g addr , storage acc represents the storage of the account,
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balance acc represents the balance of the account, and code acc represents the
code of the account. A contract is an account with non-empty code.

The existing formalization of Yul also contains the big-step semantics for
expressions and statements, defined using two evaluation functions. The function
eval expression takes a global state, a local state, an expression, and a natural
number as arguments, and returns the final result of evaluating the expression.
Here, the natural number is a counter introduced only to facilitate a termination
proof for the well-definedness of eval expression in Isabelle/HOL. The function
eval statement takes a global state, a local state, a statement and a natural
number (serving also as a counter for proving termination), and returns the
result of executing the statement. The two functions are mutually recursive since
a statement may have in it a function call (an expression), and an expression
may be the invocation of a function whose body is a statement.

In the original formalization [3], the functions that can be internally called
in the current scope are maintained by associating each such function to its
identifier in the local state, after processing the function definition. However,
this only allows for calling functions whose definitions are syntactically located
before the calls. Nonetheless, as mandated in the informal specification of Yul [8]

“Functions can be referenced already before their declaration (if they are
visible).”

To rectify this mismatch between the official documentation of Yul, and its
existing formalization, we define the function func map to build a map fctx for
all the functions defined in a statement (see Fig. 5). We augment the parameter
list of the functions eval statement and eval expression to contain this map,
thereby recording which functions are defined in the current scope, both before
and after the point where a function is called. With this revision, the terms

eval expression g l fctx expr n
eval statement g l fctx stmt n

represent the evaluation of expressions and execution of statements, respectively,
with knowledge of the available functions in the current scope. We inductively
prove that the result of evaluation a statement or an expression does not depend
on the value of the counter n, as long as n is sufficiently large for the evaluation
function to be fully unrolled.

Our revision of the formalization of Yul also contains the addition of a num-
ber of definitions for the evaluation of builtin functions, such as subtraction,
multiplication, division, the function retrieving the value transfered with the
current call, the function returning the address of the caller account, etc. Most
of these additions to the original formalization are used in our realization of the
token contract in the formal Yul language.

4 Realizing the Token Contract in Yul

A token contract keeps track of the total supply of a token, its current distri-
bution among its owners, and its flow between its owners. The ERC20 standard
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for token contracts mandates a number of interfaces to be provided, such as
querying the total supply of the token and the current balances of the owners,
and transferring a specified amount of tokens to a specified user [2].

We realize a version of ERC20 token contract in the formalized Yul language
in Isabelle/HOL. However, in the presentation of this section, we refrain from
using the Isabelle syntax due to its verbosity.

4.1 The Storage Layout of the Contract

The storage of an Ethereum smart contract is arranged in slots that are addressed
by 256-bit integers. We model the storage layout of the token contract as follows,
where keccak is the keccak-256 hash function, and uint256 (n) is the bit string
of length 256 for the unsigned integer n.

– The owner of the contract is stored at slot 0.
– The total supply of the token is stored at slot 1.
– The balance of the account at address addr is stored at slot

keccak(uint256 (addr).uint256 (2))

– The allowance for token transfer from the account at address addr1 by the
account at address addr2 is stored at slot

keccak(uint256 (addr2).keccak(uint256 (addr1).uint256 (3)))

In the above, the use of the keccak function to obtain the storage locations of
the balances and allowance mimics how the storage is allocated by a compiler
of the Solidity language. It utilizes the fact that the population of data in the
storage space is sparse, and properties of a secure hash function such as collision
avoidance, to avoid the mapping of different data to the same storage slot.

Table 1. The functions provided by the token contract to its users

total supply func Query the total supply of the token

balance of func Query the balance of a specific owner of the token

allowance func Query the amount of tokens an owner allows a spender to spend

transfer func Transfer a specified amount of tokens to a specified user

transfer from func Transfer a specified amount of tokens from a specified user to a
specified second user

approve func Approve transfer of a specified amount of tokens by a spender
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4.2 The Code Layout of the Contract

Fig. 6. The code layout
of the token contract

The code layout of the token contract is shown in Fig. 6.
The code is organized as a Block (cf. Fig. 4) consisting
of the functions in the user interface, the utility func-
tions that support the implementation of the contract,
and the dispatcher statement that directs each contract
call to the specific function invoked. There are alto-
gether 19 functions. The functions in the user interface
and their description are given in Table 1. Below, we
selectively elaborate on the dispatcher statement and
the interface function transfer func.

if gt ( callvalue () , 0) { revert (0 , 0) }
switch selector func ()
case 0x10991a86 /∗ “balance of func(address)” ∗/ {

return uint func(balance of func(decode as address func(0)))
}
. . .
case 0xb513186f /∗ “transfer func(address , uint256)” ∗/ {

transfer func(decode as address func(0) , decode as uint func(1))
}
default { revert (0 , 0) }

Fig. 7. The dispatcher statement

The Dispatcher. A call to the token contract essentially triggers the execution of
the dispatcher statement. The code of the dispatcher statement is given in Fig. 7.
It is first checked that no money is transfered to the contract using the condition
that the value of the call should not be greater than zero. The value of the call
as an unsigned integer is retrieved using the builtin function callvalue. Then,
the function to which a call should be directed is obtained using the function
selector func and the switch statement. The function selector func (also included
in the implementation) computes the first 4 bytes of the input data to the call –
these 4 bytes represent the keccak-256 hash of the signature of the function to be
invoked. The subsequent chunks of the input data (of 32 bytes each) contain the
arguments to be passed to the specific function invoked. The i-th argument is
retrieved using decode as uint func(i) or decode as address func(i). In addition
to decoding an argument from the input data (or call data), the latter also
checks that the decoded argument is in the form of an account address (of 160
bits). The function return uint func signals the exit of the currently executing
contract, with the result placed at bit 0 in the memory of the execution engine.
In case the caller attempts to send ether to the contract, or the invoked function
is not found, the state is reverted using the builtin function revert.
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function transfer func(to , amount) {
deduct from balance func( cal ler () , amount)
add to balance func(to , amount)
log (1 , cal ler () , to , amount)

}

Fig. 8. The function transfer func

The Function transfer func. The code of the function transfer func (the func-
tionality of which is informally explained in Table 1) is given in Fig. 8. In
the function body, the function deduct from balance func is first invoked to
deduce the specified amount of tokens from the caller account. The function
add to balance func is then invoked to add the same amount of tokens to the
destination account of the transfer. Finally, the transfer event is logged with
topic 1, together with the caller of transfer func, the destination of the transfer,
and the amount of transfered tokens as parameters.

In Fig. 8, log is a builtin function [8]. On the other hand, deduct from balance
func and add to balance func are part of the contract implementation. The lat-
ter function makes use of a function for safe addition (safe add func) to avoid
overflow when increasing the balance of the destination account.

The Readability of Yul Code. It is demonstrated by Figs. 7 and 8 that smart
contract code in Yul has a greater level of readability than low-level instructions.
This benefits the intuitiveness level of formal verification.

5 Verification of the Token Contract

We prove the guarantees of calling each function of the token contract in the
ERC20 interface (c.f., Table 1) in Isabelle/HOL. To this end, we first establish
the guarantees of all the utility functions that are used to implement the interface
functions. Below, we selectively present our results.

5.1 The Guarantees of the Utility Functions

Below, we present the theoretical result about the guarantees of the utility func-
tion for safe addition. This function is used by the function add to balance func
that increases the balance of a specified account by a specified amount (cf. Fig. 8).
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1lemma safe add body correct :
“� n > 4 ;

∀ f id . bui l t in ctx f id �= None
4−→ (context0 g ++ fctx ) f id = bui l t in ctx f id ;

l a id = Some (IntV a); l b id = Some (IntV b);
is uint256 a; is uint256 b

7� =⇒
(a + b < two256 ∧
eval statement g l fctx (body of safe add func) n

10= Normal (g , l ( r id:=Some (IntV (a+b))) , RegularMode)
∨
a + b ≥ two256 ∧

13eval statement g l fctx (body of safe add func) n
= Exit (RevertExit g 0 0)

)”

In the above, the identifiers a id and b id are the parameters of the function
safe add func. The lemma safe add body correct asserts that if a id and b id have
values a and b, respectively, that are 256-bit unsigned integers, then evaluating
the body of safe add func yields a+ b (that is stored in the return variable r id)
if a+ b does not exceed 2256 − 1, and an exception reverting the state otherwise.
The condition n > 4 is imposed only because when fully evaluating the body of
safe add func in the semantics, the counter n decreases 5 times. The evaluation
would result in an error for any n ≤ 4. The condition at lines 3 and 4, on the
other hand, requires that each identifier of a builtin function should indeed be
mapped to the right builtin function by context0 g ++ fctx . Here, builtin ctx
is a pre-defined mapping from each identifier of a builtin function to the builtin
function, and context0 g is the map for all the globally available identifiers.

The proof of the lemma safe add body correct is by case analysis on the truth
of a+ b < two256, and by simplification using the semantics of Yul. We omit the
discussion of the statement/proof of the lemmas for the other utility functions.

Remark 1. The guarantees for the functions of the token contract (e.g., safe add
func) correspond to the notion of total correctness [10] – it is stated that under
specific conditions the execution terminates, resulting in global and local states
that satisfy specific conditions.

5.2 The Guarantees of Calls to the Token Contract

We first introduce a series of definitions that are used to formulate the theoretical
results about the calls to the contract. The term “keccak base key base key” is
defined to give the keccak-256 hash value of the list of 64 bytes where the first
32 bytes are those of the value key and the next 32 bytes are those of the
value base. The term “memory values m addr sz” is defined to give the list of
bytes (each as an integer) in the memory m starting at the address addr and
ending at the address addr + sz − 1. The term “sel val cd val” is defined to say
that the signature hash of the function to which the current call is dispatched
is val. The term “uint arg idx cd idx val” is defined to say that the idx-th
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argument value in the input data cd of the call is the unsigned integer val.
The term “addr arg idx cd idx val” is defined to require that in addition to
uint arg idx cd idx val, the idx-th argument has the form of an account address.
For the account acc, storage offsets o1 and o2, balances b1 and b2, and the
amount a of tokens, “upd bal acc o1 o2 b1 b2 a” is written for acc�storage :=
(storage acc)(o1 := IntV (b1 − a), o2 := IntV (b2 + a))�.

n > k ; length args = 7 ; length gs = 8 ; length l s = 8 ;
2argvs = [IntV gas , IntV addr , IntV val ,

IntV of f t in , IntV szin , IntV of f tout , IntV szout ] ;
∀ i . i ≥ 0 ∧ i < 7 −→

5eval expression (gs ! i) (ls ! i) fctx (args ! i) n
= Normal (gs ! (i+ 1) , ls ! (i+ 1) , (argvs ! i));

g ’ = gs ! 7 ; l ’ = ls ! 7 ;
8(context0 g ’ ++ fctx ) b ca l l id = Some (GBuiltinV Call ) ;

∀ f id . context0 g ’ f id = bui l t in ctx f id

Fig. 9. The list assms of assumptions

A number of conditions are shared as assumptions by multiple theoretical
results about calls to contracts. We write

assms args argvs gas addr val offt in sz in offtout sz out gs ls g′ l′ fctx n k

for the list of assumptions shown in Fig. 9. Here, args is a list of 7 argument
expressions for a contract call, argvs is a list of 7 argument values for the same
call, addr is an account address, val is an amount of money, offt in and offtout are
two memory offsets, sz in and sz out are two counts of memory bytes, gs is a list
of global states, ls is a list of local states, and n and k are two natural numbers.
The condition spanning lines 2 and 3 says that the list argvs is obtained by
wrapping the series of integer values provided using the type constructor IntV.
The condition spanning lines 4–6 says that the evaluation of the i-th argument
expression yields the i-th argument value, turning the global and local states to
the next ones in the respective lists gs and ls. The condition at line 8 says that
after evaluating all the arguments (thereby reaching the global state g′), the
identifier for the builtin function Call is still properly mapped to Call according
to g′ and the local function context fctx ′. The condition at line 9 says that the
global state g′ properly maintains the mapping for the builtin functions.

Below, we present the theorem about the guarantees of each call to the token
contract that invokes the function transfer func (cf. Table 1), when the source
account (the caller) has a sufficient amount of tokens to transfer, and the transfer
does not lead to an overflow of the balance at the destination.
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theorem normal call transfer :
“� assms args argvs gas addr 0 offt in sz in offtout szout gs ls g′ l′ fctx n 17 ;

3current g ’ = accounts g ’ (address g ’ ) ;
balance ((accounts g ’) (address g ’)) ≥ 0 ;
code ((accounts g ’) addr) = Some token contract ;

6cd0 = memory values (memory g ’) offt in (nat |sz in | ) ;
valid mem ( list to map cd0) 4 64 ;
se l va l cd0 0xb513186f ; addr arg idx cd0 0 to0 ; uint arg idx cd0 1 a0 ;

9o1 = keccak base key 2 (address g ’ ) ; o2 = keccak base key 2 to0 ;
storage (accounts g ’ addr) o1 = IntV b1 ;
(( storage (accounts g ’ addr)) (o1 := IntV (b1−a0 ))) o2 = IntV b2 ;

12is uint256 a0 ; is uint256 b2 ; b1 ≥ a0 ; b2 + a0 < two256
� =⇒

eval expression (gs ! 0) (ls ! 0) fctx (FunctionCall b ca l l id args) (n0 + 1)
15= Normal (

g ’�memory size := max (max (memory size g ’) (offt in+sz in )) (offtout+szout ) ,
current := i f address g’ = addr then upd bal(current g ’, o1, o2, b1, b2, a0)

18else current g ’ ,
accounts := (accounts g ’)(addr:=upd bal(accounts g’ addr , o1, o2, b1, b2, a0))
logs := ListV (memory values

21(mem upd 4 (memory g ’) 1 (address g ’) to0 a0)
0 128) # logs g ’ � ,

context0 g ’ ++ fctx erc20 , TrueV)”

In the theorem statement, the condition at line 3 says that address g′ is indeed
the address of the currently executing account in g′. The condition at line 5
requires that the code being called is that of the token contract (c.f. Fig. 6).
The condition at line 6 says that the input data to the call (as obtained from
the global state g′ reached after the evaluation of the arguments) is cd0. The
condition at line 7 says that the input data to the call contains valid data after
four initial bytes, for 64 bytes in a row – the argument values are contained in
these bytes. The conditions at line 8 say that the signature hash for the function
to be executed is the one for transfer func, and the 0-th and 1-th arguments
in the input data of the call are to0 (the address of the destination account of
the transfer) and a0 (the amount of tokens to be transfered), respectively. The
conditions at line 9 say that the storage offsets for the balances of the source and
destination accounts of the transfer are o1 and o2, respectively. The conditions
at line 10 and line 11 say that these two balances are b1 and b2, respectively. The
latter condition is stated with consideration of the fact that if the destination
account is the same as the source account, then the balance of the destination
account decreases when the tokens have been sent but not received. The updated
global state described in lines 16–22 reflects the change in the account balances
due to the transfer, and the recording of the transfer in the log.

The proof of theorem normal call transfer is conducted using lemmas that
connect the result of calling the token contract to the result of evaluating
the function transfer func. These latter lemmas are in turn based on lemmas
about the guarantees of the utility functions (e.g., for safe addition, as shown in
Sect. 5.1). Transformations are performed such that the resulting global state is
described directly wrt. g′ that is reached after evaluating the arguments for the
call. Hence, for side-effectless argument expressions, it is also directly in terms of



134 X. Li et al.

the initial global state gs ! 0. The case where the source account does not have a
sufficient amount of tokens to be transfered, or the transfer leads to an overflow
of the balance at the destination, is covered by a separate theorem.

As a corollary, we have formally shown that a token transfer preserves the
total amount of tokens, provided that there is no collision of the keccak-256 hash
values of the addresses for all the accounts that own the token.

Remark 2. As is demonstrated in the theorem normal call transfer , the guaran-
tees for the calls to the contract functions are formulated to precisely reflect all
changes in the global and local states. This provides a solid basis for establishing
further safety and security properties in a broad range (e.g., [15]).

Finally, if the caller of the contract attempts to send money to the contract,
then the call is terminated with the effects on the states reverted.

theorem call with money :
“�val0 > 0 ;

assms args argvs gas addr val0 offt in sz in offtout sz out gs ls g′ l′ fctx n 7
� =⇒
eval expression (gs ! 0) (ls ! 0) fctx (FunctionCall b ca l l id args) (n0 + 1)
= Normal (g ’�memory size := max (max (memory size g ’)(offt in + sz in))

(offtout + sz out) � ,
l ’ , FalseV)”

Note that the potential increase in the number of active memory bytes is not
canceled, which is consistent with the semantics described in [17,28].

In the verification of the token contract in Isabelle/HOL, the contract code
in Yul has been sufficiently comprehensible for it to be used as the reference for
specifying the initial pre/post-conditions. These pre/post-conditions are further
revised in the proving process – the formal proof helps make all the assumptions
and effects associated with an invocation of the token contract explicit. Further-
more, since the dispatching logic of calls to specific functions is an integral part
of the token contract at the IL-level, the dispatcher is naturally covered by the
verification. This provides added confidence that the dispatcher does not contain
errors that could have otherwise been introduced by a compiler.

6 Related Work

Verification of Smart Contracts by Theorem Proving. The strongly neg-
ative impact of errors and flaws of smart contracts motivated their verification
by theorem proving. In [19], the EVM is formalized in Lem [22], and a few safety
properties of simple contracts are proven in Isabelle/HOL based on formal def-
initions generated in this proof assistant. In [9], a program logic is defined to
syntactically reason about properties of EVM bytecode. This development is
based on the formalization of [19]. In [18], a semantics of EVM bytecode is
defined in the K-framework, which provides the basis for program analysis and
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theorem proving [23] for Ethereum smart contracts. In [17], a small-step seman-
tics of EVM bytecode is defined (with partial mechanization in the F� language),
and a few security properties are defined on the basis of this semantics for the
verification of Ethereum smart contracts. In [5], a library of formal proofs is
developed for Ethereum smart contracts in the Coq proof assistant, based on a
demand-driven formalization of a Solidity-like language. In [30], a type system
and a big-step semantics are defined (in Coq) for Lolisa – a Solidity-like pro-
gramming language developed by the authors. In [14], an approach to verifying
Hyperledger Fabric chaincode (in Java) in the KeY prover is proposed. The main
idea is to extend KeY to handle the major API methods that are provided by
the Hyperledger blockchain and used for writing the chaincode.

The developments mentioned above formalize smart contracts and prove their
properties at either the user-language level or the machine-language level. In [24],
an intermediate language, Scilla, is defined in Coq, for the analysis and verifi-
cation of smart contracts. Unlike our development that leverages the existing
intermediate language in the ecosystem of Ethereum, Scilla is a new language
for which the translation from high-level languages like Solidity, and into low-
level languages like EVM bytecode is yet to be defined.

Validation of Smart Contracts in General. Numerous developments have
been carried out to validate smart contracts by non-theorem-proving means. For
space reasons, the following discussion is non-exhaustive on these developments.

In [13], the role of refinement in verifying and preserving the correctness of
smart contract designs (e.g., in the Event-B formalism) is discussed. In [20], the
problem of verifying smart contracts is addressed by generating and solving horn
clauses. In [16], a static analysis is proposed for Ethereum smart contracts, and
the analysis comes with a soundness proof. In [12], the SPIN tool is leveraged
to model check smart contracts. In [26], the target properties of a smart con-
tract is expressed as patterns, and the verification/falsification of properties is
performed by finding the corresponding patterns. In [21], a method of finding
bugs in smart contracts via symbolic execution is proposed. In addition, hybrid
approaches to the verification of smart contracts are proposed and used in the
VaaS framework [7] and the CertiK project [1].

7 Conclusion

Formal verification can be applied to provide the highest level of correctness
and security guarantee for smart contracts. The language used to realize the
smart contract affects multiple aspects of the verification. Specifically, the use
of an intermediate language (IL) ensures a relatively low level of complexity
in formalizing the language itself (owing to the succinctness of the language
features), a relatively high level of intuitiveness of the verification (owing to the
existence of structured programming constructs), and a relatively high level of
confidence on the verification result (owing to the partially reduced trust base).

To demonstrate some of these benefits, we present a concrete formal verifi-
cation of an Ethereum smart contract at the IL-level, in a proof assistant. The
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smart contract is an ERC20 token contract, which we realize in the Yul language,
the formalization of which we revise to rectify its observed deviation from its
informal specification. We prove the guarantees of calls to all the interface func-
tions of the token contract in Isabelle/HOL. The development totals ∼10k lines
of code (excl. code generated from Lem). In the verification, we take advan-
tage of the good level of comprehensibility of Yul to devise the initial pre/post-
conditions for the contract functions. These pre/post-conditions are then revised
in the proving process, such that all the assumptions and effects for the contract
functions are precisely identified. The complexity of the formal proof is partially
reduced by the simplicity of Yul and its formal semantics relative to a high-level
language. The overall approach applies easily to other Ethereum contracts.

Potential directions for future work include support for easier smart contract
proofs for Yul via proof automation and program logics, as well as refinement
verification of Yul contracts to preserve guarantees down to the lowest level.
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O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 33–38.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71067-7 7

28. Wood, G.: Ethereum: a secure decentralised generlised transaction ledger. https://
gavwood.com/paper.pdf

29. Yaga, D., Mell, P., Roby, N., Scarfone, K.: Blockchain technology overview. Tech-
nical report, NISTIR 8202 (2018)

30. Yang, Z., Lei, H.: Lolisa: formal syntax and semantics for a subset of the solidity
programming language. CoRR, abs/1803.09885 (2018)

https://doi.org/10.1007/978-3-319-96145-3_4
https://doi.org/10.1007/978-3-319-96145-3_4
https://doi.org/10.1007/978-3-319-89722-6_10
https://doi.org/10.1007/978-3-319-89722-6_10
https://doi.org/10.1007/978-3-319-70278-0_33
https://doi.org/10.1007/978-3-642-22863-6_27
https://doi.org/10.1007/978-3-642-22863-6_27
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://doi.org/10.1007/978-3-540-71067-7_7
https://gavwood.com/paper.pdf
https://gavwood.com/paper.pdf


Simulations for Multi-Agent Systems
with Imperfect Information

Patrick Gardy(B) and Yuxin Deng

Shanghai Key Laboratory of Trustworthy Computing,
East China Normal University, Shanghai, China

{gardy.patrick,yxdeng}@sei.ecnu.edu.cn

Abstract. Equivalence-checking and simulations are well-known meth-
ods used to reduce the size of a system in order to verify it more effi-
ciently. While Alur et al. proposed a notion of simulation sound and
complete for ATL as early as 1998, there have been very few works on
equivalence-checking performed on extensions of ATL* with probabili-
ties, imperfect information, counters etc. In the case of multi-agent sys-
tems (MASs) with imperfect information, the lack of sound and complete
algorithm mostly follows from the undecidability of ATL model-checking.
However, while ATL is undecidable overall, there exist sub-classes of
MASs for which ATL becomes decidable. In this paper, we propose a
notion of simulation sound for ATL/ATL* on any MASs and complete
on naive MASs. Using our simulations we design an equivalence-checking
algorithm sound and complete for MASs with public actions.

1 Introduction

With the rise of multi-agent systems (MASs), the software verification commu-
nity has tried to extend methods useful for the verification of closed systems
to multi-agent systems. The usual model represents each agent’s local control
through a transition graph with the edges labeled by the actions of all agents
involved in the system. This way the agents may influence the state of one
another, but each has its own separate control-graph. The overall system is then
built as the product of all the agents’ local systems. In many practical cases,
some agents have only a partial view of the overall system and may not know
the control-graph or the exact state of other agents. This can either follow from
a faulty communication or be a design choice, either for security or cost pur-
poses. To model this imperfect information, some partial observation relations
are attached to each agent.

Many formalisms have been proposed in order to specify expected behav-
iors of MASs. Among the most famous ones we cite ω-regular conditions [1]
and ATL, ATL∗ [2,13,15], the go-to adaptation of CTL, CTL∗ to multi-agent
systems. Initially defined on MASs with perfect information, these formalisms
were quickly adapted and studied in the context of imperfect information (for
example in [11,14] for ATL∗).
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A Need for Equivalence-Checking. Simpler formalisms like Buchi conditions and
ATL enjoy a polynomial model-checking for perfect information, making them
target choices for practical applications. The situation is however drastically dif-
ferent in the presence of imperfect information. Thereby ATL goes from polyno-
mial to exponential time model-checking (ΔP

2 to be precise) for positional strate-
gies while it is outright undecidable for perfect recall strategies. The algorithm
for positional strategies scales poorly and methods of minimizing the models are
necessary to improve the practical uses. In this line of work, a proven concept
consists in finding smaller and smaller models of the system and proving at each
step that the new model despite its reduced size satisfies the same properties as
the bigger one. Such method makes heavy use of an equivalence-check subrou-
tine between two models. There are many ways to perform an equivalence-check:
simulations [9,12], trace-equivalence [3], testing [17], etc. This idea was put in
application in [5]. In their paper, Belardinelli et al. proposed a notion of sim-
ulation sound for ATL and discussed different modelizations of the three-ballot
voting protocol (3BVP). ATL was shown to be a logic of choice to model security
properties of voting protocols [4,23]. The authors of [5] proposed three models
of the 3BVP and showed that each model can simulate the others. We can then
check ATL security properties on the smallest model, gaining a considerable
amount of time and space.

Contributions. We propose a notion of simulation for games with imperfect infor-
mation by extending the one of [5]. This simulation is sound for ATL/ATL∗, works
with both positional and perfect recall strategies, and (with a minor change in
the definition) works for both the objective and subjective semantics. Our notion,
unlike the one in [5], does not require perfect replication of the partial obser-
vation but instead focuses on similarity of results. To be more precise, for four
states q, s, q′, s′ with q, q′ similar, s, s′ similar and s′ ∼C q′, we do not require the
states q, s to have the same observation C. This makes our notion of simulation
coarser than the only other existing one.

Due to the undecidability of ATL with perfect recall strategies and imper-
fect information, our notion is not proven to be complete1. We however prove
completeness on naive games, a subclass of MASs with imperfect information.
A naive game is one where by design the imperfect information is “state based”
in the sense that no history can augment the information of an agent. The con-
cept is illustrated later in Fig. 4. Using our result on naive games, we develop
an equivalence-checking algorithm for MASs with public actions, which is both
sound and complete. The proof proceeds by restructuring public-actions MASs
into naive MASs equivalent on all ATL formulas. To perform equivalence check-
ing, both public-actions MASs are transformed into naive games which are then
checked using our notion of simulation.

Related Works. ATL was proven undecidable in perfect recall strategies and
ΔP

2 with positional strategies [11,14]. To regain decidability for perfect recall
1 Continuing the tradition in multi-agent systems with the exception of the initial

paper on alternating refinement relations [3].
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strategies, there are two possibilities. The first option is to restrict the MASs
to public actions [6]. A MAS has public actions whenever any agent can see
the actions played by all other agents. In such case, ATL∗ model-checking is
2-EXPTIME. The second option is to use hierarchical observations (and other
derivative options) for which ATL/ATL∗ model-checking is Non-Elementary. A
MAS has hierarchical observation whenever there is an order on the agents such
that an agent A dominated by another agent B has a strictly less complicated
partial observation relation than B.

In a slightly more distant fashion, we mention the work of Berthon et al. [7]
on strategy logic with imperfect information and also the work of Laroussinie
et al. [16] on ATL with strategy contexts and partial observations (both logics
extend ATL∗). Each paper proposes small fragments on which the model-checking
is decidable in the presence of partial observations.

There are two main related works on equivalence-checking. The first is by
Alur et al. [3] on alternating refinement relations with two main contributions:
alternating simulations (sound and complete for ATL/ATL∗) and alternating
trace containment (sound and complete for LTL). The second [5] proposes a
simulation sound for ATL∗ in the presence of imperfect information with an
application to model the 3BVP. The protocol is a voting process that does not
rely on cryptographic methods for its security [25]. Interestingly, some practical
problems and security failures were quickly detected in the 3BVP following its
presentation [22]. In [5], the authors proposed different modelizations possible
for the protocol as MASs with imperfect information. They discussed the size
of each modelization before showing all the models to be equivalent. In a more
distant fashion we also cite [26] which proposes a concept of simulation sound
for ATL on probabilistic MASs.

Outline. In Sect. 2, we introduce games with imperfect information (used to
represent MASs) and ATL∗. Section 3 covers the notion of simulation with its
soundness relative to ATL∗ for games with imperfect information. Section 4 dis-
cusses the completeness of our notion for the subclass of naive games. In Sect. 5,
we present an algorithm to perform equivalence checking on games with public
actions based on the work done in previous sections. Finally, we conclude in
Sect. 6.

2 Games, Imperfect Information and ATL∗

Games with Imperfect Information

For the rest of the paper, fix AP a finite set of atomic propositions. A multi-
agent system is usually represented in the following way: each agent has its own
control-graph whose edges are labeled by tuples of actions (one per agent), the
overall system is then represented by a product of all local control-graphs of the
agents. To model this product, we use the notion of concurrent game structures.
This is the method used in the open-source tool MCMAS [18,24] and the ISPL
language it uses.
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Definition 1. A concurrent game structure with imperfect information
(CGS for short) is a tuple G := (S, Agt, Act, Label,Δ, {∼P }P∈Agt) where S is
a nonempty set of states; Agt = {P1, ..., Pn} is a nonempty finite set of agents;
Act is a nonempty finite set of actions; Label : S → 2AP is a labeling function;
Δ : S × JAct → S is a transition function with JAct :=

∏
i∈Agt Act the set of

joint actions (where the ith component represents the choice of the agent Pi);
and for each P ∈ Agt, ∼P ∈ S × S is an equivalence relation marking the partial
observation of agent P .

A CGS is said to have perfect information when ∼P = {(s, s) | s ∈ S} for each
P ∈ Agt. A path (or outcome) ρ = s0s1 . . . in a CGS G is a (finite or infinite)
sequence of states such that for every j ≥ 0, sj+1 = Δ(sj , aj) for some joint
action aj ∈ JAct. We let PathG denote the set of paths in G. When clear from
context, we will drop the game from the notation. We write |ρ| ∈ N ∪ {∞} for
the length of ρ, last(ρ) for the last state of ρ (when it is finite), and Prefix(ρ)
for the set of all prefixes of ρ. Finally, we write ρ<i+1 for the prefix of length i
of ρ. Given two paths ρ and ρ′, and an agent P we write ρ ∼P ρ′ if for all index
i, ρ(i) ∼P ρ′(i). We then call a set of agents with common knowledges the set
of agents A such that ρ ∼P ρ′ iff P ∈ A.

A function δ : S+ → Act is called a strategy (with perfect recall and no
randomness). We denote by StratG the set of strategies. We say that a strategy
δ conforms to the partial observation of a player P if for any two paths ρ and π of
the same length such that ρ(i) ∼P π(i) for any i, we have δ(π) = δ(ρ). Consider
a state s, a coalition of agents C ⊆ Agt and a set of strategies δC = (δP )P∈C

for players in C. A path ρ is compatible with δC and s when ρ(1) = s and for
all 0 < i < |ρ| there exists a joint action a such that a(P ) = δP (ρ<i) for each
agent P in C and ρ(i + 1) = Δ(last(ρ≤i), a). There are two ways to define
outcomes in games with imperfect information: objective and subjective. The
objective outcome Outobj(δC, s) is the set of all paths compatible with δC starting
from s, thus it differentiates the initial state from similar states. The subjective
semantics makes no such distinction, Outsub(δC, s) =

⋃
s′∼P s,P∈C Outobj(δC, s′).

In order to analyze outcomes, we need the last concept: traces. A trace of a path
is the projection of the path onto the set of atomic propositions AP.

ATL∗ on Games with Imperfect Information

ATL∗ is a well-known and widely used logic introduced in [2] for games with
perfect information as an extension of the logic CTL∗ for closed systems. It
extends relatively simply to games with imperfect information, only using a little
semantic change on the quantification operator. ATL∗ is defined with respect to
a set of agents Agt and a set of atomic propositions AP by the following grammar
(note that as usual we do not allow the universal quantifier when dealing with
simulations):

ATL∗ 	 φ := 
C� ϕ | φ ∧ φ | φ ∨ φ

ϕ := p | ¬p | X ϕ | ϕU ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | φ
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where p is an atomic proposition and C is a subset of Agt.
The φ-type formulas are state formulas and are evaluated on a state s of

a CGS G. The semantic interpretation of boolean operators is as usual. We
recall that there are two semantics to define outcomes, subjective and objective.
This gives rise to two semantics for the quantification, with the first being the
objective definition and the second being the subjective definition:

G, s |=obj �C� ϕ iff

{
∃δ = {δP }P∈C ∈ Strat s.t. ∀P ∈ C , δP conforms to the

information of P and ∀ρ ∈ Outobj(δ, s) it holds G, ρ, 1 |= ϕ

G, s |=sub �C� ϕ iff

{
∃δ = {δP }P∈C ∈ Strat s.t. ∀P ∈ C , δP conforms to the

information of P and ∀ρ ∈ Outsub(δ, s) it holds G, ρ, 1 |= ϕ

The ϕ-type formulas are called path-formulas and are evaluated with respect to
a path within the CGS. The semantics of the boolean operators and the atomic
propositions is standard. The other operators follow the semantics below.

G, ρ, i |= X ϕ iff G, ρ, i + 1 |= ϕ

G, ρ, i |= ϕ1 U ϕ2 iff ∃j > i. G, ρ, j |= ϕ2 and ∀i < k < j. G, ρ, k |= ϕ1

G, ρ, i |= φ iff G, ρ(i) |= φ

We call ATL the fragment of ATL∗ obeying the syntax

ATL 	 φ := 
C� ϕ | 
C� X ϕ | | 
C� ϕU ϕ

ϕ := p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | φ

3 Simulation in Games with Imperfect Information

In [5] the authors propose a notion of equivalence sound for ATL that works for
both the subjective and the objective semantics. This notion is however rather
restrictive. We develop our own notion, which shares some similarities with the
one of [5], yet is more general. The simulation we propose is also sound for
ATL∗, works on both subjective and objective semantics. Besides those properties
already present in [5], our simulations do not require a perfect replication of
the partial information. By “replication of partial information”, we mean the
following. Consider three states q, s′, q′ with q, q′ similar and s′ ∼P q′, there
is no need for the existence of a state s with s ∼P q and s, q similar. Finally
our notion is complete on a small class of games: naive games, and from this
completeness one can deduce an equivalence-checking algorithm for games with
public actions.

For the rest of the paper, we consider two games G,G′ that build upon the
same atomic propositions and upon the same set Agt of agents. Simulation −
or equivalence-checking in general − in multi-agent systems is parameterized by
a coalition of agents (made of all agents to be existentially quantified in the
formulas we are interested in). Therefore we also fix a coalition C ⊆ Agt as
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a parameter. We first describe the simulation and soundness for the objective
semantics. The case for the subjective semantics is similar and will be discussed
in the end. The main idea behind our algorithm is to keep track of all imper-
fect information scenarios possible through a tracker. We represent the tracker,
written Λ, as a relation on S × S × 2Agt × S′ × S′ × 2Agt.

Definition 2. A simulation of G by G′ for C is a relation R ⊆ S ×S′ such that
there is another relation Λ ⊆ S × S × 2Agt × S′ × S′ × 2Agt where

1. for each (q, q′) ∈ R, Label(q) = Label(q′).
2. for any (q, q′) in R, we have (q, q,C, q′, q′,C) ∈ Λ
3. – for each (q, q′) ∈ R, there is a function Tq,q′ : JActCG �→ JActCG′

– for each (q, q′) ∈ R and each a ∈ JActCG there exists a function
Ua

q,q′ : JActAgt\CG′ �→ JAct
Agt\C
G

such that the following two properties hold:
(a) consider any (q1, q2, A, q′

1, q
′
2, B) ∈ Λ, any two joint actions a, b ∈ JActCG

such that a(A) = b(A), and any two joint actions c′ and d
′ ∈ JAct

Agt\C
G′ .

Write k1 for the successor of q1 by a · Ua
q1,q′

1
(c′), k2 for the successor

of q2 by b · Ub
q2,q′

2
(d′), k′

1 for the successor of q′
1 by Tq1,q′

1
(a) · c′, k′

2 for

the successor of q′
2 by Tq2,q′

2
(b) · d

′
, C the set of agent with information

common to k1, k2; and D the set of agents with information common to
k′
1, k

′
2. Then (k1, k2, E, k′

1, k
′
2, F ) ∈ Λ where E = A ∩ C and F = B ∩ D.

(b) for each (q, q′) ∈ R, each joint action a ∈ JActCG , there is a joint action
c′ ∈ JAct

Agt\C
G′ such that the pair consisting of a successor of q by a ·

Ua
q,q′(c′) and a successor of q′ by Tq,q′(a) · c′ is in R.

4. for each (q1, q2, A, q′
1, q

′
2, B) ∈ Λ

∀a, b ∈ JActCG .
[
a(A) = b(A)

]
⇒

[
Tq1,q′

1
(a)(B) = Tq2,q′

2
(b)(B)

]
(1)

The above definition of simulations may look complicated but is in fact rel-
atively similar to the one of ATL∗ with the addition of the syntactic sugar to
manage the tracker Λ. Indeed, Points 1 and 3.b are similar to the requirements
of the simulations for ATL with perfect information [3]. Points 2 and 3.a are
there to build the tracker properly. Intuitively, the tracker can be built based
on R by a fix-point algorithm using Point 2 for initialization and Point 3.a as
recurrence relation. Point 4 enforces the simulation to make coherent choices for
the scenarios in the tracker. Note that if the tracker is larger than the one of the
definition above, but the property in Point 4 still holds for the larger tracker,
then the soundness for ATL will also hold. Note also that, while it may not look
obvious, this kind of simulations is closed by union. The tracker for the union of
two simulations is simply the union of the trackers from each simulation.

We provide a small example for the games on Fig. 1. There exists a simulation
of domain (where we omit the last states for clarity)

R := {(A,A′), (B,B′), (B,C ′), (C,B′), (C,C ′)}
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and where the tracker is made of

Λ :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(A,A, {Pi}i≤3, A
′, A′, {Pi}i≤3)

(B,C, {P1}, B′, C ′, {P2})
(C,B, {P1}, B′, C ′, {P2})
(C,B, {P1}, C ′, B′, {P2})
(B,C, {P1}, C ′, B′, {P2})

game G1

A

B C

p q p q

aa�
bb�

ab�
ba�

∼P1

� � a � � b � � a � � b

game G2

A′

B′ C′

aa�
bb�

ab�
ba�

∼P2

p q p q

� � a � � b � � a � � b

Fig. 1. Two games bisimilar, each with 3 agents. The bisimilarity is relatively trivial
as only the third player is active on the B,C,B′ and C′ states.

Remark 1. Using a naive approach, finding if there exists a simulation takes an
exponential time.

Strategic Characterization. To establish the soundness of simulations for ATL∗,
we restate simulations as relations between strategies. We need a few notations
first. An existential profile δ is a set of strategies (δP1 , . . . , δPn

), one per agents
in C. Universal profiles are defined similarly as sets of strategies from the agents
in Agt\C. We write Profile∗

� with ∗ ∈ {C, Agt\C} and 
 ∈ {G,G′} for the set of
∗-profiles in the 
-game. A strategic characterization is a set {SC

q,q′ ,SAgt\C
q,q′ }q,q′∈Z

of functions on some domain Z ⊆ S × S′ where the functions are of the form
SC

q,q′ : ProfileCG �→ ProfileCG′ and SAgt\C
q,q′ : ProfileAgt\CG′ �→ Profile

Agt\C
G that

obey two features:

Feat.1 for all q, q′, any two profiles δ, γ′, and any two states s, s′ belonging to
the objective outcomes of δ and SAgt\C

q,q′ (γ′) and of SC
q,q′(δ) and γ′, the

pair (s, s′) belongs to the domain Z of the strategic profile.
Feat.2 for any pair of states q, q′, any two profiles δ, γ′, the objective outcomes

of δ and SAgt\C
q,q′ (γ′) and of SC

q,q′(δ) and γ′ have the same traces starting
from q and q′, respectively.

Simulations can be linked to strategic characterizations via Theorem 1 below.

Theorem 1. If there exists a simulation R of G by G′, then there is a strategic
characterization defined on R.



Simulations for Multi-Agent Systems with Imperfect Information 145

Game G

AB C

Game G′

A′ B′

Assume a simulation R:

(A, A′) (B, B′) (C, B′)

Condition 2
for objective semantics:

(A, A, Agt, A′, A′, Agt)
(B, B, Agt, B′, B′, Agt)
(C, C, Agt, B′, B′, Agt)

For subjective semantics, we add
(A, C, {P1}, A′, A′, Agt) (A, C, {P1}, B′, B′, Agt)
(C, A, {P1}, A′, A′, Agt) (C, A, {P1}, B′, B′, Agt)

∅ ∼P1

Imp. info

∼P1

Imp. info

Fig. 2. Illustration of Point 2 of simulation for the subjective semantic.

Simulation Soundness for ATL

Theorem 2. Let R be a simulation of G by G′. For any (q, q′) ∈ R and any
Φ ∈ ATL∗, if q |= Φ then q′ |= Φ (for the objective semantics).

Proof. Assume there is a simulation R of G by G′. The proof is by induction
on the nesting of quantifier operators. Consider the case where Φ has no nested
quantification. If Φ holds on G, then there is an existential winning strategy
profile δ. Using Theorem 1, we obtain a strategy S∃(δ). Then S∃(δ) is a winning
strategy in G′ for the temporal property of Φ. Indeed, if there was a universal
strategy γ′ falsifying Φ against S∃(δ), we could use S∀(γ′) to get a strategy
falsifying the temporal property of Φ against δ, which would contradict the
hypothesis that δ is winning for Φ. The case where Φ has nested quantifications
is similar, only using the induction hypothesis to check the sub-formulas. ��

Simulation in the Subjective Semantics. The notion of simulation in the subjec-
tive semantics is similar with the exception of the requirement on the tracker Λ
(the second point of the definition). In the objective semantic, Point 2 provides
an initialization of the tracker for the different possible starting states while
Point 3.a provides a recurrence condition. Subjective semantics do not make a
difference between a starting state q in G and a state h indistinguishable from q
for some agent P . Thus a strategy δ for P must be conform to q ∼P h. Something
similar occurs in G′. The tracker in a simulation between G and G′ must handle
this potential scenario, hence we adapt the tracker initialization (Point 2).

2. for any (q, q′) in R, any h ∈
⋃

P∈C{h | q ∼P h}, h′ ∈
⋃

P∈C{h′ | q′ ∼P h′},
the following holds

(q, h,A, q′, h′, B) ∈ Λ where

{
A = {P ∈ Agt | q ∼P h}
B = {P ∈ Agt | q′ ∼P h′}
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The proof of soundness is similar, using a definition of strategic characterization
with subjective outcomes (in both features). The change in definition is illus-
trated in Fig. 2. In the figure, we can see two games (on the left and on the right)
with the imperfect information described just below (in G, the information is for
player P between A and C; in G′ there is no imperfect information). For the
relation R, we describe the initialization of the tracker for both the objective
and subjective semantics in the central part of the figure.

Remark 2. In the subjective semantics, it may be necessary to have some degree
of imperfect information replication in order to establishing a simulation (some
knowledge operators of epistemic logics can be expressed by subjective ATL).
This is however covered through the definition: the tracker will enforce a mini-
mum replication required.

q q′

sr s′r′ h′

p2p1 p2p1 p1

1 10 0 2

� �� � �

Fig. 3. Two games similar with
common observation in color.
(Color figure online)

Comparison to the Existing Notion of Simula-
tion. Our notion is more general than the one
of [5] as it needs not to reproduce similar obser-
vations. This way the game on the right of Fig. 3,
defined over a single (existential) agent P , is not
similar for [5] to the game on the left since there
is no state similar to h′ in both the possibilities
and the observation: r lacks the similar obser-
vation while s lacks the successor with similar
label. Trivially, the games satisfy the same for-
mulas with existential quantification over the single agent P . The two games
are also similar for our notion. Indeed, we can build a relation R with (q, q′),
(r, r′), (s, s′) and (r, h′). The Λ relation follows trivially with (∗, ∗, P, ∗′, ∗′, P )
for (∗, ∗′) ∈ R and (r, s, ∅, h′, s′, P ). Take T as the identity function plus
Th′,h(2) �→ 0. With this choice, the fourth condition is trivially satisfied.

4 Naive Games and Completeness

As ATL with perfect recall is undecidable [21], it is very unlikely that there exists
a notion of simulation provably sound and complete for ATL. There exist some
model restrictions which make the ATL model-checking decidable: hierarchical
observations and the many derivatives (hierarchical information, dynamic hier-
archies) [8,21], public actions [6]. The search for completeness relative to these
fragments is not a vain quest, unlike the general case. In this section we identify a
small subclass of games, naive games, for which our concept of simulation is com-
plete. This concept will also prove itself crucial to develop an equivalence-checking
algorithm in games with public actions in the next section. A game is naive when
the imperfect information is state-based, meaning that two states can or cannot
be distinguished by the same agents regardless of the histories; a formal definition
is given below and an illustration in Fig. 4. From the definition, any game with
a tree-shape structure is de-facto naive (see Fig. 3 for example). This approach
(restriction) on imperfect information is also used in the MCMAS tool [18].
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A potential scenario

in non-naive gamep

q r

s t

q r

∼P

�∼P

q ∼P r

and
s �∼P t

so

pqsq �∼P prtr

loss of

naivety

Only scenario possible

in naive gamep

q r

s t

q r

∼P

∀(s, t)
on path

s ∼P t

q ∼P r

and
∀(s, t) s ∼P t

so

pqsq ∼P prtr

naivety

preserved

Fig. 4. History influence on partial observation in both non-naive and naive games.

Definition 3. A naive game is a game in which for any two finite paths ρA, ρB,

{P ∈ Agt | ρA ∼P ρB} = {P ∈ Agt | last(ρA) ∼P last(ρB)}

Note that the left-to-right inclusion is always true in CGS, naive games
guarantee that the converse inclusion (right-to-left) also holds. Naive games
are interesting for simulations because they have a very simplified tracker. The
inputs are all of shape (h, k,A, h′, k′, B) where A = {P ∈ Agt | h ∼P k} and
B = {P ∈ Agt | h′ ∼P k′} whereas general inputs for non-naive games can also
be of shape (h, k, C, h′, k′,D) with C � A and D � B. They are incomparable
with both games with public actions and games with hierarchical observations.
On them, ATL model-checking is decidable.

Theorem 3. ATL and ATL∗ model-checking are decidable on naive games with
imperfect information.

Proof (Sketch). The result is relatively trivial so we only provide a sketch of the
proof. Transform the temporal objective into a parity automaton A and cross
it with the CGS. Let GA be the result. We get a parity game with imperfect
information for which the property of naive games still applies. On GA, optimal
strategies can be chosen positional even if we allow perfect recall strategies. This
is because the imperfect information is fixed and will not evolve with the choices
made previously by either player. We can then simply enumerate the positional
strategies conform to imperfect information in GA and see if some works. ��

Proving the completeness of our simulation on non-naive games seems an
herculean task. It requires to build a formula which can fully encode all scenarios
possible from an initial state. Such formula would require to not only handle
the atomic propositions seen along the way but also the potential changes in
imperfect information with other paths. With naive games, there are no changes
in the imperfect information. This brings us back to a situation close to games
with perfect information for which there exist sound and complete notions of
alternating simulations [3]. Using similar ideas to the ones used to prove the
completeness of alternating simulations for ATL, we prove that our simulations
are complete for naive games.
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Theorem 4. Fix two naive games G and G′. Let R be the set

R :=
{
(q, q′) | q ∈ S, q′ ∈ S′ s.t ∀φ ∈ ATL [q |= φ ⇒ q′ |= φ]

}

then R is the domain of a simulation.

5 Equivalence Checking in Games with Public Actions

Games with public actions are games on which agents have perfect visibility of
the other agents actions. On them, ATL enjoys a decidable model-checking [6].
Using the completeness of our simulations for naive games, we develop a sound
and complete algorithm to check simulations on public action games.

Definition 4. A game G has public actions when

∀P ∈ Agt

∀q, q′ ∈ G
∀a, a′ ∈ ActAgt

⎫
⎪⎬

⎪⎭

[
a �= a′ and q ∼P q′ ⇒ δ(q, a) �∼P δ(q′, a′)

]

From the definition, any two histories of equal length are distinguishable as long
as they start in the same initial state. So, in the objective semantics, games with
public actions are equivalent to games with perfect information. Games with
public actions are only interesting in that semantics if multiple starting states
are considered. In the setting of this paper, it corresponds to using subjective
semantics. In such cases, games with public actions are strictly more expressive
than perfect information games. For the rest of this section we fix a game G with
public actions and a coalition C of agents.

Lemma 1. (Consequence of Remark 2 in [6]). Consider a strategy profile
δC for the coalition C, a starting state q, and a finite path ρ compatible with δC

starting in q. Then ρ has at most |{q′ | q′ ∼P q, P ∈ C}| outcomes indistinguish-
able from ρ in Outsub(δC , q).

Intuitively, there is only a finite number of paths indistinguishable from the
“objective” path. Each of theses paths can be identified by its starting state
(within {q′ | q′ ∼P q, P ∈ C}) and the sequence of actions played (common to
all these paths).

So, as there are only a finite number of paths indistinguishable, we can track
them easily within the state space. By doing so, we can go from public action
games to naive games; this is what the lemma below does. In it we call an
ATL formula principal when it has no closed sub-formula.

Theorem 5. For each public action game G, there exists a naive game H such
that G and H satisfy exactly the same ATL principal formulas existentially quan-
tifying over the coalition C of agents.
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Construction of the Naive Game

H is a version of G which records all possible paths indistinguishable from the
current one for each agent. Each indistinguishable path will be summarized
by the starting and finishing states. Each state q in G is augmented with a
function f : Agt �→ 2G×G, making the state space of H equal to G × (2G×G)Agt.
Intuitively, if a path ends in a state q augmented by fq with (r, s) ∈ fq(P ), then
it means there is a path indistinguishable from the current one starting in r and
ending in s.

Remark 3. The construction can be seen as building an information set of a tree
automaton for games with perfect information [10,19,20].

Formally, the state space of H is G × (2G×G)Agt. For each joint action a for
Agt, we create an edge from (q, f) to (q′, f ′) when

– q
a−→ q′ in G

– f ′(P ) := {(r, s′) | ∃(r, s) ∈ f(P ) and s′ ∼P q′ and s
a−→ s′} for every agent P .

The imperfect information is created inductively. Initially, it follows from q ∼P q′

in G that

(q, f : P �→ {(r, r) | r ∼P q})) ∼P (q′, f ′ : P �→ {(r′, r′) | r′ ∼P q′}) in H, (2)

then inductively,

(q, f) ∼P (q′, f ′) (q, f) a−→ (r, g)

(q′, f ′) a−→ (r′, g′) r ∼P r′ in G

⎫
⎬

⎭
⇒ (r, g) ∼P (r′, g′) (3)

The induction trivially reaches a fixed point and terminates. The initial relation
is reflexive (inherited from the relation on G), symmetric (by definition) and
transitive (inherited from the relation on G and the definition). At each step of
the induction, these three properties are preserved. Indeed reflexivity is trivially
preserved. The definition of (3) is symmetric, so the relation is also symmetric.
Finally, the transitivity is preserved through the use of similar joint actions, as
in lines 2 and 3 in (3). The relation thus defined is indeed an equivalence relation
on states of H and therefore an imperfect information relation.

The set of initial states we consider in H is {(q, f) | f : P �→ {(r, r) | r ∼P q}}.
By definition of the imperfect information in H:

∀(q, f), (q′, f ′) ∈ H. ∀P ∈ Agt.
[
(q, f) ∼P (q′, f ′) in H ⇒ q ∼P q′ in G

]

(4)
The idea is partially illustrated in Fig. 5, with the public-actions game on

the left and the naive game on the right. The functions f and g are described
at the top.

Correctness of the Construction

Notations: In the following we write a state (q, 
) of H for a pair of shape (q, f)
for some function f , and write a state of H (
, f) for a pair (q, f) for some state
q of G. This allows us to ease the reading.
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(q, f) (r, g)(a, �)
outcome under focus

(s, �) (t, �)(b, �)
subjective outcome

(u, �) (v, �)(c, �)
subjective outcome

(b, s) ∈ f(P )
(c, u) ∈ f(P )

(b, t) ∈ g(P )
(c, v) �∈ g(P )

abc

qsu

rtv

a

a

a

a

a

a

Game with
public actions Naive Game

Fig. 5. Construction (with a single agent P ). The imperfect information on the public
action game is represented by colored areas. (Color figure online)

Lemma 2. The following holds for any two paths ρ, ρ′ and any agent P . Write
ρ′(1) := (q′, 
), ρ(|ρ|) := (
, g) and ρ′(|ρ|) := (s′, 
). Then

I if ρ ∼P ρ′ then (q′, s′) ∈ g(P ).
II if ρ �∼P ρ′ then (q′, s′) �∈ g(P ).

Lemma 3. Let P be any agent, (r, f) and (t, g) be any two states such that
(r, f) ∼P (t, g). There are two paths ρC and ρD of shapes ρC : (u, 
) �→∗ (r, f)
and ρD := (v, 
) �→∗ (t, g) such that (v, t) ∈ f(P ) and (u, r) ∈ g(P ).

Lemma 4. H is a naive game.

Proof. Toward a contradiction, suppose the game is not naive. Then there must
be two finite paths ρA, ρB and an agent P ∈ Agt such that ρA �∼P ρB but
last(ρA) ∼P last(ρB). Write last(ρA) = (r, f) and last(ρB) = (t, g). Since
(r, f) ∼P (t, g), by Lemma 3, there are two paths ρC and ρD of the shapes
ρC : (u, 
) �→∗ (r, f) and ρD := (v, 
) �→∗ (t, g) such that (v, t) ∈ f(P ) and
(u, r) ∈ g(P ). By Lemma 2, since (v, t) ∈ f(P ), we have ρA ∼P ρD. Then
by Lemma 2 once again, since last(ρD) = (t, g), we have (first(ρA), r) ∈ g.
Applying one last time Lemma 2, since (first(ρA), r) ∈ g and last(ρB) = (t, g)
we get ρA ∼P ρB , which is a contradiction. ��

Lemma 5. A principal formula φ ∈ ATL existentially quantifying C holds from
state q in G if and only if φ holds from (q, f) in H with f : P �→ {(r, r) | r ∼P q}.

Proof. For this we simply show an equivalence between paths in G and paths in
H (from the starting states), in which a state q in G is always linked to a state of
shape (q, 
) in H. We proceed by induction on the length of the paths. First note
that for a state q in G there is a single initial state (q, f) in H. We can therefore
establish an equivalence between starting states. For the induction case, consider
a path ρ in H and π in H and write last(ρ) = (q, f) and last(π) = q. For each
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joint-action a there is a single q′ such that q
a−→ q′ in G, and a single (q′, f ′) such

that (q, f) a−→ (q′, f ′). We can therefore extend the correspondence one more
step. And with the induction step sorted out, we can conclude the existence of
a one-to-one correspondence between paths in both G and H. Through a simple
induction, we obtain that two paths (from the starting state) are indistinguish-
able in H if and only if their counterparts in G are indistinguishable. From the
path correspondence, it is trivial to establish a correspondence between conform
strategies, and to establish an equivalence between the formulas that can be
satisfied (as long as we start from the appropriate starting state in H). ��
Theorem 5 then follows from the construction and Lemmas 4 and 5.

Sound and Complete Checking of Public-Actions Games

By combining Theorems 4 and 5, we can obtain a sound and complete way for
ATL principal formulas to check simulation on public-action games. The process
is presented in Algorithm 1. The correctness of the algorithm is ensured by the
following lemma whose proof is in annex:

Lemma 6. In Algorithm 1, define RH as the largest simulation of H′ by H.
Then

{(q, q′) | ∀φ principal in ATL [q |= φ ⇒ q′ |= φ]}

=
{
(q, q′) | ∃ fini, f

′
ini s.t

⎧
⎪⎨

⎪⎩

(q, fini) is an initial state of H
(q′, f ′

ini) is an initial state of H′

((q, fini), (q′, f ′
ini)) ∈ RH

}

Algorithm 1 does not work for non-principal ATL formulas. Indeed, two ele-
ments in the simulation relation R may not be starting states of H, and therefore
the correctness which only applies from starting states may not hold. The lemma
below tells us precisely when our algorithm extends to non-principal formulas.

Lemma 7. In Algorithm 1, if R satisfies

∀((r, f), (s, g)) ∈ R ∃fini, gini such that

⎧
⎪⎨

⎪⎩

((r, fini), (s, gini)) ∈ R
(r, fini) is an initial state in H
(s, gini) is an initial state in H

then

{(q, q′) | ∀φ (principal or not) in ATL [q |= φ ⇒ q′ |= φ]}

=
{
(q, q′) | ∃ fini, f

′
ini s.t

⎧
⎪⎨

⎪⎩

(q, fini) is an initial state
(q′, f ′

ini) is an initial state
((q, fini), (q′, f ′

ini)) ∈ RH

}

The proof follows from the definition of the condition and Theorem 5. With the
lemma above, we can develop an algorithm for non-principal formulas simply by
requiring step 3 to find the maximal simulation relation R which satisfies the
condition of the lemma above.



152 P. Gardy and Y. Deng

Algorithm 1. Check for principal formulas in public-action games.
INPUT: Two games G and G′ and two initial states q, q′ respectively in G and G′.
OUTPUT: Does G and G′ satisfy the same principal formulas from q and q′.

1: H → naive game satisfying the same ATL formulas as G through Theorem 5
2: H′ → naive game satisfying the same ATL formulas as G′ through Theorem 5
3: Find the maximal simulation relation R of H by H′

4: if ∃fini, f
′
ini such that ((q, fini), (q

′, f ′
ini)) ∈ R then

5: return True
6: else
7: return False
8: end if

6 Concluding Remarks

We have proposed a notion of simulation sound for ATL on multi-agent systems
in general and complete on naive systems where the information is state-based.
Using the completeness of our concept of simulation for naive games, we have
designed a simulation-checking algorithm for public-action games. A remaining
interrogation is whether there is an equivalence-checking algorithm that is both
sound and complete for ATL on hierarchical information systems.
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Abstract. Dynamic logic is a powerful framework for reasoning about
imperative programs. This paper extends previous work [9] on the sys-
tematic generation of dynamic logics from the propositional to the equa-
tional case, to capture ‘full-fledged’ imperative programs. The genera-
tion process is parametric on a structure specifying a notion of ‘weight’
assigned to programs. The paper introduces also a notion of bisimilar-
ity on models of the generated logics, which is shown to entail modal
equivalence with respect to the latter.

1 Introduction

The development of dynamic logic [3] along the past twenty years went hand-
in-hand with the evolution of its object, i.e. the very notion of a program. The
result was the emergence of a plethora of dynamic logics tailored to specific pro-
gramming paradigms. This ranges from the well-known classical case [2] to less
conventional examples for which e.g. programs are compositions of actions in
UML state machines [6] or event/actions regular expressions [4]. Other rephras-
ing of what should count for a program in each specific context, lead to different
variants of dynamic logics: Examples include probabilistic [7], fuzzy, concurrent
[10], quantum [1] and continuous [11] computations, and combinations thereof.

Reference [9] initiated a research agenda on the systematic development of
propositional, multi-valued dynamic logics parametric on an algebraic struc-
ture, actually an action lattice, which defines both the computational paradigm
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where programs live, and the truth space where assertions take value. This paper
extends this agenda to a new level, taking computational states as valuations
of variables over a given domain, and programs as their modifiers. The idea is
to capture typical imperative programs and their interpretation over different
notions of ‘weighted’ computation—the very notion of weight being brought to
scene as a parameter, encoded in the action lattice, for the generation of the cor-
responding dynamic logic. Depending on each action lattice chosen, such weights
will be interpreted as e.g. vagueness degree associated to the effectiveness of a
particular computation, or a measure of the resources consumed in it, or even
the associated cost or execution time.

Note that in all approaches discussed in the literature, even when some form
of structured computation is considered, validity of assertions is always stated
in classical terms. The approach proposed here goes a step further in the sense
that validity of structured computation (e.g. fuzzy, costed, timed) is discussed
in a logic capturing itself the corresponding notion of behaviour.

Differently from our previous work [9], ‘fully-fledged’ programs are considered
here. This means that assignment of values from a data space to a variable is
taken as the elementary construction, programs being defined over an equational
signature of program variables, predicate and function symbols. Thus, in the
sequel, programs are expressions generated by the following grammar:

π ::= x := t | π;π | if c then π else π fi | while c do π od (1)

where t denote terms with variables from a set X.
Bisimulation is defined parametrically on an action lattice, over the resulting

computational models. Finally, bisimilarity is shown to entail modal equivalence
for the corresponding dynamic logic.

The remaining of this paper is organised as follows. After a brief background
overview in Sect. 2, to recap the definition of an action lattice and some of its fun-
damental properties, Sect. 3 extends the method proposed in [9] to incorporate
‘fully-fledged’ imperative programs, i.e. program variables and assignments. All
constructions are illustrated in detail for three paradigmatic parameters: classi-
cal Boolean lattices, Gödel algebras to capture vagueness in computation, and
the tropical semiring to reason about resource consumption. Bisimilarity and an
invariance result is discussed, as a second contribution of the paper, in Sect. 4.
Finally, Sect. 5 concludes, and enumerates topics for future work.

2 Action Lattices

As explained in the Introduction, the construction of multi-valued, equational,
dynamic logics is parametric on an action lattice which induces both the compu-
tational model for programs and the truth space for logics. This section recalls
the relevant definition and properties [9].

Definition 1. An action lattice is a tuple

A = (A,+, ; ,0,1,∗ ,→, ·)
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where A is a set, 0 and 1 constants, and +, ; ,→ and · binary operations and ∗

a unary operation in A satisfying the axioms in Fig. 1, where the relation ≤ is
induced by +: a ≤ b iff a + b = b.

a+ (b+ c) = (a+ b) + c (2)

a+ b = b+ a (3)

a+ a = a (4)

a+ 0 = 0+ a = a (5)

a; (b; c) = (a; b); c (6)

a;1 = 1; a = a (7)

a; (b+ c) = (a; b) + (a; c) (8)

(a+ b); c = (a; c) + (b; c) (9)

a;0 = 0; a = 0 (10)

1+ a+ (a∗; a∗) ≤ a∗ (11)

a;x ≤ x ⇒ a∗;x ≤ x (12)

x; a ≤ x ⇒ x; a∗ ≤ x (13)

a;x ≤ b ⇔ x ≤ a → b (14)

a · (b · c) = (a · b) · c (15)

a · b = b · a (16)

a · a = a (17)

a+ (a · b) = a (18)

a · (a+ b) = a (19)

Fig. 1. A possible axiomatisation of action lattices.

An action lattice A is complete when every subset of its carrier A has both
supremum and infimum with respect to ≤. The greatest and least elements are
denoted in the sequel by � and ⊥, respectively. Note that in any action lattice
⊥ = 0, since for any a ∈ A, a + 0 = a, i.e. 0 ≤ a. Consider a non-empty set I.
We say that A is linear if it satisfies, for any set {ai|i ∈ I}, the property

∑

i∈I

ai = aj , for some j ∈ I (20)

Since operators +, ; and · are associative, they admit a n-ary iterated version,
represented by

∑
,
∏

and
∧

, respectively. Note that the structure (A,+, ; ,0,1,∗ )
axiomatised by (2)–(13) forms a Kleene algebra. The following handy properties
are easily proved [9]:

x ≤ y ⇒ x; a ≤ y; a (21)
a ≤ b & c ≤ d ⇒ a + c ≤ b + d (22)

The generation of dynamic logics illustrated in the following sections will
be parametric on the class of complete action lattices. Actually, completeness
is required to guarantee the existence of infinite sums. The following are exam-
ples of complete action lattices, with which the proposed constructions will be
illustrated along the paper.

Example 1. The first example is the Boolean lattice

2 = ({�,⊥},∨,∧,⊥,�,∗ ,→,∧)

with the standard interpretation of Boolean connectives. Operator ∗ maps each
element of {�,⊥} to �, and → corresponds to logical implication.
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Example 2. Gödel algebras are the locally finite variety of Heyting algebras.
Formally,

G = ([0, 1],max,min, 0G, 1,∗ ,→,min)

where

x → y =

{
1, if x ≤ y

y, if y < x

Example 3. Finally, the (min,+) Kleene algebra [8], known as the tropical semir-
ing, can be extended to an action lattice through the introduction of residuation
→:

R = (R+
0 ∪ {+∞},min,+R,+∞, 0R,∗ ,→,min)

where, for any x, y ∈ R
+
0 ∪ {+∞}, x∗ = 0R and x → y = max{y − x, 0}, with

R
+
0 = {x ∈ R | x ≥ 0}.

3 Generation of Equational, Dynamic Logics

Each complete action lattice A induces a multi-valued, equational dynamic logic
Γ (A) to reason, as explained above, about ‘full-fledged’ imperative programs
with weighted computations interpreted over A. Such programs are generated
as indicated in (1).

Example 4. This toy program over a set of variables {x, y} and the real numbers
as data space will be used for illustration purposes in the sequel.

x := 2;x := x + y; ( if x ≤ 3 then x := x + 1 else y := y × 2)

Note that its execution can be represented by the following transition system,
where the conditional statement is encoded as a sum of alternatives guarded by
a test.

w0start w1 w2

w2

w2

w3

w3

x := 2 x := x + y

(x ≤ 3)?

¬(x ≤ 3)?

x := x + 1

y := y × 2

Let us start by carefully fixing the syntactic support for the generated log-
ics. Programs are defined over a data signature Σ = (F, P ), where F and P
denote sets of function and predicate symbols, respectively. As usual, let nota-
tion TΣ(X) stand for the set of Σ-terms with variables in X, and represent by
TF

Σ (X) (respectively, TP
Σ (X)) its restriction to functional (respectively, predi-

cate) terms. Thus,

Prg0(Σ,X) = {x := t | x ∈ X and t ∈ TΣ(X)}
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defines the set of atomic programs for the pair (Σ,X), from which an arbitrary
(composed) program is generated as an expression described by the following
rule

π ::= π0 |φ? |π;π |π + π |π∗

with π0 ∈ Prg0(Σ,X), and φ? standing for a suitable notion of test. The latter,
however, needs to be handled with some care: indeed the meaning of a test
depends on the logic Γ (A), and therefore on A itself, as we will discuss below
on defining its semantics in terms of the satisfaction relation for Γ (A). For the
moment, it is enough to notice that choice (+), iteration (∗) and tests (φ?) encode
the usual ‘syntactic sugar’ constructs for conditionals and loops as considered in
rule (1). The set of composed programs for (Σ,X) is denoted by Prg(Σ,X).

Once a language for programs is fixed, the set of formulas for Γ (A) intro-
duces, as expected, the universal and existential modalities over programs. For-
mally,

Definition 2. A signature for Γ (A) is a tuple

Δ = (Σ,Π)

where Σ is a data signature and Π ⊆ Prg0(Σ,X) is a set of variable assignments.
The set of formulas for Δ, denoted by FmΓ (A)(Δ), are the ones generated by
the rule

ϕ ::= � |⊥ | p |ϕ ∨ ϕ |ϕ ∧ ϕ |ϕ → ϕ | 〈π〉ϕ | [π]ϕ

for p ∈ TP
Σ (X) and π is a program in Prg(Σ,X) that only uses atomic programs

in Π.

Note that we sometimes make use of ¬ϕ as an abbreviation for ϕ → ⊥, as in
Example 4.

We can now turn to semantics. For each A, models are defined over state
spaces whose elements are graded valuations of variables, i.e. functions w : X ×
R → A, where A is the carrier of action lattice A. We denote the set of all states
by AX×R.

Definition 3 (Models). Let Δ = (Σ,Π) be a signature and X a set of vari-
ables. A Γ (A)-model for Δ is a structure

M = (W,E)

where

– W ⊆ AX×R is a set of states;
– E : Π × (W × W ) → A is a program grading function.

The set of Γ (A)-models for Δ is denoted by ModΓ (A)(Δ).
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Intuitively the value of E(π, (w0, w1)) represents the graded execution of
program π from state w0 to w1, i.e. the weight associated to corresponding
transition. For instance, in Example 4, taking A as a Gödel algebra (Example 2),
the expression E(x := 2, (w0, w1)) = 0.6 would mean that the system allows
the execution of the assignment x := 3 from state w0 to w1 with 0.6 as a
degree of certainty. Note that these values are attributed in the model. The
interpretation of functional terms and predicates becomes as detailed in the
following definitions.

Definition 4 (Interpretation of functional terms). Let Δ = (Σ,Π) be
a signature and M ∈ ModΓ (A)(Δ). The interpretation of a functional term
t ∈ TF

Σ (X) in M , for each w ∈ W , is given by the map

[[t]]w : TF
Σ (X) → AR

defined recursively as follows:

– [[x]]w(r) = w(x, r)

– [[c]]w(r) =

{
1 if r = c

0 otherwise
– [[f(t1, . . . , tn)]]w(r) =

∑
i∈I{

∏n
j=1[[tj ]]w(ri

j) | f(ri
1, . . . , r

i
n) = r}, where I is

the cardinality of the set of all possible solutions of f(ri
1, . . . , r

i
n) = r in R,

with each f of arity n being interpreted as a function on real numbers R
n → R

(e.g. +, ×, 2, √, . . .).

where x ∈ X and c is the syntactic representation of the constant c ∈ R.

Example 4 may also help in illustrating this issue. Consider a model M =
(W,E), w0, w1, w2 ∈ W , X = {x, y}, and the complete action lattice G =
([0, 1],max,min, 0, 1,∗ ,→,min) of Example 2. Take [[x]]w0(1) = w0(x, 1) = 0.5,
[[x]]w0(2) = w0(x, 2) = 0.2, [[y]]w0(1) = w0(y, 1) = 0.1, [[y]]w0(2) = w0(y, 2) = 0.4
and 0 otherwise for state w0. The interpretation of the term 2 in w0 is given by
[[2]]w0(2) = 1 and 0 otherwise. The interpretation of the term x+y in w0 is given
by:

[[x + y]]w0(2) =[[x]]w0(1); [[y]]w0(1) = min{0.5, 0.1} = 0.1
[[x + y]]w0(3) =[[x]]w0(1); [[y]]w0(2) + [[x]]w0(2); [[y]]w0(1)

=w0(x, 1);w0(y, 2) + w0(x, 2);w0(y, 1)
=max{min{0.5; 0.4}},min{0.2; 0.1}} = 0.4

[[x + y]]w0(4) =[[x]]w0(2); [[y]]w0(2) = min{0.2, 0.4} = 0.2

and 0 otherwise.

Definition 5 (Interpretation of predicates). Let Δ be a signature and M ∈
ModΓ (A)(Δ). The interpretations of a predicate p ∈ TP

Σ (X) in M is given by
the map

[[p]]w : TP
Σ (X) → A
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defined by

[[p(t1, . . . , tn)]]w =
∑

i∈I

{
n∏

j=1

[[tj ]]w(ri
j) | p(ri

1, . . . , r
i
n) is true}

where I is the cardinality of the set of all possible values (ri
1, . . . , r

i
n) ∈ R

n

satisfying p(ri
1, . . . , r

i
n), with each p of arity n being interpreted as a function

over terms TF
Σ (X) like boolean predicate symbols (e.g. ≤, =, . . .).

Again this can be illustrated by computing the truth degree of predicate x ≤ 3
in state w2, of Example 4. [[x ≤ 3]](w2) = [[x]]w2(3); [[3]]w2(3):

G: min{0.3, 1} = 0.3. The value 0.3 means that the predicate is true with a
certainty 0.3.

R: 1.2+R 3.7 = 4.9. This interpretation corresponds to the energy consumed
by evaluating the predicate.

Definition 6 (Interpretation of atomic programs). The interpretation of
atomic programs in a Γ (A)-model M ∈ ModΓ (A)(Δ) is a map

[[ ]]0 : Π → AW×W

mapping each x := t ∈ Π into function

[[x := t]]0(w,w′) =

{
E(x := t, (w,w′)) if (w,w′) ∈ �x := t�

0 otherwise

where �x := t� is the standard relational semantics of a program assignment,
typically given by:

(w,w′) ∈ �x := t� ⇔
{

w′(y, r) = w(y, r) if y �= x

w′(x, r) = [[t]]w(r) otherwise

This is made concrete by interpretation in each of the three distinct models
of computation considered in the paper, as captured in the action lattices of
Examples 1, 2 and 3, respectively.

2: The degree of certainty of execution is bivalente: either � or ⊥, coinciding
with the classical setting where an action simply may or may not execute.
G: Assume [[x := 2]]0(w0, w1) = E(x := 2, (w0, w1)) = 0.8, [[x := x +
y]]0(w1, w2) = E(x := x + y, (w1, w2)) = 0.4, [[x := x + 1]]0(w2, w3) = E(x :=
x+1, (w2, w3)) = 0.7 and [[y := y×2]]0(w2, w3) = E(y := y×2, (w2, w3)) = 0.9.
Such values are regarded as degrees of certainty, or, in a complementary read-
ing, vagueness, associated to the execution of actions x := 2, x := x + y,
x := x + 1 and y := y × 2, respectively.
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As a consequence of executing these assignments, the weights of the variables
are updated accordingly in the next state. That is the case of x in state w1,
by assuming the value w1(x, 1) = [[2]]w0(2) = 1, and 0 otherwise, according
to Definition 6. The weights of y are maintained, since the assignment x := 2
does not modify the value of y. The situation may be interpreted as follows:
from a state where property x = 1 has a truth degree of 0.5 and x = 2 has
a truth degree of 0.2, the execution of action x := 2 with a certainty value
of 0.8, whenever occurs, leads to a state where x = 2 is true (i.e. has 1 as its
truth degree). The weights of the variable x in w2 are updated as follows:

w2(x, 3) = [[x + y]]w1(3) = [[x]]w1(2); [[y]]w1(1) = min{1, 0.1} = 0.1
w2(x, 4) = [[x + y]]w1(4) = [[x]]w1(2); [[y]]w1(2) = min{1, 0.4} = 0.4

R: Consider, for example, E(x := 2, (w0, w1)) = 8, E(x := x + y, (w1, w2)) =
4, E(x := x + 1, (w2, w3)) = 7 and E(y := y × 2, (w2, w3)) = 9. These
values can be regarded as resources (e.g. energy) consumed by executing the
associated actions. Analogously to the previous case, the weights associated
to y are kept.

Finally, to interpret an arbitrary program in Prg(Σ,X) one proceeds in two
steps. First, the semantics of composed program constructs is given directly in
terms of operations on A-valued binary relations AW×W : union, composition,
and Kleene closure. To interpret such operators, we define the following algebra:

Definition 7. Let A = (A,+, ; , 0, 1, ∗,→, ·) be an action lattice and W be a
finite set of states. The algebra of program grading functions is the structure

E = (Z(E),∪, ◦, ∅, χ, ∗)

where:

– Z(E) is the universe of all the program grading functions
– (E(π1) ∪ E(π2))(w,w′) = E(π1, (w,w′)) + E(π2, (w,w′))
– (E(π1) ◦ E(π2))(w,w′) =

∑
w′′∈W

E(π1, (w,w′′));E(π2, (w′′, w′))

– ∅(w,w′) = 0

– χ(w,w′) =

{
1, if w = w′

0, otherwise
– (E(π))∗(w,w′) =

∑
i≥0

(E(π))i(w,w′) = (E(π))0(w,w′) + (E(π))1(w,w′) +

(E(π))2(w,w′) + . . .

with E(π1), E(π2) ∈ Z(E).

Note that operator ∗ can be defined as an infinite sum due to the completeness
of the action lattice.
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Definition 8. Let M ∈ ModΓ (A)(Δ) be a model of Γ (A). The interpretation of
a program π ∈ Prg(Σ,X) is a map

[[−]] : Prg(Σ,X) → AW×W

recursively defined by

– [[π0]] = [[π0]]0, for each π0 ∈ Prg0(Δ)
– [[π;π]] = [[π]] ◦ [[π′]]
– [[π + π]] = [[π]] ∪ [[π′]]
– [[π∗]] = [[π]]∗.

where, for r ∈ AW×W , r∗(w,w′) =
∑
k≥0

rk(w,w′).

Again Example 4 can be called to illustrate choice and sequential composition
by interpreting fragments (x := 2); (x := x + y) and (x := x + 1) + (y := y × 2).
The first one yields,

[[x := 2;x := x + y]](w0, w2) = ([[x := 2]]0 ◦ [[x := x + y]]0)(w0, w2)
= [[x := 2]]0(w0, w1); [[x := x + y]]0(w1, w2)
= E(x := 2, (w0, w1));E(x := x + y, (w1, w2))

which can be instantiated within the three usual lattices we have been
considering:

2: Under this interpretation programs either fail or succeed. In the absence of
failure execution proceeds sequentially; otherwise, if one (or both) fails (takes
‘weight’ ⊥), so does the composite.
G: In this case a degree of confidence, or certainty, is associated to the com-
position based on the corresponding degree for the atomic components. This
is computed as a minimum. For example, if E(x := 2, (w0, w1)) = 0.8 and
E(x := x+y, (w1, w2)) = 0.4 the overall confidence degree for the composition
becomes min{0.8, 0.4} = 0.4.
R: Computations have a cost, under this interpretation, for example the
amount of energy dissipated. Thus, E(x := 2, (w0, w1));E(x := x +
y, (w1, w2)) = 8 +R 4 = 12 represents the sum of the energy consumed by
both atomic programs x := 2 and x := x + y.

The interpretation of (x := x + 1) + (y := y × 2), on the other hand, is given by

[[(x := x+ 1) + (y := y × 2)]](w2, w3) = ([[x := x+ 1]]0 ∪ [[y := y × 2]]0)(w2, w3)

= [[x := x+ 1]]0(w2, w3) + [[y := y × 2]]0(w2, w3)

= E(x := x+ 1, (w2, w3)) + E(y := y × 2, (w2, w3))
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Again,

2: In this case choice is exactly nondeterministic choice: either one of x :=
x + 1 or y := y × 2 will be executed.
G: This interpretation yields the maximum certainty degree of executing
the composition, e.g. E(x := x + 1, (w2, w3)) + E(y := y × 2, (w2, w3)) =
max{0.7, 0.9} = 0.9.
R: In this action lattice, operator + picks the minimum value. This cor-
responds to choose the path that consumes less energy, e.g. E(x := x +
1, (w2, w3)) + E(y := y × 2, (w2, w3)) = min{0.7, 0.9} = 0.7.

Note that nothing prevents the state space W from being infinite, because
of completeness enforced upon A. However, one may only compute explicitly a
truth value associated with a program execution when W is finite.

The second element to care about when computing the semantics is the
interpretation of tests. Our goal is to introduce a notion of a test in an arbitrary
dynamic logic generated by a parameter A. As mentioned above, tests are written
as ϕ?, for ϕ ∈ FmΓ (A)(Δ). Their semantics resort, therefore, to the satisfaction
relation for FmΓ (A)(Δ), which is defined as follows:

Definition 9. Given a complete action lattice A over a carrier A, the graded
satisfaction relation for a model M ∈ ModΓ (A)(Δ), consists of a function

|=Γ (A) : W × FmΓ (A)(Δ) → A

recursively defined by

– (w |=Γ (A) �) = �
– (w |=Γ (A) ⊥) = ⊥
– (w |=Γ (A) p) = [[p]]w, for any p ∈ TP

Σ (X)
– (w |=Γ (A) ϕ ∧ ϕ′) = (w |=Γ (A) ϕ) · (w |=Γ (A) ϕ′)
– (w |=Γ (A) ϕ ∨ ϕ′) = (w |=Γ (A) ϕ) + (w |=Γ (A) ϕ′)
– (w |=Γ (A) ϕ → ϕ′) = (w |=Γ (A) ϕ) → (w |=Γ (A) ϕ′)
– (w |=Γ (A) 〈π〉ϕ) =

∑
w′∈W

(
[[π]](w,w′); (w′ |=Γ (A) ϕ)

)

– (w |=Γ (A) [π]ϕ) =
∧

w′∈W

(
[[π]](w,w′) → (w′ |=Γ (A) ϕ)

)

The interpretation of tests in the classical, Boolean case is given by co-
reflexive relations Rϕ? = {(w,w)|w |= ϕ}. In the generic setting of the present
work this generalises to

[[ϕ?]](w,w′) =

{
(w |=Γ (A) ϕ) if w = w′

⊥ otherwise

Let us revisit Example 4 to interpret the conditional statement

if x ≤ 3 then x := x + 1 else y := y × 2
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translated to ((x ≤ 3?);x := x + 1) + ((((x ≤ 3) → ⊥)?); y := y × 2). Using the
value computed for predicate x ≤ 3, this leads to

[[((x ≤ 3)?;x := x+ 1) + (((x ≤ 3) → ⊥)?; y := y × 2)]](w2, w3)

= [[(x ≤ 3)?;x := x+ 1]](w2, w3) + [[((x ≤ 3) → ⊥)?; y := y × 2]](w2, w3)

= [[(x ≤ 3)?]](w2, w2); [[x := x+ 1]]0(w2, w3) + [[((x ≤ 3) → ⊥)?]](w2, w2); [[y := y × 2]]0(w2, w3)

= (w2 |= x ≤ 3);E(x := x+ 1, (w2, w3)) + (w2 |= (x ≤ 3) → 0);E(y := y × 2, (w2, w3))

= (w2 |= x ≤ 3);E(x := x+ 1, (w2, w3)) + ((w2 |= x ≤ 3) → (w |= 0));E(y := y × 2, (w2, w3))

which can be, once again, instantiated for the three action lattices under con-
sideration, yielding

2: (T ∧ T ) ∨ ((� → ⊥) ∧ �) = �. This interpretation coincides, as expected,
with the standard if-then-else statement. In this case, only program x :=
x + 1 is executed, since y = y × 2 is guarded by the test ((x ≤ 3) → ⊥)?
which has the value ⊥ at state w2.
G: max{min{0.3, 0.7},min{0.3 → 0, 0.9}} = 0.3, which expresses the
weighted choice of executing x := x + 1.
R: min{3 + 7, 0 + 9} = 9. In this situation, contrary to what happens in the
previous cases, the assignment y := y × 2 is executed. The value 9 stands for
the energy consumed by the machine when executing such an assignment.

4 Bisimulation

The characterisation of relations that identify states with equivalent behaviours
is crucial to support a set of development practices, including reuse, refinement
and minimization of programs and models. On the logic view, these relations
usually enjoy a modal invariance property, i.e. they preserve the satisfaction of
formulas. We introduce in this section a parametric notion of bisimulation, and
we prove its modal invariant for any Γ (A). The bisimulation generalises the
notion recently introduced by the authors in [5] in the context of fuzzy modal
logic.

Definition 10 (Π-Bisimulation). Let Δ = (Σ,Π) be a signature, X a set of
variables, and M = (W,E) and M ′ = (W ′, E′) two Γ (A)-models, for any linear
action lattice A.

A Π-bisimulation from M to M ′ is a non empty relation B ⊆ W × W ′ such
that whenever w B w′, the following conditions hold:

(Atoms) for any x ∈ X, r ∈ R, [[x]]w(r) = [[x]]w′(r)
and, for any p ∈ TP

Σ (X), [[p]]w = [[p]]w′

(Fzig) for any u ∈ W and π ∈ Π, [[π]]0(w, u) ≤ ∑
u′∈ B[{u}]

[[π]]0(w′, u′)

(Fzag) for any u′ ∈ W ′ and π ∈ Π, [[π]]0(w′, u′) ≤ ∑
u∈B−1[{u′}]

[[π]]0(w, u)

We write w ∼ w′ whenever, there is a bisimulation B such that (w,w′) ∈ B.
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Next result establishes the well-known word bisimulation result on this generic
graded settings. This result reduces the invariance property of formulas involving
composed programs in Prg(Σ,X) to the one involving just the set of atomic pro-
grams Π. In other words, it reduces the modal invariance problem of a generated
dynamic logic to the modal invariance of the underlying multi-valued logic.

Proposition 1. Let A be a linear action lattice and (Σ,X) a data signature.
Then, any Π-bisimulation over Γ (A)-models is a Prg(Σ,X)-bisimulation.

Proof. The proof is done by induction over the programs structure. Let B ⊆
W × W ′ be a bisimulation and w ∈ W,w′ ∈ W ′ such that (w,w′) ∈ B.

The result for atomic programs is given by hypothesis. Let us prove the
(Fzig) condition for programs π;π′. By induction hypothesis, let us assume
that (Fzig) of B for π and π′. Hence, for any v ∈ W

[[π]](w, v) ≤
∑

v′∈B(v)

[[π]](w′, v′) (23)

holds. By (20) we have also that, for any v ∈ W there is a v′
v ∈ B(v) such

that
∑

v′∈B(v)[[π]](w′, v′) = [[π]](w′, v′
v). Moreover, since (v, v′

v) ∈ B, we have by
(Fzig) of B for π′ that

[[π′]](v, u) ≤
∑

u′∈B(u)

[[π′]](v′
v, u′) (24)

By (21) in (23) we get, for any v ∈ W ,

[[π]](w, v); [[π′]](v, u) ≤ [[π]](w′, v′
v);

∑

u′∈B(u)

[[π′]](v′
v, u′) (25)

and by (22),
∑

v∈W

[[π]](w, v); [[π′]](v, u) ≤
∑

v′
v∈W ′

[[π]](w′, v′
v);

∑

u′∈B(u)

[[π′]](v′
v, u′) (26)

Moreover, since {v′
v : v ∈ W} ⊆ {v′ : v′ ∈ W ′}, and by (8), (2) and (3), we have

that
∑

v′
v∈W ′

[[π]](w′, v′
v);

∑

u′∈B(u)

[[π′]](v′
v, u′) ≤

∑

u′∈B(u)

(
∑

v′∈W ′
([[π]](w′, v′); [[π′]](v′, u′))

(27)
By (26) and (27), we achieve [[π;π′]](w, u) ≤ ∑

u′∈B(u)[[π;π′]](w′, u′). The prove
of (Fzag) condition is analogous.

For programs π + π′, we observe that

[[π + π′]](w, u)

= { interpretation of programs}
[[π]](w, u) + [[π′]](w, u)

≤ { (Fzig) and (22)}

∑
u′∈B(u)[[π]](w

′, u′) +
∑

u′∈B(u)[[π
′]](w′, u′)

= { definition of +}
∑

u′∈B(u)[[π + π′]](w′, u′)
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Finally, for programs π∗ we observe that by definition of ∗

[[π∗]](w, u) =
∑

k≥0

[[π]]k(w, u) = [[π]]0(w, u) + [[π]](w, u) + [[π]]2(w, u) + . . .

But for each k, [[π]]k(w, u) ≤ ∑
u∈B(u)[[π]]k(w′, u′) by Fzig.

Hence,
∑

k≥0[[π]]k(w, u)

≤ { (22)}
∑

k≥0

( ∑
u′∈B(u)[[π]]k(w′, u′)

)

= { (}
2)and(3)

∑
u′∈B(u)

( ∑
k≥0[[π]]k(w′, u′)

)

= { definition of ∗}
∑

u′∈B(u)[[π
∗]](w′, u′)

��
Now we are in conditions to prove the modal invariance for Γ (A) with A linear.

Theorem 1 (Modal invariance). Let Δ = (Σ,X) be a signature, A a linear
action lattice, and M = (W,E) and M ′ = (W ′, E′) two Γ (A)-models for Δ.
Then, for any w ∈ W , w′ ∈ W ′ such that w ∼ w′ and for all formulas ϕ ∈
FmΓ (A)(Δ),

(M,w |= ϕ) = (M ′, w′ |= ϕ)

Proof. We prove this result by induction on the structure of formulas.
For the invariance of the formula �, note that (M,w |= �) = � = (M ′, w′ |= �)
and similarly for the formula ⊥.
Invariance of p ∈ TP

Σ (X) is a direct consequence of (Atoms),

(M,w |= p) = [[p]]w = [[p]]w′ = (M ′, w′ |= p).

For the invariance of formulas ϕ ∧ ψ, we observe that

(M,w |= ϕ ∧ ψ) = (M,w |= ϕ) · (M,w |= ψ) =I.H.

(M ′, w′ |= ϕ) · (M ′, w′ |= ψ) = (M ′, w′ |= ϕ ∧ ψ)

and the proof for the invariance of formulas ϕ ∨ ψ and ϕ → ψ can be proved
similarly.

Now it just remains to prove sentences 〈π〉ϕ and [π]ϕ. Since A is linear, we
have by Proposition 1 that, it is enough to prove the invariance for formulas
involving atomic programs π0 ∈ Prg0(Σ,X). For the invariance of formulas
〈π0〉ϕ, we observe that By (Fzig) condition we have

∀u ∈ W, [[π0]]0(w, u) ≤
∑

u′∈ E[{u}]
[[π0]]0(w′, u′) = [[π0]]0(w′, u′

u) for some u′
u ∈ W ′

(28)
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Since for every u ∈ W,u′
u ∈ E[{u}], we have u E u′

u. By I. H., we have (M,u |=
ϕ) = (M ′, u′

u |= ϕ) and, by (28),

∀u ∈ W, [[π0]]0(w, u) · (M,u |= ϕ) ≤ [[π0]]0(w′, u′
u) · (M,u′

u |= ϕ) (29)

and, in particular,
∑

u∈W

([[π0]]0(w, u) · (M,u |= ϕ)) ≤
∑

u′
u:u∈W

([[π0]]0(w′, u′
u) · (M,u′

u |= ϕ)) (30)

Since {u′
u : u ∈ W} ⊆ {u′ : u′ ∈ W ′} we have

∑{u′
u : u ∈ W} ≤ ∑{u′ : u′ ∈

W ′} and by 30
∑

u∈W

([[π0]]0(w, u) · (M,u |= ϕ)) ≤
∑

u′∈W ′
([[π0]]0(w′, u′) · (M,u′ |= ϕ)) (31)

i.e.(M,w |= 〈π0〉ϕ) ≤ (M ′, w′ |= 〈π0〉ϕ). Similarly we can prove (M,w |=
〈π0〉ϕ) ≥ (M ′, w′ |= 〈π0〉ϕ) by using (Fzag) condition.

For the invariance of formulas [π0]ϕ, with π0 ∈ Π, since w E w′ we have by
(Fzig)

∀u ∈ W, [[π0]]0(w, u) ≤
∑

u′∈ E[{u}]
[[π0]]0(w′, u′) = [[π0]]0(w′, u′

u) for some u′
u ∈ W ′

(32)
Since for every u ∈ W,u′

u ∈ E[{u}], we have u ∈ W,u E u′
u. Hence, by I.H.

(M,u |= ϕ) = (M ′, u′
u |= ϕ) (33)

It follows from the definition of I that x0 ≤ x1 implies I(x0, y) ≥ I(x1, y). Then,
from (32) and (33) we have

∀u ∈ W, I
(
[[π0]]0(w, u), (M,u |= ϕ)

) ≥ I
(
[[π0]]0(w′, u′

u), (M ′, u′
u |= ϕ)

)

and, in particular
∏

u∈W

(I
(
[[π0]]0(w, u), (M,u |= ϕ)

)
) ≥

∏

u′
u:u∈W

(I
(
[[π0]]0(w′, u′

u), (M ′, u′
u |= ϕ)

)
)

(34)
Since {u′

u : u ∈ W} ⊆ {u′ : u′ ∈ W ′}, we have
∏{u′

u : u ∈ W} ≥ ∏{u′ : u′ ∈
W ′} and hence

∏

u∈W

(I
(
[[π0]]0(w, u), (M,u |= ϕ)

)
) ≥

∏

u′∈W ′
(I

(
[[π0]]0(w′, u′), (M ′, u′ |= ϕ)

)
) (35)

Therefore (M,w |= [π0]ϕ) ≥ (M ′, w′ |= [π0]ϕ). The proof for (M,w |= [π0]ϕ) ≤
(M ′, w′ |= [π0]ϕ) is analogous. ��

We now provide an illustration for the introduced notion of bisimulation.
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Example 5. Consider the Γ (G)-models M = (W,V,E), with W = {w1, w2,
w3, w4} and M ′ = (W ′, V ′, E′), with W ′ = {w′

1, w
′
2, w

′
3, w

′
4}, and the pro-

grams Π = {x := x + 1, x := 3}, with E(x := x + 1, (w1, w2)) = 0.9, E(x :=
3, (w1, w3)) = 0.8, E(x := 3, (w1, w4)) = 0.7, E(x := x + 1, (w′

1, w
′
2)) = 0.9,

E(x := 3, (w′
1, w

′
3)) = 0.8, E(x := x + 1, (w′

1, w
′
4)) = 0.6.

To show that the relation B = {(w1, w
′
1), (w2, w

′
2), (w2, w

′
4), (w3, w

′
3),

(w4, w
′
3)} is a bisimulation from M to M ′, the (Fzig) and (Fzag) conditions of

Definition 10 need to be satisfied. To exemplify, only the calculations for the case
w1 ∼ w′

1 are provided, since the other pairs can be verified analogously (Fig.2).
(Fzig):

[[x := x + 1]]0(w1, w2) ≤ max{[[x := x + 1]]0(w′
1, w

′
2), [[x := x + 1]]0(w′

1, w
′
4)}

⇔0.9 ≤ max{0.9, 0.6} ⇔ 0.9 ≤ 0.9
[[x := 3]]0(w1, w3) ≤ [[x := 3]]0(w′

1, w
′
3) ⇔ 0.8 ≤ 0.8

[[x := 3]]0(w1, w4) ≤ [[x := 3]]0(w′
1, w

′
3) ⇔ 0.7 ≤ 0.8

w1 w′
1

w2

w4

w3 w′
2

w′
4

w′
3

x := x+ 1
x := 3

x := 3

x := x+ 1
x := 3

x := x+ 1

Fig. 2. Two bisimilar Γ (G) − models

(Fzag):

[[x := x + 1]]0(w′
1, w

′
2) ≤ [[x := x + 1]]0(w1, w2) = 0.9

[[x := x + 1]]0(w′
1, w

′
4) ≤ [[x := x + 1]]0(w1, w2) = 0.9

[[x := 3]]0(w′
1, w

′
3) ≤ max{[[x := 3]]0(w1, w3), [[x := 3]]0(w1, w4)

⇔0.8 ≤ max{0.8, 0.7} ⇔ 0.8 ≤ 0.8

5 Conclusions and Future Work

This paper extended the process of systematic generation of multi-valued
dynamic logics from the original propositional case [9], to ‘fully-fledged’ pro-
grams, which incorporate variables and assignments. As before, the method is
parametric on an action lattice which supports both a computational model
in which programs are defined, and a truth space, suitable to handle different
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aspects of the application domain. Both states, specified by assignments of real
values to variables, and transitions between them have an associated ‘weight’,
i.e. a value taken from the carrier of a action lattice. As detailed in the examples
discussed, the notion of ‘weight’ as formalised in an action lattice, is the real
parameter of this process. Actually, they can capture quite a range of effects:
from the degree of vagueness of an execution, to the cost of resources. The notion
of bisimulation presented in Sect. 4 generalises previous work done by the authors
[5], in the sense that a generic action lattice is considered as a parameter of the
generated logics. A prominent application of dynamic logic lies in the field of
formal verification of programs, as a simplification of the deductive apparatus of
Hoare logic. In such formalism, the correctness of a program is proved by stating
the validity of an Hoare triple ϕ{π}ψ. As it is well known, the validity of the
dynamic logic formula w |= ϕ → [π]ψ, is an abstraction of such proof. In this
sense, the multi-valued nature of the logics generated in this paper may present a
proper formalism to state program correctness in a multi-valued setting as well:
the “degree of correctness” of a program may be computed as the value, in the
parameter A, of the above dynamic logic formula. Motivated by this example, it
is our intention to include a calculi for such logics as part of our research agenda.
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based systems. In: Hähnle, R., van der Aalst, W. (eds.) FASE 2019. LNCS,
vol. 11424, pp. 79–97. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
16722-6 5

5. Jain, M., Madeira, A., Martins, M.A.: A fuzzy modal logic for fuzzy transition
systems. Electr. Notes Theor. Comput. Sci. (in print)

6. Knapp, A., Mossakowski, T., Roggenbach, M., Glauer, M.: An institution for simple
UML state machines. In: Egyed, A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033,
pp. 3–18. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46675-
9 1

7. Kozen, D.: A probabilistic PDL. J. Comput. Syst. Sci. 30(2), 162–178 (1985).
https://doi.org/10.1016/0022-0000(85)90012-1

8. Kozen, D.: The Design and Analysis of Algorithms. Springer, New York (1992).
https://doi.org/10.1007/978-1-4612-4400-4

9. Madeira, A., Neves, R., Martins, M.A.: An exercise on the generation of many-
valued dynamic logics. J. Log. Algebr. Methods Program. 1, 1–29 (2016). https://
doi.org/10.1016/j.jlamp.2016.03.004

10. Peleg, D.: Concurrent dynamic logic. J. ACM 34(2), 450–479 (1987). https://doi.
org/10.1145/23005.23008

11. Platzer, A.: Logical Analysis of Hybrid Systems - Proving Theorems for Complex
Dynamics. Springer,Heidelberg (2010). https://doi.org/10.1007/978-3-642-14509-4

https://doi.org/10.1007/s11229-011-9915-7
https://doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/10.1007/978-3-030-16722-6_5
https://doi.org/10.1007/978-3-030-16722-6_5
https://doi.org/10.1007/978-3-662-46675-9_1
https://doi.org/10.1007/978-3-662-46675-9_1
https://doi.org/10.1016/0022-0000(85)90012-1
https://doi.org/10.1007/978-1-4612-4400-4
https://doi.org/10.1016/j.jlamp.2016.03.004
https://doi.org/10.1016/j.jlamp.2016.03.004
https://doi.org/10.1145/23005.23008
https://doi.org/10.1145/23005.23008
https://doi.org/10.1007/978-3-642-14509-4


A Security Calculus for Wireless
Networks of Named Data Networking

Yuan Fei1(B), Huibiao Zhu2(B), Haiying Sun2, and Jiaqi Yin2

1 College of Information, Mechanical and Electrical Engineering,
Shanghai Normal University, Shanghai, China

yuanfei@shnu.edu.cn
2 Shanghai Key Laboratory of Trustworthy Computing,

East China Normal University, Shanghai, China
hbzhu@sei.ecnu.edu.cn

Abstract. Named Data Networking (NDN) is an architecture of
Information-Centric Networking (ICN). The application of NDN on wire-
less networks is an important area. In this paper, we propose a Security
Calculus for Wireless Networks of Named Data Networking (SCWN).
Security feature is implemented by using different channel symbols to
describe wireless network node. The feature of NDN is introduced by
using particular sets to express the environment. We introduce the syn-
tax and the operational semantics of SCWN calculus. By a rewriting
logic-based language Maude, we support the automatic implementation
of our SCWN calculus, which enhances its practicability. Finally, we
apply SCWN calculus to LFBL protocol with its automatic implemen-
tation. It indicates that SCWN calculus is useful to describe realistic
cases.

Keywords: NDN · Calculus of wireless networks · Maude

1 Introduction

Named Data Networking (NDN) [13] is an architecture of Information-Centric
Networking (ICN). ICN aims to offer solutions to problems existing in TCP/IP
Internet. Nowadays users pay more attention to named content rather than its
location. Though TCP/IP Internet has shown great resilience over the years, it
cannot support the newly evolving content distribution model successfully. One
of the promising candidates of ICN is NDN, which supports multicast of data and
adopts the publish/subscribe model. The data producers mean publishers and
the data consumers represent subscribers in NDN. When data consumer needs
data, it sends out an Interest packet with a required name of the data; according
to the name, routers forward the packet over the network; and a Data packet is
returned to the consumer when a data produced by the data producer is matched.
As wireless network has a wide range of applications in daily life, there are
several applications of NDN concept applied to wireless network. Meisel et al. [8]
c© Springer Nature Switzerland AG 2019
Y. Ait-Ameur and S. Qin (Eds.): ICFEM 2019, LNCS 11852, pp. 170–185, 2019.
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adapted NDN to Ad Hoc Network to improve the efficiency and effectiveness of
it. Li et al. [7] introduced hybrid wireless networks with FIB-based Named Data
Networking, in which a novel FIB named MaFIB is proposed. In order to carry
the signaling part of NDN, Bazzi et al. [2] proposed the use of cellular networks
and wireless communications of the content distribution.

To the best of our knowledge, no process calculus is proposed for NDN in
the field of wireless network applications currently. However, there are already a
lot of process calculus for general wireless networks. The calculus CBS# [11] is
proposed by Hanz and Hankin, which is extended from CBS [12]. It introduces
local storage components, and adds the source of the information to describe
some key security attributes. The calculus CMN [10] presented a bisimulation
to prove some properties of the network. The calculus CMAN [4] is a broadcast
calculus proposed by Godskesen that supports wireless network dynamic change
topologies. It captures the mobility and the local broadcast mechanism of nodes.

The application of NDN on wireless networks becomes important. In this
paper, we propose a calculus called SCWN (Security Calculus for Wireless Net-
works of Named Data Networking). Wireless network is described at both process
level and network level. Our calculus will implement a special forwarding mech-
anism and a data caching mechanism for NDN. It is supported by particular sets
to express the environment. The security feature is introduced by using different
channel symbols to describe wireless network node. Furthermore, we give the
predefined label transfer semantic of SCWN. It has detailed the internal behav-
ior of the system and the interaction between the system and the environment.
Using a rewriting logic-based language Maude [3], we support automatic imple-
mentation of our SCWN calculus, which is also applied to LFBL protocol. It
illustrates SCWN calculus can be applied into real-world scenes.

The remainder of this paper is organized as follows. Section 2 introduces
the SCWN syntax and its operational semantics. Section 3 gives the automatic
implementation of SCWN calculus by a rewriting logic-based language Maude.
Section 4 applies SCWN calculus to LFBL protocol. Section 5 concludes the
paper and discusses the future work.

2 The SCWN Calculus

In this section, we present our SCWN calculus by introducing its syntax and the
operational semantics.

2.1 The Syntax of SCWN

The syntax of process is used to characterize the actions of wireless nodes. Here
we describe the detail cases of process P .

– nil means the process terminates.
– send〈k, v〉.P is a ready sending process, indicating that the current process is

ready to broadcast a message. The message is denoted by a pair 〈k, v〉, where k
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Table 1. SCWN syntax

Processes P ::= nil (termination)
∣
∣ send〈k, v〉.P (pre-output)
∣
∣ 〈k, v〉.P (output)
∣
∣

receive(k, v)n.P (input)
∣
∣ �receive(x, y)n.send〈x, y〉�.P (forward)

Networks N ::= n[P ]cs (ordinary wireless node)
∣
∣ n[P ]νc

s (protected wireless node)

N N (parallel combination)

represents the type of message and v represents the content of message. When
the ready action is completed, the process becomes the form of 〈k, v〉.P . It
gives information to environment for forwarding mechanism.

– 〈k, v〉.P is a sending process that indicates the current process is broadcasting
a message. When the sending is completed, the process changes to P . The
environment will be changed according to the forwarding mechanism.

– receive(x, y)n.P is a receiving process. It illustrates that the process of wire-
less node n is receiving a message from other processes. If there is a node
sending acceptable messages around node n, the process evolves to P . The
variable x and y in process P will be replaced with the values in the received
message.

– �receive(x, y)n.send〈x, y〉�.P is a receiving-forwarding process. It only
appears on the node bearing the forwarding task. If it receives a message
from neighbor nodes, the process decides whether to forward or discard the
message according to its type. If the message is forwarded, the process evolves
to send〈x, y〉.P , in which variable x and y are replaced by the values in the
message. If the message is discarded, the process changes to P .

The syntax of network expresses the basic information of each wireless node.
Meanwhile, it illustrates how they communicate with each other. Explanations
of network N are given here.

– n[P ]cs represents a normal wireless node in a wireless network, where n rep-
resents name of the current node, c means the name of the channel and s is
a node set containing the nodes in the communication range of the current
node. Channels are classified into normal channels and protected channels.

– n[P ]νc
s shows a protected wireless node in a wireless network. Except using

symbol ν to denote the protected channel, the rest of the symbols are the same
as n[P ]cs. The protected channel can only communicate with other protected
channels, which indicates the security feature.

– N ||N indicates that wireless nodes can be combined with each other to form
a wireless network.
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2.2 Particular Set

In order to formalise the operational semantics, we need to define some particular
sets in advance.

– Normal sending record set: Normal sending record set is to record the rel-
evant information of nodes using normal channels to send a message. It is
represented by Tf . The element in the set is in the form (n, s, c), indicating
that node n is sending a message to node set s via the normal channel c.

– Protected sending record set: Protected sending record set is to record the
relevant information of nodes using protected channels to send a message. It
is represented by Tt. The element in the set is in the form (n, s, c), indicating
that node n is sending a message to node set s via the protected channel c.

– Neighbor normal sending record set: It records the message being sent around
a node using a normal channel.

Tf |n,c =df { (n′, s′, c′) | (n′, s′, c′) ∈ Tf ∧ n ∈ s′ ∧ c′ = c}
The element in set Tf |n,c is the message being sent around node n using
normal channel c. That is, once a node around node n uses normal channel c
to send a message, the message will be added into set Tf |n,c.

– Neighbor protected sending record set: It records the message being sent
around a node using a protected channel.

Tt|n,c =df { (n′, s′, c′) | (n′, s′, c′) ∈ Tt ∧ n ∈ s′ ∧ c′ = c}
The element in set Tt|n,c is the message being sent around node n using
protected channel c. In other words, when a node around node n sends a
message by protected channel c, the message will be put into set Tt|n,c.

– Message record set: It supports PIT (Pending Interest Table) and CS (Content
Store) in NDN, denoted by C. The element in the set is in the form (n, I, v)
or (n,D, v), which represents node n has received Interest package or Data
package carrying value v.

2.3 Operational Semantics

In this subsection, we introduce the operational semantics of our SCWN calculus
at process level and network level respectively.

Process Level of Label Transition Semantics. The transition rule of a
process is P

α−→ P ′, in which the definition of α is given as below.

α :=! | !k.v | ?k.v

! represents a ready sending event. !k.v means a sending event. ?k.v indicates
a receiving event.

It should be noted here that once the process sends, receives and forwards
message C, the corresponding (n, I, v) or (n,D, v) is added to the message record
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set according to the specific situation. In addition, once (n,D, v) is added into C,
the corresponding (n, I, v) will be deleted. It simulates the forwarding mechanism
of NDN.

Table 2 represents the label transition semantics at process level, where IP
stands for the set of processes whose form are as �receive(x, y)n.send〈x, y〉�.P
and receive(x, y)n.P .

Rule (PS-RECI1, PS-RECI2 and PS-RECI3) are for the processes running
on forwarding nodes when they receives an Interest packet. For example, the
rule (PS-RECI1) represents the situation that a receiving-forwarding process
receives an Interest packet received before, then the message is discarded.

Rule (PS-RECD1 and PS-RECD2) describe the situation that the processes
run on forwarding nodes when they receive a Data packet. For example, the rule
(PS-RECD1) denotes that a receiving-forwarding process receives a Data packet
received before, then the message is discarded.

Table 2. Process level of label transition semantics

(PS-PSEND) send〈k, v〉.P !−→ 〈k, v〉.P (PS-SEND) 〈k, v〉.P !k.v−−−→ P

(PS-REC)
(n, k, v) /∈ C

receive(x, y)n.P
?k.v−→ P{k/x, v/y}

(PS-RECI1)
(n, I, v) ∈ C

�receive(x, y)n.send〈x, y〉�.P
?I.v−−−→ P

(PS-RECI2)
(n, I, v) /∈ C ∧ (n, D, v) /∈ C

�receive(x, y)n.send〈x, y〉�.P
?I.v−−−→ send〈I, v〉.P

(PS-RECI3)
(n, I, v) /∈ C ∧ (n, D, v) ∈ C

�receive(x, y)n.send〈x, y〉�.P
?I.v−−−→ send〈D, v〉.P

(PS-RECD1)
(n, I, v) /∈ C

�receive(x, y)n.send〈x, y〉�.P
?D.v−−−→ P

(PS-RECD2)
(n, I, v) ∈ C ∧ (n, D, v) /∈ C

�receive(x, y)n.send〈x, y〉�.P
?D.v−−−→ send〈D, v〉.P

(PS-NOIN)
α ∈ {?k.v} P /∈ IP

P
α−→ P

Network Level of Label Transition Semantics. The transition rule of net-
work level is Tt, Tf , C�N

μ−→ N ′. It gives normal sending record set Tt, protected
sending record set Tf and message record set C. Tt, Tf , C indicate the environ-
ment of network N is running in to support the transition. Network N changes
to network N ′ when event μ happens. The event μ is defined as below.

μ := c(θ)!k.v | c(θ)?k.v | τ

where, θ can be true or false. When normal channel c in network N is used, then
θ is false. When protected channel c in network N is used, then θ is true. c(θ)!k.v
is a broadcast sending event. It means a node in network N is using channel c
to broadcast a message with type p and value v. c(θ)?k.v is a receiving event.
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It describes nodes in network N are using channel c to receive a message with
type k and value v. In addition, τ means an internal event.

Table 3 lists the label transition semantics at the network level. For example,
the rule (NS-SEND1) describes a wireless network node with name n and node
set s, uses normal channel c to send a message with type p and value v, and the
process inside changes from P to P ′. The rules (NS-COM1 and NS-COM2) are
applied to the parallel composition between networks. They describe message
communications between nodes. Meanwhile, they characterize how a broadcast
sending event generated from one network affects a broadcast receiving event in
another network in parallel.

Table 3. Network level of label transition semantics

(NS-SEND1)
P

!k.v−−−→ P ′

Tt, Tf , C � n[P ]cs
c(false)!k.v−−−−−−−−−→ n[P ′]cs

(NS-SEND2)
P

!k.v−−−→ P ′

Tt, Tf , C � n[P ]νc
s

c(true)!k.v−−−−−−−−→ n[P ′]νc
s

(NS-REC1)
P

?k.v−−−→ P ′ ∃m ∈ Tf |n,c, n ∈ π2(m)

Tt, Tf , C � n[P ]cs
c(false)?k.v−−−−−−−−−→ n[P ′]cs

(NS-REC2)
P

?k.v−−−→ P ′ ∃m ∈ Tf |n,c, n ∈ π2(m)

Tt, Tf , C � n[P ]νc
s

c(true)?k.v−−−−−−−−→ n[P ′]νc
s

(NS-REC3)

c 
= c′

Tt, Tf , C � n[P ]cs
c′(false)?k.v−−−−−−−−−→ n[P ]cs

(NS-REC4)

c 
= c′

Tt, Tf , C � n[P ]νc
s

c′(true)?k.v−−−−−−−−−→ n[P ]νc
s

(NS-REC5)
∀m ∈ Tt|n,c, n /∈ π2(m)

Tt, Tf , C � n[P ]cs
c(false)?k.v−−−−−−−−−→ n[P ]cs

(NS-REC6)
∀m ∈ Tt|n,c, n /∈ π2(m)

Tt, Tf , C � n[P ]νc
s

c(true)?k.v−−−−−−−−→ n[P ]νc
s

(NS-COM1)
Tt, Tf , C1 � N1

c(θ)?k.v−−−−−−→ N ′
1 Tt, Tf , C2 � N2

c(θ)!k.v−−−−−→ N ′
2

Tt, Tf , C1 ∪ C2 � N1||N2
c(θ)!k.v−−−−−→ N ′

1||N ′
2

(NS-COM2)
Tt, Tf , C1 � N1

c(θ)!k.v−−−−−→ N ′
1 Tt, Tf , C2 � N2

c(θ)?k.v−−−−−−→ N ′
2

Tt, Tf , C1 ∪ C2 � N1||N2
c(θ)!k.v−−−−−→ N ′

1||N ′
2

(NS-COM3)
Tt, Tf , C1 � N1

c(θ)?k.v−−−−−−→ N ′
1 Tt, Tf , C2 � N2

c(θ)?k.v−−−−−−→ N ′
2

Tt, Tf , C1 ∪ C2 � N1||N2
c(θ)?k.v−−−−−−→ N ′

1||N ′
2

(NS-COM4)
Tt, Tf , C1 � N1

τ−→ N ′
1

Tt, Tf , C1 ∪ C2 � N1||N2
τ−→ N ′

1||N2
(NS-NULL) Tt, Tf , C � 0

c(θ)?k.v−−−−−−→ 0

(NS-PSEND1)
P

!→ P ′

Tt, Tf , C � n[P ]cs
τ−→ n[P ′]cs

(NS-PSEND2)
P

!→ P ′

Tt, Tf , C � n[P ]νc
s

τ−→ n[P ′]νc
s
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Example 1. Consider a network with four nodes. Node n1 is the source node
to send Interest package. Node n2 and node n3 are forwarders. Node n4 is the
target node to receive Interest package. The network topology is given in Fig. 1.
We assume that node n1 has node n2 and node n3 in its transmission range, and
node n2 has node n4 in its transmission range. Meanwhile, node n3 and node
n4 have no node in their transmission ranges. Mathematically, s1 = {n2, n3},
s2 = {n4}, s3 = ∅ and s4 = ∅. In the following two cases of forwarding Interest
package, the network topology of nodes are the same but with the different
channel types.

n2

n1

n3

n4

Fig. 1. Network topology

(a) Four nodes are using the protected channel c:

N =df n1[send〈I, v〉.0]νc
s1

|| n2[�receive(x1, y1)n2 .send〈x1, y1〉�.0]νc
s2

|| n3[�receive(x2, y2)n3 .send〈x2, y2〉�.0]νc
s3

|| n4[receive(x3, y3)n4 .P ]νc
s4

The migration path is described as below.
Step 1:

∅, ∅, ∅ � N
τ−→ n1[〈I, v〉.0]νc

s1
|| n2[receive(x1, y1)n2 .send〈x1, y1〉.0]νc

s2

|| n3[�receive(x2, y2)n3 .send〈x2, y2〉�.0]νc
s3

|| n4[receive(x3, y3)n4 .P ]νc
s4

def
= N1

Step 2:

{(n1, {n2, n3}, c)}, ∅, ∅ � N1
c(true)!I.v−−−−−−−→ n1[0]νc

s1 || n2[send〈I, v〉.0]νc
s2

|| n3[send〈I, v〉.0]νc
s3 || n4[receive(x3, y3)

n4 .P ]νc
s4

def
= N2
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Step 3:

∅, ∅, {(n1, I, v), (n2, I, v), (n3, I, v)} � N2
τ ·τ−−→ n1[0]νc

s1 || n2[〈I, v〉.0]νc
s2 || n3[〈I, v〉.0]cs3

|| n4[receive(x3, y3)
n4 .P ]νc

s4

def
= N3

Step 4:

{(n3, ∅, c)}, ∅, {(n1, I, v), (n2, I, v), (n3, I, v)} � N3
c(true)!I.v−−−−−−−−→ n1[0]

νc
s1

|| n2[〈I, v〉.0]νc
s2

|| n3[0]
νc
s3

|| n4[receive(x3, y3)
n4 .P ]

νc
s4

def
= N4

Step 5:

{(n2, {n4}, c)}, ∅, {(n1, I, v), (n2, I, v), (n3, I, v)} � N4
c(true)!I.v−−−−−−−−→ n1[0]

νc
s1

|| n2[0]
νc
s2

|| n3[0]
c
s3

|| n4[P{I/x3, v/y3}]νc
s4

(b) Node n3 uses the normal channel c and other three nodes use the protected
channel c:

M =df n1[send〈I, v〉.0]νc
s1

|| n2[�receive(x1, y1)n2 .send〈x1, y1〉�.0]νc
s2

|| n3[�receive(x2, y2)n3 .send〈x2, y2〉�.0]cs3
|| n4[receive(x3, y3)n4 .P ]νc

s4

The migration path is depicted as below.
Step 1:

∅, ∅, ∅ � M
τ−→ n1[〈I, v〉.0]νc

s1
|| n2[receive(x1, y1)n2 .send〈x1, y1〉.0]νc

s2

|| n3[�receive(x2, y2)n3 .send〈x2, y2〉�.0]cs3

|| n4[receive(x3, y3)n4 .P ]νc
s4

def
= M1

Step 2:

{(n1, {n2, n3}, c)}, ∅, ∅ � M1
c(true)!I.v−−−−−−−→ n1[0]νc

s1
|| n2[send〈I, v〉.0]νc

s2

|| n3[�receive(x2, y2)n3 .send〈x2, y2〉�.0]cs3

|| n4[receive(x3, y3)n4 .P ]νc
s4

def
= M2

Step 3:

∅, ∅, {(n1, I, v), (n2, I, v)} � M2
τ−→ n1[0]νc

s1
|| n2[〈I, v〉.0]νc

s2

|| n3[�receive(x2, y2)n3 .send〈x2, y2〉�.0]cs3

|| n4[receive(x3, y3)n4 .P ]νc
s4

def
= M3

Step 4:

{(n2, {n4}, c)}, ∅, {(n1, I, v), (n2, I, v)} � M3
c(true)!I.v−−−−−−−−→ n1[0]

νc
s1

|| n2[0]
νc
s2

|| n3[�receive(x2, y2)
n3 .send〈x2, y2〉	.0]

c
s3

|| n4[P{I/x3, v/y3}]νc
s4
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After applying our operational semantics, we can see that node n1 success-
fully transmits message to node n4 in both case (a) and case (b). The only
difference is that in case (a) the message is transmitted to both node n2 and
node n3. However, in case (b), the message is only transmitted to node n2 not
to node n3. The reason is that node n2 can not communicate with other nodes,
for they own different channel types.

3 Automatic Implementation of SCWN

In this section, we give the automatic implementation of SCWN using a rewriting
logic-based language Maude. We list several operations and objects to support
the preparation of formalization of SCWN. Meanwhile, we also introduce the
definition of variables, the declaration of the set of messages and the feature of
multimessages. Then, the syntax and the semantics rules of SCWN calculus in
Sect. 2 are formalized.

3.1 Preparation of Formalization of SCWN

In order to give the automatic implementation of SCWN, we need some prepa-
ration definitions. Using the object-oriented module in Maude, our definition of
wireless node can be supported. With the predefined module QID, Oid stands
for object identifier. Message, Type, Value, Process and Variable represent
message, type, value, process and variable respectively. OidSet and MSet mean
the set of Oid and the set of Message respectively. SChannel and NChannel are
subsorts for Channel. SChannel is the protected channel. NChannel represents
the normal channel. Type and Value are subsorts for Variable. We put Type
and Value together to be recognized as Message.
1 protecting QID .
2 subsort Qid < Oid .
3 sorts OidSet Message MSet Type Value Process Variable Channel SChannel

NChannel .
4 subsort Oid < OidSet .
5 subsort Message < MSet .
6 subsorts SChannel NChannel < Channel .
7 subsorts Type Value < Variable .
8 op __ : Type Value -> Message .

The definition of messages is also important to depict our SCWN calculus
by Maude. It is declared as below.
1 msg Msg.value_type_channel_from_to_ :
2 Value Type Channel Oid Oid -> Msg .

where (msg v type t channel c from A to B) indicates a message with
value v type t using channel c sent from A to B.

We first give the variable declarations.
1 vars A B : Oid . vars N N’ : OidSet .
2 vars M1 M2 : Message . var MS : MSet .
3 vars P P’ : Process . vars V1 V2 : Variable .
4 var CH : Channel . var SC : SChannel .
5 var NC : NChannel . var T : Type . var VA : Value .
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In order to simulate the broadcasting mechanism of SCWN, we introduce the
feature of “multimessages”. A message
1 (Multimsg.value v type t channel c from A to N)

can be defined as denoting the construct below, in which set N represents the
union of set B1, B2, ..., Bn.
1 (Msg.value v type t channel c from A to B1)
2 (Msg.value v type t channel c from A to B2)
3 ...
4 (Msg.value v type t channel c from A to Bn)

The feature of “multimessages” can be formalized in Maude concisely.
1 eq Multimsg.value VA type T channel CH from A to (B N) =
2 (Msg.value VA type T channel CH from A to B)
3 (Multimsg.value VA type T channel CH from A to (N - B)) .
4 eq Multimsg.value VA type T channel CH from A to nil = none .

In order to deal with the relationship between object and object set, we
introduce the definition of the object set as well as the set operations.
1 op nil : -> OidSet .
2 op __ : OidSet OidSet -> OidSet [assoc comm id: nil] .
3 op in : Oid OidSet -> Bool .
4 op _-_ : OidSet Oid -> OidSet .
5 eq A A = A .
6 eq in(A, B N) = A == B or in(A,N) .
7 eq in(A,nil) = false .
8 eq (A N) - A = N - A .
9 ceq N - A = N if not in(A,N) .

To handle the storage mechanism of node, we also define the message set and
its set operations. As it is almost the same with object set, the detail is omitted.

3.2 Formalization of the Syntax

In order to describe the processes and networks in Table 1, the following opera-
tors are declared. They are inspired by the syntax of SCWN. We first give the
operators for the process parts.
1 op send(_,_) : Type Value -> Process .
2 op <_,_> : Type Value -> Process .
3 op receive(_,_) : Variable Variable -> Process .
4 op [receive(_,_)#send(_,_)] : Variable Variable Variable Variable ->

Process .
5 op _{_/_,_/_} : Process Type Variable Value Variable -> Process .

The operator send( , ) is defined to describe the pre-output action. The
operator < , > describes the output action. The operator receive( , ) describes
the input action. The operator [receive( , )#send( , )] illustrates the for-
ward action. In addition, the operator { / , / } depicts the renaming of the
process.

The class Node is declared to describe wireless network node.
1 class Node | snbs : OidSet , rnbs : OidSet , pro : Process ,
2 mset : MSet , ch : Channel .

where snbs denotes the set of nodes that can receive message sent by the node,
rnbs is the set of nodes that the node can receive message from, pro represents
the process running on the node, mset is the set of message including type and
value, ch means the channel of the node.
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3.3 Formalization of the Semantics Rules

We formalize the operational semantics in Table 3 by rewrite rules in Maude.
Due to space limitations, we only take several typical rewrite rules of the pro-
tected node as examples. The rewrite rule RECI1-S, RECI2-S and RECI3-S specify
the protected node with the forward action to be done when receiving Interest
packet.
1 crl [RECI1 -S] :
2 (Msg.value VA type T channel SC from A to B)
3 < B : Node | snbs : N, rnbs : A N’, pro : [receive(V1, V2)#send(V1, V2)] .

P, ms : MS, ch : SC >
4 => < B : Node | snbs : N, rnbs : A N’, pro : P, ms : MS, ch : SC >
5 if in((T VA),MS) == true /\ T == Interest .

The rewrite rule RECI1-S is for the case that the protected node receives
Interest packet which belongs to the set of messages. The packet will be dis-
carded.
1 crl [RECI2 -S] :
2 (Msg.value VA type T channel SC from A to B)
3 < B : Node | snbs : N, rnbs : A N’, pro : [receive(V1, V2)#send(V1, V2)] .

P, ms : MS, ch : SC >
4 => < B : Node | snbs : N, rnbs : A N’, pro : send(T, VA) . P, ms : MS, ch

: SC >
5 if in(( Interest VA),MS) == false /\ in((Data VA),MS) == false /\ T ==

Interest .

1 crl [RECI3 -S] :
2 (Msg.value VA type T channel SC from A to B)
3 < B : Node | snbs : N, rnbs : A N’, pro : [receive(V1, V2)#send(V1, V2)] .

P, ms : MS, ch : SC >
4 => < B : Node | snbs : N, rnbs : A N’, pro : send(Data , VA) . P, ms : MS,

ch : SC >
5 if in(( Interest VA),MS) == false /\ in((Data VA),MS) == true /\ T ==

Interest .

The rewrite rule RECI2-S and RECI3-S are for the situation that the protected
node receives Interest packet which has not been received before. For the rewrite
rule RECI2-S, if the corresponding Data packet is missing, the node performs
the output action with Interest packet. For the rewrite rule RECI3-S, if its
corresponding Data packet has been received, the node performs the output
action with Data packet.

The rewrite rule RECD1-S and RECD2-S mean the protected node with the
forward action when receiving Data packet.
1 crl [RECD1 -S] :
2 (Msg.value VA type T channel SC from A to B)
3 < B : Node | snbs : N, rnbs : A N’, pro : [receive(V1, V2)#send(V1, V2)] .

P, ms : MS, ch : SC >
4 => < B : Node | snbs : N, rnbs : A N’, pro : P, ms : MS, ch : SC >
5 if T == Data /\ in(( Interest VA),MS) == false .

1 crl [RECD2 -S] :
2 (Msg.value VA type T channel SC from A to B)
3 < B : Node | snbs : N, rnbs : A N’, pro : [receive(V1, V2)#send(V1, V2)] .

P, ms : MS, ch : SC >
4 => < B : Node | snbs : N, rnbs : A N’, pro : send(Data , VA) . P, ms : MS -

(Interest VA), ch : SC >
5 if in((T VA),MS) == false /\ T == Data /\ in(( Interest VA),MS) == true .
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For the rule RECD1-S, if the corresponding Interest packet has not been
received before, the Data packet is discarded. For the rule RECD2-S, if the cor-
responding Interest packet has been received, the node performs the output
action with Data packet and removes the Interest packet.

4 Applying SCWN Calculus to LFBL Protocol

In this section, we apply our SCWN calculus to LFBL protocol, which is a
forwarding protocol for NDN wireless networks. Then the two cases in Example 1
are also implemented in Maude with LFBL protocol. According to the features
of LFBL protocol, we update the Maude implementation of SCWN calculus to
describe the data phase.

4.1 LFBL Protocol

Meisel et al. [9] proposed Listen First, Broadcast Later (LFBL). It is a forwarding
protocol for NDN wireless networks. It uses a data-centric approach and therefore
supports the applications in NDN. In LFBL protocol, each communication at
runtime is divided into two phases: a request phase and a data phase.

The request phase is similar to the route request phase of the traditional on-
demand routing protocols. Assuming that the requester has no prior knowledge,
it will broadcast Interest packet over the network by flooding. Interest package
carries the name of the requested data, and responds to the request if the receiv-
ing node has data with the corresponding name. The data phase begins when
the response arrives at the requester. In the data phase, the responder returns
Data packet corresponding to Interest packet by using special forwarding, so
that the requester will eventually receive the required data.

Here we focus on this special forwarding. Each node will calculate the distance
before forwarding after receiving Data packet from the neighbor node. If it is
closer to the target node than the neighbor node, it is an eligible forwarder and
continues to forward. If the neighbor node is closer to the target node, it is not
an eligible forwarder and discards the packet.

4.2 Application of SCWN Calculus to the Request Phase

First, we apply the SCWN calculus to the request phase of LFBL protocol,
according to the two cases in Example 1. test1 implements case (a) by Maude.
It describes a network with four nodes using protected channels. Node n1 is the
source node to send Interest package. Node n2 and node n3 are forwarders. Node
n4 is the target node to receive Interest package.
1 eq test1 =
2 < n1 : Node | snbs : n2 n3, rnbs : nil , pro : send(Interest , va) . p, ms :

nil , ch : sc >
3 < n2 : Node | snbs : n4, rnbs : n1, pro : [receive(v1, v2)#send(v1, v2)] .

p, ms : nil , ch : sc >
4 < n3 : Node | snbs : nil , rnbs : n1, pro : [receive(v1, v2)#send(v1, v2)]

. p, ms : nil , ch : sc >
5 < n4 : Node | snbs : nil , rnbs : n2, pro : receive(v1, v2) . p, ms : nil ,

ch : sc > .
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Figure 2 illustrates the result of running test1 in Maude. First of all, node
n1 is sending a message to node n2 and node n3. Then node n2 and node n3
receive the message. Node n2 forwards the message to node n4. Finally, node n4
receives the message. The message is in ms of the four nodes.

Fig. 2. The result of running test1 in Maude

Case (b) is implemented by test2. The only difference between case (a) and
case (b) is node n3 uses the normal channel. This is also described by test2.
1 eq test2 =
2 < n1 : Node | snbs : n2 n3, rnbs : nil , pro : send(Interest , va) . p, ms :

nil , ch : sc >
3 < n2 : Node | snbs : n4, rnbs : n1, pro : [receive(v1, v2)#send(v1, v2)] .

p, ms : nil , ch : sc >
4 < n3 : Node | snbs : nil , rnbs : n1, pro : [receive(v1, v2)#send(v1, v2)]

. p, ms : nil , ch : nc >
5 < n4 : Node | snbs : nil , rnbs : n2, pro : receive(v1, v2) . p, ms : nil ,

ch : sc > .

Figure 3 shows the result of running test2 in Maude. First, node n1 is sending
message to node n2 and node n3. Only node n2 receives the message. The message
is forwarded by node n2, which is then received by node n4. The message only
appears in ms of the three nodes.

Fig. 3. The result of running test2 in Maude

Figures 2 and 3 show that automatic implementation of SCWN calculus is
done successfully, and the results of the running test1 and test2 are consistent
with the results by manual deduction in Example 1. It embodies that our SCWN
calculus can be applied to realistic cases, which not only implements the special
mechanism of NDN, but also supports the security feature.
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4.3 Application of SCWN Calculus to the Data Phase

In order to describe the data phase of LFBL protocol, we update the definition
of the node by adding an argument to describe the distance between the current
node to the target node.
1 class NodeN | snbs : OidSet , rnbs : OidSet , pro : Process , ms : MSet , ch :

Channel , d : Nat .

We add new operators for the process parts to support the special forwarding.
Compared with the operators defined previously, the new operators add new
arguments to describe the node and the distance between the node itself and the
target node.
1 op send(_,_,_(_)) : Type Value Oid Nat -> Process .
2 op <_,_,_(_)> : Type Value Oid Nat -> Process .
3 op receive(_,_,_(_)) : Variable Variable Oid Nat -> Process .
4 op [receive(_,_,_(_))#send(_,_,_(_))] : Variable Variable Oid Nat Type

Value Oid Nat -> Process .

We also update the rewrite rules of the new type of node. Because of the
space constraints, we only give severl rules. The rule N-DIS-S indicates that if
the node A is not closer to the target node C compared with its neighbour node
B, the message is not forwarded.
1 crl [N-DIS -S] :
2 (Msg.value VA type T channel SC from A(DI1) to B end C(DI2))
3 < B : NodeN | snbs : N, rnbs : A N’, pro : [receive(V1, V2, V3(V4))#send(

V1, V2, V3(V4))] . P, ms : MS, ch : SC, d : DI >
4 => < B : NodeN | snbs : N, rnbs : A N’, pro : P, ms : MS, ch : SC , d : DI

>
5 if DI1 <= DI .

The rule N-RECD1-S is almost the same as the rule RECD1-S. As the related
Interest packet is not in the set of messages, the node discards Data packet.
1 crl [N-RECD1 -S] :
2 (Msg.value VA type T channel SC from A(DI1) to B end C(DI2))
3 < B : NodeN | snbs : N, rnbs : A N’, pro : [receive(V1, V2, V3(V4))#send(

V1, V2, V3(V4))] . P, ms : MS, ch : SC, d : DI >
4 => < B : NodeN | snbs : N, rnbs : A N’, pro : P, ms : MS, ch : SC, d : DI

>
5 if T == Data /\ in(( Interest VA),MS) == false .

The rule N-RECD2-S is similar with the rule RECD2-S. The only difference is
that the judgment of the distance is added.
1 crl [N-RECD2 -S] :
2 (Msg.value VA type T channel SC from A(DI1) to B end C(DI2))
3 < B : NodeN | snbs : N, rnbs : A N’, pro : [receive(V1, V2, V3(V4))#send(

V1, V2, V3(V4))] . P, ms : MS, ch : SC, d : DI >
4 => < B : NodeN | snbs : N, rnbs : A N’, pro : send(Data , VA, C(DI2)) . P,

ms : MS - (Interest VA), ch : SC, d : DI >
5 if in((T VA),MS) == false /\ T == Data /\ in(( Interest VA),MS) == true /\

DI1 > DI .

Then we can describe the data phase with the update of SCWN calculus.
1 eq test3 =
2 < n1 : NodeN | snbs : n2 n3, rnbs : nil , pro : send(Data , va, n4(0)) . p,

ms : nil , ch : sc, d : 20 >
3 < n2 : NodeN | snbs : n4, rnbs : n1, pro : [receive(v1, v2, v3(v4))#send(

v1, v2, v3(v4))] . p, ms : Interest va, ch : sc, d : 10 >
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4 < n3 : NodeN | snbs : nil , rnbs : n1, pro : [receive(v1, v2, v3(v4))#send(
v1, v2, v3(v4))] . p, ms : Interest va, ch : sc, d : 30 >

5 < n4 : NodeN | snbs : nil , rnbs : n2, pro : receive(v1, v2, v3(v4)) . p,
ms : nil , ch : sc, d : 0 > .

test3 also focuses on the network topology in Example 1, considering that
the data phase is transmitting Data packet and the distance feature is added.
Distance variable d for each node is introduced to give the distance from the
destination node n4 to the node itself.

Fig. 4. The result of running test3 in Maude

Figure 4 shows the result of running test3 in Maude. First, node n1 is sending
message to node n2 and node n3. Only node n2 receives the message. Node n3
discards the message, because it is farther to node n4 than node n1. Node n2
forwards the message to node n4. Finally, node n4 receives the message. This
indicates that updated SCWN calculus can describe the request phase of the
LFBL protocol. It illustrates that our SCWN calculus is extensible to more
realistic cases.

5 Conclusion

In this paper, we introduced a process algebra called SCWN calculus. It charac-
terizes special forwarding mechanism and data caching mechanism of NDN. The
feature of NDN is implemented by introducing particular sets. Security feature is
implemented using different channel symbols. We presented the automatic imple-
mentation of SCWN calculus to make it convenient and useful. Then SCWN
calculus is applied to the LFBL protocol and several cases are implemented. It
illustrates that our SCWN calculus is extensible to real-world scenes.

In the future, we plan to do the verification for NDN based on our SCWN
calculus. It is a challenge to design a set of verification rules [1,6] for our SCWN
calculus. Meanwhile, it is also interesting to study the denotational semantics and
algebraic semantics for our SCWN calculus based on the UTP approaches [5].
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Abstract. The verification of real-world applications is a continuous
challenge which yielded numerous different methods and approaches.
However, scalability of precise analysis methods on large programs is
still limited. We thus propose a formal definition of modules that allows
a partitioning of the program into smaller code fragments suitable for
verification by bounded model checking. We consider programs written
in C/C++ and use LLVM as an intermediate representation. A formal
trace semantics for LLVM program runs is defined that also takes mod-
ularization into account. Using different abstractions and a selection of
fragments of a program for each module, we describe four different modu-
larization approaches. We define desirable properties of modularizations,
and show how a bounded model checking approach can be adapted for
modularization. Two modularization approaches are implemented within
the tool QPR-Verify, which is based on the bounded model checker
LLBMC. We evaluate our approach on a medium-sized embedded system
software encompassing approximately 160 KLoC.

1 Introduction

The increasing number of safety and security critical systems yields the need
for software verification for real-world applications. Studies about the cost of
software errors like [20] show the necessity of precise and thorough verification
and are backed up by catastrophic experiences in past and present like the rocket
crash of Ariane flight 501 [16] or the car crash of the Toyota Camry in 2005 [15].
Software verification approaches are making continuous progress, but at the same
time the size of the systems embedded in aircrafts, cars, or mobile phones grow
even faster. Modern cars are currently at around 100 MLoC and are estimated
to go up to a total of 300 MLoC in the next years. Even current audio control
software in a car can have several millions LoC and is thereby hardly verifiable
by most if not all approaches.

For bounded model checking, a program under verification has to be encoded
into a logical formula. Even when ignoring time constraints, the memory require-
ments to encode millions of lines of code is not attainable by state-of-the-art
systems. A well-known approach to increase scalability of software verification
is to partition the program into smaller modules that can then be solved indi-
vidually. Such modularization typically requires formalization of interfaces and
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dependencies between modules. Under the headline of compositional verification
or assume-guarantee reasoning several approaches for modular verification have
been proposed in the past [5,9,12]. This work, however, generally does not cover
the aspect of how to generate modules; instead it relies on manual approaches for
partitioning. There exist frameworks that automate part of the modularization
task, e.g., by creating necessary preconditions automatically through an incre-
mental learning algorithm [6], or by deducting modules from program design [8].
However, these approaches do not provide a framework for fully automatic ver-
ification of large systems. The same applies to modular interactive approaches
like [3,18], where the user has to manually write interface specifications. The
number of lines of specification that has to be written for one line of source code
varies depending on approach and application. Typical factors range between 2
for specialized [19], 5 for SMT-based [11] or up to 20 for interactive theorem
prover approaches [14], which is not feasible for large code bases.

To automatically verify large projects, an automatic modularization is
needed. We first introduce definitions of program semantics and modules to then
describe automatic modularization approaches based on abstractions. Then we
define a general model for program modularization, followed by four concrete
modularization techniques in the context of bounded model checking. We then
define mandatory and desirable properties of an automatic modularization pro-
cedure for software verification, and report on the implementation and evaluation
of a global and two modular approaches using a state-of-the art bounded model
checker on a real-world application of approx. 160 KLoC.

2 Theoretical Foundations

In the following, we introduce the LLVM intermediate representation (IR) and its
instruction set. We define a program trace semantics for LLVM IR and thereupon
modularization of programs in LLVM IR for software verification.

2.1 Programs in LLVM Intermediate Representation

LLVM is a compiler framework that also provides an intermediate representa-
tion (IR) for programs written in C, C++, and other high-level languages, e.g.
Rust. LLVM’s IR is an abstract, RISC-like assembler language for a register
machine with an unbounded number of registers. IR programs are always kept
in static single assignment (SSA) form, meaning that each register is assigned
exactly once. A program in LLVM-IR consists of type definitions, global variable
declarations, and the program itself, which is represented as a set of functions,
each consisting of a graph of basic blocks. Each basic block in turn is a list of
instructions, where the instruction set, as of interest in this paper, can broadly
be split into four types (see also Table 1):

– Memory-related instructions such as load, store, stack allocation (alloca)
and address calculation via base pointer and offsets (getelptr)1;

1 For brevity, we use getelptr instead of LLVM’s name getelementptr.
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– Three-address-code (TAC) instructions working on registers or constants,
mainly for arithmetical and logical operations.

– Bit-level conversion instructions like extensions, truncations, and type casts.
– Control-flow related instructions for conditional and unconditional branching,

the phi instruction (which is typical for SSA form) to conditionally select a
value, as well as function-call and return (ret) instructions.

All (conditional and unconditional) branch instructions are only allowed as the
last instruction of a basic block. The branch instructions induce a basic block
graph (a.k.a. control-flow graph), in which edges are annotated with the condi-
tion under which the transition between two basic blocks is taken.

Table 1. LLVM IR instructions

For the exposition of our approach, we have extended the IR language by
two verification-related instructions (in the implementation these are modeled
as intrinsic functions instead of instructions), one for checking assertions and
another one to set a variable to a non-deterministic value.

2.2 Program Semantics of LLVM

We define the semantics of an LLVM IR program as a set of program
traces. A trace T is a (possibly infinite) sequence of program states T =
(s0, s1, . . . , sn, . . . ), and the trace semantics of a program encompasses all traces
the program can take. We denote the set of all such traces by TP . The set S of
states is defined as S = (V ar → V al)×(Adr → V al)×Loc∗. A state s = (v,m, l)
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is thus a triple consisting of a variable-value-map v, a representation m of the
memory content (including stack variables generated by LLVM’s alloca), and a
representation l for a program location, which is a sequence of triples t = (f, b, i)
encoding the call stack. Each triple consists of a function f , a basic block b and
an instruction number i, consecutively numbering the instructions within basic
block b, starting from 0. The first element in sequence l is the stack top, which
we also denote by ltop, or ltop(s), if we want to denote the topmost frame in the
location stack of state s.

We assume that V ar = GV ar ∪ LV ar is the set of program variables, split
into local and global variables; LV ar = Loc∗ × Name characterizes a local
variable consisting of a call stack and a name; GV ar = Name denotes a global
variable (which, in LLVM, is always a pointer variable); V al = Int ∪ Adr is the
set of variable values, consisting of integer variables and pointer variables2. To
simplify access to both local and global variables by name n in a given call stack
l, we define a variable’s stack-related name nl by n if n ∈ GV ar and by (l, n) if
n ∈ LV ar.

Each trace has to start in an initial state s0 ∈ I, and the effects of LLVM
operations is defined via transition relations τ : S → P(S). We define transition
relations for instructions and functions. As the transition relation may be non-
deterministic, each state can have multiple successors (next-states).

For an instruction I and a state si = (v,m, l) we have, e.g.,

τx=load p(v, m, l) = {(v[xl ← m(v(pl))], m, next(l))}
τstore x,p(v, m, l) = {(v, m[v(pl) ← v(xl)], next(l))}

τz=x <op> y(v, m, l) = {v[zl ← v(xl) <op> v(yl)], m, next(l))}

τbr c,bb1,bb2(v, m, (f, b, i) : ls) =

{
{(v, m, (f, bb1, 0) : ls)} if v(cl) �= 0

{(v, m, (f, bb2, 0) : ls)} if v(cl) = 0

τy=call g(x1,...,xn)(v, m, l) = {(v′, m, l∗) | v′ ∈ V }
where l∗ = ((g, bbEntry, 0) : l),

v∗ = v[pl∗
1 ← v(xl

1)] · · · [pl∗
n ← v(xl

n)],

V = {v∗ updated with local variables set to

arbitrary values in the topmost stack frame},

and pi are the actual parameters of the called function g

τret y(v, m, t : ls) = {(v[ret(y) ← v(y(t:ls)], m, next(ls))}
where ret(y) = the return var. in the call instr. at loc. t

τx=nondet t(v, m, l) = {(v[x ← i], m, next(l)) | i ∈ V al}

2 For simplicity, we assume that integer and pointer variables have the same bit-
width, and that all program variables are of type integer. We also identify pointer
values with integers, such that V al = Adr. A more refined model would differentiate
between different data types stored in memory (including floating-point). In practice,
a byte-oriented memory model is often used [17].
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Here, f [x ← y] stands for updating the function f at location x to a new value
y; next : Loc∗ → Loc∗ : ((f, b, i) : ls) �→ ((f, b, i + 1) : ls) computes the next
location within the top-most basic block of the call stack (“:” shall denote the
list constructor) for a non-terminator instruction.

We define the set of initial states I by

I = {(v,m, l) | v(g) = address of global variable g for all globals

v(xl) = arbitrary value for local variable x

m : any function Adr → V al, respecting initializers for globals
l = (main, bbEntry, 0)}

A trace T for an LLVM program P is then defined as a sequence s0, s1, . . .
of states with s0 ∈ I and si+1 ∈ τI(si), where I is the instruction at ltop(si), i.e.
the program location of the top-most stack frame. The semantics of program P
is the set of all such traces.

In our modularization approach, we also want to define traces that start at
the entry of a particular function up to the execution of the last instruction in
this function. We thus define trace sets Tf for functions f in a program P :

Tf = {(si, . . . , sj) | (s0, . . . , sn, . . . ) ∈ TP and
si = (v,m, (f, bbEntry, 0) : l) and sj = (v′,m′, (f, bbret, kret) : l)
j > i is the smallest index such that (f, bbret, kret)
is the location of a ret instruction
for some v, v′,m,m′, l, bbret and kret}

2.3 Modularization

There are several possible views on what a module in a program is. We thus
want to give, in a first step, a very general definition of a module. In a later step,
we will identify desirable properties of a modularization and refine our definition
accordingly.

Definition 1 (Program). A (LLVM) program P = (F ,G) is a tupel of a
non-empty set of functions F = {f1, ..., fn} (n ≥ 1) and a set G = {g1, ..., gm}
(m ≥ 0) of global variables that may be referenced in the functions fi.

We do not demand that there is unique entry point in the program (a main
function) nor that the program is “closed” in the sense that all functions called
in F are contained in F . A module is then just a subset of the functions and
global variables in a program.

Definition 2 (Module). Given a program P = (F ,G) and sets F ′,G′ with
∅ ⊂ F ′ ⊆ F and G′ ⊆ G, MP = (F ′,G′) is a module for program P .
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Note that a module is itself a program according to our definition. We assume
that program properties to be verified are included in the program in the form of
assert instructions. Thus, a module “inherits” the assertions (which we will also
call checks in the following) from the program that it is a part of via assertions
present in F ′. In some decompositions we do not require that all checks are
inherited from the original program. Instead we sometimes will allow that we
only inherit checks for a subset of the functions F ′.

3 Decomposition of Programs

We will introduce four modularization approaches which partition a program P
into a set of modules M1

P , . . . ,Mn
P such that a bounded model checker can derive

results about program P by verifying each MP individually. Dropping parts of
the program in a module of course loses information. In our modularization
approaches we do not require to add specifications about missing parts of the
program. Instead, we want to make sure that a module represents an over-
approximation (i.e. abstraction) of the original program.

3.1 Abstractions

Abstractions are an important technique to simplify verification tasks. Most
often abstractions are over-approximations of variable values (such as in abstract
interpretation [7]). The abstractions that we are interested in are different and
of a “structural” kind. We abstract function calls and replace them by over-
approximations of the function behavior, or we ignore the calling context of
a function in a larger program. In applying these structural abstractions, we
distinguish between abstracting the program “bottom up”, where we abstract
away called functions, and “top down”, where we abstract away the calling
context. We will now describe our four abstraction approaches in detail.

Havoc Called Functions. The first approach abstracts away calls to func-
tions outside of the chosen module MP . At first, assume that MP only contains
one function f and all global variables that are either read or written in f :
MP = ({f},G′). We only keep checks (assertions) in function f , and abstract
away all functions calls in f . When abstracting a function call without any fur-
ther knowledge, an over-approximation of its behavior has to be assumed. Next
to the return value (if existent), memory content (including global variables) can
be altered by the called function, and thus have to be assumed to be arbitrary.
Therefore, to abstract away a function call in the context of LLVM means to set
the return value and the memory content to a nondeterministic value (nondet).
Referencing the trace semantics of a program, the abstraction updates all tran-
sition relations τy=call f∗(... ) where f∗ is not part of the function set of MP . The
transition relation for such a call to f∗ is replaced by the following:

τy=call f∗(x1,...,xn)(v,m, l)

= {(v[yl ← i],m′, next(l)) | i ∈ V al,m′ ∈ (Adr → V al)}
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I.e., the variable that takes the value returned by f∗ can be an arbitrary value
and the memory in the follow-up state can be an arbitrary function Adr → V al.

The updated transition relation τ allows a higher number of possible runs and
is thus a clear over-approximation of the program semantics. Therefore, updating
τ guarantees soundness of the approach. The cost of such an over approximation
is the possibility of false positives – error reports where there actually is no error.

In the havoc-approach, we do not abstract away function call contexts. There-
fore, the approach includes any function with a (transitive) call to function f
into the module MP , together with accessed global variables. Thus the module
contains the main function, which is used as an entry point for analysis. A coarse
slicing algorithm can improve the creation of MP by removing function calls that
are not needed to verify the checks in f and to thus minimize the module size.

Figure 1 shows the modularization of a simple program with four functions
with the use of the described abstraction. The green arrows represent the entry
point for verification. The triangles represent the checks that are verified and
the boxes represent the modules MP . The dotted boxes are parts of the program
that are likely to be removed by a coarse slicing algorithm dependent on the
implementation.

Fig. 1. Modularization into four independent modules based on abstraction of called
functions. The entry point for every module (indicated by a green arrow) is the main
function and the abstraction of called functions starts depending on the location of the
assertions (indicated by a green triangle). (Color figure online)

We see that verifying a module created in this way encompasses fewer func-
tions and thus increases scalability compared to a global analysis. For functions
deep in the call graph the module size can still be too large. The abstraction
can of course lead to false positives. In particular when checking for memory
properties, the complete havoc of the heap at each call to a function outside
of the module can lead to false error reports. Therefore, the goal of our next
approach is to reduce the number of false positives.

Use Postconditions of Abstracted Functions. As a refinement of the first
abstraction, we can create postconditions of called functions and replace the call
of a function outside a module with the function’s postcondition. While general
postconditions might be used, we focus here on memory-related postconditions
that result from an automatic analysis of memory locations that are written in



Automatic Modularization of Large Programs for Bounded Model Checking 193

functions abstracted away. The modularization itself stays the same as in the
earlier approach, only the abstraction is refined.

As a first refinement step, we analyze memory accesses in the called function
f∗ with the aim of reducing memory locations we have to set to nondet. A
rather simple analysis over the LLVM IR gives us all accesses of pointer and
global variables in f∗ and further called functions. After gaining all relevant
memory changes, we have to obtain points-to information so that we can havoc
only those memory locations written to by possible executions of f∗. This points-
to information can be gained through a scalable and flow-sensitive alias analysis
like e.g. described in [10]. The alias analysis has to be scalable to be run on large
programs without negating the scalability benefit. Furthermore, a flow-sensitive
approach takes the program flow into account and ignores the later-on called
functions providing the necessary level of precision for our postconditions.

We denote the set of memory locations that have to be abstracted by AbsM .
We then update the transition relation for a call instruction to a function f∗

outside of the module τy=call f∗(... ) to

τy=call f∗(x1,...,xn)(v,m, l) = {(v[yl ← i],m′, next(l))
| i ∈ V al,m′(a) = j with j ∈ V al, if a ∈ AbsM,

and m′(a) = m(a) for all a �∈ AbsM}

Again, it is clear that the update of τ leads to more traces of P and is thus
an over-approximation guaranteeing soundness.

The generation of such postconditions is feasible in reasonable time and
mostly depends on the scalability of the alias analysis used. An adjusted alias
analysis optimized specially for this use case is part of current work. Such cre-
ated postcondition refines the abstraction of called functions but can further
be improved by the more detailed calculation of values and the potential return
value. Through symbolic execution one can extract formulas representing the val-
ues generated by the function. Such automatic and exact generation of postcon-
ditions is currently not feasible for large verification tasks. Still one can improve
the postconditions through value ranges that are possible and thus further nar-
row the search space of the bounded model checking approach and excluding false
positives. Such efficient generation is for example possible by the use abstract
interpretation approaches.

Start Analysis at Entry of a Particular Function. The first approaches
abstracted the program bottom up by regarding function calls. The next two
approaches address the problem by abstracting the caller of module MP . We
again start with the assumption that the function set of MP consists of one
function f and the global variable set G′ is created accordingly. We again insert
checks only into f . In contrast to the earlier approaches, we do not abstract the
transition relation τ of instructions, but the initial states I of the analysis. Thus
we abstract the call context and the input parameters of f . We thereby do not
have to include all functions of the call graph prior to f and can thus modularize
the problem. The abstraction of the initial states I ′ for f is done by setting
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I ′ = {(v,m, l) |
v(g) = address of global variable g for all globals

v(xl) = arbitrary value for local variable x for all local vars.

v(plk) = arbitrary value for parameter k of function f

m : any function Adr → V al

l = (f, bbEntry, 0)}

and considering function f as the start of the program. Note that we do not
initialize global variables here, as their values may have changed before entering
function f .

The new set of initial states is a superset of possible states that would be
calculated during a normal program execution. Thus, the abstraction is again
an over-approximation guaranteeing the soundness of the approach. For MP to
be verifiable, the approach has to include all called functions in MP because
no abstraction is defined and the transition relation τ needs the exact function
semantics. The approach iteratively adds called functions while also adding all
global variables that are needed. It thereby creates the final MP . The modular-
ization is demonstrated on the same abstract program in Fig. 2. The notations
are equal to the figure above.

Fig. 2. Modularization into four independent modules based on abstraction of call
environment. The entry point for every module is the function containing the assertion.
Through the abstraction of the call environment no callers of the entry point functions
have to be included.

Compared to the over-approximation of function calls, which can happen
any number of times inside a module, the abstraction of the initial function call
over-approximates the state only once. Furthermore, such an analysis can match
user concepts. If a function is proven correct using this abstraction, the function
is safe from error in every call environment. Such statements are recommended
for library functions or functions that are accessible throughout the system.

Generate Preconditions for Entry Function. Similar to the previous refine-
ment, we refine the abstraction using additional conditions that hold when the
entry function is called. We create preconditions to restrict possible inputs to
minimize the amount of false positives. To generate exhaustive preconditions
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for a function is a field of research on its own. The automatic generation of
precise preconditions for large programs is currently not feasible in reasonable
time. Preconditions that represent all possible call environments would have to
encapsulate the complete prior program execution and are thus very costly. Nev-
ertheless an automatic generation of such preconditions is possible using coarse
approaches like abstract interpretation with an interval domain to generate value
ranges for possible inputs.

Nevertheless, the approach we chose is to create preconditions not based on
the prior program execution but based on the erroneous checks of our function f .
First, we perform an analysis without preconditions possibly resulting in failed
assertions of two kinds: globally unsafe and locally unsafe. Globally unsafe checks
are such checks that will fail independent of the input, a simplified example
would be the statement (x = y/0). The locally unsafe status is given to checks
for which an error is found that dependents on input values of f (parameters and
memory state). The precondition generation only regards locally unsafe checks.
For every check, we create a precondition representing the input for which the
error arises.

Bounded model checking can create an exact error trace for a failed assertion
in the abstracted program. Using a symbolic execution approach can gener-
ate preconditions by following constraints backwards from the location of the
failed assertion up to the start of function f . The transition relation τ is there-
fore inverted and symbolically executed. The symbolic execution is built upon
the earlier executed bounded model checking attempt. The program is already
inlined and the loops are unrolled up to a given bound. Furthermore, the exact
error trace gives restrictions on branching possibilities. After the creation of
such a (partial) precondition for a trace, the function has to be re-verified and
the procedure to be repeated until all traces that lead to a failed assertion are
covered. The amount of traces are assumed to be small because simple errors
that occur on all traces are found earlier and marked globally unsafe while only
locally unsafe locations, which only appear for a subset of traces, are checked for
false positives. The conjunction of the resulting constraints is negated to form
the precondition for f and thereby represents all input values for which there is
no error in the module MP . After generating such an over-approximating pre-
condition for a check, the precondition is inserted into the initial state formula
for module MP . The approach iteratively chooses all modules containing the
precondition and verifies the module while deactivating all internal checks. If
the precondition holds, we have proven that the check is globally safe. If the
precondition does not hold, the process is repeated iteratively until we reached
the main function.

Extension and Combination of Abstractions. The four modularization
approaches were described by starting with a single function in which checks are
inserted. As mentioned earlier, the approach works the same way when starting
with modules of bigger size. These enlargements of modules reduce the amount
of abstractions and thereby the amount of false positives generated. The cost of
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such larger modules is the scalability of the approach. In reality an upper bound
for the module size is manually given (dependent on the program code and time
and memory constraints of the user). An algorithm for generating larger initial
modules is given in Sect. 4.1.

Furthermore, a combination of the above abstractions is possible to improve
scalability or to refine the verification. For programs with a deep call graph the
inclusion of either the functions calling the module or all the called functions
can still lead to formulas which are too large to be handled by an SMT solver.
Thus, we can separate the program into three parts based on the call graph to
further improve scalability: Top level modules are verified using the postcondi-
tion abstractions and bottom level modules are solved using the precondition
abstraction. For modules found in the middle part of the call graph both pre-
and post-conditions are necessary. Another possibility is to run the different
approaches one after each other to refine the analysis result stepwise. For every
analysis only the checks which are marked locally unsafe are rechecked using a
different abstraction.

3.2 Properties of Modularization

We want to define properties that every module and the total modularization
should strive towards. We divide them into mandatory properties that are nec-
essary to guarantee the soundness of the verification approach and success prop-
erties that every module should strive towards for a high probability of optimal
modularization for verification.

Mandatory Properties: Given a program P and a modularization MP . Fol-
lowing properties have to hold for every valid modularization.

Total-Coverage: The union of all modules has to cover the whole program, and
each check has to be included at least once in every function. Every function has
to appear in at least one module and thus the union of all functions included in
modules represent the complete function set of P . The same is not required for
the set of global variable symbols, because of, e.g., unused symbols that do not
influence the program.

Single-Entry: Every module Mi ∈ MP should have one single entry point
from which the verification starts. For verification methods like bounded model
checking the encoding of the program has to start at one entry point. When
verifying a program with multiple entry functions, for example a library with a
number of API functions, several verification jobs have to be run. These jobs can
be run independently and also in parallel. To make the modules larger and to
simplify the human understanding of the modularization, one could summarize
modules with more then one entry point.

Information-Principle: All information that is needed for the sound verifica-
tion of the module is included in the module itself. Meaning that all functions
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and global variables that are written to or read from are included in the verifica-
tion task. Furthermore, the input of the entry point function or an abstraction
of it has to be included.

Computable: The modularization should be computable in polynomial time
with respect to the size of the input program. The separation of graphs into a
fixed number of partitions that have minimal amount of edges between them is
closely related to our partitioning. Edges in this case can be regarded as call or
data dependencies. The so-called k-partitioning problem itself is NP-hard and
thus one can assume that also precise algorithms for the efficient modularization
of a program will have a similar complexity. Most likely, as in the case of the
k-partitioning problem, we have to use abstractions and approximations of an
ideal modularization that are computable in reasonable time.

Success Properties: Given a program P and a modularization MP . The fol-
lowing properties should be striven towards by every efficient modularization.

Solvable: The size and complexity of a module should be manageable by the
chosen verification approach, in our case bounded model checking. The module
size that is manageable by a given approach depends on the programming style
and the design of single functions. The scalability of bounded model checking
approaches limits at program sizes of about 10–100 KLoC of C code. On the
other hand there are examples where a single function containing only a few
lines of code is not manageable in reasonable time [2].

Minimal Dependencies: The second success property addresses the amount
of dependencies between modules and thus the quantity of pre-/post-conditions
or nondet-abstractions generated. We distinguish between call and data depen-
dencies based on a graph structure. Let there be a node for every function in
P , and let edges describe either call or data dependencies, then a directed edge
in graph GP from function f1 to function f2 represents one of the following: (1)
function call from f1 to f2, (2) memory read in f2 after a memory write in f1
at the same location. The modularization of a program summarizes nodes and
thereby also incoming and outgoing edges into modules. The minimal dependen-
cies property states that the overall number of edges between modules should
be as low as possible.

It should not be the aim of any modularization to minimize the dependencies
for large programs. For a modularization MP = {P}, there would be no depen-
dencies, but MP would not be solvable in reasonable time. With equal intention
one should be careful optimizing only scalability by analyzing every function
by itself, which would lead to the maximal number of dependencies between
the modules. One has to find a balance between these two properties. Current
practical implementations for modularization have a tendency towards regard-
ing every function by itself. Furthermore, while the sizes of modules can vary
considerably, so can the complexity of the included functions. Finding heuristics
for optimal module sizes considering both properties is part of future work.
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4 Evaluation

For the evaluation, we have implemented a global analysis without any modu-
larization. Additionally, we have implemented the abstraction of the call envi-
ronment as described in Sect. 3.1 for every function and for modules of chosen
size based on the call graph. The approaches will be compared in this section
based on a real-world embedded software project of around 160 KLoC.

4.1 Implementation

All implementations are incorporated in the tool QPR-Verify, which is based on
the bounded model checker LLBMC. There are several optimizations, parameters
and features not relevant for the comparison to other approaches and are thus
not described here. Further details can be found in [17].

Fig. 3. Global
analysis

Global Analysis. At first, the LLVM IR program is gener-
ated with the clang compiler. The global analysis then encodes
the program starting at a given entry point. The entry point is
normally set to the main function. Starting at the entry point,
the whole program is encoded from the LLVM IR into an SMT
formula containing both the program semantics and all inserted
checks (Fig. 3). During encoding, loops are unrolled and functions
inlined up to a bound b. Also checks (assertions) are added as
special function calls into the bitcode. This formula is then given
to an SMT solver. If the SMT solver finds a model, a possible pro-
gram error has been detected. After finding the model, the specific check is deac-
tivated and the altered formula is checked again. The check states are set to either
safe, loopbound safe (safe up to loop bound), loopbound unsafe, unsafe or
undecidable.

Local Analysis. The local analysis implements the call context abstraction
from Sect. 3.1. It starts a verification job for every function while abstracting
input parameters and memory content at the beginning of the function. For
every function f , the analysis sets f as the entry point and starts encoding
of the program at f . All called function are thereby automatically included.
The approach then activates only the checks in f , one by one. Every check is
individually inserted into the program and checked. Additional to the states of
the global analysis, the status locally unsafe can be taken by a check for
which an error was found. To further optimize the analysis, we implemented
a slicing algorithm. Starting at the individual check that is to be verified the
algorithm collects statements influencing the check statement. The algorithm
thus traverses the program backwards, up to the entry point. The encoding of
the program is then optimized by only regarding collected statements.
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Call Graph Analysis. The third implemented approach extends the local anal-
ysis to modules of size m based on a created call graph GP . Nodes are functions
and edges are call dependencies as described in Sect. 3.2. First, the approach
removes “utility-functions” (functions that have a high amount of incoming
edges from all parts of the graph). The filtered call graph G′

P has a tree-like
structure starting at the main function. We decided to take advantage of this
property by running our modularization algorithm in a bottom-up fashion from
the leaves of the tree, and looking for subtrees that are smaller then a given
bound bG′ . Furthermore, we chose not to enforce the tree-property by cutting
edges but accepting the imperfections of the tree-approximation and considering
them in our module creation by putting functions into more then one module if
needed. If a leaf is called for example from two different functions f1 and f2 and
f1 and f2 do not have a joint parent within bound bG′ , we have to verify the leaf
starting from both functions. The adjustments of entry points and module size
can still be improved using abstraction refinement techniques [1].

4.2 Evaluation Results

For the evaluation of global, local and call-graph analysis, we selected an open-
source project from the embedded system domain, Connection Manager (Conn-
Man) [13]. This library handles internet connections within embedded systems.
The tool is mainly developed by Intel Cooperation and further used by big auto-
motive manufactures like BMW CarIT GmbH [4]. While, in general, bounded
model checking is optimized for arithmetic operations, which are more common
in systems like motor controls, the connection manager contains a high number
of checks to be verified.

We base our evaluation on ConnMan version 1.36 with 471 files, approx. 160
KLoC, and 3,025 functions. In our experiments, we determined the number of
checks that could be solved by the three implemented approaches. First, our tool
builds and compiles the application while inserting 27,402 checks for typical
runtime errors, including 11,164 checks for overflows on implicit type casts and
2,405 checks for overflow on arithmetic operations. In a preprocessing phase,
QPR-Verify handles simple checks that can be solved by constant propagation
and bit-width reasoning without the use of an SMT solver. This analysis was able
to prove safe 25,833 out of the given 27,402 checks. 13 checks were shown to be
unsafe by the preprocessor, and 1,556 checks remained open. These remain-
ing checks are hard verification problems that we handled with our different
modularization approaches. Table 2 shows the summarized results.

For the global analysis we chose 1 as a loop bound and gave a timeout of
1,200 s for all three approaches. The global approach was not able to transform
the program into an SMT formula even for the loop bound of one (due to out-
of-memory situations). (We tested the global analysis on a range of smaller
programs up to 20 KLoC with success, but larger programs are often not feasible
for a global analysis.) Thus the global analysis produces the same result as the
preprocessor-only analysis.
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Table 2. Results of three different solving approaches.

Results/approach Global Local Call graph

Safe 0 108 212

Safe up to loop bound 0 43 43

Locally unsafe 0 1, 351 1, 247

Unsafe 0 0 0

Undecided 1, 556 54 54

The local analysis was performed with a loop bound of 6 and was able to
handle most of the open checks. Out of the 1,556 open problems 108 could be
verified as safe. 43 checks are verified to be loop bound safe meaning that within
the given loop bound of 6 there is no error. To label these checks as safe, one
would have to increase the loop bound incrementally. Furthermore, 1,351 checks
were moved to the category locally unsafe, meaning that the approach found
an error while abstracting all input parameters. For some checks in the main
function or other high level functions most of the program has to be encoded,
and thus there are still 54 open checks that could not be classified. The local
analysis creates good results, where a global approach was not able to verify a
single property. The disadvantage lies in locally unsafe checks. Potential false
positives have been generated due to our abstraction being quite coarse.

Finally, the call graph analysis tries to classify locally unsafe checks by
extending the context of the functions containing a check. The modularization,
as described in Sect. 4.1, is created based on the bitcode created by the LLVM
compiler. We chose a bound bG′ = 15 for the creation of entry points. Our pursu-
ing ambition is to set bounds up to hundreds of functions, but the transformation
of the program into SMT formulas is still limited. A bound of 15 produced best
results for our approach. The modularization regarded 2,961 functions after fil-
tering. For these functions 1,103 entry points for modules were created including
2,074 functions and leaving 887 functions in a single-function module (i.e. local
analysis is applied). The analysis was able to move 104 locally safe checks to the
category of (globally) safe. Yet being a moderate improvement, one can see the
advantage of the call graph modularization.

5 Conclusion and Future Work

We defined a denotational program semantics for LLVM as well as notions for
modularization of LLVM programs. Based on these notions, we developed four
fully automatic modularization approaches. The discussion of mandatory and
success properties for a modularization in the context of software verification is
a foundation for further future modularization approaches. We implemented a
global analysis and compared it to a local analysis (abstracting away the call
context of a function) and a call graph analysis (extending the local verification
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approach). We show, that for moderately-sized real-world software the global
approach is not sufficient. The modularization approaches, in comparison, can
deliver much more successful verification results.

To further improve automatic verification of large programs, future work
includes implementation of the remaining two modularization approaches
described above. The automatic creation of pre- and postconditions will likely
reduce the amount of false positives. Additionally, we want to develop a cus-
tomized alias analysis to argue about and refine data dependencies of programs.
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Abstract. Software-Defined Networking (SDN) is an emerging network-
ing paradigm, which separates the network’s control logic from the under-
lying routers and switches, providing the ability to program network,
simplifying network management and creating an environment for net-
work evolution. NetKAT is a domain-specific language for specifying
and verifying packet-processing functions in software-defined networks
(SDNs). This paper proposes a more powerful programming language,
PDNet, extending NetKAT to specify the behaviors of SDNs that sup-
port virtual local area network (VLAN) tags. We present the operational
semantics of PDNet in terms of automata and a syntactic derivatives.
When comparing PDNet and NetKAT we show that PDNet is strictly
more expressive than NetKAT. As expected, we also show that PDNet
is as expressive as NetKAT when describing SDNs without VLAN.

Keywords: Software Defined Networks · VLAN · Pushdown systems ·
NetKAT

1 Introduction

Traditional network devices, such as switches, routers, firewalls, etc. are built by
different vendors out of special purposes. Due to all kinds of custom hardware
and interfaces, it is hard to configure traditional networks. Besides, the control
plane (that decide how to handle network traffic) and the data plane (that
forwards traffic) are bundled inside the networking devices, reducing flexibility
and hindering innovation and evolution of the networking infrastructure [1]. The
emergence of Software-Defined Networking (SDN) [2], a new network paradigm,
has brought a foundational shift on this respect.

It is impossible to reason precisely about legacy network behaviors, which
makes it hard to apply formal methods to verify network correctness. SDN offers
the Internet community another chance to develop the right kind of architecture
and abstractions. This has also led to a great resurgence in interest of applying
formal methods to specification, verification, and synthesis of networking proto-
cols and applications [3]. NetKAT [4] is a network programming language, which
c© Springer Nature Switzerland AG 2019
Y. Ait-Ameur and S. Qin (Eds.): ICFEM 2019, LNCS 11852, pp. 203–218, 2019.
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is used for specifying and verifying the packet-processing behavior of software-
defined networks (SDNs). The operational semantic of NetKAT has been pre-
sented in [5] in terms of deterministic NetKAT automata. Given a NetKAT
expression, a corresponding deterministic NetKAT automaton can be built fol-
lowing the syntactic derivative. The language accepted by a NetKAT automaton
is a regular language, which makes it possible to reason about the correctness of
a NetKAT program using the equational theory presented in [4].

However, regular expressions are not enough to describe some network behav-
iors especially when it include the usage of virtual local area network (VLAN). A
VLAN is a broadcast domain that is partitioned and isolated in a computer net-
work at the data link layer (OSI layer 2) [6]. It is commonly used in all network
virtualization technologies because of its dynamic character. VLAN tags are a
useful mechanism for limiting the scope of broadcast traffic, enforcing security
and privacy policies, simplifying access control, decentralizing network manage-
ment, and enabling host mobility [7]. In a SDN, network administrators can
configure and manage VLANs more flexibly and efficiently using the OpenFlow
protocol [8], the de-facto standard communication protocol between a controller
and a switch. The newest edition of the OpenFlow protocol supports adding,
modifying and removing VLAN tags. A packet may have one or more VLAN
tags stored in a stack so that only the outermost (newest) tag can be modify or
delete.

In this paper we extend NetKAT with packets supporting a stack to store
VLAN tags. We use three actions in PDNet (push(v), f0 ← v, and pop) to add,
modify and remove a tag separately. The main contributions of our work are
listed as below:

– Propose a new programming language, PDNet, to describe the behaviors of
SDNs based on NetKAT. The ability to describe VLANs makes our language
more expressive than NetKAT.

– Study the operational semantics of PDNet, presented in terms of PDNet
automata. A PDNet automaton can be built from a PDNet expression fol-
lowing the syntactic derivatives.

– Prove that PDNet is as expressive as NetKAT when restricting the syntax to
no VLAN stack manipulating actions.

– Show that PDNet is more expressive than NetKAT.

To help the proofs, we will give a novel definition of nondeterministic NetKAT
automata and the corresponding syntactic derivatives.

2 Preliminaries

2.1 SDN and OpenFlow

As shown in Fig. 1, a SDN has three layers. A single-controller OpenFlow-based
network has one controller, some switches and some hosts. When a switch
receives a packet, it will search its flow table to find a matching rule for the
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packet. If the matching rule exists, then the switch will forward the packet out
through the port specified by the rule. Otherwise, the switch will inform the
controller of receiving an unmatched packet, and then the controller will insert
a rule into the flow table of the switch to tell the switch how to deal with the
packet.

Access 
Control

Load 
Balancing

…Network 
Application

Management
Plane

Northbound Interface

Topology
Dicovery

… Routing 
Service

Control
Plane

Southbound Interface (OpenFlow)
SDN
SwitchesData Plane

SDN 
Controller

Fig. 1. SDN structure

2.2 VLAN

A VLAN allows to break one physical switch into smaller mini-switches, or
extend a smaller virtual switch across multiple physical switches. In Fig. 2 we
show an example of a network where there are two physical switches and three
VLANs (VLAN 10, VLAN 20, and VLAN 30). Notice that VLAN 10 has been
extended onto a second switch, which enables Host B and Host C to exist in the
same VLAN, despite being connected to different physical switches. Assuming
that host C is sending a packet to host B. The packet header C|B|(VLAN)|Type
is a standard Layer 2 header. At first, the packet enters VLAN 10 through the
access port on switch Y (Y:1), and a tag #10 is added into its header. Then the
tagged packet is flooded to all the ports inside the red circle of switch Y except
the port that received the packet. Port Y:2 is an access port that connects to

Fig. 2. An example of VLANs
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switch X, the VLAN tag of every packet that leaves VLAN 10 through Y:2 will
be removed. When the packet from host C to host B arrives at port X:2, the tag
#10 is added into its header again.

Notice that, in nested VLANs, it is possible that a packet has more than one
VLAN tag, and any action on VLAN tags only acts on the outermost (newest)
tag. In the OpenFlow protocol, there are three actions that are related to VLAN.

– Push tag: Push a new VLAN tag onto the packet. A newly pushed tag should
always be inserted in the outermost valid location of the VLAN field.

– Pop tag: Pop the outermost VLAN tag from the packet.
– Set tag: Set the ID of the outermost VLAN tag.

2.3 Syntax of NetKAT

Forwarding a packet from node to node in a network can be seen as moving
from state to state in an automaton. Therefore, it is natural to use regular
expression to describe the forwarding behavior of a network. For example, the
concatenation of a series of forwarding behaviors specifies a path. Moreover,
Kleene algebra (KA) [9], a sound and complete equational theory for regular
expressions, can be used to reason about properties of networks.

NetKAT is an instance of Kleene algebra with tests (KAT) [10]. KAT is a
two-sorted algebra (K,B,+, ·, ∗,̄ , 0, 1), where B ⊆ K:

(K,+, ·, ∗, 0, 1) is a Kleene algebra and
(B,+, ·,̄ , 0, 1) is a Boolean algebra .

A Kleene algebra consists of three operators and two constants: choice (+),
sequential composition operator (·), iteration (∗), fail (0) and skip (1). (·) is
usually elided in expressions. B is the set of tests. When applied to tests, (+) and
(·) act as disjunction and conjunction respectively. (¯) is the Boolean negation
operator defined only on B. We let p, q, r, s, t range over arbitrary elements of
K and a, b, c, d over tests in.

The syntax of NetKAT is shown in Table 1. A packet pk is a packet record that
composes of k fields, including the header values and the location information.
A sequence of packet forms a history, which records the states of a packet as it
travels in the network. A policy specifies the behaviors of a switch. A predicate
models the filtering process of a switch. Predicates may have true (1), false
(0), test (f = v), conjunctions, disjunction, and negation (¬a). An assignment
(f ← v) assigns value v to the field f . A test (f = v) checks whether the
field f is equal to v. (dup) records the current state of a packet into the history.
α is a complete test, and π is a complete assignment. f1, · · · , fk are in some
arbitrary but fixed order. απ is the complete test corresponding to the complete
assignment π, and πα is the complete assignment corresponding to the complete
test α. The operator precedence is: (∗) > (·) > (+).
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Table 1. Syntax and operational semantics of NetKAT

Example 1. As shown in Fig. 3, Host H0 sends packets to host H1 via two
switches: S0 and S1. A packet is composed of source address (src), destina-
tion address and two fields: switch (sw) and port (pt). The policy for switch S0

is encoded as:

p0 � (sw = S0 · pt = P1 · dst = H1 · pt ← P2)

It specifies that for a packet whose current location is port P1 of switch S0, and
its destination address is H1, forward the packet out through port P2.

Fig. 3. Example network for NetKAT

2.4 Operational Semantics of NetKAT

The definition of deterministic NetKAT automata is illustrated in Table 1.

– S is a finite set of states;
– δ is a continuation map, which specifies transitions from one state to another

state;



208 S. Xiang et al.

– ε is an observation map, which records information of each state;
– s0 is a distinguished start state.

Every NetKAT expression (policy) p can be interpreted as a subset of At · Π ·
(dup · Π)∗. Here At is the set of complete tests, and Π is the set of complete
assignments. The language G(p) of a NetKAT expression p is the set of strings
accepted by the finite NetKAT automaton associated with p [5].

Observing the string α π1 dup π2, we can think of it as α βπ1 βπ2 , where α is
the precondition and βπ1 denotes the postcondition after doing the assignment
π1. The placeholder dup is used to record the postcondition after the first assign-
ment. We can write postconditions explicitly and omit assignments as well as
duplications, and as a result, the language accepted by a deterministic NetKAT
automaton is just a subset of At × At × At∗.

Fig. 4. An example of deterministic NetKAT automata

Example 2. Figure 4 shows a simple deterministic NetKAT automaton and the
strings it accepts. There are four states (X,Y,Z, 0). The three vertical arrows
without subsequent states represent observation map, and the other arrows
stand for continuation map. Assuming the packet consists of two fields, and
each field has two possible values, then there are four possible complete tests
(α1, α2, α3, α4).

– Acceptd(X,α1α1) = ε(X,α1, α1) = 1, and thus the string α1α1 is accepted.
– Acceptd(X,α1α2α1) = Acceptd(δ(X,α1, α2), α2α1) = Acceptd(Y, α2α1) =

ε(Y, α2, α1) = 1, and hence the string α1α2α1 is accepted.

3 Nondeterministic NetKAT Automata

In order to prove the relation between NetKAT and PDNet in Sect. 5, next
we propose a novel definition of nondeterministic NetKAT automata as well as
a corresponding syntactic derivatives. An example of nondeterministic NetKAT
automata presented in this section will help understand the semantics of PDNet.
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3.1 Automata Definition

As shown in Table 2, a nondeterministic NetKAT automaton (Mn) is a 4-tuple
(T, Δ, E, t0) where

– T is a finite set of states;
– Δ is a continuation map;
– E is a observation map;
– t0 is a distinguished start state.

Table 2. Nondeterministic NetKAT automata

3.2 Syntactic Derivatives

In the bottom of Table 2, we define the non deterministic automata generated by
the syntactic derivatives of a NetKAT expression. Exp is a superset of reduced
NetKAT expressions that include arbitrary tests b. Every NetKAT expression is
provable equivalent to a reduced NetKAT expression, where each assignment is
a complete assignment and each test is a complete test.
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Example 3. An example is shown below to explain how to build a corresponding
nondeterministic automaton from a reduced NetKAT expression. Let the packet
have two fields (f1, f2), and each field has two possible values ({0, 1}). Thus the
set of possible complete tests is At = {f1 = 0 · f2 = 0, f1 = 1 · f2 = 0, f1 =
0 · f2 = 1, f1 = 1 · f2 = 1}. Let the start expression be α1 π1 dup π2, where
the complete test α1 is f1 = 1 · f2 = 0, the complete assignment π1 denotes
f1 ← 0 · f2 ← 0, and π2 is f1 ← 0 · f2 ← 1. Note that απ represents the complete
test that is corresponding to π. When we use α without any subscript, it stands
for any complete test that belongs to At.

The first step is to compute all the states. The computing process is given as
below. The start expression α1 π1 dup π2 is the initial state, and its subsequent
state is the expression απ1π2.

Dn(α1π1dupπ2, α) = {(e · π1dupπ2, β)|(e, β) ∈ Dn(α1, α)}
∪ {(e′, ξ)|∃η • En(α1, α, η) = 1 ∧ (e′, ξ) ∈ Dn(π1dupπ2, η)}

For Dn(α1, α) = {}, En(α1, α, η) = 1 ⇐⇒ α = η = α1

Thus Dn(α1π1dupπ2, α) = {} ∪ Dn(π1dupπ2, α1)
Then

Dn(π1dupπ2, α1) = {(e · dupπ2, β)|(e, β) ∈ Dn(π1, α1)}
∪ {(e′, ξ)|∃η • En(π1, α1, η) = 1 ∧ (e′, ξ) ∈ Dn(dupπ2, η)}

For Dn(π1, α1) = {}, En(π1, α1, η) = 1 IFF αpi1 = η

Thus D(π1dupπ2, α1) = {} ∪ Dn(dupπ2, απ1)
Then

Dn(dupπ2, απ1) = {(e · π2, β)|(e, β) ∈ Dn(dup, απ1)}
∪ {(e′, ξ)|∃η • En(dup, απ1 , η) = 1 ∧ (e′, ξ) ∈ Dn(π2, η)}

For Dn(dup, απ1) = {(απ1 , απ1)}, En(dup, α, η) = 0
Thus D(dupπ2, απ1) = {(απ1π2, απ1)} ∪ {}
Then

Dn(απ1π2, απ1) = {(e · π2, β)|(e, β) ∈ Dn(απ1 , απ1)}
∪ {(e′, ξ)|∃η • En(απ1 , α, η) = 1 ∧ (e′, ξ) ∈ Dn(π2, η)}

For Dn(απ1 , α) = {}, En(απ1 , απ1 , η) = 1 IFF απ1 = η = απ1

Thus Dn(απ1π2, α) = {} ∪ Dn(π2, απ1) = {}

The second step is to check whether a state can accept the string that is
associated with the state. En(dup, α, β) = 0, and therefore the computation
result for any string that combines with dup using the composition operator is
0. Thus, En(α1π1dupπ2, α, β) = 0, and it means that the start state does not
accept any string. The computation for the second state is as follows:

En(απ1π2, α, β) =
∑

η

(En(απ1 , α, η) · En(π2, η, β)) = 1 IFF β = απ2
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Finally, according to the computations above, we illustrate the nondeter-
ministic automata for the expression α1 π1 dup π2 in Fig. 5. We only draw those
arrows that lead to accepted strings. The two complete tests on the transition
arrow can be thought of the precondition and the postcondition after the assign-
ment π1. The postcondition of the first state should be passed to the subsequent
state, and that is, απ1 is passed to the second state as its precondition.

Fig. 5. The nondeterministic NetKAT automaton for α1 π1 dup π2

4 PDNet

4.1 PDNet Syntax

When the network to be programmed is simple, regular expressions are able to
specify VLAN fields as long as the programmer remembers the indexes and orders
of all the operations on VLAN tags. However, when the network topology is more
complex, or there are some changes that need be made (switch functionalities or
network structures that involve operations of VLAN tags) in the network, it is
tedious to modify all the related policies, since the index of the field that denotes
the outermost VLAN tag always needs to be counted carefully.

Instead of using regular expressions, we use a more intuitive and flexible
structure to model VLAN tags, and that is stack. As shown in the top of Table 2,
we add a field named f0 to store VLAN tags for each packet. Fields f1 to fk

are mapping to integers, while field f0 is mapping to a stack. When a packet
traverses VLANs, it at least has one VLAN tag, and therefore, the stack has at
least one element. f0 = v denotes checking the top (outermost) tag of the stack,
and f0 ← v stands for assigning v to the top tag. We also have push(v) and
pop that are corresponding to adding and removing of a VLAN tag respectively.
Note that a complete test or a complete assignment excludes the VLAN field.

4.2 Operational Semantics of PDNet

Just like NetKAT expressions, each PDNet expression is equivalent to a reduced
PDNet expression in which all assignments are complete assignments, and all
tests are complete tests. Because there is a stack in each packet, the intuitive
thought of developing the operational semantics of PDNet is to use pushdown
automata. To take a step further, in order to design model checking algorithms
for PDNet, we adopt pushdown system [11] to present the operational semantics.
Formally, a pushdown system P = (R,Γ, Φ, c0) is a transition system with 4-
tuple where:
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Table 3. Syntax and semantics of PDNet
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– R is a finite set of states (control locations);
– Γ is a finite stack alphabet;
– Φ is a finite subset of (R × Γ ) × (R × Γ ∗), if ((r, γ), (r′, ω)) in Φ, we can also

write it as <r, γ> ↪→ <r′, ξ>, where ξ ∈ Γ ∗.
– c0 is the initial configuration with the form of <r, ξ>, where r ∈ R and

ξ ∈ Γ ∗.

As shown in the middle of Table 3, a PDNet automaton is a nondeterministic
pushdown system Mp. R is the set of non-terminated states, while {∗} denotes
the termination state. Besides the stack in the input data, we also need to con-
sider the precondition and postcondition of an expression. Therefore a configu-
ration is composed of three elements: state, precondition (or postcondition), and
stack symbols, which is slightly different from the standard pushdown system.
γξ denotes the whole stack, and γ stands for the top element of the stack. In a
PDNet program, there are four actions that involve actions on stack:

– f0 = v: the stack is unchanged, and ω ∈ Γ ;
– f0 ← v: the top element of the stack is modified, and ω ∈ Γ ;
– push(v): a new element is added onto the top of the stack, and ω ∈ Γ × Γ ;
– pop: the top element of the stack is removed, and ω ∈ {ε}.

Fig. 6. An example of PDNet automata

Example 4. Figure 6 presents a simple PDNet automaton with three states. The
set of possible complete tests is {α, β}, and Γ = {1, 2}. The two transitions from
r0 to r0 denote push(1) and push(2) respectively. The transitions from r0 to r1
stand for pop. The strings accepted by the automaton have the form of αnβn.
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4.3 Syntactic Derivatives

As shown in Table 3, we also give a syntactic derivative for PDNet, which is an
instance of PDNet automata. The syntactic derivative is defined as:

Φ : Expp × At × Γ −→ P((Expp ∪ {∗}) × At × ({ε} ∪ Γ ∪ Γ × Γ ))
Where Expp is the set of all the strings with the syntax:
e ::= b |π | dup | f0 ← v | push(v) | pop | e + e | e · e | e∗

b is an arbitrary test that is defined in the top of Table 1, while π is a complete
assignment.

Since Exp and Expp are similar, most of the derivation rules are similar to
the rules of the syntactic derivative of nondeterministic NetKAT automata. To
make the derivation rules simpler, we combine Dn and En together to get Φ.
Besides, we delete all the branches that lead to 0. The conversion formula from
the syntactic derivative of nondeterministic NetKAT automata to the syntactic
derivative of PDNet automata is:

Φ(e, α, γ) = {(e1, β, γ)|(e1, β) ∈ Dn(e, α)} ∪ {(∗, β, γ)|En(e, α, β) = 1}
Where e does not contain any element of {push(v), f0 ← v, pop, f0 = v}.

5 Comparing NetKAT and PDNet

After introducing the syntax and operational semantics of PDNet, we compare
NetKAT and PDNet in this section, and it concerns two parts. One is that
PDNet can describe some network behaviors that NetKAT cannot, and another
one is that PDNet without actions on VLAN tags can specify the same network
behaviors as NetKAT.

Theorem 1 (Expressiveness). There are languages accepted by PDNet
automata that cannot be accepted by any NetKAT automata.

Proof sketch. As mentioned before, the strings accepted by PDNet automata
may have the form of αnβn. For example, the PDNet expression e � f0 =
1 · f1 = 0 · push(2)∗ · f1 = 1 · pop∗ · f0 = 1 denotes the behavior of letting a
packet enter k(k ≥ 0) nested VLANs and then leave the k VLANs in the reverse
order. The stack alphabet is {1, 2} and the complete tests are {f1 = 0, f1 = 1}.
The corresponding PDNet automaton is shown in Fig. 6, where r0 corresponds
to p, while r1 corresponds to the subexpression pop∗; f0 = 1. In fact the PDNet
automaton for the expression e, although finite, generates an infinite number of
configurations, and they are all needed to define the language accepted.

However, it can be proved that a NetKAT automaton cannot recognize this
language using standard language theoretical techniques such as distinguishabil-
ity classes or the pumping lemma [12]. �

Then, we prove the second part: PDNet is as expressive as NetKAT when
specifying networks without VLANs. The proof consists of three steps:
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1. Deterministic NetKAT automata and nondeterministic NetKAT automata
are language equivalent.

2. The syntactic derivative of deterministic NetKAT automata and the syntactic
derivative of nondeterministic NetKAT automata are language equivalent.

3. The syntactic derivative of nondeterministic NetKAT and the syntactic
derivative of PDNet automata are isomorphic for all PDNet expressions that
do not contain push(v), f0 ← v, pop, or f0 = v.

Lemma 1 (step 1). Given a nondeterministic NetKAT automaton (T,Δ,E, t0),
we define a deterministic NetKAT automaton (P(T ), δ, ε, s0):

– δ(X,α, β) = {(t ∈ T |∃x ∈ X · (t, β) ∈ Δ(x, α)}
– ε(X,α, β) = 1 ⇐⇒ ∃x ∈ X · E(x, α, β) = 1
– s0 = {t0}, where X ∈ P(T ).

Then ∀X ∈ P(T ), Acceptd(X,αβw) = 1 ⇐⇒ ∃x ∈ X · Acceptn(x, αβw) = 1.

Proof. w = Λ :

Acceptd(X,αβ) = ε(X,αβ) = 1 ⇐⇒
∃x ∈ X · E(x, α, β) = Acceptn(x, αβ) = 1
w = σ · w′, where σ ∈ At, w′ ∈ At∗

Acceptd(X,αβσw′) = Acceptd(δ(X,αβ), βσw′) = 1 ⇐⇒
∃t ∈ δ(X,αβ) · Acceptn(t, βσw′) = 1 ⇐⇒
∃x ∈ X · ∃(t, β) ∈ Δ(x, α) · Acceptn(t, βσw′) = 1 ⇐⇒
∃x ∈ X · Acceptn(x, αβσw′) = 1 �

Lemma 2 (step 1). Given a deterministic NetKAT automaton (S, δ, ε, s0), we
define a nondeterministic NetKAT automaton (S,Δ,E, s0):

– Δ(s, α) = {(s′, β)|δ(x, α, β) = s′}, where s ∈ S
– E(s, α, β) = 1 IFF ε(s, α, β) = 1, where s ∈ S
– Then ∀ s ∈ S, Acceptn(s, αβw) = 1 ⇐⇒ Acceptd(s, αβw) = 1

Proof. w = Λ :
Acceptn(s, αβ) = E(s, α, β) = 1 ⇐⇒ ε(s, α, β) = Acceptd(s, αβ) = 1
w = σ · w′, where σ ∈ At, w′ ∈ At∗

Acceptn(s, αβσw′) = 1 ⇐⇒
∃(t, β) ∈ Δ(s, α) · Acceptn(t, βσw′) = 1 ⇐⇒
∃(t, β) ∈ {(s′, η)|δ(s, α, η) = s′} · Acceptn(t, βσu) = 1 ⇐⇒
∃t = δ(s, α, β) � Acceptn(t, βσu) = 1 ⇐⇒
∃t = δ(s, α, β) � Acceptd(t, βσu) = 1 ⇐⇒ (hypothesis)
Acceptd(δ(s, α, β), βσu) = Acceptd(s, αβσu) = 1 �

Similar to the syntactic derivative of nondeterministic NetKAT automata shown
in Table 2, the syntactic derivative of deterministic NetKAT automata is com-
posed of a continuous map Dd and a observation map Ed.

Lemma 3 (step 2). The automaton (Exp,Dd, Ed, e0) and the automaton
(Exp,Dn, En, e0) are language equivalent.
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Proof. By induction of the length of the string.
w = Λ:

– e = b :
Acceptd(b, αβ) = Ed(b, α, β) = [α = β ≤ b] = En(b, α, β) = Accetpn(b, αβ)

– e = π :
– Acceptd(π, αβ) = Ed(b, α, β) = [π = πβ ] = En(π, α, β) = Accetpn(π, αβ)
– e = dup, e1 + e1, e1e2, or e∗

1 : · · ·
When e = dup, e1 + e1, e1e2, or e∗

1, the proofs are similar, and we do not list
them here.
w = σ · w′, where σ ∈ At, w′ ∈ At∗:

– e = b :
Acceptd(b, ασu) = Acceptd(Dd(b, α, β), βσu) = Acceptd(0, βσu) = 0
Acceptn(b, ασu) = 1 ⇐⇒ ∃(e′, β) ∈ Dn(b, α) � Acceptn(e′, βσu)
Since Dn(b, α) = {}, Acceptn(b, ασu) = 0

– e = π :
Acceptd(π, αβσw′) = Acceptd(Dd(π, αβ), βσw′) = Acceptd(0, βσw′) = 0
Acceptn(π, αβσw′) = 1 ⇐⇒ ∃(e′, β) ∈ Dn(π, α) · Acceptn(e′, βσw′) = 1
Since Dn(π, α) = {}, Acceptn(π, αβσw′) = 0 = Acceptd(π, αβσw′)

– e = dup, e1 + e1, e1e2, or e∗
1 :· · ·

The same like before, we omit the proofs for the situations where e = dup, e1 +
e1, e1e2, or e∗

1. �
Lemma 4 (step 3). Given a PDNet automaton (Exp, Γ, Φ, e) and a nondeter-
ministic NetKAT automaton (Exp,Dn, En, e), we define:

ϕ(Dn, En)(e, α) = {(e′, β)|(e′, β) ∈ Dn(e, α)∧e �= 0}∪{(∗, β)|En(e, α, β) = 1}
ψDn

(Φ)(e, α) = {(e′, β)|(e′, β) ∈ Φ(e, α)}
ψEn

(Φ)(e, α, β) = 1 ⇐⇒ (∗, β) ∈ Φ(e, α).

Then ϕ is an isomorphism for all the PDNet expressions (e) that do not contain
push(v), f0 ← v, pop, or f0 = v.

Proof.

ϕ(ψDn
(Φ), ψEn

(Φ))(e, α) = {(e′, β)|(e′, β) ∈ ψDn
(Φ)(e, α) ∧ e �= 0}

∪ {(∗, β)|En(e, α, β) = 1}
= {(e′, β)|(e′, β) ∈ Φ(e, α) ∧ e �= 0}

∪ {(∗, β)|(∗, β) ∈ Φ(e, α)}
= Φ(e, α), where e �= 0

ψDn
(ϕ(Dn, En))(e, α) = {(e′, β)|(e′, β) ∈ ϕ(Dn, En)(e, α)}

= {(e′, β)|(e′, β) ∈ {(e′′, η)|(e′′, η) ∈ Dn(e, α) ∧ e �= 0}
∪ {(∗, η)|En(e, α, β) = 1}}

= {(e′′, η)|(e′′, η) ∈ Dn(e, α) ∧ e �= 0}
= Dn(e, α), where e �= 0



PDNet: A Programming Language for SDNs with VLAN 217

ψEn
(ϕ(Dn, En))(e, α, β) = 1 ⇐⇒ (∗, β) ∈ ϕ(Dn, En)(e, α)

⇐⇒ (∗, β) ∈ {(e′, η)|(e′, η) ∈ Dn(e, α) ∧ e �= 0}
∪ {(∗, η)|En(e, α, β) = 1}

⇐⇒ En(e, α, β) = 1

�

From Lemmas 1–4, we can conclude Theorem 2.

Theorem 2 (Compatibility). Automata of NetKAT and PDNet without
push(v), f0 ← v, pop, or f0 = v recognize the same class of languages.

6 Conclusion and Future Work

This paper develops a new programming language (PDNet) based on NetKAT
to specify the behaviors of software-defined networks. The novel aspect of the
language proposed is that PDNet is able to describe the behaviors of adding,
removing and modifying VLAN tags. We use a stack in each packet to store
VLAN tags and three new actions to handle them. We also give an operational
semantics of PDNet based on pushdown system. Each PDNet expression can be
transformed into a corresponding PDNet automaton following the rules of the
syntactic derivatives.

PDNet automata are not a standard pushdown automata, as the stack is in
the input data and not part of the automaton itself. This explains why there is
no full recursion in PDNet expressions, but only tail recursion via Kleene star.

The deterministic NetKAT automata have been proposed in [5]. We give
here a novel definition of nondeterministic NetKAT automata as well as the
syntactic derivative. Finally, we compare PDNet and NetKAT. First, it is possi-
ble to construct expressions like pnqn in PDNet, which makes the language of a
PDNet automaton a context-free language. However, a NetKAT automaton can-
not recognize such language. Therefore, PDNet is more expressive than NetKAT.
Second, it is proved that PDNet without push(v), pop, f0 ← v or f0 = v is as
expressive as NetKAT.

Other work on NetKAT are mainly concern with probabilistic extension, fast
compiler or coalgebraic decision procedure [5,13,14]. We do not expect problems
with a probabilistic or weighted extension of PDNet, because these already have
been well studied in the context of pushdown systems [15,16]. In the future, we
will develop a modeling checking algorithm for PDNet, and then we may check
some interesting properties in software-defined networks with VLANs.
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Abstract. Given a program specification P and a first-order static
invariant I the problem of consistency enforcement is to determine a
modified program specification PI that is consistent with respect to I,
i.e. whenever I holds in a state S it also holds in the successor states
determined by PI , and at the same time only minimally deviates from P .
We formalise this problem by the notion of the greatest consistent spe-
cialisation (GCS) adapting and generalising this 20 year old concept to
sequential Abstract State Machines (ASMs) with emphasis on bounded
parallelism. In a state satisfying I such that P is repairable the notion of
consistent specialisation will require an enlargement of the update set,
which defines a partial order with respect to which a GCS is defined. We
show that GCSs are compositional in two respects: (1) the GCS of an
ASM with a complex rule can be obtained from the GCSs of the involved
assignments, and (2) the GCS with respect to a set of invariants can be
built using the GCSs for the individual invariants in the set.

Keywords: Consistency enforcement · Static invariant · Consistent
specialisation · Abstract State Machine · Compositionality

1 Introduction

State-based formal methods for the development of software systems place
emphasis on correctness proofs, most of which are concerned with consistency
and refinement. For the former ones we consider static invariants I that are
to hold in every state S of a program specification P . Such invariants are
expressed as logical formulae, most importantly using first-order logic (though
not restricted to this), and consistency verification splits the problem into show-
ing that consistency holds for the initial state(s) and is preserved by state transi-
tions defined by P , i.e. whenever I holds in a state S it also holds in the successor
state(s) determined by P . If such a proof fails, P has to be modified, but there
is very little methodological support for this.

A remedy to this lack of methodology is provided by consistency enforce-
ment, which has already been studied in the 1990s, in particular in the field of
databases [13]. The emphasis was mainly on the use of rule triggering systems,
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but in view of many problems associated with the active database approach
(see [14]) the interest has somehow died out. Unfortunately, this also stopped
further investigation of alternative approaches in rigorous state-based methods
such as greatest consistent specialisations (GCSs, see [15]), which were grounded
in Dijkstra’s guarded commands with predicate transformer semantics [5] in an
extended form [12] (also used at that time in the upcoming B method [1]).

In a nutshell, the problem of consistency enforcement is to determine a mod-
ified program specification PI that is consistent with respect to I, i.e. whenever
I holds in a state S it also holds in the successor states determined by PI , and
at the same time only minimally deviates from P , where “minimal deviation”
is formalised by a specialisation order, i.e. PI is maximal with respect to this
order among all consistent specialisations of P with respect to I. In the theory of
GCSs it could be shown that compositionally with respect to sets of invariants
holds, i.e. a GCS for the conjunction of invariants in a set can be essentially built
by taking the GCSs with respect to the individual invariants in arbitrary order.
It could further be shown that compositionality with respect to the composition
of P can also be achieved.

Nonetheless, the research remained uncompleted and still not fully satisfac-
tory. The notion of state space was adopted from B, and thus refers to a finite
set of state variables. When these are bound to bulk data such as sets or rela-
tions, the notion of specialisation becomes too restricted as already observed
in [11]. Furthermore, the compositional GCS construction does not take paral-
lelism into account, not even bounded parallelism, and the handling of GCSs for
assignments has not been addressed.

In this paper, we pick up the thread from the 20 year old research and investi-
gate consistency enforcement in the context of Abstract State Machines (ASMs,
[3]). In doing so we emphasise Tarski structures as states with much more fine-
grained locations, as well as non-determinism and parallelism, but we still restrict
our investigation to bounded parallelism as in sequential ASMs [10]. We also
restrict static invariants to formulae in first-order logic. As predicate transform-
ers are not suited to capture parallelism, we redefine the notion of GCS—this will
be done in Sect. 2 dedicated to preliminaries—but for simple state variables and
specifications without parallelism the new definition will cover the old one. We
will show that it is still possible to characterise specialisation using the logic of
non-deterministic ASMs [8,9]. With this we are able to prove again composition-
ality with respect to the structure of ASM rules—this gives the main content of
Sect. 3 dedicated to compositionality with respect to rules. This compositionality
result allows us to concentrate on GCSs for assignments.

In Sect. 4 we address compositionality with respect to sets of invariants. It
is easy to see that with the fine-grained notion of location compositionality
for sets of invariants as in the guarded-command-based GCS theory cannot be
achieved. However, as only assignments have to be taken into consideration, we
can exploit critical paths as in [14], where they were used to show the limitations
of rule triggering systems for consistency enforcement. Here we will use them,
again in connection with local stratification to obtain a canonical form for the
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GCS of an assignment with respect to a set of invariants. For the latter ones we
exploit a representation in clausal form, where skolemised variables give rise to
choose-rules. We conclude with a brief summery and outlook in Sect. 5.

2 Consistent Specialisations

As stated above consistency enforcement starts from a program specification P
and a static invariant I. For the former one we will concentrate on specifications
of sequential algorithms, and we know from [10] that these are captured by
sequential ASMs, so our specifications will be based on ASMs (see [3] for a
detailed introduction).

Thus, let Σ denote a signature, i.e. a finite set of function symbols. Each
f ∈ Σ has a fixed arity arf ∈ N (including 0). A structure S over Σ is given
by a base set B and an interpretation of the function symbols, i.e. for arf = n
the structure contains a function fS : Bn → B ∪ {⊥}, where ⊥ denotes a
value outside B representing undefinedness, by means of which partial functions
are captured. An isomorphism between Σ-structures S and S′ is a bijection
σ : B → B′ between the corresponding base sets of S and S′, respectively
(extended by σ(⊥) = ⊥) such that fS′(σ(v1), . . . , σ(vn)) = σ(fS(v1, . . . , vn)).

Usually, we assume an implicit background, i.e. fixed constant values and
operations on them, e.g. truth values and their junctors, or natural numbers.
The background together with Σ allows us to define terms and formulae (using
equality as predicate symbol) in the usual way. Their interpretation in a struc-
ture S is then defined as usual assuming that the constants are interpreted by
themselves and the operations on them have a fixed interpretation, with their
fixed interpretation in a structure S.

A (static) invariant over Σ is a closed first-order formula I in a logic with
equality and only the function symbols in Σ (and the background). A structure
S satisfies the invariant I (denoted as S |= I) iff the interpretation of I in S
yields true.

2.1 Sequential Abstract State Machines

ASMs provide means for the specification of computations on isomorphism
classes of structures. Thus, an ASM is defined by a signature Σ and an ASM
closed rule r. The signature defines a set S of states, out of which a subset I is
declared as set of initial states. Both S and I must be closed under isomorphisms.

Each state defines a set of locations. A location � of S is given by a function
symbol f ∈ Σ (say of arity n) and a tuple (v1, . . . , vn) ∈ Bn, where B is the
base set of S. We write valS(�) = v0 for a location � = (f, (v1, . . . , vn)) iff
fS(v1, . . . , vn) = v0 holds.

An update is a pair (�, v0) comprising a location � and a value v0 ∈ B ∪ {⊥}.
An update set is a finite set Δ of updates. Δ is called clash-free iff there cannot
be two updates (�, v), (�, v′) ∈ Δ with the same location � and v �= v′. If Δ is
a clash-free update set on state S, then there is a well-defined successor state
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S′ = S + Δ with valS′(�) = v0 for (�, v0) ∈ Δ and valS′(�) = valS(�) otherwise.
For completeness we further let S + Δ = S in case Δ is not clash-free.

The rule gives rise to state transitions. Sequential ASM rules r are defined
as follows:

– Each assignment f(t1, . . . , tn) := t0 with a function symbol f ∈ Σ of arity n
and terms ti for i = 0, . . . , n is an ASM rule.

– If ϕ is a Boolean term (i.e. it evaluates to a truth value) and r1 and r2 are
ASM rules, then also if ϕ then r1 else r2 endif is an ASM rule (branching).

– If r1, . . . , rk are ASM rules, then also par r1 . . . rk endpar is an ASM rule
(bounded parallelism).

– If x is a variable, ϕ(x) is a Boolean term with free x and r(x) is an ASM rule
with free x, then also choose x with ϕ(x) do r(x) enddo is an ASM rule
(choice).

For completeness we also permit rules of the form let x = t in r(x), skip and
fail. The former one is just a shortcut for choose x with x = t do r(x) enddo
emphasising that the “choice” is deterministic, skip can be seen as a shortcut
for some f(t1, . . . , tn) := f(t1, . . . , tn), i.e. a rule that does not change the state,
and fail represents choose x with x �= x do r(x) enddo, i.e. it is a rule that is
always undefined.

We use parentheses freely as well as the usual abbreviations for branching
rules. We also mention the unbounded parallelism rule forall x with ϕ(x) do
r(x) enddo, which is permitted in general in ASMs, but not in sequential ASMs.

Given a state S a rule r together with a valuation ζ of its free variables yields
a set of update sets, which we denote as Δr(S):

– For an assignment rule f(t1, . . . , tn) := t0 there is exactly one update set, so
we have Δr(S) = {{((f, (valS,ζ(t1), . . . , valS,ζ(tn))), valS,ζ(t0))}}.

– For a branching rule if ϕ then r1 else r2 endif we have Δr(S) = Δr1(S)
for valS,ζ(ϕ) = true, and Δr(S) = Δr2(S) for valS,ζ(ϕ) = false.

– For a bounded parallel rule par r1 . . . rk endpar we have Δr(S) = {Δ1 ∪
· · · ∪ Δk | Δi ∈ Δri

(S) for i = 1, . . . , k}.
– For a choice rule choose x with ϕ(x) do r(x) enddo we have Δr(S) =⋃

valS,ζ(ϕ(x))=true Δr(x)(S).

Then we also have Δskip(S) = {∅} and Δfail(S) = ∅.

Definition 1. An ASM is consistent with respect to an invariant I iff every
initial state S0 ∈ I satisfies I, and for every state S ∈ S satisfying I also every
successor state S′ = S + Δ with Δ ∈ Δr(S) satisfies I.

2.2 Greatest Consistent Specialisations

Recall from the introduction that the idea is to replace a specification P (i.e. a
sequential ASM) by a modified specification PI that is consistent with respect to
a given invariant I subject to some minimality condition. Let us tacitly assume
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that the given initial states S0 always satisfy S0 |= I, so we can concentrate on
the state transitions. That is, we have to modify the rule r of a given sequential
ASM. Therefore, in the following we always consider such a rule r.

Update sets in a state S represent the intention behind the specification.
It therefore appears natural to request that the modification should preserve
the updates, i.e. update sets should be (minimally) enlarged. The question is
whether this is always possible, and the next example shows that this is not the
case (see also [14]).

Example 1. Consider an ASM with a rule par p(a) := true q(a) := false
endpar and an invariant I ≡ ∀x.p(x) ⇒ q(x). Assume a is a constant
evaluated to itself, so the only update set in an arbitrary state S will be
Δ = {((p, (a)), true), ((q, (a)), false)}. Hence in every successor state S′ = S+Δ
we will have valS′(p(a)) = true and valS′(q(a)) = false, which violates I, and
no enlargement of Δ can repair this. So the specification has to be considered
to be non-repairable.

Example 1 shows that there are situations, where consistency enforcement
by means of enlarging update sets is not possible, so we need a notion of a
repairable update set. For this we consider a clash-free update set Δ ∈ Δr(S)
as a structure, i.e. we let valΔ(�) = v for (�, v) ∈ Δ and valΔ(�) = ⊥ otherwise.

Definition 2. An update set Δ ∈ Δr(S) is non-repairable with respect to an
invariant I iff Δ |= ¬I holds. An ASM is repairable in state S with respect to I
iff there is at least one repairable update set Δ ∈ Δr(S).

Now we can approach a definition of consistent specialisation.

Definition 3. Consider an ASM A with a rule r and an invariant I. An ASM
AI with rule rI is a consistent specialisation of A iff for all states S the following
holds:

(i) If S |= I, then
(a) for all repairable Δ ∈ Δr(S) there exists some Δ′ ∈ ΔrI

(S) with Δ ⊆
Δ′, and

(b) for all Δ′ ∈ ΔrI
(S) there exists a repairable Δ ∈ Δr(S) with Δ ⊆ Δ′.

(ii) If S �|= I, then ΔrI
(S) = ∅.

(iii) If S |= I, then for Δ′ ∈ ΔrI
(S) we have S + Δ′ |= I.

Note that (i) and (iii) in Definition 3 together imply that if Δr(S) only
contains non-repairable update sets, then ΔrI

(S) will be empty.
We can define a partial order ≤ on consistent specialisations of A with respect

to an invariant I. If A1 and A2 are two consistent specialisations of A with
rules r1 and r2, respectively, then we have A1 ≤ A2 iff for all states S and all
Δ1 ∈ Δr1(S) there exists a Δ2 ∈ Δr2(S) with Δ2 ⊆ Δ1.

Clearly, if an update set is repairable, then the greatest consistent speciali-
sation will contain all minimal extensions (exploit unbounded choice for this),
which justifies the following definition.
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Definition 4. Consider an ASM A with a rule r and an invariant I. An ASM
AI with rule rI is the greatest consistent specialisation (GCS) of A iff it is a
consistent specialisation and maximal with respect to the partial order ≤.

Remarks. Note that our definition of GCS is an ASM AI over the same signa-
ture as the given ASM A. Thus, states of AI are also states of A and vice versa.
Furthermore, the definition is based on the assumption that the invariant is con-
firmed to be valid, which is different from work as e.g. in [16], where invariants
are allowed to be weakened to achieve consistency. GCS are also “universal” in
the sense that all possible ways of minimal repair (as defined in Definition 3)
are taken into account leaving decisions, which of these might be preferred to
a human-driven refinement process. This differs from work of others, e.g. [4],
where machine learning methods are applied to detect the “best” repair.

Example 2. Consider a simple invariant I ≡ f �= ⊥ ⇒ g(f) �= ⊥, so the signature
Σ contains at least function symbols f and g of arity 0 and 1, respectively. Take
the rule r1 defined by f := a with a constant a. Then the GCS will be defined
by a rule

if f = ⊥ ∨ g(f) �= ⊥
then choose y do par f := a g(a) := y endpar enddo
else fail endif

This is easily verified using directly Definition 3. Note that the outermost
branching rule and the fail is only needed to capture the case of the rule being
applied in a state S not satisfying I.

Next take a rule r2 defined by g(a) := b with another constant b. Then the
GCS is defined by

if f = ⊥ ∨ g(f) �= ⊥ then g(a) := b else fail endif

Clearly, the GCS of par r1 r2 endpar is

if f = ⊥ ∨ g(f) �= ⊥ then par f := a g(a) := b endpar else fail endif

This is different from par r1I r2I endpar.

Example 3. Let us consider another simple, yet slightly more complicated exam-
ple with an invariant I ≡ f �= ⊥ ⇒ ∃y.g(f, y) = f . Let r1 be as in Example 2
and let r2 be defined as g(a, b) := a. Then the GCS of r1 is defined by

if f = ⊥ ∨ ∀y.g(f, y) �= f
then choose y do par f := a g(a, y) := a endpar enddo
else fail endif

For r2 the GCS will be defined by the rule

if f = ⊥ ∨ ∀y.g(f, y) �= f then g(a, b) := a else fail endif
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Clearly, the GCS of par r1 r2 endpar is

if f = ⊥ ∨ ∀y.g(f, y) �= f
then par f := a g(a, y) := a endpar
else fail endif

Again, this is different from par r1I r2I endpar.

Remark. In principle, the new definition of a GCS follows the idea of the defi-
nition given in [15], but as we want to deal with parallelism, the use of predicate
transformers is excluded. In addition, there are a few more subtle differences.
Definition 4 is based on update sets, which are grounded on the fine-tuned notion
of location in ASMs. For instance, every tuple in a relation defines a location,
whereas in the “old” work the whole relation would be considered as a sin-
gle value with the consequence that preserving “effects” (now updates) is much
more restrictive. We will see that this has consequences on compositionality with
respect to sets of invariants, but in Sect. 4 we will be able to achieve results that
are even more convincing than those for the “old” notion of GCSs.

3 Compositionality with Respect to Rule Composition

The key result in [15] states that the GCS can be built by first replacing elemen-
tary commands, i.e. assignments and skip, by their respective GCSs, and then
adding preconditions to ensure that the result is indeed a specialisation. This
reduces GCS construction to the case of assignments. The most difficult parts
of the decisive “upper bound theorem” are concerned with sequences and recur-
sion. In our modernised theory we can dispense with recursion, as the semantics
of ASMs includes the iteration of the rule, so we have a finer-grained notion
of consistency. Nonetheless, an extension to recursive ASMs (see [2]) is likewise
possible. As we deal with sequential algorithms there is also no need to bother
about sequences, as they are not needed (see the proof of the sequential ASM
thesis in [10] and the corresponding behavioural theory of unbounded parallel
algorithms in [7]; sequences can be easily expressed using bounded parallelism
and branching). However, we now have to deal at least with bounded parallelism,
to which the theory in [15] does not apply.

In this section we will nonetheless show that compositionality holds for
sequential ASM rules, and the most difficult part of the proof will concern the
case of the bounded parallel rule. This will reduce GCS construction again to
assignments, which we will handle in the next section.
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3.1 Branching and Choice

First consider the cases of branching and choice rules.

Proposition 1. Let A be an ASM with a rule of the form if ϕ then r1 else r2
endif. Then the rule of its GCS AI with respect to an invariant I can be written
as if ϕ then r1I else r2I endif, where riI is the rule of the GCS of the ASM
defined by ri.

Due to space and time restrictions we omit the proof here. We only have to
check the conditions of Definitions 3 and 4 using the definition of update sets
yielded by branching rules. This is rather straightforward.

Proposition 2. Let A be an ASM with a rule of the form choose x with ϕ(x)
do r(x) enddo. Then the rule of its GCS AI with respect to an invariant I can
be written as choose x with ϕ(x) do rI(x) enddo, where rI(x) is the rule of
the GCS of the ASM defined by r(x).

Same as for the proof of Proposition 1 the proof of Proposition 2 is rather
straightforward based on the definition of update sets yielded by a choice rule
and Definitions 3 and 4.

3.2 Bounded Parallelism

Next consider the case of a bounded parallel rule. As Examples 2 and 3 already
show, we cannot obtain a simple compositional result as in Proposition 1 or 2.
If we build the GCSs of the different parallel branches of an unbounded parallel
rule separately and recombine them using unbounded parallelism, then we may
have additional branches that subsume those in the real GCS. There may also
be fail branches. Both have to be excluded.

In order to do this we need to exploit the logic of non-deterministic ASMs
[8,9], which is defined as a fragment of second-order logic, in which quantification
over update sets is permitted. However, as we are not yet dealing with unbounded
parallelism, we can simplify the logic discarding multiset functions and thus also
update multisets. We can also dispense with the difficult handling of meta-finite
structures.

Terms of the logic are the terms defined by the given ASM. Formulae of the
logic are built inductively using the following rules:

– If s and t are terms, then s = t is a formula.
– If t1, . . . , tr are terms and X is a second-order variable of arity r, then

X(t1, . . . , tr) is a formula.
– If r is a rule and X is a second-order variable of arity 3, then upd(r,X) is a

formula.
– If ϕ and ψ are formulae, then also ¬ϕ, ϕ ∨ ψ are formulae.
– If ϕ is a formula, x is a first-order variable and X is a second-order variable,

then also ∀x.ϕ and ∀X.ϕ are formulae.
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– If ϕ is a formula and X is a second-order variable of arity 3, then [X]ϕ is a
formula.

Additional junctors and quantifiers such as ∧, → and ∃ are defined as short-
cuts in the usual way. We also use 〈X〉ϕ as shortcut for ¬[X]¬ϕ as common in
dynamic logic.

In [8] a Henkin semantics for the logic was defined, in which the interpretation
of second-order quantifiers is part of the specification of a structure.

Definition 5. A Henkin prestructure over signature Σ is a state S with non-
empty base set B extended by sets of n-ary relations Dn ⊆ P(Bn) for each
n ≥ 1.

Variable assignments ζ for a Henkin prestructure S are defined as usual.
We have ζ(x) ∈ B for first-order variables x, and ζ(X) ∈ Dn for second-order
variables X of arity n. Given a variable assignment, formulae can be interpreted
in a Henkin prestructure. As we want to obtain update sets, we introduce new
constant symbols cf for each function symbol f ∈ Σ. For a second-order variable
X of arity 3 we write valS,ζ(X) ∈ Δ(r, S, ζ), meaning that there is a set Δ ∈
Δ(r, S, ζ) such that (f, a0, a1) ∈ U iff (cS

f , a0, a1) ∈ valS,ζ(X).
If ϕ is a formula, then the truth value of ϕ on S under ζ is determined as

follows:

– If ϕ is of the form s = t, then [[ϕ]]S,ζ = true iff valS,ζ(s) = valS,ζ(t).
– If ϕ is of the form X(t1, . . . , tr), then [[ϕ]]S,ζ = true iff (valS,ζ(t1), . . . ,

valS,ζ(tn)) ∈ valS,ζ(X).
– If ϕ is of the form upd(r,X), then [[ϕ]]S,ζ = true iff valS,ζ(X) ∈ Δ(r, S, ζ).
– If ϕ is of the form ¬ψ, then [[ϕ]]S,ζ = true iff [[ψ]]S,ζ = false.
– If ϕ is of the form (α ∨ ψ), then [[ϕ]]S,ζ = false iff [[α]]S,ζ = [[ψ]]S,ζ = false.
– If ϕ is of the form ∀x.ψ, then [[ϕ]]S,ζ = true iff [[ψ]]S,ζ[x�→a] = true for all

a ∈ B.
– If ϕ is of the form ∀X.ψ, where X is a second-order variable of arity n, then

[[ϕ]]S,ζ = true iff [[ψ]]S,ζ[X �→R] = true for all R ∈ Dn.
– If ϕ is of the form [X]ψ, then [[ϕ]]S,ζ = false iff ζ(X) represents a clash-free

update set Δ such that [[ψ]]S+Δ,ζ = false holds.

We can use the logic to define con(r,X) to express that X represents one of
the possible update sets generated by the rule r, and that X is clash-free. This
can be expressed in the logic by the formula con(r,X) ≡ upd(r,X)∧conUSet(X),
where

conUSet(X) ≡
∧

f∈Σ

∀x, y, z.X(cf , x, y) ∧ X(cf , x, z) → y = z.

Furthermore, in accordance with [15, Prop.7] we can use χ(r, r′) to express
that r′ subsumes r. This can be expressed in the logic by

χ(r, r′) ≡ {L′ �→ L}.[r′′]〈r〉(L = L′),
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where L represents the common locations used by rules r and r′, L′ is a dis-
joint copy of L, and r′′ results from r′ by replacing all locations in L by the
corresponding ones in L′.

Proposition 3. Let A be an ASM with a rule of the form par r1 . . . rk endpar.
Then the rule of its GCS AI with respect to an invariant I can be written as

choose y1, . . . ,yk with
∧

1≤i≤k

ψi(yi) ∧ ∃Xi.con(r′
i(yi),Xi)

do par . . . r̂i(yi) . . . endpar enddo,

where r̂i(yi) is defined to be the rule

if
∧

j �=i

¬χ(r′
j(yj), r′

i(yi)) then r′
i(yi) else fail endif

using the GCSs with the rules riI of the form

choose yi with ψi(yi) do r′
i(yi) enddo.

For the proof, which we have to omit due to space and time restrictions,
we look again directly at Definitions 3 and 4. It is easy to see that the parallel
composition of GCSs riI defines a consistent specialisation, but in general not
the GCS. Conditions con(r′

i(yi),Xi) remove branches with clashes in update
sets, and conditions ¬χ(r′

j(yj), r′
i(yi)) discard parallel branches yielding update

sets that contain update sets from other branches.
Note that in Proposition 3 we assume that the GCSs riI of the rules ri have a

specific form. This is in accordance with Propositions 1, 2 and (inductively) 3 as
well as with the key result (see Theorem 1 in Sect. 4), on GCSs of assignments.

Example 4. Let us reconsider Examples 2 and 3. In the former case the parallel
composition of r1I and r2I leads to the rule

if f = ⊥ ∨ g(f) �= ⊥
then choose y do par f := a g(a) := b g(a) := y endpar enddo else
fail endif

Each parallel branch with y �= b defines only update sets that are not clash-
free. The requirement in Proposition 3 that there must exist a clash-free update
set removes these branches, so only the correct GCS remains.

In Example 3 the parallel composition of r1I and r2I leads to the rule

if f = ⊥ ∨ ∀y.g(f, y) �= f
then choose y do par f := a g(a, b) := a g(a, y) := a endpar enddo
else fail endif

Here a parallel branch with y �= b leads to update sets with an additional
update ((g, (a, y)), a), hence χ(r′(b), r′(y)) holds (using r′(y) as name for the
rules inside the par-block). Then the condition in Proposition 3 excludes such
branches, and we obtain the correct GCS.
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4 Compositionality with Respect to Sets of Invariants

Propositions 1, 2 and 3 allow us to build the GCS in a compositional way, pro-
vided the GCSs of assignments are known. We will address assignments in this
section. We will combine this directly with the treatment of sets of invariants.
Clearly, consistency with respect to such a set is equivalent to consistency with
respect to the conjunction of the invariants in the set, so the results of the
previous section can be preserved.

In [15, Prop.12] it could be shown that with the coarse notion of GCS defined
there compositionality with respect to conjunctions can be easily obtained. In
other words, a GCS with respect to a set of invariants can be built step-by-step
using the invariants in the set in arbitrary order. This does no longer hold in
our modernised and fine-grained case, as the following example shows.

Example 5. Consider two invariants I1 ≡ ∀x.p(x) ⇒ q(x) and I2 ≡ ∀x.p(x) ⇒
p(f(x)). Taking an ASM with a rule p(a) := true, its GCS with respect to I1 is
defined by the rule par p(a) := true q(a) := true endpar on states satisfying
I1. Building for this the GCS with respect to I2 gives a rule, which on states
satisfying I1 ∧ I2 takes the form par p(a) := true q(a) := true p(f(a)) := true
endpar, which is not the GCS with respect to I1 ∧ I2.

The reason for the discrepancy between Example 5 and the “old” theory in
[15] is again due to the changed treatment of locations. Using the theory in [15] p
and q would be state variables bound to unary relations, i.e. sets, and a GCS for
an assignment such as p(a) := true—in fact an insertion—cannot make further
changes to p, and only use preconditions to enforce I2.

Fortunately, there is away to deal simultaneously with several invariants
mutually influencing each other. This is inspired by the handling of rule trigger-
ing systems in [14]. We will adopt this theory here exploiting the fact that it is
only required for consistency enforcement for a single assignment. In fact, single
assignments are almost always repairable, unless the invariant contains a single
literal.

4.1 Clausal Form and Atomic Repairs

We assume that invariants I are first-order formulae, so we can write them in
prenex normal form

∀x1∃y1∀x2∃y2 . . . .ϕ(x1,y1,x2,y2, . . . ).

Then the existentially quantified variables can be replaced by Skolem functions
y1j = sk1j(x1), y2j = sk2j(x1, sk11(x1), . . . , sk1n1(x1),x2), etc.

We can further assume that the quantifier-free formula ϕ(x1,y1,x2,y2, . . . )
is written in conjunctive normal form, so it gives rise to a set of clauses, i.e.
disjunctions of literals ¬L1 ∨ ¬L2 ∨ · · · ∨ ¬Lk ∨ Lk+1 ∨ · · · ∨ Lk+� with the
variables xij and yij appearing in the atoms. Furthermore, atoms are simply
equations.
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A violation of an invariant I is always linked to a violation of one of its
clauses, so we concentrate on the clauses. As in the relational case treated in
[14] we may define an atomic repair by means of a trigger. In case a positive
literal t1 or a negative literal ¬t2 is violated by an assignment changing the
value of either t1 or t2 and this leads to the whole clause to become false, we
can use another assignment making a positive literal t′1 �= t′2 to become true
or a negative literal ¬t′1 �= ¬t′2 become false. Any variable appearing in t1 or
t2 must also be bound to the same value in the triggered update, and all other
variables must be selected by embedding the assignment into a choose-rule.
Any such possibility defines an atomic repair rule comprising an event E, i.e. an
assignment rule leading to an invariant violation, a clause I that is violated, and
a repair R, which is an assignment embedded in a choice-rule. In analogy to rule
triggering system we write on E if ¬I do R for such an atomic repair rule.

Example 6. Let us consider a simple example adopted from [14, Ex.5] with three
clauses:

I1 ≡ ¬p(x) ∨ ¬r(x) ∨ q(x) I2 ≡ ¬q(x) ∨ p(x) I3 ≡ ¬p(x) ∨ r(x)

Then we obtain the following ten atomic repair rules:

R1 : on p(x) := true if ¬I1 do q(x) := true

R2 : on q(x) := false if ¬I1 do p(x) := false

R3 : on r(x) := true if ¬I1 do q(x) := true

R4 : on q(x) := false if ¬I1 do r(x) := false

R5 : on q(x) := true if ¬I2 do p(x) := true

R6 : on p(x) := false if ¬I2 do q(x) := false

R7 : on p(x) := true if ¬I3 do r(x) := true

R8 : on r(x) := false if ¬I3 do p(x) := false

R9 : on p(x) := true if ¬I1 do r(x) := false

R10 : on r(x) := true if ¬I1 do p(x) := false

It is easy to see that all possible atomic repair rules—assuming a single
assignment causing a violation—can be derived from a clause, the on-part refers
to the violating assignment, the if -part is the negation of the clause, and the
do-part is an assignment corresponding to another literal in the clause, by means
of which the violation would be disabled.

A set of atomic repair rules is said to be complete for an assignment rule r iff
for every possible violation of an invariant clause I defined by a set of invariants
there is at least one atomic repair rule with event r and clause I, and the same
holds for all assignment rules appearing as repair in at least one atomic repair
rule. A complete set of repair rules for r defines a sequential ASM rule, which
we call a complete repair and denote as rrep.
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4.2 Critical Paths

We will now provide the means to reduce a system of atomic repair rules in such
a way that we can obtain a GCS. For this we adapt the notions of rule graph
and critical trigger path.

Definition 6. Let Σ be a signature and R a set of atomic repair rules on Σ.
Then the associated rule graph (V,E) is defined as follows:

– The set V of vertices is the disjoint union of Σ and R. We then talk of
Σ-vertices and R-vertices, respectively.

– If R ∈ R has event E affecting a location of p ∈ Σ and a repair on q ∈ Σ,
then we have an edge from p to R labelled by + or − depending on E leading
to a violation of a negative or a positive literal, respectively, and an edge
from R to q analogously labelled by + or − depending on whether the repair
assignment on a q-location refers to a positive or negative literal.

Definition 7. Let (V,E) be the rule graph associated with a system R of atomic
repair rules. A trigger path is a sequence v0, e1, v

′
1, e

′
1, . . . , e

′
�, v� of vertices and

edges such that vi ∈ Σ for all i = 0, . . . , �, v′
i ∈ R holds for all i = 1, . . . , �, ei is

an edge from vi−1 to v′
i, and e′

i is an edge from v′
i to vi with the same label as

ei+1.

For a trigger path assign to each vertex vi ∈ Σ a formula ϕi that is the
negation of a clause such that the following conditions hold:

(i) ϕi implies the negation of the clause associated with v′
i+1;

(ii) the application of the repair in v′
i+1 will lead to a state satisfying ϕi+1.

Definition 8. A trigger path v0, e1, v
′
1, e

′
1, . . . , e

′
�, v� is critical iff it has maxi-

mum length and |= ¬(ϕ0 ∨ ϕ�) holds.

Intuitively, a critical trigger path corresponds to a sequence of applications
of atomic repair rules, each initialised by a violation of a clause, which finally
lead to a state, where the intended update is undone. Thus, such trigger paths
cannot define an extension of a repairable update set.

Proposition 4. Let S be a consistent state with respect to a given set of invari-
ants, let r be an assignment affecting a location with function symbol p ∈ Σ, and
assume S + Δr(S) |= ϕ0, where ϕ0 is a conjunction of literals. Then for a com-
plete repair rrep the sequence r; rrep is a consistent specialisation with respect to
the conjunction of the given invariants iff there is no critical trigger path starting
with a vertex p labelled by ϕ0.

The proof, which we cannot present here, basically follows the arguments
used in the proof of [14, Prop.4]. If there were such a critical trigger path, it
would lead to a state, in which one of the updates in Δr(S) would be discarded,
which is contained in the definition of a critical trigger path. Conversely, if there
is no such trigger path, rrep will lead to a state satisfying ϕ�.
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4.3 Locally Stratified Sets of Invariants

We now look for sufficient and necessary conditions on the set of clauses derived
from a set of invariants that will allow us to obtain a complete repair satisfying
the conditions in Proposition 4, i.e. the absence of critical paths. The intuition
behind this procedure is that non-critical trigger paths give rise to cumula-
tive updates, by means of which a repairable update set can be extended to
achieve consistency, whereas critical trigger paths would undo some of the given
updates. A complete repair then defines a consistent specialisation as shown by
Proposition 4.

Definition 9. Let C be a set of clauses on Σ derived from a set of invariants.
Then C is called stratified iff there is a partition C = C1 ∪ . . .∪Cn with pairwise
disjoint sets of clauses Ci called strata such that the following conditions are
satisfied:

(i) If L is a negative (or positive, respectively) literal of some clause c ∈ Ci,
then all clauses c′ ∈ C containing a positive (or negative, respectively) literal
L′ such that L and L′ are unifiable also lie in stratum Ci.

(ii) All clauses c, c′ containing unifiable literals L and L′ either both positive or
both negative must lie in different strata.

Stratified sets of clauses give rise to complete repairs without critical trigger
paths.

Proposition 5. Let C be a set of clauses on Σ derived from a set of invariants,
and assume that C is stratified. Then there exists a complete repair rrep such that
the sequence r; rrep is a consistent specialisation with respect to the conjunction
of the given invariants.

For the proof, which we omit again due to space and time restrictions, we
construct the set of all atomic repair rules from C. Then assume the existence of
a critical trigger path initiated by r, i.e. r affects a location with function symbol
p ∈ Σ, S+Δr(S) |= ϕ0 holds for a conjunction of literals, and the critical trigger
path starting with a vertex p labelled by ϕ0. Then ϕ0 and ϕ� must contain a
literal and its negation, respectively, and the corresponding rules must involve
clauses in different strata, which leads to a contradiction.

Stratified sets of invariant clauses are sufficient for the construction of con-
sistent specialisation, and stratification can be checked effectively and efficiently
(see Algorithm 8 and Propositions 9 and 10 in [14]), but stratification is no nec-
essary condition. We will now look at the weaker notion of local stratification,
which will give us also a necessary condition.

Definition 10. Let C be a set of clauses on Σ derived from a set of invariants.
A labelled subsystem consists of a literal L (the label), a subset C ′ = {c ∈ C |
ρL(c) is defined}, and a set of clauses C ′′ = {ρL(c) | c ∈ C ′} such that each
clause c ∈ C ′ can be written as the disjunction ρL(c) ∨ c′ with |= c′ ⇒ L.
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Here ρL(c) is defined iff the negation ∼L does not occur in the clause c. Then
ρL(c) results from c by omission of the literal L, if the result contains at least
two literals. Otherwise ρL(c) is simply c. We call c′ the label part and ρL(c) the
label-free part of the clause c. If L is understood from the context, we drop the
subscript and write ρ instead of ρL.

A labelled subsystem (C ′, C ′′, L) is called stratified iff the set C ′′ is stratified
in the sense of Definition 9 or locally stratified as defined below.

Definition 11. Let C be a set of clauses on Σ derived from a set of invariants.
Then C is called locally stratified iff C = C ′

1 ∪ · · · ∪ C ′
n with stratified labelled

subsystems (C ′
i, C

′′
i , Li) (i = 1, . . . , n) such that for each clause c ∈ C ′

i and each
literal L occurring in its label part with respect to Ci there exists another j with
c ∈ C ′

j and L occurring in its label-free part of c with respect to Cj .

Proposition 6. Let C be a set of clauses on Σ derived from a set of invari-
ants. Then there exists a complete repair rrep such that the sequence r; rrep is a
consistent specialisation with respect to the conjunction of the given invariants
iff C is locally stratified.

For the proof of sufficiency we can proceed analogously to the proof of
Proposition 5, i.e. we take the local strata to define sets of atomic repair rules
and build the union of these. Then the assumption of a critical trigger path leads
again to a contradiction to the set of clauses being locally stratified.

Conversely, if we have a consistent specialisation r; rrep Proposition 4 implies
the absence of critical trigger paths. From this it is possible to construct a local
stratification (see also the proof of [14, Thm.12].

Example 7. Reconsider the invariants in Example 6. It is easy to see that this
set is locally stratified leading to the atomic repair rules in the example without
R9 and R10.

Finally, we can obtain the GCS of an assignment r by a choice between
all possible complete repairs defined by local stratifications of the given set of
invariants.

Theorem 1. Let C be a locally stratified set of clauses on Σ derived from a
set of invariants. Then the GCS of an assignment r with respect to the set of
invariants is defined by the sequence r; rep, where rep is defined by the choice
among all complete repairs rrep defined by different local stratifications of C.

5 Conclusion

In this paper we picked up the 20 year old theory of greatest consistent spe-
cialisation for consistency enforcement with respect to static invariants. We
generalised the definition in the context of sequential Abstract State Machines
with finer grained locations and bounded parallelism. Then we obtained gen-
eralised compositionality results with respect to the composition of ASM rules
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and sets of invariants. The new theory supports the systematic construction of
consistent specifications, which is not bound to ASMs.

However, we still excluded unbounded parallelism from our investigation.
Extending the theory in this direction is an open, non-trivial task for continued
research. We also emphasised only invariants expressed in first-order logic as well
as only static invariants, though this covers the vast majority of specifications
using state-based rigorous methods. Nonetheless, extensions to more complex
invariants as well as a theory for transition or general dynamic invariants would
make sense. For instance, in [6] the importance of higher-order logic constructs
in formal methods was emphasised. Furthermore, in a database context many
classes of static constraints have been studied [17]. These give rise to important
classes of static invariants that could be used to derive a catalogue of GCSs for
them, and this could be further extended to classes of invariants in other contexts
giving even more support for the construction of consistent specifications.

References

1. Abrial, J.-R.: The B-Book - Assigning Programs to Meanings. Cambridge Univer-
sity Press, Cambridge (2005)

2. Börger, E., Schewe, K.-D.: A behavioural theory of recursive algorithms (2019).
Submitted for publication

3. Börger, E., Stärk, R.: Abstract State Machines. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-642-18216-7

4. Cai, C., Sun, J., Dobbie, G.: B-repair: repairing B-models using machine learning.
In: 23rd International Conference on Engineering of Complex Computer Systems
(ICECCS 2018), pp. 31–40. IEEE Computer Society (2018)

5. Dijkstra, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics. Texts
and Monographs in Computer Science. Springer, New York (1990). https://doi.
org/10.1007/978-1-4612-3228-5
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Abstract. In this paper we present a method based on linear program-
ming that facilitates reliable safety verification of hybrid dynamical sys-
tems subject to perturbation inputs over the infinite time horizon. The
verification algorithm applies the probably approximately correct (PAC)
learning framework and consequently can be regarded as statistically
formal verification in the sense that it provides formal safety guarantees
expressed using error probabilities and confidences. The safety of hybrid
systems in this framework is verified via the computation of so-called
PAC barrier certificates, which can be computed by solving a linear pro-
gramming problem. Based on scenario approaches, the linear program is
constructed by a family of independent and identically distributed state
samples. In this way we can conduct verification of hybrid dynamical
systems that existing methods are not capable of dealing with. Some
preliminary experiments demonstrate the performance of our approach.

Keywords: Hybrid systems · Probably approximately safe · Linear
program

1 Introduction

The complexity of today’s technological applications induces a quest for automa-
tion, leading to autonomous cyber-physical systems [9]. Many of these systems
operate in safety-critical contexts and hence become safety-critical systems them-
selves. Being safety-critical, they have to reliably sustain safety despite pertur-
bations. The propagation of these perturbations however tends to be highly non-
linear and combine continuous and discrete dynamics. Such combined dynam-
ics yield a hybrid dynamical system involving interacting discrete-event and
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continuous-variable dynamics. Hybrid dynamical systems are important in appli-
cations such as robotics, manufacturing systems and bio-molecular networks, and
have been at the center of intense research activity in computer-aided verifica-
tion, control theory, and applied mathematics [2].

The process of verifying with mathematical rigor that a hybrid dynami-
cal system behaves correctly is a well-established branch of formal methods in
computer science [1]. Unfortunately, many decision problems underlying formal
verification of hybrid systems are undecidable [17]. Even surprisingly simple
dynamical systems combining discrete and continuous dynamics feature unde-
cidable state-reachability problems, like multi-priced timed automata with stop-
watch prices [13] or three-dimensional piecewise constant derivative systems [3].
General undecidability renders sound yet incomplete automatic verification
methods as well as methods providing a controlled approximation error attrac-
tive, e.g. [10,14,26], which nevertheless are computationally expensive. Although
sophisticated heuristics have been developed to improve scalability of the tech-
niques, automatic key-press formal verification of real-world systems is still con-
sidered to be impractical [30]. Techniques for simulation-based verification can
prove fruitful in this regard for systems over finite time horizons, as they combine
the scalability of simulation with rigorous coverage criteria supporting either a
complete or a statistical verification through generalization from samples [23,38].

In this paper we propose a linear programming based method that facilitates
reliable, in the sense of featuring a rigorously quantified confidence in the ver-
ification verdict, safety verification of hybrid systems subject to perturbations
over the infinite time horizon. Akin to [11], the verification algorithm applies the
framework of PAC learning theory [15] to adjust the effort invested in generating
samples to a desired confidence in the verification verdict. Given a confidence
β ∈ (0, 1), the objective is to compute a probability ε ∈ (0, 1) such that the prob-
ability of initial continuous states leading to the satisfiability of safety properties
is larger than 1−ε, with at least 1−β confidence. Such verification in our method
is studied by learning a so-called PAC barrier certificate with respect to ε and β,
which withat least 1 − β confidence is indeed a barrier certificate with probabil-
ity larger than 1 − ε. The computation is based on scenario approaches [6] and
linear interval inequalities [28], which encodes as a linear programming problem.
The linear program is constructed using linear interval inequalities and a family
of independent and identically distributed state samples extracted from the ini-
tial set. Based on the computed solution to this linear program, confidence level
β ∈ (0, 1) and number of samples, we compute a probability measure ε based
on scenario approaches such that the computed solution to the linear program
forms a PAC barrier certificate with respect to ε and β. Consequently we con-
clude that the probability of initial continuous states leading to the satisfiability
of safety properties is larger than 1− ε, with confidence higher than 1−β. Some
examples demonstrate the performance and merits of our approach.
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2 Preliminaries

In this section we introduce hybrid systems, the safety verification problem,
scenario approaches and linear interval inequalities. The following notations are
used throughout this paper: C1(Rn) is the set of continuously differentiable func-
tions from R

n to R. R≥0 denotes the set of nonnegative real values and R>0

denotes the set of positive reals. Vectors are denoted by boldface letters.

2.1 Hybrid Systems

A hybrid system is a tuple H = (X , L,X,X0, Inv,F , T ) [24]:

– X ⊆ R
n is the continuous state space;

– L is a finite set of locations and we will in the sequel denote its cardinality
by M = |L| with L = {1, . . . , M};

– The overall state space of the system is X = L×X , and a state of the system
is denoted by (l,x) ∈ L × X ;

– X0 ⊆ X is the set of initial states;
– Inv : L → 2X is the invariant, which assigns to each location l a set Inv(l) ⊆

X that contains all possible continuous states while at location l;
– F : X → 2R

n

is a set of vector fields. F assigns to each (l,x) ∈ X a set
F (l,x) ⊆ R

n which constrains the evolution of the continuous state according
to the differential inclusion ẋ ∈ F (l,x);

– T ⊆ X ×X is a relation capturing discrete transitions between two locations.
Here a transition ((l′,x′), (l,x)) ∈ T indicates that from the state (l′,x′) the
system can undergo a discrete jump to the state (l,x).

We assume that the uncertainty in the continuous flow is caused by some per-
turbation inputs in the manner: F (l,x) = {ẋ ∈ R

n | ẋ = fl(x,d), for some d ∈
D(l)}, where fl(x,d) is a vector field that governs the flow of the system at loca-
tion l, and d is a vector of perturbation inputs that takes value in D(l) ⊂ R

r.
Trajectories of the hybrid system H starting from some initial state (l0,x0) ∈

X0 are concatenations of steps, with each step either being a continuous flow
or a discrete transition, with the endpoint of each step matching the startpoint
of the next step, and with the first step starting in (l0,x0) ∈ X0. During a
continuous flow, the discrete location l is maintained and the continuous state
evolves according to the differential inclusion ẋ ∈ F (l,x), as long as x remains
inside the invariant set Inv(l). At a state (l1,x1) a discrete transition to (l2,x2)
can occur iff ((l1,x1), (l2,x2)) ∈ T . We then say that x1 ∈ Gl1,l2 = {x1 ∈ X |
((l1,x1), (l2,x)) ∈ T for some x ∈ X} and x2 ∈ Rl1,l2(x1), where Rl1,l2 : x1 →
{x ∈ X | ((l1,x1), (l2,x)) ∈ T}. If Gl′,l is empty then no discrete transition
from location l′ to location l is possible and the associated reset map undefined.
Although not explicitly stated, it is assumed that the description of the hybrid
system given above is well-posed. For example, (l,x) ∈ X0 automatically implies
that x ∈ Inv(l), and ((l′,x′), (l,x)) ∈ T implies that x′ ∈ Inv(l′) and x ∈ Inv(l).

Given a system H and a set of unsafe states Xu ⊆ X, the classical safety
verification problem is concerned with proving that no trajectory of the hybrid
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system H originating from the set X0 of initial states can ever enter the unsafe
region Xu. If this property holds, the hybrid system H is safe. Unfortunately,
such safety verification problem is undecidable generally and consequently is
challenging, even for systems with simple dynamics. In this paper we relax the
notion of safety, replacing qualitative safety (no trajectory may ever reach an
unsafe state) by quantitative safety (the probability of unsafe behaviors stays
below a quantitative safety target with some specified confidence). We call a
system satisfying the latter property probably approximately safe. Its concept is
formally introduced in Definition 1. The probably approximate safety verifica-
tion applies the PAC learning framework [15] and consequently can be regarded
as statistically formal verification in the sense that it provides formal safety
guarantees expressed using error probabilities and confidence.

Suppose Ini(l) = {x | (l,x) ∈ X0} is endowed with a σ−algebra Dl and
that a probability Prl over Ini(l) is assigned, where l ∈ L. In addition, we
assume Ini = Ini(1) × . . . × Ini(M) is endowed with a σ−algebra D′ and that
a probability Pr over D′ is assigned. Obviously, Pr = Pr1 × . . . × PrM .

Definition 1. A hybrid system H is probably approximately safe with respect
to the set Ini, ε ∈ (0, 1) and β ∈ (0, 1) (or, PAS(ε, β)) if with at least 1 − β
confidence, Pr(C) ≥ 1 − ε, where C = Ini′(1) × . . . × Ini′(M) is a subset of the
set Ini and Ini′(l) ⊆ Ini(l) is a set of continuous states xs in the location l ∈ L
such that trajectories of H starting from (l,x) never enter the unsafe region Xu.

Besides, we in this paper restrict the invariant set Inv(l), disturbance set
D(l), unsafe set Uns(l), guard set Gl′,l and initial set Ini(l) to the interval form
for l ∈ L, where Uns(l) = {x | (l,x) ∈ Xu}. The probability distribution Prl

is assumed to be uniform distribution over Ini(l) for l ∈ L. We need to point
out here that our method is not limited to this particular probability distribu-
tion. This feature is reflected in scenario approaches, which will be introduced in
Subsect. 2.2. To some extent, the assumption of uniform distribution over Ini(l)
for l ∈ L is reasonable since every continuous state in Ini(l) is of equal impor-
tance especially for safety-critical systems. Any state leading to a violation of the
safety property will result in a systems failure. Ideally, we wish that the hybrid
system is safe for every initial state. As mentioned before, this is challenging to
verify with mathematical rigor. Inspired by machine learning theory, we attempt
to use a family of random finite states in Ini(l) to learn safety information of
hybrid systems in the PAC framework and would expect to verify systems that
existing verification methods are not capable of dealing with.

2.2 Scenario Approaches

The scenario optimization has been shown as an intuitive and effective way
to deal with chance-constrained optimization [4,5] based on finite randomiza-
tion of the constraints at the expense of giving probabilistic guarantees on the
robustness of the solution. Concretely, consider the chance-constrained optimiza-
tion:
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min
x∈Rm

J(x)

s.t. P
({δ ∈ Δ | max

j=1,...,nm

gj(x, δ) ≤ 0}) ≥ 1 − ε,
(1)

where δ ∈ Δ ⊆ R
r, J : Rm → R is a convex function and gj : Rm × R

r → R

for j = 1, . . . , nm. Besides, {x ∈ R
m | maxj=1,...,nm

gj(x, δ) ≤ 0} is convex and
closed for fixed δ. Any x satisfying the chance constraint of (1) is referred to as
an ε−level feasible solution. It is assumed that Δ is endowed with a σ−algebra
D and that P is a probability measure defined over D.

The scenario approach substitutes the chance constraint in (1) with a finite
number of hard constraints, each corresponding to a different realization δ(k),
k = 1, . . . , N of the uncertain parameter δ, extracted independently according
to the probability distribution P . This leads to the convex optimization:

min
x∈Rm

J(x)

s.t. max
j=1,...,nm

gj(x, δ(i)) ≤ 0, i = 1, . . . , N.
(2)

Assumption 1. The convex optimization (2) is feasible for all possible multi-
sample extractions (δ(1), . . . , δ(N)) ∈ ΔN and its feasibility region has a non-
empty interior. Moreover, the solution x∗ of (2) exists and is unique.

One can allow for violating part of the sample constraints to improve the
optimal value by removing some sample constraints. Any removal algorithm A
can be used when removing constraints in (2) [4]. The randomized program (2)
where k constraints are removed by A is expressed as

min
x∈Rm

J(x)

s.t. max
j=1,...,nm

gj(x, δ(i)) ≤ 0, i ∈ {1, . . . , N} \ A(δ(1), . . . , δ(N))
(3)

and its solution is indicated as x∗∗. We assume the following:

Assumption 2. x∗∗ almost surely violates all the k removed constraints.

Theorem 1 [4,5]. Let β ∈ (0, 1) be any small confidence value. If N and k

are such that
(
k+m−1

k

) ∑k+m−1
i=0

(
N
i

)
εi(1 − ε)N−i ≤ β, where m is the number of

optimization variables, then with probability at least 1 − β, we have that P
({δ ∈

Δ | maxj=1,...,nm
gj(x∗∗, δ) ≤ 0}) ≥ 1 − ε.

In Theorem 1, 1−β is the N -fold probability PN in ΔN = Δ×Δ×· · ·×Δ, i.e.,
the set to which the extracted sample

(
δ(1), . . . , δ(N)

)
belongs.

2.3 Linear Interval Inequalities

A system of linear interval inequalities is formulated as AIy ≤ bI , where AI =
{A : A ≤ A ≤ A} (component-wise inequalities) is an m × n interval matrix
and bI = {b : b ≤ b ≤ b}(component-wise inequalities) is an m−dimensional
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interval vector. A y0 is called a strong solution to the system of linear interval
inequalities if it satisfies Ay0 ≤ b for each A ∈ AI and b ∈ bI . We denote the
set of all strong solutions by Y , and Y is given as follows.

Theorem 2 [28]. Y = {y1 − y2 : Ay1 − Ay2 ≤ b,y1 ≥ 0,y2 ≥ 0}.
A strong solution can be computed by solving a linear programming problem

based on Theorem 2. Based on this, for a parametric polynomial of the form
B(x, c) =

∑
α∈M cαxα , where cα ’s are parametric coefficients making B(x, c)

non-positive over an interval x ∈ I, can be obtained in the way: (1) For each
monomial xα (α ∈ M), we use interval arithmetic to obtain its lower and upper
bounds Iα− and Iα+ respectively over the interval I, and yield a linear interval
inequality

∑
α∈M[Iα−, Iα+]cα ≤ 0. (2) According to Theorem2, by replacing

each variable cα with a difference of two variables cα1 and cα2, where cα1 ≥ 0
and cα2 ≥ 0, we can replace [Iα−, Iα+]cα by Iα+cα1 − Iα−cα2 and arrive at
a linear inequality

∑
α∈M[Iα+cα1 − Iα−cα2] ≤ 0, denoted as ψ[cα1, cα2]. We

denote the above procedure as linear interval inequalities (B(x, c), I). For
more details, please refer to [27,29,35]. If (cα1, cα2)α∈M, where there exists an
α ∈ M such that cα1 − cα2 �= 0, is found, the polynomial B is obtained by
substituting cα with cα1 − cα2.

3 Probably Approximate Safety Verification

In this section we detail our approach for conducting probably approximate
safety verification of hybrid systems via the computation of so-called PAC barrier
certificates. The concept of PAC barrier certificates is introduced in Subsect. 3.1.
The computation method is formulated in Subsect. 3.2.

3.1 PAC Barrier Certificates

A popular approach to safety verification for hybrid systems employs barrier
certificates, which partition the state space X into two regions containing for-
ward reachable states of the initial states and backward reachable states of the
unsafe states, respectively. There are several variants of barrier certificates and
accordingly diverse methods for computing them, e.g., [7,20–22,24,32,37]. In
this paper we employ exponential-condition-based barrier certificates from [21]
as an instance serving to illustrate our method, which however is not confined to
this particular variant of barrier certificates. Exponential-condition-based barrier
certificates form the core of Theorem 3 underneath.

Theorem 3 ([21]). Let H = (X , L,X,X0, Inv,F , T ) be a hybrid system. Given
Sλ = {λl ∈ R | l ∈ L} and Sσ = {σl′,l ∈ R≥0 | ((l, ·), (l′, ·)) ∈ T}, if there exists
a family of functions (Bl(x) ∈ C1(Rn))l∈L such that for all l ∈ L, the following
constraints hold

(1) Bl(x) > 0,∀x ∈ Uns(l), (2) Bl(x) ≤ 0,∀x ∈ Ini(l),

(3)
∂Bl

∂x
(x)fl(x,d) + λlBl(x) ≤ 0,∀(x,d) ∈ Inv(l) × D(l),

(4) Bl(x) − σl′,lBl′(x′) ≤ 0,∀(x′,x) ∈ Gl′,l × Rl′,l(x′),

(4)
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then the safety of the hybrid system H is guaranteed, i.e., no trajectories starting
from (l,x) for l ∈ L and x ∈ Ini(l) will enter the unsafe state set Xu.

Based on Theorem 3, semi-definite programming based methods were pro-
posed in [21] to synthesize barrier certificates for polynomial hybrid systems. In
order to be able to automatically compute similar certificates for a much wider
class of systems, we verify probably approximate safety of hybrid systems and
provide a proof of this property via the computation of PAC barrier certificates.
The concept of PAC barrier certificates is formally presented in Definition 2.

Definition 2. Let H = (X , L,X,X0, Inv,F , T ) be a hybrid system. Given Sλ =
{λl ∈ R | l ∈ L} and Sσ = {σl′,l ∈ R≥0 | ((l, ·), (l′, ·)) ∈ T}, a family of functions
(Bl(x) ∈ C1(Rn))l∈L is a family of PAC barrier certificates with respect to ε ∈
(0, 1) and β ∈ (0, 1) (or, PACBC(ε, β)), if they satisfy the following constraints:

1. for each l ∈ L and l′ ∈ L,

(1) Bl(x) > 0, ∀x ∈ Uns(l), (2) Bl(x) − σl′,lBl′(x
′) ≤ 0, ∀(x′, x) ∈ Gl′,l × Rl′,l(x

′),

(3)
∂Bl

∂x
(x)fl(x, d) + λlBl(x) ≤ 0, ∀(x, d) ∈ Inv(l) × D(l).

(5)
2. with confidence of at least 1 − β, Pr(C) ≥ 1 − ε, where C = {y ∈ Ini |

Bl(xl) ≤ 0, l ∈ L} with y = (x1, . . . ,xM ) and xl ∈ Ini(l).

The PACBC(ε, β) is an exact barrier certificate for the system H with the
initial set ∪l∈L{(l,x) | x ∈ Ini(l) ∧ Bl(x) ≤ 0}. That is, no trajectories starting
from ∪l∈L{(l,x) | x ∈ Ini(l)∧Bl(x) ≤ 0} will enter Xu, and the set ∪l∈L{(l,x) |
x ∈ Ini(l) ∧ Bl(x) ≤ 0} is an under-approximation of the set of initial states
rendering H safe, e.g.,[33,34,36]. However, it is just a PAC barrier certificate for
the system H with the initial set X0.

Theorem 4. If (Bl(x) ∈ C1(Rn))l∈L is PACBC(ε, β), the system H is PAS(ε, β).

Proof. Let C = {y ∈ Ini | Bl(xl) ≤ 0, l ∈ L}, where y = (x1, . . . ,xM ) with
xl ∈ Ini(l). From constraint (5) in Definition 2, we have that trajectories starting
from ∪l∈L{(l,x) | x ∈ Ini(l)∧Bl(x) ≤ 0} cannot enter Xu. Also, since Pr(C) ≥
1 − ε with at least 1 − β confidence, H is PAS(ε, β) from Definition 1. �


Corollary 1 is an immediate consequence of Definition 2 and Theorem 3.

Corollary 1. Suppose that (Bl(x) ∈ C1(Rn))l∈L is PACBC(ε, β). If Ini(l) ⊆
{x ∈ Ini(l) | Bl(x) ≤ 0} for l ∈ L, the hybrid system H is safe.

Another benefit of computing PACBC(ε, β) is to conduct probabilistic safety
verification of hybrid systems.

Corollary 2. Suppose that (Bl(x) ∈ C1(Rn))l∈L is PACBC(ε, β). If Pr(C) ≥ 1−ε,
where C = {y ∈ Ini | Bl(xl) ≤ 0 for l ∈ L} with y = (x1, . . . ,xM ) and
xl ∈ Ini(l), then Prl(Cl) ≥ 1 − ε for l ∈ L, where Cl is a set of states xs in
Ini(l) such that trajectories starting from (l,x) never enter Xu.
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Proof. Since Pr = Pr1 × . . . × Prl, we have that Prl(C ′
l) ≥ 1 − ε, where C ′

l =
{x ∈ Ini(l) | Bl(x) ≤ 0}. Also, since C ′

l ⊆ Cl, we have the conclusion. �

[31] developed a tool ProbReach to address the probabilistic safety verifica-

tion problem in Corollary 2 for hybrid systems. Since reachable set computation
based techniques are used in [31], it is limited to safety verification of hybrid sys-
tems over finite time horizons. [19] proposed a bilinear semidefinite programming
based method to compute probabilistic barrier certificates for polynomial hybrid
systems. Unfortunately, the bilinear semidefinite program falls within nonlinear
programming framework and is notoriously hard to solve.

3.2 Probably Approximate Safety Verification

In this section we present our linear programming based method for synthesiz-
ing PACBC(ε, β) and thus conducting probably approximate safety verification
of hybrid systems. The linear program is constructed based on linear interval
inequalities and scenario approaches.

We first select barrier certificate templates (Bl(cl,1, . . . , cl,il ,x))l∈L such that
(1) Bl(cl,1, . . . , cl,il ,x) ∈ C1(Rn) is a linear function in cl,1, . . . , cl,il for x ∈ R

n,
where (cl,j)il

j=1 are unknown parameters and il ≥ 1 is a positive integer. For
convenience cl is used to denote (cl,1, . . . , cl,il) in the rest of this paper. (2) Let
Cr = {x ∈ Ini(l) | Bl(cl,x) = r} for r ∈ R,

Prl(Cr) = 0,∀l ∈ L,∀r ∈ R. (6)

This requirement is to ensure that the solution computed by scenario approaches
satisfies Assumption 2, which will be reflected in Lemma 1. Generally, polynomial
functions satisfy the requirement (6).

Under the assumption that ε is given (later, we will introduce how to give
an appropriate ε), we try to compute (cl)l∈L by solving the following chance-
constrained optimization:

min
cl,l∈L,θ

θ +
M∑

l=1

wl

∫

Ini(l)

B(cl,x)dx, (7)

s.t.Pr({y ∈ Ini | max
l∈L

B(cl,xl) ≤ θ}) ≥ 1 − ε, (8)

0 ≤ θ ≤ Uθ, (9)
for each l ∈ L and l ∈ L′ : (10)
Bl(x) − ζl ≥ 0,∀x ∈ Uns(l), (11)
∂Bl

∂x
(x)fl(x,d) + λlBl(x) ≤ 0,∀(x,d) ∈ Inv(l) × D(l), (12)

Bl(x) − σl′,lBl′(x′) ≤ 0,∀(x′,x) ∈ Gl′,l × Rl′,l(x′), (13)

where y = (x1, . . . ,xM ) with xl ∈ Ini(l), σl′,l ∈ R≥0, ζl ∈ R>0 and λl ∈ R are
given, and Uθ is a user-defined positive bound for θ. wls, l = 1, . . . , M , are given
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positive values such that
∑M

l=1 wl = 1. In (7), wl for l ∈ L represents the relative
significance of the lth set Ini(l). The minimum operator on

∫
Ini(l) B(cl,x)dx

aims to find cl such that {x ∈ Ini(l) | B(cl,x) ≤ 0}, which is a set of states xs
such that trajectories starting from (l,x) never enter Xu, is as large as possible.

Solving the chance-constrained optimization (7)–(13) directly is notoriously
hard. It generally falls within the nonlinear programming framework and is an
NP-hard problem. Below we show the use of scenario approaches and linear
interval inequalities to encode (7)–(13) as a linear programming problem, whose
solution provides a family of PAC barrier certificates with respect to ε and β.

We first relax constraints (11)–(13) to linear constraints over cl using linear
interval inequalities. For this sake, we first construct a family of interval boxes
(Ii

U(l))
k1,l
i=1, (Ii

Inv(l))
k2,l
i=1 and (Ii

Gl′,l)
k3,l
i=1 such that Uns(l) ⊆ ∪k1,l

i=1I
i
U(l), Inv(l)×D(l) ⊆

∪k2,l
i=1I

i
Inv(l) and Gl′,l ⊆ ∪k3,l

i=1I
i
Gl′,l , respectively. Then, for i = 1, . . . , k1,l, we

obtain a linear relaxation ψ1,i[c1,l, c2,l] of the constraint −Bl(cl,x) + ζl ≤ 0
for x ∈ Uns(l) based on linear interval inequalities(−Bl(cl,x) + ζl, I

i
U(l)),

where ζl ∈ R>0 is a user-defined small positive value. If (c1,l, c2,l) satisfies
∧k1,l

i=1ψ1,i[c1,l, c2,l], −Bl(c1,l − c2,l,x) < 0 for x ∈ Uns(l). Analogously, we obtain
linear relaxations ∧k2,l

i=1ψ2,i[c1,l, c2,l] and ∧k3,l
i=1ψ3,i[c1,l, c2,l] of constraints (12) and

(13), respectively. Therefore, if (c1,l, c2,l)l∈L satisfies

∧k1,l
i=1 ψ1,i[c1,l, c2,l]

∧
∧k2,l

i=1ψ2,i[c1,l, c2,l]
∧

∧k3,l
i=1ψ3,i[c1,l, c2,l], (14)

(Bl(c1,l − c2,l,x))l∈L satisfies constraints (11), (12) and (13). For ease of expo-
sition, we denote (14) by ψl[c1,l, c2,l].

Next, we substitute the chance constraint (8) with N hard constraints, which
are constructed based on N independent and identically distributed samples
(yi)N

i=1 with yi =
(
x1,i, . . . ,xM,i

)
extracted from the set Ini according to the

probabilistic distribution Pr, where xl,i ∈ Ini(l) for l = 1, . . . , M . The N hard
constraints over cl and θ are maxl∈L Bl(cl,xl,i) ≤ θ, i = 1, . . . , N. Obviously,
Bl(cl,xl,i) ≤ θ is a linear function in cl and θ.

Finally, we obtain a linear relaxation (15) over (ci,l) and θ for solving (7)–
(13),

min
ci,l,i=1,2,l∈L,θ

θ +
M∑

l=1

wl

∫

Ini(l)

B(c1,l − c2,l,x)dx

s.t. for each i = 1, . . . , N : max
l∈L

Bl(c1,l − c2,l,xl,i) ≤ θ,

for each l ∈ L : (1) ψl[c1,l, c2,l], (2) 0 ≤ θ ≤ Uθ, ci,l ≤ Uc , i = 1, 2,
(15)

where Uc ∈ R>0 is a pre-specified upper bound for ci,l for l ∈ L and i = 1, 2, and
Uθ ∈ R>0 is pre-specified upper bound for θ. Let (c∗

1,1, c
∗
2,1, . . . , c

∗
1,M , c∗

2,M , θ∗)
be an optimal solution to the linear program (15).

Remark 1. After obtaining (c∗
1,1, c

∗
2,1, . . . , c

∗
1,M , c∗

2,M , θ∗), Pr(C) can be esti-
mated based on the Chernoff-Hoeffding Bound [18] in the statistical context.
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The Chernoff-Hoeffding Bound formulates that with a confidence of at least
1 − e−2Nε′2

, Pr(C) ≥ p − ε′ with p = N ′
N , where C is defined in Definition 1 and

N ′ is the number of sample states yis such that maxl∈L Bl(c∗
1,l − c∗

2,l,xl,i) ≤ 0.
In the following we give a different estimation based on scenario approaches. The
difference between these two estimations will be presented in examples.

Based on the computed solution (c∗
1,1, c

∗
2,1, . . . , c

∗
1,M , c∗

2,M ), we further relax
the linear program (15) as a new linear program over the single variable θ:

min
θ

θ +
M∑

l=1

wl

∫

Ini(l)

B(c∗
1,l − c∗

2,l,x)dx

s.t. for each i = 1, . . . , N : max
l∈L

Bl(c∗
1,l − c∗

2,l,xl,i) ≤ θ,

for each l ∈ L : (1) ψl[c∗
1,l, c

∗
2,l], (2) 0 ≤ θ ≤ Uθ, c

∗
i,l ≤ Uc , i = 1, 2.

(16)
Obviously, (16) is feasible. Also, the optimal value of θ is unique and equal to
θ∗. Assumption 1 is satisfied.

Then we remove samples from (x1,i, . . . ,xM,i)N
i=1 such that maxl∈L Bl(c∗

1,l −
c∗
2,l,xl,i) > 0, and denote the indexes of removed constraints by {i1, . . . , ik},

leading eventually to the following linear program,

min
θ

θ +
M∑

l=1

wl

∫

Ini(l)

B(c∗
1,l − c∗

2,l,x)dx

s.t. for each i = 1, . . . , N \ {i1, . . . , ik} : max
l∈L

Bl(c∗
1,l − c∗

2,l,xl,i) ≤ θ,

for each l ∈ L : (1) ψl[c∗
1,l, c

∗
2,l], (2) 0 ≤ θ ≤ Uθ, c

∗
i,l ≤ Uc , i = 1, 2.

(17)
Let θ∗∗ be an optimal solution to the linear program (17). Obviously, θ∗∗ = 0.

Remark 2. Although the removed sample (x1,j , . . . , xM,j) satisfies maxi∈L Bl

(c∗
1,i − c∗

2,i,xl,j) > 0, where j ∈ {i1, . . . , ik}, it does not indicate that the hybrid
system H starting from (l,xl,j) will enter Xu, since the existence of barrier cer-
tificates satisfying (4) is just a sufficient condition for justifying the safety of the
system.

The constraint removal algorithm A for obtaining (17) can be chosen as
A(y1, . . . ,yN ) = {i1, . . . , ik}, where

(
maxl∈L Bl(c∗

1,l−c∗
2,l,xl,ij )

)k

j=1
are the first

k largest values in
(
maxl∈L Bl(c∗

1,l−c∗
2,l,xl,i)

)N

i=1
. Let z = (y1, . . . ,yN ). Accord-

ing to (6), PrN ({z ∈ IniN |θ∗∗(z) violates the k removed constraints}) = 1, sat-
isfying Assumption 2. This is formally stated in Lemma 1. Obviously, θ∗∗(z) =
maxl∈L maxi∈{1,...,N}\{i1,...,ik} Bl(c∗

1,i−c∗
2,i,xl,i). Herein, we shall write the opti-

mal solutions to (17) as θ∗∗(z) to emphasize its stochastic nature.
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Lemma 1. Let A(y1, . . . ,yN ) = {i1, . . . , ik} in (17) and
(
maxl∈L Bl(c∗

1,l(z) −
c∗
2,l(z),xl,ij )

)k

j=1
be the first k largest values in the family

(
maxl∈L Bl(c∗

1,l(z)−
c∗
2,l(z),xl,i)

)N

i=1
. Then PrN (S) = 1, where

S =
{
z ∈ IniN | θ∗∗(z) violates the k removed constraints

}

and z = (y1, . . . ,yN ), yi = (x1,i, . . . ,xM,i) with xl,i ∈ Ini(l) for l ∈ L and
i ∈ {1, . . . , N}.
Proof. Let A =

{
z ∈ IniN |θ∗∗(z) does not violate the k removed constraints

}
.

Let M = {1, . . . , N}, z0 = (y1,0, . . . ,yN,0) ∈ A with yi,0 =
(x1,i,0, . . . ,xM,i,0) and xl,i,0 ∈ Ini(l) for l ∈ L and i ∈ M, and M′ =
{i1, . . . , ik}. Consequently,

max
i∈M\M′

max
l∈L

Bl(c∗
1,l(z0)−c∗

2,l(z0),xl,i,0) = min
j∈M′

max
l∈L

Bl(c∗
1,l(z0)−c∗

2,l(z0),xl,j,0).

Let B =

⎧
⎨

⎩
z ∈ IniN

∣
∣
∣
∣
∣

max
i∈M\M′

max
l∈L

Bl(c∗
1,l(z) − c∗

2,l(z),xl,i)

= min
j∈M′

max
l∈L

Bl(c∗
1,l(z) − c∗

2,l(z),xl,j)

⎫
⎬

⎭
. Obviously,

A = B. Also, since Prl

({x ∈ Ini(l) | Bl(c∗
1,l − c∗

2,l,x) = r})
= 0 for r ∈ R

according to (6), we have that Pr
({y ∈ Ini | maxl∈L Bl(c∗

1,l −c∗
2,l,xl) = r})

= 0
for r ∈ R. Therefore, PrN (B)=0 and consequently PrN (A) = 0. �


Therefore, according to Theorem1, if ε satisfies
∑k

i=0

(
N
i

)
εi(1 − ε)N−i ≤ β,

(Bl(c∗
1,l − c∗

2,l,x))l∈L is PACBC(ε, β).

Theorem 5. If ε satisfies
∑k

i=0

(
N
i

)
εi(1−ε)N−i ≤ β, the system H is PAS(ε, β).

Proof. We reformulate (16) equivalently as the following linear program over θ,

min
θ

θ +
M∑

l=1

wl

∫

Ini(l)

B(c∗
1,l − c∗

2,l,x)dx

s.t. for each i = 1, . . . , N : max
l∈L

Bl(c∗
1,l − c∗

2,l,yi) ≤ θ,

for each l ∈ L : (1) ψl[c∗
1,l, c

∗
2,l], (2) 0 ≤ θ ≤ Uθ, c

∗
i,l ≤ Uc, i = 1, 2,

(18)
where Bl(c∗

1,l − c∗
2,l,yi) = Bl(c∗

1,l − c∗
2,l,xl,i) and yi = (x1,i, . . . ,xM,i) with

xl,i ∈ Ini(l) and l ∈ L. The number of variables in (18) is 1.
Optimal solutions to (18) are optimal solutions to (17), and vice versa. Obvi-

ously, (18) is feasible and has unique solution. Also, according to Lemma1,
Assumption 2 holds. Thus, according to Definition 2 and Theorem 1, (Bl(c∗

1,l −
c∗
2,l,x))l∈L is PACBC(ε, β). Thus, the system H is PAS(ε, β) from Theorem 4. �


If k > 0, ε satisfying Theorem 5 can be explicitly relaxed as the following
constraint according to inequation (8) in [5]:

ε ≥ min{1,
1
N

[k + ln
1
β

+
√

ln2 1
β

+ 2k ln
1
β

]}. (19)
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If k = 0, ε satisfying Theorem 5 can be explicitly relaxed as the following con-
straint according to inequation (4) in [6]:

ε ≥ 1 − β
1
N . (20)

Remark 3. One may compute the probability of continuous states leading to the
satisfiability of safety properties via calculating

∫
C

dPr, where C = {x ∈ Ini(1) |
B1(c∗

1,l − c∗
2,l,x) ≤ 0} × . . . × {x ∈ Ini(M) | BM (c∗

1,l − c∗
2,l,x) ≤ 0}. Although

there are methods, e.g. [16], to compute
∫

C
dPr, we have to point out that this

computation is nontrivial generally, especially for high-dimensional systems.

4 Experiments

In this section we evaluate our method on some examples. Parameters that deter-
mine the performance of our method are presented in Table 1. All computations
were performed on MATLAB installed on an i7-7500U 2.70 GHz CPU with 32G
RAM running Windows 10. In our following computations, we adopt uniform
grid spacings when partitioning continuous state spaces.

Example 1. Consider a pendulum described by differential equations

ẋ = y, ẏ = −d0 sin(x) − d1y,

where Inv(1) = [−10, 10]×[−10, 10], Ini(1) = [−10, 5]×[8, 10], Uns(1) = [9, 10]×
[7, 8] and D(1) = {(d0, d1) | d0 ∈ [0.9, 1.1], d1 ∈ [0.9, 1.1]}.

The PAC barrier certificate template is c0 + c1x + c2y + c3x
2 + c4xy + c5y

2.
We first try to find a barrier certificate to verify whether this system is safe.
The sets Inv(1), Uns(1) and Ini(1) are partitioned into 104, 1 and 104 inter-
val boxes, respectively. The system of linear constraints constructed by using

Table 1. dimv: dimension of the state space; dimp: dimension of the perturbation
space; k: number of removed samples; ε: error level; β: confidence level; N : number
of extracted samples; m: number of variables in (15); ζ: ζls in (7)–(13); σ : σl′,ls in
(7)–(13); γ : γls in (7)–(13); w: weights wl in (15); U : upper bounds Uc and Uθ in (15);
T : computation times (seconds)

Benchmarks Dimension Parameter Time

dimv dimp M ε β N k m ζ σ γ w U T

Ex.3 2 2 1 0.05 10−12 104 180 9 10−3 – 1 1 10 19.10

Ex.4 2 0 2 0.47 10−12 104 3559 25 10−3 1 1 1
2

10 140.73

Ex.4 2 0 2 0.02 10−12 104 9 25 10−3 1 1 1
2

10 39.79

Ex.4 2 0 2 0.008 10−12 104 0 25 10−3 1 1 1
2

10 36.65

Ex.5 101 1 1 0.05 10−12 104 0 203 10−3 – 1 1 10 148.25
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linear interval inequalities(·, ·) to encode the constraints in Theorem3 is
infeasible and consequently we have no knowledge of the safety of this system.

However, if we partition Inv(1) and Uns(1) into 400 and 1 interval
boxes respectively, and then sample 104 states from Ini(1), we obtain a
PAC barrier certificate B(x, y). {(x, y) ∈ Ini(1) | B(x, y) ≤ 0} is illus-
trated in Fig. 1. The number of removed samples is 180. Thus, the system is
PAS(0.021, 10−12). Note that the Chernoff-Hoeffding Bound indicates that the
system is PAS(0.052, 10−12).

This example also demonstrates that our approach can reduce the computa-
tional burden in safety verification of systems, albeit at the price of the computed
barrier certificate being only probably approximately correct.

Example 2. We consider a hybrid model of a two-tank system, taken from [8].
The hybrid model has a continuous component of the state-space of dimension
n = 2. It consists of 2 locations. The flow for each location is described by

f1

(
x1

x2

)
=

(
1 − √

x1√
x1 − √

x2

)
,f2

(
x1

x2

)
=

(
1 − √

x1 − x2 + 1√
x1 − x2 + 1 − √

x2

)
.

Fig. 1. An illustration of probably approximate safety verification for Example 1.
Green, red and gray regions denote Ini(1), Uns(1) and {(x, y) ∈ Inv(1) | B(x, y) ≤ 0},
respectively. Blue curves denote vector fields when (d0, d1) = (1, 1). (Color figure
online)

The other parts of the hybrid automaton are:

1. Initial conditions: Ini(1) = [5.25, 5.75] × [0, 0.5] and Ini(2) = [4, 6] × [1, 1]
2. Unsafe regions: Uns(1) = [4, 4.5] × [0, 0.5] and Uns(2) = ∅
3. Invariants: Inv(1) = [4, 6] × [0, 1] and Inv(2) = [4, 6] × [1, 2]

4. Guards and resets: (a) G1,2 = [4, 6] × [0.99, 1] and R1,2

(
x1

x2

)
=

(
x1

1

)
(b)

G2,1 = ∅ and R2,1

(
x1

x2

)
=

(
x1

x2

)
.

The PAC barrier certificate templates are polynomials of this form c0+c1x+
c2y + c3x

2 + c4xy + c5y
2. The sets Inv(1), Inv(2), G1,2 are partitioned into 100, 1

and 1 interval boxes, respectively.

1. When no partition operator is implemented on Uns(1), the number k of
removed samples is 3559. According to (19), the system is PAS(0.359, 10−12).
Note that the Chernoff-Hoeffding Bound indicates that the system is
PAS(0.394, 10−12).
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2. When the unsafe set Uns(1) is partitioned into 25 interval boxes, the number
k of removed samples is 9. According to (19), the system is PAS(0.004, 10−12).
The Chernoff-Hoeffding Bound indicates that the system is PAS(0.039, 10−12).

3. When the unsafe set Uns(1) is partitioned into 100 interval boxes, the number
k of removed samples is 0. According to (20), the system is PAS(0.003, 10−12).
The Chernoff-Hoeffding Bound indicates that the system is PAS(0.038, 10−12).
For this case we use the satisfiability checker iSAT3 [12] to obtain that the
computed PAC barrier certificate actually is a true barrier certificate satisfy-
ing (4), indicating that this system is safe.
The zero sublevel sets of the computed PACBC(ε, β) for these three cases are
illustrated in Fig. 2. From this example we observe that the size of linear
program (15) depends on these two probability measures ε and β.

Example 3. To demonstrate applicability of our approach to high-dimensional
systems, we consider a scalable non-polynomial example adapted from [25],
which we instantiate with a rather high continuous dimension of 101.

ẋ1 = d0 +
1

100
(

∑

i∈{1,...,l}
xi+1 + xi+2),

ẋ2 = x3, ẋ3 = −10 sin x2 − x2,

· · ·
ẋ2l = x2l+1, ẋ2l+1 = −10 sin x2l − x2,

where l = 50, D(1) = {d0 | d0 ∈ [0.9, 1.1]}, Inv(1) = [−0.3, 0.3]2l+1, Ini(1) =
[−0.30, 0.00] × [−0.2, 0.30]2l and Uns(1) = [−0.20,−0.15] × [−0.30,−0.25]2l.

Fig. 2. An illustration of probably approximate safety verification for Example 2 with
Case 1–3 (from left to right). Above: Gray region, Green region an Red region denote
{(x, y) ∈ Inv(1) | B1(x, y) ≤ 0}, Ini(1) and Uns(1), respectively. Below: Gray region
and Green region denote {(x, y) ∈ Inv(2) | B2(x, y) ≤ 0} and Ini(2), respectively.
(Color figure online)
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The PAC barrier certificate template is chosen as c0 +
∑101

i=1 cixi. When no
partition operator is implemented on the invariant set Inv(1), unsafe set Uns(1)
and initial set Ini(1), the system of linear constraints constructed by using
linear interval inequalities(·, ·) to encode the constraints in Theorem3 is
infeasible. However, our method verifies that the system is PAS(0.003, 10−12)
when no partition operator is implemented on Inv(1) and Uns(1). Note that the
Chernoff-Hoeffding Bound indicates that the system is PAS(0.038, 10−12).

The dimensionality of this example demonstrates that our approach has great
potential to open up a promising prospect for formal verification of industrial-
scale (hybrid) systems by selecting appropriate ε, β and barrier certificate tem-
plates. In order to further enhance the scalability of our approach, we will encode
constraint (5) using the scenario approach in our future work.

5 Conclusion

We have successfully leveraged the idea of scenario optimization to conduct
safety verification of hybrid systems over the infinite time horizon in the frame-
work of PAC learning theory. Based on scenario approaches and linear interval
inequalities, a linear programming based method was proposed to compute PAC
barrier functions and thus conduct probably approximate safety verification of
hybrid systems in the sense that with at least 1 − β confidence, the probability
that the system is safe is larger than 1 − ε. We have demonstrated the perfor-
mance and merits of our approach on some benchmark examples.
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Abstract. Dynamic reliability block diagrams (DRBDs) are introduced
to overcome the modeling limitations of traditional reliability block dia-
grams, such as the inability to capture redundant components. However,
so far there is no algebraic framework that allows conducting the anal-
ysis of a given DRBD based on its structure function. In this paper, we
propose a new algebra to formally express the structure function and the
reliability of a DRBD with spare constructs based on basic system blocks
and newly introduced DRBD operators. We present several simplification
properties that allow reducing the structure of a given DRBD. We for-
malize the proposed algebra in higher-order logic to ensure its soundness,
and formally verify its corresponding properties using the HOL4 theorem
prover. This includes formally verifying generic reliability expressions of
the spare costruct, series, parallel and deeper structures in an extensible
manner that allows verifying the reliability of complex systems. Finally,
we demonstrate the applicability of this algebra by formally analyzing
the reliability of two real-world systems in HOL4.

Keywords: Dynamic reliability block diagrams · Algebra · Theorem
proving · HOL4

1 Introduction

Reliability of a system is the probability that it will continue to provide its
desirable service in a given period of time. Fault trees (FTs) [14] and reliabil-
ity block diagrams (RBDs) [8] are the most commonly used reliability modeling
techniques. FTs graphically model the sources of failure of a system using FT
gates. An RBD, on the other hand, is a graphical representation of the reliability
of a system. The components of a system are modeled as blocks and are con-
nected using connectors (lines) to create a path or multiple paths from the RBD
input to its output. These paths represent the required working blocks (system
components) for the system to have a successful operation. The modeled system
fails when components fail in such a manner that leads to the disconnection of
all the paths between the input and the output. RBDs can be connected in a
series, parallel, series-parallel or parallel-series fashion to create the appropriate
modeling structure depending on the behavior and the components redundancy
c© Springer Nature Switzerland AG 2019
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of the modeled system, which provides flexible and extensible modeling configu-
rations to represent complex systems. However, both the traditional RBDs and
FTs are unable to model the dynamic behavior of system components, where
the change of state of one component can affect the state of other components.

Dynamic fault trees (DFTs) [14] are proposed as an extension to traditional
FTs by introducing DFT gates, such as spare gates, to overcome the above-
mentioned limitation. However, the only behavior that is captured by DFTs is
the dynamic failure effect of one system component in the failure or activation
of other components. To overcome the modeling limitations of DFTs, RBDs are
extended to dynamic reliability block diagrams (DRBDs) to model the dynamic
dependency among system components by introducing new DRBD blocks [4],
which enable capturing the effect of sharing a load and spare constructs that
model the reliability of spare parts in a DRBD.

Formal methods have been used in the analysis of RBDs and DRBDs. In [16],
the formal semantics of DRBD constructs in Object-Z formalism [15] have been
proposed. However, analyzing and verifying the behavior of DRBDs based on this
formalism are not feasible due to the non-availability of tool support. Thus, the
DRBDs have been proposed to be converted into a Colored Petri Net (CPN) to
be analyzed using Petri nets tools [15]. An algorithm to automatically convert
a DRBD into a CPN has been also proposed in [13]. However, due to the usage
of CPNs, only a few state-based properties of the modeled system can be ana-
lyzed. In [1], Ahmed et al. used the HOL4 theorem prover [9] to formalize several
configurations of static RBDs. However, this formalization can only analyze the
combinatorial behavior of systems and cannot be extended to formalize and rea-
son about the dynamic aspects, and hence DRBDs. One of the main reasons for
this deficiency is the lists based formalization of independence between multiple
failure events. In this paper, we propose a completely new and different formaliza-
tion from [1] that supersedes these deficiencies. In particular, we propose a more
generic formalization of dynamic failure dependencies [7], based on a set-theoretic
definition of independence [12] and Lebesgue integral. Thus, our proposed formal-
ization can model and analyze both dynamic and static RBDs.

In system engineering, it is important to be able to analyze DRBDs qual-
itatively to identify the sources of system vulnerability, and quantitatively to
evaluate the system reliability. However, to the best of our knowledge, there is
no algebraic approach that mathematically models a given DRBD and enables
expressing its function based on basic components just like the DFT algebra
[10]. Using such algebra in the reliability analysis will result in simpler and
fewer proof steps than the DFT-based algebraic analysis [10], since the proba-
bilistic principle of inclusion and exclusion will not be invoked. In this paper,
we propose, for the first time, a new algebraic approach for DRBD analysis that
allows having a DRBD expression to be used for both qualitative and quantita-
tive analyses. We introduce new operators to mathematically model the dynamic
behavior in DRBD structures and constructs. In particular, we use these opera-
tors to model a DRBD spare construct besides traditional series, parallel, series-
parallel and parallel-series structures. Moreover, we provide simplification theo-
rems that allow reducing the structure of a given DRBD. This DRBD structure
can be then analyzed to obtain a generic expression of the system reliability.
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The reliability expressions obtained using this approach are generic and inde-
pendent of the distribution and density functions that represent the system com-
ponents. Although basic operators, such as OR and AND, were introduced in [4],
they are only useful to model parallel and series constructs of dependent compo-
nents. In addition, these constructs [4] are quite complex, which makes the mod-
eling of large systems quite difficult. Therefore, we use the constructs proposed in
[16] as they are much simpler. Leveraging upon the expressive nature of HOL, we
formally verify the soundness of the proposed DRBD algebra using HOL theorem
proving. We choose the HOL4 theorem prover for our work to benefit from our
existing formalization of DFT algebra. Our ultimate goal is to develop a formally
verified algebra that follows the traditional reliability expressions of the series
and parallel structures in an easily extensible manner and at the same time can
capture the dynamic behavior of real-world systems. Our formalization totally
differs from and overcomes the formalization of static RBDs presented in [1] in
the sense that it can formally express the structure function of a DRBD using
the introduced DRBD operators. In addition, it can formally model and analyze
DRBD spare constructs. Furthermore, we model the static RBD structures, i.e.,
series, parallel and deeper structures in a way similar to the mathematical mod-
els available in the literature, which makes it easily understood and followed by
reliability engineers that are not familiar with HOL theorem proving. Finally, we
illustrate the usefulness of the proposed developments in conducting the formal
analysis of two real-world systems: the terminal reliability of a shuffle-exchange
network and the reliability of a drive-by-wire system.

2 DRBD Algebra

In this section, we present, for the first time, an algebra for DRBD analysis
that allows modeling the structure function of DRBDs with spare constructs.
Moreover, we present some simplification properties that enable reducing the
structure function when possible. Throughout this work, we assume that system
components or blocks are represented by random variables that in turn repre-
sent their time-to-failures. In addition, we assume that system components are
non-repairable, i.e., we are interested in expressing the reliability of the system
considering that the failed components will not be repaired. It is worth mention-
ing that our proposed algebra follows the general lines for the DFT algebra [10].

The reliability of a single component, which time-to-failure function is rep-
resented by random variable X, is mathematically defined as [8]:

RX(t) = Pr{s | X(s) > t} = 1 − Pr{s | X(s) ≤ t} = 1 − FX(t) (1)

where FX(t) is the cumulative distribution function (CDF) of X. We call
{s | X(s) > t} as a DRBD event as it represents the set that we are interested
in finding the probability of until time t:

event (X, t) = {s | X(s) > t} (2)
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2.1 Identity Elements, Operators and Simplification Properties

Similar to the identity elements of ordinary Boolean algebra and DFT algebra
[10], we introduce two identity elements, i.e., ALWAYS and NEVER, that repre-
sent two states of any system block. The ALWAYS element represents a system
component that stops working from time 0 (ALWAY S = 0). While the NEVER
element represents a component that continues to work until +∞, i.e., its fail-
ure time is +∞ (NEV ER = +∞). These identity elements play an important
role in the reduction process of the structure functions of DRBDs. We introduce
operators to model the relationship between the various blocks in a DRBD.
These operators can be divided into two categories: (1) The AND and OR oper-
ators that are not concerned with the dependencies among system components.
(2) Temporal operators, i.e., After, Simultaneous and Inclusive After, that can
capture the dependencies between system components. DRBDs are concerned
with modeling the several paths of success of a given system. Thus, if we are
concerned in the success behavior of a DRBD until time t, it means that we are
interested in how the system would not fail until time t. As a result, we can use
the time-to-failure random variables in modeling the time-to-failure of a given
DRBD, i.e., its structure function. It is assumed that for any two system compo-
nents that possess continuous failure distribution functions, the possibility that
these components fail at the same time can be neglected.

In [4], AND and OR operators were introduced to model the parallel and
series constructs between dependent components only without providing any
mathematical model to these operators. We propose to use the AND (·) and OR
(+) operators to model series and parallel blocks in a DRBD, respectively, with-
out any restriction. We provide a mathematical model for each operator based
on the time of failure of its inputs, as listed in Table 1, to be used in the proposed
algebra. The AND operator models the series connection between two or more
system blocks. For example, the 2-block series DRBD in Table 1 continues to
work only if components X and Y are working. We model the AND operator
as the minimum time of its input arguments. Similarly, the OR operator models
the connection between parallel components in a DRBD, i.e., all the components
in a parallel structure should fail for this DRBD to fail. We model the OR oper-
ator as the maximum time of failure of its input arguments that represent basic
system blocks or sub-DRBDs. This approach facilitates using these operators
to model even the complex structures. If X and Y are independent, then the
reliability of the 2-block systems can be expressed as given in Table 1. To reach
these expressions, we need to express the DRBD events as the intersection and
union for the AND and OR operators, respectively.

Table 1. Mathematical and reliability expressions of AND and OR operators

Operator Math. Model Reliability 2-block Structure

AND X·Y =min (X,Y ) R(X·Y )(t) =RX (t) × RY (t) Series

OR X+Y =max (X,Y ) R(X+Y )(t) =1−((1−RX (t))×(1−RY (t)))
Parallel
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Table 2. Mathematical expressions of temporal operators

After (�) Simultaneous (Δ) Inclusive after (�)

X�Y =

⎧
⎨

⎩

X, X>Y

+∞, X≤Y
XΔY =

⎧
⎨

⎩

X, X=Y

+∞, X �=Y
X�Y =

⎧
⎨

⎩

X, X≥Y

+∞, X<Y

event ((X · Y ), t) = event (X, t) ∩ event (Y, t) (3)

event ((X + Y ), t) = event (X, t) ∪ event (Y, t) (4)

In order to model the dynamic behavior of systems in DRBDs, we introduce
new temporal operators: after (�), simultaneous (Δ), and inclusive after (�), as
listed in Table 2. The after operator represents a situation where it is required to
model a component that continues to work after the failure of another. The time
of failure of the after operator equals the time of failure of the last component,
which is required to fail. However, if the required sequence does not occur, then
the output can never fail, i.e., the time of failure equals +∞. The behavior of the
simultaneous operator is similar to the one introduced in the DFT algebra [10].
The output of this operator fails if both its inputs fail at the same time, otherwise
it can never fail. Finally, the inclusive after operator encompasses the behavior
of both the after and simultaneous operators, i.e, it models a situation where it
is required that one component continues to work after another one or fail at
the same time, otherwise it can never fail. When dealing with basic components,
the inclusive after will behave in a similar way as the after operator. Therefore,
their probabilities can be expressed for independent random variables as:

R(X�Y )(t) = 1 −
∫ t

0

fX(x) × FY (x) dx (5)

where fX is the probability density function (PDF) of X and FY is the CDF of Y .
We introduce several simplification properties to reduce the structure function
of a DRBD. These simplification properties range from simple ones, such as the
associativity and idempotence of the operators, to more complex theorems. The
idea of these properties is to reduce the algebraic expressions based on the time
of failure. For example, X · ALWAY S = ALWAY S means that if a component
in a series structure is not working, i.e., always fails, then the series structure is
not working. The full list of simplification theorems is available at [6].

2.2 DRBD Constructs and Structures

The spare construct, shown in Table 3 [16], is introduced in DRBDs to model
situations where a spare part is activated and replaces the main part, after its
failure, by introducing a spare controller to activate the spare [16]. Depend-
ing on the failure behavior of the spare part, we can have three variants, i.e.,
hot, warm and cold (H|W |C) spares. For the hot spare (HSP) construct, the
spare possesses the same failure behavior in both its active and dormant states.
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Table 3. Mathematical and reliability expressions of spare constructs

Math. Model Reliability
QWSP =(Xa�Y )·(Y �Xd) RWSP (t)=1−∫ t

0
∫ t
y f(Xa|Y =y)(x) fY (y)dxdy

− ∫ t
0 fY (y)FXd

(y)dy

QCSP =Xa�Y Rcold spare(t)=1−∫ t
0

∫ t
y f(Xa|Y =y)(x) fY (y) dx dy

QHSP =X+Y RHSP (t) =1−((1−RX (t))×(1−RY (t)))

Fig. 1. DRBD Structures: (a) Series, (b) Parallel, (c) Series-Parallel (d) Parallel-Series

The cold spare (CSP) cannot fail in its dormant state and is only activated after
the failure of the main part. The failure behavior of the warm spare (WSP) in
the dormant state is attenuated by a dormancy factor from the active state. In
order to distinguish between the dormant and active states of the spare, just
like the DFT algebra [10], we use two different symbols to model the spare part
of the DRBD spare construct, one for the dormant state and the other for the
active one. For the WSP construct, in Table 3, the spare X is represented by Xa

and Xd for the active and dormant states, respectively. After the failure (F ) of
the main part Y , X will be activated (A) by the spare controller. We model the
structure function of the WSP construct (QWSP ) using the DRBD operators
based on the description of its behavior as given in Table 3. Thus, we need two
conditions to be satisfied in order for the spare to work. Firstly, the active state
of the spare will continue to work after the failure of the main part (Xa � Y ).
Secondly, the main part will continue to work after the failure of the spare in its
dormant state (Y � Xd). However, since the spare part can only fail in one of
its states (Xa,Xd) but not both as it is non-repairable, only one of the terms of
the QWSP affects the behavior and the other can never fail, i.e., it fails at +∞.

Since the DRBD spare construct and the DFT spare gate exhibit complemen-
tary behavior, i.e., the DRBDs consider the success and the DFTs consider the
failure, we can use the probability of failure of the warm spare DFT gate [10] to
find the reliability of the WSP DRBD construct. It is assumed that the dormant
spare and the main part are independent since the failure of one does not affect
the failure of the other. However, the failure of the active spare is affected by the
time of failure of the main part, since it will be activated after the failure of the
main part. Thus, we express the reliability of the WSP as given in Table 3, where
f(Xa|Y =y) is the conditional density function of Xa given that Y failed at time
y. QWSP and RWSP represent the general behavior of the spare, i.e., the warm
spare. The hot and cold spares represent its special cases and can be expressed
as given in Table 3. For QHSP , the spare part X has the same behavior in both
states and thus there is no need to distinguish both states. The reliability of
CSP and HSP (using the OR operator) can be expressed as given in Table 3.
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Table 4. Mathematical and reliability expressions of DRBD structures

Structure Math. Model Reliability expression

Series ⋂n
i=1(event (Xi, t))

∏n
i=1 RXi

(t)

Parallel ⋃n
i=1(event (Xi, t)) 1−∏n

1=1(1−RXi
(t))

Series-Parallel ⋂m
i=1

⋃n
j=1(event (X(i,j), t))

∏m
i=1(1−∏n

j=1(1−RX(i,j) (t)))

Parallel-Series ⋃n
i=1

⋂m
j=1(event (X(i,j), t)) 1−(

∏n
i=1(1−∏m

j=1(RX(i,j) (t))))

The series structure (Fig. 1(a)) represents a collection of blocks that are con-
nected in series. The system continues to work until the failure of one of these
blocks. We define a series structure that represents the intersection of all events
of the blocks in this structure as in Table 4, where Xi represents the ith block in
the series structure and n is the number of blocks. Interestingly, any block in our
proposed algebra can represent a basic system component or a complex struc-
ture, such as a spare construct. Moreover, since we are dealing with the events,
we can use the ordinary reliability expressions for the series structure assum-
ing the independence of the individual blocks. The parallel structure (Fig. 1(b))
represents a system that continues to work until the failure of the last block in
the structure. The behavior of the parallel structure can be expressed using the
OR operator. We represent the parallel structure as the union of the individual
events of the blocks. The series-parallel structure (Fig. 1(c)) represents a series
structure, where the blocks of the series structure are parallel structures. The
structure function of this structure can be expressed using AND of ORs oper-
ators. Table 4 lists the model for this structure with its reliability expression,
where n is the number of blocks in the parallel structure and m is the number
of parallel structures that are connected in series. The parallel-series structure
(Fig. 1(d)) represents a group of series structures that are connected in parallel.
Its structure function can be expressed using OR of ANDs operators.

3 Formalization of DRBDs in HOL

In this section, we present our formalization for the newly proposed DRBD alge-
bra including DRBD events, operators, constructs, simplification theorems and
reliability expressions. First, we review some HOL probability theory prelimi-
naries required for understanding the rest of the paper.

3.1 HOL Probability Theory

The probability space is defined in HOL as a measure space, where the measure
(probability) of the entire space is 1. It is defined as a triplet (Ω,A,Pr), where
Ω is the space, A are the probability events and Pr is the probability [11]. Two
functions are defined in HOL; p space p and events p, that return the space
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(Ω) of the above triplet and the events (A), respectively. A random variable is
a measurable function that maps the probability space p to another space [11].

The cumulative distribution function (CDF) is defined as [7]:

Definition 1. � ∀p X t. CDF p X t = distribution p X {y | y ≤ (t:real)}

where p is a probability space, X is a real-valued random variable, t is a variable
of type real that represents time and distribution is defined as the probability
that a random variable belongs to a certain set; {y|y≤(t:real)} in this case.

Independence of random variables is an important property that ensures that
the probability of the intersection of the events of these random variables equals
the product of the probability of the individual events. We use indep vars p
M X ii [12] to ensure that a group X is composed of random variables indexed
by the elements in set ii and that the events represented by the preimage of
these random variables are independent using indep sets. indep var is defined,
based on indep vars, to capture the behavior of independence for two random
variables [12]. More details about these definitions can be found in [6].

Finally, the Lebesgue integral is defined in HOL4 based on positive simple
functions and then extended for positive functions and functions with positive
and negative values [11]. Throughout this work, we use the Lebesgue integral for
positive functions, i.e., pos fn integral, since we are integrating distribution
and density functions, which are always positive. The integration is over the real
line and thus we use the Lebesgue-Borel measure (lborel) [12] for this purpose.
For the ease of understanding, we use the regular mathematical expressions.

3.2 DRBD Event

In our formalization, we define the inputs, or the random variables representing
the time-to-failure of system components, as lambda abstracted functions with a
return datatype of extended-real (extreal), which represents real numbers and
±∞. We define the DRBD event of Eq. (2) as:

Definition 2. � ∀p X t. DRBD event p X t = { s | Normal t < X s} ∩ p space p

where Normal typecasts the real value of t from real to extreal. This type
conversion is required since we need real-valued random variables. However, we
need to deal with extreal datatype to model the NEVER element. Thus, we
define the time-to-failure functions to return extreal and typecast the values
from extreal to real using the function real and vice versa using Normal.

We define the reliability as the probability of the DRBD event (Eq. (1)):

Definition 3. � ∀p X t. Rel p X t = prob p (DRBD event p X t)

We verify the reliability-CDF relationship (Eq. (1)) as:

Theorem 1. � ∀p X t. rv gt0 ninfinity [X] ∧
random variable (real o X) p borel ⇒ (Rel p X t = 1- CDF p (real o X) t)
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where real typecasts the values of the random variable from extreal to real as
the CDF is defined for real-valued random variables, random variable (real
o X) p borel ensures that (real o X) is a random variable over the real line
represented by the borel space [12], and rv gt0 ninfinity ensures that the
random variable is greater than or equal to 0 and not equal to +∞, which means
that the time of failure of any component cannot be negative or +∞. Theorem 1
is verified based on the fact that the DRBD event and the set of the CDF are the
complement of each other. Therefore, the probability of one of them equals one
minus the other. For the rest of the paper, we will denote CDF p (real o X) t
by FX(t) to facilitate the understanding of the theorems.

3.3 Identity Elements, Operators and Simplification Theorems

Our formalization of the identity elements and DRBD operators is listed in
Table 5, where extreal is the extended-real datatype in HOL4, PosInf repre-
sents +∞, and min and max return the minimum and maximum values of their
arguments, respectively. This formalization follows the proposed definitions in
Tables 1 and 2. However, we define the operators as lambda abstracted func-
tions to be able to conduct the probabilistic analysis later. We verify several
simplification theorems based on the properties of extreal numbers in HOL.
The full list of these theorems and the proof script are available at [6] and [5],
respectively.

In order to verify the reliability of the DRBD constructs, such as the spare, we
need first to verify the reliability of the DRBD operators that are used to express
the structure function of these constructs. For the AND and OR operators, we
verify their reliability expressions as in Theorems 2 and 3, respectively.

Theorem 2. � ∀p X t. rv gt0 ninfinity [X;Y] ∧
indep var p lborel (real o X) lborel (real o Y) ⇒
(Rel p (X·Y) t = Rel p X t * Rel p Y t)

Theorem 3. � ∀p X t. rv gt0 ninfinity [X;Y] ∧
indep var p lborel (real o X) lborel (real o Y) ⇒
(Rel p (X + Y) t = 1 - (1 - Rel p X t) * (1 - Rel p Y t))

We verify Theorem 2 by first rewriting using Definition 3. Then, we prove that
DRBD event of the AND operator equals the intersection of the individual events,
as in Eq. (3). Utilizing the independence of the real-valued random variables
(real o X) and (real o Y), the probability of intersection of their events equals
the product of the probability of the individual events. Since X and Y are greater
than 0 and are not equal to +∞, based on the function rv gt0 ninfinity, the
events in the probability space that correspond to X and Y are equal to the
ones that correspond to real o X and real o Y. As a result, the DRBD events
of X and Y are independent. Hence, the probability of their intersection equals
the product of the probability of the individual events, i.e., their reliability.
Theorem 3 is verified in a similar way. However, we prove that the DRBD event
of the OR operator equals the union of the individual events, as in Eq. (4).
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Table 5. Definitions of identity elements and DRBD operators

Element/Operator Mathematical expression Formalization

Always element ALWAY S = 0 � R ALWAYS = (λs. (0:extreal))

Never element NEV ER = +∞ � R NEVER = (λs. PosInf)

AND X·Y =min(X,Y ) � ∀X Y. R AND X Y =(λs. min (X s) (Y s))

OR X+Y =max(X,Y ) � ∀X Y. R OR X Y = (λs. max (X s) (Y s))

After X�Y =

{
X, X > Y

+∞, X ≤ Y

� ∀X Y. R AFTER X Y =
(λs. if Y s < X s then X s else PosInf)

Simultaneous XΔY =

{
X, X = Y

+∞, X �= Y

� ∀X Y. R SIMULT X Y =
(λs. if X s = Y s then X s else PosInf)

Inclusive After X�Y =

{
X, X ≥ Y

+∞, X < Y

� ∀ X Y. R INCLUSIVE AFTER X Y =

(λs. if Y s ≤ X s then X s else PosInf)

We verify that this union of events equals to the complement of the intersection
of the complements of the individual events. Then, Theorem 3 can be proven
using the independence of random variables.

We extend the definition of the AND and OR operators to n-ary operators,
nR AND and nR OR, that can be used to represent the relationship between an
arbitrary number of elements. We formally define nR AND and nR OR as:

Definition 4.
� ∀X s. nR AND X s = ITSET (λe acc. R AND (X e) acc) s R NEVER

Definition 5.
� ∀X s. nR OR X s = ITSET (λe acc. R OR (X e) acc) s R ALWAYS

where ITSET is the HOL function to iterate over sets. These definitions apply the
R AND and R OR over the elements of X indexed by the numbers in s. R NEVER and
R ALWAYS are the identity elements of the R AND and R OR operators, respectively.
The reliability of these operators is similar to the reliability of the series and
parallel structures, respectively, as will be described in the following section.

Finally, we verify the reliability expression of the after operator as:

Theorem 4. � ∀X Y p fx t. rv gt0 ninfinity [X; Y] ∧ 0 ≤ t ∧
indep var p lborel (real o X) lborel (real o Y) ∧
distributed p lborel (real o X) fx ∧ (∀x. 0 ≤ fx x) ∧
cont CDF p (real o Y) ∧ measurable CDF p (real o Y) ⇒
(Rel p (X � Y) t = 1-

∫ t

0
fX(x) × FY (x) dx)

where distributed p lborel (real o X) fx ensures that random variable
real o X has a PDF fx, cont CDF and measurable CDF ensure that Fy is con-
tinuous and measurable [7]. The proof of this theorem is based on Pr(Y < X <

t) =
∫ t

0
fX(x) × FY (x) dx, which is verified in [7] using the properties of the

Lebesgue integral and independence of random variables. As the DRBD and
DFT events complement one another, the above expression allows us to verify
the reliability expression of the after operator, since it represents a situation
where the system continues to work until two components fail in sequence.
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3.4 DRBD Constructs and Their Reliability Expressions

We present the formalization of the warm spare (WSP) construct. The expres-
sions of the rest of the spares; hot and cold, can be found in [6].

Definition 6. � ∀Y Xa Xd. R WSP Y Xa Xd = (Xa � Y ) · (Y � Xd)

Since the DRBD and DFT events complement one another, we use our for-
malization of the probability of failure of the warm spare gate [7] to verify the
reliability of the WSP construct:

Theorem 5. � ∀p Y Xa Xd t fY fXaY fXa|Y. 0 ≤ t ∧
(∀s. ALL DISTINCT [Xa s; Xd s; Y s]) ∧ DISJOINT WSP Y Xa Xd t ∧
rv gt0 ninfinity [Xa; Xd; Y] ∧ den gt0 ninfinityfXaY fY fXa|Y ∧
∀y. cond density lborel lborel p (real o Xa)(real o Y) y fXaY fY fXa|Y) ∧
indep var p lborel (real o Xd) lborel (real o Y) ∧
cont CDF p (real o Xd) ∧ measurable CDF p (real o Xd) ⇒(
Rel p (R WSP Y Xa Xd) t)=1-(

∫ t

0
fY(y) ∗ (

∫ t

y
f(Xa|Y=y)(x) dx)dy+

∫ t

0
fY(y)FXd(y)dy)

)

where ALL DISTINCT ensures that the main and spare parts cannot fail at the
same time, DISJOINT WSP Y Xa Xd t ensures that until time t, the spare can only
fail in one of its states and den gt0 ninfinity ascertains the proper values of
the density functions; joint (0 ≤ fXY ), marginal (0 < fY ) and conditional (0 ≤
fXa|Y ) [7]. Theorem 5 is verified by first defining a conditional density function
fXa|Y for random variables (real o Xa) and (real o Y) using cond density.
This is required as the failure of the spare part is affected by the time of failure of
the main part. Therefore, it is required to define this conditional density function
then prove the expression based on the probability of failure of the DFT spare
gate, which is verified based on the properties of the Lebesgue integral.

The formal definitions of the series and parallel structures are listed in
Table 6. We define the series structure as a function that accepts a group of
sets, Y, that are indexed by the numbers in set s and returns the intersection of
these sets. The parallel structure is defined in a similar way but it returns the
union of the sets rather than the intersection. The group of sets, Y, in both struc-
tures represents a family of events, i.e, Y will be instantiated later with DRBD
events. We verify the reliability expressions of the series and parallel structures,
given in Table 4, as shown in Table 6, where s�={} ∧ FINITE s ensures that the
set of indices, s, is nonempty and finite. The reliability of the series structure
is verified based on the independence of the input events using indep sets,
which ensures that for the probability space p, the given group of sets ((λi.
{rv ti event p X t i}) indexed by the numbers in set s are independent. The
family of sets ((λi. {rv to event p X t i}) represents the DRBD events of
the group of time-to-failure functions, X, where rv to event is defined as:

Definition 7. � ∀p X t. rv to event p X t = (λi. DRBD event p (X i) t)

This function enables us to create the group of DRBD event of time-to-failure
functions of system blocks (X). Based on the independence of these sets and
the definition of the series structure (intersection of sets), we verify that the
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probability of the series structure equals to the product of the reliability of the
individual blocks (Rel p (X i) t), where i∈s. The product function (∏) in
HOL4 returns a real value and the probability returns extreal, therefore, it
is required to typecast the product function to extreal using Normal. Simi-
larly, the product function finds the product of real-valued functions, thus, it is
required to typecast the reliability function (Rel) to real using the real func-
tion. Similarly, we replace the parallel structure (the union of events) with the
complement of the intersection of the complements of the events. Then, we ver-
ify that the probability of this complement equals one minus the probability of
the intersection of the complements. This requires the condition that all DRBD
events created using rv to event belong to the events of the probability space p.

We verify that the series and parallel structures are equal to the DRBD
events of the nR AND and nR OR, respectively.

Table 6. Formal definitions and reliability of the series and parallel structures

Series Structure Parallel Structure

Definition � ∀Y s. DRBD series Y s =
⋂
i∈s (Y i) � ∀Y s. DRBD parallel Y s =

⋃
i∈s (Y i)

Reliability

� ∀p X t s. s �= {} ∧ FINITE s ∧
indep sets p
(λi. {rv to event p X t i}) s ⇒

(prob p
(DRBD series (rv to event p X t) s) =
Normal (

∏
i∈s (real (Rel p (X i) t))))

� ∀p X t s. s �= {} ∧ FINITE s ∧
indep sets p
(λi. {rv to event p X t i}) s ∧

(∀i. i ∈ s ⇒
rv to event p X t i ∈ events p) ⇒

(prob p
(DRBD parallel (rv to event p X t) s) =
1 -
Normal
(

∏
i∈s (real (1 - Rel p (X i) t))))

Theorem 6. � ∀p X t s. FINITE s ∧ s 	= {} ⇒
(DRBD event p (nR AND X s) t = DRBD series (rv to event p X t) s)

Theorem 7. � ∀p X t s. FINITE s ∧ 0 ≤ t ⇒
(DRBD event p (nR OR X s) t = DRBD parallel (rv to event p X t) s)

We verify Theorems 6 and 7 by inducting on set s using SET INDUCT TAC that
creates two subgoals to be solved; one for the empty set and another one for
inserting an element to a finite set. Then, we use the fact that the DRBD events of
the AND and OR operators equal the intersection and the union of the individual
events, respectively. For Theorem 7, an additional condition is required, 0≤ t,
to be able to manipulate the sets and reach the final form of the theorem.

These structures can be easily extended to model and verify more complex
structures, such as two-level structures, i.e., series-parallel and parallel-series
structures, as shown in Table 7. The main idea in building these two-level struc-
tures is to partition the family of blocks into distinct groups, where we use a
set, J, to index these partitions, i.e., it has the number of groups in the first top
level. For each group in this top level, we have another set, {s j| j ∈ J}, that
has the indices of the blocks in the second level, i.e. the subgroups. For example,
for the parallel-series structure of Fig. 1(d), if n = m = 1, then the outer parallel
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structure has two series structures, where each series structure has two blocks.
Thus, J = {0;1}. For each j∈ J, we have a certain set s j that has the indices of
the blocks in the inner series structure. Thus, s = (λj. if j = 0 then {0;1}
else {2;3}). This also applies to the series-parallel structure. Therefore, the
structure of the DRBD can be determined based on the given sets of indices.

We verify the theorems in Table 7 by extending the proofs of the series and
parallel structures. However, it is required to deal with the intersection of unions
in case of the series-parallel structure and the union of intersections in case of
parallel-series structure. Therefore, we need to extend the independence of sets
properties to include the independence of union and intersection of partitions of
the events. We verify the independence of union of partitions as:

Theorem 8. � ∀p s J Y. indep sets p (λi. {Yi}) ⋃
j∈J (s j) ∧ J 	= {} ∧

(∀i. i ∈ J ⇒ countable (s i)) ∧ FINITE J ∧ disjoint family on s J ⇒
indep sets p (λj. {⋃

i∈s j (Y i)}) J

where sets J and s have the indices of the partitions and the individual blocks
of each partition, respectively, disjoint family on ensures that the indices of
the blocks in different partitions are disjoint and indep sets p (λi. {Y i})⋃

j∈J (s j) ensures the independence of the family of blocks {Y i} where the
indices of the individual blocks are given by the union of s. Similarly, we verify
the independence of intersection of partitions and the details can be found in [6].

In order to verify the reliability of the series-parallel structure, we need
to ensure the independence of the individual blocks. Therefore, we combine
the indices of all blocks into a single set using ⋃

j∈J (s j) to be used with
indep sets. To be able to use the reliability of the series structure in this
proof, we use Theorem 8 to verify the independence of the unions of partitions
of events. This means verifying that the parallel structures are independent, i.e.,
the probability of intersection of these parallel structures equals the product of
the reliability of the parallel structures. Several assumptions related to sets {s

Table 7. Verified reliability of the series-parallel and parallel-series structures

Reliability of Series-Parallel Structure Reliability of Parallel-Series Structure

� ∀p X t s J.
indep sets p
(λi. {rv to event p X t i}) (

⋃
j∈J(s j)) ∧

(∀i. i ∈ J ⇒ s i �= {} ∧ FINITE (s i)) ∧
FINITE J ∧ J �= {} ∧ disjoint family on s J ⇒

(prob p
(DRBD series
(λj. DRBD parallel
(rv to event p X t) (s j)) J) =

Normal
(

∏
j∈J

(1 -
∏

i∈(s j) (real (1 - Rel p (X i) t)))))

� ∀p X t s J.
indep sets p
(λi. {rv to event p X t i}) (

⋃
j∈J(s j))∧

(∀i. i ∈ ⋃
j∈J(s j) ⇒

rv to event p X t i ∈ events p) ∧
(∀i. i ∈ J ⇒ s i �= {} ∧ FINITE (s i)) ∧
FINITE J ∧ J �= {} ∧
disjoint family on s J ⇒
(prob p
(DRBD parallel
(λj. DRBD series
(rv to event p X t) (s j)) J) =

1 -
Normal
(

∏
j∈J

(1 -
∏

i∈(s j) (real (Rel p (X i) t)))))
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i| i ∈ J} and J are required, i.e., these sets are finite and nonempty. Finally,
disjoint family on ensures that every block has a unique index. The reliabil-
ity of the parallel-series structure is verified in a similar manner based on the
reliability of the parallel structure and the independence of the intersection of
partitions of events rather than the union. In addition, it is required that all
DRBD events belong to the events of the probability space.

We extend the reliability of the series-parallel structure to verify the relia-
bility of a four-level nested structure, i.e., series-parallel-series-parallel. For this,
we have four sets (indexed sets) that determine the structure of the DRBD. We
verify the four-level nested structure using two main steps. We first verify the
reliability of the outer series-parallel, which requires verifying the independence
of the intersection of union of partitions of the DRBD blocks, i.e., the inner
series-parallel structures are independent. Then, we verify the reliability of the
inner series-parallel structures based on some set manipulation. This way, we can
verify even deeper structures, which would require verifying the independence of
more nested structures. We use the nested four-level structure to verify the reli-
ability of the series-parallel-series structure as it represents a special case of the
series-parallel-series-parallel, where each of the innermost parallel structures has
only one block. More details about this proof can be found in [6]. Our formaliza-
tion follows the natural definitions of parallel and series structures. Moreover, our
verified lemmas of independence allow verifying deeper structures, which makes
our formalization flexible and applicable to model the most complex systems.

4 Applications

To demonstrate the applicability of our proposed DRBD algebra, we formally
analyze the reliability of a drive-by-wire system (DBW) [2] and a shuffle-
exchange network (SEN) [3] (Fig. 2) to verify generic expressions that are inde-
pendent of the failure distribution of system components, i.e., we can use different
types of distributions to model the failure of components as long as they satisfy
the required conditions, such as the continuity. We present here the details of
the SEN system due to space limitations and the details of the formal reliability
analysis of the DBW system is available at [6].

A SEN is a single-path multistage interconnection network (MIN) that pro-
vides the necessary switching in multi-processor systems [3]. It consists of sources
(inputs) and destinations (outputs), where only one possible path is available
between each source and destination. To increase the reliability of such network,

Fig. 2. DRBD of: (a) DBW and (b) SEN with spare constructs
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additional switching elements are added to provide additional paths between
each source and destination. A SEN having two paths between each source and
destination is usually called SEN+. The terminal reliability analysis, which is
the reliability of the connection between a given source and destination, is usu-
ally conducted using static RBDs [3]. However, each source and destination are
always connected to single switches, where their failure leads to the failure of
the connection. Therefore, we propose to further enhance the reliability of this
connection by using spare parts that replace these single switches after failure.
Thus, we model the reliability of the modified SEN+ system using DRBDs, as
shown in Fig. 2(b), where Y and Z are the main single switches that are con-
nected to the source and destination with their spares Y s and Zs, respectively.
The parallel structure in the middle represents the reliability model of the two
alternative paths between the source and the destination. We formally express
the structure function of this DRBD as:

QSEN = nR AND (λi. if i = 0 then R WSP Y Ysa Ysd
else if i = 1 then

(
(nR AND X L1) + (nR AND X L2)

)
else R WSP Z Zsa Zsd) {0; 1; 2}

Thus, the outer series structure is expressed using the nR AND operator over
the set {0; 1; 2} as this structure has three different structures; i.e., two spare
constructs and one parallel structure, and L1 and L2 are the sets that have the
indices of the components in the inner series structures. In order to re-utilize
the verified expressions of reliability, we verify that the DRBD event of the QSEN
is equal to a nested series-parallel-series structure to verify a generic expression
for the reliability of the SEN+ system:

Theorem 9. � ∀p X Y Ysa Ysd Z Zsa Zsd t L1 L2.

SEN set req p L1 L2 (ind set [{0}; L1; L2; {3}])
(ind set [{0}; {1; 2}; {3}]) {0; 1; 2}
(event set[(DRBD event p (R WSP Y Ysa Ysd) t,0);

(DRBD event p (R WSP Z Zsa Zsd) t,3 )] (rv to event p X t)) ⇒
(prob p (DRBD event p QSEN t) =

Rel p (R WSP Y Ysa Ysd) t * Rel p (R WSP Z Zsa Zsd) t *

(1 - (1 - Normal (
∏

l∈L1 (real (Rel p (X l) t)))) *

(1 - Normal (
∏

l∈L2 (real (Rel p (X l) t))))))

where SEN set req ensures that the input sets are finite and nonempty. It also
ensures the independence of the input events over the probability space and
that they belong to the probability events. ind set and event set generate the
proper indices for the blocks in the structure. Their description can be found
in [6]. The reliability of the spare constructs can be further rewritten using Theo-
rem 5 given that the required conditions are ensured. The final theorem with the
expressions of the reliability of the spare constructs is available in [5]. The proof
scripts of the DBW and SEN required around 150 and 1020 lines, respectively,
and are available at [5]. Finally, we evaluate, using MATLAB, the reliability of
the DBW assuming exponential distribution with failure rates as given in Fig. 3.
We also evaluate the reliability of the SEN system (Fig. 3) assuming the same



268 Y. Elderhalli et al.

Fig. 3. Reliability of (a) DBW (b) SEN with/without spare constructs

failure rate of 1 × 10−5 for all switching elements with 16 switching elements in
each series structure. We evaluate the SEN reliability without and with spares
with a dormancy factor of 0.1. This result shows that considering the spares in
the reliability analysis leads to having a more reliable and realistic system than
static RBDs that are usually used for the analysis of similar SENs.

To sum up, we are able to provide generic expressions of reliability of the
DBW and SEN+ systems that are verified in HOL theorem proving, which
cannot be done using other formal tools. These expressions can be instantiated
with different failure distributions without the need to repeat the analysis. In
addition, we demonstrated that our formalization is flexible and can be used to
model more complex systems of an arbitrary number of blocks by implementing
its hierarchy using sets that can be instantiated later to model a specific system
structure, which is an added feature of our formalized algebra.

5 Conclusion

In this paper, we proposed a new algebra to analyze dynamic reliability block dia-
grams (DRBDs). We developed the HOL formalization of this algebra in HOL4,
which ensures its correctness and allows conducting the analysis within a theorem
prover. Furthermore, this algebra provides formalized generic expressions of reli-
ability that cannot be verified using other formal tools. This HOL formalization
is the first of its kind that takes into account the system dynamics by providing
the HOL formal model of spare constructs and temporal operators. The pro-
posed algebra is compatible with the reliability expressions of traditional RBDs
as demonstrated by the reliability expressions of the series and parallel struc-
tures. It also facilitates extending the verified reliability expressions to model
complex systems using nested structures. Finally, we demonstrated the useful-
ness of this work by formally conducting the analysis of a drive-by-wire and
a shuffle-exchange network systems to verify generic expressions of reliability,
which are independent of the failure probability distribution of system compo-
nents. We plan to extend this algebra to include other DRBD constructs, such
as load sharing, in order to provide a more complete framework to algebraically
analyze DRBDs in HOL.
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Abstract. The Model Checking Modulo Theories (MCMT) framework
is a powerful model checking technique for verifying safety properties of
parameterized transition systems. In MCMT, logical formulas are used to
represent both transitions and sets of states and safety properties are ver-
ified by an SMT-based backward reachability analysis. To be fully auto-
mated, the class of formulas handled in MCMT is restricted to cubes, i.e.
existentially quantified conjunction of literals. While being very expres-
sive, cubes cannot define properties with a global termination condition,
usually described by a universally quantified formula.

In this paper we describe BRWP, an extension of the backward reach-
ability of MCMT for reasoning about validity properties expressed as
universal cubes, that is formulas of the form ∃i∀j.C(i, j), where C(i, j)
is a conjunction of literals. Our approach consists in a tight coopera-
tion between the backward reachability loop and a deductive verification
engine based on weakest-precondition calculus (WP). To provide evi-
dence for the applicability of our new algorithm, we show how to make
Cubicle, a model checker based on MCMT, cooperates with the Why3
platform for deductive program verification.

1 Introduction

In this paper, we consider the problem of verifying safety properties of param-
eterized systems. The systems we are interested in are called array-based tran-
sition systems. This is a syntactically restricted class of parameterized systems,
introduced by Ghilardhi and Ranise [9] where states are represented as arrays
indexed by an arbitrary number of processes. Distributed systems with consen-
sus or commitment protocols are typical examples modeling with array-based
systems.

The verification of array-based systems as proposed in [8] led to a power-
ful model checking technique called Model Checking Modulo Theories (MCMT).
This is a symbolic SMT-based model checking technique where logical formulas
(expressed in a fragment of first-order logic) are used to represent both transi-
tions and sets of states, and safety properties are verified by backward reach-
ability analysis. A safety property to be verified in MCMT is expressed in its
negated form as a formula that represents unsafe states. Each unsafe formula
must be a cube, i.e., have the form ∃i.C(i), where C(i) is a conjunction of literals.
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While the expressiveness of cubes is sufficient to encode a large class of safety
invariants, it is usually too weak for describing safety properties with a global
termination condition. For instance, in a consensus algorithm, one would like
to check that, at the end of the consensus, there is no process deciding a value
distinct from the value chosen by the others. Unfortunately, the “at the end of
the consensus” part of the sentence must take the form of a universally quantified
formula defining the condition for the processes to terminate. To cope with such
properties, MCMT must be extended to reason about universal cubes, that is
formulas of the form ∃i∀j.C(i, j), where C(i, j) is a conjunction of literals.

To handle such formulas, one can try to encode universal cubes as transi-
tions with universal guards, i.e., guards containing universally quantified global
conditions that check the state variables of all processes. However, since uni-
versal quantifiers in guards prevents the backward reachability algorithm to be
fully automated, solutions based on over approximations techniques have been
proposed [1–3]. One of the best solution is proposed in [3] as a syntactic transfor-
mation which can be seen as the implementation of a crash-failure model where
an unbounded number of processes can die at any time. Unfortunately, while
very efficient, this over approximation technique results in false positives for non
fault-tolerant systems which are very common in distributed systems.

Another way to handle universal cubes would consist to give up model check-
ing techniques and instead to use a more expressive and powerful Hoare-style
reasoning. For instance, translating Cubicle systems to the input language of the
TLA+ system [12] is straightforward and would allow the user to use a proof
system like TLAPS [6]. Similarly, one can translate Cubicle’s input language to
DVF [10], a deductive verification framework dedicated to transition systems
which uses SMT solvers to prove the generated verification conditions. However,
while those frameworks offer automatic backends to discharge proof obligations,
an important and very painful part of the proof effort consists in finding man-
ually the auxiliary invariants of the system which are mandatory for the safety
property to be proved.

In this paper, we propose to bridge the gap between model checking and
deductive verification. Our technique consists in a tight cooperation between the
backward reachability loop of MCMT and a deductive verification engine based
on weakest-precondition calculus. To provide evidence for the applicability of
our technique, we show how to make Cubicle, a model checker based on MCMT,
cooperate with the Why3 platform for deductive program verification [7]. Our
contributions are as follows:

• A new algorithm, called BRWP, that extends the backward reachability algo-
rithm to handle universal cubes (Sect. 4).

• A translation schema from Cubicle to Why3 (Sect. 5).

In Sect. 2, we illustrate the problem of handling universal cubes in MCMT on
a simplified version of a splitter, a basic building block of renaming algorithms
in shared memory. We give an overview of our approach in Sect. 3.
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2 The Problem of Universal Quantifiers in MCMT

Throughout this paper, we use a simplified version of a splitter algorithm to
illustrate the problems and solutions we are presenting.

Splitters have been first introduced by Lamport [11] to implement fast
mutual-exclusion algorithms, then used by Moir and Anderson to solve the
renaming problem in shared memory [13]. A splitter can be depicted graphi-
cally by the schema in Fig. 1. It is a concurrent object used to distinguish an
arbitrary number (n) of callers. Each process that calls the splitter gets a deci-
sion value among stop, down and right. The decision values respect the following
rules:

• There are only three possible decisions : Stop, Right and Down
• At most one process ends in Stop
• At most n − 1 processes end in Down
• At most n − 1 processes end in Right

Fig. 1. Splitter

The splitter algorithm for each process p is represented in Fig. 2 as an automa-
ton with seven states (PC0 to PC3, Stop, Down and Right) and two boolean vari-
ables X and Y. The initial state is PC0 where Y is supposed to be initialised to
false and X can contain any value. The first transition should be read as follows:
a process p in state PC0 can go to PC1 and assign X to p. Similarly, if Y is false
then a process p can go from PC1 to PC2 else it can go to state Right. A transition
from PC2 to PC3 assigns Y to true (�). Finally, the process p can go from PC3 to
Stop if X = p, otherwise it can go to Down.

Modeling this (simplified) splitter algorithm is immediate using array-based
transition systems. We assume given an enumeration type state with seven
constructors (PC0, . . ., PC3, Stop, Down and Right), two variables X and Y and
an array PC such that, for each process p, PC[p] contains a value of type state.
Initially, each process is in state PC0 and Y = ⊥, which is described by the
following universal formula Init:

Init : ∀p.PC[p] = PC0 ∧ Y = ⊥
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Fig. 2. Automaton for a process p representing the splitter with updates to shared
variables attached to the nodes and conditions labeled to edges

The six transitions of the automaton are described by the six formulas splxxx
given in Fig. 3. Each formula relates the values of state variables before and after
the transition. We denote by X′ the value of the variable X after the execution
of the transition. For instance, transition spl0 should read as: if there exists a
process p such that PC[p] contains PC0, then update PC[p] to PC1 and variable X
to p.

According to the conditions previously stated, proving the safety of the split-
ter amounts to checking that states satisfying one of the following three formulas
are not reachable:

ϕ1 : ∃ij. i �= j ∧ PC[i] = Stop ∧ PC[j] = Stop
ϕ2 : ∀i.PC[i] = Down
ϕ3 : ∀i.PC[i] = Right

The reachability analysis in MCMT is performed by running a symbolic
backward algorithm. Starting from a formula describing the system’s unsafe
condition, its pre-images are iteratively computed for all transitions. Pre-images
that are subsumed by already visited nodes are not expanded anymore. This
process ends either when a formula in a node intersects the initial formula Init
or when there is no more pre-image to compute.

An important result about array-based systems is that pre-images of cubes
(existentially quantified conjunction of literals) are computable and can be rep-
resented as union (disjunction) of cubes [9]. Thus, starting from a cube, the
backward reachability analysis produces only cubes and is therefore automat-
able. For instance, the pre-image of the cube ϕ1 by splstop is the following
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Fig. 3. Splitter transition system

formula ϕ′
1 which describes the states from which a state characterized by ϕ1 can

be reached by taking the transition splstop(i) (where the parameter i indicates
which process is concerned by the transition) :

ϕ′
1 : ∃ij. i �= j ∧ X = i ∧ PC[i] = PC3 ∧ PC[j] = Stop

The termination of this reachability analysis is guaranteed as long as one
can exhibit a well-quasi-ordering on the set of cubes generated during the algo-
rithm [9].

Concerning the second and third formulas ϕ2 and ϕ3, they are not cubes
as they contain universal quantifiers. The computation of their pre-images will
introduce existential quantifiers. For example, the pre-image of ϕ2 by spldown(j)
is the following ϕ′

2 formula:

ϕ′
2 : ∃j∀i. i �= j =⇒ X �= j ∧ PC[j] = PC3 ∧ PC[i] = Down

and the pre-image of ϕ′
2 by the same transition will give the new formula ϕ′′

2 :

ϕ′′
2 : ∃jk∀i.

i �= j �= k =⇒ X �= j ∧ X �= k ∧
PC[j] = PC3 ∧ PC[k] = PC3 ∧ PC[i] = Down

From ϕ′
2 and ϕ′′

2 , it may seem obvious that the reachability analysis of ϕ2 will
generate an infinite sequence of formulas where new existentially quantified pro-
cesses will be piled up, leading to the impossibility of reaching a fixpoint and
thus terminating.

For those reasons, the MCMT framework is restricted to the analysis of
cubes. However, as illustrated by the properties ϕ2 or ϕ3, some problems involve
formulas that are not cubes and that need to be handled.



Reasoning About Universal Cubes in MCMT 275

As mention in the introduction, there exists techniques for extending MCMT
to universal quantifiers. In [3], a syntactic transformation is proposed which
can be interpreted as the implementation of a crash-failure model. The main
idea is to view a universal formula ∀i.ϕ as an infinite conjunction and to over
approximate it as a finite conjunction ∃i1, . . . , in.ϕ(i1)∧· · ·∧ϕ(in), by considering
that, except for those n processes, all other processes crashed before reaching
the states described by this formula. For instance, using this technique, ϕ2 could
be seen as a cube ψ2 of the form

ψ2 : ∃i.PC[i] = Down

by considering that the number of processes that did not crash is exactly one.
Computing the pre-image of ψ2 is immediately simpler but we can see with utter
certainty that this state is not unsafe if more than one processes are involved in
subsequent transitions. From this example it is obvious that protocols that are
not fault-tolerant (like the splitter) would produce wrong results.

3 Reasoning About Universal Cubes in MCMT

In this section, we illustrate BRWP, an extended version of the backward reacha-
bility of MCMT for reasoning about universal quantifiers using the splitter given
in Sect. 2. Our extension applies to universal cubes (u-cubes) which are formulas
of the form ∃i∀j.C(i, j), where C(i, j) is a conjunction of literals parameterized
by two vectors i and j of distinct process variables. We proceed in three steps
to reason about u-cubes.

Step 1: Reachability Analysis in a Finite Domain. Instead of considering the
parameterized case, we first restrict the domain of processes to a finite set of
process identifiers (denoted in the rest of the paper by the symbols #1, #2, . . .).
The number chosen for the cardinality of the domain is arbitrary, but in our case
studies we fix the domain to contain only 3 or 4 processes.

Fixing the cardinality allows us to instantiate the universal part of u-cubes
and convert them to cubes. For instance, in a domain restricted to 3 distinct
processes #1, #2 and #3, the formula ϕ2 is transformed in the following cube ϕ#3

2

(with no quantifiers):

ϕ#3
2 : PC[#1] = Down ∧ PC[#2] = Down ∧ PC[#3] = Down

From these cubes, we run the (traditional) backward reachability algorithm of
MCMT, bounded by the finite cardinality of the domain of processes. Thereby,
for instance, the first pre-image of ϕ#3

2 by spldown(#1) is the following ϕ′#3
2 for-

mula:

ϕ′#3
2 : PC[#1] = PC3 ∧ X �= #1 ∧ PC[#2] = Down ∧ PC[#3] = Down

It is important to remark that ϕ′#3
2 has the same number of processes as ϕ#3

2 .
Indeed, the cardinality of the domain prevents us to add new (existential) quan-
tifiers.
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If the reachability algorithm terminates with a pre-image that intersects the
initial formula, then we can conclude that the system is unsafe in the parameter-
ized case. Otherwise, if a fixpoint is reached (which is the case for the splitter), we
can only conclude that the property is valid for the chosen number of processes,
and we proceed to Step 2.

Step 2: Generalising Invariants. To go further and prove the properties defined
by u-cubes for the parameterized case, we try to exploit (a subset of) the pre-
images computed in Step 1 by trying to generalise those formulas for an infinite
domain. This is done by abstracting process constants by existential or universal
quantified variables.

The problem of generalising a pre-image computed in Step 1 is that it can
characterize unreachable states in a finite domain but reachable ones in an infi-
nite domain (which seems normal since this kind of algorithms are not fault-
tolerant). For instance, consider the previous formula ϕ′#3

2 obtained by comput-
ing the pre-image of ϕ#3

2 by spldown(#1). The states described by this formula are
unsafe (and unreachable from Init) if the domain is limited to three processes,
but they becomes safe if a fourth process exists as it could be in any state of the
automaton (PC0, PC1, Right,. . .) as shown by the graph in Fig. 4.

To check if a pre-image represents unreachable states in an infinite domain,
we first transform it into a cube by replacing process constants with existential
variables, then we replay the reachability algorithm of MCMT. If this cube is
shown to be unreachable, then we keep it for Step 3. Otherwise, we transform the
pre-image as a u-cube by only abstracting with existential variables the process
constants involved in a transition and using universal quantifiers for abstracting
the other constants. The u-cubes generated by this generalisation technique are
safe (but nevertheless less informative) invariants that we keep for Step 3.

For instance, the pre-image ϕ′#3
2 is first generalised as a cube by abstracting

the process constants #1, #2 and #3 by three existentially quantified variables p1,
p2 and p3:

ϕ′∃
2 : ∃p1p2p3

p1 �= p2 �= p3 ∧ X �= p1 ∧ PC[p1] = PC3 ∧
PC[p2] = Down ∧ PC[p3] = Down

Running a backward reachability from ϕ′∃
2 shows that it describes states reach-

able from Init. Therefore, we can filter this formula out as it is actually safe
and can’t be treated as an invariant of the system.

Now, when looking closely at the pre-image ϕ′#3
2 , it appears that process #1

has been used by a transition when #2 and #3 remained untouched. In terms of
quantifiers, this can be semantically captured by (1) adding a fresh existential
variable p1 for representing #1 and (2) by representing processes #2 and #3 with
the same universally quantified variable p2. Therefore, ϕ′#3

2 can be generalised
by the following u-cube

ϕ′∃∀
2 : ∃p1.∀p2.p1 �= p2 =⇒ X �= p1 ∧ PC[p1] = PC3 ∧ PC[p2] = Down

which represents states that are unsafe if there exists a process p1 in PC3 such
that X �= p1 and that all other processes are in Down.
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Fig. 4. Processes #2 and #3 are in Down and process #1 is in PC3, ready to go in Down,
but a fourth process #4 could be in all other states

Step 3: Deductive Verification. Given a property ϕ, the result of Steps 1 and 2 is
a set of (u-)cubes {I∃∀

k1
, . . . , I∃∀

kp
} representing invariants of the original system

computed from the finite backward reachability of ϕ.
To prove ϕ, our last step consists in proving the following conjunction ψ

using a deductive verification technique.

ψ : ϕ ∧ I∃∀
k1

∧ · · · ∧ I∃∀
kp

For that, we translate the array-based parameterized transition system, as well
as the formula ψ, in the input language of a deductive verification engine.

Considering the impressive number of back-ends (SMT or TPTP solvers) sup-
ported by the Why3 platform, we have chosen to translate array-based systems
to WhyML, the input language of Why3. However, the translation requires great
attention as (1) the semantic gap between array-based systems and WhyML is
important, and (2) the way transition systems are represented may have a strong
impact on the deductive engine (see Sect. 5).

4 Formalising BRWP

The implementation of BRWP is given in Algorithm 1. It’s an extended version
of the backward reachability procedure of MCMT for reasoning about universal
cubes.

This algorithm takes as input a formula ϕ and an integer c. It starts by
initiating two variables, V, the set of the visited nodes initially empty and Q,



278 S. Conchon and M. Roux

the queue of pending nodes initialised with the instantiated version ϕ#c of ϕ.
The formula ϕ#c is instantiated as seen in Step 1 with a cardinality fixed to c.
BRWP iteratively computes the transitive closure of pre-images FinitePre∗(ϕ#c)
until it reaches one of the two following termination conditions:

– the safety check (line 7) fails which means that the treated node corresponds
to a possible initial state and thus that the system is unsafe

– there are no more nodes in Q which means that a fixpoint has been reached
and the system is safe (for a finite domain)

If the first termination condition has been reached, the system is not safe for
a finite number of processes and can not be safe for an infinite number of them.
However, if the second condition has been reached, the visited nodes need to be
treated to correspond to the infinite domain as seen in Step 2. When these filter-
ing and generalisation have been computed (see next subsections for a description
of this step), the new invariants are delivered to a deductive verification engine
by calling the function Check inductive invariant(see Sect. 5).

4.1 Generalisation and Filtering

The code of the generalisation and filtering function Generalize and filter is
given in the Algorithm 2. It takes as input the set V#c of instantiated formulas
computed during the finite backward reachability. Its goal is to transform those
formulas in cubes by renaming the processes and binding them to existential
quantifiers. However, before doing so, a simplification step (function Simplify)
is performed since the finitness of our domain allows us to transform multiple
differences in an equality. For example, considering again the formula ϕ′#3

2 seen
in Sect. 3:

ϕ′#3
2 : PC[#1] = PC3 ∧ X �= #1 ∧ PC[#2] = Down ∧ PC[#3] = Down

Its pre-image by transition spldown(#2) gives the following formula:

X �= #1 ∧ X �= #2 ∧ PC[#2] = PC3 ∧ PC[#3] = Down

In this case, the fact that we’re facing a finite domain actually helps us. Since
there are only three processes, the literals X �= #1 and X �= #2 implies that X = #3.
This formula is thus transformed first as follows:

X = #3 ∧ PC[#2] = PC3 ∧ PC[#3] = Down

then, it is generalised as the following cube:

∃p2, p3. X = p3 ∧ PC[p2] = PC3 ∧ PC[p3] = Down

After this generalisation and simplification transformation has been performed,
the cube ϕ thus obtained is given to the same backward reachability engine
(BWD), but this time without the finite domain constraint. If the model checker
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returns safe, ϕ is saved in the set variable S1 for the deductive verification
engine and the instantiated formula ϕ#c is filtered out from the set V of
formulas to be given to the second generalisation algorithm implemented in
Universal Generalization.

4.2 Universal Generalisation

The code of the function Universal Generalization is given in Algorithm 3.
Similarly to the previous generalisation function, Universal Generalization
takes as input the set V#c of instantiated cubes.

To explain the main part of this algorithm, we illustrate its uses in Fig. 5,
starting from the following property ϕ of the splitter

ϕ : ∀p.PC[p] = Down

which, after instantiation (for instance when c is 3), is given to the generalisation
function as the following formula:

ϕ#c : PC[#1] = Down ∧ PC[#2] = Down ∧ PC[#3] = Down

This formula is first tagged with a vector of processes
−→
V #c describing which

processes are from the same quantifier. Here,
−→
V #3 = {#1, #2, #3}∀, where the

meaning of the annotation ∀ is that the 3 processes come from the univer-
sal quantifier. When computing the pre-image from the transition spldown :
∃i.PC[i] = PC3 ∧ X �= i ∧ PC’[i] = Down, we end up with the new formula

ϕ#3
1 = PC[#1] = #3 ∧ X �= #1 ∧ PC[#2] = Down ∧ PC[#3] = Down
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and the new vector
−→
V #3 = {#1}∃, {#2, #3}∀. The reasoning behind this comes

from the fact that transitions in Cubicle are existentially quantified. Thus, since
processes #2 and #3 have not been involved in the transition, they remain
attached to the universal quantifier. On the contrary, process #1 becomes
attached to a new existential quantifier.

When generalised, all literals containing an existential-tagged processes (we
use the notation

−→
V #3∃ to denote this set of variables) are kept with their processes

being renamed in new distinct existential processes and all the literals containing
an universal-tagged process (we use the notation

−→
V #3∀ to denote this set of

variables) are merged into one literal quantified by a fresh universal process. For
instance, the formula ϕ#3

1 is generalised as follows:

∃p1.∀p2.p1 �= p2 =⇒ PC[p1] = PC6 ∧ PC[p2] = Down
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5 Deductive Verification

The last function call Check inductive invariant(ϕ ∧ S1 ∧ S2) of BRWP
requires the help of a deductive verification engine. In our implementation, we
are using the Why3 platform [7].

Given a program P and its specification T (a set of theories, program invari-
ants and properties), Why3 tries to check that P satisfies T by performing
an inductive invariant check with a compositional reasoning and a weakest-
precondition (WP) engine. Verification conditions generated by the WP calculus
of Why3 are discharged to a large number of automatic or interactive solvers
(SMT, TPTP, Coq, etc.).

The implementation of Check inductive invariant is essentially based on
the translation of array-based transition systems to WhyML, the input language
of Why3. However, the gap between the semantics of MCMT and WhyML is
important. Indeed, Why3 is a platform designed to work with sequential, deter-
ministic and terminating programs, while the semantics of array-based transition
systems is concurrent, non-deterministic and non-terminating. To see how to
bridge the gap between these two languages, we illustrate our translation using
the splitter example (Sect. 2).
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Fig. 5. First nodes and their simplification, filtration and generalisation for the splitter

State Declaration. Our encoding starts with types declarations. The type proc
of processes is represented by integers (int in WhyML). The system’s state is
encoded by a record with two mutable variables x and y, as well as an array pc
(implicitly indexed by integers) containing values of type state.

type proc = int
type system = {

mutable x : proc;
mutable y : bool;
pc : array state;

}

Initial States. The initial formula of the splitter defines initial states with the
following formula Init

Init : ∀p.PC[p] = PC0 ∧ Y = ⊥

where only Y and PC[] are given a value, the other variable x can contain an
arbitrary value. Since Why3 expects every variable to be initialised, we give to
x a random value in the range of possible values.

let s = {
y = false;
pc = Array.make _n PC0;
x = Random.random_int _n;

} in
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Infinite Execution. The semantics of an array-based transition system is given
by a single infinite loop which repeatedly execute two steps:

1. evaluate all the guards of transitions, given the current values of the global
state

2. arbitrarily choose one of the commands whose guard is true and execute it,
updating the variables

Translating infinite loops in Why3 is problematic, in particular when one want
to check invariants when exiting it. A solution to this problem is to consider that
the loop ends when it reaches a bound given as a parameter of our system. The
resulting program in Why3 is then bounded by the number of processes and the
number of steps allowed in the loop.

let splitter1 (_n : int) (maxsteps : int) : system
requires { 0 < _n }
...
=
(* ... *)

while ( !nbsteps < maxsteps ) do
variant { maxsteps - !nbsteps }
incr nbsteps;
(* ... *)

done;
s

end

Nondeterminism. There are two sources of nondeterminism in array-based sys-
tems. The first one can be illustrated by considering the following transitions t1
and t2:

t1 : ∃p.PC[p] = PC0 ∧ PC’[p] = PC1
t2 : ∃p.PC[p] = PC0 ∧ PC’[p] = PC2

If PC[p] = PC0 for some process p, then both transition can be triggered, result-
ing in a state where PC[p] equals to PC1 or PC2.

In order to mimic this nondeterminism in Why3, we add a coin toss to each
translation of a transition’s guard. This coin toss does not need to be specified,
it just allows Why3 to explore all the possibilities.

val coin () : bool
if coin () && pc.[i] = PC0
then pc.[i] <- PC1
if coin () && pc.[i] = PC0
then pc.[i] <- PC2

The second source of nondeterminism comes from the fact that, at each step
of the loop, transitions need to be taken by random unique processes. The Why3
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program thus needs to know that it can take the transition of its choice with the
processes of its choice if the guards hold true with such processes.

This is done by specifying a function that takes two arguments, the max
number of processes n and the number of needed processes k (e.g. the max
number of processes involved in transition guards, updates, etc.). This function
ensures that all the processes it creates will be different. There is no need to
implement it as we just use its specification to help the deductive verification.
Why3 having difficulty with lists and algebraic data types to reason inductively,
the result returned by this function is an array of the size of the number of pro-
cesses needed. The value k is determined by the maximum number of parameters
(processes) in a transition. In the splitter case, k will then be equal to 1.

val k_random (k:int) (n:int) : (result:array int)
requires { 0 <= k }
requires { k <= n }
ensures { length result = k }
ensures { forall i j:int. 0 <= i < n /\ 0 <= j < n /\ i <> j ->

result[i] <> result[j] }
ensures { forall i:int. 0 <= i < n -> 0 <= result[i] < n }

Invariants. Finally, as it is (when all the transitions have been added), this
file can not be proven by Why3 since it lacks important loop invariants. The
algorithms to find such invariants are independent of BRWP and by lack of space,
we omit to describe them. In our implementation, these invariants are found
during the backward reachability loop using the BRAB technique of Cubicle
[4,5], a model checker based on MCMT. Those invariants are automatically
added to the Why3 file as invariant formulas.

while ( !nbsteps < maxsteps ) do

invariant { 0 <= s.x < _n }

invariant { forall _p1 : int. 0 <= _p1 < _n /\

s.x = _p1 -> s.pC[_p1] <> Down }

invariant { exists _p1 : int. 0 <= _p1 < _n /\ s.pC[_p1] <> Down }

(* ... *)

6 Conclusion and Perspectives

In this paper, we have presented an extension of the MCMT framework for rea-
soning about universal cubes, that formulas with both existential and universal
quantifiers. Our approach tightly combines the backward reachability algorithm
of MCMT with a deductive verification engine.

We have implemented our framework in the Cubicle model checker, with the
help of the Why3 platform for program verification. Our first experiments are
very promising as we have been able to prove automatically algorithms like the
splitter which were out of scope the Cubicle model checker.
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As future work, we plan to design an even more tight integration between our
backward reachability algorithm and a weakest-precondition calculus in order to
implement a complete roundtrip loop between these algorithms.
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Abstract. Ethereum smart contracts are an innovation built on top
of the blockchain technology, which provides a platform for automati-
cally executing contracts in an anonymous, distributed, and trusted way.
The problem is magnified by the fact that smart contracts, unlike ordi-
nary programs, cannot be patched easily once deployed. It is important
for smart contracts to be checked against potential vulnerabilities. In
this work, we propose an alternative approach to automatically iden-
tify critical program paths (with multiple function calls including inter-
contract function calls) in a smart contract, rank the paths according to
their criticalness, discard them if they are infeasible or otherwise present
them with user friendly warnings for user inspection. We identify paths
which involve monetary transaction as critical paths, and prioritize those
which potentially violate important properties. For scalability, symbolic
execution techniques are only applied to top ranked critical paths. Our
approach has been implemented in a tool called sCompile, which has
been applied to 36,099 smart contracts. The experiment results show
that sCompile is efficient, i.e., 5 s on average for one smart contract. Fur-
thermore, we show that many known vulnerabilities can be captured if
user inspects as few as 10 program paths generated by sCompile. Lastly,
sCompile discovered 224 unknown vulnerabilities with a false positive
rate of 15.4% before user inspection.

Keywords: Blockchain · Symbolic testing · Smart contract

1 Introduction

Built on top of cryptographic algorithms [1–3] and the blockchain technology
[4–6], cryptocurrency like Bitcoin has been developing rapidly in recent years.
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Many believe it has the potential to revolutionize the banking industry by allow-
ing monetary transactions. Smart contracts bring it one step further by providing
a framework which allows any contract to be executed in an autonomous, dis-
tributed, and trusted way. Smart contracts thus may revolutionize many indus-
tries. Ethereum [7], an open-source, blockchain-based cryptocurrency, is the first
to integrate the functionality of smart contracts. Due to its enormous potential,
its market cap reached at $29.1 billion as of Jun 17th, 2019.

In essence, smart contracts are computer programs which are automatically
executed on a distributed blockchain infrastructure. A majority of smart con-
tracts in Ethereum are written in a programming language called Solidity [8].
Like ordinary programs, Solidity programs may contain vulnerabilities, which
potentially lead to attacks. The problem is magnified by the fact that smart
contracts, unlike ordinary programs, cannot be patched easily once they are
deployed on the blockchain.

In recent years, these attacks exploit security vulnerabilities in Ethereum
smart contracts and often result in monetary loss. One notorious example is
the DAO attack [9], i.e., an attacker stole more than 3.5 million Ether (about
$45 million USD at the time) from the DAO contract on June 17, 2016.

The problem of analyzing and verifying smart contracts is far from being
solved. Some believe that it will never be, just as the verification problem of
traditional programs. Solidity is designed to be Turing-complete which intuitively
means that it is very expressive and flexible. The price to pay is that almost
all interesting problems associated with checking whether a smart contract is
vulnerable are undecidable [10]. Consequently, tools which aim to analyze smart
contracts automatically either are not scalable or produce many false alarms.
For instance, Oyente [11] is designed to check whether a program path leads
to a vulnerability or not using a constraint solver to check whether the path is
feasible or not. Due to the limitation of constraint solving techniques, if Oyente
is unable to determine whether the path is feasible or not, the choice is either
to ignore the path (which may result in a false negative, i.e., a vulnerability is
missed) or to report an alarm (which may result in a false alarm).

Besides, we believe that manual inspection is unavoidable given the expres-
siveness of Solidity. However, given that smart contracts often enclose many
behaviors (which manifest through different paths), manually inspecting every
path is overwhelming. Thus, sCompile further aims to reduce the manual effort
by identifying a small number of critical paths and presenting them to the user
with easy-to-digest information.

Overall, sCompile works as follows:

– sCompile firstly constructs a control flow graph (CFG) which captures all
possible control flow including those due to the inter-contract function calls.
sCompile then systematically generates paths (with a bounded sequence of
function calls).

– To address path explosion, sCompile then statically identifies paths which
are ‘critical’. In this work, we define paths involving monetary transactions
as critical paths, which is often sufficient in capturing vulnerabilities in smart
contracts.
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– We then define a set of (configurable) money-related properties based on exist-
ing vulnerabilities and identify all paths that potentially violate our proper-
ties. Considering that different properties have different criticalness and a
long path may be unlikely feasible than a short one, sCompile ranks all paths
by computing a criticalness score for each path based on the two factors.

– Finally, for top ranked paths, sCompile automatically checks whether it is
feasible using symbolic execution techniques. And, the feasible paths are pre-
sented to the user for inspection.

We have implemented sCompile and applied it to 36,099 smart contracts gath-
ered from EtherScan [12]. Our experiment shows that sCompile can efficiently
analyze smart contracts, i.e., it spends 5 s on average to analyze a smart con-
tract (with a bound on the number of function calls 3). Furthermore, we show
that sCompile effectively prioritizes programs paths which reveal vulnerabili-
ties in smart contracts, i.e., it is often sufficient to capture the vulnerability by
inspecting the reported 10 or fewer critical paths. Overall, sCompile identified
224 vulnerabilities. The false positive rate of sCompile (before the results are
reported for user inspection) is 15.4%, which is also generally acceptable. A fur-
ther user study result shows that with sCompile’s help, users are more likely to
identify vulnerabilities in smart contracts.

contract toyDAO{
address owner;
mapping (address => uint) credit;
function toyDAO() payable public {

owner = msg.sender;
}
function donate() payable public{

credit[msg.sender] = 100;
}
function withdraw() public {

0 uint256 value = 20;
1 if (msg.sender.call.value(value)()) {
2 credit[msg.sender] = credit[msg.sender] - value;

}
}

}
contract Bitway is ERC20 {

function () public payable {
createTokens();

}
function createTokens() public payable {

require(msg.value > 300);
...

}
...

}

Fig. 1. Illustrative contracts

The rest of the paper is organized as follows. Section 2 illustrates how sCom-
pile works through a few simple examples. Section 3 presents the details of our
approach step-by-step. Section 4 shows evaluation results on sCompile. Section 5
reviews related work and lastly Sect. 6 concludes with a discussion on future
work.
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2 Illustrative Examples

In this section, we present multiple examples to illustrate vulnerabilities in smart
contracts and how sCompile helps to reveal them. The contracts are shown in
Fig. 1.

Example 1: Contract toyDAO is an invariant one of DAO contract. Mapping
credit is a map which records a user’s credit amount. Function donate() allows
user to top up its credit with 100 wei (which is a unit of Ether). Function
withdraw() by design sends 20 wei to message sender (at line 1) and then updates
credit. However, when line 1 is executed, message sender could call function
withdraw() through its fallback function, before line 2 is executed. Line 1 is then
executed again and another 20 wei is sent to message sender. Eventually, all
Ether in this contract’s wallet is sent to message sender.

In sCompile, inspired by common practice in banking industry, assume that
the user sets the limit to be 30. Given the contract, a critical path reported by
sCompile is one which executes line 0, 1, 0, and 1. The path is associated with
a warning message stating that the accumulated amount transferred along the
path is more than the limit. We remark that existing approaches often check
such vulnerability through a property called reentrancy, which often results in
false alarms [11,13].

Example 2: Contract Bitway is another token management contract. It
receives Ether (i.e., cryptocurrency in Ethereum) through function createTo-
kens(). Note that this is possible because function createTokens() is declared as
payable. However, there is no function in the contract which can send Ether out.
Given this contract, sCompile identifies a list of critical paths for user inspec-
tion. The most critical one is a path where function createTokens() is invoked.
Furthermore, it is labeled with a warning message stating that the smart con-
tract appears to be a “black hole” contract as there is no path for sending Ether
out, whereas this path allows one to transfer Ether into the wallet of the contract.
By inspecting this path and the warning message, the user can capture the vul-
nerability. In comparison, existing tools like Oyente [11] and MAIAN [14] report
no vulnerability given the contract. We remark that even although MAIAN is
designed to check similar vulnerability, it checks whether a contract can receive
Ether through testing1 and thus results in a false negative in this case.

Smart
contract

Step 1:
control flow graph

simulating construction

Step 2:
money-related paths

identification

Step 5:
feasibility checking

Step 6:
visualization report

generation

Report

Step 3:
suspicious monetary

properties violation checking

Step 4:
paths ranking

3 3

Fig. 2. Overall workflow of sCompile

1 MAIAN sends a value of 256 wei to the contract deployed in the private blockchain
network.
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3 Approach

Figure 2 shows the overall work flow of sCompile. Firstly, given a smart contract,
sCompile constructs a control flow graph (CFG) [15] and systematically enu-
merates all paths. Secondly, we identify the monetary paths based on the CFG
up to a user-defined bound on the number of function calls. Thirdly, we analyze
each path in order to check whether it potentially violates any of the pre-defined
monetary properties. Next, we compute a criticalness score for each and rank the
paths accordingly. Afterwards, we apply symbolic execution to filter infeasible
critical paths. Lastly, we present the results along with the associated paths to
the user for inspection.

3.1 Constructing CFG

sCompile constructs a CFG for a smart contract (the compiled EVM opcode
with a single entrance for whole and for each function) to capture all possible
paths. Formally, a CFG is a tuple (N, root, E) such that

– N is a set of nodes, where each node is a basic block of opcodes.
– root ∈ N is the first basic block of opcodes.
– E ⊆ N × N is a set of edges, where each edge (n, n′) corresponds to exactly

a control directly from flow n to n′.

We also consider inter-contract functions calls, where there is a CALL to a
foreign function that is assumed to call the current function including third-part
contract.

For instance, Fig. 3 shows the CFG of contract toyDAO shown in Fig. 1. Each
node is in the form of Node m n, where m and n are indices of the first and the
last opcodes of the basic block, respectively. The red diamond node at the top
is the root node; the blue rectangle nodes represent the first node of a function.
Note that a black oval represents a node that can be redirected to the root
due to inter-contract function calls. The black solid edges represent the normal
control flow. The red dashed edges represent control flow due to a new function
call, e.g., the edge from Node 88 91 to Node 0 12. That is, for every node n
such that n ends with a terminating opcode instruction (i.e., STOP, RETURN), we
introduce an edge from n to root. The red dotted edges represent control flow
due to the inter-contract function call. That is, for every node which ends with
a CALL instruction to an external function, an edge is added from the node to
the root.

Given a bound b on the number of function calls, we can systematically unfold
the CFG so as to obtain all paths during which only b or fewer functions are
called. For instance, with a bound 2, the set of paths include all of those which
visit Node 81 87 or Node 102 109 no more than twice.

Statically constructing the CFG is non-trivial due to indirect jumps in the
bytecode generated by the Solidity compiler. For instance, part of bytecode for
contract toyDAO is shown as follows.

........... | .......
92 JUMPDEST | 300 SHA3
93 PUSH2 0x0064 // 100 | 301 DUP2
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96 PUSH2 0x0070 // 112 | 303 SSTORE
99 JUMP | 304 POP

|
100 JUMPDEST | 305 JUMPDEST
101 STOP | 306 POP
....... | 307 JUMP
112 JUMPDEST | ........
113 PUSH1 0x00 |
115 PUSH1 0x14 |
....... |

Node_0_12

Node_13_64

Node_76_80

Node_81_87
withdraw() Node_65_75

Node_92_99Node_88_91

Node_112_162

Node_163_171

Node_305_307

Node_172_304

Node_100_101

Node_102_109
donate()

Node_308_378

Node_110_111

Fig. 3. Control flow graph of the contract toyDAO (Color figure online)

Considering that Solidity compiler use templates and often introduces indirect
jumps (e.g., PUSH), we actually construct CFGs from EVM opcode as follows:

– Disassemble the bytecode to a sequence of opcode instructions.
– Identify all basic blocks (BBL) from the opcode instructions as nodes of a

CFG, where the boundaries among BBLs are branching instructions JUMP
and JUMPI, JUMPDEST, call instructions CALL, and terminal instructions such
as RETURN, STOP, and REVERT.)

– Connect basic blocks with edges (e.g., direct jumps) which are statically
decided from the opcode instructions.

– Use stack simulation to complete the CFG with edges for indirect jumps.

In the above, whenever there are indirect jumps, their targets cannot be
decided by checking proceeding instructions and we have missing edges. These
nodes are known as dangling blocks and we introduce stack simulation to find
the successor of them. Stack simulation is similar to define-use analysis except
that dangling blocks which are reachable from the entry BBL are processed first.
That is, we find all paths from entry BBL to dangling blocks (e.g., the two
paths from Node 0 12 to Node 305 307) and simulate instructions in each path
following semantics of the instruction on the stack. Note that a dangling block



292 J. Chang et al.

ends with JUMP may have multiple successors in the CFG. When we reach the
JUMP or JUMPI in the dangling block, the content of the top stack entry shall
be determined and we connect the dangling block with BBL which starts at the
address as in the top stack entry. For instance, for dangling block Node 305 307,
there is only one successor Node 100 101 in both paths which is pushed by the
instruction at address 093. We repeat above steps until all dangling blocks are
processed.

3.2 Identifying Monetary Paths

Given a bound b on the number of call depth (i.e., the number of function calls)
and a bound on the loop iterations, there are still many paths in the CFG to
be analyzed. For instance, there are 6 paths in the toyDAO contract with a call
depth bound of 1 (and a loop bound of 5) and 1296 with a call depth bound
of 4. This is known as the path explosion problem [16]. In this work, we focus
on money-related paths to avoid path explosion as almost all vulnerabilities [17]
are ‘money’-related.

A node is money-related if and only if its BBL contains any of following opcode
instructions: CALL, CREATE, DELEGATECALL or SELFDESTRUCT. In general, one of
these instructions must be used when Ether is transferred from one account to
another. A path which traverses through a money-related node is considered
money-related.2

3.3 Identifying Property-Violating Paths

Next, sCompile prioritizes paths that violate critical properties. The objective
is to prioritize those paths which may trigger violation of critical properties for
user inspection. The properties are designed based on previously known vulner-
abilities and they can be configured and extended in sCompile.

Property: Respect the Limit. In sCompile, we allow users to set a limit on
the amount of Ether transferred out of the contract’s wallet. For each path, we
statically check whether Ether is transferred out of the wallet and whether the
transferred amount is potentially beyond the limit. To do so, for each path, we
use a symbolic variable to simulate the remaining limit. Each time an amount
is transferred out, we decrease the variable accordingly and check whether the
remaining limit is less than zero. If so, the path potentially violates the property.
Note that if we are unable to determine the exact amount to be transferred, we
conservatively assume the limit may be broken.

Property: Avoid Non-existing Addresses. Any hexadecimal string of length
no greater than 40 is considered a valid (well-formed) address in Ethereum. If a
2 Note that each opcode instruction in EVM is associated with some gas consump-

tion which technically makes them money-related. Gas [7] is the cost of any trans-
action that can be utilized to measure actions on Ethereum platform. However,
the gas consumption alone in most cases does not constitute vulnerabilities and
therefore we do not consider them money-related. In Fig. 3, we visualize money-
related nodes with black background (e.g., the node Node 112 162 with a CALL
statement msg.sender.call.value(value)()).
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non-existing address is used as the receiver of a transfer, the Solidity compiler
does not generate any warning and the contract can be deployed on Ethereum
successfully. If a transfer to a non-existing address is executed, Ethereum auto-
matically registers a new address (after padding 0s in front of address so that its
length becomes 160bits). Because this address is owned by nobody, no one can
withdraw Ether in it since no one has the private key.

For every path which contains instruction CALL or SELFDESTRUCT, sCom-
pile checks whether the address in the instruction exists or not. This is done
with the help of EtherScan Ethereum [12] (which can check whether an address
is registered or not). A path which sends Ether to a non-existing address is
considered to be violating the property. Currently, to minimize the number of
requests to EtherScan, we only query external transactions, thus may lead to
false positives when the address has only internal transactions. Of course, users
can configure sCompile to also check internal transactions.

Property: Guard Suicide. sCompile checks whether a path would result in
destructing the contract without constraints on the date or block number, or the
contract ownership. A contract may be designed to “suicide” (with the opcode
SELFDESTRUCT) after certain date or reaching certain number of blocks, and
often by transferring the Ether in the contract wallet to the owner. A notorious
example is Parity Wallet which resulted in an estimated loss of tokens worthy of
$155 million [18].

We thus check whether there exists a path which executes SELFDESTRUCT
and whether its path condition is constituted with constraints on date or block
number and contract owner address. While checking the former is straightfor-
ward, checking the latter is achieved by checking whether the path contains
constraints on instruction TIMESTAMP or BLOCK, and checking whether the path
condition compares the variables representing the contract owner address with
other addresses. A path which calls SELFDESTRUCT without such constraints is
considered a violation of the property.

contract StandardToken is Token {
1 function destroycontract(address _to) {
2 require(now > start + 10 days);
3 require(msg.sender != 0);
4 selfdestruct(_to);
5 }
6 ...
7 }
8 contract Problematic is StandardToken { ... }

Fig. 4. Guardless suicide

One example is the Problematic contract3 shown in Fig. 4. Contract Problem-
atic inherits contract StandardToken, where one of functions is destroycontract()
allowing one to destruct contract. sCompile can report that line 4 potentially
violates the property.

3 We hide the names of the contracts as some of them are yet to be fixed.
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Property: Be No Black Hole. In a few cases, sCompile analyzes paths which
do not contain CALL, CREATE, DELEGATECALL or SELFDESTRUCT. For instance, if
a contract has no money-related paths (i.e., never sends any Ether out), sCom-
pile then checks whether there exists a path which allows contract to receive
Ether. The idea is to check whether contract acts like a black hole for Ether. If
it does, it is considered a vulnerability.

To check whether the contract can receive Ether, we check whether there
is a payable function. Since Solidity version 0.4.x, a contract is allowed to
receive Ether only if one of its public functions is declared with the keyword
payable. When the Solidity compiler compiles a non-payable function, the follow-
ing sequence of opcode instructions are inserted before the function body.

1 CALLVALUE
2 ISZERO
3 PUSH XX
4 JUMPI
5 PUSH1 0x00
6 DUP1
7 REVERT

At line 1, the instruction CALLVALUE retrieves the message
value (to be received). Instruction ISZERO then checks if the
value is zero, if it is zero, it jumps (through the JUMPI instruc-
tion at line 4) to the address which is pushed into stack by the
instruction at line 3; or it goes to the block starting at line 5,
which reverts the transaction (by instruction REVERT at line 7).

Thus, to check whether the contract is allowed to receive Ether, we go through
every path to check whether it contains the above-mentioned sequence of instruc-
tions. If all of them do, we conclude that the contract is not allowed to receive
Ether. Otherwise, it is.

If the contract can receive Ether but cannot send any out, we identify the
path for receiving Ether as potentially violating the property and label it with
a warning messaging stating that the contract is a black hole.

Above properties are designed based on reported vulnerabilities. Of course,
sCompile is designed to be extensible, i.e., new properties can be easily supported
by providing a function which takes a path as input and reports whether the
property is violated.

To further help users understand paths of a smart contract, sCompile supports
additional analysis. For instance, sCompile provides analysis of gas consumption
of paths.

However, without trying out all possible inputs, users may not be aware of
the existence of certain particularly gas consuming paths. The gas consumption
of a path is estimated based on each opcode instruction in the path statically.

3.4 Ranking Program Paths

To allow user to focus on most critical paths and to save analyses efforts, we
prioritize paths according to the likelihood they reveal critical vulnerability. For
each path, we calculate a criticalness score and rank paths according to scores.
Criticalness scores are calculated as follows: let pa be a path and V be the set
of properties which pa violates.

criticalness(pa) =
Σpr∈V αpr

ε ∗ bound(pa)
(1)

where αpr is a constant which denotes the criticalness of violating property pr,
bound(pa) is the depth bound of path pa (i.e., the number of function calls) and
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ε is a positive constant. Intuitively, the criticalness is designed such that the
more critical a property the path violates, the larger the score is; and the more
properties it violates, the larger the score is. Furthermore, it penalizes long paths
so that short paths are presented first for user inspection.

Table 1. Definition of αpr

Transfer limit Non-existing addr. Suicide Black hole

Likelihood 1 1 2 3

Severity 2 3 3 2

Difficulty 2 2 3 2

αpr 4 6 18 12

To assess the criticalness of each property, we use the technique called failure
mode and effects analysis (FMEA [19]) which is a risk management tool widely
used in a variety of industries. FMEA evaluates each property with 3 factors, i.e.,
Likelihood, Severity and Difficulty. Each factor is a value rating from 1 to 3, i.e.,
3 for Likelihood means the most likely; 3 for Severity means the most severe and
3 for Difficulty means the most difficult to detect. The criticalness αpr is then
set as the product of the three factors. After ranking, only paths which have a
criticalness score larger than certain threshold are subject to further analysis,
reducing the number of paths significantly.

In order to identify the threshold for criticalness, we adapt the k-fold cross-
validation [20,21] idea in statistical area. We collected a large set of smart con-
tracts and split them into a training data set (10,452 contracts) and a test data
set (25,678 contracts). We repeated the experiments 20 times which took more
than 5,700 total hours of all machines and optimizes those parameters. The
adapted parameters are shown in Table 1, and ε is set to be 1 and the threshold
for criticalness is set to be 10.

3.5 Feasibility Checking

Not all the paths are feasible. To avoid such false alarms, we filter infeasible paths
through symbolic execution [22]. The basic idea is to symbolically execute a given
program. Symbolic execution has been previously applied to Solidity programs
in Oyente [11] and MAIAN [14]. In this work, we apply symbolic execution to
reduce the paths which are to be presented for users’ inspection. Only if a path
is found to be infeasible by symbolic execution, we remove it. In comparison,
both Oyente and MAIAN aim to fully automatically analyze smart contracts
and thus when a path cannot be determined by symbolic execution, the result
may be a false positive or negative.

For instance, Fig. 5 shows a contract which is capable of receiving (since the
function is payable) and sending Ether (due to owner.transfer(msg.value) at line
5), and thus sCompile does not flag it to be a black hole contract. MAIAN
however claims that it is. A closer investigation reveals that because MAIAN
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contract GigsToken {
1 function createTokens() payable {
2 require(msg.value > 0);
3 uint256 tokens = msg.value.mul(RATE);
4 balances[msg.sender] = balances[msg.sender].add(tokens);
5 owner.transfer(msg.value);
6 }
7 ...

}

Fig. 5. A non-greedy contract

has trouble in solving path conditions for reaching line 5, and thus mistakenly
assumes the path is infeasible. As a result, it believes there is no way Ethers can
be sent out and thus the contract is a black hole.

4 Implementation and Evaluation

4.1 Implementation

sCompile is implemented in C++ with about 8 K lines of code. The symbolic
execution engine in sCompile is built based on the Z3 SMT solver [23].

4.2 Experiment

We aim to answer research questions (RQ) regarding sCompile’s efficiency, effec-
tiveness and usefulness in practice. Our test subjects contain all 36,099 contracts
(including both the training set and the test set) with Solidity source code down-
loaded from EtherScan. sCompile can directly take EVM code as input and the
source code is used for our manual inspection for experiment purpose.

All experiment are done on an Amazon EC2 C3 xlarge instance installed with
Ubuntu 16.04 and gcc 5.4. The timeout set for sCompile is: global wall time
is 60 s and Z3 solver timeout is 100 milliseconds. The limit on the maximum
number of blocks for a single path is set to be 60, and the limit on the maximum
iterations of loops is set to be 5, i.e., each loop is unfolded at most five times.

RQ1: Is sCompile Efficient Enough for Practical Usage? In this exper-
iment, we evaluate sCompile in terms of its execution time. We systematically
apply sCompile to all the benchmark programs in the training set.

The results are summarized in Fig. 6. In sub-table of Fig. 6, the second, third
and fourth row show the execution of sCompile with call depth bound 1, 2, and
3 respectively. For comparison, the fifth row shows the execution time of Oyente
(the latest version 0.2.7) with the same timeout. We remark that the comparison
should be taken with a grain of salt. Oyente does not consider sequences of
function calls, i.e., its bound on function calls is 1. Furthermore, it does not
consider initialization of variables in the constructor (or in the contract itself).
The next columns show the execution time of MAIAN (the latest commit version
on Mar 19). Although MAIAN is designed to analyze paths with multiple (by
default, 3) function calls, it does not consider the possibility of a third-party
contract calling any function in the contract through inter-contract function calls
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and thus often explores much fewer paths than sCompile. Furthermore, MAIAN
checks only one of the three properties (i.e., suicidal, prodigal and greedy) each
time. Thus, we must run MAIAN three times to check all three properties. The
different bounds used in all three tools are summarized in Table 2.

Table 2. Loop bound definitions among three tools

Tool Call bound Loop bound Timeout Other bound

sCompile 3 5 60 s 60 cfg nodes

Oyente 1 10 60 s N.A

MAIAN 3 (no inter-contract) N.A 60 s 60 cfg nodes

In sub-table of Fig. 6, the second column shows the median execution time
and the third column shows the number of times the execution time exceeds
the global wall time (60 s). We observe that sCompile almost always finishes
its analysis within 10 second. Furthermore, the execution time remains similar
with different call depth bounds. This is largely due to sCompile’s strategy on
applying symbolic execution only to a small number of top ranked critical paths.
We do however observe that the number of timeouts increases with an increased
call depth bound. A close investigation shows that this is mainly because the
number of paths extracted from CFG is much larger and it takes more time to
extract all paths for ranking. In comparison, although Oyente has a call depth
bound of 1, it times out on more contracts and spends more time on average.
MAIAN spends more time on each property than the total execution of sCompile.
For some property (such as Greedy), MAIAN times out fewer times, which is
mainly because it does not consider inter-contract function calls and thus works
with a smaller CFG.

The sub-figure in Fig. 6 visualizes the distribution of execution time of the
tools in plot-box. The x-axis represents the execution time (in seconds). From
the figure, we can conclude that sCompile is efficient.

Table 3 shows the statistics on the number of processed paths, including the
estimated total number of paths on average (in the second column), the number
of symbolic-executed (based on CFG), and the number passed to users. It can
be observed that only a small fraction of the paths are symbolically analyzed.
Furthermore, the number of symbolically executed paths remain small even when
the call depth bound is increased. This is because only the top ranked critical
paths are analyzed by symbolic execution.

RQ2: Is sCompile Effective to Practical Usage? In the second experi-
ment, we aim to investigate the effectiveness of sCompile. We apply sCompile to
all 36,099 contracts and manually inspect the critical paths reported by sCom-
pile to check whether the path, together with the associated warning message,
reveals a true vulnerability in the contract. Note that not all properties checked
by sCompile readily signals a vulnerability. We only focus on those results pro-
duced by sCompile which are directly related to vulnerabilities in the following,
i.e., paths which are deemed to violate property “avoid non-existing addresses”,
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Fig. 6. Execution time of sCompile vs. Oyente vs. MAIAN

Table 3. Average number of program paths

In total Symbolic-executed To user

Call depth 1 48.92 37.51 1.49

Call depth 2 6177.21 144.24 12.46

Call depth 3 31346.62 121.23 12.62

Table 4. Comparison on vulnerable contracts

sCompile MAIAN

Alarmed True
positive

False
positive

Alarmed True
positive

False
positive

Avoid non-existing
address

37 32 5 N.A N.A N.A

Be no black hole 57 57 0 141 56 85

Guard suicide 42 38 4 66 30 36

“be no black hole” and “guard suicide”. Note that two of the properties (i.e.,
the latter two) analyzed by sCompile are supported by MAIAN as well. We can
thus compare sCompile’s performance with that of MAIAN for these two prop-
erties. The results are shown in Table 4. In the following, we discuss the detailed
findings4.

For Property: Be no Black Hole, there are 57 contracts in the training set
are marked vulnerable by sCompile. We manually confirmed that they are all

4 We have informed all developers whose contact info are available about the vulnera-
bilities in their contracts and several have confirmed the vulnerabilities and deployed
new contracts to substitute the vulnerable ones. Some are yet to respond, although
the balance in their contracts are typically small.
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true positives. In comparison, MAIAN identified 141 black hole contracts and
56 contracts among them are true positives, 43 of which overlap with sCompile’s
results. For 13 missed contracts by sCompile but detected by MAIAN, all of them
took more than 60 s and thus sCompile timed out before finishing analyzing.

The other 85 identified by MAIAN are false positives and 62 of them are
library contracts. We randomly choose 5 contracts from the remaining for further
investigation. We find Z3 could not finish solving the path condition in time and
thus MAIAN conservatively marks the contract as vulnerable. After extending
the time limit for Z3 and total timeout, 4 of the 5 false positives are still reported.
The reason is that these contracts can only send Ether out after certain period,
and MAIAN could not find a feasible path to send Ether out for such cases, and
mistakenly flags contract as a black hole.

For Property: Guard Suicide, sCompile reports a program path if it leads to
SELFDESTRUCT, without a constraint on the ownership of the contract or the
date or the block number, i.e., a guard to prevent an unauthorized users from
killing the contract. Among the analyzed contracts, sCompile identified 42 con-
tracts which contain at least one path which violates the property. Many of the
identified contracts violate the property due to contract inheritance as shown in
Fig. 4.

The remaining 4 cases reported by sCompile are false positives. We manually
investigated into them and found that they belong to two uncommon coding
cases (where 3 of them are originated from the same contract) and three of them
can be detected by sCompile by slightly revising its implementation.

MAIAN identified 66 contracts violating the property. 30 of them are true
positives, 13 of which are also identified by sCompile. The other 36 are false
positives. The contract MiCarsToken shown in Fig. 7 shows a typical false alarm.
There are 2 constraints before SELFDESTRUCT in the contract. sCompile considers
such a contract safe for there is a guard of msg.sender == owner (or the other
condition), whereas MAIAN reports a vulnerability as the contract can also be
killed if the msg.sender is not the owner when the second condition is satisfied.

contract MiCarsToken {
function killContract () payable external {

if (msg.sender==owner ||
msg.value >=howManyEtherInWeiToKillContract)

selfdestruct(owner);
}
...

}

Fig. 7. Ambiguous cases between sCompile and MAIAN

We further analyzed the 17 cases which were neglected by sCompile. 6 of
them are alarmed for owner change as exemplified in Fig. 8. In this contract,
selfdestruct is well guarded, but the developer makes a mistake so that the
constructor becomes a normal function, and anyone can invoke mortal() to make
himself the owner of this contract and kill the contract.

For Property: Avoid Non-existing Address. For the contracts in the train-
ing set, all addresses identified are of length 160 bits. However, there are 37
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contract Mortal {
address public owner;
function mortal() { owner = msg.sender; }
function kill() {

if (msg.sender == owner) suicide(owner); }
}

Fig. 8. Contract of owner change

contracts identified as non-existing addresses (i.e., not registered in Ethereum
mainnet). They may be used for different reasons. For example, in contract
AmbrosusSale, the address of TREASURY does not exist before the function
specialPurchase() or processPurchase() is invoked (which will cost more
gas for its first user). And there are 5 addresses registered by internal transac-
tions.

We further analyzed 25,647 contracts newly uploaded in EtherScan from
February 2018 to July 2018. For “Be no Black Hole”, there are 109 vulnera-
bilities out of 139 alarms generated by sCompile. Applying MAIAN on these
contracts, 84 of them are marked vulnerable, 77 of which are true vulnerabilities
overlapping with those found by sCompile and 7 library contracts are marked
vulnerable mistakenly. Among the 139 contracts, 25 vulnerable ones are missed
by MAIAN according to our manual check. For “Guard Suicide”, there are 83
vulnerabilities out of 114 alarms generated by sCompile. Applying MAIAN on
these contracts, 42 are marked vulnerable, all of which overlap with those found
by sCompile. For “Avoid Non-existing Addresses”, there are 80 vulnerabilities
out of 87 alarms generated by sCompile. The 7 false alarms are due to internal
transactions.

In total, sCompile identifies 224 vulnerabilities from the 36,099 contracts con-
sisting of 46 Black Hole vulnerabilities, 66 Guardless Suicide vulnerabilities and
112 Non-existing Address vulnerabilities.

RQ3: Is sCompile Useful to Contract Users? Different from other tools
which aim to fully automatically analyze smart contracts, sCompile is designed to
facilitate human users. We thus conduct a user study to see whether sCompile is
helpful to them.

The study takes the form of an online test. Once a user starts the test, first
the user is briefed with necessary background on smart contract vulnerabilities
(with examples). Then, 6 smart contracts (selected at random each time from a
pool of contracts) are displayed one by one. For each contract, the source code
is first shown. Afterwards, the user is asked to analyze the contract and answer
the two questions. The first question asks what is the vulnerability the contract
has. The second question requires user to identify the most gas consuming path
in contract (with one function call).

For the first three contracts, the outputs from sCompile are shown alongside
the contract source code as a hint to the user. For the remaining 3 contracts,
the hints are not shown. The contracts are randomized so that not the same
contracts are always displayed with the hint. The goal is to check whether users
can identify the vulnerabilities correctly and more efficiently with sCompile’s
results.
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We distribute the test through social networks and online professional forums.
We also distribute it through personal contacts who we know have some expe-
rience with Solidity smart contracts. In three weeks we collected 48 success-
ful responses to the contracts (without junk answers)5. Table 5 summarizes the
results. Recall that sCompile’s results are presented for the first three contracts.
Column LOC and #paths shows the number of lines and paths in each contract.
Note that in order to keep the test manageable, we are limited to relatively
small contracts in this study. Columns Q1 and Q2 show the number of correct
responses (the numerator) out of the number of valid responses (the denomina-
tor). We collect the time (in seconds) taken by each user in the Time column
to answer all the questions. In the end of the survey we ask the user to give us
a score (on the scale of 1 to 7, the higher the score the more useful our tool
is) on how useful the hints in helping them answer the questions. The value in
column Usefulness is the average score over all responses because all responses
are shown half the hints.

Table 5. Statistics and results of surveyed contracts

Contract LOC #paths Q1 Q2 Time Usefulness

C1 (w) 33 8 7/8 3/8 119 5

C2 (w) 52 16 7/8 2/8 98

C3 (w) 67 38 7/8 2/8 233

C4 (w/o) 87 59 2/8 1/8 414

C5 (w/o) 103 13 3/8 1/8 397

C6 (w/o) 107 27 4/8 1/8 420

The results show that for the first three contracts for which sCompile’s analy-
sis results are shown, almost all users are able to answer Q1 correctly using less
time. For the last three contracts without the hints, most of the users cannot
identify the vulnerability correctly and it takes more time for them to answer
the question. For identifying the most gas-consuming path, even with the hints
on which function takes the most gas, most of the users find it difficult in answer-
ing the question, although with sCompile’s help, more users are able to answer
the question correctly. The results show that gas consumption is not a well-
understood problem and highlight the necessity of reporting the condition under
which maximum gas consumption happens. All the users think our tool is useful
(average score is 5/7) in helping them identify the problems.

5 Related Work

sCompile is related to existing work on identifying vulnerabilities in smart con-
tracts that can be roughly categorized into 3 groups according to the level at
5 There are about 80 people who tried the test. Most of the respondents however leave

the test after the first question, which perhaps evidences the difficulty in analyzing
smart contracts.
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which the vulnerability resides at: Solidity-level, EVM-level, and blockchain-
level [17]. In addition, existing work can be categorized according to the tech-
niques they employ to find vulnerabilities: symbolic execution [11,14,24–26],
static-analysis based approaches [27] and formal verification [13,28]. Our app-
roach works at the EVM-level and is based on static analysis and symbolic
execution, and is thus closely related to the following work.

Oyente [11] formulates the security bugs as intra-procedural properties and
uses symbolic execution to check these properties. However, Oyente does not
perform inter-procedural analyses to check inter-procedural or trace properties
as did in sCompile.

MAIAN [14] is recently developed to find three types of problematic contracts
in the wild: prodigal, greedy and suicidal. It formulates the three types of prob-
lems as inter-procedural properties and performs bounded inter-procedural sym-
bolic execution. It builds a private testnet to valid whether the contracts found
by it are true positives by executing the contracts with data generated by sym-
bolic execution. However, sCompile differs from MAIAN in following aspects.
First, sCompile makes a much more conservative assumption about a call to
third-party contract which we assume can call back a function in current con-
tract. sCompile is designed to reduce user effort rather than to analyze smart
contracts fully automatically. Secondly, sCompile supports more properties than
MAIAN. Thirdly, sCompile checks properties in ways which are different from
MAIAN. Other symbolic execution based tools [24,25] perform intra-procedural
symbolic analysis directly on the EVM bytecode as what Oyente does.

The tool Securify [27] is based on static analysis to analyze contracts. It spec-
ifies both compliance and violation patterns for the property. The vulnerability
detection problem is then reduced to search the patterns on the inferred data
and control dependencies information. The use of compliance pattern reduces
the number of false positives in the reported warnings. In the ranking algorithm,
our approach rely on syntactic information to reduce paths for further symbolic
analysis to improve performance. We analyze the extracted paths with symbolic
execution which is more precise than the pure static analysis as adopted by
Securify.

Other attempts on analyzing smart contracts include formal verification using
either model-checking techniques [13] or theorem-proving approaches [28]. They
in theory can check arbitrary properties specified manually in a form accepted
by the model checker or the theorem prover. It is known that model checking has
limited scalability whereas theorem proving requires an overwhelming amount
of user effort.

6 Conclusion

We proposed a practical approach named sCompile to reveal “money-related“
paths in smart contract and to further detect vulnerabilities among critical ones.
In our experiment among 36,099 smart contracts, it detected 224 new vulnera-
bilities. All the new vulnerabilities are well defined in our approach and could
be presented to the user in well-organized information within a reasonable time
frame. A comparison with two existing approaches also demonstrated that sCom-
pile is both efficient and effective.
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Abstract. We present a mechanized theory of program refinement that
allows for the stepwise development of imperative programs in the Coq
proof assistant. We formalize a design language with support for gradual
refinement and a calculus which enforces correctness-by-construction.
A notion of program design captures the hierarchy of refinement steps
resulting from a development. The underlying theory follows the predica-
tive programming paradigm where programs and specifications are both
easily expressed as predicates, which fit naturally in the dependent type
theory of the proof assistant.

Keywords: Stepwise refinement · Program verification · Predicative
programming · Correctness-by-construction · Type theory · Proof
assistant · Coq

1 Introduction

Program development by stepwise refinement [8,25,26] is inherently an inter-
active activity where programming steps and proof steps alternate and feed
back on each other. It therefore makes sense to perform refinement steps within
an interactive proof assistant (p.a.) whose very purpose is to help in specifica-
tion, proof composition and mechanical proof verification. This however requires
that a theory of program refinement be embedded in the formalism of the p.a.
Most theories of refinement fall in two groups. The theories (e.g. [9,19]) in the
first group are based upon the calculus of relations, and represent programs as
well as specifications uniformly as set-theoretic relations on program states. In
the second group, the theories (e.g. [2,21]) are underpinned by Hoare logic or
the wp-calculus1. The view there is that programs relate sets of program states
represented in logic as predicates, while specifications are pairs of predicates.
In this paper, we investigate the predicative programming [10,22] approach to
refinement which can be viewed as an expression of the relational point of view
in predicative terms rather than in set theory. This investigation lead to the
development of a mechanized theory of stepwise refinement towards imperative
programs (similar to those studied in [21]) in the realm of the Coq p.a. [24]. We
make the following contributions.
1 Calculus of weakest preconditions.
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Firstly, we formalize in type theory a language of stepwise program design,
and a calculus which enforces correctness-by-construction. The language is a
simple imperative language (with assignment, sequence, if statements and itera-
tion) which we enrich to allow the expression of a hierarchy of refinement steps,
each step associating a specification to an implementation. The calculus stems
from a synthesis of ideas from predicative and relational theories of refinement.
On the one hand, the relational point of view unifies the usual assertions (e.g.
precondition, post-condition, invariant) under a single and more general notion
of specification, hence simplifying the formulation of the theory. On the other
hand, the predicative point of view makes it easier to write specifications and
handle proof obligations (p.o.s).

Secondly, we uncover necessary and sufficient conditions for a while statement
to refine a given specification. In particular, the loop body must be given an
adequate relational specification. The advantage is that these specifications are
more flexible than invariants.

Finally, we have mechanized the aforementioned calculus as well as the under-
lying theory in the Coq p.a. so that the declaration of a refinement step automat-
ically triggers the generation of p.o.s (in the language of the p.a.) to ensure the
correctness of the refinement. All the artifacts presented in the paper (definitions
and theorem statements), as well as all the proofs, have been formalized in about
4000 lines of Coq script and made available in a companion repository2. This
framework thus enables certified imperative program design by gradual refine-
ment, and demonstrates that, in terms of mechanized semantics in type theory,
the relational point of view is a viable alternative to Hoare-logic style seman-
tics. Moreover, the Coq p.a. provides a full-blown functional language to write
specifications with the benefit of type checking, type inference and parametric
polymorphism for free.

The outline of the paper is as follows. In Sect. 2 we give an overview of
program development by stepwise refinement in our proposed framework. In
Sect. 3 we introduce the language of program designs, we describe the rules
of the calculus, and we formulate the main correctness theorem. In Sect. 4 we
formalize the semantics of our language, we define the refinement relation based
on this semantics, and we justify the design rules introduced in Sect. 3. In Sect. 5
we turn our attention to making the framework more practical by applying
some automatic simplifications to the p.o.s. A discussion of related work and the
conclusion follow.

2 An Overview of Stepwise Program Design

To give an overview of our framework as experienced by the user, we consider a
classical example: the (integer) square root computation. We begin by declaring
the following abstract definition of the square root computation:

Program Definition Sqrt := 〈r′2 ≤ x < (r′ + 1)2〉x.
2 https://github.com/bsall/AMToPR-ICFEM-2019.

https://github.com/bsall/AMToPR-ICFEM-2019


A Mechanized Theory of Program Refinement 307

With the Definition keyword we have named our computation Sqrt, and
declared its high level specification. The role of the Program keyword will be
clarified shortly, its purpose is to invoke a built-in feature [23] of the p.a. which
will help us to manage the p.o.s. Most specifications we will write are akin
to before-after predicates which describe relations between the initial and final
states of a program. We use the usual convention that variables are primed to
mean their value after execution, and unprimed to mean their value before exe-
cution. The specification of the square root computation reads as follows: from
the initial value of variable x we aim to compute its square root and make the
result available as the final value of r (denoted by r′). Additionally, the value of x
is required to remain unchanged. The notation 〈S〉x1,...,xn

used in the definition
is a shorthand for 〈S ∧ x′

1 = x1 ∧ · · · ∧ x′
n = xn〉. Our objective is to elaborate,

incrementally, a program to fulfill this specification. Once we have decided on a
more precise implementation, we open braces to write this implementation. In
our example, this first refinement step leads to the following situation:

(1) Program Definition Sqrt := 〈 r′2 ≤ x < (r′ + 1)2 〉x {
r := 0;
h := x + 1;
〈 r2 ≤ r′2 ≤ x < h′2 ≤ h2 ∧ r′ + 1 = h′ 〉x

}.

Our initial specification has developed into a specified block [11] whose header
is the initial specification. The body of the block introduces a new variable h
so that [r..h] delimits the search space. The last statement specifies the search
strategy we intend to implement, i.e. narrow the search space around x (first
conjunct), up to the point where the initial specification is fulfilled (second con-
junct). The notations being used to design the square root computation (e.g.
〈...〉 {...}, ;) are syntactic sugar for invoking specific constructions rules defined
in Sect. 3.2. These rules ensure the correctness of our design with respect to the
semantics defined in Sect. 4. Specifically, the rules stipulate that to construct
the specified block above, one must provide a proof that the body of the block
refines (in the sense of Sect. 4.2) the header of the block. Thanks to the Pro-

gram keyword we can mimic the construction of a specified block and let the
p.a. save the p.o. corresponding to the missing proof for later. This p.o. is to be
discharged separately so that our design is not cluttered with the details of the
proofs. At this point, even though the p.a. has performed some type checking
automatically, the Sqrt definition is not yet complete: for example it cannot be
referred to in other definitions. To complete our definition, we must provide the
missing proof by writing a proof script which is generally of the following form:

Next Obligation. t1. ... ti. nia. ... tj . ... tk. Qed.

The Next Obligation command is to fetch and display the next p.o. among
those left to be discharged. The following sequence of ti commands invoke built-
in proof tools called tactics. For example, the nia tactic used to deal with non
linear arithmetic is very helpful in our case. Finally, the Qed command instructs
the p.a. to check our proof for validity. By repeating the process we have just
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described to make specifications more and more precise, we ultimately obtain
the design of Listing 1.1 below after three more refinement steps (labeled (2), (3)
and (4)).

(1) Program Definition Sqrt := 〈 r′2 ≤ x < (r′ + 1)2 〉x {
r := 0;
h := x + 1;

(2) 〈 r2 ≤ r′2 ≤ x < h′2 ≤ h2 ∧ r′ + 1 = h′ 〉x {
while r + 1 �= h do

(3) 〈 r2 ≤ r′2 ≤ x < h′2 ≤ h2 ∧ (r < r′ ∨ h > h′) 〉x {
(4) 〈 r < m′ < h 〉x,r,h {

m := r + (h − r)/2
};
if m2 ≤ x then r := m else h := m end

}
done

}}.

Listing 1.1. The square root program design with refinement steps (1) to (4)

The second refinement step has consisted in deciding to implement the search
strategy as a loop. The body of the loop required two more refinement steps
(numbered (3) and (4)). An important remark is that all the successive steps are
visible in the final design: one can imagine collapsing specified blocks showing
only the associated specifications, or instead expanding blocks to dig into the
implementation details. Once all p.o.s are discharged we have built an object
carrying programming instructions, the design decisions (refinement steps) that
lead to those instructions, and the proofs of correctness of all refinements. We call
this object a program design. Keeping all refinement steps around is important
because, in their absence, the design decisions they materialize tend to be lost
as time passes, rendering program evolution ever more harder. Thanks to the
proofs carried by the program design, our framework is able to assemble a global
certificate of design correctness. To assemble such a certificate we write the
following script:

Definition sqrt proof := CbC.soundness Sqrt.

In other words, the sqrt proof term results from applying the soundness theo-
rem of our design rules (the CbC.soundness term) to the Sqrt design. This term is
a proof that can be independently checked for validity. The soundness theorem
of the design rules is formulated in Sect. 3. We refer the reader to the companion
repository for a detailed example3 of how the refinement process is carried out
for the square root computation.

3 The Calculus of Program Designs

In this section we formally present the calculus of program designs. We begin
with the language of program designs. Then, we formulate the construction rules
of the calculus whose purpose is to enforce correctness-by-construction.
3 https://github.com/bsall/AMToPR-ICFEM-2019/tree/master/src/examples/.

https://github.com/bsall/AMToPR-ICFEM-2019/tree/master/src/examples/
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Statement S ::=
effect f (state transformer with f : T → T )

| 〈R〉 (specification statement with R : T → T → Prop))
| S1 ; S2 (sequence)
| if C then S1 else S2 end (if statement with condition C : T → Prop)
| S1 { S2 } (specified block with S1 block-free)
| while C do S done (iteration with condition C : T → Prop)

Fig. 1. The language of program designs w.r.t. the type T of program states (Prop is
the built-in type of logical propositions in the Coq p.a.)

3.1 The Language of Program Designs

To design programs in the way described previously, we need a language with
support for gradual refinement. Moreover, adhering to the correctness-by-con-
struction [18] paradigm, our objective is to impose further restrictions so that
only correct program designs can be constructed. The syntax of the core language
we study is given in Fig. 1. It is a very classical imperative language, close in
spirit to the language studied in [20], but embedded in the Coq p.a. Since Coq
is underpinned by a dependent type theory, type checking, type inference and
parametric polymorphism are for free. In the p.a., the syntax is encoded as an
inductive type implicitly parameterized by the type T of program states.

The Statements of the Language. Sequential composition as well as the state-
ments related to the if and while keywords are self-explanatory. The effect state-
ment reflects the notion of state transformation as a syntactic constructor. This
provides a nice generalization of various kinds of effects. Notably, the skip instruc-
tion is defined as effect (λ s ⇒ s). Assignment statements are also derivable. For
example, the instruction v := v + w (where v and w are variables of type Nat)
translates to effect (λ (v, w) ⇒ (v + w,w)) where T is Nat × Nat.

The 〈R〉 construct is a specification statement [21]. It can be thought of as
standing for a “program fragment yet to be implemented” [21], or alternatively
as a procedure call to a program specified by R. The notation 〈...〉 is from [17].
The encoding in Coq of before-after predicates is straightforward. For example
λ (i i′ : nat) ⇒ i′ > i specifies a program that increases variable i. More generally,
〈R〉 designates a program P such that: (1) when started in state s the set of
possible outputs of P is { s′ | R s s′ }, and (2) P terminates on input s exactly
when (∃ s′ · R s s′) is true (i.e. the set of possible outputs is not empty). Non
deterministic behavior is reflected by a number of possible outputs greater than
one. Following [22], we equate abnormal termination in an error state with non
termination, therefore abort ≡ 〈 λ (s s′ : T ) ⇒ False 〉.

The specified block S1 { S2 } represents a pair of statements resulting from
the refinement of S1 by S2 as explained in Sect. 2. This is the feature enabling
gradual refinement. S1 is called the abstraction of the block and S2 is called its
concretization. During program design, when we write S1 { S2 }, we record a
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ϕ(effect f) def= (effect f) { (effect f) }
ϕ(〈R〉) def= 〈R〉 { 〈R〉 }
ϕ(S1;S2)

def= ϕa(S1) ; ϕa(S2) { ϕc(S1) ; ϕc(S2) }
ϕ(if C then S1 else S2 end) def= if C then ϕa(S1) else ϕa(S2) end {

if C then ϕc(S1) else ϕc(S2) end
}

ϕ(S1 { S2 }) def= S1 { ϕc(S2) }
ϕ(while C do S done) def= if C then 〈 λ s s′ ⇒ [[ϕa(S)]] s s′ ∧ ¬C s′ 〉 end {

while C do ϕc(S) done
}

Fig. 2. The design projection function ϕ

design decision which communicates an abstract intent (S1), and some (hope-
fully more concrete and correct) means of realizing it (S2). We assume that the
abstraction S1 does not itself contain specified blocks, we say that it is block-free.
This restriction is justified by the fact that we are interested in refining speci-
fications of programs, not in refining blocks which stand for a record of design
decisions. Note that programming constructs are allowed in the abstraction of
specified blocks. For example, the abstraction of a block can be of the if-then-else
form.

Projection Function. We now define the projection function ϕ, which will be
used in the formulation of the rules and properties of the calculus. The defini-
tion is given in Fig. 2 above. From a statement S, ϕ computes an abstraction
ϕa(S), and a (generally distinct) concretization ϕc(S), such that both state-
ments are block-free. We write ϕ(S) = ϕa(S) { ϕc(S) } to match the syntax of
the language. For example, if we consider the program design of Listing 1.1, the
aforesaid abstraction is the outermost specification 〈 r′2 ≤ x < (r′ + 1)2 〉x, and
the concretization is the statement resulting from the intermediary specifications
(lines in blue labeled (1) up to (4)) being ignored.

ϕ is defined so that the effect and 〈R〉 statements are respectively their own
abstraction. Concerning sequential composition and the if-the-else construct, ϕ
simply extracts the (abstraction, concretization) pairs from the inner statements
and combines them in parallel.

In the case of the specified block the corresponding abstraction is just S1 by
definition, and the concretization is the one of the body of the block.

The abstraction of a loop is constructed from the abstraction of its body
which, in consequence, must be specified with care. We come back to this in
Sect. 4.3. The [[·]] operator refers to the interpretation of statements as binary
relations on program states. This interpretation is detailed in Sect. 4.1. To give
an example, [[i := i+1]] denotes the predicate i′ = i+1 (encoded as (λ i i′ ⇒ i′ =
i + 1) in the p.a.).
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Design (effect f) Design 〈R〉
Design S1 ∧ Design S2

Design S1;S2

Design S1 ∧ Design S2

Design (if C then S1 else S2 end)
Design S2 ∧ ϕa(S2) � S1

Design (S1 { S2 })

Design S ∧ K;K � K, with K
def= (if C then ϕa(S) end)

∧ well founded (λ s s′ ⇒ C s′ ∧ ([[ϕa(S)]] s′ s) ∧ C s)

Design (while C do S done)

Fig. 3. The calculus of program designs

Actually we compute ϕa(S) to reason about S at an abstract level, and we
compute ϕc(S) to get a block-free statement which can be translated into a pro-
gramming language provided S is precise enough (i.e. no specification statements
among the leaves of the syntax tree). The calculus we define in Sect. 3.2 allows
to characterize a family of statements S which have the property that ϕc(S) is
truly a refinement of ϕa(S).

3.2 Enforcing Correctness-by-Construction

The usefulness of a program design rests upon the correctness of what this design
communicates. In order to enforce design correctness, we restrict our language
by imposing strict construction rules. We say that a program design S is correct
if and only if the predicate Design S can be derived from the rules of Fig. 3. The
goal of these rules is to ensure that when the refinement process is completed
we indeed have that ϕc(S) refines ϕa(S). The refinement relation (	) will be
formally defined in Sect. 4.2, but its informal meaning is as follows: we say that
S2 refines S1 (denoted by S2 	 S1) if and only if every specification satisfied by
S1 is also satisfied by S2. In fact, when S1 and S2 are block-free, our formalization
allows to derive that latter description of refinement in terms of Hoare triples,
i.e. we have established the following equivalence:

S2 	 S1 ↔ ∀ P Q · {P} S1 {Q} → {P} S2 {Q}
The two basic instructions effect and 〈R〉 are, unsurprisingly, the axioms of the
proof system. All the statements involved in the other compound instructions
must already be correct designs. The requirements for a block S1 { S2 } to be a
correct design are as follows. First, it must be the case that S2 is a correct design,
and moreover that ϕa(S2) refines S1. In the conjunct involving the refinement
relation, we can abstract away from the implementation details of S2 and only
consider ϕa(S2) because at the same time we require S2 to be a correct program
design (i.e. ϕc(S2) 	 ϕa(S2)). This requirement entails that ultimately ϕc(S2)
is guaranteed to refine S1 since the refinement relation is transitive. The rule
for while loops is more intricate. The requirement that K;K refines K is to
ensure that K is a correct over-approximation of the loop’s behavior. As usual,



312 B. D. Sall et al.

[[effect f ]] def= λ s s′ ⇒ s′ = (f s)
[[〈R〉]] def= R

[[S1;S2]]
def= [[S1]]�[[S2]]

[[if C then S1 else S2 end]] def= [[S1]] � C � [[S2]]
[[S1 { S2 }]] def= [[S2]]
[[while C do S done]] def= least fixpoint of (λ X ⇒ ([[S]]�X ) � C � [[skip]])

Fig. 4. The predicative semantics of the language of program designs

the well-foundedness requirement ensures that the loop terminates on all inputs
of interest. Here again, the fact that S is required to be an already correct
design allows us to only consider ϕa(S) in the other requirements. Ultimately,
the central theorem of our proposed framework is the following one.

Theorem 1 (Correctness of program designs).
(soundness) ∀ S · Design S → ϕc(S) 	 ϕa(S)
(completeness) ∀ S1 S2 · S2 	 S1 → ∃ S · Design S ∧ ϕ(S) = S1 { S2 }

This theorem explains that whenever we are able to derive Design S for some
program design, the associated concretization refines the associated abstraction.
Clearly it is possible to have ϕc(S) 	 ϕa(S) while Design S is not derivable. For
example consider the following program design

S
def= skip { 〈 λ s s′ ⇒ False 〉 { skip } }.

We have skip 	 skip, and yet Design S cannot be derived. So as one would
expect the design rules are not complete in the absolute sense. However they
are complete in the weaker sense that for any concretization S2 and abstraction
S1 such that S2 	 S1, it is possible to come up with a correct design S whose
associated concretization and abstraction are respectively S2 and S1. When we
complete a design, the soundness part of Theorem 1 allows to construct a tangible
lambda-term certifying that our design is doubtlessly correct: this lambda-term
is the certificate of correctness we alluded to in Sect. 2. The completeness part
of Theorem 1 reassures us that the design rules we restrict ourselves to use do
not limit the kind of programs that can be obtained by applying these rules.

4 Predicative Semantics and Refinement Relation

In this section we discuss the key properties justifying the design rules of our
calculus. First we present the predicative interpretation of statements and define
the refinement relation in terms of this interpretation. Then, we examine the
particular case of loops.
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4.1 Predicative Semantics

Except for loops and specified blocks, our interpretation of statements as pre-
dicates coincide with the predicative semantics of [22]. We denote by Spec the
type of specifications, i.e. the type of binary relations on the type T of program
states.

Spec
def= T → T → Prop

The predicative interpretation of statements associates to each statement a
specification of type Spec. This interpretation is inductively defined on the
syntax of statements as indicated in Fig. 4 above with the semantic function
[[·]] : Statement → Spec.

State Transformation, Specification Statements and Specified Blocks. The speci-
fication associated to the state transformer (effect f) explains that the after state
is the image by f of the before state. The interpretation of the specification state-
ment 〈R〉 is just R since R is already a specification. For specified blocks, we
choose the interpretation to be the one of the supposedly better implementation
among the statements composing the block.

Alternative. The if-then-else statement denotes the specification described in
Eq. (1) below. Here, A and B are of type Spec and C has type T → Prop.

A � C � B
def= λ (s s′ : T ) ⇒ C s ∧ (A s s′) ∨ ¬(C s) ∧ (B s s′) (1)

The notation used is borrowed from [15], and expresses a selection between two
specifications depending on C, i.e. either C is true (�) of the input state and A
is selected, or C is false (�) of the input state and B is selected.

Sequence. For sequential composition, we need a notion of composition for speci-
fications. We define below the angelic and demonic composition of specifications.

Definition 1 (Composition of specifications). Let S1 and S2 be of type
Spec. The angelic and demonic composition operators are respectively defined as
follows:

S1 � S2
def= λ s s′ ⇒ ∃ sx · S1 s sx ∧ S2 sx s′

S1 � S2
def= λ s s′ ⇒ (S1 � S2) s s′ ∧ ∀ sx · S1 s sx → ∃ s′ · S2 sx s′

Angelic composition is just relational composition. Demonic composition is rela-
tional composition further restricted to account for the fact that the interpreta-
tion of 〈S1〉;〈S2〉 is defined only on those states s such that S2 is defined for all
possible outputs of S1 on s. As an illustration of the difference between the two
operators, consider the following example:

{(1, 2), (1, 3)} � {(2, 4)} = {(1, 4)}, but {(1, 2), (1, 3)}�{(2, 4)} = {}
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We see that angelic composition does not properly capture the possibility of
failure because the input 1 should not be present in the domain of the compo-
sition since it may cause an error if the output is 3. Therefore, as in [9], we use
demonic composition [3,4] to formalize the sequential composition of specifica-
tions. Consequently, the specification associated to the sequential composition of
statements is the demonic composition of their interpretations. The � notation
for demonic composition is from [9]. For angelic composition, we use a simi-
lar notation rather than (;) to prevent confusion with sequential composition of
statements.

Iteration. The while statement is interpreted as the least fixpoint (lfp for short)
of a function from specifications to specifications. The lfp operator is encoded in
type theory as follows:

lfp (F : Spec → Spec) def= λ s s′ ⇒ ∀ X · (∀ s s′ · F X s s′ → X s s′) → X s s′

This encoding explains that a pair (s, s′) ∈ lfp(F ) iff (s, s′) is in all specifications
X such that (F X ⊆ X). Let F = (λ X ⇒ ([[S]]�X ) � C � [[skip]]), then F
is monotonic since demonic composition is right-monotonic w.r.t. inclusion of
specifications. Hence, by the Knaster-Tarski fixpoint theorem, the interpretation
of the while statement is indeed the least fixpoint of F as predicates ordered by
implication (i.e. relations ordered by inclusion) form a complete lattice.

Note 1. The conditions C of the if and while statements send states to Prop. In
the logic of Coq, this means that the conditions may be undecidable on some
inputs. However, the predicative semantics of the if-then-else and while statements
implicitly address this decidability issue since such a statement S cannot be
defined on a state s unless (C s) is decidable (i.e. ∀ s s′·[[S]] s s′ → (C s)∨¬(C s)).

4.2 The Refinement Relation

The refinement relation occupies unsurprisingly a central place in our develop-
ment. To formalize this relation, we choose a classical relational interpretation
(as found in e.g. [7]) which we translate in predicative terms. In particular, this
formulation amounts to a first-order predicate as long as the relations involved
can be expressed in first-order logic.

Definition 2 (Predicative refinement). We say that S2 refines S1 if and
only if whenever S1 terminates on some state s, S2 terminates on s and all
observable behaviors of S2 on s are observable behaviors of S1 on s:

S2 	 S1
def= ∀ s s′ · [[S1]] s s′ → (∀ s′ · [[S2]] s s′ → [[S1]] s s′) ∧ (∃ s′ · [[S2]] s s′)

This definition reflects the fact that reducing non-determinism or enlarging the
domain of a statement moves it down the refinement ordering. The correctness
of the design rules relies on important properties of the refinement relation, some
of which are stated in the following Lemma.
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Lemma 1 (Properties of refinement). Let P and Q designate statements,
and let C designate a condition. The following properties hold:

1. P 	 P
2. P 	 Q → Q 	 R → P 	 R
3. P1 	 Q1 → P2 	 Q2 → if C then P1 else P2 end 	 if C then Q1 else Q2 end

4. P1 	 Q1 → P2 	 Q2 → P1;P2 	 Q1;Q2

5. P 	 Q → while C do P done 	 while C do Q done

Essentially, this lemma states that the refinement relation is a preorder, and that
the control structures of our language are monotonic w.r.t. refinement. Property
(2) justifies the design rule for specified blocks, whereas properties (3) and (4)
justify the design rules for the if statement and sequential composition. It is
worth mentioning that these properties of refinement need never be explicitly
used to discharge p.o.s. In practice, the properties are seamlessly applied during
the composition of program designs. For example, the nesting of specified blocks
implicitly invokes the transitivity of refinement. In fact, the composition of pro-
gram designs feels like programming, but also consists in constructing (behind
the scenes) the main frame of the proof of correctness.

4.3 The Special Case of Loops

The predicative semantics of loops is defined as the least fixpoint of a rather
complex function. Even though it is possible to prove refinements by applying
the least fixpoint axioms directly, we prefer to avoid that method because it
proves to be rather impractical. Also, we would like to be as uniform as possible
and rely on the notion of specification only. Note that Lemma2 below provides
an alternative characterization of loops as if statements under some conditions.

Lemma 2 (Loop Summarization).
well founded (λ s s′ ⇒ C s′ ∧ [[P ]] s′ s ∧ C s)
→ (if C then P end; if C then P end) 	 if C then P end

→ while C do P done ≡ if C then 〈 λ s s′ ⇒ [[P ]] s s′ ∧ ¬(C s′) 〉 end

This summarization lemma is inspired by the relational approach described in [9],
and suggests the following design method for loops. First, one should start with
a loop body satisfying the conditions of Lemma2. This first step consists in
finding an abstract specification of what the loop body is intended to achieve.
Then, one applies the summarization lemma and checks that the loop summary
refines the desired specification. Finally, the loop body may be further refined
with a more precise implementation. In this way, the lfp definition never appears
explicitly in refinement statements to prove. This method rests on the following
theorem, which builds on the previous lemma to give necessary and sufficient
conditions for a while statement to refine a given specification.
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Theorem 2 (Loop refinement rule).
while C do P done 	 R

↔ ∃ L · P 	 L ∧ well founded (λ s s′ ⇒ C s′ ∧ [[L]] s′ s ∧ C s)
∧ (if C then L end ; if C then L end) 	 if C then L end

∧ if C then 〈 λ s s′ ⇒ [[L]] s s′ ∧ ¬(C s′) 〉 end 	 R

Combined with properties (2) and (5) of Lemma1, this theorem justifies the
design rule for the while statement in Fig. 3. To see why this is the case take
P = ϕc(S) and L = ϕa(S). The soundness (only-if part) and completeness (if
part) of the theorem follow from Lemmas 1 and 2. Notably, the proof of com-
pleteness uses, as a witness for L, the transitive closure of the following relation:

≺C
P

def= λ s s′ ⇒ C s ∧ [[P ]] s s′ ∧ (∃ s′ · [[while C do P done]] s s′)

The fact that the relation ≺C
P fulfills the well-foundedness requirement is a by-

product of the least fixpoint semantics given to the while statement. A closer
look at Lemma 2 shows that the second hypothesis implies the transitivity of
the relation (λ s s′ ⇒ C s ∧ [[P ]] s s′). This means that in general the loop body
must have a non deterministic specification for loop summarization to apply.
Hence, the ability to specify non deterministic behavior is key even when the
end goal is a deterministic program.

Note 2. The most common way of dealing with loops is through the use of
invariants and variants. In the case of the square root algorithm presented in
Sect. 2, one can prove correctness in Hoare logic using (r2 ≤ x < h2) as invariant
and (h − r) as variant. If we consider that the intention of the programmer is
to have the loop body maintain the invariant and decrease the variant, then the
corresponding specification is the following:

〈 (r2 ≤ x < h2 ∧ r′2 ≤ x′ < h′2) ∧ (h − r > h′ − r′) 〉x
This specification states that the invariant is true at the beginning of execution
as well as at the end of execution, and also that the variant is lower at the end
than it was at the beginning. From the invariant and the variant, one can reason
to deduce that the objective is to shrink the search interval and make progress
by either increasing r or decreasing h. However, the intention to implement
this objective is not so well conveyed by the specification of the loop body
when it is written under the invariant-variant mindset. Because specifications
are more flexible, the programmer has the opportunity to convey his intentions
in a more intelligible way as we did in our example of Sect. 2. In that alternative
specification of the loop body, one better sees the search interval closing up
around x.

5 Refinement in a Calculus of Weakest Prespecifications

In this section we turn our attention to the simplification of p.o.s. Consider the
typical situation where a specified block S1 { S2 } is introduced. As required by
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the design rules, the p.a. should prompt us to prove the statement ϕa(S2) 	 S1.
However, the current definition of the refinement relation 	 is too primitive as a
means to compute such p.o.s. This is mostly due to demonic composition, i.e. the
� operator. For example, the statement 〈P1〉;...;〈Pn〉 	 〈Q1〉;...;〈Qn〉 yields, after
unfolding the 	 and � operators, a formula containing a profusion of existential
quantifiers, and whose size is exponential in n. To avoid such a situation and
simplify p.o.s, we recast the definition of the refinement relation in a calculus
akin to the classical wp-calculus.
We begin by observing that in Definition 2 the right hand side (r.h.s.) of the
implication is (κ([[S2]], [[S1]]) s s), where κ is a relational operator called the
conjugate kernel in [7] and the the weakest prespecification in [14,16]. We now
translate this operator in a predicative form.

Definition 3 (The weakest prespecification). Let R1 and R2 be two speci-
fications. The weakest prespecification of R2 w.r.t. R1 is defined as follows:

κ(R2, R1)
def= λ s s′ ⇒ (∀ s′′ · R2 s′ s′′ → R1 s s′′) ∧ (∃ s′′ · R2 s′ s′′)

If it exists, the weakest K such that 〈K�R2〉 	 〈R1〉 is κ(R2, R1). Let
K = κ(R2, R1). The output state s′ of K on some input state s is such that
R2 terminates on s′, and for every s′′ produced by R2 from s′, the overall out-
come (s, s′′) of K�R2 is a behavior of R1. Specializing κ to the statements of
our language and simplifying the resulting expressions, leads to the following
specification transformer.

Definition 4. (The wpr transformer).We define, by induction on the syntax,
the function wpr of type Statement → Spec → Spec as follows:

wpr(effect f, R) def= λ s s′ ⇒ R s (f s′)
wpr(S1;S2, R) def= wpr(S1, wpr(S2, R))
wpr(if C then S1 else S2 end, R) def= (wpr(S1, R)−1 � C � wpr(S2, R)−1)−1

wpr(while C do S done, R) def= lfp
(
λ X ⇒ (wpr(S, X )−1 � C � R−1)−1

)

wpr(S1 { S2 }, R) def= wpr(S2, R)
wpr(〈R2〉, R1)

def= κ(R2, R1)

where R−1 def= λ s s′ ⇒ R s′ s

In fact wpr(S,R) is equivalent to κ([[S]], R). Also, wpr is monotonic in its se-
cond argument, therefore the least fixpoint in the definition of wpr for the while

statement is defined. The wpr transformer is encoded as a Coq fixpoint definition
by pattern matching on the first argument. The following theorem shows that
refinement can be defined in terms of wpr. The definition is a translation of the
relational definition in terms of κ from [7].

Theorem 3. ∀ S1 S2 · S2 	 S1 ↔ ∀s · (∃s′ · [[S1]] s s′) → wpr(S2, [[S1]]) s s

By using this wpr-based definition of refinement, we get simpler p.o.s for the same
reasons that wp computes simpler p.o.s. In some way we have dealt with the �
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operator on the l.h.s. of 	 (i.e. S2 in Theorem 3). More precisely, the expression
wpr(〈P1〉;...;〈Pn〉, R) simplifies to a formula whose size is linear in n after unfol-
ding definitions, and wpr(effect f,R) simplifies to a formula with no additional
quantifiers. Remains the r.h.s. of 	 to consider (i.e. [[S1]] in Theorem 3). We
observe that:

[[(effect f);R]] ≡ λ s s′ ⇒ R (f s) s′

[[(if C then S1 else S2 end);R]] ≡ [[S1;R]] � C � [[S2;R]]
[[(S1;S2);R]] ≡ [[S1;(S2;R)]]

By recursively applying the equations above, [[S1]] may in some cases simplify to a
formula with no additional quantifiers. In our development these simplifications
are done automatically each time a p.o. is computed. Of course the size of p.o.s
may still become unmanageable. But, by refining in small steps, one also keeps
the size of p.o.s in check. It is the case that the wpr transformer is not of much
help when loops are involved, but thanks to Theorem3 we can fall back on
Theorem 2 to avoid having to manipulate the least fixpoint definition.

Note 3. One might wonder whether it would be possible to achieve the simplifi-
cation of p.o.s by using the wp-calculus. Indeed this is possible, based on the follo-
wing connection between wpr and wp from [16]: ∀ s·wpr(S,R) s s ↔ wp(S, (R s)) s.
However, as far as uniformity is concerned, we found the concept of weakest-
prespecification quite appealing: weakest-prespecifications deal with a single kind
of object (specifications), whereas weakest-preconditions involve two types of
objects (specifications and conditions).

6 Related Work

In this section we put our research work in the context of mainly three areas:
the notion of program design, the use of predicative and relational semantics
and the more specific comparison with related Coq developments. By lack of
space, we limit that last discussion to the Coq p.a., but there are many works of
mechanization in the framework of other theorem provers. One example is the
Refinement Calculator [6] developed on top of the HOL system.

On Program Designs. A similar notion of program development is proposed
in [20] to capture the refinement history. A development is defined as a “multi-
way branching tree” of refinement steps. In this language each specification
statement is given an identifier, and refinement steps reference the specifica-
tions they refine by these identifiers. This is very much in the spirit of literate
programming [17] with the important difference that formal specifications replace
informal ones. Comparatively, our program designs are based on the notion of
specified blocks introduced in [11]. Since specified blocks can be nested they
naturally represent a tree of design decisions without the need for explicit iden-
tifiers: the abstract syntax tree provides enough structure to capture the relevant
information. This also means that unlike in [20] we have no need to structure a
specific database of program and specification fragments.
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On the Predicative and Relational Approaches. The semantics of our lan-
guage of program designs is close to the predicative interpretation of program-
ming constructs of [10–12], with important differences. Firstly, we follow [22] by
using demonic composition to represent sequential composition, and by equa-
ting non termination, termination in an error state, and relational undefined-
ness instead of using a time variable or a fictitious program state to distinguish
between terminating and non-terminating behaviors as in [10,15]. Representing
non termination by undefinedness means however that we cannot for example,
specify a program choosing nondeterministically to either terminate or loop for-
ever on a given input. The second difference has to do with our refinement proof
rule for loops which is closer to [9] where the focus is on assigning abstract spec-
ifications to loop bodies rather than on attaching outer specifications to loops
as in [11]. A loop proof rule similar to ours follows from the results presented
in [9], but our rule has weaker requirements and is provably complete.

On Refinement in the Coq Proof Assistant. There are other works of
mechanization of refinement theories in the Coq p.a., in particular [5] and [1],
both based on the refinement calculus [21]. The goal of the development pre-
sented in [1] is to derive imperative programs by applying validated refinement
rules in proof mode. As a consequence the final program design entangles the
intermediary refinement steps together with their proof of correctness. The mech-
anization of the refinement calculus presented in [5] supports a quite expressive
language (with pattern matching and structural recursion), however the lan-
guage does not include features to structure the refinement steps. Our work also
differs with existing approaches in the way we treat loops. In [1] one must specify
loop invariants while our formalization allows to specify loop bodies as input-
output relations, which is more general. In [5] one has to work with the fixpoint
characterization of loops while we use a more convenient rule. Moreover, we use
weakest prespecifications (wpr) instead of weakest preconditions (wp) to compute
p.o.s.

7 Conclusion and Future Works

We have presented a formalized theory of stepwise refinement. The formaliza-
tion is the result of our study of both relational and predicative points of view
on stepwise refinement, which lead us to a calculus benefiting from some cross-
fertilization between the two points of view. We have mechanized this formaliza-
tion thus allowing for correct-by-construction imperative program design in the
Coq p.a., even though the scalability of our framework is yet to be improved by
extending our language with local variables, procedures and simple modules.

Another thing that needs improvement is how the p.o.s are related to refine-
ment steps. Presently, changing the refinement strategy may require the reorder-
ing of the proof scripts. To avoid this, the programmer must be offered an explicit
mechanism for associating p.o.s with their respective refinement steps.

To take this work further, we are currently extending our mechanization
to data refinement [13] in order to be able to prove correctness when data
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representations change to become more restricted or efficient. For example, this
will enable certified refinements from mathematical unbounded data structures
(e.g. Peano integers) to implementable data structures (e.g. machine integers),
thereby opening the way for a completely faithful translation of the final refine-
ment into an efficient programming language such as C.
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Abstract. The problem of resolving virtual method and interface calls
in object-oriented languages has been a long standing challenge to the
program analysis community. The complexities are due to various rea-
sons, such as increased levels of class inheritance and polymorphism in
large programs. In this paper, we propose a new approach called type
flow analysis that represent propagation of type information between
program variables by a group of relations without the help of a heap
abstraction. We prove that regarding the precision on reachability of
class information to a variable, our method produces results equivalent
to that one can derive from a points-to analysis. Moreover, in practice,
our method consumes lower time and space usage, as supported by the
experiment result.

1 Introduction

For object-oriented programming languages, virtual methods (or functions) are
those declared in a base class but are meant to be overridden in different child
classes. Statically determine a set of methods that may be invoked at a call site
is important to program analysis, from which a subsequent optimization may
reduce the cost of virtual function calls by performing method inlining if the
target method forms a singleton set, remove methods that are never called by
any call sites, or produce a call graph which can be useful in other optimiza-
tion processes.

Efficient solutions, such as Class Hierarchy Analysis (CHA) [8,9], Rapid Type
Analysis (RTA) [4] and Variable Type Analysis (VTA) [23], conservatively assign
each variable a set of class definitions, with relatively low precision. Alternatively,
with the help of an abstract heap, one may take advantage of a points-to analysis
(e.g. [3]) to compute a set of object abstractions that a variable may refer to,
and resolve the receiver classes in order to find associated methods at call sites.

The algorithms used by CHA, RTA and VTA are conservative, which aim to
provide an efficient way to resolve calling edges, and which usually take linear-
time in the size of a program by focusing on the types that are collected at the
receiver of a call site. For instance, let x be a variable of declared class A, then
at a call site x.m(), CHA will draw a call edge from this call site to method
m() of class A and every definition m() of a class that extends A. In case class
c© Springer Nature Switzerland AG 2019
Y. Ait-Ameur and S. Qin (Eds.): ICFEM 2019, LNCS 11852, pp. 322–335, 2019.
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class A{

A f;

void m(){

return this.f;

}

}

class B extends A{}

class C extends A{}

1: A x = new A(); //O_1

2: B b = new B(); //O_2

3: A y = new A(); //O_3

4: C c = new C(); //O_4

5: x.f = b;

6: y.f = c;

7: z = x.m();

Fig. 1. An example that compares precision on type flow in a program.

Statement VTA fact
A x = new A() x ← A

B b = new B() b ← B

A y = new A() y ← A

C c = new C() c ← C

x.f = b A.f ← b

y.f = c A.f ← c

A.m.this ← x
z = x.m() A.m.return ← A.f

z ← A.m.return

Fig. 2. VTA facts on the example

A.m.this z

O1 : A O2 : B

x

O3 : A O4 : C

y

m
f

f

f

Fig. 3. Points-to results on the example

A does not define m(), a call edge to an ancestor class that defines m() will
also be included. For a variable x of declared interface I, CHA will draw a call
edge from this call site to every method of name m() defined in class X that
implements I. We write CHA(x,m) for the set of methods that are connected
from call site x.m() as resolved by Class Hierarchy Analysis (CHA). Rapid Type
Analysis (RTA) is an improvement from CHA which resolves call site x.m() to
CHA(x,m) ∩ inst(P ), where inst(P ) stands for the set of methods of classes
that are instantiated in the program.

Variable Type Analysis (VTA) is a further improvement. VTA defines a node
for each variable, method, method parameter and field. Class names are treated
as values and propagation of such values between variables work in the way of
value flow. As shown in Fig. 2 (example code in Fig. 1), the statements on line
1−4 initialize type information for variables x, y, b and c, and statements on line
5−7 establish value flow relations. Since both x and y are assigned type A, x.f
and y.f are both represented by node A.f , thus the set of types reaching A.f is
now {B,C}. (Note this is a more precise result than CHA and RTA which assign
A.f with the set {A,B,C}.) Since A.m.this refers to x, this.f inside method
A.m() now refers to A.f . Therefore, through A.m.return, z receives {B,C} as
its final set of reaching types.
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A

B

x

b

A.m.this

A.m.return z

f(store) f(load)

�

� �

Fig. 4. Type Flow Analysis for variable z in the example

The result of a context-insensitive subset based points-to analysis [3] creates
a heap abstraction of four objects (shown on line 1−4 of Fig. 1 as well as the
ellipses in Fig. 3). These abstract objects are then inter-connected via field store
access defined on line 5−6. The derived field access from A.m.this to O2 is shown
in dashed arrow. By return of the method call z = x.m(), variable z receives O2

of type B from A.m.this.f , which gives a more precise set of reaching types for
variable z.

From this example, one may conclude that the imprecision of VTA in com-
parison with points-to analysis is due to the over abstraction of object types,
such that O1 and O3, both of type A, are treated under the same type. Neverthe-
less, points-to analysis requires to construct a heap abstraction, which brings in
extra information, especially when we are only interested in the set of reaching
types of a variable.

In this paper we introduce a relational static semantics called Type Flow
Analysis (TFA) on program variables and field accesses. Different from VTA,
in addition to the binary value flow relation “�” on the variable domain VAR,
where x � y denotes all types that flow to x also flow to y, we also build a
ternary field store relation → ⊆ VAR × F × VAR to trace the load and store
relationship between variables via field accesses. This provides us additional
ways to extend the relations � as well as →. Taking the example from Fig. 1,
we are able to collect the store relation x

f−→ b from line 5. Since x � A.m.this,
together with the implicit assignment which loads f of A.m.return, we further
derives b � A.m.return and b � z (dashed thick arrows in Fig. 4). Therefore, we
assign type B to variable z. The complete reasoning pattern is depicted in Fig. 4.
Nevertheless, one cannot derive c � z in the same way.

We have proved that in the context-insensitive inter-procedural setting, TFA
is as precise as the subset based points-to analysis regarding type related infor-
mation. Since points-to analysis can be enhanced with various types of context-
sensitivity on variables and objects (e.g., call-site-sensitivity [13,20], object-
sensitivity [16,21,25] and type-sensitivity [21]), extending type flow analysis with
context-sensitivity will only require to consider contexts on variables, which is
left for future work. The context-insensitive type flow analysis has been imple-
mented in the Soot framework [1], and the implementation has been tested on
a collection of benchmark programs from SPECjvm2008 [2] and DaCapo [5].
Our preliminary experimental result has shown that TFA spends similar or
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sometimes less runtime than CHA [8], but has precision comparable to that
of a points-to analysis.

2 Type Flow Analysis

We define a core calculus consisting of most of the key object-oriented language
features, shown in Fig. 5, which is designed in the same spirit as Featherweight
Java [11]. A program is defined as a code base C (i.e., a collection of class
definitions) with statement s to be evaluated. To run a program, one may assume
that s is the default (static) entry method with local variable declarations D,
similar to e.g., Java and C++, which may differ in specific language designs. We
define a few auxiliary functions. Let function fields maps class names to their
fields, methods maps class names to their defined or inherited methods, and type
provides types (or class names) for objects. Given class c, if f ∈ fields(c), then
ftype(c, f) is the defined class type of field f in c. Similarly, give an object o,
if f ∈ fields(type(o)), then o.f may refer to an object of type ftype(type(o), f)
or any of its subclass at runtime. Write C for the set of classes, OBJ for the set
of objects, F for the set of fields and VAR for the set of variables that appear in
a program.1

C ::= class c [extends c] {F ; M}
F ::= c f
D ::= c z

M ::= m(x) {D; s; return x′}
s ::= e | x=new c | x=e | x.f=y | s; s
e ::= null | x | x.f | x.m(y)
prog ::= C;D; s

Fig. 5. Abstract syntax for the core language.

In this simple language we do not model common types (e.g., int and float)
that are irrelevant to our analysis, and we focus on the reference types which
form a class hierarchical structure. Similar to Variable Type Analysis (VTA), we
assume a context insensitive setting, such that every variable can be uniquely
determined by its name together with its enclosing class and methods. For exam-
ple, if a local variable x is defined in method m of class c, then c.m.x is the unique
representation of that variable. Therefore, it is safe to drop the enclosing the class
and method name if it is clear from the context. In general, we have the following
types of variables in our analysis: (1) local variables, (2) method parameters, (3)
this reference of each method, all of which are syntactically bounded by their
enclosing methods and classes.

1 Sometimes we mix-use the terms type and class in this paper when it is clear from
the context.
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We enrich the variable type analysis with the new type flow analysis by using
three relations, a partial order on variables � ⊆ VAR × VAR, a type flow relation
���⊆ C × VAR, as well as a field access relation −→ ⊆ VAR × F × VAR, which are
initially given as follows.

Definition 1 (Base Relations). We have the following base facts for the three
relations.

1. c ��� x if there is a statement x = new c;
2. y � x if there is a statement x = y;
3. x

f−→ y if there is a statement x.f = y.

Intuitively, c ��� x means variable x may have type c (i.e., c flows to x), y � x

means all types flow to y also flow to x, and x
f−→ y means from variable x and

field f one may access variable y.2 These three relations are then extended by
the following rules.

Definition 2 (Extended Relations).

1. For all statements x = y.f , if y
f ∗−→ z, then z �∗ x.

2. c ���∗ y if c ��� y, or ∃x ∈ VAR : c ���∗ x ∧ x �∗ y;
3. y �∗ x if x = y or y � x or ∃z ∈ VAR : y �∗ z ∧ z �∗ x;
4. y

f ∗−→ z if ∃x ∈ VAR : x
f−→ z ∧ (∃z′ ∈ VAR : z′ �∗ y ∧ z′ �∗ x);

5. The type information is used to resolve each method call x = y.m(z).

∀ c ���∗ y :
∀ m(z′){. . . return x′} ∈ methods(c) :

⎧
⎨

⎩

z �∗ c.m.z′

c ���∗ c.m.this
c.m.x′ �∗ x

The final relations are the least relations that satisfy constraints of
Definition 2. Comparing to VTA [23], we do not have field reference c.f for
each class c defined in a program. Instead, we define a relation that connects
the two variable names and one field name. Although the three relations are
inter-dependent, one may find that without method call (i.e., Definition 2.5), a
smallest model satisfying the two relations →∗ (field access) and �∗ (variable
partial order) can be uniquely determined without considering the type flow
relation ���∗.

In order to compare the precision of TFA with points-to analysis, we present
a brief list of the classical subset-based points-to rules for our language in Fig. 6,
in which Ω (the var-points-to relation) maps a reference to a set of objects it
may points to, and Φ (the heap-points-to relation) maps an object and a field
to a set of objects. The points-to rules are mostly straightforward, except that
param(type(o),m)), this(type(o),m)) and return(type(o),m) refer to the formal
parameter, this reference and return variable of method m of the class for which
object o is declared, respectively.
2 Note that VTA treats statement x.f = y as follows. For each class c that flows to x

which defines field f , VTA assigns all types that flow to y also to c.f .
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statement Points-to constraints
x = new c oi ∈ Ω(x)
x = y Ω(y) ⊆ Ω(x)
x = y.f ∀o ∈ Ω(y) : Φ(o, f) ⊆ Ω(x)
x.f = y o Ω(x) : Ω(y) ⊆ Φ(o, f)

x = y.m(z)

(z) ⊆ Ω(param(type(o), m))
Ω(this(type(o), m)) = {o}
∀x′ ∈ return(type(o), m) :

Ω(x′) Ω(x)

Fig. 6. Constraints for points-to analysis.

To this end we present the first result of the paper, which basically says type
flow analysis has the same precision regarding type based check, such as call site
resolution and cast failure check, when comparing with the points-to analysis.

Theorem 1. In a context-insensitive analysis, for all variables x and classes c,
c ���∗ x iff there exists an object abstraction o of c such that o ∈ Ω(x).

Proof (sketch). For a proof sketch, first we assume every object creation site
x = new ci at line i defines a mini-type ci, and if the theorem is satisfied in this
setting, a subsequent merging of mini-types into classes will preserve the result.

Moreover, we only need to prove the intraprocedural setting which is the
result of Lemma 1. Because if in the intraprocedural setting the two systems
have the same smallest model for all methods, then at each call site x = y.m(a)
both analyses will assign y the same set of classes and thus resolve the call site to
the same set of method definitions, and as a consequence, each method body will
be given the same set of extra conditions, thus all methods will have the same
initial condition for the next round iteration. Therefore, both inter-procedural
systems will eventually stabilize at the same model. 
�

The following lemma focuses on the key part of the proof for Theorem1,
which shows that TFA and points-to are equivalent regarding call site resolution
locally within a function.

Lemma 1. In a context-insensitive intraprocedural analysis where each class c
only syntactically appears once in the form of new c, for all variables x and
classes c, c ���∗ x iff there exists an object abstraction o of type c such that
o ∈ Ω(x).

Proof. Since the points-to constraints define the smallest model (Ω,Φ) with
Ω : VAR → OBJ and Φ : OBJ × F → P(OBJ), and the three relations of type
flow analysis also define the smallest model that satisfies Definitions 1 and 2, we
prove that every model of points-to constraints is also a model of TFA, and vice
versa. Then the least model of both systems must be the same, as otherwise it
would lead to contradiction.
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(�) For the ‘only if’ part (⇒), we define Reaches(x) = {c | c ���∗ x},
and assume a bijection ξ : C → OBJ that maps each class c to the unique
(abstract) object o that is defined (and type(o) = c). Then we construct a
function Access : C ×F → P(C) and show that (ξ(Reaches), ξ(Access)) satisfies

the points-to constraints. Define Access(c, f) = {c′ | x
f ∗−→ y ∧ c ∈ Reaches(x)∧

c′ ∈ Reaches(y)}. We prove the following cases according to the top four points-
to constraints in Fig. 6.

– For each statement x = new c, we have ξ(c) ∈ ξ(Reaches(x));
– For each statement x = y, we have Reaches(y) ⊆ Reaches(x) and

ξ(Reaches(y)) ⊆ ξ(Reaches(x));

– For each statement x.f = y, we have x
f−→ y, then by definition for all

c ∈ Reaches(x), and c′ ∈ Reaches(y), we have c′ ∈ Access(c, f), therefore
ξ(c′) ∈ ξ(Reaches(y)) we have ξ(c′) ∈ ξ(Access(ξ(c), f)).

– For each statement x = y.f , let c ∈ Reaches(y), we need to show
ξ(Access(c, f)) ⊆ ξ(Reaches(x)), or equivalently, Access(c, f) ⊆ Access(x).
Let c′ ∈ Access(c, f), then by definition, there exist z, z′ such that c ∈
Reaches(z), c′ ∈ Reaches(z′) and z

f ∗−→ z′. By c ∈ Reaches(y) and

Definition 2.4, we have y
f ∗−→ z′. Then by Definition 2.1, z′ �∗ x. Therefore

c′ ∈ Reaches(x).

(�) For the ‘if’ part (⇐), let (Ω, Φ) be a model that satisfies all the top four
constraints defined in Fig. 6, and a bijection ξ : C → OBJ, we show the following
constructed relations satisfy value points-to.

– For all types c and variables x, c ���∗ x if ξ(c) ∈ Ω(x);
– For all variables x and y, x �∗ y if Ω(x) ⊆ Ω(y);

– For all variables x and y, and for all fields f , x
f ∗−→ y if for all o1, o2 ∈ OBJ

such that o1 ∈ Ω(x) and o2 ∈ Ω(y) then o2 ∈ Φ(o1, f).

We check the following cases for the three relations ���∗, �∗ and → that are
just defined from the above.

– For each statement x = new c, we have ξ(c) ∈ Ω(x), so c ���∗ x by definition.
– For each statement x = y, we have Ω(y) ⊆ Ω(x), therefore y �∗ x by defini-

tion.
– For each statement x.f = y, we have for all o1 ∈ Ω(x) and o2 ∈ Ω(y),

o2 ∈ Φ(o1, f), which derives x
f ∗−→ y by definition.

– For each statement x = y.f , given y
f ∗−→ z, we need to show z �∗ x. Equiv-

alently, by definition we have for all o1 ∈ Ω(y) and o2 ∈ Ω(z), o2 ∈ Φ(o1, f).
Since points-to relation gives Φ(o1, f) ⊆ Ω(x), we have o2 ∈ Ω(x), which
derives Ω(z) ⊆ Ω(x), the definition of z �∗ x.

– The proof for the properties in the rest of Definition 2 are related to transi-
tivity of the three TFA relations, which are straightforward. We leave them
for interested readers. 
�
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3 Implementation and Optimization

The analysis algorithm is written in Java, and is implemented in the Soot frame-
work [1], the most popular static analysis framework for Java. The three base
relations (i.e., ���, � and →) of Definition 1 are extracted from Soot’s inter-
mediate representation and the extended relations (i.e., ���∗, �∗ and →∗) of
Definition 2 are then computed considering the mutual dependency relations
between them. Since we are only interested in reference types, we do not carry
out analysis on basic types such as boolean, int and double. We also do not
consider more advanced Java features such as functional interfaces and lambda
expressions, as well as usages of Java Native Interface (JNI), nor method calls via
Java reflective API. We have not tried to apply the approach to Java libraries,
all invocation of methods from JDK are treated as end points, thus all possi-
ble call back edges will be missed in the analysis. Array accesses are treated
conservatively—all type information that flows to one member of a reference
array flows to all members of that array, so that only one node is generated for
each array.

Since call graph information may be saved and be used for subsequent anal-
yses, we propose the following two ways to reduce storage for computed result.
If a number of variables are similar regarding type information in a graph rep-
resentation, they can be merged and then referred to by the merged node.

1. If x �∗ y and y �∗ x, we say x and y form an alias pair, written x ∼ y.
Intuitively, VAR/ ∼ is a partition of VAR such that each c ∈ VAR/ ∼ is a
strongly connected component (SCC) in the variable graph edged by relation
�, which can be quickly collected by using Tarjan’s algorithm [24].

2. A more aggressive compression can be achieved in a way similar to bisimula-
tion minimization of finite state systems [12,17]. Define ≈ ⊂ VAR × VAR such
that x ≈ y is symmetric and if

– for all class c, c ���∗ x iff c ���∗ y, and
– for all x

f ∗−→ x′ there exists y
f ∗−→ y′ and x′ ≈ y′.

It is straightforward to see that ≈ is a more aggressive merging scheme.

Lemma 2. For all x, y ∈ VAR, x ∼ y implies x ≈ y.

We have implemented the second storage minimization scheme by using
Kanellakis and Smolka’s algorithm [12] which computes the largest bisimulation
relation for a given finite state labelled transition system. In our interpretation,
the variables are treated as states and the field access relation is treated as the
state transition relation. The algorithm then merges equivalent variables into a
single group. As a storage optimization process, this implementation has been
tested and evaluated in the next section.

4 Experiment and Evaluation

We evaluate our approach by measuring its performance on 13 benchmark pro-
grams. Among the benchmark programs, compress, crypto are from the classi-
cal SPECjvm2008 suite [2], and the other 11 programs are from the DaCapo
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suite [5]. We randomly selected these test cases from the two benchmark suites,
in order to test code bases that are representative from a variety in size. All
of our experiments were conducted on a Huawei Laptop equipped with an Intel
i5-8250U processor at 1.60 GHz and 8 GB memory, running Ubuntu 16.04LTS
with OpenJDK 1.8.0.

We compare our approach against the default implementation of Class Hier-
archy Analysis (CHA) and context-insensitive points-to analysis [14] that are
implemented by the Soot team. We use Soot as our basic framework to extract
the SSA based representation of the benchmark code. We also generate automata
representation for the resulting relations which can be visualized in a subsequent
user-friendly manual inspection. The choice of the context-insensitive points-to
analysis is due to our approach also being context-insensitive, thus the results
will be comparable. In the following tables we use CHA, PTA and TFA to refer
to the results related to class hierarchy analysis, points-to analysis and type
flow analysis, respectively. During the evaluation the following three research
questions are addressed.

RQ1 How efficient is our approach compared with the traditional class hierarchy
analysis and points-to analysis?

RQ2 How accurate is the result of our approach when comparing with the other
analyses?

RQ3 Does our optimization (or minimization) algorithm achieve significantly
reduce storage consumption?

4.1 RQ1: Efficiency

To answer the first research question, we executed each benchmark program
10 times with the CHA, PTA and TFA algorithms. We calculated the average
time consumption (in seconds) as displayed at columns TCHA(s), TPTA(s) and
TTFA(s) of the Table in Fig. 7. The sizes of each generated relation (i.e., the
type flow relation ‘���’, variable partial order ‘�’ and the field access ‘→’) are
counted, which provides an estimation of size for the problem we are treating.
One may observe that when the problem size increases, the execution time of
the our algorithm also increases in a way similar to CHA, though in general
the runtime of CHA is supposed to grow linearly in the size of a program. The
reason that TFA sometimes outperforms CHA may be partially due to the size
of the intrinsic complexity of the class and interface hierarchical structure that
a program adopts. TFA is in general more efficient than the points-to analysis.
The runtime cost in TFA basically depends on the size of generated relations,
as well as the relational complexity as most of the time is consumed to calculate
a fixpoint. For PTA it also requires extra time for maintaining and updating
a heap abstraction. Taking a closer look at the benchmark bootstrap, CHA and
PTA analyze the benchmark using about 23.97 and 34.62 s, respectively. As TFA
only generated 773 relations, the analysis only takes 0.06 s.

In this preliminary study, we find TFA is in general more efficient than the
subset based points-to analysis as implemented in Soot.
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Benchmark TCHA(s) TPTA(s) TTFA(s) R��� R� R→
compress 0.02 0.11 0.01 89 207 24
crypto 0.01 0.13 0.03 94 226 18
bootstrap 23.97 34.62 0.06 201 555 17
commons-codec 0.008 0.12 0.12 316 3,360 49
junit 24.56 34.09 0.19 1,135 5,977 241
commons-httpclient 0.008 0.11 0.27 2,503 8,836 521
serializer 22.95 32.45 0.42 3,044 18,917 331
xerces 22.49 32.05 1.65 13,906 83,325 2,814
eclipse 22.80 41.34 1.15 8,434 40,932 1,618
derby 22.71 49.27 5.18 21,244 217,571 5,370
xalan 79.57 163.20 2.52 33,857 165,785 3,690
antlr 43.08 89.07 6.24 17,272 112,537 3,875
batik 48.85 97.22 2.77 30,473 127,430 6,053

Fig. 7. Runtime cost with different analysis

Benchmark CSbase CSCHA CSPTA CSTFA

compress 153 160 18 73
crypto 302 307 62 121
bootstrap 657 801 539 328
commons-codec 1,162 1,372 270 557
junit 3,196 17,532 5,912 1,218
commons-httpclient 6,817 17,118 567 2,976
serializer 4,782 9,533 1,000 1,792
xerces 24,579 56,252 6,287 8,522
eclipse 23,607 95,073 28,201 9,925
derby 69,537 180,428 46,361 17,519
xalan 57,430 155,866 54,234 19,071
antlr 62,007 147,014 48,766 18,734
batik 56,877 235,085 52,486 21,791

Fig. 8. Call sites generated by different analyses

4.2 RQ2: Accurancy

We answer the second question by considering the number of generated call sites
as an indication of accuracy. In type flow analysis, a method call a.m() is resolved
to c.m() if class c is included in a’s reaching type set and method m() is defined
for c. In general, a more accurate analysis often generates a smaller set of types
for each calling variable, resulting fewer call edges in total in the call graph. The
table included in Fig. 8 displays the number of call sites generated by different
analyses. We also include the base call site counting, i.e., the number of call sites
syntactically written in the source code, as the baseline at the CSbase column.
It is not surprising that CHA usually has more call edges than call sites as it
maps some call sites to more than one class.
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Benchmark Nodeorigin Nodeopt Space Reduction Time(s)
compress 205 163 20.49% 0.01
crypto 312 229 26.60% 0.02
bootstrap 517 328 36.56% 0.05
commons-codec 1,742 1,452 16.65% 0.40
junit 5,890 5,135 12.82% 1.93
commons-httpclient 9,748 7,611 21.92% 4.06
serializer 9,782 6,987 28.57% 7.42
xerces 42,085 33,375 20.70% 186.11
eclipse 34,899 28,347 18.77% 86.92
derby 112,496 96,962 13.81% 1765.74
xalan 103,941 75,699 27.17% 1827.75
antlr 57,518 42,475 26.15% 358.28
batik 90,014 71,476 20.59% 1090.97

Fig. 9. Optimization result

In comparison to CHA, our approach has reduced a significant amount of
call site edges. In general, comparing to other two analyses, the number of call
edges resolved by TFA are often larger than PTA and smaller than CHA on the
same benchmark. The difference may be caused by our over approximation on
analyzing array references, as well as the existence of unsolved call edges from
e.g. JNI calls or reflective calls. If the points-to analysis implemented by the
Soot team has made special treatment on arrays, JNI or Java reflection, then
PTA may contain more call edges than TFA regarding these cases.

4.3 RQ3: Optimization

We apply bisimulation minimization to merge nodes that are of the same types
as well as accessible types recursively through fields. Thus we can reduce the
space consumption when there is a requirement to store the result for subse-
quent analysis processes. Regarding the third research question, we calculate
the number of “effective” nodes before and after optimization process. Besides,
time consumption is another factor that we consider. The results are shown in
the table in Fig. 9. We evaluate our optimization algorithm on all benchmarks
10 times and find in general we can achieve about 12%−36% of space reduction.
Considering the computation time which has become more significant for larger
and more complex benchmarks such as derby and xalan, we suggest that com-
pression of the intermediate result may not be viable to median to large sized
target programs, as the benefit of space reduction seems limited regarding the
extra time required to apply the reduction.

5 Related Work

There are not many works focusing on general purpose call graph construction
algorithms, and we give a brief review of these works first.
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As stated in the introduction, Class Hierarchy Analysis (CHA) [8,9], Rapid
Type Analysis (RTA) [4] and Variable Type Analysis (VTA) [23] are efficient
algorithms that conservatively resolves call sites without any help from points-to
analysis. Grove et al. [10] introduced an approach to model context-sensitive and
context-insensitive call graph construction. They define call graph in terms of
three algorithm-specific parameter partial orders, and provide a method called
Monotonic Refinement, potentially adding to the class sets of local variables
and adding new contours to call sites, load sites, and store sites. Tip and Pals-
berg [26] Proposed four propagation-based call graph construction algorithms,
CTA, MTA, FTA and XTA. CTA uses distinct sets for classes, MTA uses dis-
tinct sets for classes and fields, FTA uses distinct sets for classes and methods,
and XTA uses distinct sets for classes, fields, and methods. The constructed call
graphs tend to contain slightly fewer method definitions when compared to RTA.
It has been shown that associating a distinct set of types with each method in
a class has a significantly greater impact on precision than using a distinct set
for each field in a class. Reif et al. [18] study the construction of call graphs for
Java libraries that abstract over all potential library usages, in a so-called open
world approach. They invented two concrete call graph algorithms for libraries
based on adaptations of the CHA algorithm, to be used for software quality
and security issues. In general they are interested in analyzing library without
knowing client application, which is complementary to our work that has focus
on client program while treating library calls as end nodes.

Call graphs may serve as a basis for points-to analysis, but often a points-to
analysis implicitly computes a call graph on-the-fly, such as the context insensi-
tive points-to algorithm implemented in Soot using SPARK [14]. Most context-
sensitive points-to analysis algorithms (e.g., [16,21,22,25]) progress call edges
together with value flow, to our knowledge. The main distinction of our approach
from these points-to analysis is the usage of an abstract heap, as we are only
interested in the actual reaching types of the receiver of a call. Nevertheless,
unlike CHA and VTA, our methodology can be extended to context-sensitive
settings.

Regarding the treatment of flow analysis in our algorithm, downcast analy-
sis has been studied in region inference which is a special memory management
scheme for preventing dangling pointers or improving precision in garbage collec-
tion in object-oriented programming languages [6,7]. These works are type-based
analysis, while our methodology belongs to traditional static program analysis.
Similar ideas regarding value flow can also be found in the graph-reachability
based formulation (e.g. [15,19]) to which all distributed data flow analyses can
be adopted.

6 Conclusion

In this paper we have proposed Type Flow Analysis (TFA), an algorithm that
constructs call graph edges for Object-Oriented programming languages. Differ-
ent from points-to based analysis, we do not require a heap abstraction, so the
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computation is purely relational. We have proved that in the context-insensitive
setting, our result is equivalent to that would be produced by a subset-based
points-to analysis, regarding the core Object-Oriented language features. We
have implemented the algorithm in the Soot compiler framework, and have con-
ducted preliminary evaluation by comparing our results with those produced by
the built-in CHA and points-to analysis algorithms in Soot on a selection of 13
benchmark programs from SPECjvm2008 and DaCapo benchmark suites, and
achieved promising results. In the future we plan to develop context-sensitive
analysis algorithms based on TFA.
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Abstract. Formal methods are a key to engineering more reliable sys-
tems. In this paper, we focus on an important application of formal meth-
ods — enumerating solutions to logical formulas that encode properties
of interest. Solution enumeration has many uses, e.g., in systematic soft-
ware testing, model counting, or hardware analysis. We introduce solu-
tion enumeration abstraction, a novel idiom that allows users to define
data abstractions to enhance solution enumeration by specifying how the
solutions must differ, so enumeration creates a high quality set of solu-
tions of a manageable size. We embody the idiom as a technique built on
top of Alloy, a well-known lightweight formal method, which is comprised
of a first-order relational logic with transitive closure, and a SAT-based
analysis engine. Experimental results show that our technique supports
a variety of data abstractions, and can substantially reduce the number
of solutions enumerated and the time to enumerate them.

1 Introduction

Enumerating solutions to logical formulas that describe properties of interest is a
highly useful application of formal methods in many domains. For example, solu-
tion enumeration enables validation of software designs [19,33,36,44], systematic
testing of implementations [30,35], model counting for reliability analysis of sys-
tems [12], or program synthesis for security analysis of hardware [5,46,47]. While
solution enumeration has found many uses, its effectiveness relies heavily on the
quality and number of solutions enumerated. Creating too similar or too many
solutions can lead to redundancy and inefficiency in the supported application,
and harm scalability [5,19,30,33,35,36,44,46,47].

In this paper, we introduce solution enumeration abstraction, a novel idiom
that allows users to define data abstractions to enhance solution enumeration by
specifying how the solutions must differ. As a result, the collection of solutions
enumerated is a tailored subset that focuses on solutions explicitly of value to
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the user. We implement our idiom for Alloy [19], a declarative, first-order mod-
eling language that is deployed with the analyzer and a solution enumeration
toolset. Given an Alloy model and a scope, i.e., bound on the universe of dis-
course, the analyzer creates a constraint-solving problem in propositional logic
and uses off-the-shelf SAT technology [9,11,16,27,42] to solve it.

Alloy has been used in academia and industry for design and modeling of
software systems [3,6,20,22,48,51], and for various forms of analyses of code,
including deep static checking [13,21], systematic testing [30], data structure
repair [41,50], and automated debugging [17]. To illustrate one application
domain in more detail, Alloy has been recently used to model and analyze not
only software but hardware systems. Trippel et al. [5,46,47] in the CheckMate
project use Alloy to model program executions valid in a given microarchitecture
in order to explore memory consistency and security properties of such microar-
chitecture. Their work found new variants of security exploits such as Meltdown
and Spectre. From the Alloy perspective, their models are highly interesting as
they employ some key structures. In particular, they build graphs (called μhb
graphs—for “microarchitectural happens-before” graphs) that capture the pre-
cise valid ordering of events on a given microarchitecture. These graphs often
give rise to structures that the domain modeling considers equivalent and, as
such, it is not needed to explore all those equivalent structures.1

Our idiom is founded on the principles of data abstraction, e.g., as embodied
by abstraction functions, which map concrete data structures to abstract entities
that the structures represent [28]. Abstraction functions naturally occur when
abstract data types are used. To illustrate, consider a height-balanced binary
search tree that implements a set of integers. An abstraction function can map
trees to sets of integers, e.g., a tree with 3 nodes — where 2 is the value in the
root, and 1 and 3 are, respectively, the values in the left and the right child of
the root — can be mapped to the set {1,2,3}.

Traditional abstraction functions have many well-known uses. They docu-
ment the key relationships that form the foundation of the implementation of
the abstract data type; the implementation must provide behaviors that are cor-
rect with respect to the corresponding operations on the abstract data type.
Moreover, abstraction functions facilitate analysis of code, e.g., using modular
reasoning [26]. Furthermore, they enable synthesis of code, e.g., to synthesize
equals or hashCode methods [38], or iterators over collections [39].

Our newly proposed idiom allows Alloy users to define abstraction functions
in their models, and lays the foundation for a novel technique for abstraction-
directed solution enumeration that restricts the enumeration to only create solu-
tions that are mutually different at the level of the abstract domain, thereby
providing the user vital control over solution enumeration. To illustrate, if a
binary search tree implements a set, and two trees contain the same set of val-
ues, only one of them is generated. In general, an abstraction function maps

1 We thank Caroline Trippel for pointing out specific examples of the equivalence prop-
erties in the domain of μhb graphs. We abstract these architecture-specific models
into more general cases that are easier to present for a broader audience.
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many concrete structures to one abstract structure. Hence, enumerating (con-
crete) structures that map to unique abstract values can substantially reduce
the number of solutions.

Our technique generalizes beyond traditional abstraction functions. For
example, the user can simply enumerate solutions that differ with respect to
a subset of existing relations in their model, e.g., creating a set of binary trees
where no two trees have the exact same parent pointers. Another example is
where the users want to reduce the number of solutions based on a criteria they
desire, e.g., create graphs that do not have the same transitive closure in the
context of hardware modeling (see Footnote 1); the users can encode the criteria
using our idiom, and then use our technique to focus enumeration on the rela-
tions that are introduced to define the criteria. Another example in the context
of hardware modeling is when the user writes an alternative model with the goal
to reduce the number of solutions even if doing so impacts some other quality
attribute (e.g., readability) of the model (see Footnote 1); the user can instead
embed the alternative model in the abstraction and use it without modifying
the original model.

Our technique is complementary to existing approaches for reducing the num-
ber of solutions. One such well-known approach is symmetry breaking, where
additional constraints are added to the formula to remove isomorphic solutions
to help the solvers prune more [8,23,43], e.g., to remove isomorphic graphs when
enumerating binary search trees. Our enumeration technique allows defining and
utilizing abstraction functions even in the presence of symmetry breaking con-
straints. Moreover, our technique can completely subsume symmetry breaking,
and allows writing symmetry breaking constraints directly as abstractions.

Overall, our new technique enables a key separation of concerns in software
modeling, where the user can build the model without worrying about refining
it to facilitate solution enumeration, which can then be guided by defining an
appropriate abstraction using our idiom. We make the following contributions:

– Idiom. We introduce an idiom to model abstraction functions in Alloy;
– Abstraction-Directed Solution Enumeration. We present an abstrac-

tion technique to direct solution enumeration, so the solutions enumerated
differ at the abstract level, or stated dually, some solutions that differ at the
concrete level are not generated if they map to the same abstract values;

– Generalization. We present a generalization of our core technique to support
various forms of abstractions to direct solution enumeration; and

– Evaluation. We present an experimental evaluation using several subject
models; the results show that our technique can substantially reduce the
number of solutions and the generation time. Our prototype and the subject
models are available online: “https://github.com/Allisonius/Seabs”.

Related Work. Abstraction functions are a central concept in data abstrac-
tion [28]. They have been supported by many systems for writing formal specifi-
cations, e.g., by the Larch family [18,25]. Various analyses leverage abstraction
functions [26,38,39], or more general forms of abstraction [14,29,34,37,49] for

https://github.com/Allisonius/Seabs
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Fig. 1. Alloy model of a singly-linked list of integers.

increased efficacy. A key difference between previous work and this paper is our
use of abstraction functions in the context of logical formulas to direct solution
enumeration using propositional satisfiability solvers.

In the context of Alloy, solution enumeration is commonly used for scenario
exploration where the user inspects the solutions to validate the Alloy models.
Several past projects improve solution enumeration by focusing it using differ-
ent criteria, e.g., symmetry [23], minimality [33], field exhaustiveness [35], and
coverage [36,44]. Our approach is orthogonal to these techniques and can work
in tandem with them, e.g., as we show for symmetry breaking (Sect. 3.3.2).

More generally, solution enumeration is a technique that enables a number
of software analyses, e.g., test input generation for automated testing [30] and
model counting for reliability analysis [12]. Researchers have developed various
optimizations, e.g., dedicated search [4], mixing of generators and solvers [15,24],
solver-aided languages [40], and sampling [10,31] for more effective enumeration.
We believe our approach can also combine with some of these optimizations, and
we plan to explore the integration in future work.

2 Overview

This section describes two illustrative examples to provide an overview of our
approach for controlling solution enumeration in Alloy by utilizing abstraction
functions. The first example shows a traditional abstraction function for an
abstract data type (Sect. 2.1). The second example shows how our approach
addresses a problem in the context of recent work [5,46,47] on hardware model-
ing using Alloy (Sect. 2.2). We describe the basics of Alloy as needed.

2.1 Singly-Linked List and Set

Consider modeling in Alloy an implementation of a set of integers using a singly-
linked acyclic list of nodes that contain integers without repetition (Fig. 1).
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Fig. 2. First 8 solutions generated by the Alloy analyzer. For each structure, the square
box is the list atom (List), and each ellipse is a node atom and is labeled with its
identity (Node0, Node1, or Node2) and integer element (elem).

The module keyword names the model, which contains a set (sig) of lists
(List) and a set of nodes (Node). Each element in an Alloy set is an atom.
The keyword one declares the set of lists to contain only one element — each
solution will contain exactly one list. The field header (in List) declares a binary
relation of type List × Node. The keyword lone makes header a partial function;
thus, each list has at most one header. The field elem (in Node) models the node
elements and introduces a total function Node × Int, where Int is the built-in
Alloy type that models primitive integers; link models the linking structure of
the list and is a partial function of type Node × Node.

Each predicate (pred) defines a formula that can be invoked elsewhere. The
predicate Acyclic defines acyclicity of a linked list using universal quantifica-
tion (all). The expression List.header.*link uses relational composition (‘.’)
and reflexive transitive closure (‘*’) to represent the set of all nodes reachable
from the list’s header node. The operator ‘ˆ’ is transitive closure; the expression
n.ˆlink represents the set of all nodes reachable from n following one or more
traversals along the link field. The operator ‘!’ is logical negation, and the key-
word in represents the subset operation. Thus, the predicate Acyclic requires the
list not to contain a directed cycle. The predicate NoRepetition also uses univer-
sal quantification; the keyword disj makes m and n distinct. Thus, the predicate
NoRepetition requires distinct list nodes to contain unique elements and the list
to not contain any duplicates. The predicate RepOk uses logical conjunction to
require the list to be acyclic and free of duplicates.

Each fact defines a constraint that must be satisfied by every solution. The
fact Reachability requires every node to be in the list so there are no discon-
nected components in any solution. This fact helps create more meaningful solu-
tions that do not contain parts that are not relevant to the properties modeled.

The run command instructs the Alloy analyzer to create a solution with
respect to the RepOk predicate, the predicates it transitively invokes, and the
facts. The command specifies a scope of 3 for all the sigs in the model, i.e.,
up to 3 atoms in each sig, and a bit-width of 2 for integers, i.e., 4 integer values
{-2, -1, 0, 1}. The analyzer can enumerate multiple (and if desired, all) solutions.
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Fig. 3. An abstraction function modeled using our idiom.

Figure 2 shows the first 8 solutions created by the analyzer. In total, the analyzer
creates 41 solutions for the given scope. All these solutions are non-isomorphic
with respect to the identity of atoms. The Alloy analyzer automatically adds
symmetry-breaking predicates [8,43] which, in general, remove many but not all
isomorphic solutions. For this scope, these predicates remove all symmetries.
While these solutions are non-isomorphic, more than one solution contains the
same set of node values. For example, the two lists in Figs. 2(f) and 2(h) represent
the same set {-2, 0, 1} with 3 values. In fact, of the 41 solutions found, 6 represent
the set {-2, 0, 1}.

2.1.1 Idiom for Modeling Abstraction Functions
Next, consider modeling the abstraction function for the list representing a set.
The abstraction function α : C → A maps each concrete data structure (in the
concrete domain C) to an abstract value (in the abstract domain A). In general,
each value in the abstract domain may itself be a structure. In this example, we
describe our idiom for the special case when the abstract domain contains sets
of integers; Sect. 3.1 presents a more general treatment. Our modeling idiom has
2 basic steps: (1) add a new singleton sig, e.g., called AbsFun, that introduces
a field, e.g., af , that models A; and (2) add a new fact that defines the value of
the field af (in AbsFun) in terms of the fields that model the concrete structure.

Figure 3 shows an Alloy model that defines the abstraction function for our
list example. The keyword open allows importing another model, which, in this
case, is our list model (Fig. 1). The sig AbsFun and field af model the abstraction
function. Specifically, af introduces a binary relation AbsFun × Int; the keyword
set declares af to be an arbitrary relation that maps to a set of integers. The
expression List.header.*link.elem represents the set of all integer elements in
the list nodes. The fact AbsFunDef constrains the field af’s value to equal the set
of integers in the list and hence defines the abstraction function.

Our model of the abstraction function introduces a new sig and a new binary
relation. Any solution for RepOk that is generated with respect to this new model
contains a solution for the original model (list), i.e., in the concrete domain, and
in addition, contains the corresponding value in the abstract domain (given by
the value of the field af), which allows observing applications of the abstraction
function (as well as inspecting concrete structures as before). The number of
solutions for the old model (list, Fig. 1) is the same as the number of solutions
for new model (listAF, Fig. 3) because each solution to listAF is a pair that
contains a solution to list and its abstract value, and each abstract value has
at least one corresponding concrete structure.
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2.1.2 Using Abstraction Functions to Direct Solution Enumeration
Next, we describe how our idiom enables directing solution enumeration to
reduce the number of solutions. Observe that many solutions to the original
model (list, Fig. 1) can map to the same abstract value, e.g., there are 6 lists
l1, . . . , l6 with exactly 3 nodes with elements −1, 0, and 1, and each li(1 ≤ i6)
maps to the same set {−1, 0, 1}. Our key insight is that if we require enumeration
to create solutions that differ with respect to the fields that model the abstrac-
tion function, the set of all solutions created will not contain any two solutions
that have the same value in the abstract domain. We embody this insight into a
new solution enumeration technique built on top of the Alloy analyzer’s Kodkod
back-end (Sect. 3.2).

Fig. 4. All 15 solutions enumerated by our technique. Each solution has a linked list
(in the concrete domain) and a set (in the abstract domain).

To illustrate, enumerating all solutions for the command “run RepOk for 3
but 2 int” with respect to the model listAF (Fig. 3) using our new technique for
directed enumeration creates 15 solutions (Fig. 4) instead of the 41 that default
enumeration creates for the model list (Fig. 1). As the scope increases, the
reduction in the number of solutions increases. For the command “run RepOk
for 6 but 3 int” (i.e., up to 6 nodes and 8 integers {−4,−3, . . . , 2, 3}), our
directed approach creates 247 solutions whereas the default enumeration creates
28,961 solutions. Generating fewer solutions also takes much less time; for this
latter command, our directed approach takes 1.2 s (total) whereas the default
enumeration takes 35.1 s (total).
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Fig. 5. Alloy model of a graph simplified from CheckMate [46].

2.2 Graph and Transitive Closure

Recent work [5,46,47] used Alloy to model microarchitectural happens-before
graphs in the context of hardware modeling, and introduced a number of custom
techniques to reduce the number of solutions enumerated by the Alloy analyzer
since each solution contributed to a security litmus test. Figure 5 shows a minimal
Alloy model that represents the nodes and edges of the graph. For this model,
the Alloy analyzer enumerates 152 solutions using the default scope of 3.

One reduction the authors desired was to create one representative graph
from each class that has the same transitive closure (see Footnote 1). Figure 6
shows how our technique allows defining an abstraction function, which basically
is transitive closure, to direct enumeration as desired. Our technique enumerates
only 59 solutions for this model (using the default scope), which reduces the
number of enumerated solutions by over 2.5x.

Moreover, if self-loops are not relevant in differentiating solutions, the
abstraction function can instead be the reflexive transitive closure: “AbsFun.af
= *edges”. Our technique then enumerates 26 solutions for the resulting model
(using the default scope), reducing the number over 5.8x over the original model.

Fig. 6. Directing enumeration to create one representative graph from each class that
has the same transitive closure.

3 Abstraction-Directed Solution Enumeration

Our basic approach has two parts: (1) an idiom for writing an abstraction func-
tion in Alloy (Sect. 3.1); and (2) a technique for using it for solution enumeration
(Sect. 3.2). Therefore, to utilize our approach, a user first writes an abstraction
function for their model and then invokes our solution enumeration technique.
While we focus on abstraction functions, our approach supports more general
forms of abstractions to guide solutions enumeration (Sect. 3.3). In future work,
we plan to generalize our approach to other solvers, e.g., SMT solvers that allow
enumeration [32].
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3.1 Idiom

The abstraction function α : C → A maps structures in the concrete domain C
to values in the abstract domain A. In general, each abstract value may itself be
a structure. Assume the abstract domain is modeled using k relations a1, . . . , ak

(k ≥ 1). Our idiom for modeling the abstraction function has two basic steps:

1. Add a new singleton sig A with fields a1, . . . , ak that model A; and
2. Add a new fact F to constrain a1, . . . , ak (in A) with respect to the relations

that model the concrete domain (to define the abstraction).

Given an initial model m that characterizes the concrete domain, our idiom
results in a model m′ that consists of m and, in addition, has a new sig A, k
new relations a1, . . . , ak, and a new fact F . Some examples are shown in Figs. 3
and 6 in Sect. 2. Because F simply defines the values for the new relations in
terms of the relations in m, and the abstraction function α should be total, any
solution to m can be extended to a solution for m′. In other words, the number
of solutions for m and m′ is identical; there is a bijection between solutions of
m (each solution is only a concrete structure) and solutions of m′ (each solution
is a pair of a concrete structure and an abstract value). Therefore, simply writ-
ing the abstraction function does not by itself reduce the number of solutions
enumerated using the Alloy analyzer. However, our new directed enumeration
technique enables the reduction (Sect. 3.2).

There are other ways to model abstraction functions in Alloy. Perhaps
the simplest is to use the function (fun) paragraph, which introduces a
named expression. For example, for the singly-linked list model (Fig. 1), we
can write “fun AbstractionFunction(): set Int { List.header.*link.elem }”
to define the abstraction function. An advantage is that no new sig (or field)
must be added. A disadvantage is that the return type (i.e., the type of the
expression in the function body), which models the abstract domain, can be just
one relation (of arity 1, i.e., a set, or higher). This approach can be extended
to support more general return types, e.g., by adding a new sig and fields that
model the abstract domain, but doing so reduces this approach to our idiom.

3.2 Directed Enumeration

We next describe our key technique for directing solution enumeration to reduce
the number of solutions. Our insight is to require solution enumeration to create
solutions that each differ from all previous solutions with respect to the fields
that model the abstraction function, so the set of all solutions created will not
contain two different solutions with the same value in the abstract domain.

In Alloy, solution enumeration is provided by the Kodkod [45] back-end,
which uses enumerating SAT solvers [9,11,16,27,42]. When the user desires
another solution after a solution, say s, is generated, Kodkod follows the stan-
dard practice in modern SAT solvers [11] for solution enumeration and adds a
new clause c to the propositional formula in conjunctive normal form (CNF)
such that any solution to the new formula will differ from s for at least one
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Algorithm 1. Abstraction-directed solution enumeration.
Input: Formula φ, Scope s, Set of relations Abs.
Output: Solutions enumerated with respect to the given abstraction.

1 absVars = {} // empty set of unique ids for variables
2 foreach ρ ∈ Abs do
3 absVars = absVars ∪ primaryVariables(ρ)

4 solver = new Solver(φ, s) // instatiate Kodkod for solution enumeration
5 while True do
6 solution = solver.solve()
7 if solution == null then break // no (new) solution found
8 output(solution)
9 // add the negation of the current solution w.r.t. absVars

10 negSolAbsVars = new int[absVars.size()]
11 int j = 0
12 for i ← 1 to solver.numPrimaryVars do
13 if i ∈ absVars then
14 negSolAbsVars[j ] = solultion.valueOf(i) ? -i : i
15 j++

16 solver.addClause(negSolAbsVars)

boolean variable. This difference is only with respect to the primary variables,
which Kodkod creates when it translates the model m to a propositional formula
p but before p is translated to a CNF formula, because the translation to CNF
introduces auxiliary variables, and only the primary variables directly model
the relations in m. Different assignments to auxiliary variables may represent
the same assignment for primary variables. However, different assignments to
primary variables always represent different solutions to the model.

To direct enumeration using the abstraction function, we adapt Kodkod’s
enumerator to require the solutions to differ with respect to only the boolean
variables that correspond to the fields that model the abstraction function (and
not all fields in the model as done traditionally). Algorithm 1 shows the pseu-
docode of our directed enumeration. The inputs are a formula φ, a scope s, and
a set of all relations Abs that model the abstract domain. For each relation ρ,
primaryV ariables (in Kodkod) returns the set of primary variables that model
ρ; Kodkod represents each variable using a unique integer id. The method solve()
returns a solution if one exists and null otherwise. Lines 10–16 show the logic
for adding a new clause negSolAbsV ars that ensures the next solution differs
from the previous ones with respect to the abstract domain.

The guard on Line 13 is the key for restricting solutions to differ at the
abstract level; without this guard, we get the Kodkod’s traditional enumera-
tion (hence we show the guard explicitly rather than iterating over absV ars).
Kodkod’s numPrimaryV ars returns the number of priary variables. The new
clause only contains literals for the primary variables that represent the relations
in Abs; for each such variable v, the clause contains literal v, resp. !v, if the value
of v is false, resp. true in the last solution.
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3.3 Generalization

We next describe how our approach generalizes to support a wide range of sce-
narios for directing solution enumeration to create higher quality solutions. Our
approach is not restricted to just abstraction functions. In fact, it does not even
require the use of the idiom (Sect. 3.1) for modeling abstraction functions! In
particular, our directed enumeration algorithm does not require the existence of
an abstraction function in the Alloy model. The set of relations Abs can be any
relations that already exist in the model. The user simply marks this set, e.g.,
in our current tool, as a comma-separated list of relations in the command-line
arguments (e.g., −−absRels this/AbsFun,this/AbsFun.af). Thus, our approach
embodies a general technique for directed enumeration where the goal is to create
solutions that must differ with respect to a given set of relations. Next, we briefly
describe how our approach supports three scenarios that differ from traditional
abstraction functions.

3.3.1 Focused Enumeration
Consider supporting a goal or criterion, e.g., a test purpose, that the enumer-
ated solutions should meet [2]. For example, Alloy users often write additional
constraints in their models to focus enumeration, say to create structures with
no disconnected components (as illustrated in Fig. 1). Our approach provides
a new way for users to actively focus enumeration, where solution differences
that do not matter can be explicitly defined and utilized. To illustrate, the user
can define the abstraction function List.header.*link for the model in Fig. 1 to
direct enumeration to not create two solutions where the list has the same set
of nodes (regardless of whether or not the disconnected components differ).

As another example of focused enumeration, consider enumerating red-black
trees that are height-balanced binary search trees where each node is colored
either red or black [7]. Two red-black trees may be identical as binary search
trees and differ only in the node colors. If it is desirable to create solutions that
must differ as binary search trees modulo color, our approach directly supports
this requirement by using the existing set of relations except color to define the
abstraction and direct enumeration of desired red-black trees.

3.3.2 Symmetry Breaking
Symmetry breaking is a widely used technique for helping SAT solvers prune
their search or create fewer solutions [8,23,43,52]. Our approach has a three-
fold interaction with symmetry breaking.

Abstraction functions in the presence of symmetry breaking con-
straints for the concrete domain — our idiom is orthogonal to the use
of symmetry breaking and can be used regardless of whether the original Alloy
model uses symmetry breaking constraints or not;

Symmetry breaking constraints for the abstract domain — our idiom
allows defining symmetry breaking constraints for the abstract domain, e.g., to
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remove isomorphism at the abstract level. The user simply applies the stan-
dard practice of adding symmetry breaking constraints but does so only for the
relations that model the abstract domain.

Symmetry breaking constraints as abstraction functions — a model
m that has explicit symmetry breaking constraints, e.g., as a fact sb, can be
augmented using our idiom such that (1) the abstract domain contains new
relations that correspond to the relations that are originally in m, and (2) the
abstraction function constrains the abstract domain values to equal the concrete
domain structures, and lifts the symmetry breaking constraints sb to the abstract
domain, which are no longer enforced at the concrete domain. Doing so gives a
clean separation of symmetry breaking constraints from the base model because
the purpose of these constraints is only to assist the back-end solvers and direct
solution enumeration, and they would otherwise not be a part of the model.

3.3.3 Modeling Alternatives
An Alloy model typically evolves through different stages, some of which resem-
ble how code evolves. Specifically, the Alloy user has to balance multiple con-
cerns (correctness, analyzability, readability, etc.) when creating their model.
Our approach allows a key separation of concerns that enables the user to con-
sider analyzability — with regards to solution enumeration — as a separate
concern when writing the model.

To illustrate, recent work on using Alloy for hardware modeling [46] intro-
duced an initial model that is natural to write but leads to too many solutions.
They then used an alternative model to make it more useful for solution enu-
meration, although the alternative made it cumbersome to write and reason
about some key expressions that involved transitive closure (see Footnote 1).
The original model used a binary relation “edges : Node × Node” to model
edges, where each node is an 〈Event, Location〉 pair; this model allows the user
to simply write “∧edges” for transitive closure. The alternative model removed
the indirection of using node atoms in the definition of edges, and used a differ-
ent relation “edges′ : Event×Location×Event×Location”, to ensure the Alloy
analyzer does not enumerate the many combinations that relate node atoms to
〈Event, Location〉 pairs. While the use of edges′ reduces the number of solutions
enumerated, the use of transitive closure becomes cumbersome because it can
only be applied to a homogeneous binary relation, which the user must now
construct from edges′ before using the transitive closure operator.

With our approach, the user simply defines the alternative formulation using
the abstraction without having to rewrite the original constraints, which are writ-
ten using natural and intuitive formulas. To illustrate, for the edges and edges′

example, the user states how the values of edges and edges′ relate. (The model
is available online: https://github.com/Allisonius/Seabs.) Thus, the abstraction
function definition simply relates the structures in the original model to the
values in the alternative model — without any need to transform or adapt the
original structural constraints to the alternative model.

https://github.com/Allisonius/Seabs
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4 Evaluation

This section presents an experimental evaluation of our approach. We use a
suite of 15 Alloy models, including data structures that implement abstract data
types [7], models from the standard Alloy distribution [1], and models based on
recent work that used Alloy for hardware security analysis (see Footnote 1)
[5,46,47].

For each model, Table 1 lists the relations in the original model, the relations
that define the abstract domain, and the form of abstraction used. The abstract
domain relations are either a subset of the relations in the original model, e.g.,
for rbt, or new relations that we introduced for abstraction-directed enumeration
and list with their types. The form of abstraction is either traditional abstrac-
tion function, e.g., a set implemented as a dynamic data structure (Sect. 2.1),
focused enumeration (Sect. 3.3.1), symmetry breaking (Sect. 3.3.2), or modeling
alternatives (Sect. 3.3.3).

The models include object arrays (objarray), multi-sets of integers
(multiset), singly-linked lists (list, listsymbr), doubly-linked lists (dll), binary
search trees (bst, bstsymbr), search trees with parent pointers (bstp), min-heaps
(minheap), red-black trees (rbt), general directed trees with integers (dtree),
general directed graphs (graph and graph2), and specialized modeling of edges
as a map between 〈Event, Location〉 pairs (graphsym and graphsym2). The
graph, graph2, graphsym, and graphsym2 subjects are based on models from
CheckMate [46].

Table 2 presents the results of our experimental evaluation. We consider two
versions of Alloy: (1) the latest stable release, i.e., Alloy 4.2; and (2) the latest
(possibly unstable) build, i.e., Alloy 5.0 [1]. We use each version to compare, for
each model, the two techniques: (1) Alloy analyzer’s default enumeration for the
original Alloy model (Original) and (2) our abstraction-directed enumeration for
the augmented model that includes the desired abstraction (Abstraction-directed
enumeration). For each technique, the table lists the number of all (boolean) vari-
ables in the SAT encoding (#Var), the number of primary variables (#PVar),
the number of all clauses (#Cls), the number of solutions (#Sol), and the time
taken to find all solutions (Tv.4 using Alloy 4.2 and Tv.5 using Alloy 5.0). For each
model, the table also lists the scope (Scope), which we selected as the minimum
of 10 and the largest scope for which the default enumeration can enumerate all
solutions in under 1 minute (so that all experiments finish in a reasonable time).

For all but 2 cases, the number of primary variables is smaller for the original
model than the model that includes the abstraction to guide solution enumer-
ation. Being smaller is expected, as modeling the abstraction introduces a new
sig and relation(s). For 2 cases (bstp and rbt), the numbers are the same because
the abstraction is simply a subset of the existing relations.

As expected, the number of solutions enumerated by our technique is no
more than the number enumerated by the default enumeration. For one case
(objarray), the numbers are the same, because the Alloy’s default symmetry
breaking behaves the same as the abstraction function we defined. Across all
cases, the number of solutions can be reduced by up to 405.3x (dtree).
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Table 1. Models used in our evaluation.

Model Relations - Original
Model

Relations - Abstract
Domain

Abstraction

objarray ObjectArray.array AbsFun.af: set Object Traditional – set of
objects

list List.header, Node.elem
Node.link

AbsFun.af: set Int Traditional – set of
integers

bst BST.root, BST.size,
Node.key, Node.left,
Node.right

AbsFun.af: set Int Traditional – set of
integers

minheap MinHeap.root, Node.key,
Node.left, Node.right

AbsFun.af: set Int Traditional – set of
integers

dll DLL.header, Node.pre,
Node.nxt, Node.elem

AbsFun.af: set Int Traditional – set of
integers

dtree Tree.root, Node.edges,
Node.elem,

AbsFun.af: set Int Traditional – set of
integers

graph Node.edges AbsFun.af: Node×Node Focused enumeration –
transitive closure

graph2 Node.edges AbsFun.af: Node×Node Focused enumeration –
reflexive transitive closure

bstp BST.root, BST.size,
Node.key, Node.left,
Node.right, Node.parent

Node.parent Focused enumeration –
parent must differ

rbt RBT.root, RBT.size
Node.key, Node.left,
Node.right, Node.color

RBT.root, RBT.size
Node.key, Node.left,
Node.right

Focused enumeration –
search tree must differ

listsymbr List.header, Node.elem
Node.link

AbsFun.af1: List×Node,
AbsFun.af2: Node×Int,
AbsFun.af3: Node×Node

Symmetry breaking –
non-isomorphic
structures

bstsymbr BST.root, BST.size,
Node.key, Node.left,
Node.right

AbsFun.af: set Int Symmetry breaking and
traditional

multiset MultiSet.array,
MultiSet.length

AbsFun.array: Int×Int,
AbsFun.length: Int

Modeling alternatives –
sorted array of integers

graphsym Node.event,
Node.location,
Node.edges

AbsFun.af:
Event×Location×
Event×Location

Modeling alternatives –
map between 〈E,L〉 pairs

graphsym2 Node.event,
Node.location Node.edges

AbsFun.af1:
Event×Location
AbsFun.af2:
Event×Location×
Event×Location

Modeling alternatives –
two maps to allow
isolated nodes

For Alloy 4.2 (the latest stable release), for all cases, enumerating all solu-
tions using our technique takes less time than the default enumeration. The time
speedup using our technique is between 1.1x (rbt) to 74.9x (dtree). For Alloy
5.0 (the latest, possibly unstable, build), the relative performance results are
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Table 2. Performance comparison between the techniques. Times are in seconds.

Model Original Abstraction-directed enumeration Scope
#Var #PVar #Cls #Sol Tv.4 Tv.5 #Var #PVar #Cls #Sol Tv.4 Tv.5

bst 14036 341 34936 2179 40.9 40.2 13779 357 34099 9 2.9 2.5 9

bstp 8200 290 18954 625 4.6 7.7 8018 290 18211 429 3.6 7.6 7

bstsymbr 12780 332 34220 626 13.4 8.5 12523 348 33383 9 4.0 13.9 9

dtree 1244 75 2751 88769 59.9 59.3 1319 83 3254 219 0.8 0.7 5

dll 2113 132 5119 28961 22.6 24.9 2196 140 5354 247 0.5 0.5 6

list 1874 96 4742 28961 24.0 24.7 1957 104 4977 247 0.5 0.6 6

listsymbr 1874 96 4742 28961 24.0 24.7 1696 180 4232 20160 9.1 8.9 6

minheap 2322 100 5033 15913 13.0 12.0 2397 108 5236 219 0.6 0.6 5

multiset 306 72 489 585 1.0 1.0 1662 144 4257 165 0.3 0.6 3

graph 138 20 200 6344 4.9 4.3 448 36 994 671 0.6 0.9 4

graph2 138 20 200 6344 4.9 4.3 460 36 994 190 0.3 0.9 4

graphsym 360 36 500 915 1.7 1.6 4323 126 7319 148 0.8 0.6 3

graphsym2 360 36 500 915 1.7 1.6 4515 126 7652 170 1.0 0.5 3

objarray 1398 110 3716 11 0.5 0.5 1478 120 3843 11 0.2 0.1 10

rbt 8639 255 20648 84 4.5 11.0 8373 255 19737 65 4.1 13.4 7

different for 2 cases (bstsymbr and rbt) where our technique has a slowdown
of 1.6x and 2.9x for bstsymbr and rbt, respectively; however, the number of
solutions is not impacted by the choice of the Alloy version and is still sub-
stantially reduced. Moreover, because each solution may be used for expensive
post-processing [46] (e.g., to test long-running code executed on each solution),
the number of solutions can be more important than the time to generate them.
Across the remaining 13 cases, the time speedup using our technique is between
1.7x (graphsym2) to 84.7x (dtree). Overall, the performances of Alloy 4.2 and
Alloy 5.0 are similar.

5 Conclusions

We introduced solution enumeration abstraction, a new modeling idiom that
allows Alloy users to define abstractions to enhance solution enumeration. The
user specifies how the solutions must differ, so enumeration creates a high quality
set of solutions of a manageable size. We implemented our technique on top of
the Alloy tool-set and evaluated using a variety of abstractions to show the
generality and usefulness of the proposed idiom. The experimental results show
that the technique can substantially reduce the number of solutions and the time
taken to enumerate them.
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Abstract. Boolean networks offer an elegant way to model the behaviour
of complex systems with positive and negative feedback. The long-term
behaviour of a Boolean network is characterised by its attractors. Depend-
ing on various logical parameters, a Boolean network can exhibit vastly
different types of behaviour. Hence, the structure and quality of attrac-
tors can undergo a significant change known in systems theory as attrac-
tor bifurcation. In this paper, we establish formally the notion of attrac-
tor bifurcation for Boolean networks. We propose a semi-symbolic app-
roach to attractor bifurcation analysis based on a parallel algorithm. We
use machine-learning techniques to construct a compact, human-readable,
representation of the bifurcation analysis results. We demonstrate the
method on a set of highly parametrised Boolean networks.

Keywords: Attractor analysis · Machine learning · Boolean networks

1 Introduction

Complex systems appearing in biology, chemistry, physics, and engineering are
composed of hundreds to thousands of components whose interactions give rise
to systems collective behaviours. Regulatory networks (RNs), also known as
gene regulatory networks [15], Thomas’ networks [35], discrete or logical reg-
ulatory networks, offer an elegant, holistic, and mathematically rigorous way to
model these complicated interactions [26]. In regulatory networks, the long-term
behaviour of a system is characterised by the so-called attractors. For example,
in biology such attractors can represent the phenotypes of a living cell. The typ-
ical types of attractors are sinks, cycles, or chaotic attractors. Identification and
classification of attractors in the state space of a RN is thus a very important
step towards understanding of systems behaviour.

In this paper, we focus on a basic form of RNs represented by Boolean
networks (BNs). In BNs, systems components are modelled as Boolean vari-
ables. Edges in BNs represent positive or negative interactions between variables.
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The behaviour of Boolean networks is sensitive to various logical parameters. To
that end, in this paper, we primarily work with parametrised Boolean networks
(PBNs). It is worth noting that the method can be straightforwardly extended
to general (multi-valued) RNs. Due to their binary character, BNs have signifi-
cantly smaller states space and parameter space allowing, in combination with
parallel algorithms, more efficient analysis of large-scale networks. Despite its
simplicity, BNs are frequently used to model important phenomena in genetics
or biology.

The structure and quality (types) of attractors may undergo a significant
change when parameters vary their values. In the literature of continuous dynam-
ical systems, such dramatic changes are called bifurcations and the parameter
values for which a bifurcation occurs are termed bifurcation points [25]. As attrac-
tors represent the long-term behaviours, the focus on attractor bifurcation anal-
ysis is fundamental to a full understanding of diverse properties of BNs, e.g.,
their structural stability.

We consider two central sub-problems related to the attractor bifurcation
analysis in PBNs. The first one is the computation of the so-called bifurcation
function, which maps parameter values to a multi-set of attractor types that are
present in the system for the given parameter value. The second, and in some
sense equally serious, sub-problem is the presentation of the multi-dimensional
bifurcation function to the end-user in the form of a bifurcation diagram which
visually summarises the succession of bifurcations as parameters change and
identifies the bifurcation points.

One might attempt using the methods of bifurcation analysis as known from
continuous-time dynamical systems [25]. However, the study of bifurcations in
discrete-time discrete-space systems, as is the case of PBNs, requires an entirely
different framework. The reasons are twofold: First, the parameters, variables and
behaviours in these systems are not continuous, so the concept of a small, smooth
change does not exist. However, even if we consider other measures of closeness,
such as Hamming distance between parametrisations, we still have to overcome
the second issue: multi-dimensionality. While the traditional continuous view on
bifurcation also suffers from dimensional blow-up, it is generally accepted that
performing bifurcation analysis even for one or two parameters can be beneficial.
In PBNs, the parameter domains are much simpler, so considering just one or two
parameters is often not enough to uncover interesting behaviour. Moreover, it also
significantly complicates presenting the results concisely to the user.

Our contribution to the bifurcation analysis for PBNs is threefold: (i) We
establish the notion of attractor bifurcation for PBNs, (ii) we propose a semi-
symbolic approach for computing the bifurcation function, (iii) we employ
machine learning techniques to efficiently construct and visualise bifurcation
diagrams.

In discrete systems, attractors are typically understood as terminal strongly
connected components (TSCC) of the system [22,24]. This corresponds to the
intuitive notion of states where the behaviour eventually stays forever. To com-
pute the bifurcation function, we employ the asynchronous semantics of BNs
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and introduce its extension to PBNs. Subsequently, we use an on-the-fly parallel
semi-symbolic algorithm for computing TSCCs which itself is based on ideas
from [5]. Instead of using SMT to decide over real-valued parameters in differen-
tial models, we employ BDDs that are more efficient for PBNs with asynchronous
update. The identified TSCCs are classified and collected into a bifurcation func-
tion. The bifurcation diagram is then represented in the form of a bifurcation
decision tree, which provides an exact description of the bifurcation function and
is learned from its symbolic representation using machine learning techniques.
This way we tackle the problem of presenting the many-dimensional analysis
result in a concise and human-readable format.

Related Work. Attractor identification has been recently studied with non--
parametric BNs (see [2] for an overview). Some of the existing algorithms take
advantage of synchronous update semantics that significantly simplifies the prob-
lem [15]. This allows for efficient exact solutions in terms of SAT [13,34], con-
straint programming [12], or integer-programming [4]. A BDD-based representa-
tion is employed, e.g., in [15,37]. In [16] it is shown that SMT-based techniques
work well in PBNs with synchronous update. However, it is known that syn-
chronous update can produce unrealistic attractors [22,31]. Models with asyn-
chronous update cover in most cases the real attractors quite well, though it has
been recently shown that some exceptions exist [10]. Nevertheless, the problem
of attractor identification becomes more difficult due to the non-deterministic
nature of the state transitions. Most of the works for asynchronous models tar-
get the non-parametric case only. Various techniques have been employed includ-
ing BDDs [15,28], optimisation [20,21], algebraic-based methods [18], SAT [17],
answer set programming [27], concurrency theory [9], sampling [38], or network
structure decomposition [11]. Here we focus on the parametric case with the
asynchronous update semantics.

The parameter space of a biological system explodes combinatorially with the
arity of component interactions. To that end, attractor detection in parametrised
models remains to be a grand challenge in general. It is worth noting that
parametrised network semantics can be entirely encoded using the BDD frame-
work [28]. However, then the problem is that algorithms efficiency and scala-
bility entirely rely on concrete construction procedures of BDDs. In this paper,
we combine explicit state representation with symbolic BDD representation of
parameters. This allows us to adapt the existing sequential SCC-detection algo-
rithms and also to develop new on-the-fly and parallel algorithms fine-tuned for
the specific needs of attractor analysis.

To the best of our knowledge, this paper introduces bifurcation analysis to
PBNs for the first time. Most of the mentioned techniques focus primarily on
attractor detection in non-parametric settings. A distinct feature of our approach
is a fully-automatised classification of the attractors characterising the attractor
structure at the semantics level. In [3,24] the authors elaborate at the level of
the network structure to study the systems behaviour and its stability using
(manual) analytical methods in non-parametric cases.
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2 Parametrised Boolean Networks

We start this section with the definition of (non-parametrised) Boolean networks
and their asynchronous semantics, together with the notion of attractors. We
then follow with the description of the parametrised version and a means of
restricting the parametrisation space using static constraints.

Definition 1. A Boolean network (BN) is a tuple B = (V, R,F) such that:

– V = {A, B, . . .} is a finite set of Boolean state variables.
– R ⊆ V × V is a set of regulations. For A ∈ V, we say that C(A) = {B ∈ V |

(B, A) ∈ R} is the context of A, i.e. the subset of V regulating A.
– F = {FA | A ∈ V} is a family of logical update functions. The signature of

each FA is given by the context of A as FA : {0, 1}|C(A)| → {0, 1}.

The state space of B, Π(B) = {0, 1}|V|, is then the set of all possible Boolean
configurations of the variables (assuming some arbitrary fixed variable ordering).

For (A, B) ∈ R, we say that A is a regulator of B. For a state s ∈ Π(B) and
a variable A ∈ V, we write s(A) to denote the value of A in s. We use s[A �→ k]
for some k ∈ {0, 1} to denote a copy of the state s with the value of variable A
set to k. Finally, for a state s and an update function FA, we abuse the notation
and write FA(s) to denote FA applied to s restricted to the context of A.

In Boolean networks, one also often describes various properties of the net-
work regulations. Here, we focus on three most basic types of regulation:

Observability: We say that (A, B) ∈ R is observable if there exists a configuration
where changing the value of A also changes the value of FB, formally:

∃s ∈ Π(B) : FB(s[A �→ 0]) �= FB(s[A �→ 1])

Activation and Inhibition: We say that a regulation (A, B) ∈ R is activating if by
increasing A, one cannot decrease the value of FB. Symmetrically, the regulation
is inhibiting if by increasing A, one cannot increase the value of FB:

Activation: ∀s ∈ Π(B) : FB(s[A �→ 0]) ⇒ FB(s[A �→ 1])
Inhibition: ∀s ∈ Π(B) : FB(s[A �→ 0]) ⇐ FB(s[A �→ 1])

A regulation which is not observable has no effect in the network. On the other
hand, activation and inhibition in biological models can be viewed as a positive
or negative feedback, where presence of one biochemical substance enables or
disables production of another substance.

The semantics of a Boolean network can be described using a directed graph,
where the vertices of the graph are the states of the network and edges represent
the evolution of the network state. We consider the state of the Boolean network
to evolve in an asynchronous manner, i.e. each variable is updated independently:
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Definition 2. Let B = (V, R,F) be a BN. The asynchronous semantics of B
is a directed graph Async(B) = (Π(B), E), where E ⊆ Π(B) × Π(B) such that
(u, v) ∈ E if and only if u �= v and there exists a variable A ∈ V for which
v = u[A �→ FA(u)].

For two states s and t of a BN B, we write s → t if (s, t) ∈ E of Async(B)
and s →∗ t if (s, t) ∈ E∗, where E∗ is the reflexive and transitive closure of E.

The long-term behaviour that we are interested in is captured by the notion of
attractors. As explained in the introduction, in discrete-state systems represented
by graphs, attractors are understood as terminal strongly connected components
of the graph. In the following, we use the two terms interchangeably.

Definition 3. Let B = (V, R,F) be a BN. We define an attractor of B to be
a terminal strongly connected component (TSCC) of Async(B) = (Π(B), E),
i.e. a maximal subset A ⊆ Π(B) such that for all s, t ∈ A, s →∗ t, and for all
s ∈ A and t ∈ Π(B), s → t implies t ∈ A.

Parametrised Boolean Networks. For complex networks, fully determining
the update function family F from data or literature can be very challenging.
To deal with this uncertainty, we extend the Boolean network with a set of
logical parameters which determine the exact behaviour of each update function.
The parametrised logical update functions then either return a Boolean value or
a logical parameter representing the uncertainty of the behaviour. Formally, we
define the parametrised Boolean network as follows:

Definition 4. We define a parametrised Boolean network (PBN) to be a tuple
̂B = (V,P, R, P,F). Here, V and R are the same as in Definition 1. Additionally:

– P = {P, Q, . . .} is a finite set of Boolean logical parameters;
– P ⊆ {0, 1}P is a subset of valid parametrisations;
– F = { ̂FA | A ∈ V} is a family of parametrised logical update functions. The

signature of each ̂FA is given as ̂FA : {0, 1}|C(A)| → ({0, 1} ∪ P).

Similar to states, for a parametrisation p ∈ P , we write p(P) to denote the
value of P in p and we also use the same notation p[P �→ k] for substitution. The
notion of state space of a PBN is identical to that of a BN. By fixing a concrete
p ∈ P , we get a family of (non-parametrised) logical update functions Fp = {FA |
A ∈ V} such that FA(s) = ̂FA(s) if ̂FA(s) ∈ {0, 1} and FA(s) = p( ̂FA(s)) otherwise.
We thus obtain a standard BN ̂Bp = (V, R,Fp). We can then generalize the
definition of attractors to PBNs, saying that a subset A ⊆ Π( ̂B) is an attractor
in parametrisation p ∈ P if A is an attractor of ̂Bp. For different parametrisations,
the attractors do not have to overlap, thus it is important to always specify the
exact parametrisations for which A represents an attractor. The asynchronous
semantics of a PBN can be described using an edge-coloured graph:
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M2C M2N

P53 DNA

?
M2C DNA P53 F̂M2N FM2N

0 0 0 P1 0 0 1 1 1 1 1 1 1
0 0 1 P2 0 0 0 0 0 0 0 1 1
0 1 0 P3 0 0 0 0 0 0 1 0 1
0 1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 1 1 1 1 1 1 1 1
1 0 1 P4 0 1 0 1 1 1 1 1 1
1 1 0 P5 0 1 1 0 1 1 1 1 1
1 1 1 P6 0 0 0 0 0 1 0 0 1

DNA P53 F̂DNA FDNA

0 0 P7 0 1 1
0 1 0 0 0 0
1 0 1 1 1 1
1 1 P8 0 0 1

P53 FM2C

0 0
1 1

M2N FP53

0 1
1 0

)c()b()a(

Fig. 1. (a) A simplified PBN describing the DNA damage mechanism adapted from [1].
Every regulation is either activating (green) or inhibiting (red) and observable, except
for (DNA, DNA), which is not necessarily observable. (b) Valid update functions FM2N

satisfying the static constraints. (c) Valid update functions FDNA, FM2C and FP53 satisfying
the static constraints. (Color figure online)

Definition 5. Let ̂B = (V,P, R, P,F) be a PBN. The asynchronous semantics
of ̂B is an edge-coloured directed graph Async( ̂B) = (Π( ̂B), E, P ) where P is a
set of edge colours and E ⊆ Π( ̂B)×P ×Π( ̂B) is a set of coloured edges such that
(u, p, v) ∈ E if and only if u → v in Async( ̂Bp).

Obviously, by fixing p ∈ P in Async( ̂B), one can obtain the directed graph
Async( ̂Bp). Given a fixed Async( ̂B) = (Π( ̂B), E, P ), we also write C(u, v) =
{p ∈ P | (u, p, v) ∈ E} to denote the set of colours which enable the edge u → v.
In the following we assume that the set C(u, v) is represented symbolically while
the state space is considered explictly. For that reason, we speak about a semi-
symbolic graph.

Static Parameter Constraints. In general, the set of possible parametrisa-
tions can be even doubly-exponential in the size of the network [36]. It is thus
critical to restrict the parameter space as much as possible. Furthermore, a fully
parametrised network can be prone to overfitting. To that end, it is useful to
supplement regulations with static constraints limiting their outcomes [19,33].

We already presented observability, activation and inhibition as specific prop-
erties of regulations. In a parametrised setting, these properties can be used as
constraints to restrict the parametrisation space. We assume that every regula-
tion in a PBN can be marked with a subset of these three constraints. Then for all
p ∈ P of ̂B, ̂Bp must adhere to these constraints, e.g. a regulation marked observ-
able in ̂B must be observable in ̂Bp and the same for activation and inhibition.

In Fig. 1a, we show such parametrised Boolean network where all regulations
are marked as either activating or inhibiting. Figures 1b and 1c then show the
possible update functions satisfying these static constraints together with the
corresponding logical parameters. Note that the fully parametrised model would
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have 16 parameters and 65536 parametrisations, but by applying the static con-
straints, only 27 parametrisations remain valid, significantly reducing the size of
the associated coloured graph.

3 Attractor Bifurcation Using Component Analysis
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Fig. 2. The asynchronous semantics of
the PBN given in Fig. 1a, restricted to
P = {�,�,♠,♣}. Here, � = {P2,3,6 :
0, P1,4,5,7,8 : 1}, � = �[P3 �→ 1], ♠ =
�[P6 �→ 1], and ♣ = ♠[P8 �→ 0]. The unla-
belled edges are enabled for all parametri-
sations. The highlighted vertices repre-
sent attractors for indicated parametrisa-
tions. (Color figure online)

While PBNs allows us to capture the
uncertainty of interactions between indi-
vidual components of the network, the
long-term behaviour of a PBN can vary
drastically depending on parametri-
sation. Consider the coloured graph
in Fig. 2, depicting the asynchronous
semantics and attractors of four specific
parametrisations of the PBN in Fig. 1a.
All parametrisations are very similar,
yet the long-term behaviour of the net-
work is clearly very different in each
case. This brings up a natural question:
Which parameter values influence the
long-term behaviour of the network and
in what way?

3.1 Attractor Bifurcation

In continuous systems, one typically
refers to this type of change in long-term
behaviour due to parameter variation as

bifurcation, we thus utilise this term as well. In accordance with the continuous
case, we also consider three primary types of long-term behaviour:
Stability (�): An attractor A of B is considered stable if |A| = 1, i.e. the attractor
consists of a single state in which the network stays forever. Observe that for
parametrisation �, we have one stable attractor (1110) whereas for �, there are
two stable attractors (0101 and 1110).

Oscillation (�): An attractor A of B is considered oscillating if it is not stable
and if A can be partitioned into pairwise disjoint sets A1, . . . Ak such that for all
s ∈ Ai, if s → t, then t ∈ A(i+1) mod k. The simplest example of an oscillating
attractor is a cycle, where |Ai| = 1 for each Ai. A cycle is also present in our
example under parametrisation ♠, consisting of states 0101 → 0100 → 1100 →
1110 → 1111 → 0111.

Disorder (�): Finally, attractor A is considered disordered if it is not stable
nor oscillating. This means that due to non-determinism, the network will stay
in A forever, but behave unpredictably. In our example graph, such attractor is
visible for parametrisation ♣.
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Fig. 3. Overview of the proposed method for computing the bifurcation function and
the construction of the bifurcation decision tree of a PBN.

The long-term behaviour of a BN is then characterised by a multi-set over the
universe of the three behaviours {�,�,�}. We call such multi-set a behavioural
class c and we denote the set of all behavioural classes C. We say that c is a
behavioural class of G, where G is a directed graph, if the multiplicity and types
of attractors in G match c. The problem of attractor bifurcation for PBN is then
defined as follows:

Definition 6. The problem of attractor bifurcation for a PBN ̂B =
(V,P, R, P,F) is to compute a bifurcation function A : P → C which assigns
to each parametrisation P the behavioural class of Async( ̂Bp).

3.2 Computing Bifurcation Function

Our approach is illustrated in Fig. 3. In this section, we address the construction
of the bifurcation function. First, we take a PBN ̂B and compute a BDD-based
semi-symbolic graph of its asynchronous semantics Async( ̂B). This allows us to
utilise efficient parallel algorithms while maintaining the advantages of the sym-
bolic representation. We then use a parallel TSCC detection algorithm based
on [5], extracting the attractors of Async( ̂B) on-the-fly. Each attractor is classi-
fied as stable, oscillating, or disordered and this information is used to incremen-
tally build the bifurcation function A. The problem of visualising the bifurcation
function using machine learning is then addressed in the next section.

BDD-Based Parameter Representation. While the static parameter con-
straints typically provide a significant reduction of parameter space, real-world
parametrised networks are still too large to represent explicitly. We thus rely on
symbolic representation of parametrisation sets to handle large models. As the
symbolic data structure, we use reduced ordered binary decision diagrams [7].
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Given a ̂B = (V,P, P,R,F), the logical parameters P ∈ P serve as the Boolean
variables in the BDD representation. Each BDD represents a unique Boolean for-
mula over P which we also view as a set of parametrisations satisfying this for-
mula. We assume that P is also given as a BDD. We can then implement standard
operations over parametrisation sets: B1∩B2 becomes B1∧B2, B1∪B2 becomes
B1 ∨B2, B1 \B2 becomes B1 ∧¬B2, and emptiness checking becomes satisfiabil-
ity checking. From now on, we will thus use the terms BDD and parametrisation
set interchangeably.

Algorithm 1. Attractor detection and
classification procedures

Function tscc(̂V )

if ̂V is empty then return;
̂P ← pivots(̂V );
̂F ← fwd(̂V , ̂P );
̂B ← bwd( ̂F , ̂P );
T ← P ( ̂B) \ P ( ̂F \ ̂B);
parallel: classify( ̂B|T );
parallel: tscc( ̂F \ ̂B);
parallel: tscc(̂V \ bwd(̂V , ̂F ));

Function classify( ̂A)
̂A1 ← pivots( ̂A); D ← ∅;
k ← 1; ̂E ← post( ̂A1);
while ̂E is not empty do

∀i ≤ k : Ii ← P ( ̂Ai ∩ ̂E);
D ← D ∪ {p | ∃i, j : p ∈ Ii ∩ Ij};
Ik+1 ← P ( ̂E) \ ∪i≤kIi;
if Ik+1 �= ∅ then k ← k + 1;
̂E ← ̂E|(P\D) \ ∪i≤k

̂Ai;
̂Ai ← ̂Ai ∪ ̂E|Ii ;
̂E ← post( ̂E);

end
discovered(�,D);
discovered(�, P ( ̂A) \ D);

Additionally, we define a pa-
rametrised set of states to be
a mapping ̂S : Π( ̂B) → 2P ,
i.e. each state is assigned a set of
parametrisations (a BDD). By fix-
ing p ∈ P we obtain a standard
set of states ̂Sp = {s ∈ Π( ̂B) | p ∈
̂S(s)}. All standard set operations
are applied element-wise. We use
P (̂S) to denote all parametrisa-
tions for which ̂S contains some
states, i.e. P (̂S) = {p ∈ P | ∃s ∈
Π( ̂B) : p ∈ ̂S(s)}, and ̂S|B to
denote ̂S restricted to parametri-
sations B, i.e. ̂S|B(s) = ̂S(s) ∩ B.
We say that ̂S is empty when P (̂S)
is empty.

Finally, we define an operation
pivots which given ̂S computes
some set ̂S′ such that ̂S′ ⊆ ̂S
and for every p ∈ P (̂S), there is
exactly one s for which p ∈ ̂S′(s).
Intuitively, pivots selects some
representant from ̂S for every
parametrisation in P (̂S).

Semi-symbolic Graph. To rep-
resent Async( ̂B), we need to com-
pute BDD C(u, v) for each poten-
tial u → v. There is exactly one
state variable A ∈ V such that
v = u[A �→ FA(u)]. We thus need

to inspect the value of ̂FA – if this value is a 0 or 1, the edge u → v does not
depend on parameters and C(u, v) is therefore ∅ or P . If FA(u) is the value of
parameter P, we set C(u, v) to be P ∧ (P = v(A)). Note that due to the structure
of Async( ̂B), for each u ∈ Π( ̂B), there are at most |V| states v such that u → v.
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Using this type of representation, we can define the parametrised next step
pre and post operators as well as the conditional reachability operators fwd
and bwd. Formally, pre(̂S)(s) = {p ∈ P | ∃t ∈ Π( ̂B) : p ∈ ̂S(t) ∩ C(s, t)} and
post(̂S)(s) = {p ∈ P | ∃t ∈ Π( ̂B) : p ∈ ̂S(t) ∩ C(t, s)} while the reachability
operators are the least fixed-points of fwd( ̂C, ̂S) = ̂S ∪ ( ̂C ∩ post(fwd( ̂C, ̂D)))
and bwd( ̂C, ̂S) = ̂S ∪ ( ̂C ∩ pre(bwd( ̂C, ̂D))).

Note that we assumed P already satisfies the imposed static constraints.
If this cannot be guaranteed, we can also construct the parametrisation sets
satisfying individual static constraints in the form of BDDs and intersect them
with P before the computation to ensure the set is valid.

Attractor Classification. This type of semi-symbolic representation can be
then used by the function tscc in Algorithm 1 to obtain the parametrised sets ̂A
representing the attractors of our system. Specifically, the algorithm guarantees
that ̂Ap is either empty, or a valid attractor of Async( ̂Bp). The algorithm is
initialized with ̂V (s) = P for all s ∈ Π( ̂B) and repeatedly removes strongly con-
nected components with their backwards-reachable basins until the whole graph
is processed while checking whether the discovered components are terminal.
A more detailed description and correctness reasoning can be found in [5].

Since the exact subset of behavioural classes ̂B exhibits is initially unknown,
we construct the bifurcation function A incrementally. Initially, all parameters
are assigned an empty class. Once a parametrised attractor ̂A is found, we par-
tition P ( ̂A) as either �, � or � using the classify function and update A
accordingly, using discovered. Given a class c and parametrisation set B, dis-
covered ensures that ∀p ∈ B : A(p) ← A(p) + c. In practice, the number of
actual behavioural classes is typically very small, we can thus represent A as
a collection of BDDs, each BDD specifying the parametrisation set of one class.

Finally, let us observe that detecting stable attractors is trivial – a state
s is stable for all the parametrisations where it has no outgoing edges. In the
classify function, we thus assume that ̂A contains no stable attractors and only
concern ourselves with the distinction between oscillation and disorder.

The classification algorithm picks some initial state for every parametrisation
using the pivots function and then iteratively computes a parametrised parti-
tion ̂A1, . . . , ̂Ak of ̂A. Here, ̂E is a frontier, moving one step further away from
the initial states in every iteration. Observe that if ̂Ap is oscillating, ̂Ep must
always be fully contained in some ̂Ai. To test this, we compute the intersection
sets Ii – if some parametrisation intersects two different ̂Ai, it cannot be oscil-
lating and is added to D. We then remove all disordered parametrisations from
̂E together with the state-parametrisation pairs already partitioned into some
̂Ai. This ensures we do not loop forever. If a parametrisation is not oscillating,
eventually it is wholly removed from ̂E due to a collision between Ii. If it is
oscillating, eventually all states are partitioned into ̂Ai and are removed from ̂E.
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4 Bifurcation Diagrams as Decision Trees

Once we obtain the bifurcation function, we are left with an equally challenging
task: constructing a concise representation that can be subsequently used to
describe the behaviour of the system and present it to the user. For continuous
dynamical systems, this is typically achieved using two or three dimensional plots
of the bifurcation points, which partition the parameter space into regions with
equivalent behaviour – bifurcation diagrams. In our case, the number of possible
behaviours in the system is typically still quite small; however, the dimensionality
of the parameter space prohibits us from using similar techniques.

M2N(1, 0, 1) = M2N(0, 1, 0)

DNA(0, 0) = DNA(1, 1) DNA(0, 0) = DNA(1, 1)

DNA(0, 0) = M2N(0, 0, 0)
= M2N(0, 0, 1)

DNA(0, 0) = M2N(1, 1, 1)
= M2N(0, 0, 0)

M2N(0, 0, 0) = M2N(0, 0, 1)
M2N(1, 1, 0) = M2N(1, 1, 1)

�
disorder

�
oscillation

�
stable

�,�
two-stable

Fig. 4. Bifurcation decision tree of the PBN from Fig. 1a with all four modes of long-
term behaviour. Solid arrows represent positive and dashed arrows negative decisions.
When multiple conditions are present, they are assumed to be joined by a conjunction.
Related update functions are highlighted with the same colour. For simplicity, we write
just A instead of FA. (Color figure online)

If we consider our running example, even after applying static constraints,
we are left with 8 logical parameters. Drawing an 8-dimensional plot is infea-
sible. For this small system, we could consider presenting the full table of 27
parametrisations, however, such option is hard to read and completely infeasible
for systems with thousands or millions of parametrisations.

Another option is to utilise the symbolic BDD representation as used dur-
ing computations with the edge-coloured graph. While BDDs can often provide
exponentially succinct representations of the underlying sets and can be effi-
ciently manipulated, the size and readability of the BDD depends greatly on the
corresponding attribute ordering. Determining the optimal (or close to optimal)
ordering is in general a very hard problem [14,30]. Moreover, BDDs are lim-
ited to decisions solely based on the attribute valuation, not their relationships.
These shortcomings are offset by the efficiency of the algorithmic BDD manipu-
lation. However, efficient manipulation is not a priority in this situation, as we
do not plan to compute logical combinations of our bifurcation diagrams. We are
primarily concerned with user interpretation and understanding and therefore
require a more human-friendly formalism.
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4.1 Bifurcation Decision Trees

For this formalism, we propose decision trees as commonly used in machine learn-
ing [32]. Originally used to represent classifiers and decision strategies, a deci-
sion tree is a flowchart-like structure, where each node represents a test on some
attribute(s) and each leaf represents one class or end-result. Furthermore, each
leaf can have an assigned confidence level representing the precision of the result.
In this context, we refer to these data structures as bifurcation decision trees.
Compared to BDDs, decision trees have many advantages in terms of readabil-
ity and succinctness:

– They are not bound by a fixed attribute ordering, meaning that in each
branch, the most useful attribute can be chosen to test on.

– The test in each node can be essentially any logical formula of the attributes.
This opens door for various reduction strategies (node chain merging) and
combinations of attributes (equalities, logical combinations).

– There are efficient algorithms for learning decision trees from data based on
information entropy.

– The learning algorithms can be configured to produce an exact decision tree
for the whole dataset – in machine learning, this typically results in overfitting,
but for us it is crucial to represent all of the edge cases reasonably.

– If needed, we can also use the precision mechanism to prune the corner cases
of the tree and still give an exact result in the remaining branches. This
produces an incomplete, but typically also much smaller bifurcation decision
tree where the error is clearly bounded and can be further refined.

However, there are aspects in which decision trees are not ideal: The tree
learning algorithms are not guaranteed to produce a minimal decision tree
overall – the tree is only minimal with respect to the information gain in each
decision. Furthermore, it is not always clear which attributes will be useful when
learning the decision tree. Finally, the learning algorithms have to repeatedly
explore the whole dataset which can be time consuming. Later in this section,
we show how to learn decision trees directly from symbolic datasets, thus avoid-
ing the need to repeatedly explore the whole dataset.

In Fig. 4, we present a bifurcation decision tree for our example BN from
Fig. 1a, distinguishing between stable (�), two-stable (�,�), oscillating (�)
and disordered (�) behaviour. For example, the right-most branch encodes the
parameter settings leading to the bistable behaviour of the regulatory network.
The tree has only 6 decision nodes – a significant reduction compared to BDDs
for individual behavioural classes in A, which on average have more than 30
decision nodes each for this model.

4.2 Learning Bifurcation Decision Trees

The main drawback of decision tree learning algorithms is the dimensional blow-
up when increasing the number of dataset attributes. It is not possible for us
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to use the existing algorithms due to the sheer size of our parameter spaces.
We already possess a compact, machine friendly representation of our dataset:
BDDs. Specifically, for every relevant behavioural class c ∈ C, we posses a BDD
Bc which describes all parametrisations p for which A(p) = c. Our goal is to
learn the decision tree from this symbolic representation instead of an explicit
dataset.

To this end, we adapt the well known ID3 algorithm [29]. For a given dataset,
the algorithm considers a set of decision attributes and selects the one with the
highest information gain. Here, the information gain is computed as difference
in information entropy before and after conditioning on the decision attribute.

Given our symbolic dataset specified as a sequence of BDDs, function
Entropy in Algorithm 2 computes the overall information entropy of the
dataset. Note that we use |B| to denote the cardinality of the corresponding set
of parametrisations – this can be easily computed by traversing the correspond-
ing BDD. The learning algorithm LearnTree then considers a set of decision
attributes A such that every attribute is also a Boolean formula over P repre-
sented by a BDD A. This means the attributes can be the individual parameters
of the PBN as well as more complex properties, such as static regulation con-
straints (observability, activation or inhibition of specific regulations) or combi-
nations of parameters (equality or inequality between individual parameter pairs,
etc.). By intersecting Bci with A and A (the complement of A), we condition the
dataset on the attribute A (empty BDDs are automatically removed). Based on
these values, we compute the information gain GA for each attribute and select
the split attribute S with the highest information gain. Finally, a decision tree
node is created and the remaining datasets are processed recursively.

Algorithm 2. Symbolic ID3 algorithm
Function LearnTree(Bc1 , . . . , Bck)

if k = 1 then return Leaf(c1);
E ← Entropy(Bc1 , . . . , Bck);

∀A ∈ A : GA ← E − ( 1
2
Entropy(∀i : Bci ∩ A) + 1

2
Entropy(∀i : Bci ∩ A));

S ← A ∈ A with maximal GA;

return Decision(S,LearnTree(∀i : Bci ∩ S),LearnTree(∀i : Bci ∩ S));

Function Entropy(B1, . . . , Bk)
Ball = ∪i≤kBi;

return
∑k

i=1 − Bi
Ball

log2(
Bi

Ball
);

A leaf node is only created once a single behavioural class remains, meaning
the tree has to correctly classify all parametrisations. We could also specify
a desired precision and create a leaf node whenever the proportion of one class
in the whole dataset is higher than this threshold. For example, if we specify
precision 95%, a leaf node is created if 95% of parametrisations belong to one
class. While this produces an inexact tree, it can also significantly reduce its size
while preserving reasonable amount of information with a clearly bounded error.
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Finally, we observe that the information gain property strongly prioritises
fully classified datasets. As a result, the algorithm often produces chains of deci-
sion nodes leading to leaf nodes with the same class. We can greedily merge
such a chain into a single decision node containing a conjunction of the chain
conditions.

5 Case Study

We applied our workflow to several non-trivial real-world PBNs to assess its
practicality. The models are taken from the GINsim model repository [8]. The
workflow runs on a Java Virtual Machine (JVM) with the help of the algorithms
from the Pithya model analysis tool [6]. The experiments were performed on a 32-
core workstation with 32GB of memory. As tree attributes, we use individual
parameters and their pair-wise equalities. The results are summarised in Fig. 5.

Model |V| |R| |P | |Π(B)| · |P |
(graph size)

|X| ∑
#Bc #D #D95%

G2A 5 15 4.67e5 > 223 11 11054 3047 2534
Budding Yeast 9 19 2.07e5 > 226 6 3790 333 146
Fission Yeast 10 27 4.21e6 > 232 10 4265 135 87
Cell Cycle 10 38 1.21e10 > 243 29 49454 2396 275
Drosophila 14 42 5.52e10 > 249 18 38661 4653 2418

Fig. 5. The results of the experimental evaluation of our workflow. For each model,
the table specifies the number of variables and regulations, the number of parametri-
sations valid under the static constraints, the overall size of the edge-coloured graph,
the number of distinct behavioural classes (|X|), the total size of the BDDs for each
class (in the number of decision nodes), the size of the exact bifurcation decision tree
and finally the size of the bifurcation decision tree with confidence 95%.

The runtime of the experiments ranges between several seconds for the small
instances to several hours for the largest models. Note that the decision tree
learning algorithm required a significant portion of the runtime in each case.
This further supports the necessity for learning bifurcation decision trees directly
from symbolic instead of explicit datasets. If we were to use existing explicit
techniques, the sizes of the data tables which we would have to construct would
be hundreds to thousands of gigabytes for the largest models. While such dataset
is not impossible to process, it would be certainly prohibitive for our machine.

As expected, even for systems with high amount of parametrisations, the num-
ber of behavioural classes is quite small. Additionally, in all instances, an exact
bifurcation decision tree provides a much more compact representation of the
attractors (5–30× smaller). Finally, in some instances (Cell Cycle), an approxi-
mate bifurcation decision tree with a reasonable precision (95%) can significantly
reduce the size of the representation, specifically from 20× to almost 180×.
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6 Conclusions

We have introduced a concise framework for fully-automatised attractor bifurca-
tion analysis of PBNs, including a unique method based on formal methods and
machine learning that allows us to compute bifurcation function and present the
complex analysis results by means of human-readable bifurcation decision trees.
The case study has shown that bifurcation decision trees are quite compact for
large parametrisation sets. Their size can be reduced even more by employing
approximation within a given confidence.

We would like to stress that our method is applicable to any discrete para-
meter-dependent system that has the form of a coloured graph. In particular, the
approach can be applied to multi-valued regulatory networks. For future work we
would like to improve scalability of our workflow by combining the enumerative
approach with static analysis methods we have investigated in [23]. The results
presented in this paper have been motivated by our long-time cooperation with
biological research groups of CyanoTeam and National Infrastructure of Systems
Biology (C4SYS). The method appears to be a promising tool that will help
biologists to get understanding and to design control scenarios for important
phenomena such as development of cell fates, circadian rhythms, or cell cycle.
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R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 591–598. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63387-9 29

7. Bryant, R.E.: Graph-based algorithms for boolean function manipulation.
Carnegie-Mellon Univ Pittsburgh PA, School of Computer Science, Technical
report (2001)

8. Chaouiya, C., Naldi, A., Thieffry, D.: Logical modelling of gene regulatory networks
with GINsim. Bacterial Molecular Networks, pp. 463–479. Springer, New York
(2012). https://doi.org/10.1007/978-1-61779-361-5 23

https://doi.org/10.1007/978-3-662-47221-7_16
https://doi.org/10.1007/978-3-662-47221-7_16
https://doi.org/10.1007/978-3-319-67471-1_3
https://doi.org/10.1007/978-3-319-63387-9_29
https://doi.org/10.1007/978-1-61779-361-5_23


368 N. Beneš et al.
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Abstract. In explicit state model checking of concurrent systems, multi-
core emptiness checks and partial order reductions (POR) are two major
techniques to handle large state spaces. The first one tries to take advan-
tage of multi-core architectures while the second one may decrease expo-
nentially the size of the state space to explore.

For checking LTL properties, Bloemen and van de Pol [2] shown that
the best performance is currently obtained using their multi-core SCC-
based emptiness check. However, combining the latest SCC-based algo-
rithm with POR is not trivial since a condition on cycles, the proviso, must
be enforced on an algorithm which processes collaboratively cycles. In this
paper, we suggest a pessimistic approach to tackle this problem for liveness
properties. For safety ones, we propose an algorithm which takes benefit
from the information computed by the SCC-based algorithm.

We also present new parallel provisos for both safety and liveness
properties that relies on other multi-core emptiness checks. We observe
that all presented algorithms maintain good reductions and scalability.

1 Introduction and Related Work

The automata-theoretic approach to explicit Linear-time Temporal Logic (LTL)
model checking explores finite Labeled Transition Systems (LTS). Unfortunately,
LTS are often too large to be fully explored in reasonable time and applying
sequential algorithms becomes impractical. To tackle this well-known state explo-
sion problem, various techniques have been suggested. In this paper we focus on
the combination of two of them: Partial Order Reduction (POR) and multi-core
emptiness checks.

POR exploits the interleaving semantics of concurrent systems by only con-
sidering representative executions [15,22,27] rather than all possible permuta-
tions of the execution of n independent actions (i.e. n! possible interleavings).
The selection of the representative executions is performed on-the-fly while
exploring the LTS: for each state, the exploration algorithm only considers a
nonempty (reduced) subset of all enabled actions, such that all omitted actions
are “independent” from those in the reduced set. The execution of omitted
actions is then postponed to a future state. The reduced LTS is sufficient to
c© Springer Nature Switzerland AG 2019
Y. Ait-Ameur and S. Qin (Eds.): ICFEM 2019, LNCS 11852, pp. 370–386, 2019.
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check reachability problems (e.g. existence of a global deadlock). However, for
LTL model checking,1 only stuttering-invariant formula (e.g. not using the Next
operator) can be verified. In addition to this restriction on formulas that can
be checked, a complementary condition, called a proviso, must be enforced. If
the same actions are consistently ignored along a cycle, the reduction may miss
some undesirable behavior. When checking liveness properties, a sufficient con-
dition is to force every cycle of the reduced LTS to contain at least one fully
expanded state i.e. a state for which all actions are considered. When checking
safety properties, forcing every (non-deadlock) state to have at least one fully
expanded successor (direct or indirect) is sufficient.

An emptiness check for LTL model checking is an algorithm looking for a
counterexample in the state space of the system. A counterexample is simply a
lasso-shaped execution, i.e. a particular cycle reachable from the initial state.

The best multi-core emptiness checks are based on a Depth-First Search (DFS)
exploration [2] and can be classified into two categories: those based on a Nested
Depth First Search (NDFS) [10], and those based on an enumeration of Strongly
Connected Components (SCC) [2,24]. While the algorithm of Renault et al. [24]
performs a state-based DFS exploration, one can note that the one suggested by
Bloemen and van de Pol [2] performs a DFS over SCCs rather than states which
makes the detection of individual cycles more difficult. All these concurrent algo-
rithms are based on the swarming technique [13]: multiple threads, with their own
exploration order, are spawned from the initial state. Additionaly, in best con-
current emptiness checks [2,10,24], each thread shares information to prune the
exploration of the others. Bloemen and van de Pol [2] have shown recently that
their SCC-based algorithm provide actually the best results. This algorithm uses
a (lock-free) concurrent union-find data structure that centralizes all the shared
information. This structure is adapted with a work stealing mechanism.

In a sequential setting, provisos for emptiness checks have been well studied
these last years [7,9,11,18,28]. The in-stack proviso introduced by Peled [22] and
implemented in Spin has been improved by Evangelista and Pajault [9] with sev-
eral mechanisms to reduce the number of expansions during a DFS exploration.
Some of these mechanisms have then been deconstructed by Duret-Lutz et al. [7]
to build new provisos (for liveness properties) that outperform the previous ones.
These authors also proposed original provisos that can exploit the SCC informa-
tion when the underlying emptiness check computes it. Other provisos have also
been suggested (but not evaluated) in the more complex context of process alge-
bra to consider τ -transitions [11,28]. Some works also focus on non-DFS based
emptiness checks [4,5] thus defining new ways to detect potential ignoring cycles
based on quadratic algorithms.

In a multi-core setting, POR has been less studied. Barnat et al. [1] suggested
an approach based on a topological sort which sounds hard to combine efficiently
with state-of-the-art parallel emptiness checks (see Laarman and Faragó [14]).
Lerda and Sisto [17] proposed an adaptation of the in-stack proviso without
knowing the entire DFS stack. More recently, Laarman and Wijs [16] worked

1 See Peled [22] for a survey of POR reductions with LTL.
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Fig. 1. Contributions of this paper are detailed in green. Red plain boxes correspond to
sequential emptiness checks and blue plain boxes represent parallel emptiness checks.
Dashed boxes are provisos. A proviso box is covered by a emptiness check box if the
two are compatible. An edge links one box to another if the second one reuses ideas
from the first one. Bullets tagged l represent liveness provisos and s the safety ones.
(Color figure online)

on the adaption of the in-stack proviso with the best multi-core NDFS-based
emptiness check [10] and achieved good reductions and good scalability.

Even if it has been shown that the best current performance is obtained
using multi-core SCC-based emptiness checks, these algorithms have not yet be
combined with POR due to several problems. For liveness properties, multi-core
SCC-based emptiness checks compute SCCs rather than particular cycles while
the proviso relies on detecting cycles. For safety properties, the expansion of a
single state in each SCC without successor is enough but has never been realized
in a multi-threaded context.

Figure 1 summarizes the contributions of this paper (in green). First, we aim
at experimentally demonstrating that the improvements suggested in dkpr16
in a sequential setting can be shifted to multi-core one. dfs-pr19-live and dfs-
pr19-safe correspond to this adaptation. We can notice that both are compat-
ible with the emptiness checks elpp12 and rdkp16. After recalling necessary
definitions in Sect. 2, we introduce in Sect. 3 these two new provisos and suggest
a new one for safety properties scc-pr19-safe. This last proviso exploits the
underlying SCC computation of rdkp16. Section 4 introduces two last provisos
ws-pr19-live and ws-pr19-safe. These algorithms are the first provisos com-
patible with the bp16 emptiness check. Section 5 evaluates the performances of
our provisos and shows that all of them achieve a reduction comparable to the
state-of-the-art while maintaining a good scalability.

2 Preliminaries

A Labeled Transition System (LTS) is a tuple L = 〈V, v0, Act, δ〉 where V is a
finite set of states, v0 ∈ V is a designated initial state, Act is a set of actions and
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(a) (b) (c) (d)

Fig. 2. Black nodes and plain edges represent the DFS stack, dashed edges represent
(not yet visited) back edges, and starred states corresponds to already expanded states.
In (a) and (b) conditional provisos do not require an expansion. In (c) and (d), the
source or the dest of the back edge should be preventively expanded. The liveness
proviso of Evangelista and Pajault [9] will avoid the expansion in (d) since it is useless.

δ ⊆ V × Act × V is a (deterministic) transition relation where each transition is
labeled by an action. If (s, α, d) ∈ δ, we say that d is a successor of s. We denote
by post(v) the set of all successors of v ∈ V .

A path between two states v, v′ ∈ V is a finite and non-empty sequence
of adjacent transitions ρ = (v1, α1, v2)(v2, α2, v3) . . . (vn, αn, vn+1) ∈ δ+ with
v1 = v and vn+1 = v′. When v = v′ the path is a cycle. Moreover, when all the
states v1, . . . vn are distinct states, then the cycle is said elementary.

A non-empty set C ⊆ V is a Strongly Connected Component (SCC) iff any
two different states v, v′ ∈ C are connected by a path, and C is maximal w.r.t.
inclusion. If C is not maximal we call it a partial SCC.

For the purpose of partial-order reductions, an LTS is equipped with a func-
tion reduced : V → 2V that returns a subset of successors reachable via a
reduced set of actions. For any state v ∈ V , we have reduced(v) ⊆ post(v) and
reduced(v) = ∅ =⇒ post(v) = ∅. The reduced function must satisfy other
conditions depending on whether we use ample set, stubborn set or persistent
set [see [15], for a survey]. The algorithms we present do not depend on the
actual technique used to compute reduced .

The function reduced preserves only two properties on the corresponding
reduced LTS: the presence of deadlocks, i.e. states without successors, and the
presence of an infinite sequence, i.e. a cycle. When checking more complex prop-
erties, i.e. LTL formulae (safety or liveness), some additional conditions must be
enforced. The reduced function must be restricted to reflect the variations of the
Boolean values of the atomic propositions (appearing in the property). These
extra conditions can easily be integrated in the computation of reduced .

However, the previous conditions do not prevent from continuously ignoring
the same actions (in a cycle of the reduced LTS). This is the so-called ignoring
problem. This problem can be solved using different provisos depending on the
nature of the property, i.e. safety or liveness. These provisos rely on the presence
of a (fully) expanded states in some cycles. A (fully) expanded state v is simply
a state for which all the successors post(v) are considered in the reduced LTS
even if reduced(v) is strictly included in post(v).
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3 Provisos for Emptiness Checks Applying
a State-Based DFS

Liveness Properties. When checking liveness properties with POR and to
ensure that no action will be ignored for ever, emptiness checks must ensure
that every cycle contains at least one expanded state (i.e. a state for which all
actions are considered). Notice that this property is an over-approximation but
ensures that the ignoring problem is tackled correctly. Thus it could lead to
useless expansions while all actions have been seen during a particular cycle but
not containing any fully expanded state.

Algorithm 1. State-based DFS equipped (highlighted in yellow) for checking

liveness properties with POR

1 ∀v ∈ V : v.status ← unknown
2 visited ← ∅
3 ∀p ∈ [1 . . . n] : dfsp ← ∅
4 dfs-pr19-live1(v0)|| . . . || dfs-pr19-liven(v0)

5 Procedure dfs-pr19-livep(v ∈ V )
6 dfsp ← dfsp ∪ {v}
7 next ← reduced(v)

8 if next = post(v) then cas(v.status, unknown, expanded)

9 for v′ ∈ mixp(next) do
10 if v′ 	∈ dfsp ∪ visited then dfs-pr19-livep(v

′)
11 else if v′ ∈ dfsp ∧ v.status = unknown ∧ v′.status = unknown then

12 cas(v′.status, unknown, expanded)

13 cas(v.status, unknown, not expanded)

14 if v.status = expanded then

15 next ← post(v) \ reduced(v)

16 for v′ ∈ mixp(next) do

17 if v′ 	∈ dfsp ∪ visited then dfs-pr19-livep(v
′)

18 visited ← visited ∪ {v}
19 dfsp ← dfsp \ {v}

Before diving into a multi-core setting, let us recall how this proviso property
can be enforced for sequential DFS algorithms. Duret-Lutz et al. [7] suggested
simple sequential provisos that are competitive with the state-of-the-art. During
the DFS exploration of state v, the algorithm detects back edges, i.e. transitions
(v, , v′) where v′ is already in the DFS stack. When detecting such transitions,
a cycle has been detected. Then, the algorithm (1) checks if v or v′ is already
expanded and if not (2) chooses to expand the source v, (exclusive) or the desti-
nation v′. In both cases, the expansion of v or v′ ensures that the cycle closed by
(v, , v′) contains at least one expanded state. Since all back edges discovered by
the DFS cover all the elementary cycles, the property is respected. Figure 2 (a
and b) describes cases where no expansion is required, while (c) describes a situ-
ation where an expansion is required (source or destination) and (d) a situation
where a useless expansion is performed.

The aforementioned algorithms can be combined with a parallel swarmed
exploration. Algorithm 1 (without highlighted lines) presents a swarmed
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exploration where all threads perform a state-based DFS exploration of the
reduced state space.2

The n threads share a visited set (declared line 2) and each thread p main-
tains its own DFS set dfsp (line 3). The threads are spawned line 4. When a new
state v is visited by a thread p, it is first added in the local set dfsp (line 6) and
then a reduced set of successors is computed (line 7). These selected successors
are explored in a randomized order (line 9). Each time a new state is discovered
line 10, a recursive call is realized. After all the successors (not in dfsp) has been
inserted in visited, v can be itself added into visited and removed from dfsp
(lines 18 and 19).

Highlighted lines implement a new parallel proviso for liveness properties. It is
based on the combination of two ideas: (1) the conditional destination expansion
as suggested by Duret-Lutz et al. [7] since it achieves good results in sequen-
tial settings and, (2) the sharing of the state status (unknown, expanded,
not expanded) as presented by Laarman and Wijs [16].

Initially, all states are tagged unknown (line 1). When an unknown state
yielding no reduction is encountered line 8, its status is fixed to expanded by
a compare-and-swap instruction. When a back-edge is detected between two
unknown states (line 11), the destination is selected for expansion (line 12).
Such an expansion is realized line 14 to 17 by considering the previously ignored
successors. Before this expansion, the status of the state is checked. If this status
is still unknown, no expansion is required for this state and its status can be
fixed to not expanded (line 13).

Safety Properties. When checking safety properties with POR and to ensure
that no action will be ignored at all, emptiness checks must ensure that at least
one expanded state is reachable from any visited state. Here again, this property is
an over-approximation. Thus it could lead to useless expansions while all actions
have been seen during a bottom SCC not containing an expanded state.

As for Algorithm 1, the highlighted lines in Algorithm 2 correspond to a
proviso equipping a state-based DFS. This new proviso implements a conditional
destination expansion mixed with a sharing of the state status. During the DFS
exploration, the proviso of Laarman and Wijs [16] systematically expands states
having all its successors on the DFS stack. Here, we expand one of its destinations
and only if the other destination are not already expanded. This is the first time
that a safety proviso based on the expansion of a destination is proposed.

When visiting a state, the algorithm decides to expand it if its direct successors
(in the reduced set) are all in its local DFS stack. The local variable allin (declared
line 9) tracks if this condition holds. Initially, allin is true and set to false when
the algorithm detects a direct successor not belonging to the DFS stack (lines 12
& 15). Line 14 implements the conditional expansion: allin stays true if all the
direct successors are on the DFS stack but have an unknown status.

When a status has been fixed (different from unknown) for a state v, either
v is itself expanded or an expanded state is reachable from it. In both cases, it
is not necessary to expand its predecessor. Then, lines 17 and 18 are executed

2 All instructions (excepted recursive calls) are considered to be atomic.
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Algorithm 2. State-based DFS equipped (highlighted in yellow) for checking

safety properties with POR

1 ∀v ∈ V : v.status ← unknown
2 visited ← ∅
3 ∀p ∈ [1 . . . n] : dfsp ← ∅
4 dfs-pr19-safe1(v0)|| . . . || dfs-pr19-safen(v0)

5 Procedure dfs-pr19-safep(v ∈ V )
6 dfsp ← dfsp ∪ {v}
7 next ← reduced(v)

8 if next = post(v) then cas(v.status, unknown, expanded)

9 allin ← �
10 for v′ ∈ mixp(next) do
11 if v′ 	∈ dfsp ∪ visited then

12 allin ← ⊥
13 dfs-pr19-safep(v

′)
14 else if v′ 	∈ dfsp ∨ v.status 	= unknown ∨ v′.status 	= unknown then

15 allin ← ⊥
16 if allin then

17 v′ ← randomlyPick(reduced(s))

18 cas(v′.status, unknown, expanded)

19 cas(v.status, unknown, not expanded)

20 if v.status = expanded then

21 next ← post(v) \ reduced(v)

22 for v′ ∈ mixp(next) do

23 if v′ 	∈ dfsp ∪ visited then dfs-pr19-safep(v
′)

24 visited ← visited ∪ {v}
25 dfsp ← dfsp \ {v}

only if an expansion is required: a destination is chosen randomly and marked
as to be expanded (just before the DFS will backtrack this state – line 20).

In the previous algorithm, multiple expansions can occur for a given SCC
(see Fig. 3). The next algorithm avoids expansion in non bottom SCC and try to
limit the expansions only to the entry point of each bottom SCC. In a sequential
settings, this leads to have at most one expansion per bottom SCC. Recently, a
state-based parallel swarmed DFS computing SCC has been proposed [24]. Here,
we adapt this algorithm to implement the aforementioned idea while exploiting
the status sharing as in the previous algorithm.

Fig. 3. Example
where a useless
expansion occurs
in bottom-SCC
for Algorithm 2.
The two starred
nodes will be
expanded.

The unhighlighted lines of Algorithm 3 correspond to the
one of Renault et al. [24]. The shared variable S maps to each
state v, the set of states S(v) belonging to the same (partial)
SCC. The shared set dead contains all states belonging to
fully visited SCCs. Initially, for any state v, the set S(v) = {v}.
Each thread p maintains two local variables, a stack rootsp
which contains the entry point of each traversed (partial) SCC
and a set visitedp holding each state visited by thread p. A
local unique number v.nump (called the live number in the
SCC computation proposed by Tarjan [26]) is associated to
each state v (line 8). Each newly discovered state is considered
as the root of an SCC and then inserted in the stack rootsp
line 9. This stack as well as the mapping S are updated each
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Algorithm 3. State-based DFS equipped (highlighted in yellow) for checking

safety properties with POR - unhighlighted lines correspond to the SCC compu-

tation algorithm as presented in Renault et al. [24]

1 ∀v ∈ V : S(v) ← {v}
2 dead ← expanded ← ∅
3 ∀p ∈ [1 . . . n] : visitedp ← ∅
4 ∀p ∈ [1 . . . n] : rootsp ← ∅
5 scc-pr19-safe1(v0)|| . . . || scc-pr19-safen(v0)

6 Function scc-pr19-safe(v ∈ V ) : Boolean
7 visitedp ← visitedp ∪ {v}
8 v.nump ← |visitedp|
9 rootsp.push(v)

10 next ← reduced(v)

11 isTerm ← reduced(v) 	= post(v) // S(v) is a TSCC without exp. st.

12 if ¬isTerm then

13 expanded ← expanded ∪ {v}
14 for v′ ∈ mixp(next) do
15 if v′ ∈ dead then

16 isTerm ← ⊥
17 else if v′ 	∈ visitedp then
18 t ← scc-pr19-safe(v′)
19 isTerm ← isTerm ∧ t
20 else
21 while v′.nump < rootsp.top().nump do
22 r ← rootsp.pop()

23 S(r) ← S(v′) ← S(r) ∪ S(v′)
24 if isTerm ∧ v ∈ expanded then

25 isTerm ← ⊥
26 next ← post(v) \ reduced(v)

27 goto 14
28 if v = rootsp.top() then

29 if isTerm then

30 expanded ← expanded ∪ {v}
31 isTerm ← ⊥
32 next ← post(v) \ reduced(v)

33 goto 14
34 rootsp.pop()
35 dead ← dead ∪ S(v)
36 return isTerm

time a closing edge, i.e. a transition (v, , v′) such that v′ belongs t a partial
SCC containing a state of the DFS stack, is detected (lines 21 to 23). The local
unique number of states help to determine the effective root of the partial SCC:
the stack is popped until this entry point becomes the top of the stack. The
mapping S is updated to aggregate all the sets associated to popped states (line
23). Notice that the instruction line 23 must be atomic. When discovering the
effective root v of a (complete) SCC (line 28), all states belonging (i.e. S(v))
to it are marked as dead atomically (line 35), thus restricting the visit by the
other threads (line 15). The mapping S (and the set dead) can be efficiently
implemented using a lock-free version of an union-find data structure.

To limit the number of expansions, the algorithm expands only the root of
each bottom SCC not already containing an expanded state. The local variable
isTerm tracks such an SCC (line 11, 16 and 19). When popping the root of a
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bottom SCC (line 28) for which no expanded state has been already discovered,
an expansion is realized (lines 30–33). However, a same bottom SCC may have
different entry points for different threads. To limit the number of expansions,
the algorithm detects some of these situations line 24.

Notice that the two first provisos presented in this section are compatible with
most of the optimizations presented by Evangelista and Pajault [9] as well as
the one suggested by Duret-Lutz et al. [7]. Moreover, these provisos can be inte-
grated in any emptiness checks based on a state-based DFS swarm exploration
for instance CNDFS [10] or Renault et al. [24] algorithm. The latest presented
proviso is only compatible with Renault et al. [24].

4 Provisos for SCC-Based DFS Emptiness Checks

Provisos presented in the previous section are not compatible with the best
currently known parallel emptiness check [2]. Until now, there is no proviso,
neither for safety nor for liveness properties, for this model-checking algorithm.
This algorithm differs from the previous ones since it does not perform a DFS
in terms of states but only in terms of SCCs: in particular, the states of a same
SCC may be visited (and processed) in any order. One can note that SCCs are
still marked dead in a DFS post-order (see Algorithm 4 without highlighted
lines). We denote this kind of algorithms as SCC-based DFS emptiness-checks.

The algorithm of Bloemen and van de Pol [2] has been introduced to tackle
the main drawback of the algorithm suggested by Renault et al. [24]. Indeed,
in this last algorithm, each SCC must be completely processed by the same
thread before it can be marked dead. To improve this, Bloemen and van de
Pol [2] introduced a work-stealing mechanism to allow SCCs to be cooperatively
treated (see the outer loop line 9 of Algorithm 4). Notice that this mechanism
induces a more complex shared union-find data-structure (see [2]).

In this approach, all threads start a DFS until they reach a (partial) SCC
which is currently processed by one (or more) other thread(s). The states belong-
ing to this SCC (aggregated by the DFS) are then distributed among the various
threads (line 10) and marked done (line 27) when all their successors are dead
or detected to belong to the current SCC. When the last state of an SCC is
marked done, the SCC itself is marked dead (line 29).

a b

Fig. 4. Two threads
cooperatively discov-
ering a cycle. Dashed
edges represent paths
from the initial state
while plain edges rep-
resent currently pro-
cessed edges.

Liveness Properties. Implementing a proviso for live-
ness properties in this algorithm is complex since the work
stealing mechanism removes all possible knowledge about
cycles in this SCC. When checking liveness properties, the
proviso must ensure that each elementary cycle contains
(at least) one expanded state. In sequential and for such a
cycle, the states can be marked done by the algorithm in
any order. Our proviso consists to expand any state with
at least one successor marked done. In a sequential set-
ting, this approach ensures that all cycles or size n > 1
contains at least one expanded state (n − 1 for the worst
case, n/2 in average).
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Algorithm 4. SCC-based DFS equipped (highlighted in yellow) for checking

liveness properties with POR - unhighlighted lines correspond to the SCC com-

putation algorithm as presented in Bloemen and van de Pol [2]

1 ∀v ∈ V : S(v) ← {v}
2 dead ← done ← expanded ← ∅
3 ∀p ∈ [1 . . . n] : Rp ← wipp ← ∅
4 ws-pr19-live1(v0)|| . . . || ws-pr19-liven(v0)

5 Procedure ws-pr19-livep(v ∈ V )
6 Rp.push(v)

7 if v 	∈ expanded ∧ post(v) = reduced(v) then

8 expanded ← expanded ∪ {v}
9 while v′ ∈ (S(v) \ done) do

10 wipp ← wipp ∪ {v′}
11 next ← v′ ∈ expanded ? post(v′) : reduced(v′)
12 while next 	= ∅ do
13 w ← randomlyPick(next)
14 if w ∈ dead then continue

15 else if 	 ∃w′ ∈ Rp : w ∈ S(w′) then

16 wipp ← wipp \ {v′}
17 ws-pr19-livep(w)

18 goto 9
19 else

20 if v′ 	∈ expanded ∧ w ∈ (done ∪ (
⋃

i∈[1...n] wipi)) \ expanded then

21 expanded ← expanded ∪ {w}
22 next ← next ∪ (post(v′) \ reduced(v′))
23 while w 	∈ S(v) do
24 r ← Rp.pop()
25 t ← Rp.top()
26 S(r) ← S(t) ← S(r) ∪ S(t)

27 done ← done ∪ {v′}
28 wipp ← wipp \ {v′}
29 if S(v) 	⊆ dead then dead ← dead ∪ S(v)
30 if v = Rp.top() then Rp.pop()

However, in a parallel setting, this approach is not sufficient. Let us consider
the example of Fig. 4 with two threads, one visiting state a, the second state b,
and with a and b known to belong to the same SCC. Thread t1 selects a line 9,
while thread t2 selects b and both a and b are not already done. The test line
15 prevents from a recursive call (for both t1 and t2). Since a and b will only
be marked done line 27, t1 as well as t2 will not detect that an expansion is
required. Indeed, the only successor of a (resp. b) is not done.

To solve this problem, we introduce the shared sets wipp that represent
states currently processed by a thread p. Highlighted lines of Algorithm 4 detail
this new proviso for liveness properties. A state is inserted into wipp when first
discovered by a thread p (line 10) and removed either line 28 when the state
has been marked done or line 16 before performing a recursive call. Doing a
recursive call ensures that state v′ will not be marked by the current while loop
line 12. Indeed, when backtracking from the recursive call, line 18 the thread
will realize a jump to the outer loop. This jump implies that all the successors
of a state must be seen without performing a recursive call before this state is
marked done. This is the main difference between our algorithm and the one
of Bloemen and van de Pol [2]. Line 20 checks when an expansion is required.
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A state is expanded if one of its successors is done or belong to a wipp sets and
neither the source nor the destination is expanded.

Notice that the introduction of the wipp sets also solves the expansion of the
elementary cycles of size 1. As for the previous algorithms, the expanded set
allows to share expansions between threads.

Safety Properties. As for liveness properties, a proviso for safety properties has
never been proposed for the algorithm of Bloemen and van de Pol [2]. The goal,
like in Algorithm 3, is to limit expansions only to bottom SCCs and to minimize
the number of expansions in such SCCs. Detecting that the SCC is a bottom

Algorithm 5. SCC-based DFS equipped (highlighted in yellow) for checking

safety properties with POR - unhighlighted lines correspond to the SCC compu-

tation algorithm as presented in Bloemen et al. [3]

1 ∀v ∈ V : S(v) ← {v}, S(v).isTerm ← �
2 dead ← done ← expanded ← ∅
3 ∀p ∈ [1 . . . n] : Rp ← ∅
4 ws-pr19-safe1(v0)|| . . . || ws-pr19-safen(v0)

5 Procedure ws-pr19-safep(v ∈ V )

6 if v 	∈ expanded ∧ post(v) = reduced(v) then

7 expanded ← expanded ∪ {v}
8 S(v).isTerm ← ⊥
9 Rp.push(v)

10 while pick v′ from (S(v) \ done) do

11 isExpanded ← v′ ∈ expanded

12 next ← isExpanded ? post(v′) : reduced(v′)
13 foreach w ∈ mixp(next) do
14 if w ∈ dead then

15 S(v′).isTerm ← ⊥
16 else if 	 ∃w′ ∈ Rp : w ∈ S(w′) then
17 ws-pr19-safep(w)

18 if w 	∈ S(v′) then S(v′).isTerm ← ⊥
19 else
20 while w 	∈ S(v) do
21 r ← Rp.pop()
22 t ← Rp.top()
23 S(r) ← S(t) ← S(r) ∪ S(t)

24 while v′ 	∈ done do // Ensure good removing or expansion
25 nb ← ∣

∣S(v′) ∩ done
∣
∣

26 // Expand the last element

27 if S(v′) \ done = {v′} ∧ S(v′).isTerm then

28 expanded ← expanded ∪ {v′}
29 S(v′).isTerm ← ⊥
30 break

31 else

32 // v′ is about to be done while another thread

33 // requires an expansion

34 if ¬isExpanded ∧ v′ ∈ expanded then

35 break

36 // Otherwise mark states DONE but only one by one

37 else

38 if nb =
∣
∣S(v′) ∩ done

∣
∣ then done ← done ∪ {v′}

39 if S(v) 	⊆ dead then dead ← dead ∪ S(v)
40 if v = Rp.top() then Rp.pop()
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one can be done as easily as for Algorithm 3. A Boolean isTerm is associated to
each SCC and updated consequently (lines 1, 8, 15, 18 and 29 of algorithm 5).
Notice that this Boolean is associated to an SCC rather than a state in order to
propagate the information inside of the work stealing mechanism.

To implement the proviso, we can exploit a property of the original algorithm:
when the last state of an SCC is marked done, the SCC is then marked dead.
Capturing this instant could be useful to trigger an expansion in each bottom
SCC. This approach, even if satisfying, does not work in the algorithm. Indeed,
the algorithm is not aware that the state is the last one to be marked done.

To solve this problem, we propose a pessimistic approach (as previously).
When a state is about to be marked done (lines 24 to 38), three situations may
occur. First of all (line 27), the current state v′ is the last one of the bottom
(partial) SCC: in this case, the state is expanded line 28 and the SCC does not
require any more expansion, i.e. isTerm is set to false. Second of all (line 34–
35), the state is about to be marked done while another thread required the
expansion of this state. In this case, new successors must be explored for this
state, and the break line 35 will force this exploration. Finally, two (or more)
states may be concurrently candidate for being done. Line 25 and 38 prevent
concurrent multiple insertions in the set done (and thus potentially missing a
required expansion). Each thread captures line 25 the current number of done
states in the (partial) SCC while line 38 checks that this number has not changed
in between. This leads to sequentialize the insertions in done. Notice that line
38 must be performed atomically even if it contains a conditional statement.

5 Evaluation

Benchmark Description. To evaluate the performance of the new provisos, we
selected 21 models from the BEEM benchmark [20] that cover all types of models
described by the classification of Pelánek [21]. All the models were selected such
that Algorithm 1 with one thread and without applying POR would take at
most 20 min on Intel(R) Xeon(R) @ 2.00 GHz with 250 GB of RAM. We fix
the maximum running time to 40 min.3 Here we compute only a reduced LTS
explored by the algorithms presented in the previous sections. When applied in
the context of a model checker, the visited reduced LTS will be larger due to
the observation of visible transitions [23]. Experiments were run three times and
only the median of the three values were kept.

According to Bloemen et al. [3], the performances of parallel emptiness checks
may rely on the underlying graph structure. To evaluate this, the 21 models
selected are divided into two categories: M1 (models with short cycles and
many small SCCs) and M2 (models with long cycles and a small number of
large SCCs). Bloemen et al. [3] observe that the performances for the algorithm
suggested by Renault et al. [24] are degraded for M2 which is the motivation of
the introduction of their new algorithm.
3 For a description of our setup, including selected models, detailed results and code,

see http://www.lrde.epita.fr/∼renault/benchs/ICFEM-2019/results.html.

http://www.lrde.epita.fr/~renault/benchs/ICFEM-2019/results.html


382 D. Poitrenaud and E. Renault

In this benchmark, we compared all the new algorithms presented in this
paper with the only parallel provisos of the state-of-the-art, i.e lw14-live (see
Algorithm 1 in Laarman and Wijs [16]),4 lw14-safe (see Algorithm 2 in Laar-
man and Wijs [16]). All the presented results have been computed using the same
canvas and are then comparable. See Fig. 1 for an overview of our contributions
and the compatibility with existing emptiness checks.

Implementation Details. Since all the presented algorithms rely on hashta-
bles and linked lists, they can be implemented lock-free. The reduced function
implements the stubborn set method from Valmari [27] as described by Pater
[19] but in a deterministic way, i.e. for any state s, reduced(s) always returns
the same set. However, because the computation of a reduced set5 of enabled
transitions can be costly, we opted for its memoization using mutexes. This is
an implementation choice but a pure lock-free version remains possible. All the
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Fig. 5. Mean Reduction rates (in percent) on the whole benchmark, depicted for live-
ness and safety and for the two categories M1 and M2. The x-axis represents the
number of threads when the y-axis the mean of the reduction rates.

4 Notice that we only consider the blue DFS (without lines 33–37). When implement-
ing an emptiness check the ignored lines could trigger complementary expansions.
Thus the reported values here can be interpreted as the optimal bound (time, reduc-
tion, ...) for this algorithm.

5 Our implementation uses persistent sets since a special attention must be paid when
combining ample sets with on-the-fly exploration [25].
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approaches proposed here have been implemented in Spot [8]. For a given model
the corresponding Kripke structure is generated on-the-fly using DiVinE 2.4
patched by the LTSmin team.6

Reduction Rates. Figure 5 gives the mean of the reduction rates for the bench-
mark. It appears that the reduction rate of each algorithm is insensitive to the
thread number. For M1, all algorithms tend to have a similar reduction rate even
if laarman (live and safe) is slightly worse than the others (both for liveness
and safety cases). For liveness and models M2, it appears that ws-pr19-live
significantly degrades the reduction rate. This is due to the pessimistic approach
imposed by the lack of information from the DFS stack. This effect is minored
for the safety case because expansions are limited to the bottom SCCs and by
our strategy that minimizes the number of expansions in such SCCs.

Time Analysis. Tables 1 and 2 describe the measure for the two categories of
model and all the algorithms running with 1 to 12 threads. For safety, lw14-safe
and ws-pr19-safe have comparable running times. Since ws-pr19-safe has a
smaller reduction rate than lw14-safe, the work-stealing mechanism imple-
mented in ws-pr19-safe shows its efficiency. Nonetheless, scc-pr19-safe and
dfs-pr19-safe perform better. However, the complex data structure of scc-
pr19-safe impacts negatively its running time. For liveness, lw14-live per-
forms better than ws-pr19-live. dfs-pr19-live performs better than the two
others regardless the category of models.

Finally, we can notice that the work-stealing mechanism of ws-pr19-live
particularly improves the speedup for models M2. The Fig. 6 displays the
speedup curves for both liveness and safety and M2. For models M1, the speedup
of all algorithms are comparable.

Table 1. States in 106, times in seconds and speedup for liveness provisos

lw14-live dfs-pr19-live ws-pr19-live

States Time Sp. States Time Sp. States Time(s) Sp.

M1 1 th. 412.3 3 755 – 410.1 3 732 – 411.5 4 651 –

2 th. 413.9 1 983 1.89 410.1 1 960 1.90 411.5 2 505 1.86

4 th. 415.2 1 136 3.30 410.1 1 124 3.32 411.5 1 429 3.25

8 th. 414.6 805 4.66 410.1 773 4.83 411.5 1 021 4.55

12 th. 414.6 691 5.43 410.1 678 5.50 411.5 829 5.60

M2 1 th 202.0 1 372 – 181.5 1 218 – 256.3 2 761 –

2 th. 199.3 718 1.91 182.2 632 1.93 256.2 1 392 1.98

4 th. 197.3 391 3.50 182.2 343 3.55 256.0 721 3.83

8 th. 195.1 246 5.56 182.3 222 5.49 255.9 466 5.93

12 th. 193.9 186 7.34 182.2 165 7.36 255.7 359 7.69

6 See http://fmt.cs.utwente.nl/tools/ltsmin/#divine for more details.

http://fmt.cs.utwente.nl/tools/ltsmin/#divine
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Table 2. States in 106, times in seconds and speedup for safety provisos

lw14-safe dfs-pr19-safe scc-pr19-safe ws-pr19-safe

State Time Sp. State Time Sp. State Time Sp. State Time Sp.

M1 1 th. 412.3 5 124 – 410.1 3 734 – 410.1 4 179 – 410.1 5 041 –

2 th. 413.9 2 709 1.84 410.1 1 961 1.90 410.4 2 235 1.87 410.1 2 744 1.84

4 th. 414.6 1 527 3.38 410.1 1 124 3.32 410.3 1 372 3.04 410.1 1 493 3.38

8 th. 414.5 1 067 4.87 410.1 803 4.65 410.7 870 4.80 410.1 1 034 4.87

12 th. 414.7 809 6.23 410.1 641 5.82 410.5 784 5.33 410.1 809 6.23

M2 1 th. 202.0 1 372 – 180.2 1 214 – 179.1 1 380 – 179.1 1 935 –

2 th. 199.6 724 1.90 180.5 633 1.92 179.2 713 1.93 179.1 997 1.94

4 th. 197.2 391 3.50 180.7 339 3.58 179.2 336 4.10 179.1 543 3.56

8 th. 195.1 263 5.21 180.8 214 5.67 179.5 257 5.37 179.2 362 5.35

12 th. 194.0 187 7.32 180.7 165 7.32 179.5 205 6.72 179.2 296 6.52

2 4 6 8 10 12

1
2

3
4

5

lin
ea

r s
pe

ed
up

WS−PR19−LIVE
DFS−PR19−LIVE
LW14−LIVE

Liveness − Models M2

359

166

187

2 4 6 8 10 12

1
2

3
4

5

lin
ea

r s
pe

ed
up

WS−PR19−SAFE
DFS−PR19−SAFE
LW14−SAFE
SCC−PR19−SAFE

Safety − Models M2

297

166
187
205

Fig. 6. Speedup on models M2

6 Conclusion

To our knowledge, only the work of Laarman and et al. proposes provisos
designed for parallel model checking. Nonetheless, in sequential settings and for
liveness properties, Duret-Lutz et al. [7] empirically shown that variations on the
traditional proviso could improve performances. In this paper, we demonstrate
that the application of the suggested provisos (in particular dfs-pr19-live and
dfs-pr19-safe) can also benefit to the parallel emptiness check based on a
state-based DFS. During this investigation, we also proposed a new proviso also
based on destination expansion but dedicated to safety properties.

However, the best existing parallel emptiness checks are based on an SCC
computation. For the best of them (bp16 [2]), no existing provisos can be
directly applied since it is based on a work-stealing mechanism breaking the
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DFS post-order. In this paper, we proposed new provisos for this parallel empti-
ness check (for both liveness and safety properties). Moreover, we also presented
a dedicated proviso for safety properties for Renault et al. [24]. Figure 1 summa-
rizes the compatibility of the different provisos with respect to existing emptiness
checks.

One of the challenging problems in parallelizing explicit state model checking
is the model checking of stutter-free LTL properties on distributed systems. In
this paper we propose, for the first time, several algorithms (that can be directly
integrated into the best known emptiness checks) to tackle this problem. All
provisos presented and evaluated in this paper achieve comparable speedups.
However, the reduction rate of ws-pr19-live for models with long cycles and a
small number of large SCCs is significantly degraded compared to the other pro-
posed algorithms. An open question remains: can we develop a liveness proviso
for bp16 that preserves a good reduction rate for any category of models?
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Abstract. As a quantum counterpart of labeled transition system
(LTS), quantum labeled transition system (QLTS) is a powerful formal-
ism for modeling quantum programs or protocols, and gives a categori-
cal understanding for quantum computation. With the help of quantum
branching monad, QLTS provides a framework extending some ideas
in non-deterministic or probabilistic systems to quantum systems. In
this paper, we propose the notion of reactive quantum system (RQS),
a variant of QLTS, and develop a coalgebraic semantics for both QLTS
and RQS by an endofunctor on the category of convex sets, which has a
final coalgebra. Such a coalgebraic semantics provides a unifying abstract
interpretation for both QLTS and RQS. The notions of bisimulation and
simulation can be employed to compare the behavior of different types
of quantum systems and judge whether a coalgebra can be behaviorally
simulated by another.

Keywords: Quantum labeled transition system · Reactive quantum
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1 Introduction

Quantum computation has been widely believed to bypass the end of Moore’s
Law and have an advantage over classical algorithms for certain problems. For
instance, Grover’s search algorithm can search an unordered array of size n in
O(

√
n) time as opposed to the usual O(n) time and Shor’s factoring algorithm

can factor numbers in polynomial time while no known classical algorithms can
solve this problem in such time complexity [25]. There are not only theoretical
curiosities for quantum computation, but also commercially available applica-
tions in quantum cryptography, which has a striking advantage over the classical
cryptography in an “unconditionally secure” way [18]. Such advantages benefit
from some prominent features of quantum mechanics, such as superposition and
entanglement.

In order to develop quantum algorithms and protocols into concrete systems,
foundations of quantum programming were investigated by Ying in [26], and
a quantum programming language was introduced by Selinger in [22]. Beside
implementing existing quantum algorithms and protocols, it is also important
c© Springer Nature Switzerland AG 2019
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to verify their correctness, which can be carried out by describing and ana-
lyzing theoretical models of quantum computation. Quantum Turing machines
and quantum circuits are two fundamental models, which are computationally
equivalent [16]. There have also been several high-level formalisms for quantum
computation, such as quantum functional programming [9], picturing quantum
processes [2] and qCCS, which is a variant of Calculus of Communicating Sys-
tems (CCS) with quantum flavor [28]. Moreover, quantum extensions of some
classical computational models have been investigated recently, such as quan-
tum automata [10], quantum Markov chains [15] and communicating quantum
processes (CQP) which extends the pi-calculus with primitives for measurement
and transformation of quantum states [8].

Equivalence checking has been a particularly relevant topic in quantum sys-
tem verification. A technique using equivalence checking for verification of quan-
tum protocols has been proposed in [1], which can go beyond stabilizer states
and be used to verify protocols efficiently on all input states. It has been demon-
strated that applicative bisimulation can be instantiated on the linear λ-calculi
with quantum data in [14]. A probabilistic branching bisimulation for CQP has
been proposed and shown to be a congruence in [3]. For qCCS, several kinds of
bisimulation have been defined, such as open bisimulation [4], symbolic bisimula-
tion [5], (approximate) strong bisimulation and weak bisimulation [6]. A software
tool has been implemented to decide bisimilarity of qCCS configurations in [13].
Such bisimulations are defined concretely according to the labeled transition sys-
tems induced by the corresponding operational semantics of different quantum
programming languages. In this paper, we propose a coalgebraic model of quan-
tum systems and investigate a general notion of bisimulation naturally induced
by it. This notion of bisimulation is defined in a highly abstract level, since only
the acceptance probability of inputs is considered.

Coalgebra has emerged as a general framework for modeling state-based tran-
sition systems and covering different transition types: non-deterministic, prob-
abilistic and so on [11]. There have been some coalgebraic models for quantum
computation. For example, Quantum labeled transition system (QLTS) is defined
in [20] to model quantum systems by using the quantum branching monad Q
and following the principle of “quantum data, classical control”. The abstract
characterization of QLTS by coalgebras allows for applying the general trace
and simulation theory [24] to quantum systems. A coalgebraic semantics for
closed quantum systems (such as measure-once quantum finite automata [17])
is proposed in [21], which helps to relate the Schrödinger picture and Heisen-
berg picture of quantum mechanics with the dual concepts between algebras and
coalgebras.

QLTS is a quantum extension of LTS whose transition structure is given by
the coalgebra X → P(Σ × X). As well known, there is another type of LTS
X → P(X)Σ capturing the behavior of reactive systems. This motivates us to
develop the corresponding quantum extension of such reactive LTS types. In
this paper, we propose the notion of reactive quantum system (RQS) based on
the quantum branching monad [20]. Comparing with QLTS which is suitable for
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describing simple quantum programs and protocols, RQS provides an appropri-
ate formalism for quantum systems with reactive behavior, like measure-many
quantum automata [12]. We then employ the endofunctor F on the category of
convex sets and convex maps [21], and show how both QLTS and RQS can be
specified as F -coalgebras. Different from qCCS configurations which involve den-
sity matrices with the same dimension, a product of different dimensional density
matrices is used to represent a configuration of a QLTS or a RQS, and the set
of configurations is taken as the carrier set of the corresponding coalgebraic
model. The dynamics of the coalgebra specifies the evolution of configurations
and the acceptance probability of the current configuration. One advantage of
using the functor F is the existence of final coalgebra, which makes it easy to
verify whether two configurations in an F -coalgebra are behaviorally equivalent.
We prove that two configurations are F -bisimilar if and only if they are behav-
iorally equivalent, and show how the forward/backward morphism can be used
to explore whether one F -coalgebra can be behaviorally simulated by another.

The rest of this paper is organized as follows. Section 2 recalls the definition
of QLTS. The notion of quantum reactive systems is proposed in Sect. 3. In
Sect. 4, we investigate the endofunctor F and specify both QLTS and RQS as F -
coalgebras. In Sect. 5, we prove that the bisimulation relationship is equivalent to
behavioral equivalence on the final F -coalgebra. The notion of (weak) simulation
for RQS is studied in Sect. 6. Finally, Sect. 7 concludes and discusses possible
future work.

2 Quantum Labeled Transition System

In this section, we recall some concepts and notations in quantum computation
[18,25,26]. In quantum computation, pure states are often represented by unit
vector states while mixed states are often represented by density matrices.

Definition 1 (vector state). An n-dimensional vector state s is a column
vector in a Hilbert space C

n, denoted by |s〉 = (c1, · · · , cn)T . We denote the
conjugate transpose of |s〉 by 〈s|, which is a row vector (c∗

1, · · · , c∗
n). A vector

state |s〉 is called unit if 〈s| |s〉 =
∑n

i=1 c∗
i ci = 1.

Definition 2 (density matrix). An n-dimensional density matrix is a positive
semi-definite matrix ρ ∈ C

n×n with tr(ρ) ∈ [0, 1], where tr(ρ) is the trace of ρ.

The set of all n-dimensional density matrices is denoted by DMn. Note that
density matrices are allowed to have a trace less than 1 in this paper, which
represents the case when “some probability is missing”. For any unit vector state
|s〉, there is a corresponding density matrix |s〉 〈s|. Therefore, when it comes to
quantum state transformations, we only consider the quantum operations acting
on density matrices.

Definition 3 (quantum operation). A quantum operation (QO) from a
Hilbert space C

m to another Hilbert space C
n is a linear function Φ : DMm →

DMn satisfying the following conditions:
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– (Trace non-increasing) ∀ρ ∈ DMm, tr(Φ(ρ)) ≤ tr(ρ).
– (Completely positive) For any Ik, which is the identity map on (k × k)-

dimensional matrices, the form Ik ⊗ Φ maps a positive semi-definite matrix
to a positive semi-definite one, where ⊗ is the tensor product.

The set of quantum operations from C
m to C

n is denoted by QOm,n. Kraus’
theorem ensures that any quantum operation Φ ∈ QOm,n on a density matrix
ρ ∈ DMm can always be written as

Φ(ρ) =
∑

k

BkρB†
k

for some set of n×m-dimensional matrices {Bk} satisfying
∑

k B†
kBk ≤ I, where

B†
K is the conjugate transpose of Bk. Thus, we can also denote a quantum

operation Φ by {Bk}.
Now we recall the definition of quantum branching monad in [9], with which

we can define QLTS and RQS.

Definition 4 (quantum branching monad [9]). The quantum branching
monad Q on the category of sets and functions is defined as follows:

Q(X) := {c : X →
∏

m,n∈N

QOm,n|the trace condition}

(Q(f)(c)(y))m,n :=
∑

x∈f−1(y)

(c(x))m,n

where
∏

m,n∈N
denotes a Cartesian product, (c(x))m,n ∈ QOm,n is the (m,n)-

component of c(x) ∈ ∏
i,j QOi,j and the trace condition is

∑

x∈X

∑

n∈N

tr((c(x))m,n(ρ)) ≤ 1,∀m ∈ N,∀ρ ∈ DMm.

The unit ηX : X → Q(X) and the multiplication μX : Q(Q(X)) → Q(X) are:

(ηX(x)(x′))m,n :=

{
{Im} if x = x′ and m = n

0 otherwise

(μX(h)(x′))m,n :=
∑

c∈Q(X)

∑

k∈N

((c(x))k,n ◦ (h(c))m,k)

Then we have the following definition for QLTS:

Definition 5 (QLTS [20]). A quantum labeled transition system (X, s, c) con-
sists of a set X and a pair of functions s : 1 → Q(X) and c : X → Q(Σ×X+1),
where Σ is an alphabet and 1 = {√}, which is a singleton.
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One possible execution of a QLTS is as follows. Given any initial density
matrix ρ ∈ DMm, ρ is taken into some state x ∈ X of the system and evolves into
some density matrix ρ′ = (s(x))m,n(ρ) ∈ DMn. Then, in a transition between x
and x′ ∈ X, some action a ∈ Σ occurs and ρ′ evolves into (c(x)(a, x′)n,l)(ρ′) ∈
DMl. After finite iterations of transitions, if the current state is x′ and the
current density matrix is ρ′, the system terminates to c(x′)(

√
)l,k(ρ′) ∈ DMk.

The trace semantics of a QLTS (X, s, c) is defined as an arrow 1 → Q(Σ∗),
which can be calculated recursively as follows. First define the unique function
hc : X → Q(Σ∗) as

(hc(x)(〈〉))m,n = (c(x)(
√

))m,n

(hc(x)(a · σ))m,n =
∑

x′∈X

∑

k∈N

(hc(x′)(σ))k,n ◦ (c(x)(a, x′))m,k

where a ∈ Σ, σ ∈ Σ∗. Then, the trace semantics is obtained:

(traces,c(σ))m,n =
∑

x∈X

∑

k∈N

(hc(x)(σ))k,n ◦ (s(x))m,k.

This operator (traces,c(σ))m,n can be seen as an accumulated quantum operation
along paths that leads to a sequence of observations σ through the system. The
probability of observing σ at an initial state ρ ∈ DMm is represented as

Ps,c(σ, ρ) =
∑

n∈N

tr((traces,c(σ))m,n(ρ)) ∈ [0, 1].

Example 1. Here we show an example of QLTS for describing quantum programs
with output taken from [27], where a discrete coined quantum walk on an n-
cycle with an absorbing boundary at position 1 is depicted as a quantum. Let
HC be a 2-dimensional coin space with orthonormal basis states |0〉 and |1〉,
and HV be the n-dimensional principle space spanned by the position vectors
|i〉 : i = 0, · · · , n − 1. We can formulate a quantum walk as a quantum loop:

while(Mq �= 1) {output Mq; q := Uq}
where

M =
n−1∑

i=0

i |i〉 〈i| ⊗ I2, U = S(In ⊗ H),

and q is a quantum register in HV ⊗ HC . The program can be interpreted by
the following three steps:

1. A ‘coin-operator’ H = |+〉 〈0| + |−〉 〈1| is applied to the coin, where

|+〉 = (|0〉 + |1〉)/
√

2, |−〉 = (|0〉 − |1〉)/
√

2.

2. A shift operator

S =
n−1∑

i=0

|i � 1〉 〈i| ⊗ |0〉 〈0| +
n−1∑

i=0

|i ⊕ 1〉 〈i| ⊗ |1〉 〈1|
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is performed on the space HV ⊗HC , which makes the quantum walk one step
left or right according to the coin state. Here � and ⊕ denote subtraction
and addition modulo n, respectively.

3. Measure the principle system to see if the current position of the walk is 1. If
the result is ‘yes’ then the walk terminates, otherwise output the result and
the walk continues.

The QLTS describing this program is constructed as (X, s : 1 → X, c : X →
Q(Σ × X + 1)), where X = {x}, Σ = {0, 2, · · · , n − 1} and

(s(x))2n,2n = {In ⊗ I2}
(c(x)(k, x))2n,2n = {U(P|k〉 ⊗ I2)}

(c(x)(
√

))2n,2n = {P|1〉 ⊗ I2}
in which P|k〉 = |k〉 〈k| is a projection matrix of |k〉. A trace k1 · · · km records the
path of the quantum walk and the trace semantics is

((traces,c)(k1 · · · km))2n,2n

={P|1〉 ⊗ I2} ◦ {U(P|km〉 ⊗ I2)} · · · {U(P|k1〉 ⊗ I2)} ◦ {In ⊗ I2}.

If the initial position k is 1, there will be no valid trace (output); otherwise, the
trace will start at k1 = k and end at km = 0 or km = 2. It is easy to prove that
the probability of observing the trace k1 · · · km with the initial position k1 is 1

2m .
Note that the initial state of the coin has no effect on the probability.

3 Reactive Quantum Systems

It is well known that LTS can be usually defined by one of the two transition
structure types α : X → P(X)Σ and β : X → P(Σ × X), where P is the
powerset monad and Σ is an alphabet. Replacing the powerset monad P with
the coproduct of distribution monad D and the termination possibility, D + 1,
α and β are changed to α′ : X → (D(X) + 1)Σ and β′ : X → D(Σ × X) + 1,
which capture the behavior of reactive and generative probabilistic systems,
respectively [23]. Similarly, for the quantum case, if we replace P with Q( +1),
β changes to c : X → Q(Σ × X + 1) constituting a QLTS, and we have a new
transition structure d : X → Q(X + 1)Σ corresponding to α, which motivates
us to investigate on the notion of reactive quantum systems.

Definition 6. A reactive quantum system (RQS) (X, s, d) is comprised of a set
X and a pair of functions s : 1 → Q(X) and d : X → Q(X + 1)Σ, where Σ is
an alphabet.

The notion of RQS is similar to quantum Markov chains [15] but can involve
different dimensional density matrices. Different from the trace semantics of
QLTS, the trace semantics of RQS (X, s, d) can no longer be an arrow 1 :→
Q(Σ), but be a function

tracks,d : Σ∗ →
∏

m,n∈N

QOm,n
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which is defined as follows:

(tracks,d(σ))m,n =
∑

x∈X

∑

k∈N

(hd(x)(σ))k,n ◦ (s(x))m,k.

where for all a ∈ Σ and σ ∈ Σ∗:

(hd(x)(〈a〉))m,n = (d(x)(a)(
√

))m,n

(hd(x)(a · σ))m,n =
∑

x′∈X

∑

k∈N

(hd(x
′)(σ))k,n ◦ (d(x)(a)(x′))m,k,

Given an input sequence σ ∈ Σ∗, a RQS may terminate after receiving a
finite prefix of σ which means the rest of the input sequence is invalid. The
acceptance probability of a nonempty input sequence σa with an initial state
ρ ∈ DMm can be recursively defined as:

Ps,d(σa, ρ) =
∑

n∈N

tr((tracks,d(σa))m,n(ρ)) + P (σ, ρ),

and P (∅, ρ) = 0.

Example 2. The following state diagram is an example of a quantum automaton
over the input set Σ = {a, b} and the state space C

2 with the standard basis
{|0〉 , |1〉}.

|0〉 |1〉

1 0

a,
1

√
2

b, 1

a,
1

√
2

b, 1

a, 1√
2

a,− 1√
2

The transition matrices are

Ta =
1√
2

[
1 1
1 −1

]

= H,Tb =
[
0 1
1 0

]

.

The outcomes of states indicate whether they are final states: if the outcome is 1
then it is a final state. When receiving an input character r ∈ Σ, the automaton
changes to a new state by the corresponding transition and measures the new
state with the basis {|0〉 , |1〉}. If the result is {|0〉}, the automaton will stop
receiving inputs and doing transitions; otherwise, it will continue receiving the
next input. The RQS for this automaton is (X = {x}, s : 1 → Q(X), d : X →
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Q(X + 1)Σ) where
(s(x))2,2 = {I2}

(d(x)(a)(x))2,2 = {P|1〉H}
(d(x)(a)(

√
))2,2 = {P|0〉H}

(d(x)(b)(x))2,2 = {P|1〉Tb}
(d(x)(b)(

√
))2,2 = {P|0〉Tb}.

If the initial state is |0〉 and the input sequence is ab, then the acceptance prob-
ability is

tr((tracks,d(ab))2,2)(|0〉 〈0|) + tr((trace)s,d(a)2,2)(|0〉 〈0|)
=tr(P|0〉TbP|1〉H |0〉 〈0| (P|0〉TbP|1〉H)†) + tr(P|0〉H |0〉 〈0| (P|0〉H)†)

=
1
2

+
1
2

= 1.

Example 2 is a concrete instance of measure-many quantum finite automata
(MM-QFA) [12], which is defined as follows:

Definition 7 (MM-QFA [12]). A measure-many (1-way) quantum automaton
(MM-QFA) is a sextuple M = (H,Σ, {Ua}a∈Σ , |s〉 ,Hacc,Hrej) where H is a
finite dimensional Hilbert space, Σ is a finite alphabet, Ua is a unitary operator
on H, |s〉 ∈ H is the initial state, which is a unit ket, Hacc and Hrej are,
respectively, the accepting subspace and the rejecting subspace of H, such that
Hacc ∩ Hrej = ∅.
We now show how to construct the corresponding RQS for a MM-QFA.

Note that a bounded operator A on a Hilbert space H is a unitary operator
if A†A = AA† = I and a projection if A = A2. The computation of a MM-
QFA on an input sequence w1w2 · · · wn goes as follows. The operator Uw1 is first
applied to the initial state |s〉 and then measure the resulting state Uw1 |s〉, which
projects Uw1 |s〉 into a vector |φ′〉 of one of the subspaces Hacc,Hrej ,Hnon, where
Hnon is the orthogonal complement of Hacc ⊕Hrej . In all cases the computation
continues only if a projection Pnon into Hnon occurs. When no termination
occurs, operators Uw1 , · · · , Uwn

are applied one after another, and after each such
application the measurement is performed. The result of the computation can
be seen as an application of the composed operator U ′

wn
· · · U ′

w1
|s〉, where U ′

wi
=

PnonUwi
. The probability that w = w1 · · · wn is accepted can be recursively

defined as

f(w) =

{
f(w′) + ‖PaccU

′
wn···w1

|s〉 ‖2 w′ = w1 · · · wn−1

0 w = ∅ ,

where Pacc is the projection into Hacc.
Given a MM-QFA (H,Σ, {Ua}a∈Σ , |s〉 ,Hacc,Hrej) based on an n-

dimensional Hilbert space, we can construct its corresponding RQS (X, s, d),
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where X = {x} and for a ∈ Σ

(s(x))n,n = {In}
(d(x)(a)(x))n,n = {PnonUa}
(d(x)(a)(

√
))n,n = {PaccUa}.

For any input sequence σ ∈ Σ∗, it is easy to verify the acceptance probability
for the MM-QFA and the corresponding RQS are equal, which means

f(σ) = Ps,d(σ, |s〉 〈s|).

4 A Unifying Coalgebraic Framework for QLTS and RQS

Both QLTS and RQS follow the “quantum data, classical control” rule [22].
However, from the observers’ perspective, the “classical control” part may be
hidden from outside, and thus we focus on the change of “quantum data” and
the probability of certain observational sequences. In this paper, we use the
endofunctor

FX = XΣ × [0, 1] (1)

on the category Conv consisting of convex sets and convex maps, where Σ is
an alphabet. Both QLTS and RQS can be modeled as F -coalgebras.

The reason for working on the category Conv is to ensure that the transitions
of coalgebras are valid and any convex combination of states is still a state. For
any density matrices ρ1, · · · , ρr in DMm and any positive numbers λ1, · · · , λr

such that λ1 + · · · + λr = 1,

tr(
r∑

i=1

λiρi) =
r∑

i=1

λitr(ρi) ≤
k∑

i=1

λi = 1

Then we can get
∑r

i=1 λiρi ∈ DMm. Therefore, DMm(m ∈ N) is a convex set.
We denote the product

∏
n∈N

DMn by D̂M. Due to the existence of infinite
product in the category Conv, D̂M is also a convex set.

A configuration of a QLTS (X, s : 1 → X, c : X → Q(Σ × X + 1)) can

be represented by an element γ in the convex set
∏

x∈X D̂M ∼= D̂M|X|
. It

means that the QLTS is likely to be in multiple positions with different density
matrices simultaneously. Using (γ)x,n (γ ∈ ∏

x∈X D̂M) to represent the (n×n)-
dimensional density matrix at the position x, we can have the corresponding
F -coalgebra CFs,c = (

∏
x∈X D̂M, 〈nc, oc〉), where for any a ∈ Σ,

(nc(γ, a))x,n =
∑

k∈N

∑

x′∈X

(c(x′)(a, x))k,n((γ)x′,k)

oc(γ) =
∑

n∈N

∑

k∈N

∑

x∈X

tr((c(x)(
√

))k,n((γ)x,k))
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From the trace condition for quantum branching monad, it is easy to prove
that nc and oc are convex maps. For a ∈ Σ and σ ∈ Σ∗, let nc(γ, aw) =
nc(nc(γ, a), w).

Lemma 1. Given an initial density matrix ρ ∈ DMm, the initial configuration
(γ0)x,n = (s(x))m,n(ρ). For any σ ∈ Σ∗, the following equations hold:

(traces,c(σ))m,n(ρ) =
∑

k∈N

∑

x′∈X

(c(x′)(
√

))k,n(n(γ0, σ))

Ps,c(σ, ρ) = oc(nc(γ0, σ))

Proof. The proof follows from the definition of trace semantics and mathematical
induction.

Lemma 2. ∀γ ∈ ∏
x∈X D̂M.

∑
σ∈Σ∗ oc(nc(γ, σ)) ≤ ∑

x∈X

∑
n∈N

tr((γ)x,n).

Proof. From the trace condition of quantum branching monad, we can assume
that ∑

x∈X

∑

n∈N

tr((c(x))m,n(ρ)) ≤ tr(ρ),∀m ∈ N,∀ρ ∈ DMm.

If ∃ρ ∈ DMm,
∑

x∈X

∑
n∈N

tr((c(x))m,n(ρ)) > tr(ρ), let ρ′ = ρ
tr(ρ) ∈ DMm

and from linearity of quantum operations we can get
∑

x∈X

∑

n∈N

tr((c(x))m,n(ρ′)) > 1,

which is a contradiction with the trace condition. Combing the definitions of nc

and oc, we can get
∑

x∈X

∑

n∈N

∑

a∈Σ

tr((nc(γ, a))x,n) + oc(γ) ≤
∑

x∈X

∑

n∈N

tr((γ)x,n).

With this inequality, the lemma can be easily proved by using mathematical
induction on the length of σ.

Theorem 1. ∀ρ ∈ DMm.
∑

σ∈Σ∗ Ps,c(σ, ρ) ≤ tr(ρ) ≤ 1.

Proof. The proof follows Lemmas 1 and 2.

In the case of RQS, since after receiving a finite prefix of the input sequence,
the system may transform into some density matrix in the final state

√
,

we need to record density matrices at
√

. Thus, a configuration of the RQS
(X, s : 1 → X, d : X → Q(1 + XΣ)) can be represented by an element
γ in the convex set

∏
x∈X∪{√} D̂M. The corresponding F -coalgebra CFs,d =

(
∏

x∈X∪{√} D̂M, 〈nd, od〉) is defined as follows where x ∈ X and a ∈ Σ:

(nd(γ, a))x,n =
∑

m∈N

∑

x′∈X

(d(x′)(a, x))m,n((γ)x′,m)

(nd(γ, a))√
,n = (γ)√

,n +
∑

m∈N

∑

x∈X

(d(x)(
√

))m,n((γ)x,m)

od(γ) =
∑

n∈N

tr((γ)√
,n)
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Lemma 3. With an initial density matrix ρ ∈ DMm, we have the initial con-
figuration

(γ0)x,n = (s(x))m,n(ρ)
(γ0)√

,n = 0

and for σ ∈ Σ∗,

(tracks,d(σ))m,n(ρ) =
∑

k∈N

∑

x∈X

(d(x)(
√

))k,n(n(γ0, σ))

Ps,d(σ, ρ) = od(nd(γ0, σ)) ≤ 1.

Proof. It can be proved by using the definition of the trace semantics and the
mathematical induction.

5 Final Coalgebra and Bisimulation

For a functor T , a T -coalgebra ω : Ω → TΩ is called a final coalgebra if it
is a final object in the category of T -coalgebras and T -homomorphisms. The
final coalgebra ([0, 1]Σ

∗
, 〈nf , of 〉) exists for the functor FX = XΣ × [0, 1], where

of (β) = β(〈, 〉) and nf (β)(a)(σ) = β(aσ). From any F -coalgebra (X, 〈n, o〉)
the unique behavior map b : X → [0, 1]Σ

∗
assigns to each state its behavior

b(x)(σ) = o(n(x, σ)) and makes the following diagram commute:

X [0, 1]Σ
∗

XΣ × [0, 1] ([0, 1Σ∗
])Σ × [0, 1]

b

〈n, o〉 〈nf , of 〉

bΣ id

We now come to the observational equivalence relationship for F -coalgebras.
In coalgebra theory, there are two well-know notions of observational equivalence:
bisimulation and behavioral equivalence. A bisimulation between two systems is
intuitively a relation between their states together with a transition structure
on it, while behavioral equivalence shows that two states can be mapped into
the same state in another F -coalgebra by F -homomorphisms.

It has been demonstrated in [20] that, for the quantum branching monad
Q, Q-bisimulation and behavioral equivalence do not coincide. However, for the
functor F defined in (1), F -bisimulation coincides with behavioral equivalence.

Theorem 2. Given two F -coalgebras (X, 〈nX , oX〉) and (Y, 〈nY , oY 〉), x ∈ X
and y ∈ Y are F -bisimlar iff they are behaviorally equivalent.

Proof. (⇒) If x and y are F -bisimilar, there is a F -coalgebra (R, 〈nR, oR〉)
where R ⊆ X × Y such that the projection functions π1 : R → X and
π2 : R → Y are F -homomorphisms and (x, y) ∈ R. Let bX , bY , bR be the behav-
ioral maps from (X, 〈nX , oX〉), (Y, 〈nY , oY 〉), (R, 〈nR, oR〉) to the final coalgebra
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([0, 1]Σ
∗
, 〈nf , of 〉). Due to the uniqueness of the behavior map, bX ◦ π1 = bR =

bY ◦ π2. Thus bX(x) = bX ◦ π1(x, y) = bY ◦ π2(x, y) = bY (y).
(⇐) If x and y are behaviorally equivalent, we have bX(x) = bY (y). Let

R′ = {(u, v)|bX(u) = bY (v)}. Since bX and bY are both F -homomorphisms,
if bX(u) = bY (v), we have oX(u) = oY (v) and bX(nX(u)) = bY (nY (u)). Let
nR′(u, v) = (nX(u), nY (v)) and oR′(u, v) = oX(u) = oY (v). Then we have that
R′ is a F -bisimulaiton.

Theorem 3. Let (X1, 〈n1, o1〉) and (X2, 〈n2, o2〉) be two F -coalgebras. Two
states x1 ∈ X1 and x2 ∈ X2 are behaviorally equivalent, iff they are mapped
into the same state in the final coalgebra ([0, 1]Σ

∗
, 〈nf , of 〉).

Proof. (⇐) By definition.
(⇒) If x1 and x2 are behaviorally equivalent, then there exists a F -coalgebra

(X3, 〈n3, o3〉) and two F -homomorphism f : X1 → X3 and g : X2 → X3 with
f(x1) = g(x2). Since ([0, 1]Σ

∗
, 〈nf , of 〉) is the final coalgebra, there exists a

unique behavioral map b from (X3, 〈n3, o3〉) to ([0, 1]Σ
∗
, 〈nf , of 〉). Due to the

uniqueness of the behavior map b, b ◦ f and b ◦ g should be the behavioral maps
from (X1, 〈n1, o1〉) and (X2, 〈n2, o2〉) to the final coalgebra ([0, 1]Σ

∗
, 〈nf , of 〉).

Thus, b ◦ f(x1) = b(f(x1)) = b(g(X2)) = b ◦ g(x2).

Theorem 4. Given two QLTSs (X1, s1, c1) and (X2, s2, c2) with the same alpha-
bet and their corresponding F -coalgebras CFs1,c1 and CFs2,c2 , if traces1,c1 =
traces2,c2 then for any density matrix ρ ∈ DMm, the corresponding initial con-
figurations (γ0)x,n = (s1(x))m,n(ρ), x ∈ X1 and (γ′

0)x,n = (s2(x))m,n(ρ), x ∈ X2

are behaviorally equivalent.

Proof. By definition.

Theorem 5. Given two RQSs (X1, s1, d1) and (X2, s2, d2) with the same
input alphabet and their corresponding F -coalgebras CFs1,d1 and CFs2,d2 , if
tracks1,d1 = tracks2,d2 then for any density matrix ρ ∈ DMm, the corresponding
initial configurations

(γ0)x,n = (s1(x))m,n(ρ), x ∈ X1

(γ0)√
,n = 0

(γ′
0)y,n = (s2(x))m,n(ρ), x ∈ X2

(γ′
0)√

,n = 0

are behaviorally equivalent.

Proof. By definition.

Theorem 6. Given a QLTS (X, s, c) with the corresponding F -coalgebra CFs,c

and a RQS (Y, t, d) with the corresponding F -coalgebra CFt,d, γ ∈ ∏
x∈X D̂M

and γ′ ∈ ∏
y∈Y ∪{√} D̂M are behaviorally equivalent iff their behavior are both

the empty map ε : ε(σ) = 0, σ ∈ Σ∗.
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Proof. (⇐) By definition.
(⇒) Let b (b′) be the behavior map from CFs,c (CFt,d) to the final coalgebra

([0, 1]Σ
∗
, 〈nf , of 〉). If b′(γ′) is not ε, there exists σ′ such that b′(γ′)(σ′) > 0. Since

b′(γ′)(σ′a) ≥ b′(γ′)(σ′), it is easy to get
∑

σ∈Σ∗ b′(γ′)(σ) > 1. If b(γ) = b′(γ′),
then

∑
σ∈Σ∗ b(γ)(σ) > 1, which is a contradiction with Lemma 2.

6 Simulation

Bisimulation relations require two bisimilar states to exhibit identical behavior.
On the contrary, simulation relations are pre-orders on the state space which
requires that whenever state y simulates state x, y can mimic all the behavior
of x and the reverse is not guaranteed.

Definition 8 (Löwner partial order). The order ≤ on the set DMm of den-
sity matrices is defined by: ρ1 ≤ ρ2 iff ρ2 − ρ1 is positive semi-definite.

The following definition provides two possible orders for quantum operations,
which is originally defined in [7].

Definition 9. Let Φ, Ψ ∈ QOm,n. There are two orders for quantum operations:

– Φ � Ψ if ∀ρ ∈ DMm, Φ(ρ) ≤ Ψ(ρ).
– Φ � Ψ if ∀ρ ∈ DMm, tr(Φ(ρ)) ≤ tr(Ψ(ρ)).

Note that � is a partial order and thus also a pre-order, while � is a pre-order.

Definition 10 (simulation for RQS). Let (X, s, d) and (Y, t, e) be two RQSs
with the same input alphabet Σ, for a ∈ Σ and m,n ∈ N:

– A forward simulation from (X, s, d) to (Y, t, e) is a function f : X → QY that
satisfies:

∑

x∈X

∑

k∈N

(f(x)(y))k,n ◦ (s(x))m,k � (t(y))m,n

∑

x′∈X

∑

k∈N

(f(x′)(y))k,n ◦ (d(x)(a)(x′))m,k �
∑

y′∈Y

∑

k∈N

(e(y′)(a)(y))k,n ◦ f(x)(y′)m,k

(d(x)(
√
))m,n �

∑

y∈Y

∑

k∈N

(e(y)(
√
))k,n ◦ (f(x)(y))m,k.

– A backward simulation from (X, s, d) to (Y, t, e) is a function f : X → Q(Y )
that satisfies:

(t(y))m,n �
∑

x∈X

∑

k∈N

(f(x)(y))k,n ◦ (s(x))m,k

∑

y′∈Y

∑

k∈N

(e(y′)(a)(y))k,n ◦ f(x)(y′)m,k �
∑

x′∈X

∑

k∈N

(f(x′)(y))k,n ◦ (d(x)(a)(x′))m,k

∑

y∈Y

∑

k∈N

(e(y)(
√
))k,n ◦ (f(x)(y))m,k � (d(x)(

√
))m,n
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If there exists a forward simulation (backward simulation) from (X, s, d) to
(Y, t, e), we denote (X, s, d) �F (Y, t, e) ((X, s, d) �B (Y, t, e)).

Definition 11 (weak simulation for RQS). By replacing the order � with �
in the inequations in Definition 10, we can get the corresponding notion of weak
forward (backward) simulation from (X, s, d) to (Y, t, e), denoted (X, s, d) �F

(Y, t, e) ((X, s, d) �B (Y, t, e)).

Definition 12 (forward/backward morphism). For two F-coalgebras
(U,α : U → FU) and (V, β : V → FV ), a forward morphism h : α → β
with respect to a simulation preorder ≤ is a homomorphism from U to V such
that Fh · α ≤ β ·h. Dually, h is called a backward morphism if β · h ≤ Fh ·α.

Theorem 7. Given two RQSs (X, s, d) and (Y, t, e) with the same alpha-
bet and their corresponding F -coalgebras CFs,d = (

∏
x∈X∪{√} D̂M, 〈nd, od〉)

and CFt,e = (
∏

y∈Y ∪{√} D̂M, 〈ne, oe〉), if (X, s, d) �F (Y, t, e) ((X, s, d) �B

(Y, t, e)), there exists a forward (backward) morphism from CFs,d to CFt,e.

Proof. If (X, s, d) �F (Y, t, e), there exists a forward simulation f : X → Q(Y )
from (X, s, d) to (Y, t, e). We define the function f :

∏
x∈X∪{√} D̂M →

∏
y∈Y ∪{√} D̂M as:

(f(γ))y,n =
∑

x∈X

∑

k∈N

(f(x)(y))k,n((γ)x,k), (f(γ))√
,n = (γ)√

,n.

Let (g, r), (g′, r′) ∈ (
∏

x∈X∪{√} D̂M)Σ × [0, 1]. We define (g, r) ≤ (g′, r′) if for
any a ∈ Σ, (g(a))x,n ≤ (g′(a))x,n, (g(a))√

,n ≤ (g′(a))√
,n and r ≤ r′. It is easy

to verify this order is a pre-order and f is a forward morphism from CFs,d to
CFt,e. Analogously, if (X, s, d) �B (Y, t, e), we can find a backward morphism
from CFs,d to CFt,e.

Theorem 8. Given two RQSs (X, s, d) and (Y, t, e) with the same alpha-
bet and their corresponding F -coalgebras CFs,d = (

∏
x∈X∪{√} D̂M, 〈nd, od〉)

and CFt,e = (
∏

y∈Y ∪{√} D̂M, 〈ne, oe〉), if (X, s, d) �F (Y, t, e) ((X, s, d) �B

(Y, t, e)), there exists a forward (backward) morphism from CFs,d to CFt,e.

Proof. The proof is similar to Theorem 7 except for the simulation order. Let
(g, r), (g′, r′) ∈ (

∏
x∈X{√} D̂M)Σ × [0, 1] and here we define (g, r) ≤ (g′, r′) if

for any a ∈ Σ, tr((g(a))x,n) ≤ tr((g′(a))x,n), tr((g(a))√
,n) ≤ tr((g′(a))√

,n) and
r ≤ r′.

7 Conclusion and Future Work

In this paper we propose the notion of reactive quantum system as a variant of
QLTS, and provide a unifying coalgebraic semantic framework for both QLTS
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and RQS. In fact, the coalgebraic models for QLTS and RQS have the same
behavior shape captured by the functor F = −Σ × [0, 1], for which the final
coalgebra exists. Then we define the general notions of behavioral equivalence,
bisimulation and simulation, with which we can compare the similarity of differ-
ent quantum systems.

Besides QLTS and RQS, several other formalisms of quantum systems, such
as quantum Turing machine [19], quantum process algebra [28] and quantum
Markov decision processes [29], have been investigated in literature. On the other
hand, a coalgebraic semantics of closed quantum systems has been proposed in
[21]. One possible future work is to integrate more types of quantum systems into
the unifying coalgebraic framework, then we can explore the relations between
them coalgebraically.
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Abstract. This paper proposes a term-level generalized symbolic tra-
jectory evaluation (GSTE) to tackle parameterized hardware verifica-
tion. We develop a theorem-proving technique for parameterized GSTE
verification. In our technique, a constraint is associated with a node in
GSTE graphs to specify reachable states. Generalized inductive relations
between nodes of GSTE graphs are formulated; instantaneous implica-
tions are formalized on edges of GSTE graphs. Based on these formaliza-
tion, parameterized GSTE are verified. We moreover formalize our tech-
niques in Isabelle. We demonstrate the effectiveness of our techniques in
case studies. Interestingly, subtleties between different implementations
of FIFOs are discovered by our parameterized verification although these
circuits have been extensively studied previously.

1 Introduction

Symbolic trajectory evaluation (STE) is an efficient formal hardware verification
method which combines multi-valued simulation and symbolic simulation [1].
As a traditional simulator, it computes the result of executing a circuit from
concrete Boolean test vectors as inputs. As a symbolic simulator, it computes
symbolic expressions for circuits from arbitrary inputs. As a model checker, STE
automatically checks a simple temporal logic formula for arbitrary inputs. The
seamless connection between simulation and verification of STE is crucial to its
success in industry [2].

Generalized STE (GSTE) extends STE so as to check properties over
unbounded time [3,4]. It enhances the expressiveness of STE by GSTE asser-
tion graphs. GSTE assertion graphs can specify any ω-regular properties. The
complexity of GSTE algorithms however increases drastically due to fix-point
computation. At Boolean level, a unique parameterization algorithm based on
Binary Decision Diagrams (BDDs) builds canonical quaternary assignments to
compute reachable states [3]. Both STE and GSTE have been implemented in
the FORTE tool [5].
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Many more hardware designs are done at term level. Hardware verification
techniques have to be lifted up to term level as well. Yet many term-level hard-
ware designs are parameterized in essence. Such parameterized circuit designs
hence pose a challenging verification problem. When parameterized circuits are
under verification, one wishes to demonstrate desired properties should hold for
every instances of the circuits. Classical model checking however only verifies an
instance of the given parameterized circuit at one run. It is not at all clear how
to lift the classical technique to parameterized verification.

In this paper, we extend GSTE to parameterized circuit designs. We first
define extended GSTE for parameterized circuits. We then propose a verification
technique to perform extended GSTE. The main contributions of this paper are
as follows:

– We propose a GSTE framework to model and specify parameterized circuits at
term level. The key idea is to introduce uninterpreted functions and predicates
to abstract unimportant details during parameterized verification.

– We develop a general proof method to parameterized GSTE verification. We
associate each node in GSTE graphs with a constraint. These constraints
specify reachable states up to the node. We formulate a generally inductive
relation between nodes. We also formalize instantaneous implications over
all edges based on constraints associated at their sources. Combining the
inductive relation and instantaneous implication, we are able to prove GSTE
specifications on parameterized circuits.

– Our techniques are formalized and certified in the proof assistant Isabelle [6].
We therefore provide a theorem-proving technique for parameterized verifi-
cation on hardware designs.

– We demonstrate the effectiveness of our techniques by case studies on param-
eterized verification of data-dominated circuits such as FIFOs and dynamic
shift memories. Interestingly, we reveal subtle differences between the two
implementations of FIFOs and a boundary case condition of shift-register
FIFO. Although these designs have been extensively studied previously, these
subtitles have not been discovered to the best of our knowledge.

2 A Motivating Example

For example, we use a very simple example, a parameterized counter to show
the hardness of parameterized circuit.

The variable last records the current value of the counter, and it is reset after
the signal rst. last increases if it is less than LAST , and will be rest again if
it is equal to LAST , where LAST is a parameter. For such a counter, a simple
property in parameterized form can be easily formulated: the counter is reset at
time 0, the output dout is n− 1 for any time point n for any n < LAST . Such a
property can be formulated as a parameterized GSTE graph, as shown in Fig. 2,
where both index i and LAST are symbolic constants. We also use the dash line
to informally indicate the symbolic essence of the parameterized verification.
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module counter(clock,rst,d);
parameter LAST = 3;
parameter MSBD = 1;
input clock;
input rst;
output [MSBD:0] dout;
reg [MSBD:0] last;
always @ (posedge clock)
begin

if (rst)
last= 0; end

else begin
if (last =LAST) then last=last +1;
else last=0 ;
end

end // always @ (posedge clock)
assign dout = last;
endmodule // counter

Fig. 1. A simple counter

Classical GSTE/STE (or most simulation/MC) techniques can only handle
bound model and property, namely, we must fix the parameter LAST and MSB,
then we can use GSTE/STE to verify that the bound model satisfies the bound
property. The circuit model in Fig. 1 and the GSTE assertion graph in Fig. 3 are
special instances of the parameterized counter circuit and parameterized GSTE
graph respectively with the settings LAST = 3 and MSBA = 1. Note that
all indexes of vertexes are fixed value and we use a concrete line to informally
indicate the concrete essence of the bound verification. The concrete GSTE veri-
fications for a different setting of parameters of counter have to be done again. In
the context of parameterized verification, parameters like LAST are not needed
to be fixed, and require that a GSTE graph instance should hold for an according
circuit instance by instantiating these parameters with an arbitrary value LAST ,
where it is symbolic. Intuitively the gap from concrete verification to parame-
terized verification should be bridged easily, but it is surprisingly difficult to
come up with a formal correctness argument for parameterized correctness of
the simple counter manually.

Besides, practical GSTE/STE tool Forte [7] works in a netlist model (EXLIF)
and specifies circuits in trajectory evaluation logic, which is essentially at low
level. For instance, for the counter circuit in Fig. 3, the consequent dout = 0
must be a Boolean formula such as dout0 = false and dout1 = false, where
douti(i ∈ {0, 1} is one node bit of signal dout. Note thatwe can’t write dout = 0
directly. In netlist based model, a bit is the basic unit in verification.Such a low
level model and specification is difficult to be applied in high level verification
of circuits like in Fig. 3, let alone parameterized verification of circuits.

Because a term instead of a bit is the basic unit at high level parameterized
verification of circuits, which may be a concrete integer, or a symbolic constant
of unbound integer variable like last, or function expressions such as last+1, or
array elements which model memories, and all these features are not available in
netlist based model and specification, we must establish new circuit model and
specification for STE/GSTE high level circuit verification in a parameterized
way.
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0 1
reset/chaos !reset/dout=0 !reset/dout=i-1

LAST+1i+1i

!reset/dout=LAST

Fig. 2. Parameterized GSTE graph of a parameterized counter

0 1
reset/chaos !reset/dout=0 !reset/dout=1

432

!reset/dout=2

!reset/dout=3

Fig. 3. A bound GSTE assertion graph of a bound counter with LAST = 3

3 An Extended GSTE Theory at Term Level

3.1 A Term-Level Circuit Model

We work in the context of hardware circuits, which usually are connected by
wires, which we call nodes. We usually refer to some index or some value, which
ranges from 0 to N ; We explicitly let the number of nodes N vary, and we
also allow a symbolic index i of type natural number; all these make the circuit
parametric. Let N be the set of natural numbers, I be the set of all symbolic
indexes. We consider the semantic domain D = {X, false, true,�} ∪ N ∪ I. The
semantic domain D forms a lattice where X and � are the bottom and top
elements respectively. Notice that the natural number constants can either be
concrete (e.g., 0, 1) or symbolic (e.g., i, k). Allowing natural symbolic constants
is the most important features in our extended GSTE work which are different
from classical Boolean-level GSTE work.

We list the various syntactic categories and give a meta-variable that will be
used to range over each category.There are three kinds of variables: (1) simple
identifier, denoted by a string; (2) element of an array, denoted by a variable
followed by an constant index. Notice that an index can be either concrete or
symbolic.A symbolic index is the essential feature in parameterized verification;
(3) field of a record, denoted by a variable followed by a string.

c ::= | n | true | false | X | �
v ::= a | v[n] | v.a
e ::= v | c | f?e1 : e2 | Uif(a, es)
f ::= e1 = e2 |!f1 | f1 Bop f2 | Uip(a, es) | Chaos | Miracle

A simple expression is either a variable v or a constant c, while a compound
expression is constructed with the ite (if-then-else) form f?e1 : e2, uninterpreted
function called Uif(opr, es), where opr is a string to identify the operator and es a
list of expressions. A formula can be an atomic formula or a compound formula.
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An atomic formula can be a constant chaos, or miracle, or just a Boolean variable,
or an equivalence formula e1 = e2, or an uninterpreted predicate Uip(opr, es).
A formula can also be constructed from formulas using the logic connectives,
including negation (!), binary connectives Bop such as conjunction (&), disjunc-
tion (|), implication (−→).

In this work, a circuit is just a statement. We regard them to be the same.

S ::= Parallel([vi := ei]ni=1) | IF f THEN S1 ELSE S2

An assignment assigns an expression e to a variable x, and is abbreviated
as x := e. A statement S is either a set of parallel assignments Parallel [x1 :=
e1, ; ..., xk := en] , which is abbreviated as x1 := e1; ...;xk := ek, or a conditional
statement IF f THEN S1 ELSE S2. Specially, Parallel [] is denoted by Skip.

For convenience, we define case expressions and case statements as follows:

caseE([f1 → e1, f2 → e2, · · · , fn → en])end ≡
f1?e1 : (f2?e2 : · · · (fn?en : X)) · · · )

caseS([f1 → S1, f2 → S2, · · · , fn → Sn])end ≡
IF f1 THEN S1 ELSE · · · IF fn THEN Sn ELSE Skip

caseE ges and caseS gSs are switch-case expressions and statements respec-
tively, where ges and gS are lists of guarded expressions and statements. In
our modelling language, index is only a natural number. In order to model
mem[e] in the left and right side of an assignment in Verilog. We define:
read(a, n, e) ≡ caseE([e = i → a[i]]ni=0)end;
write(a, n, le, re) ≡ caseS([le = i → a[i] := re]ni=0)end.

Example 1. Let us model the counter circuit in Fig. 2. LAST is a symbolic
parameter of natural number:

S1 ≡ last := 0;

S2(LAST ) ≡ tail := (last = LAST )?0 : Uif(“ + ”, [tail, 1]);

counter(LAST ) ≡ CaseS[rst = H → S1,!rst = H → S2(LAST )]end

3.2 GSTE Graph

Definition 1. An assertion graph is a five-tuple G(N) ≡ (V (N), init,
E(N), ant(N), cons(N)), where V (N) is a set of vertices containing a vertex
init which is called the initial vertex; E(N) is a set of edges. Each edge is a
pair of vertices. Finally, ant(N) and cons(N) are two functions from edge to
formula. ant(N)(e) is the antecedent of e, cons(N)(e) the consequent of e. For
an edge e = (n1, n2), we define source(e) ≡ n1, and sink(e) ≡ n2

In Definition a vertex represents a symbolic state which can be reached from
the initial vertex, and an edge a symbolic transition. The antecedent of the
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edge formulates the stimulus enforced to the input nodes of the circuit, and
the consequent of the edge specifies the values expected on circuit nodes as a
response.

However, notice that the assertion graph can be parameterized, namely, either
the number of the nodes or those of the edges the graph can be a parameter,
or a symbolic one. This is the most important feature which distinguishes our
semantic theory from the classical GSTE theory. Figure 4 formalizes a parame-
terized assertion graph for the parameterized counter where LAST are symbolic
parameters, while Fig. 2 intuitively depict the parameterized graph.

vertexL(LAST ) ≡ [0, · · · , LAST + 1]
edgeL(LAST ) ≡ (LAST + 1, 1)#[(i, i + 1).0 ≤ i ≤ LAST ]
antOfConuter(LAST )(e) ≡

let from = source(e) in let to = sink(e) in
if (from = 0) then rst = H else !rst = H

consOfCounter(LAST )(e) ≡
let from = source(e) in let to = sink(e) in
(if (from = 0) then chaos else to − 1

CounterGsteSpec(LAST ) ≡ (0, vertexL(LAST ), edgeL(LAST ), antOfFifo(LAST ), consOfFifo(LAST ))

Fig. 4. Parameterized counter GSTE graph

3.3 Semantics

A circuit state s is an instantaneous snapshot of a circuit behavior given by an
assignment of values to variables. In order to deal with parameterized verifica-
tion, we allow both value and variable can be symbolic. A state sequence assigns
a state to a time point. Here we still use a natural number t to define the type
time. Thus, a state sequence is a mapping from time to a state.

A function f in our semantic domain is one mapping from a list of values
to a value. An interpretation I of an operator opr is a mapping from opr to a
function. Formal semantics of expressions and formulas at a state s w.r.t. an
interpretation I, are given in Table 1.

For convenience, we define tautology(I, f) ≡ ∀s.s |=I f , and write tautology

I f as |=I f . Next we formally define a state transition s
I,S→ s caused by a

statement S. Rule Par − 1 defines a skip transition of an NIL assignment list;
Rule Par − 2 a state update to s′ which replaces v with an evaluation of e at
state s under interpretation I, where s′ is the result state from s after assignment
asgn is executed, note that we use [[e]]Is instead of [[e]]Is′ , thus all assignments
in (v := e)#asgn are executed in parallel; Rule IF − 1 and IF − 2 defines the
semantics of IF statement: the former says that S1 branch is executed if b is
satisfied; the latter says that branch S2 is executed otherwise.

Definition 2. We define the set of trajectories of a circuit M :[M ]I under an
interpretation I inductively: (1) [] ∈ [M ]I; (2) [s] ∈ [M ]I; (3) (s#s′#sq) ∈
[M ]I ≡ (s

I,M→ s′ ∧ s′#sq ∈ [M ]I)
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Table 1. Sematic of expressions and for-
mulas

Table 2. Sematics of statements

Definition 3. A list of edges p is one of the set of all the paths of G ≡
(V, init, E, ant, cons), denoted by pathOf(G), if and only if (1) [] ∈ pathOf(G) or
(2) e#es ∈ pathOf(G) ≡ e ∈ E ∧ es ∈ pathOf(G) ∧ (es = [] ∨ source((hd(es)) =
sink(e))

Usually we consider a path starting from the initial node of a GSTE graph,
and call it a GSTE path. Namely, we define: p ∈ gstePath(G) if p ∈ pathOf(G)∧
(p 
= [] −→ source(hd(p) = init)). E.g., [(0, 1), (1, 2), (2, 3)] is a GSTE path in
Fig. 3.

Definition 4. A state sequence sq satisfies a path p under a mapping ρ from
edges to assertions if and only if the following conditions are satisfied: (1) [] |=ρ

I

es (2) sq |=ρ
I

[] (3) s#sq |=ρ
I

e#es ≡ sq |=ρ
I

es ∧ s |=I ρ(e)

Now we can define the semantics of an assertion graph: a circuit M satisfies
the specification formalized in an assertion graph under an interpretation.

Definition 5. A circuit M satisfies an assertion graph G = (V, init, E,
ant, cons) under an interpretation I, written M �I G, if for any state sequence
sq s.t. sq ∈ [M ]I, any path p s.t. p ∈ gstePath(G), sq |=ant

I
p implies sq |=cons

I
p.

4 Proving Assertion Graphs

In this section, we will introduce our main techniques which can be used to prove
M �I G. In order to do this, we need some preliminary definitions.



410 Y. Li and B. Wang

Definition 6. Let [xi �→ ei]ni=1 denote a list of substitutions. Define

c[xi �→ ei]ni=1 = c

y[xi �→ ei]ni=1 =
{

ei if y = xi for some i
y otherwise

f?e1 : e2[xi �→ ei]ni=1 =
f [xi �→ ei]ni=1?e1[xi �→ ei]ni=1 : e2[xi �→ ei]ni=1)

Uif(fn, t1, t2, . . . , tk)[xi �→ ei]ni=1 =
Uif(fn, t1[xi �→ ei]ni=1, t2[xi �→ ei]ni=1, . . . , tk[xi �→ ei]ni=1)

Substitutions for formulas are defined similarly.

(t = t′)[xi �→ ei]ni=1 = t[xi �→ ei]ni=1 = t′[xi �→ ei]ni=1

(!f)[xi �→ ei]ni=1 = !f [xi �→ ei]ni=1

(f&f ′)[xi �→ ei]ni=1 = f [xi �→ ei]ni=1&f ′[xi �→ ei]ni=1

(f | f ′)[xi �→ ei]ni=1 = f [xi �→ ei]ni=1 | f ′[xi �→ ei]ni=1

(f −→ f ′)[xi �→ ei]ni=1 = f [xi �→ ei]ni=1 −→ f ′[xi �→ ei]ni=1

Uip(pn, t1, t2, . . . , tk)[xi �→ ei]ni=1 =
Uip(pn, t1[xi �→ ei]ni=1, t2[xi �→ ei]ni=1, . . . , tk[xi �→ ei]ni=1)

Miracle[xi �→ ei]ni=1 = Miracle
Chaos[xi �→ ei]ni=1 = Chaos

e[xi �→ ei]ni=1 substitutes each occurrence of vi in e by ei; while f [xi �→
ei]ni=1 substitutes each occurrence of vi in f by ei. Basing on the substitution to
expressions and formulas, we define the so-called the weakest precondition and
pre-expression:

Definition 7. The weakest precondition of a property f w.r.t. a statement and
the pre-expression of an expression e w.r.t. a statement are defined as follows:

preCond(f, Parallel[xi := ei]ni=1) = f [xi �→ ei]ni=1

preCond(f, IF b THEN S1 ELSE S2) =
b −→ preCond(f, S1) ∧ ¬b −→ preCond(f, S2)

preExp(e, Parallel[xi := ei]ni=1) = e[xi �→ ei]ni=1

preExp(e, IF b THEN S1 ELSE S2) =
b?preExp(e, S1) : preExp(e, S2)

4.1 General Induction

A tag function μ assigns a formula to a vertex n. Namely μ(n) stands for con-
straint specifications for states which are represented by n. Given a tag function
μ to nodes, and a state sequence sq, a path p, we define a function sq �I

μ p, which
specifies that sq and p have the same length, and sqi satisfies μ(source (pi)) for
any i s.t. 0 ≤ i < |sq|. Here sqi denotes the i-th element of sq.
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Fig. 5. An intuitive explaining of Example. 2

Definition 8. Given a tag function μ to nodes, and a state sequence sq, and
an interpretation I, we define sq �I

μ p where (1) [] �I

μ [] (2) s#sq �I

μ e#p ≡
sq �I

μ p&s |=I μ(source(e))

Intuitively, a tag function of a node n in a GSTE graph G represents a formula
to characterize the reachable states at n after transitions specified transitions
given by paths of G each of which starts from the initial vertex to n. Let us
define a generally inductive relation:

Definition 9. Let G = (V, init, E, ant, cons) be an assertion graph, M be a
circuit. G is called to be generally inductive w.r.t. M under an interpretation I

if the following condition holds: induct(G,M,μ, I) if and only if for all e ∈ E, for
any s, s |=I ant(e) and s |=I μ(source(e)), implies s |=I preCond(μ(sink(e)),M).

Example 2. We define μ to be a tag function for the counter specification where
LAST > 0 shown in Fig. 4 s.t. (1) μ(0) = Chaos; (2) ∀i.0 ≤ i ≤ LAST , μ(i+1) =
last = i.

Figure 5 illustrates the tag function in Example 2. Each tag function of a ver-
tex formalizes its state in a symbolic way, namely a formula containing symbolic
constant i or LAST .

In order to illustrate Definition 8 further, we need interpret the meaning of
“+” operator occurring in the statements. Let us use only two axioms to specify
I on the addition and subtraction operators:

Definition 10. axiomOnAdd: I(“ + ”)([i, 1]) = (i + 1)

Here axiomOnAdd models the addition operation of 1 to an operand i.

Example 3. According to the definition of μ in Example 2 and Definition 10,
where 0 < LAST . Let M = counter(LAST ). We have induct(G,M,μ, I). Because

1. for e = (0, 1), for any s, s |=I preCond(μ(sink(e)),M) if and only if s |=I 0 = 0.
2. for e = (i + 1, i + 2) s.t. 0 ≤ i < LAST − 1, for any s, s |=I last = i

and s |=I!rst = H, implies s |=I last + 1 = i + 1 which also implies s |=I

preCond(μ(sink(e)),M);
3. for e = (LAST + 1, 1), for any s, s |=I last = LAST and s |=I!rst = H,

implies s |=I 0 = 0 which also implies s |=I preCond(μ(sink(e)),M);
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Here the generally inductive relation means that characterization of the tag
function μ to nodes can be preserved under the sequential behaviors (or transi-
tion relation) defined by an edge e of the graph G = (V, init, E, ant, cons), where
ant(e) is the stimuli of the transition. Namely, For an edge e = (n, n′) ∈ E, if

s |=I μ(n), and s |=I ant(e), and s
I,M→ s′, then s′ |=I,M μ(n′).

Lemma 1. Let G = (V, init, E, ant, cons) be an assertion graph, M be a cir-
cuit, and induct(G,M,μ, I), for any edge e ∈ E, for any state s, if s |=I

ant(e)&μ(source(e)) and s
I,M→ s′, then s′ |=I μ(sink(e)).

Circuit Model M

Assertion Graph G

h h

ant e

ant e

n

n’

μ(n) μ(n’)

h

s’
s

Fig. 6. GSTE graph M is an abstraction of the state space of M under the tag func-
tion µ

Remark 1. In fact, Lemma 1 shows the intuition behind the tag function μ and
the generally inductive relation, which reveals the simulation relation from an
assertion graph G to state space of the circuit model M , as shown in Fig. 6.
Notice that μ(n) clusters a set of states. Here we can regard G as a high-level
transition system, where an edge e is a transition from a node n to another one
n′ under a stimulus labeled by ant e. The edge e simulates any transition form
s to s′ under a stimulus ant e, where s ∈ μ(n) and s ∈ μ(n′). In the other side,
basing on the function μ, we can naturally derive an abstraction function h from
a state s to a node n which is not the initial node of G s.t. h s is the unique
node n such that s ∈ μ(n) and n 
= initial G. In this sense, the subgraph of G,
which excludes the initial node of G, is an abstraction of behaviours of the state
space of M .

Consider a path p of a GSTE-graph G and a trajectory of a circuit M such
that induct(G,M,μ, I), if sq |=ant

I
p , which means that each state of sq satisfies

the stimulus constraint posed by the antecedent of G, then sq �I

μ p.

Lemma 2. Let G = (V, init, E, ant, cons) be an assertion graph, M be a circuit.
If induct(G,M,μ, I), and for any state sequence sq s.t. sq ∈ [M ]I, for any path p
s.t. p ∈ pathOf(G), if hd(sq) |=I μ(source(hd(p))), and sq |=ant

I
p, then sq �I

μ p.

Example 4. Let sq is a state sequence with length LAST + 3 and p is a path
length LAST + 2 in Fig. 5 s.t. (1) sq1 = [last �→ 0]; (2) sq1+i = [last �→ i],
where 0 < i ≤ LAST ; (3) p0 = (0, 1), (4) pi = (i, i + 1), where 0 < i ≤ LAST
Notice that we need not specify anything about sq0. We can check sq |=ant

I
p,

thus sq �I

μ p.
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4.2 Instantaneous Implication

Before we give our main theorem, we define a predicate which formalizes the
instantaneous characterization decided by a combinational part of a circuit.

Definition 11. Let G = (V, init, E, ant, cons) be an assertion graph.
instImply(G,μ, I) if and only if for all e ∈ E, for all states s, s |=I ant(e) and
s |=I μ(source(e)), implies s |=I cons(e).

Lemma 3. Let G = (V, init, E, ant, cons) be an assertion graph, M be a circuit.
If induct(G,M,μ, I), and instImply(G,μ, I). For any state sequence sq s.t. [M ]I sq,
for any path p s.t. p ∈ pathOf(G), if hd(sq) |=I μ(source(hd(p))), and sq |=ant

I
p,

then sq |=cons
I

p.

If both the induction relation induct(G,M,μ, I) and the instantaneous impli-
cation instImply(G,μ, I) hold, and the initial vertex is assigned to chaos, then
M �I G.

Theorem 1. Let G = (V, init, E, ant, cons) be an assertion graph, M be a cir-
cuit. If there is a tagging function s.t. induct(G,M,μ, I), and instImply(G,μ, I),
and μ(init) = chaos, then M �I G.

We have formalize all the theory in an Isabelle theory file, paraGste.thy [8],
which has 1326 lines. In particular, we have formally proved all the lemmas and
the main theorem in Isabelle. Thus we have a sound and formal base to do
further case studies.

5 Case Studies

5.1 An Overview of Axiomatic Approach in Case Studies

Generally speaking, we need do the things in the case study as follows:

– We need interpret the semantics of uninterpreted function or predicate sym-
bols used in the case study by introducing axioms. Namely, an axiomatic
approach is adopted to formalize a semantic interpretation function J.

– We shall construct a tag function μ which maps a node in G to a formula.
Usually, the returned value of μ is a formula of conjunction of a list of for-
mulas. These formulas are obtained by the intuition of the design principle
of the circuit under design.

– We prove that induct(G,M,μ, J). That is to say, the inductive relation should
hold. Then we prove that instImply(G,μ, I). At last by the main theorem 1,
we can conclude M �I G.

Due to limitation of space, we only list the tag function μ, which are the
most creative part of all parts of the case study. Interesting readers can refer to
[8] for detailed Isabelle formalization and proofs.
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5.2 Verification of a Ring Buffer Based FIFO

In this section, we consider the verification of the ring buffer based implementa-
tion of FIFO, which is taken from the examples of VIS [9]. The FIFO is shown
in Fig. 7 (a) and the assertion graph is formalized in Fig. 7 (b). The head pointer
points to the insertion point unless the buffer is full, and the tail one points to
the first element in the queue unless the buffer is empty. On a push operation,
the data is put to the entry indexed by the head pointer which is then incre-
mented by 1 (modulo 3). On a pop operation, the data in the entry pointed by
the tail pointer is read out and the tail pointer is incremented by 1. Initially,
both pointers have value 0. A push on a full buffer is a NOOP. A pop from an
empty buffer is a NOOP too. If both push and pop are asserted at the same
clock cycle, only the push operation is performed. dout gives the first element
of the queue unless the buffer is empty, in which case its value is arbitrary. The
full is set when the tail pointer meets the head pointer from behind, indicating
that the FIFO is full.

(a) Structure of Ring Buffer Based FIFO

S1 ≡ head := 0; tail := 0; empty := H; full := L

S2(LAST ) ≡ Parallel ([tail := tailP lus; empty := L;
full := (head = tailP lus)?H : full]@
[mem[i] := (tail = i)?din : mem[i]]LAST

i=0 )

S3 ≡ head := headP lus; full := L;
empty := (headP lus = tail)?H : empty,
where headP lus = Uif(“ + ”)([head, 1])

rbFifo(LAST ) ≡ CaseS([rstE = H → S1,
push = H&!full → S2(LAST ),
pop = H&empty = L → S3])
end

(b) Formal model of Ring Buffer Based FIFO

Fig. 7. Ring buffer based FIFO

In Fig. 7(b), Branch 1 represents the resetting statement guarded by rst =
H. Branch 2 is the push action S2 guarded by push and !full signals, where
S2 is composed of parallel actions of increase of tail , assigning L to empty,
and assigning each mem[i] with a case expression (i = tail)?din : mem[i]) to
mem[i], and assigning din to mem[0]. Here we notice that mem[tail] := din
is transformed into a list of parallel assignments to each mem[i], among which
only the mem[i] is assigned by din if tail = i. Note that the execution of S2

causes only one update to one element of mem[i] such as i = tail. Less update
to storage element causes less power consumption. So ring buffer based FIFO is
more suitable for low-power computation environment such as mobile computing.
Branch 3 is the pop action S3 guarded by push and !full signals, where head is
increased with one if tail is 0 and full is set L and empty is set if headP lus is
equal to tail.
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Because operator “+” in rbF ifo with a parameter LAST is interpreted as
addition modulo to LAST +1, thus we use the following axiom to interpret “+”:

Definition 12. axiomOnAdd I(“ + ”)([i, 1]) = (i + 1)%(LAST + 1)

Next we define plusN(e, n) to be an expression that is adding e with n.

Definition 13. Definition of addition with n. (1) plusN(e, 0) ≡ e, (2) plusN(e,
(n + 1)) ≡ Uif(“ + ”, [plusN(e, n), 1])

The GSTE assertion graph with the tagging function is shown in Defini-
tion 14, which specifies the intuitive design principle of a ring-buffered FIFO.

Definition 14. We define μ to be a tag function for the Fifo specification where
LAST > 0 shown in Fig. 4 s.t.

– μ(0) ≡ chaos;
– μ(1) ≡ tail = head&empty = H&full = L;
– μ(2i + 1) ≡ tail = plusN(head, i)&empty = L&full = L, if 1 ≤ i ≤ LAST ;
– μ(2i + 2) ≡ tail = plusN(head, i)&empty = L&read(mem,LAST,

plusN(head, i − 1)) = D&full = L, if 1 ≤ i ≤ LAST ;
– μ(2 ∗ LAST + 3) ≡ tail = head&empty = L&full = H,
– μ(2 ∗ LAST + 4) ≡ tail = head&empty = L&full = H&read(mem,LAST,

plusN(head, LAST )) = D

Vertexes 0 is the initial node which is labelled with chaos, namely empty
constraints. Vertex 1 is the state after resetting or being popped as empty. For
all 1 ≤ i ≤ LAST , vertex (2i + 1) is a state that is neither empty nor full, and
maintains an invariant that tail = (plusN head i); vertex (2i+2) is a state that is
neither empty nor full, and maintains an invariant that tail = plusN(head, i−1),
and data is stored in mem[plusN(head, i−1)]. vertex 2∗LAST +3 is a state that
tail is the same as head, and the tag full is set. vertex 2 ∗ LAST + 4 is almost
the same as 2∗LAST +3 in addition to D is stored in mem[plusN(head, LAST ).
Notice that at vertexes 1 and 2∗LAST +3 and 2∗LAST +4, tail is the same as
head (because plusN(head, (LAST +1)) is equal to head under our interpretation
I which is specified in Definition 12. At vertex 1, empty signal is set, while at
vertex 2 ∗ LAST + 3 (or 2 ∗ LAST + 4) full sinal is set. At a state where the
queue is neither empty nor full, the number of elements is the difference between
tail and head then modulo to LAST + 1 (Fig. 8).
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Fig. 8. An intuitive explaining of Definition. 14

5.3 Experiment Results

Besides the ring buffer FIFO, we also do case study on shift register FIFO and
dynamic shift memory (also known as sequential shift) which are frequently used
in FPGA (Field-Programmable Gate Array) designs.

All of the proof scripts of the three case studies are based on a public theory of
parameterized GSTE paraGste.thy. We run Isabelle [6] to do proof checking of
the proof theories in a workstation with an Intel Xeon processor, 8 GiB memory
and 64-bit ubuntu 16.4. Experiment results are summarized in Table 3.

Table 3. Experiment results

theory lines Times

counter 202 8

srfifo 468 32

rbfifo 1388 49

dsmemory 475 8

paraGste 1326 22

In our experiment, we find a subtle differ-
ence between the shifting-register FIFO and
ring-buffer FIFO, the latter explicitly uses
a register variable full to indicate whether
the FIFO is full. Even when LAST = 0
(namely the depth of the FIFO is 1), the
FIFO still can be pushed into an element,
and full is set and empty is reset; then with
the data being popped out, the full is reset
and empty is set. At all the time, head will be equal to tail. However, the out-
put signal full of the shift register based FIFO is assigned by the expression
tail = LAST , the FIFO can’t be pushed into any element if LAST = 0. That
is to say, the shifting-register based design can’t implement an instance with
LAST = 0. So there is subtle difference between the two different kinds of
designs of FIFO.

Although the two kinds of FIFOs in concrete size have been verified many
times, our work has revealed the subtle difference between them, which has never
been known by previous work. Besides, from our result, we know that the design
of register shifting based FIFO is just correct when its length is greater than 1.
From this, we know the importance of the parameterized verification of hardware
design. Indeed, for the vast majority concrete size, a circuit design is correct.
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But it is not valid for a special size. The case studies further demonstrate the
novel features of our work.

6 Related Work

Techniques such as symbolic indexing and parametric representation of Boolean
constraints have been integrated into STE [1,10–12]. STE is also enriched
with lightweight theorem proving to have more expressive assertions through
a strongly typed higher-order functional programming language called FL [5].
These are all implemented in the tool Forte.

STE/GSTE has relatively limited exposure in academics [13–15]. The work
in [13] proposed an automatic abstraction algorithm for symbolic indexing. The
counterexample-guided abstraction refinement framework was developed in [14].
The work proposed an algorithm to identify causes of imprecision through coun-
terexamples from GSTE. It also developed two algorithms for model and speci-
fication refinements respectively. These algorithms are implemented in the tool
AutoGSTE. Symmetry reduction has been applied to GSTE in order to alleviate
the state explosion problem [15]. These work is all done at the Boolean level.

A word-level STE is developed to verify properties of System Verilog designs
recently [16]. The idea is to derive more abstract lattices from RTL descrip-
tions. The technique is essentially model checking via SMT. It does not consider
parameterized designs.

7 Conclusion

In this work, we extend GSTE to the term level and develop a framework for
parameterized hardware verification. We formalize assertion graphs and suffi-
cient conditions to verify parameterized designs in the proof assistant Isabelle.
Compared to Boolean-level STE/GSTE, our term-level assertion graphs give a
more concise abstraction of parameterized designs (Fig. 6). Using our method,
verifiers can get more insights to the correctness of parameterized hardware
designs through assertion graphs. In our case studies, we demonstrate how to
apply our method to identify subtleties in different designs of FIFOs.

In the future, we hope to extend our automatic proof technique [17] to auto-
mate the parameterized GSTE proof. The auxiliary invariants and the corre-
sponding dependency relations among the discovered invariants can be found
automatically. Besides, we will link our GSTE at term level with classical GSTE
at Boolean level. The key is to instantiate the parameterized GSTE assertion
graph with tagging functions, and an inductive invariants of an node will be fed
into an SMT-slover, and all the solutions will be computed, and the disjunction
of the concrete solutions will be transformed into bit level and tagged with the
nodes of GSTE graph at Boolean level. The linkage can make the GSTE at
Boolean level more efficient, which also can furthermore the correctness of the
bound low level netlist synthesized by EDA tool. We also want to link our work
with more advanced SMT-solver in order to make the verification more efficient.
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Abstract. The probabilistic µ-calculus (PµTL) is a simple and succinct
probabilistic extension of the propositional µ-calculus, by extending the
‘next’-operator with a probabilistic quantifier. We extend the approach
developed by Walukiewicz for propositional µ-calculus and provide an
axiomatisation of PµTL. Our main contributions are a sound axiom sys-
tem for PµTL, and a proof of its completeness for aconjunctive formulae.

1 Introduction and Summary

In the seminal paper [16], Kozen has introduced propositional μ-calculus, named
μTL, as an extension of modal logic with the least fixpoint operator μ. He also
investigated the axiomatisation of μTL, and presented an axiom system, inspired
by [24]. Kozen showed that his axiomatisation is sound, and also complete for a
subset of formulae, called aconjunctive formulae. In detail, it proves the negations
of all unsatisfiable aconjunctive formulae. Completeness for the full logic seems
to be rather intricate. Based on some deep investigations including [5,22,23],
it was finally proven in [27] by Walukiewicz after more than a decade. Tamura
[26] reformulated the proof by introducing wide tableaux and providing a more
suitable definition of a tableau consequence.

In this paper we consider the probabilistic extension of μTL. Semantics for
probabilistic programs have already been studied by Kozen in [15]. [22] have
proposed an expectation-based logic for reasoning about probabilistic programs.
Probabilistic CTL (PCTL), first introduced in [13], has gained popularity in
recent years [4]. There are long lines of research into the model checking problem
and satisfiability problem for PCTL* (and sublogics PCTL and PLTL), as in
[1,3,4,6,7]. Recently, in [11], a complex deductive approach for PCTL* was
introduced, which is however not complete.

Several probabilistic extensions of μTL have been studied, for example in
[2,14,19,20,22]. In [21], a different extension of μ-calculus was proposed by
Mio. He interpreted a formula as a function from states to real values in [0, 1].
The extension encodes full PCTL, however, model checking and satisfiability
c© Springer Nature Switzerland AG 2019
Y. Ait-Ameur and S. Qin (Eds.): ICFEM 2019, LNCS 11852, pp. 420–437, 2019.
https://doi.org/10.1007/978-3-030-32409-4_26
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algorithms are still unknown, as these calculi are known to be far from triv-
ial. Another probabilistic μ-calculus was introduced in [10] along with a model
checking algorithm for it. It is able to encode PCTL formulae as well. However,
the calculus only allows alternation-free formulae.

Recently, direct extensions of μTL have been introduced independently in [8]
and [18]. The logic PμTL in [18] uses the “next” operator X with a probability
bound p to replace the “existential-next” operator ♦ and the “forall-next” oper-
ator � (often parameterized with an action). The logic in [8] subsumes the one in
[18]. The model checking problem is studied in both papers, and the satisfiability
problem has been proven in [18] to be (at worst) double exponential. In [9], the
complexity is improved to single exponential, meeting the lower bound for the
satisfiability problem of μTL. Most recently, in [17], a probabilistic μ-calculus
incomparable with PCTL* is introduced. An axiom system is proven to be sound
and complete for its alternation-free fragment.

In this paper, we aim at establishing an axiomatisation for PμTL in [18].
Our approach is based on the work of [16,27]. The simple axioms 〈a〉f ∨ 〈a〉g ↔
〈a〉(f∨g) and 〈a〉f∧[a]g → 〈a〉(f∧g) suffice for μTL, but they do not suffice in the
probabilistic setting. A näıve extension is incomplete, as it cannot prove sophisti-
cated probability deductions such as X>0.7f ∧X>0.7g∧X>0.7h → X>0.1(f ∧g∧h).

Our first contribution is a sound axiom system. The main difficulty is to
prove a conjunction of formulae whose outermost operator is X. Satisfiability of
conjunctions of formulae gained by discarding the outermost X operator needs
to be taken into account. We introduce an extra inference rule (Ext) described
in cover notation. Axioms and inference rules for μTL are amended. We prove
that the axiom system is sound.

On completeness, let us first recall the three main proof steps in [27] for μTL:

1. The first step is a tableau construction proposed by Streett and Emerson [25].
The tableau captures satisfiability of a formula: one can construct a model
from a tableau of a satisfiable formula, and it was shown in [23] that if the
formula is unsatisfiable then one can construct for the formula a tableau-
like structure called a refutation. Parity games are introduced on tableaux.
Starting at the root node, two players (called Satisfier and Devil) choose one
child node in each step. A formula is satisfiable iff Satisfier has a winning
strategy in the corresponding parity game. The existence of refutations plays
an important role in the completeness proof.

2. The second step is a slight extension of Kozen’s argument in [16]. For a given
formula if there is a so-called thin refutation then its negation is provable.
Now, a (weakly) aconjunctive formula has the property that every refutation
for it is thin.

3. The third step is a reduction of an arbitrary formula to a special one. It cannot
be proven that there is a semantically equivalent aconjunctive formula f ′ such
that f → f ′ is provable for every formula f . Thus Walukiewicz introduced
the notion of disjunctive formulae in a way that it is easier to show that
the negation of an unsatisfiable disjunctive formula is provable. A technique
called tableau equivalence/consequence is proposed to establish the last step
of the proof.
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Our second contribution is to establish the first two steps above, proving
the completeness of PμTL on aconjunctive formulae. Tableaux/refutations and
games on them are adapted to match probabilistic formulae. A new type of nodes,
(cov) nodes, is added. We prove that a PμTL formula is satisfiable iff there is
a tableau, and there is a refutation iff it is not satisfiable. In non-probabilistic
tableau games, (mod) nodes are played by Devil to indicate satisfiability of a
conjunction of formulae whose outermost operator is 〈·〉 or [·]. Due to the com-
plexity of the probabilistic setting, it is refined into two levels. Each (mod) node
is played by Satisfier followed by (cov) nodes played by Devil. Finally, we show
that a formula is satisfiable iff Satisfier has a winning strategy.

Then we prove for a given PμTL formula with a thin refutation that its nega-
tion is provable. In our conservative extension, the concept thin still works, and
still a refutation of an aconjunctive PμTL formula is thin. We follow Kozen’s
argument in a converse negative way, introduce counters and assign a formula
on each node of the refutation. Counters record regeneration steps of the corre-
sponding variable in the tableau. We prove that on each path some counter gets
arbitrary big. It implies that there is a node equipped with a formula which can
be reduced to a propositional tautology. By tracing back to the root node, we
show the negation of the initial formula is provable.

The proof for the third step is quite involved, and it does not look like any
direct modification can help for our probabilistic extension. We can still define
disjunctiveness in PμTL, but constructing a semantically equivalent formula for
an arbitrary formula fails. In μTL, we wind a tableau into a designated finite
tree with back edges and construct a disjunctive formula so that its winding has
the same shape. Then we confirm that the disjunctive formula is semantically
equivalent to the original one. This step does not work in PμTL because given
the shape of a (cov) node, we cannot always create a disjunctive formula with
this exact shape. We leave this part as our future work.

In Sect. 3 we adapt the tableau construction for PμTL and the parity game.
The main contributions of this paper are an axiom system for the logic PμTL
and the soundness and completeness results for the class of aconjunctive formulae
(Sect. 4).

Related Work. We have discussed some related work above. One of the key diffi-
culties of probabilistic deduction is probability computation. If the logic contains
an “until” operator, we may have to calculate infinite sums to characterize sat-
isfiability, which significantly increases the difficulty to find a complete axiom
system (see e.g. [11]). On the other side, our succinct system only needs to
compute one-step probabilities and is hence easier, but the cover technique and
tableau construction are rather intricate.

The axiomatisation in [17] uses a patch of rules to figure out the precise border
of deduction with one-step probability computation, while our (Ext) rule does
a similar job. Their (consistent) marking technique can be rewritten into our
game terminology. Due to usage of (in-)equational modalities and blocks, their
axiomatisation only handles the alternation-free fragment. Our axiomatisation
does not have these constraints and has potential to reach full completeness.
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In [9], the satisfiability of PμTL is discussed, and we shall discuss the relations
in the paper.

2 Preliminaries

In this section we recall PμTL in the style of [18].

Syntax. Let us fix a countable set A of atomic propositions and fix a countable
set Z of formula variables. We will use a, a1, a2 etc. to range over A and Z, Z1,
Z2 etc. to range over Z . We also use p, p1, p2, etc. to denote probabilities, i.e., real
numbers in the interval of [0, 1]. For convenience, we use � to range over {>,≥},
and we use � to represent the other inequality sign, i.e. � ∈ {>,≥} \ {�}.

Formulae of PμTL, denoted f , g etc., can be constructed by the following
grammar:

f ::= ⊥ | a ∈ A | Z ∈ Z | f → f | X>pf | μZ.f

We say that an occurrence of Z in f is bound if it is in the scope of some μZ;
otherwise, this occurrence is free. In addition, in μZ.f we require that all free
occurrences of Z in f are positive. Formally: If f = Z, then Z occurs positively
in f . – If f = fn → fp, f = X>pfp or f = μZ.fp, then variables occurring
negatively in fn or positively in fp occur positively in f and vice versa.

Given a formula f and a variable Z, replacing each free occurrence of Z in
f by a formula g, we can get a substitution of Z by g on f , denoted by f [g/Z].
As usual, we use the following derived operators as syntactic sugar:

� def= ¬⊥
¬f

def= f → ⊥ f1 ∨ f2
def= ¬f1 → f2

f1 ∧ f2
def= ¬(¬f1 ∨ ¬f2) f1 ↔ f2

def= (f1 → f2) ∧ (f2 → f1)
νZ.f

def= ¬μZ.¬f [¬Z/Z] X≥pf
def= ¬X>1−p¬f

X�rf
def= X>1f for r > 1 X�rf

def= X≥0f for r < 0

The last two formulas extend the X�r operator to “probabilities” outside the
range [0, 1].

With these derived operators, we may transform a formula into positive nor-
mal form (PNF, for short). That is, we write formulas using the grammar:

f ::= ⊥ | � | a | ¬a | Z | ¬Z | f1 ∨ f2 | f1 ∧ f2 | X>pf | X≥pf | μZ.f | νZ.f

Note that in PNF, f can have a subformula ¬Z only if this occurrence of Z
is free.

We denote the (free and bound) variables in f by Var(f) and the subformulae
of f by Sub(f). We classify a PμTL formula in PNF referring to its outermost
operator, e.g., we call X>0g a X-formula while μZ.g a μ-formula. In addition,
we collectively call a μ-formula or a ν-formula a σ-formula. Further, we recall
the following definitions:
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1. A formula of the form a or ¬a and �,⊥ is called literal. We denote the set of
literals in a set of formulae Γ , by Lit(Γ ).

2. A formula f is well-named if each bound variable is bound exactly once, and
bound variables and free variables do not share the same names.

3. Assume that f is well-named and is in PNF. Then, the binder function Df of
f is a function that maps each bound variable of f to the σ-subformula of f
with the variable. Note that each bound variable Z occurring in a well-named
f has a unique fixpoint operator σZ ∈ {μ, ν} whose scope is gZ , forming a
subformula σZZ.gZ of f . Thus the binder function is unique.

4. Suppose a PμTL formula f is well-named and in PNF. It is guarded if for
each bound variable Z, each of its occurrences is in some X-subformula of
Df (Z).

We call Z a μ-variable (resp. ν-variable) if Df (Z) = μZ.gZ (resp. Df (Z) =
νZ.gZ).

Definition 1 (Dependency order). Assume that f is well-named. We define
the dependency relation �f over its bound variables, which is the minimal partial
order fulfilling that Z1 is free in Df (Z2) implies Z1 �f Z2.

Let f be a formula with a binder function Df consistent with �f , i.e. Z1 is
free in Df (Z2) implies Z1 �f Z2. For every g ∈ Sub(f) we define the expansion
of g with respect to Df as 〈[g]〉Df

= g[Df (Zn)/Zn] · · · [Df (Z1)/Z1], where the
order (Z1, Z2, . . . , Zn) is an arbitrary linearisation of �f , i.e. Zi �f Zj implies
i < j. This is well-defined since the expansion is independent of the choice
of linearisation. The set of expansions of the subformulae of f , {〈[g]〉Df

| g ∈
Sub(f)}, is the so-called Fisher–Ladner closure of f .

The expansions may be not well-named. However we can fix this by proper
variable renaming. That is, for each variable, rename occurrences introduced by
each substitution (of some �f -larger variable) and native occurrences of the same
bound variable to different variables, but all free variables are still candidates
for later substitutions.

Example 2. Let f = μZ1.
(
a1 ∨ μZ2.(Z1 ∨ Z2 ∨ a2)

)
, g = Z1 ∨ Z2 ∨ a2 ∈ Sub(f).

We have

〈[g]〉Df
= (Z1 ∨ Z2 ∨ a2)[Df (Z2)/Z2][Df (Z1)/Z1]

=
(
Z1 ∨ μZ2.(Z1 ∨ Z2 ∨ a2)︸ ︷︷ ︸

Df (Z2)

∨a2

)
[Df (Z1)/Z1] (2a)

= μZ1.
(
a1 ∨ μZ2.(Z1 ∨ Z2 ∨ a2)

)

︸ ︷︷ ︸
Df (Z1)

∨ μZ2.
(

μZ1.
(
a1 ∨ μZ2.(Z1 ∨ Z2 ∨ a2)

)

︸ ︷︷ ︸
Df (Z1)

∨Z2 ∨ a2

)
∨ a2 (2b)

Of the two occurrences of Z1 in (2a), the first is native, and the second is
introduced by substitution. Their expansions should be assigned different names,
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meanwhile both of them will be substituted in (2b) as they are free. The final
result after making this well-named is something like

〈[g]〉Df
= μZ1.

(
a1 ∨ μZ2.(Z1 ∨ Z2 ∨ a2)

)

∨ μZ3.
(
μZ4.

(
a1 ∨ μZ5.(Z4 ∨ Z5 ∨ a2)

) ∨ Z3 ∨ a2

)
∨ a2.

Semantics. A Markov chain is a tuple M = (S, P, LM ), where S is a finite set of
states; P : S×S → [0, 1] is a distribution function, fulfilling that

∑
s′∈S P (s, s′) =

1 for each s ∈ S; and LM : S → 2A , is the labelling function. Indeed, PμTL
is insensitive to whether the Markov chain is finite, but it is needed in the
completeness proof, as in the classical non-probabilistic setting.

The semantics of a PμTL formula f is defined w.r.t. a Markov chain M =
(S, P, LM ) and a valuation e : Z → 2S , denoted by �f�e

M , which returns a subset
of S. Inductively:

1. �⊥�e
M = ∅;

2. �a�e
M = {s ∈ S | a ∈ LM (s)};

3. �Z�e
M = e(Z);

4. �f1 → f2�
e
M = (S \ �f1�

e
M ) ∪ �f2�

e
M ;

5. �X>pf�e
M = {s ∈ S | ∑

s′∈�f�e
M

P (s, s′) > p};

6. �μZ.f�e
M =

⋂{S′ ⊆ S | �f�
e[Z �→S′]
M ⊆ S′}.

Here, e[Z �→ S′] is a valuation which agrees with e except that it assigns S′

to Z.

For convenience, we denote by M, s |=e f in the case of s ∈ �f�e
M . When f

is closed (i.e. no free variable occurs in f), we may abbreviate it to M, s |= f .
We say that f is a valid formula, denoted by |= f , iff M, s |= f for every

Markov chain M and each state s of M . In addition, we say that f is satisfiable
if f → ⊥ is not valid. A set of formulae Γ is satisfiable if there exists some
Markov chain M and a state s, such that M, s |= f for every f ∈ Γ .

3 Tableau

In this section we adapt the tableau construction of μTL to our logic. As for
μTL, we assume the input formula f to be well-named, in PNF and guarded.

We first recall the notions of modal sets, cover and parse function.

Definition 3 (Modal set). A set Γ of formulae of the form
{
X�p1f1, . . . ,

X�pnfn, l1, . . . , ls
}

where l1, . . . , ls are literals (or free variables), is called a
modal set. Further, we define Post(Γ ) = {f1, . . . , fn}.

A modal set is called consistent iff it doesn’t contain ⊥ nor conflicting literals.

Definition 4 (Cover). Given a modal set Γ ⊆ Sub(f), a cover C of Γ is
a non-empty subset of 2Post(Γ ) \ {∅} such that there exists a weight function
w : C → [0, 1] satisfying

∑
Δ∈C w(Δ) ≤ 1 and for all X�pg ∈ Γ , it holds that∑

Δ�g w(Δ) � p.
Denote the covers of Γ by Cov(Γ ). Denote the covers induced by subformulae

of f by Covf := {C | Γ ⊆ Sub(f) is a modal set,C ∈ Cov(Γ )}.
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We recall the definition of tableau and game from [9]. A tableau is a tree
whose nodes are labelled with either a set of formulae or a cover to satisfy.
Intuitively, the labels store requirements on satisfiability. The nodes labelled
with a set of formulae are called T0-nodes whereas the nodes labelled with a
cover are called T1-nodes. At every T0-node, if its label is not a modal set, then
some formula g is composite and can be simplified; if its label is a consistent
modal set, we construct T1-nodes as its children, one for each cover. At every
T1-node, we construct a T0-node labelled with Δ, for each member Δ of the
cover. Branches may be infinite, or end in a T0 leaf with inconsistent labels, or
end in a T0 leaf without covers (either because the X formulae are inconsistent
or because the modal set does not contain any X formulae).

Definition 5 (Tableau). Given a formula f , a tableau is a labelled tree T =
(T,R, r, LT ) where T is a set of nodes, R ⊆ T × T is the children relation, r
is the root node, LT : T → 2Sub(f) ∪ Covf is a labelling function satisfying the
conditions below.

For each node m, Rm = {n | (m,n) ∈ R} denotes the children of m. We use
T0 = {m | m ∈ T,LT (m) ∈ 2Sub(f)} and T1 = {m | m ∈ T,LT (m) ∈ Covf} to
denote the two disjoint kinds of nodes. We define the function A : T \ {r} → T0

that maps m to its closest ancestor in T0. Additionally, we define the following
functions:

1. A function Hook : T → 2Sub(f) that maps each node m to a subset of LT (m),
2. For each node m ∈ T0 \ {r}, a function Targetm : Hook(m) → LT (A(m)).

The labelling function and functions Hook, Targetm satisfy the following con-
ditions: (i) LT (r) = {f}. (Thus r ∈ T0, which ensures the well-definedness of
A). (ii) For all m ∈ T , it is always one of the following cases:

1. m ∈ T0, g = g1 ∨ g2 ∈ LT (m), Rm = {n1, n2}, LT (n1) = LT (m) ∪ {g1} \ {g}
and LT (n2) = LT (m) ∪ {g2} \ {g}.
In this case, we call m a (or)-node and define Hook(n1) = {g1}, Hook(n2) =
{g2}, Targetn1

(g1) = Targetn2
(g2) = g.

2. m ∈ T0, g = g1 ∧ g2 ∈ LT (m), Rm = {n}, LT (n) = LT (m) ∪ {g1, g2} \ {g}.
In this case, we call m a (and)-node and define Hook(n) = {g1, g2},
Targetn(g1) = Targetn(g2) = g.

3. m ∈ T0, g = σZZ.gZ ∈ LT (m), Rm = {n}, LT (n) = LT (m) ∪ {gZ} \ {g}.
In this case, we call m a (σZ)-node and define Hook(n) = {gZ},
Targetn(gZ) = g.

4. m ∈ T0, g = Z ∈ LT (m), Rm = {n}, LT (n) = LT (m) ∪ {gZ} \ {g}.
In this case, we call m a (reg)-node and define Hook(n) = {gZ},
Targetn(gZ) = g.

5. m ∈ T0, LT (m) is a consistent modal set, Rm = {nC | C ∈ Cov(LT (m))}
and LT (nC ) = C for every C ∈ Cov(LT (m)). (If LT (m) only contains literals
then Rm = ∅.)

6. m ∈ T0, LT (m) is an inconsistent modal set, Rm = ∅, i.o.w. m is a leaf
node.
In the above two cases, we call m a (mod)-node.
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7. m ∈ T1, LT (m) = C , Rm = {nΔ | Δ ∈ C }, LT (nΔ) = Δ for every Δ ∈ C .
In this case, we call m a (cov)-node and claim that for every g ∈ Δ and
Δ ∈ C there is a unique formula of the form X�pg ∈ LT (A(nΔ)), define
Hook(nΔ) = Δ, TargetnΔ

(g) = X�pg.

For a given formula f , multiple tableaux may exist. This is because, in a
top-down construction, when we are at some node m ∈ T0, several of the first
four cases may be available to construct child nodes. We can choose any of them
and this leads to different (but equivalent) tableaux. If neither of the first four
cases is available, then LT (m) must be a modal set. Thus either Case 5 or Case
6 is available. If it is Case 5, then each of its child nodes nC is a T1-node. Then
Case 7 is available and each grandchild node nΔ belongs to T0 so we can continue
with the construction of the tableau.

Note that according to the definition above, for every T0-node m and
g ∈ LT (m)\Hook(m), we have g ∈ LT (A(m)). Hence we can extend the domain
of every Targetm to the whole LT (m), denoted by Target+m, by mapping each ele-
ment g ∈ LT (m) \Hook(m) to itself. Formally: Target+m(g) equals to Targetm(g)
if g ∈ Hook(m), and to g otherwise.

Definition 6 (Trace). Given an infinite path P of a tableau T = (T,R, r, LT ),
a trace on P will be a function π assigning a formula to every node n ∈ T0 along
P satisfying:

1. π(n) ∈ LT (n). Particularly, π(r) = f .
2. If n �= r, π(A(n)) = Target+n (π(n)).

Definition 7 (Regeneration on a trace/path).Given a trace π on an infi-
nite path P, we say that there is a regeneration of a variable Z on P at a node
n if Hook(n) = {gZ} and Targetn(gZ) = Z. The regeneration of Z at n is on π
if π(A(n)) = Z and π(n) = gZ .

Note that moving down along a path P, the size of the formulae in the labels
on T0-nodes decreases except when a regeneration occurs. Hence regenerations
occur infinitely often on an infinite path. Since f is guarded and each subformula
cannot regenerate before losing its X-operator, there are infinitely many (mod)-
nodes too. Thus on every trace, the size of the formula decreases infinitely often,
which implies that there are infinitely many regenerations on the trace. Let
InfR(π) denote the set of variables which regenerate infinitely often on π. As it
can be easily proven [27], there exists a unique least variable Z0 ∈ InfR(π) with
respect to �f , i.e. ∀Z ∈ InfR(π), Z0 �f Z.

Definition 8 (μ-trace and ν-trace). We call a trace a μ-trace (resp. ν-trace)
iff the least variable (w.r.t. �f ) regenerated infinitely often is a μ-variable (resp.
ν-variable).

We call a path P an odd path if either it is infinite and there exists a μ-trace
on it or it is finite and ends in an inconsistent leaf node, else we call it an even
path.
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Definition 9 (Tableau game). A tableau game G for a formula f is a game
played on a tableau T of f by two players, say Satisfier and Devil. Intuitively,
Satisfier intends to show that f is satisfiable whereas Devil that it is not. They
play the game as follows:

1. The game starts at the root node r,
2. In any (cov) node Devil chooses one of the children, in any other node Satisfier

chooses one of the children.
3. The result of such a game is either a finite or an infinite path of the tableau

T . Satisfier wins iff the path is even.

Theorem 10. Let G be a tableau game for a formula f . There is always a player
who has a winning strategy in G.

To show the above theorem, similar as in [9], we exploit the determinacy
result [12] for parity games. This is accomplished by defining a parity game G
which is a product of G and a deterministic parity automaton A . It follows then
that one has a winning strategy in G iff he/she has a winning strategy in G .

Remark 11. Deviating slightly from [9], we label the tableau nodes with subfor-
mulae rather than expansions (i.e., members of the Fisher–Ladner closure). The
purpose of labelling with subformulae is to simplify the completeness proof.

Theorem 12. For a given formula f , let T and G be the tableau and tableau
game, respectively. Then, Satisfier has a winning strategy in G iff f is satisfiable.

The winning tree of Devil will be referred to as refutation, which will play an
important role in the completeness proof.

Definition 13 (Refutation). The winning tree of Devil in a tableau game G
on T is called a refutation R. That is, a subtree of T which contains all child
nodes at each T0-node but only one child node at each T1-node according to the
winning strategy.

Corollary 14. If f is unsatisfiable then every tableau for f has a refutation.

4 The Axiom System

Now we give a Kozen-style axiom system for PμTL. Given a set of formulae Γ , we
denote

∨
g∈Γ g by

∨
Γ , and we use

∧
Γ analogously. The system consists of the

following axioms: (K1) all tautologies of propositional logic; (K2) X>1f → ⊥;
(K3) f [μZ.f/Z] → μZ.f ; and the inference rules

(K4)
f → g f

g

(K5)
f [g/Z] → g
(μZ.f) → g

(Ext)
∧

B → ⊥,∀B ∈ B∧
Γ → ⊥ ,

where Γ is a modal set, B ⊆ 2Post(Γ )

and for all C ∈ Cov(Γ ),B ∩ C �= ∅.
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Axioms (K1), (K3), (K4), (K5) are the same as the axioms for μTL. The
simple axiom (K2) will be used frequently to derive contradictions in the prob-
abilistic setting.

The innovative (Ext) rule closely corresponds to the (mod)–(cov) structure
in a tableau. For a set of X-formulae Γ , it may happen that the probabilities
of mutually exclusive formulas in Post(Γ ) are so high that no cover of Γ exists.
Then, a complete proof system should allow to infer

∧
Γ → ⊥. The antecedents

of (Ext) describes the mutually exclusive formulas: every B ⊆ Post(Γ ) in B is
such a set of formulas.

Example 15. Let Γ = {X>0.7a,X>0.7b,X>0.7(¬a ∨ ¬b)}. Then Post(Γ ) =
{a, b,¬a∨¬b}. Let B = {Post(Γ )}. Note that {{a, b}, {a,¬a∨¬b}, {b,¬a∨¬b}}
(all maximal proper subsets of Post(Γ )) is not a cover of Γ because there is no
weight function for this set. Therefore, every element C ∈ Cov(Γ ) must contain
Post(Γ ), so B ∩ C �= ∅. Thus the requirements for (Ext) are fulfilled, and we
can conclude:

a ∧ b ∧ (¬a ∨ ¬b) → ⊥
X>0.7a ∧ X>0.7b ∧ X>0.7(¬a ∨ ¬b) → ⊥

A proof of f is a sequence f0, f1, . . . , fn = f where each fi is either an
instance of some axiom or obtained via applying some inference rule. We say
that f is provable, denoted � f , if there exists a proof of f . f is consistent if ¬f
is not provable.

4.1 An Equivalent Formulation of the (Ext) Rule

Although (Ext) looks neat, it is rather tedious to calculate all the covers of a
modal set. Below we present an equivalent (Ext′) rule, which reduces it to a
linear programming problem that is easier to solve in practice. This will be used
later in proving the soundness result and other properties.

(Ext′)
∧

B → ⊥,∀B ∈ B∧
Γ → X�q

∨
Post(Γ )

where Γ is a modal set, B ⊆ 2Post(Γ )

and �q is decided by the linear programming problem below.

First we calculate the optimal value of the following linear programming
problem.

Opt = inf
∑

Δ:Δ⊆Post(Γ )

wΔ

s.t. wΔ ≥ 0, ∀Δ ⊆ Post(Γ )
wΔ = 0, ∀Δ ∈ B (*)

∑

Δ:g∈Δ

wΔ � p, ∀X�pg ∈ Γ



430 J. Xu et al.

We determine �q by:

– If (*) does not have a valid solution, (this instance of) (Ext′) cannot be
applied.

– If the infimum in (*) is achievable, we set �q to ≥ Opt.
– If the infimum in (*) is not achievable, we set �q to > Opt.

Example 16. Still let Γ = {X>0.7a,X>0.7b,X>0.7(¬a∨¬b)}, B = {Post(Γ )}. The
corresponding linear programming problem is:

Opt = inf
∑

Δ:Δ⊆Post(Γ )

wΔ

s.t. wΔ ≥ 0, ∀Δ ⊆ Post(Γ )
w{a,b,¬a∨¬b} = 0
w{a} + w{a,b} + w{a,¬a∨¬b} + w{a,b,¬a∨¬b} > 0.7
w{b} + w{a,b} + w{b,¬a∨¬b} + w{a,b,¬a∨¬b} > 0.7
w{¬a∨¬b} + w{a,¬a∨¬b} + w{b,¬a∨¬b} + w{a,b,¬a∨¬b} > 0.7

The solution Opt = 1.05 is not achievable, so the application of (Ext′) gives:

a ∧ b ∧ (¬a ∨ ¬b) → ⊥
X>0.7a ∧ X>0.7b ∧ X>0.7(¬a ∨ ¬b) → X>1(a ∨ b ∨ ¬a ∨ ¬b)

(Remember that X>1.05 was defined to be syntactic sugar for X>1).

Compare this with Example 15. Informally speaking, an application of (Ext)
can be replaced by (Ext′) with the same Γ and B, followed by some application
of (K2).

For the other direction, an application of (Ext′) with Γ and B can be
simulated by modifying Γ and B slightly such that the premises of (Ext) are
fulfilled; then, the result of applying (Ext) with the modified sets is syntactically
equivalent to the result of the original (Ext′), up to ¬¬f ↔ f and the removal
of syntactic sugar.

Now we give the detailed proof:

Lemma 17. [Equivalence of (Ext) and (Ext′)]

1. The system (K1)–(K5)+(Ext) can derive (Ext′),
2. The system (K1)–(K5)+(Ext′) can derive (Ext).

Proof. We frequently use the following simple equivalence:

X�pg ⇔ ¬X�1−p¬g

Proof of Part 1. Let Γ be a modal set, B ⊆ 2Post(Γ ) such that for all B ∈
B,

∧
B → ⊥. Let �q be decided by the LP problem (*). We have to prove∧

Γ → X�q
∨
Post(Γ ). We exploit the equivalence above and prove instead:

∧
Γ ∧

(
X�1−q

∧

g∈Post(Γ )

¬g
)

→ ⊥ (†)
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To use (Ext), we consider the following construction and prove the premises of
(Ext):

Γ ′ = Γ ∪ {X�1−qh} with h =
∧

g∈Post(Γ )

¬g

and B′ = B ∪ {Δ | h ∈ Δ,Δ ⊆ Post(Γ ′)} \ {{h}}. First, every Δ ∈ B′ \ B
contains some g ∈ Post(Γ ) and h =

∧
g∈Post(Γ ) ¬g. Hence ∀Δ ∈ B′,

∧
Δ → ⊥.

Second, for an arbitrary cover C of Γ ′ there is a weight function w : C → [0, 1]
such that

∑

Δ∈C

w(Δ) = 1 (a)

∑

h∈Δ,Δ∈C

w(Δ)�1 − q (b1)

∀X�pg ∈ Γ,
∑

g∈Δ,Δ∈C

w(Δ) � p (b2)

We define the expansion w+ : 2Post(Γ
′) → [0, 1] by: w+(Δ) = w(Δ) if Δ ∈ C ,

and equals to 0 otherwise. Then these assertions can be rewritten to
∑

Δ∈2Post(Γ ′)

w+(Δ) = 1 (a′)

∑

h∈Δ

w+(Δ)�1 − q (b1′)

∀X�pg ∈ Γ,
∑

g∈Δ

w+(Δ) � p (b2′)

Next we prove that C ∩ B′ �= ∅ by contradiction. Suppose C ∩ B′ = ∅.
Note that the summation in (b1′) accounts for those Δ that either belong

to 2Post(Γ ) or contain h. In the second case, Δ must be in B̃, so it does not
belong to the cover C . By the definition of w+, w+(Δ) = 0. Hence we have
∀X�pg ∈ Γ,

∑
g∈Δ,Δ∈2Post(Γ ) w+(Δ) � p.

It is obvious that the restriction of w+ to 2Post(Γ ) also satisfies the first
two groups of conditions of the LP problem in (*). Thus it is a valid solution,
which implies

∑
Δ∈2Post(Γ ) w+(Δ) � q. However, from (a′) and (b2′) one derives∑

Δ∈2Post(Γ ) w+(Δ) �� q. Contradiction! So we cannot have C ∩ B′ = ∅, and
hence ∀C ∈ Cov(Γ ′),C ∩ B′ �= ∅. Now we can apply (Ext) with Γ ′ and B′,
and get (†) immediately.
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Proof of Part 2. We are given a modal set Γ ⊆ Sub(f) and B ⊆ 2Post(Γ ) such
that for all C ∈ Cov(Γ ), we have C ∩ B �= ∅. With (K2), it suffices to prove
that the optimal value of the LP problem in (*) is greater than 1.

If not, then there exists a solution such that
∑

Δ wΔ = 1. Hence C = {Δ |
wΔ > 0} is a cover of Γ . By assumption, C ∩ B �= ∅. This contradicts wΔ = 0
for all Δ ∈ B. ��

With the equivalence formulation, we can establish some properties below.

Lemma 18. With the axiom system, we can show the following:

1. � X>pf ∧ X>p′
g → X>p+p′−1(f ∧ g).

2. � X>pf ∧ ¬X>p′
g → X>p−p′

(f ∧ ¬g).
3. � ¬X>pf ∧ ¬X>p′

g → X≥1−p−p′
(¬f ∧ ¬g).

4. � X>pf → X≥pf .
5. � X>pf → X>p−p′

f .
6. � X≥pf → X≥p−p′

f .
7. � X≥pf → X>p−p′

f where p′ > 0.
8. If � f → ⊥ then � X≥pf → ⊥.
9. If � f then � X≥1f .

10. If � f → g then � X>pf → X>pg and � X≥pf → X≥pg.

4.2 Soundness and Completeness

Theorem 19 (Soundness). The axiom system is sound, i.e., � f implies |= f .

The completeness result restricts to aconjunctive formulae, initially introduced
in [16]:

Definition 20 (Aconjunctive formulae). Given a PμTL formula f , we say
that a variable Z is active in g, a subformula of f , iff there is a variable Z ′

appearing in g and Z �f Z ′. Let Z be a variable with its natural binder function
Df (Z) = μZ.g(Z). The variable Z is called aconjunctive iff for all subformulae
of g of the form g1 ∧ g2 it is not the case that Z is active in g1 as well as in g2.

We call a refutation thin iff whenever a formula of the form g1∧g2 is reduced
in some node of the refutation then no variable is active in g1 as well as in
g2. Similar to μTL, since variables cannot be active in both conjuncts of an
aconjunctive formula, the refutation of any aconjunctive formula is thin.

First recall some basic properties without probabilities (hence same as for
μTL):

Lemma 21 ([16]). Suppose that all occurrences of Z in f and g are positive,
and let σZ ∈ {μ, ν}. Then:

2. If � f → g then � f [h/Z] → g[h/Z].
3. If � f1 → f2 then � g[f1/Z] → g[f2/Z].
4. If � f → g then � σZZ.f → σZZ.g.
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5. � σZZ.f ↔ f [σZZ.f/Z].
6. If � f [μZ.(g ∧ f)/Z] → g then � μZ.f → g.

Given an aconjunctive PμTL tautology f , we can build a thin refutation of
its negation (which is also aconjunctive), so the following theorem allows us to
prove ¬¬f .

Theorem 22. If a formula has a thin refutation then its negation is provable.

Proof. The proof idea is taken from Walukiewicz’s argument [27] for μTL. It
involves technical markings to track the formula unwindings. Using our conser-
vative probabilistic extensions, we are able to adapt the proof to our setting in
a very natural manner.

We assign a formula to each node of the refutation and prove that there
is a finite path down to some node whose assigned formula is a propositional
tautology. Further, we can build a proof of the formula assigned to a node from
a proof of the formula assigned to the successor on the path. This implies that
the formula we assigned to root node, which happens to be f , is provable. But
for (and) nodes, it is unclear which of the successors is relevant, so we have to
constrain to thin refutations to ensure correctness.

To handle infinite paths, we use some tokens to store information about
regenerations of bound variables. The counter in a token records how often a
variable was regenerated since the last regeneration of some variable smaller
than it (w.r.t. �f ). If we find two nodes whose counters fulfil some requirement,
the formula assigned to the latter will turn out to be a propositional tautology.
We maintain a list of tokens: we can remove tokens from the list and add tokens
to the right end of the list. Removed tokens are never used again. Each token
has its own counter. The counter of a new token is set to 0. We also assign a
pair (formula, bound variable of f) to every token on the list.

Let us first introduce some operations on labelled lists of tokens. We say that
g is replaceable by h in some list of tokens if either of the conditions holds:

1. h does not appear in the labels of tokens in the list
2. the smallest variable Zg such that (g, Zg) is the label of some token is smaller

than the smallest variable Zh such that (h,Zh) is the label of some token
3. variables Zg and Zh are the same but the token labelled (g, Zg) is to the left

of the token labelled (h,Zh).

If g is replaceable by h then to replace g by h means, first, to delete all the
tokens labelled (h,Z), for all variable Z, and next replace each label of the form
(g, Z) by (h,Z).

If g is not replaceable by h then we can delete g from the list by removing
all the tokens labelled (g, Z) for all variables Z.

To the root of R we assign an empty list of tokens. Suppose we have a list of
tokens for a node m which is not a (mod) node, we construct the list of tokens
of its child node n. We construct the list of tokens of each of its grandchildren
instead when m is a (mod) node (again we don’t need to consider (cov) nodes)
according to the following rules:
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1. Suppose (or) is applied in m to g ∨h and, say g is the result of the reduction
which appears in the label of n. The token list for n is obtained by replacing
g ∨ h by g if g ∨ h is replaceable by g.

2. Suppose (reg) is applied in m to Z where Df (Z) = σZZ.g. If Z is replaceable
by g then replace Z by g. In case Z is a μ-variable also increase the counter
of the token now labelled (g, Z) and set the counters of all tokens to the right
of it to 0.

3. Suppose (μ) or (ν) is applied in m to σZZ.g. If σZZ.g is replaceable by g then
we replace σZZ.g by g. In case Z is a μ-variable we additionally put a new
token labelled (g, Z) at the end of the list.

4. Suppose (and) is applied in m to g∧h. As the refutation is thin, every variable
is active in at most one of g or h. If g ∧ h is replaceable by g and Z is active
in g, then in every token labelled (g ∧ h,Z), replace its label by (g, Z), and
analogously for h.

5. Suppose (mod) is applied in m followed by an application of the (cov) rule
(recall that in a refutation there is exactly one premise in a (cov) node). Let
LT (m) = {X�p1f1, . . . ,X

�pnfn, l1, . . . , ls} and LT (n) ⊆ Post(LT (m)). For
every token labelled (X�pifi, Z) for some Z and fi appears in LT (n), replace
this label by (fi, Z).

6. After the above steps remove tokens which are either (i) labelled with pairs
(g, Z) with Z not active in g or (ii) labelled with formulae not appearing in
the node label.

Remark 23. According to the rules above, for each node m, for every pair (g, Z)
such that g ∈ LT (m) and Z is active in g, there is exactly a token labelled by
(g, Z).

We need the following two lemmas to continue our proof, note that Lemma 25
differs slightly from the proof for the non-probabilistic version:

Lemma 24. For every path P of R there is a counter which gets arbitrarily
big on P.

Next we assign a formula to every node of R. To do this for every node n of
R and every formula g ∈ LT (n) we define a binder function Dn,g depending
on the token list for n. These binder functions will be obtained from Df by
modifications of one kind. For some μ-variables instead of Df (Z) = μZ.gZ we will
have Dn,g(Z) = μZ.¬γ1∧. . .∧¬γk∧gZ , where formulae γ1, . . . , γk are determined
in the following way: Consider ancestors of n up to the nearest node where a
token now labelled (g, Z) is created or its counter is reset to zero. Among these
ancestors choose all n1, . . . , nk where the counter of the token was increased(the
child node of a (reg) node, including n itself), then for i = 1, . . . , k,

γi =
∧

{〈[h]〉Dni,h
| h ∈ LT (ni), h �= gZ}

The formula assigned to the node n is

¬
∧

{〈[g]〉Dn,g
| g ∈ LT (n)} (**)
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Lemma 25. If for some node m formula ¬∧{〈[g]〉Dm,g
| g ∈ LT (m)} is unprov-

able then either (i) m is a (mod) node and there is a grandchild n of m that
¬∧{〈[g]〉Dn,g

| g ∈ LT (n)} is unprovable or (ii) m is not a (mod) node and
there is a child n of m that ¬∧{〈[g]〉Dn,g

| g ∈ LT (n)} is unprovable.

Back to Theorem 22, for the root r of R we have Dr,f = Df . Using the
assumption that ¬f is unprovable and the above observation we obtain an infinite
path P of R such that for every node n of P the formula ¬ ∧ {〈[g]〉Dn,h

| h ∈
LT (n)} is unprovable.

Let t be a token whose counter can be arbitrarily big on P. Let Z be the
variable from the label of t and let Df (Z) = μZ.g be its original definition.
Because the counter of t is unbounded there must be two (reg) nodes n1, n2 on
P such that

1. LT (n1) = LT (n2),
2. in both nodes the parts of the lists to the left of t are identical,
3. t is labelled by (Z,Z),
4. the counter of t was increased and it was not reset between n1 and n2.

Let us assume that n2 is a descendant of n1. We will show that ¬∧{〈[h]〉Dn2,h
|

h ∈ LT (n2)} is provable. As binder functions are established by (**) we have
that Dn2,h = Dn1,h for every formula h ∈ LT (n1), h �= Z. This is because by (3)
and (4) the counters of all the tokens to the right of t are 0 and all the counters
to the left of t are the same in n1 and n2. Of course, the counter of t in n1 is
strictly smaller than in n2. We have:

Dn1,Z(Z) = μZ.¬γ1 ∧ . . . ∧ ¬γi ∧ gZ

Dn2,Z(Z) = μZ.¬γ1 ∧ . . . ∧ ¬γj ∧ gZ

where j > i and formulae γ1, . . . , γj are determined by the rule (**). We know
that γi+1 is

∧{〈[h]〉Dn1,h
| h ∈ LT (n1), h �= Z}. It is the same as

∧{〈[h]〉Dn2,h
|

h ∈ LT (n2), h �= Z}.
Finally we have that

¬
∧

{〈[g]〉Dn2,g
| g ∈ LT (n2)}

= ¬
( ∧

{〈[h]〉Dn2,h
| h ∈ LT (n2), h �= Z} ∧ 〈[Z]〉Dn2,Z

)

= ¬(
γi+1 ∧ μZ.¬γ1 ∧ . . . ∧ ¬γj ∧ gZ

)

which is just an instance of (K5) and the propositional tautology ¬γ1 ∧ . . . ∧
¬γj ∧ gZ → ¬γi+1, a contradiction with the choice of P. ��

For an aconjunctive formula f , if f is unsatisfiable, there exists a thin refu-
tation R. Hence ¬f is provable by Theorem 22. Thus we have the completeness
result:

Theorem 26. If f is an unsatisfiable aconjunctive formula, then ¬f is provable.
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Abstract. Termination of programs is probably the most famous unde-
cidable problem in computer science. Despite this undecidability result,
a lot of effort has been spent on improving algorithms that prove termi-
nation of loops, which is one of the building blocks of software reliability
analysis. These algorithms are usually focused on finding an appropri-
ate ranking function for the loop, which proves its termination. In this
paper, we consider nested ranking functions for loop programs and show
that the existence problem of a nested ranking function is equivalent to
the existence problem of a hyperplane separating classes of data. This
allows us to leverage Support-Vector Machines (SVM) techniques for the
synthesis of nested ranking functions. SVM are supervised learning algo-
rithms that are used to classify data; they work by finding a hyperplane
separating data points parted into two classes. We show how to carefully
define the data points so that the separating hyperplane gives rise to a
nested ranking function for the loop. Experimental results confirm the
effectiveness of our SVM-based synthesis of nested ranking functions.

1 Introduction

Analyzing software properties such as in reachability analysis often requires to
prove the termination of programs. However, termination of programs is prob-
ably the most famous problem in computer science which has been proven to
be undecidable [24,25]. In theory, the termination problem is closed and not so
much can be done with it; in practice, however, things are different: as remarked
in [10], undecidability does not imply that we are always unable to prove ter-
mination, simply we are unable to always prove termination. This means that
we can require a termination proving tool to always return an answer, which
has to be correct, just it can be “unknown” instead of only “terminating”
or “nonterminating”, with the aim to avoid “unknown” as much as possible.
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For instance, Ultimate Automizer [15], one of the leading tools in program
analysis according to the outcomes of the SV-COMP competitions1, gives defini-
tive answers to a large amount of termination problems in the termination cat-
egory.

The termination of loops is at the core of the termination analysis techniques
used in Ultimate Automizer; to show termination, it covers the whole set of
executions of a program by means of certified modules, each one covering a subset
of executions sharing the same termination argument, e.g., a ranking function.

Ranking functions, which are nowadays a standard technique to prove the ter-
mination of a loop, map a program state into an element of some well-founded
ordered set, such that their value decreases whenever the loop completes an
iteration. While termination of programs is undecidable, ranking function detec-
tion problems can well be decidable, given certain classes of ranking functions
and program representations. Motivated by that, the synthesis of linear ranking
functions has attracted a lot of attention [2,8,9,13,16,20,23]. In [8,9], Colón
and Sipma synthesize linear ranking functions for linear-constraint loops. For
this type of loops, it is possible to find a linear ranking function by exploiting
linear programming (LP) techniques. Many researchers have worked on solutions
based on LP methods: in 2004, a complete and efficient solution for linear rank-
ing function synthesis for single-path linear loops over rationals was proposed
by Podelski and Rybalchenko [20]. The complexity of a complete solution for
single-path linear loops with integer variables was finally settled by [2] in 2014.

Unfortunately, not all terminating loops have a linear ranking function, so
several researchers proposed ways to combine multiple linear ranking functions to
capture more complex scenarios. Bradley et al. [5,6] showed how to synthesize
lexicographic linear ranking functions (LLRFs); Ben-Amram and Genaim [2]
proposed a complete algorithm on the notion of LLRFs; and Leike and Heiz-
mann [16] presented templates for many different ranking functions with affine
linear components similar to LLRFs, including nested ranking functions consid-
ered in this paper. In addition, Bagnara and Mesnard [1] analyzed the existence
of eventual linear ranking functions, which are multi-phase linear ranking func-
tions (MΦRFs) of depth 2. A complete solution for d-depth eventual linear rank-
ing functions was proposed in [18]; Ben-Amram and Genaim [3] further provided
a complete polynomial-time solution for MΦRFs with bounded depth.

Since linear-constraint loops with linear ranking functions comprise a very
limited class of loop behaviors, to capture more behaviors, a different line of
research [7,12,21] focuses on detecting polynomial ranking functions for loops
with polynomial guards and polynomial updates. For instance, in [7] the detec-
tion of ranking functions is reduced to the solution of semi-algebraic systems
problems. All polynomial ranking functions can be obtained with the given
degree bounds by cylindrical algebraic decomposition with double exponen-
tial complexity. In [12], Cousot made use of parametric abstraction, Lagrangian
relaxation, and semi-definite programming (SDP) to compute ranking functions
of loops. While being efficient, the obtained actual function may be not a rank-

1 https://sv-comp.sosy-lab.org/.

https://sv-comp.sosy-lab.org/
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ing function due to numerical errors. This problem was addressed in [21] by
Shen et al.: they used a symbolic-numeric hybrid method to derive the ratio-
nal coefficients of the exact ranking function from the numerical coefficients of
the function obtained by the SDP algorithm. Yuan et al. [26] proposed a rank-
ing function detection method exploiting Support-Vector Machines (SVM) [11]
which is even able to handle loops with radical and fractional variable assign-
ment updates. Their method is only applicable to the synthesis of global ranking
functions.

In this paper, we move a step further by exploiting SVM to synthesize nested
ranking functions of loops. It turns out that the ranking functions considered
in [26] are a special class of ours. A nested ranking function is defined by means
of multiple functions, each one used in a different phase, such that the value in
one phase is allowed to increase, but less than the value of the previous phase.
Differently from standard nested ranking functions, where the functions involved
are linear, our algorithm supports nonlinear functions out of the box. The main
contribution of this work is an equivalence reduction between the existence of a
nested ranking function of a loop program (possibly with radical and fractional
variable assignment updates) and the existence of a hyperplane separating the
origin O and a subset S of the Euclidean space defined by the program. Based
on this equivalence, our synthesis algorithm for nested ranking functions works
as follows. We first give a definition of k-nested ranking function, equivalent but
slightly different from its original definition in [3], in order to fit the SVM input
data space. We then sample points from S as the training set S′, and then derive
a candidate separating hyperplane between O and S′ by usual SVM algorithms.
We finally check whether the candidate nested ranking function derived from the
separating hyperplane is a correct ranking function by means of the tool Z3 [19].

To evaluate the effectiveness of our SVM-based synthesis algorithm, we com-
pare our prototype tool SVMRanker with LassoRanker, which is part of
Ultimate Automizer and its core component responsible for finding ranking
functions or proving nontermination. LassoRanker implements a wide range
of techniques (see, e.g., [14–17]) which are very effective, making Ultimate
Automizer the winner of the 2019 SV-COMP competition [4] in the Termina-
tion category, as well as of the previous two editions of the SV-COMP Termi-
nation category. The experimental results show that our tool has been able to
prove termination for 65% more programs than LassoRanker proved to termi-
nate. This confirms that the SVM-based algorithm we propose for the synthesis
of k-nested linear and nonlinear ranking functions is an effective technique that
complements well the large set of techniques available in LassoRanker.

Organization of the Paper. The rest of the paper is organized as follows. Section 2
gives some basic background necessary for this work. Section 3 introduces the
SVM-based method to synthesize a nested ranking function for a given program.
Section 4 presents the experimental results and discusses our lessons learned.
Section 5 concludes the paper with some final remark.
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while q > 0:
q := q − y;
y := y + 1;

Fig. 1. A looping program

2 Preliminaries

In this paper we use subscripts to restrict standard number sets, like R≥0 for
non-negative real numbers. Given x ∈ R

n, we denote by |x| = n the size of x.
We denote by A · B the usual multiplication between matrices A and B.
A relation R ⊆ X × X is well-founded if each subset ∅ �= X ′ ⊆ X has an

R-minimal element, i.e., there is m ∈ X ′ such that ¬R(m,x) for each x ∈ X ′.

2.1 Program Specification

In this paper, we focus on programs that consist of only loops. We use binary
relations over the program’s states to the executions of programs. We denote by x
a vector of n variables (x1, · · · , xn)T ∈ R

n corresponding to the current program
state, and by x′ = (x′

1, · · · , x′
n)T ∈ R

n the variables of after the execution. Let
R[x] be the polynomial ring on real numbers.

Definition 1 (Loop Program). A loop program Loop(x,x′) is a binary rela-
tion defined by a formula with free variables x and x′ of the form

d∨

i=1

⎛

⎝
( ki∧

j=1

gi,j(x) ≥ 0
)

∧
( mi∧

j=1

fi,j(x,x′) ≥ 0
)
⎞

⎠

for finite numbers ki,mi, d ≥ 1 where
∧ki

j=1 gi,j(x) ≥ 0 is the i-th loop guard
condition and

∧mi

j=1 fi,j(x,x′) ≥ 0 the i-th nondeterministic update assignment
statement.

In a loop program defined as above, the loop body is given by means of a
relation between the updated values x′ and the previous values x. The update is
called deterministic if, for a given x satisfying the loop condition

∧ki

j=1 gi,j(x) ≥
0, there is at most one x′ satisfying the update constraint

∧mi

j=1 fi,j(x,x′) ≥ 0.
Otherwise, such an update is called nondeterministic. Let Ωi = { (x,x′) ∈ R

2n |∧ki

j=1 gi,j(x) ≥ 0,
∧mi

j=1 fi,j(x,x′) ≥ 0 } denote the set of executions of the loop
body with respect to the i-th alternative, where each execution is represented by
the value x of the state variables satisfying the guard condition

∧ki

j=1 gi,j(x) ≥ 0
and the corresponding value x′ as updated by the body

∧mi

j=1 fi,j(x,x′) ≥ 0.
In this way we can represent a loop program by means of the binary relation
Ω = Ω1 ∨ Ω2 ∨ · · · ∨ Ωd. Since a loop can be specified by Ω, in the following, we
identify the loop with Ω.
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As an example of looping program, consider the code in Fig. 1 originally
proposed in [16]. We can represent its executions by the formula

Ω = (q > 0) ∧ (q′ = q − y ∧ y′ = y + 1)

which corresponds to the loop guard (q > 0) in conjunction with the update
resulting from the loop body (q′ = q − y ∧ y′ = y + 1). The corresponding
set of executions contains, for instance, the points xp = (4, 2, 2, 3)T , and xn =
(4,−2, 6,−1)T , where x = (q, y, q′, y′)T .

2.2 Ranking Functions

Termination of a loop program Ω can be proved by means of ranking functions.
A ranking function for Ω is a function f from R

n to R≥0 such that there exists
δ ∈ R>0 such that for each (x,x′) ∈ Ω it holds f(x) ≥ f(x′)+ δ or, equivalently,
f(x)−f(x′) ≥ δ. In a way similar to [16, Lemma 3.5], it is possible to show that
Ω is well founded if and only if there exists a ranking function for Ω.

Among other ranking functions, the authors of [3,16] introduce the concept
of k-nested linear ranking function, where k linear functions are used in different
phases instead of a single function. In fact, for an affine linear ranking function,
its value over a program state is decreasing at each iteration of the loop, which is
sometimes too restrictive. To relax this restriction, a k-nested ranking function
consists of k phases that allow the value to increase in the first few phases. In
other words, each phase has an affine linear ranking function, but this affine
linear function cannot increase by more than the value of the previous phase’s
affine linear function. Thus once the previous phase is finished (the function
becomes non-positive), its value starts decreasing.

With the following definition we generalize the original definition of k-nested
ranking function given in [3,16] to the nonlinear setting.

Definition 2 (k-Nested Ranking Function). Given a loop program Ω, let
k ∈ N>0 and, for each i ∈ {1, . . . , k}, fi(x) be a polynomial or an algebraic frac-
tion over the program variables x. We call the k-tuple 〈f1, f2, . . . , fk〉 a k-nested
ranking function of Ω if the following condition holds for a set of parameters
{Ci ∈ R>0 | 1 ≤ i ≤ k + 1 }:

∀(x,x′) ∈ Ω :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f1(x) − f1(x′) ≥ C1

f2(x) − f2(x′) + f1(x) ≥ C2

...
fk(x) − fk(x′) + fk−1(x) ≥ Ck

fk(x) ≥ Ck+1

(1)

Remark 1. The above definition is equivalent but slightly different from the
original one given in [3,16]. The first, main difference is that we allow each
component of a nested ranking function to be a nonlinear expression, instead
of only an affine linear function. The second difference is that we require that
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fi(x)−fi(x′)+fi−1(x) ≥ Ci for Ci ∈ R>0 instead of fi(x)−fi(x′)+fi−1(x) > 0,
where for the latter the domain of the functions is a well-ordered set instead of
the set of non-negative real numbers as the former.

Consider again the loop program in Fig. 1; this program does not have an
affine linear ranking function of the form f(q, y) = aq + by + c when a > 0,
since the requirement f(q, y) − f(q′, y′) ≥ C > 0 implies y ≥ (b + C)/a, which
is clearly not satisfied by some of the possible values of y. When a < 0, the
proof is similar and f is clearly not a valid ranking function for the program
when a = 0. However, as shown in [16], there exists a 2-nested ranking function
showing program’s termination: f1(q, y) = 1 − y and f2(q, y) = q + 1 with
C1 = C2 = C3 = 1

2 . Intuitively, the first phase occurs when y < 1, for which the
value of the function f1 is positive and decreases with each iteration; once the
first phase is completed, i.e., the value of f1 is non-positive by y ≥ 1, the value
of f2 starts to decrease until the loop condition q > 0 is violated. This proves
the termination of the loop program.

2.3 Fixed Points

A sufficient condition for a program to be nonterminating is the presence of fixed
points, i.e., points for which the loop does not change the variables’ value.

Definition 3 (Fixed point). Given a loop program specified by Ω, we say that
x ∈ R

n is a fixed point of the loop if (x,x) ∈ Ω.

Clearly, for any loop defined by Ω, if it has a fixed point (x,x′) with x′ =
x, then it can not have ranking functions: for any possible candidate ranking
function f , we have f(x) − f(x′) = f(x) − f(x) = 0 �≥ C for any C > 0.

Checking if a loop Ω has a fixed point is equivalent to check if the system

Sys � (x,x′) ∈ Ω ∧ x = x′

has a solution. This can be done by, e.g., SMT techniques.

2.4 Support-Vector Machine Learning

Support-Vector Machines (SVM), originally introduced in [11] as Support-Vector
Networks, are supervised learning algorithms that can be used to classify data.
The main task of SVM is to find a hyperplane separating the data in the provided
training set so that it maximizes the margin between the points with two different
labels {+1,−1} in the training set.

Formally, given a training set D = { (vi, li) ∈ R
n × {−1,+1} | 1 ≤ i ≤ d }

of d points vi ∈ R
n, each one labelled with li ∈ {−1,+1}, SVM aims to find a

separating vector w ∈ R
n and a constant b ∈ R such that
{
wTvi + b ≥ +1 if li = +1,
wTvi + b ≤ −1 if li = −1.

In this paper, we reduce the problem of finding a nested ranking function of
a given program to the problem of finding a hyperplane separating data with
different labels.
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Algorithm 1. The SVM-based algorithm for synthesizing k-nested ranking
functions
Input: Program Ω, initial sample size n, functions template U = 〈U1, . . . , Uk〉
Output: The k-nested ranking coefficients (aT

k , . . . , aT
1 ) if Ω is well-founded;

“nonterminating” if Ω contains fixed points; “unknown” otherwise
1 begin
2 if HasFixedPoint(Ω) then
3 return (nonterminating, GetFixedPoint(Ω));
4 D := {(O, −1)};
5 for i := 1 to n do
6 Sample (x,x′) randomly from Ω;
7 D := D ∪ GetDataPoint(U, (x,x′));
8 while true do
9 svm := SVM(D);

10 if svm = (aT
k , . . . , aT

1 ) then
11 check := Verify(svm, U, Ω);
12 if check = true then
13 return (terminating, svm);
14 else // check is a counterexample of the form (x,x′)
15 D := D ∪ GetDataPoint(U, check);

16 else // SVM failed to separate O from the points from G(Ω)
17 return unknown

3 SVM-Based Synthesis of Nested Ranking Functions

In this section we present our algorithm, shown in Algorithm1, to synthesize a
k-nested ranking function for an input program Ω based on a given template
U , provided such a function exists. We first present in Sect. 3.1 an overview of
the way Algorithm 1 works. Later in Sect. 3.2, we explain how to reduce the
problem of finding a nested ranking function of a program to the problem of
constructing a hyperplane separating data, which leads to a method to sample
points from the given program that fits the SVM methods for finding separating
hyperplanes. This gives us the main result of the paper in Theorem1, namely
the equivalence of the existence of a hyperplane separating the origin O from
G(Ω) from the program Ω and the existence of a nested ranking function for
Ω. Since Algorithm 1 relies on a given template of a nested ranking function we
want to learn, we also present in Sect. 3.3 a method to construct a valid template
which guarantees that O is not part of G(Ω) from the program Ω.

3.1 Overview of the SVM Synthesis Algorithm

Algorithm 1 works as follows: initially it checks, by means of the call to the
procedure HasFixedPoint(Ω), whether Ω contains a fixed point (x,x). If for
some point x the body of the loop program does not modify the variables’
value, then we can for sure return “nonterminating”, as witnessed by (x,x) itself.



Synthesizing Nested Ranking Functions for Loop Programs via SVM 445

Note that we can easily extend Algorithm 1 to cover more nonterminating behav-
iors by using other nontermination analysis techniques, like geometric nontermi-
nation arguments [17]; here we focus on proving the termination programs by
means of the SVM-based k-nested ranking function termination argument.

If no fixed point is found, the algorithm then tries to learn a hyperplane
via SVM in order to construct a nested ranking function based on the given
template U , which needs sampling points from the program. According to The-
orem 1, a valid hyperplane has to separate the origin O from all other points
corresponding to the executions of the program, in order to represent a k-nested
ranking function. Therefore, the algorithm first samples randomly n points from
the program Ω and adds their corresponding entries, labelled with +1, to the
data set D, which already contains the origin O with label −1. The entries are
generated by the procedure GetDataPoint, based on the construction we give
below in Sect. 3.2.

Once the initial data points are obtained, the main loop of the algorithm
calls SVM to separate the origin from the program points. SVM can return
two answers: either the coefficients (aT

k , . . . ,aT
1 ) for the k-nested ranking func-

tion defined according to the input template U = 〈U1, . . . , Uk〉, or a failure in
separating the data points. In the latter case, the algorithm returns “unknown”,
since there are three motivations for such a failure: (1) the loop is simply nonter-
minating; (2) the dimension of the given template U is not enough to separate O
from G(Ω), e.g., U is a template for a 3-nested ranking function but Ω requires
a 5-nested ranking function; or (3) the shape of the given template U is not suit-
able to separate O from G(Ω), e.g., the current template U represents a k-nested
affine linear ranking function but Ω needs a k-nested quadratic ranking function.
In case SVM returned the coefficients (aT

k , . . . ,aT
1 ), they are used by Verify to

construct the k-nested ranking function 〈aT
1 · U1, . . . ,aT

k · Uk〉 which is checked
against Condition (1) in Definition 2. If it is satisfied, then the algorithm returns
“terminating” together with the coefficients for the ranking function; otherwise,
Verify returns a point (x,x′) ∈ Ω for which Condition (1) in Definition 2 does
not hold. This point is used by the procedure GetDataPoint to extend D with
new data points, before calling SVM in the next iteration of the algorithm.

3.2 SVM Data Points

We now show how to generate data points for SVM, given the values (x,x′) of
the program variables and the template U for the k-nested ranking function. In
the remainder of this section we may write f(x) instead of just f when referring
to f as a function, to remark the fact that f uses variables x in its definition.

Let 〈f1, . . . , fk〉 be a k-tuple representing a k-nested ranking function; each
function fj can be written as fj(x) = aT

j · Uj(x) where aj = (aj,1, . . . , aj,sj
)

is a real vector of coefficients and Uj(x) = (Uj,1(x), . . . , Uj,sj
(x))T is an sj-

tuple with Uj,i(x) = qj,i(x)
pj,i(x)

, where qj,i(x), pj,i(x) ∈ R[x], for i ∈ {1, . . . , sj}.
Note that in case the polynomial pj,i(x) is the constant 1, then we have that
Uj,i(x) = qj,i(x) is exactly a polynomial in x. As an example, consider the vector
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of variables x = (x, y)T and the function fj(x) = 3x2 − 4xy + 5y3

3x3+2y+1 + 7. It
is easy to recognize that fj(x) can also be written as fj(x) = aT

j · Uj(x), where

aT
j = (3,−4, 5, 7) and Uj(x) = (x2, xy, y3

3x3+2y+1 , 1)T . When synthesizing the
k-nested ranking function, the vector Uj comes from the given template U while
the vector of coefficients aT

j is computed for obtaining the separating hyperplane.
Formula (1) can thus be rewritten as

∀(x,x′) ∈ Ω :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

aT
1 · (U1(x) − U1(x′)) ≥ C1

aT
2 · (U2(x) − U2(x′)) + aT

1 · U1(x) ≥ C2

...
aT

k · (Uk(x) − Uk(x′)) + aT
k−1 · Uk−1(x) ≥ Ck

aT
k · Uk(x) ≥ Ck+1

(2)

which can be written in compact vector form by means of the following notation.
For each i ∈ {1, . . . , k + 1}, let Gi be a function mapping (x,x′) to a column
vector of size k defined as follows.

G1(x,x′) 
→

⎛

⎜⎜⎜⎜⎜⎝

0
...
0
0

U1(x) − U1(x′)

⎞

⎟⎟⎟⎟⎟⎠
, G2(x,x′) 
→

⎛

⎜⎜⎜⎜⎜⎝

0
...
0

U2(x) − U2(x′)
U1(x)

⎞

⎟⎟⎟⎟⎟⎠
, · · ·

· · · , Gk(x,x′) 
→

⎛

⎜⎜⎜⎜⎜⎝

Uk(x) − Uk(x′)
Uk−1(x)

0
...
0

⎞

⎟⎟⎟⎟⎟⎠
, Gk+1(x,x′) 
→

⎛

⎜⎜⎜⎜⎜⎝

Uk(x)
0
0
...
0

⎞

⎟⎟⎟⎟⎟⎠
.

(3)

It is easy to see that each Gi(x,x′) is a mapping from R
2n to R

∑k
j=1 |aj |. Then

Formula (2) becomes

∀(x,x′) ∈ Ω :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(aT
k , · · · ,aT

1 ) · G1(x,x′) ≥ C1

(aT
k , · · · ,aT

1 ) · G2(x,x′) ≥ C2

...
(aT

k , · · · ,aT
1 ) · Gk(x,x′) ≥ Ck

(aT
k , · · · ,aT

1 ) · Gk+1(x,x′) ≥ Ck+1

.

Let Gi(Ω) be the image of Gi(x,x′) over the set Ω and (aT
k , · · · ,aT

1 )·Gi(Ω) =
{ (aT

k , · · · ,aT
1 ) · v | v ∈ Gi(Ω) }. Therefore, by Definition 2, we know that for a

loop defined by Ω, a nested ranking function exists if and only if there exists a
vector wT = (aT

k , · · · ,aT
1 ) and strictly positive real numbers C1, . . . , Ck+1 such

that
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(aT
k , · · · ,aT

1 ) · G1(Ω) ≥ C1

(aT
k , · · · ,aT

1 ) · G2(Ω) ≥ C2

...
(aT

k , · · · ,aT
1 ) · Gk(Ω) ≥ Ck

(aT
k , · · · ,aT

1 ) · Gk+1(Ω) ≥ Ck+1

. (4)

This implies that, if there exist a vector wT = (aT
k , · · · ,aT

1 ) and positive
numbers C1, . . . , Ck+1 such that Formula (4) holds, then we can get the k-nested
polynomial ranking function 〈aT

1 · U1(x), . . . ,aT
k · Uk(x)〉.

The following theorem equivalently reduces the existence of nested polyno-
mial ranking functions to the existence of a separating hyperplane between a
point and a set. Let m =

∑k
i=1 |ai| and G(Ω) =

⋃k+1
i=1 Gi(Ω).

Theorem 1. Given a loop specified by Ω, it has a nested polynomial ranking
function as defined in Definition 2 if and only if there exists a hyperplane L(v)
strictly separating the origin O ∈ R

m from G(Ω) ⊆ R
m.

Proof. Suppose that Ω has a k-nested polynomial ranking function defined as in
Definition 2. Then, by Formula (4), there must exist a vector w = (aT

k , · · · ,aT
1 )T

and strictly positive real numbers C1, . . . , Ck+1 such that Formula (4) holds.

Let L(v) = wT · v− min{Ci}k+1
i=1

2 . We claim that the linear function L strictly
separates the origin O ∈ R

m from G(Ω) ⊆ R
m. First, we have L(O) = wT ·

O − min{Ci}k+1
i=1

2 = −min{Ci}k+1
i=1

2 < 0, since O = (0, . . . , 0)T and Cj > 0 for
j ∈ {1, . . . , k +1}. By the fact that w = (aT

k , · · · ,aT
1 )T and strictly positive real

numbers C1, . . . , Ck+1 satisfy Formula (4), it follows that for each v ∈ G(Ω),

L(v) ≥ min{Ci}k+1
i=1 − min{Ci}k+1

i=1

2
=

min{Ci}k+1
i=1

2
> 0

according to Formula (4). Therefore, L(v) strictly separates the origin O ∈ R
m

from G(Ω) ⊆ R
m, as required.

Conversely, assume that there exists a hyperplane L(v) = wT · v+ b strictly
separating O ∈ R

m from G(Ω) ⊆ R
m, where w = (aT

k , · · · ,aT
1 )T . Then, there

are two cases to consider:

1. L(O) < 0 and for each v ∈ G(Ω), L(v) > 0, or
2. L(O) > 0 and for each v ∈ G(Ω), L(v) < 0.

We now show that in both cases, it is always possible to find a vector wT and
strictly positive real numbers C1, . . . , Ck+1 which satisfy Formula (4). We just
need to consider the first case; a symmetric analysis can be applied to the second.

Let us consider the first case, i.e., L(O) < 0 and for each v ∈ G(Ω) it is the
case that L(v) > 0. If this happens, then this means that L(O) = wT ·O+b < 0.
Hence b < 0. Since for each v ∈ G(Ω), L(v) = wT · v + b > 0, i.e, wT · v > −b,
dividing both sides of the above inequality by −b, we have for each v ∈ G(Ω)

− wT

b
· v > 1. (5)
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Set w′ = −w
b and set C ′

1 = C ′
2 = · · · = C ′

k+1 = 1. Then by Formula (5), since
G(Ω) =

⋃k+1
j=1 Gj(Ω), we have for each j ∈ {1, . . . , k +1}, w′T ·Gj(Ω) ≥ 1. This

immediately implies that, for w = (aT
k , . . . ,aT

1 )T , the vector

w′ =

(
−aT

k

b
,−aT

k−1

b
, · · · ,−aT

1

b

)T

and strictly positive real numbers C ′
1, . . . , C

′
k+1 satisfy Formula (4). Then, the

loop specified by Ω indeed has a nested ranking function as by Definition 2. ��
Remark 2. Theorem 1 relates the computation of nested polynomial ranking
functions for the loop defined by Ω to the detection of a separating hyperplane
between the origin O ∈ R

m and G(Ω) ⊆ R
m. Since the latter can be regarded as

a binary classification problem, SVM algorithms fit well the task of computing
such a hyperplane strictly separating O from G(Ω). The hyperplane computed
by an SVM algorithm (cf. Sect. 2.4) clearly works in Theorem 1; however, in
case the SVM algorithm fails to separate O from G(Ω), this does not imply by
Theorem 1 that Ω has no nested ranking function, since the requirement about
the separating hyperplane in Sect. 2.4 is stricter than the one in Theorem 1.

To compute a strictly separating hyperplane between the origin O ∈ R
m

and G(Ω) ⊆ R
m by SVM algorithms, a key point is to guarantee that O /∈

G(Ω). Otherwise, if O ∈ G(Ω), then the vector w = (aT
k , . . . ,aT

1 )T satisfying
Formula (4) simply can not exist. Since the definition of G(x,x′) depends on
U(x) = (U1(x), . . . , Uk(x))T (cf. Notation (3)), we now present a method for
constructing U(x) such that O /∈ G(Ω).

3.3 The Construction of U(x) Ensuring O /∈ G(Ω)

In this section, we present how to build a vector U(x) = (U1(x), . . . , Uk(x))T

that can be used as input template U in Algorithm 1 such that it is guaranteed
that O /∈ G(Ω), provided Ω has no fixed point. Note, however, that it is still
possible for the SVM algorithm to fail to separate O from G(Ω) even when
O /∈ G(Ω): this can happen, for instance, when the program alternates between
two different points, which indicates that the given program is nonterminating.

For a loop program Ω, suppose it has no fixed points (for Algorithm1, this is
guaranteed to hold at line 4); otherwise, for a fixed point (x,x) ∈ Ω, we would
have G1(x,x) = O (cf. Notation (3)), which implies O ∈ ⋃k+1

i=1 Gi(Ω) = G(Ω).
So, assume that x �= x′ for each (x,x′) ∈ Ω. For each j ∈ {1, . . . , k − 1}, we can
construct the vector Uj(x) as

Uj(x) =

⎛

⎝x1, . . . , xn︸ ︷︷ ︸
x

,
qj,n+1(x)
pj,n+1(x)

, . . . ,
qj,sj

(x)
pj,sj

(x)

⎞

⎠
T

(6)

where qj,i(x), pj,i(x) ∈ R[x] for each i ∈ {n + 1, . . . , sj}, which control the
shape of the separating hyperplane. Intuitively, the first n components of Uj(x)
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guarantee O /∈ Gj(Ω) while the last sj −n components increase the dimension of
the image space so to increase the chance of the existence of a strictly separating
hyperplane between O and Gj(Ω). This implies that Uj(x)−Uj(x′) is the vector

⎛

⎜⎝x1 − x′
1, . . . , xn − x′

n︸ ︷︷ ︸
x−x′

,
qj,n+1(x)
pj,n+1(x)

− qj,n+1(x′)
pj,n+1(x′)

, . . . ,
qj,sj

(x)
pj,sj

(x)
− qj,sj

(x′)
pj,sj

(x′)

⎞

⎟⎠

T

.

Since we assume that the loop Ω has no fixed points, it is not difficult to see
that O /∈ Gj(Ω) for each j ∈ {1, . . . , k − 1}. Assume this is not the case, i.e.,
O ∈ Gj(Ω): then there must exist (x̂, x̂′) ∈ Ω such that Gj(x̂, x̂′) = (0, . . . , 0)T .
This implies that Uj(x̂) − Uj(x̂′) = 0 which forces to have x̂′ = x̂ (cf. the first
n components of the vector Uj(x̂) − Uj(x̂′) above), i.e., x̂ is a fixed point of the
loop Ω. Having x̂′ = x̂ clearly contradicts the assumption that Ω has no fixed
points, thus when the loop Ω has no fixed points, we have O /∈ Gj(Ω).

Having shown how to construct the vector Uj(x) for j ∈ {1, . . . , k − 1}, it
remains to construct Uk(x) such that O /∈ Gk(Ω) and O /∈ Gk+1(Ω), which also
depend on Uk(x) according to Notation (3). We let Uk(x) be the vector

Uk(x) =

⎛

⎝x1, . . . , xn︸ ︷︷ ︸
x

,
qk,n+1(x)
pk,n+1(x)

, . . . ,
qk,sk

(x)
pk,sk

(x)

⎞

⎠
T

like for the other Uj vectors (cf. Notation (6)) but we additionally require that
there exists � ∈ {n+1, . . . , sk} such that qk,�(x)

pk,�(x)
is positive on Ω. In general, one

can set qk,�(x) = s(x) + 1 and pk,�(x) = 1, where s(x) is a sum of squares of
polynomials; for example, we can set s(x) =

∑n
i=1 x2

i . It is not difficult to see that
when Uk(x) is in the above form, we have O /∈ Gk(Ω) and O /∈ Gk+1(Ω). Assume
for the sake of contradiction that O ∈ Gk(Ω); then there exists (x̂, x̂′) ∈ Ω such
that Gk(x̂, x̂′) = (0, . . . , 0)T . By Notation (3), since Uk(x)−Uk(x′) is a subvector
of Gk(x,x′), it follows that Uk(x̂) − Uk(x̂′) = 0 which forces to have x̂′ = x̂ (cf.
the first n components of the vector Uk(x̂)−Uk(x̂′) above), i.e., x̂ is a fixed point
of the loop Ω, contradicting the assumption that Ω has no fixed points.

Assume now for the sake of contradiction that O ∈ Gk+1(Ω); then there
exists (x̂, x̂′) ∈ Ω such that Gk+1(x̂, x̂′) = (0, . . . , 0)T . By Notation (3), since
Uk(x) is a subvector of Gk+1(x,x′), it follows that Uk(x̂) = 0. This in particular

implies that
qk,sj

(x)

pk,sj
(x) = 0 for all j ∈ {n+1, . . . , sk}, contradicting the requirement

that there exists � ∈ {n + 1, . . . , sk} such that qk,�(x)
pk,�(x)

is positive on Ω.

4 Experimental Evaluation

We have implemented Algorithm 1 in a prototype tool named SVMRanker.
We also used LassoRanker, part of the open-source Ultimate Automizer
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Table 1. Summary of the experiments

Terminating Non-terminating Unknown Timeout

SVMRanker 40 34 0 60

LassoRanker 24 37 73 0

Common cases 19 34 0 0

suite [15], as reference for the termination analysis, for the cases for which it pro-
vided a definitive answer. For our experiments, we used a laptop equipped with
a 2.5 GHz Intel Core i5-7300HQ CPU and 8 GB 2400 MHz DDR3 RAM; we set
the timeout to 300 s for each experiment. The programs we used as benchmarks
include several Boogie files taken from the Ultimate Automizer repository as
well as from the programs listed in [12,26], which admit the Ω representation
based on Definition 1.

4.1 Overview of the Experiments

Table 1 shows an overview of the outcome of the experiments. As we can see,
SVMRanker has been able to solve many more problems than LassoRanker,
giving always answers compatible with those from LassoRanker.

It is worthwhile to observe that SVMRanker and LassoRanker behave
similarly for nonterminating programs: they established nontermination for the
same 34 experiments, with LassoRanker successfully classifying 3 more cases
by means of geometric nontermination arguments [17]. Regarding the terminat-
ing programs, the situation is different: while the number of programs marked
as terminating is rather high (40 for SVMRanker and 24 for LassoRanker),
they gave the same answer for just 19 cases; this means that SVMRanker
has been able to solve 21 cases not solved by LassoRanker, which has solved
instead 5 cases not managed by SVMRanker. In particular, the latter cases
involve for four programs the use of conditional ranking functions, i.e., ranking
functions making use of “if-then-else” statements, which are not supported yet
by our algorithm; for the remaining case, in one iteration Z3 made SVMRanker
go timeout during the Verify procedure; in general, for the cases where SVM-
Ranker reached the timeout, a large part of the execution time has been used
by Z3 for the verification of the candidate nested ranking function.

This means that the SVM-based technique we proposed in Sect. 3 comple-
ments rather well the large set of algorithms available in LassoRanker for
establishing the termination of loops. By combining the techniques in Lasso-
Ranker and the SVM-based one we propose, we would have been able to classify
82 programs out of 134, instead of just 61 for LassoRanker alone.

To prove termination of the 40 terminating programs, SVMRanker used
an 1-nested affine linear ranking function for 30 cases, a 3-nested affine linear
ranking function for 7 cases, a 5-nested affine linear ranking function for 1 case,
and an 1-nested nonlinear ranking function for the remaining 2 cases.
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Regarding the running time, both SVMRanker and LassoRanker com-
pleted the majority of the experiments with a definitive answer within 1 second,
where we consider only the time actually spent for the analysis. Of the remain-
ing cases, usually LassoRanker is much faster than SVMRanker in giving an
answer, but not always: in a couple of cases, it took longer for LassoRanker
to return “unknown” than for SVMRanker to return “terminating”.

4.2 Discussion

SVMRanker implements and extends Algorithm 1 in several ways.
SVMRanker is coded in Python; the procedure SVM is based on the

Python Scikit-Learn library while HasFixedPoint and Verify delegate
their functionalities to Z3 [19] by means of the Python bindings Z3 provides.

Algorithm 1 wants as input the template for the ranking function, just like
many other algorithms implemented in LassoRanker. However, the algorithms
in LassoRanker are only applicable to templates of linear functions and linear-
constraint program loops. Given the difficulty of selecting a good template,
SVMRanker works as follows: it tries to use k-nested ranking functions, with
k being an increasing odd number at most 7. The functions used in the nested
ranking functions are either affine linear functions or nonlinear functions; the
latter involve monomials obtained by randomly choosing for each program vari-
able its exponent in the set {−3,−2, . . . , 3}∪{− 1

2 , 1
2}. As a result of this random

choice, it may happen that a program is classified as terminating by a k-nested
ranking function with k larger than needed; in the experiments we have found
some case where a 3-nested affine linear ranking function was used to prove ter-
mination, with the last function being a constant, i.e., it was actually a 2-nested
affine linear ranking function. An interesting research topic would be the design
of heuristics able to provide good candidate templates based on the input loop
program, instead of using predefined templates or randomly generated ones.

It is worthwhile to stress that Algorithm 1 and SVMRanker are able to
work with any template U for the k-nested ranking function with no changes in
the implementation. This means that it is extremely easy to extend both with
new templates as well as with the candidate templates provided by the above
heuristics, once designed. The running time of SVMRanker is likely to be
affected when using complex templates, since the Verify procedure (currently
based on Z3) needs to verify whether the obtained k-nested function is a valid
k-nested ranking function and this may require more time for complex functions.

SVMRanker iterates the main loop of Algorithm 1 at most 25 times, since in
very few cases SVMRanker would be able to prove termination by using more
iterations without reaching the timeout. By limiting the number of iterations,
we also limit the growth of the set of sampled points and counterexamples: since
the SVM algorithms’ complexity is at least quadratic in the size of the training
set [22], adding more and more counterexamples when the current template is
not suitable for proving termination would just result in a general slow-down of
SVM without reasonable possibility to get a useful answer from SVMRanker.
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Limiting the number of iterations with a fixed bound is important to avoid
wasting too much time while working with templates that are not suitable for
proving termination; with the limit in place, it is important to make Verify
(or, Z3 in SVMRanker) return “good” counterexamples, so to be able to dis-
cover quickly whether the current template is suitable for proving termination:
“good” counterexamples, like the ones corresponding to points close to the origin,
allow the algorithm to refine quickly the training set and rule out other possible
“bad” counterexamples. As an example, consider the origin O = (0, 0) and the
two data points (4, 2) and (1000, 500). Assume that the training set contains only
the origin O and one point: a separation hyperplane for the former is the diag-
onal line passing through (2, 1) = G(xg,x′

g), while for the latter passes through
(500, 250) = G(xb,x′

b), for appropriate program variables xg and xb and their
updates x′

g and x′
b, respectively. The counterexample (xg,x′

g) is “better” than
(xb,x′

b), since the separation hyperplane passing through (2, 1) is able to rule
out all counterexamples (x,x′) inducing points G(x,x′) lying on the segment
between (2, 1) and (500, 250), each of which may be returned by the Verify
function as counterexample for the hyperplane passing through (500, 250). We
think that finding a good measure for the “quality” of the counterexample and
ways to optimize it is an interesting future work with practical improvements on
program termination analysis in general.

5 Conclusion

In this paper, we considered the synthesis of k-nested ranking functions for
proving termination of loop programs; we showed that the existence of a nested
ranking function for a program Ω is equivalent to the existence of a hyperplane
separating the origin O from G(Ω). This allowed us to use SVM techniques
for the synthesis of k-nested linear and nonlinear ranking functions. We showed
how to define the G(Ω) so that the separating hyperplane gives rise to a nested
ranking function for the loop; we showed as well how to guarantee by construc-
tion that O /∈ G(Ω) by crafting an appropriate template U , as long as Ω has no
fixed points. Experimental evaluation on our prototype SVMRanker confirmed
that our SVM-based synthesis algorithm is a valuable approach complementing
the techniques used in LassoRanker, the termination engine of the leading
program analysis tool Ultimate Automizer: we have been able to prove ter-
mination for 21 programs (out of 45 shown to terminate by at least one of the
tools) for which LassoRanker returned “unknown”.

As future work, we plan to investigate heuristics for generating good tem-
plates for SVMRanker from the program to be analyzed, as well as heuristics
to improve the quality of the counterexamples returned to the current candidate
nested ranking function, so to speed up the analysis for terminating programs.
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Abstract. Alloy is both a formal language and a tool for software mod-
eling. The language is basically first order relational logic. The analyzer
is based on instance finding: it tries to refute assertions and if it succeeds
it reports a counterexample. It works by translating Alloy models and
instance finding into SAT problems. If no instance is found it does not
mean the assertion is satisfied. Alloy relies on the small scope hypothesis:
examining all small cases is likely to produce interesting counterexam-
ples. This is very valuable when developing a system. However, Alloy
cannot show their absence. In this paper, we propose an approach where
Alloy can be used as a first step, and then using a tool we develop, Alloy
models can be translated to Coq code to be proved correct interactively.

Keywords: First order relational logic · Calculus of inductive
construction · Translation

1 Introduction

There are many different formal methods, ranging from completely automated
tools, for e.g. static analyzers and sanitizers [24], to interactive theorem proving
that requires a lot of human work.

Often, the users of such tools need to provide a specification of the analyzed
system. Analyzing this specification can then be automatic or interactive. Alloy
and the Alloy analyzer [10] fall into the first category. Alloy was and is used in
many different domains. For example software engineering [7], and security [20].
More specific applications of it, as presented by Torlak et al. in [28], are model-
ing and analysis of software systems, bounded program verification and test-case
generation. Multiple systems have been studied using Alloy: the flash file sys-
tem [12,13], the Mondex electronics purse [21], a proton therapy machine [22],
an information system library [6], etc.

When it comes to bounded program verification two related works were pre-
sented in detail in [28]. The Jalloy tool [11] checks a Java method against a
specification of its behavior. It starts by translating the method to Alloy then
c© Springer Nature Switzerland AG 2019
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invoking an early prototype of the Alloy Analyzer on the resulting constraints.
The second work was built on the previous work and is called Forge [4]. It
employed a new translation from procedural code to relational logic involving
symbolic execution, using the KodKod API [27]. Alloy have also been exploited
in many tools for test-case generation, to mention: TestEra [16] and Whispec [23].
While TestEra [16] employs Alloy in a specification-based black-box framework
for testing of Java programs, Whispec [23] is an approach for specification-based
white-box testing using Kodkod. KodKod [5], that is at the heart of Alloy’s
engine is also used in Niptick [2] a counter-example finder for the proof assistant
Isabelle.

Alloy is a lightweight formal method as it relies on the small scope hypoth-
esis: examining all small cases is likely to produce interesting counterexamples.
However, the Alloy analyzer cannot show the absence of errors. Other formal
tools such as the interactive theorem provers Coq [26] and Isabelle [18] have
been used to provide very strong guarantees on verified software, including a C
compiler [15] and the kernel of an operating system [14].

We think it is very valuable to use lightweight formal methods. In practice,
if one is to use a tool such as Alloy as a first step, then wants to use a more
heavyweight tools such as Coq as a second step, the formalization done first is
lost. To support the transition from Alloy to Coq, we propose a translator from
Alloy models to Coq code.

The paper is organized as follows. In Sect. 2 we briefly present Alloy and
Coq. The principles of the tool we propose are described in Sect. 3, including
examples of translation. We compare our approach to related work in Sect. 4,
discuss the current limitations of our tool in Sect. 5, and conclude in Sect. 6.

2 An Overview of Alloy and Coq

2.1 Alloy and the Alloy Analyzer

Alloy [9] is both a language and an analyzer for writing and checking formal
models. This section provides the details of the properties and main components
of this language.

Alloy Properties. Alloy have been widely used for modeling systems in order
to simulate them and verify their properties. It allows a simplified view of the
systems by abstracting implementation details and focusing on their properties
and constraints. The language has a simple syntax based on the Z language. It
is a structural language: it allows to model complex structures with hierarchies
and relations. Although it offers the possibility to define entities with properties
and constraints to describe systems, it does not conduct treatments. Alloy is
an analyzable language. The properties of an Alloy model can be checked and
simulated using the Alloy Analyzer.
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Atoms & Relations. In Alloy, atoms are the basic elementary entities. It is an
abstract concept that is used to model aspects of the real world. Alloy data
types are universally based on relations. They represent a concept that serves to
define correlations between atoms. Relations and atoms cooperate to represent
different aspects of a system. Relations can have an n arity and can be declared
as f : A1 → . . . → An.

Signatures represent the entities of a system. A signature is the only element to
represent the types and atoms in an Alloy model. Although it is a non-object-
oriented language, Alloy allows inheritance between signatures. A signature can
have attributes as explained below.

Facts in Alloy are used to describe different constraints about the system being
modeled that remain always true. In Alloy, all facts are defined using the keyword
fact.

Predicates are an abstraction of logical formulas for reuse purposes. A predicate
can be defined with parameters used in the logical formula of its body. Predicates
are often used in assertions that we want to verify on the model.

Functions return typed values for reuse and model clarity sake.

Assertions are used to specify properties about the model that we expect to
hold or that we want to check if they hold. Once an assertion is stated we can
check if it holds in a specific scope, using the keyword check and feeding the
model to the Alloy Analyzer. The analyzer looks for a counterexample to the
assertion within the specified scope.

The scope is the cardinality, specified by the user, of the top level signatures
in a model. Although working within limited scopes ensures that the model-
finding problem is decidable, it limits the generality of the results produced by
the Alloy Analyzer. Jackson explains this design decision through the small scope
hypothesis: most bugs can be found by testing programs for all test inputs within
a small scope. For more details refer to [10, section 5].

We discuss more specific Alloy syntax and semantics on the example of Fig. 1
that is basically the example of [10, page 16]. We will use this example as running
example throughout the paper. The interested reader can refer to [10] for a longer
discussion of this example.

Name and Addr are two signatures in Alloy terminology. They are sets. Book
is also a signature containing an attribute, addr. While addr is given type Name
→Addr, the fact that it is an attribute of Book means it is actually a ternary
relation between Book, Name and Addr. In lines 3 and 4 of Fig. 1 we can see the
definition of the predicates add and del both defining two different states of book,
the first by adding a new entry (i.e. addr) and the second by deleting an existing
one. In this code, + means union, − set difference, and . . is the relational join of
Alloy. One specificity of the join operation in Alloy is that in an expression r1 . r2, the
right-most column of relation r1 and the left-most column of relation r2 are not in the
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join result. The function lookup returns the Addr associated to the Name n in the book
b, n and b given as arguments of the function.

We can see how assertions are defined for this example in lines 11–21. The assertion
delUndoesAdd is stating that by adding an entry to a book then deleting it we go back
to the initial state of the book (taking into consideration that these are the only two
operations done on the book). In order to check if this assertion holds, we execute the
check stated in line 22 using the Alloy Analyzer (the scope in this case is 5 atoms, if
the scope is not specified it is set to 3).

1 sig Name, Addr { }
2 sig Book { addr: Name → Addr }
3 pred add [b, b ’: Book, n: Name, a: Addr] { b ’. addr = b.addr + n→a }
4 pred del [b, b ’: Book, n: Name] { b’.addr = b.addr − n→Addr }
5 fun lookup [b: Book, n: Name] : set Addr { n.(b.addr) }
6 assert delUndoesAdd {
7 all b, b ’, b ’’: Book, n: Name, a: Addr |
8 no n.(b.addr) and add [b, b ’, n, a] and del [b ’, b ’’, n]
9 implies b.addr = b’’.addr

10 }
11 assert addIdempotent {
12 all b, b ’, b ’’: Book, n: Name, a: Addr |
13 add [b, b ’, n, a] and add [b, b ’’, n, a]
14 implies b ’. addr = b’’.addr
15 }
16 assert addLocal {
17 all b, b ’: Book, n, n ’: Name, a: Addr |
18 add [b, b ’, n] and n != n’
19 implies
20 lookup [b, n ’] = lookup [b ’, n ’]
21 }
22 check delUndoesAdd for 5

Fig. 1. Alloy example

2.2 The Coq Proof Assistant

The Coq proof assistant is based on the calculus of inductive constructions [19], a
higher-order typed λ-calculus. Coq and the calculus of inductive constructions are
based on the Curry-Howard correspondence: a type corresponds to the statement of a
theorem, and a program to the proof of a theorem.

The core of Coq is very small. For example there is no pre-defined data type. All
definitions are typed in Coq. Therefore a user-defined type has a type, named a sort.
There are three sorts in Coq: Set is the sort of types that correspond to types found is
usual programming language. It is the sort of the “computational” types. Prop is the
sort of “logical” types. Both Set and Prop are typed: their type is Type. Most of the
time when using Coq, the type of Type will be displayed as Type. Actually there is a
countable infinity of sorts Type.
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1 Definition id: ∀ (A:Type), A → A :=
2 fun A x ⇒ x.
3
4 Inductive nat : Set :=
5 | O : nat
6 | S : nat → nat.
7
8 Fixpoint add (n1 n2:nat) : nat :=
9 match n1 with

10 | O ⇒ n2

11 | S n1 ⇒ S(add n1 n2)
12 end.
13
14 Lemma add n O: ∀ n,
15 add n O = n.
16 Proof.
17 induction n as [ | n IH ].
18 − trivial.
19 − simpl. rewrite IH. trivial.
20 Qed.

Fig. 2. Coq example

In Gallina, the language of Coq, a definition contains three components: a name,
a type, and a term. For example the polymorphic identity function can be defined as
shown in lines 1–2 of Fig. 2.

As the core does not contain predefined types (but the sorts Set, Prop and Type),
Coq provides a mechanism to define new inductive types. This is done by giving a list
of constructors for values of the defined type. For example, Peano natural numbers are
defined in lines 4–6 of Fig. 2. There are two constructors for values of type nat: O and
S the latter taking a nat as argument.

Functions are most often written using pattern matching as in lines 8–12 of Fig. 2.
For each possible way of constructing a value of the type of the matched expression (in
this case n1 of type nat), the pattern matching construct returns (after ⇒) a specific
result. The patterns (on the left-hand side of ⇒) may contain variables: in case the
matching succeeds, the free variables are bound to the matched values in the right-hand
side of ⇒. Note that add is a recursive function (Fixpoint keyword). Only terminating
functions are allowed in Coq: in this case the system checks the termination by checking
that the recursive call is done on a strict syntactic subterm of n1.

Coq is a proof assistant: it is possible to define theorems and prove them. As
mentioned at the beginning of this section, a Coq definition contains three elements:
a name, a type and a term. In the case of a theorem (or lemma, proposition, etc.),
the term (i.e. the proof) is usually not written as a program (even though the Curry-
Howard correspondence states a program and a proof are the same thing): the proof
script language of Coq is used instead. In the code of Fig. 2, add n O is the name of
the lemma, ∀ n, add n O = n is its type, and the proof script between Proof and Qed
builds a term that is the proof of the lemma.

One important feature of Coq is that computational terms can be embedded into
types. For example the library Vector of Coq standard library contains the following
inductive type definition:

1 Inductive t (A : Type) : nat → Type :=
2 | nil : t A 0 | cons : ∀ (h:A) (n:nat), t A n → t A (S n).

The size of a value of this type contains the length of the vector. For example, a value of
type Vector.t nat 10 is a vector containing ten nat values. Vector.t is called a dependent
type.
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This feature can also be used to define predicates as inductive types. For example
the < predicates on Peano natural numbers is defined in the Coq standard library as:

1 Inductive le (n : nat) : nat → Prop :=
2 | le n : le n n | le S : ∀ m : nat, le n m → le n (S m).

More generally, Coq functions can take both computational values and types as
arguments, and also return them as results. As values of some types (like add n O) are
proofs, Coq functions can also take proofs as arguments and return proofs as results.
We use these features in the Coq code generated from Alloy models.

It is also possible to declare values in Coq: in this case we have only a name and
a type. In the case of a value that needs a proof, it means an axiom is introduced in
Coq’s logic. Note that when such declarations can be written inside a section, in such a
way that at the closing of the section, all the elements that depend on these hypotheses
are added additional arguments corresponding to these hypotheses.

3 The Transformation

3.1 Basic Principles

Logical Quantifiers and Connectors. Logical elements present in the Alloy language,
are also present in Gallina, either as primitives (universal quantification) or defined in
the standard library (existential quantification, negation, conjuction, disjunction). The
design choices thus appear when translating the relational parts of Alloy.

Sets, Relations and Elements. In the Coq standard library, sets and binary relations
are formalized using predicates. Given a type A, a subset of A is formalized as a
predicate on A, i.e. a value of type A→Prop, and a binary relation on types A and
B as a value of type A→B→Prop. We could use directly such a formalization, and
consider higher arities: the simple example of Fig. 1 indeed contains a relation of arity
3. Some other translation tools from Alloy to provers (discussed in Sect. 4) have explicit
different translations for sets, binary relations, ternary translations, etc. Some of them
are limited to a given arity.

However, in addition to a “raw” translation from Alloy to Coq, we wanted our tool
to provide some support to ease the proof in Coq of the assertions of an Alloy model.
Such a support includes general lemmas about the properties of the set and relational
operations of Alloy. While of course possible in Coq, we chose to avoid such a solution
as it would mean we would have to generate as many versions of the operations as
there are combination of the arities, and as many supporting lemmas as there are
combinations of these operations. Also in Alloy, relational operations can be applied
to elements that are seen as singleton sets.

Therefore we chose to generalize the approach present in the Coq standard library:
considering a type U (the universe of Alloy), a relation of arity n (with 0 < n) is
formalized as a value of type U→...→U→Prop that contains n U.

To be able to define operations on arbitrary relations, we first need to express the
arity of a relation. This is done by the following definition:

1 Fixpoint arity (n : nat): Type :=
2 match n with
3 | 0 ⇒ Prop
4 | S n’ ⇒ U → arity n’
5 end.
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Therefore arity 1 simplifies to U→Prop, arity 2 to U→U→Prop, etc. With this definition
we are able to translate any Alloy signature into a set of declarations of Coq values
whose types are declared using arity.

To model an element as a singleton set, we define a Singleton predicate:

1 Fixpoint Singleton n (R: arity (S n)) : Prop :=
2 match n with
3 | 0 ⇒ ∃! (x:U), R x
4 | S n’ ⇒ ∃! (x:U), Singleton n’ (R x)
5 end.

Basically what this predicate does is that for a relation R of arity n greater than 1,
it indicates there exists a unique element x of U such that the partial application R x
is also a singleton relation. For a relation of arity 1, it just states that there exists a
unique x such that R x.

Unfortunately the code above is not accepted by Coq. The problem is that Coq
cannot determine without additional information that R x can be considered as a value
of type arity n. To help the system we need “cast” functions (Fig. 3). Note that both
these functions are defined using the proof script language of Coq. However, these cast
functions are not enough: we need to provide them a proof as their last argument. This
proof is simple, that is actually a proof by reflexivity, and we can use what Chlipala
calls the “convoy pattern” [3, page 172] to get these proofs in the right hand sides of
the pattern matching construction.

1 Definition cast n1 (R1 : arity n1) (H: n1 = 0) : Prop.
2 subst. simpl in ∗. trivial.
3 Defined.
4 Definition cast’ n1 n1’ (R1 : arity n1) (H: n1 = S n1’) : arity (S n1’).
5 subst. simpl in ∗. trivial.
6 Defined.
7 Fixpoint Singleton n (R: arity (S n)) : Prop:=
8 match n as m return n = m → Prop with
9 | 0 ⇒ fun H ⇒ ∃! x, cast (R x) H

10 | S n’ ⇒ fun H ⇒ ∃! y, Singleton n’ (cast’ (R y) H)
11 end eq refl.

Fig. 3. Actual definition of singleton

This small example shows that while having generic arity relations is indeed very
generic, it makes the formalization more technically challenging. However, by providing
general theorems on the Coq formalization of Alloy operations, we think the user of
our tool will not have to deal with such technicalities most of the time.

Operations. All the basic relational operations have the same shape as Singleton. For
example the inclusion operator in of Alloy is translated as (the cast and convoy pattern
are omitted):

1 Fixpoint IN n (R1: arity n)(R2: arity n): Prop :=
2 match n with
3 | 0 ⇒ R1 → R2
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4 | S n’ ⇒ ∀ (x:U), IN n’ (R1 x) (R2 x)
5 end.

Basically it means that for all n-tuple t, if R1 t then R2 t. The Alloy equality is not
translated as the default syntactic equality (up to reduction) of Coq, but as:

1 Definition EQUAL n (R1: arity n)(R2: arity n): Prop :=
2 (IN R1 R2) ∧ (IN R2 R1).

Note that all the first nat arguments of these definitions are made implicit. It is therefore
not necessary to give them explicitly when using these definitions: Coq infers them.
Also instead of writing EQUAL a b, we use Coq’s notations a == b.

Slightly more challenging operations are the join and the product. Again omitting
the casts and the convoy pattern, the Alloy join operation is defined as shown in Fig. 4.

1 Fixpoint JOIN R n2 (R1: arity 1)(R2: arity (S n2)) : arity n2 :=
2 match n2 with
3 | 0 ⇒ ∃ x:U, (R1 x) ∧ (R2 x)
4 | S n2’ ⇒ fun (y:U) ⇒ JOIN R n2’ R1 (fun (x:U) ⇒ R2 x y)
5 end.
6 Fixpoint JOIN n1 n2 (R1: arity (S n1)) (R2: arity(S n2)) : arity(n1+n2) :=
7 match n1 with
8 | 0 ⇒ JOIN R n2 R1 R2
9 | S n1’ ⇒ fun (y:U) ⇒ JOIN n1’ n2 (R1 y) R2

10 end.

Fig. 4. Definition of join (details omitted)

Operation Properties. As mentioned before, in addition to translate the definitions,
operations, formulas of Alloy, we also provide properties of Alloy operations. The first
set of properties concerns the Alloy equality ==: we proved it is an equivalence relation
and also that it is compatible with the Alloy operations, i.e. for an operation f, if for
all a, b such that a == b, then f a == f b. This allows to use the rewriting tactics of
Coq while writing proofs. These are very important as most of the other properties are
stated as equalities using ==.

The second set of properties are mostly algebraic properties. For example we have:

1 Lemma UNION idem: ∀ n (R: arity n), UNION R R == R.

We developed a tactic that is able to prove most of these properties, the proof script
in this case is Proof. solve alloy. Qed.

Other properties are more specific to Alloy operations. For example we provide a
lemma that states that if the join of a binary relation with itself contains the relation,
then this relation is transitive:

1 Lemma JOIN IN transitive : ∀ R: arity 2,
2 IN (JOIN R R) R ↔ (∀ x y z, R x y → R y z → R x z).

3.2 Alloy Models Translation

Now that we have translated the basic elements of the Alloy language, we use them to
translate Alloy models. Here we present how each of the Alloy models components is
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translated into Coq syntax and the reasoning behind it. We continue using the example
given in Fig. 1.

Signatures. As we presented so far, everything that is going to be in our Coq trans-
lation of the Alloy models should be of type arity n. In order to follow this reasoning
and to be able to manipulate Alloy signatures, we have decided to represent them
in the format of Coq Variables (declarations) by specifying first their arity. Top-level
signatures like Name, Addr and Book are sets and thus unary (i.e. arity 1) relations.
Signature attributes are declared as relations (arity greater than 1) then a Hypothesis
is added to the Coq code for their types, lines 2 and 3 in the following Coq translation
shows the example of attribute addr:

1 Variable Name Addr Book: arity 1.
2 Variable addr: arity 3.
3 Hypothesis addr sig: IN addr (PRODUCT Book (PRODUCT Name Addr)).

Facts. A way to declaring facts about a system in Coq is by stating Hypothesis. Thus,
Alloy model facts are translated in our tool to Hypothesis and the syntax is as follows:

1 Hypothesis Model fact: translated fact formula.

Functions and Predicates. Both are transformed in the same way to Coq syntax. For
reasons of re-usability and ease of application we have decided to transform them into
Coq inductive type definitions. The following examples are transformation of the del
predicate and lookup function presented in Fig. 1. When writing the constructor for
the inductive type, we start by modeling the “types” of the arguments as inclusions,
possibly with additional expressions for modeling the cardinality. In the example of del,
the argument b has type Book thus In b Book, but also b is an element, thus ONE b.
We formalize functions as predicates, but with an additional argument that models the
result returned by the function. In the case of lookup, the result is the value r lookup:

1 Inductive del: arity 1 → arity 1 → arity 1 → Prop:=
2 | del def: ∀ (b: arity 1) (b’: arity 1) (n: arity 1),
3 IN b Book ∧ (ONE b) →
4 IN b’ Book ∧ (ONE b’) →
5 IN n Name ∧ (ONE n) →
6 JOIN b’ addr == DIFFERENCE (JOIN b addr) (PRODUCT n Addr) →
7 del b b’ n.
8
9 Inductive lookup: arity 1 → arity 1 → arity 1 → Prop:=

10 | lookup def: ∀ (r lookup: arity 1) (b: arity 1) (n: arity 1),
11 IN r lookup Addr →
12 IN b Book ∧ (ONE b) →
13 IN n Name ∧ (ONE n) →
14 r lookup == JOIN n (JOIN b addr) →
15 lookup b n r lookup .

Assertions are defined in Coq syntax and then stated as Lemmas when called in an
Alloy check block. Thus, the assertion delUndoesAdd is transformed as follows:

1 Definition delUndoesAdd:=
2 ∀ (b: arity 1) (b’: arity 1) (b’’: arity 1) (n: arity 1)(a: arity 1),
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3 ( NO (JOIN n (JOIN b addr)) ∧ add b b’ n a ∧ del b’ b’’ n ) →
4 JOIN b addr == JOIN b’’ addr.
5
6 Lemma delUndoesAdd Lemma: delUndoesAdd.

3.3 The Address Book Example

In the previous subsections, we presented most of the translation of the Alloy example
of Fig. 1. Figures 5, 6 and 7 present the automatic translation using our tool of the two
other assertions addIdempotent and addLocal, as well as the proof scripts we wrote to
prove two of the corresponding lemmas.

1 Definition addIdempotent:=
2 ∀ (b b’ b’’ a n: arity 1),
3 (add b b’ n a ∧ add b’ b’’ n a ) →
4 JOIN b’ addr == JOIN b’’ addr.
5
6

7 Definition addLocal:=
8 ∀ (b b b’ a n n’: arity 1) r 1 r 2,
9 lookup b n’ r 1 →

10 lookup b’ n’ r 2 →
11 (add b b’ n a ∧ not(n == n’)) →
12 r 1 == r 2 .

Fig. 5. Translation of the assertions addIdempotent and addLocal

A recommended style in Coq, is to avoid using explicitly automatically gener-
ated names by tactics. Our destruct and tactics, that basically systematically replaces
hypotheses of the form A∧ B by two hypotheses A and B, automatically generates
names for these new hypotheses. The inversion tactic also automatically generates
names. To explicitly give names to the hypotheses we want to manipulate explicitly,
we use the assert tactic of Coq that is used to prove an intermediate result. In our
case, we just state and give an explicit name for already existing hypotheses, hence the
use of the trivial tactic to prove the assertion (for e.g. lines 10–11 of Fig. 6). To get the
formulas corresponding to the definition of an Alloy predicate, or an Alloy function,
the inversion tactic of Coq is needed (e.g. line 7 of Fig. 6 and line 7 of Fig. 7). Using the
assert tactic, we give explicit names to the hypotheses generated by inversion (for e.g.,
lines 8–9 of Fig. 7).

The two other main characteristics of these proof scripts are:

– The use of the rewrite tactic, that relies on the proofs of == is an equivalence
relation, and the Alloy operations are compatible with this equivalence relation
(e.g. line 13 of Fig. 6 and line 10 of Fig. 7).

– The systematic use of properties proved on Alloy operations: for example the dis-
tributivity of the union over the difference (line 15 of Fig. 6) and the associativity
and idempotence of the union (line 11 of Fig. 7).

Most of the proof scripts are based on the element described above. The
exception are lines 20–23 of Fig. 6. The proof of the condition of the lemma
DIFFERENCE NO INTERSECT is in a way more “low-level” than the other parts of
the proof scripts as it directly makes use of the definitions of some Alloy operations.
One non standard Coq tactic is castsimpl: it is a tactic we provide, and that simplifies
the application of the Alloy operations and also removes all the casts in the hypotheses
and the goal. In the example the goal before calling castsimpl is:
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1 Lemma delUndoesAdd Lemma : delUndoesAdd.
2 Proof.
3 unfold delUndoesAdd.
4 intros b b’ b’’ n a H. destruct and.
5 assert(Hadd: add b b’ n a) by trivial.
6 assert(Hdel: del b’ b’’ n) by trivial.
7 inversion Hadd; inversion Hdel; subst.
8 destruct and.
9 (∗ We are ready to prove: JOIN b addr == JOIN b’’ addr ∗)

10 assert(Hr1: JOIN b’’ addr == DIFFERENCE (JOIN b’ addr) (PRODUCT n Addr)) by trivial.
11 assert(Hr2: JOIN b’ addr == UNION (JOIN b addr) (PRODUCT n a)) by trivial.
12 rewrite Hr1, Hr2.
13 rewrite UNION DIFFERENCE distr l with (R1:=JOIN b addr).
14 rewrite UNION NO l by
15 (apply DIFFERENCE IN NO;
16 apply PRODUCT IN compat with (R1:=n);
17 auto using IN refl).
18 rewrite DIFFERENCE NO INTERSECT by
19 (assert(HH: NO (JOIN n (JOIN b addr))) by trivial;
20 castsimpl; intros;
21 specialize(HH x);
22 contradict HH;
23 intuition eauto).
24 reflexivity.
25 Qed.

Fig. 6. Proof of Lemma delUndoesAdd

1 Lemma addIdempotent Lemma: addIdempotent.
2 Proof.
3 unfold addIdempotent.
4 intros b b’ b’’ n a H. destruct and.
5 assert(Hadd1: add b b’ n a) by trivial.
6 assert(Hadd2: add b’ b’’ n a) by trivial.
7 inversion Hadd1; inversion Hadd2; subst.
8 assert(Hr1: JOIN b’’ addr == UNION (JOIN b’ addr)(PRODUCT n a)) by trivial.
9 assert(Hr2: JOIN b’ addr == UNION (JOIN b addr)(PRODUCT n a)) by trivial.

10 rewrite Hr1, Hr2.
11 rewrite ← UNION assoc, UNION idem.
12 reflexivity.
13 Qed.

Fig. 7. Proof of Lemma addIdempotent

1 NO (INTERSECT (JOIN b addr) (PRODUCT n Addr))

meaning we have to prove that the intersection of JOIN b addr and PRODUCT n Addr
is empty, while after it is:

1 ∀ y x : U, ∼ ((∃ x0 : U, b x0 ∧ addr x0 y x) ∧ n y ∧ Addr x)

As castsimpl simplifies the hypothesis HH in a similar way, it is quite easy to finish the
proof.
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These two proof scripts show that while most of the time the user can rely on
proofs by rewrite and application of operation properties, when it is not possible, the
proof writing remains accessible. With these two proofs, we guarantee that the Alloy
assertions hold for arbitrary sets and relations Book, Name, Addr and addr.

The Tool. The tool is written in Java and relies on ANTLR for parsing. There are
about 2 KLoC of non-generated Java code, and the Coq supporting library Alloy is
about 600 LoC. The tool and the complete examples are available at: https://alloy2coq.
github.io.

4 Related Work

Although theorem provers have proved their effectiveness in proving detailed properties
of multiple complex system specifications, they are still considered to be too expensive
to use frequently during software development. Lightweight formal methods, on the
other hand, are frequently used for checking software during design and implementation
stages. Alloy, is a popular language and tool used for checking software systems against
their requirements. On one hand, one of Alloy’s strong suits is the counterexample
returned in case of unfulfilled requirements. On the other hand, lack of counterexample,
generally, does not give a correctness proof. Thus, for critical systems, a second round
of analysis might be crucial. Several previous works have addressed the verification of
Alloy specifications.

In [1], Arkoudas et al. present a tool, Prioni, that integrates model checking and
theorem proving for relational reasoning. Prioni takes as input formulas written in
Alloy. It first uses the Alloy Analyzer to check their validity for a given scope. Once no
counterexample is found, Prioni translates these Alloy formulas into Athena, a deno-
tational proof language, proof obligations and uses the Athena tool for proof discovery
and checking. Unlike Prioni, that only analyzes finite domains due to the fact that
Athena cannot handle infinite sets, our proposed solution handles infinite domains.
Another solution that works on infinite domains is presented in [29]. Kelloy [29] is a
tool for verifying Alloy specifications with respect to potentially infinite domains.

Kelloy is an engine for verifying Alloy specifications aiming to bridge the gap
between lightweight formal methods and theorem provers. It provides: a fully auto-
matic translation of Alloy language to KFOL (the first-order logic of KeY, the deduc-
tive theorem prover used in Kelloy), an Alloy-specific extension to KeY’s calculus and
a reasoning strategy that improves KeY’s capability in finding proofs and generates
intermediate proof obligations that are easy to understand.

Unlike Prioni and the transformation tool we are presenting, Kelloy was developed
in a way that only takes into consideration translation of Alloy relations up to ternary
relations (i.e. arity 3). Such an approach requires to define the Alloy operations for all
the different combinations of the arities in KFOL.

Mariano et al. [17] followed an approach closer to ours. They present an extension
of PVS (Prototype Verification System), called Dynamite, that embeds Alloy calculus.
It automatically adds and analyzes new hypotheses with the aid of the Alloy Analyzer.
The generated PVS sequents get cluttered with some unnecessary formulas, thus, Alloy
unsat-core extraction feature is used in order to refine proof sequents. Although both
our work and that presented in [17] relies on users conducting proof manually, we
provide a library with predefined lemmas to provide assistance in the proof process.

https://alloy2coq.github.io
https://alloy2coq.github.io
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5 Discussion

The tool presented in this article shows the potential of translating and proving the
correctness of critical Alloy models, but it still has some limitations in its current state.

The first limitation is the subset of the Alloy language that is supported. There is
one aspect that the current translation does not handle: the cardinality of sets and rela-
tions. The design choice we made is not incompatible with dealing with cardinalities.
It however requires additional hypotheses. First the universe U should be countable:
this is actually in line with what is considered in Alloy, but it is not set as an hypoth-
esis in our current Coq modeling. Then to compute the cardinality (the # operator in
Alloy), the argument should be a finite relation: we also plan to add this hypothesis
each time the operator is used. Other Alloy features that we have yet to integrate
into our tool are: integer support, Coq can handle integer definition and thus, adding
this to our solution will only require some formalization efforts. The other feature that
we need to improve farther is the arrow operation. For now, our arrow operation is
by default a many to many arrow operation, while Alloy’s arrow operation handles
different multiplicities.

The second limitation is not related to the translation itself, but rather to the
support provided to the user in the translated Coq code. Although we do provide a few
Coq tactics to ease the work to prove what are assertions in Alloy, currently the proofs
are written mostly manually by the users. We plan to enrich the Coq Alloy library with
more powerful tactics.

In translating one formal language to another one, the question of the correctness
of the translation arises. One possibility would be to have a Coq representation of
Alloy’s abstract syntax, and then give a Coq semantics to this syntax: this would be a
formalization of Alloy in Coq. Then we could implement in Coq what is currently the
back-end of our translation in Java: the generation of Coq code from Alloy’s syntax.
Proving the correctness of the translation would then mean check that the semantics
and the translation are equivalent. However, it is very likely that the semantics could
be given using the same basic constructs we use for our translation: they would be
essentially no difference between the Coq semantics of Alloy, and the Coq translation
of Alloy. Another possibility would be to have a deep embedding of both Alloy and Coq
in Coq, and check that the translation (from syntax to syntax) preserves the semantics.
However, our current formalization of Alloy in Coq uses features that formalizations
of Coq in Coq (for e.g. [8]) do not currently handle.

6 Conclusion and Future Work

In this paper we presented a tool for translating Alloy models into Coq code. Alloy main
objects are relations: sets are unary relations, elements are considered as singleton sets.
We chose to keep this view in Coq and to consider, as in the module Relation Definitions
of Coq’s standard library, that a relation is a function to Prop. This module however,
only considers binary relations, therefore they have type U→U→Prop where U is the
type of the universe.

We decided to generalize this approach. This choice required us to use dependent
types everywhere in the Coq library that provides the primitive relational operations
of Alloy and supports the translation. We use our tool on examples and prove with
Coq the lemmas generated by the translation: this choice of Coq formalization seems
appropriate.
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One of the motivations for this tool is our project around a broker for the Cloud
that takes into account user security requirements that can be expressed as first order
relational logic formulas and that we checked using Alloy/Kodkod [25]. In order to
increase the trust in this broker, we aim at formalizing all the hypothesis made on
the system, and make sure that if the formal requirement given by the user contains
no error and are added to the system, then conclusions about the security of the new
state of the system can be drawn. This case study will require a significantly larger
translation and Coq proofs than the examples we considered so far.
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Institut Polytechnique de Paris, Évry, France
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1 Introduction

SysML/KAOS is a requirements engineering method which aims to emphasize
the impact of formal specification and verification activities on the quality of
requirements, while taking into account the domain constraints and improv-
ing validation with stakeholders. The main interest is on critical and complex
areas such as railway, aeronautics or road transportation. The method involves
a functional [16] and a non-functional [12,13] goal modeling languages to rep-
resent system requirements extracted from artifacts that describe stakeholder
needs. The functional goal model represents system functionalities while the non-
functional one represents constraints on their satisfaction. In addition, a domain
modeling language [11,28] is used to represent application domain entities and
their properties. The system complexity is mastered in SysML/KAOS thanks to
refinements and decompositions. In [22], Matoussi et al. have defined translation
rules to automatically produce a B System specification [7] from SysML/KAOS
functional goal models. They provide the behavioral part (events) of the specifi-
cation. Regarding domain models, rules have been defined and formally verified
[11,29] to automatically generate the structural part (sets, constant and their
properties, variables and their invariant) of the specification and the initialisa-
tion of state variables. Once the event bodies manually specified, the B System
specification can be formally verified and validated to assess the requirements.
This can be done using the full range of tools that support the B method [3],
positively assessed on a number of industrial projects for more than 25 years [18].

In 2014, La Ville de Montréal (VdM) proceeded to replace the Bonaventure
highway (A-10) with an urban boulevard [1]. As part of this reconfiguration,
the Québec Ministry of Transport (MTQ) emphasized some requirements such
as ensuring that the interventions carried out do not reduce the safety of road
users. To allow the identified requirements to be taken into account, a number
of additional options have been developed including (1) the addition of signaling
equipments and (2) the setting up of an intelligent transportation system. The
transportation system was developed based on textual and schematic documents
[1]. Not only does this documentation not allow a clear identification of require-
ments, but it rarely shows the justification and validity of the choices made.
Therefore, the VdM wanted to investigate a way of organising and analysing the
requirements of traffic projects, in order to increase the level of confidence in
their safety, usability, reusability and efficiency. This paper describes the formal
specification, verification and validation of requirements of the transportation
system and of the supervisor in charge of ensuring optimal operation of the
involved components. SysML/KAOS was chosen because it includes an expres-
sive and intuitive goal modeling language to represent system requirements, and
a domain modeling language to represent application domain entities and their
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properties using ontologies. Furthermore, the rules required to automatically
generate a B System specification from goal and domain models are defined and
the most relevant ones have been formally verified [11]. For space limitations,
we will not describe the modeling of non-functional goals. Interested readers are
invited to refer to [1] for a complete overview of modeling deliverables.

The remainder of this paper is structured as follows: Sect. 2 briefly describes
the B System formal method, the SysML/KAOS requirements engineering
method and its goal and domain modeling languages, and the B System for-
malisation of SysML/KAOS models. Follows a presentation, in Sect. 3, of the
work done on the case study. Section 4 discusses validation and verification of
the formal specification and describes the relevant lessons learned from this case
study. Finally, Sect. 5 reports our conclusion and future work.

2 Context

2.1 B System

Event-B [2] is an industrial-strength formal method for system modeling. It
allows the incremental construction of system specifications, using stepwise
refinement, and the proof of useful properties. B System is an Event-B syntactic
variant proposed by ClearSy, an industrial partner in the FORMOSE project
[4], and supported by Atelier B [7]. It shares the same semantics with Event-B.

A B System specification consists of components. Each component can be
either a system or a refinement and it may define static or dynamic elements.
A refinement is a component which refines another one in order to concre-
tise the system construction: addition of functionalities or specification of the
achievement of some purposes. Constants, abstract and enumerated sets (user-
defined types), and their properties, constitute the static part. The dynamic part
includes the representation of system state using variables constrained through
an invariant Inv (first-order predicates that constrain the possible values that
the variables may hold) and updated through events. Each event has a guard
G and an action Act. An event is said to be enabled when its guard G holds. A
system transition consists in the triggering of a single event, among all enabled
ones. Action Act of an event describes the updates made to state variables.

The triggering of an event should maintain the invariant Inv. To this aim, a
proof obligation is generated for each event: ∀T,C,X. (A∧G∧Inv ⇒ [Act]Inv).
Other proof obligations include event feasibility (existence, for each event, of a
state where it can be triggered) and system refinement (the specification of a
refinement conforms to that of the refined component) [2].

2.2 SysML/KAOS

SysML/KAOS is a requirements engineering method which defines a functional
and non-functional goal modeling and a domain modeling languages. An overview
of its specification process is provided in [9]. The first step is to use SysML/KAOS
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languages to build models of the system and of its application domain. The second
step is to automatically translate the goal model into a B System specification, fol-
lowing the rules provided in [22], and to complete the specification with the result
of the translation of domain models, following the formally verified rules provided
in [11,27]. Goal models provide the behavioral part (events) of the specifica-
tion while domain models provide its structural part (sets, constant and their
properties, variables and their invariant) and the initialisation of state variables.
It remains to manually specify the body of events and to formally verify and val-
idate the specification with B System tools. When updates are performed within
the B System specification, back propagation rules such as those described in [9]
are used to update SysML/KAOS models accordingly.

SysML/KAOS is supported by integrated development environments Open-
flexo [23] and Atelier B [7]. Openflexo supports goal and domain modeling and
the automatic generation of the corresponding B System specification, while Ate-
lier B supports the specification, verification and validation of B System models.
These last activities can also be carried out under Rodin [5] since Event-B and
B System share the same semantics.

SysML/KAOS Functional Goal Modeling. The SysML/KAOS functional
goal modeling language [16] combines the traceability provided by SysML [14]
with goal expressiveness provided by KAOS [17]. It allows the representation of
functional requirements to be satisfied by a system and of functional expectations
with regards to the environment through a hierarchy of goals. A functional goal
in SysML/KAOS describes the expected behaviour of the system once a certain
condition holds. The functional goal hierarchy is built through a succession of
refinements using two main operators: AND and OR. An AND refinement
decomposes a goal into subgoals, and all of them must be achieved to realise the
parent goal. An OR refinement decomposes a goal into subgoals such that the
achievement of only one of them is sufficient for the achievement of the parent
goal. The refinement process ends when it is possible to assign the leaf goals to a
subsystem or to an agent (environment agent or software agent). Subsequently,
if needed, further goal diagrams can be defined for the different subsystems.

SysML/KAOS Domain Modeling. Domain models in SysML/KAOS are
represented using ontologies. These ontologies are expressed using the SysM-
L/KAOS domain modeling language [27,28], based on OWL [26] and PLIB [25],
two well-known and complementary ontology modeling formalisms. Each domain
model corresponds to a refinement level in the functional goal model. Domain
models can be linked together to form a hierarchy. A domain model can define
multiple elements. Concepts designate collections of individuals with common
properties. A concept can be declared variable when the set of its individuals
can be updated by adding or deleting individuals. Otherwise, it is considered to
be constant. In addition, a concept can be an enumeration if all its individuals
are defined within the domain model. An individual can be variable if it is intro-
duced to represent a system state variable: it can represent different individuals
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at different system states. Otherwise, it is constant. Associations are concepts
used to capture links between concepts. Logical formulas are used to represent
constraints between different elements of the domain model in the form of Horn
clauses.

2.3 B System Formalisation of SysML/KAOS Models

The formalisation of SysML/KAOS functional goal models is detailed in [22].
The proposed rules allow the generation of a formal model whose structure
reflects the hierarchy of the functional goal model: one component is associated
with each level of the goal hierarchy; this component defines one event for each
goal. As the semantics of the refinement between goals is different from that
of the refinement between B System components, new proof obligations for goal
refinement are defined in [22]. They depend on the goal refinement operator used
and complete the B System proof obligations for invariant preservation and for
event feasibility.

Nevertheless, the generated B System specification does not contain the sys-
tem structure, that are variables with their associated invariant and constants
with their associated properties. This structure is provided by the translation
of SysML/KAOS domain models. The corresponding translation rules are fully
described in [27] and their formal verification is described in [11]. In short, domain
models identify B System components. Concepts give B System types while indi-
viduals give set items. Logical formulas give B System properties and invariants.
The rules also allow the extraction of the initialisation of state variables.

3 Specification of the Road Transportation System

3.1 Main Characteristics of the System

The VdM needs to proceed with the replacement of the Bonaventure highway
(A-10) with an urban boulevard while ensuring that the interventions carried
out do not reduce the safety of road users (MTQ) and that the municipal road
traffic is at least maintained (VdM) (see reference documents [1]). Regarding the
Nazareth street and especially the exit of the Ville-Marie highway to Nazareth
street, it was difficult to respond to both the issues identified by the VdM and
the safety issue formulated by the MTQ, especially because of the curvature of
the highway exit. Indeed, the accumulation of vehicles at the highway exit is
likely to cause accidents because the curvature limits the line of sight of drivers
that engage on the exit when they are at the upstream of the curvature. It is thus
necessary (i) to determine the level of traffic at every moment, (ii) to regulate the
traffic level in order to limit the exit congestion in reasonable proportions, and
(iii) to notify drivers, especially those located at the upstream of the curvature,
as to the level of the traffic and the expected behavior. The VdM has therefore
decided the addition of: (1) two travel lanes for the Ville-Marie highway exit to
Nazareth street to the three lanes of Nazareth street and (2) sensors such as
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thermal imaging cameras and traffic control radars to ensure the determination
of the level of traffic. Traffic regulation consists in defining the most appropriate
traffic signal program, taking into account the level of traffic. It is performed
by an automaton connected to VdM sensors. An urban mobility management
center (CGMU) has been set up by the VdM to ensure that the level of traf-
fic is properly regulated (traffic level supervision) and notify drivers (level of
traffic and expected behavior). To ensure the satisfaction of its safety require-
ment, the MTQ has also set up a mobility management center (CIGC) and an
intelligent transportation system that includes an automated incident detection
system (AID). The AID is connected to the CGMU and provides a more accu-
rate measurement of the level of traffic that helps to validate the inputs from
VdM sensors. It uses thermal cameras and a software to analyse the traffic in
real-time and detect road incidents. As the CGMU, the CIGC is responsible for
sending some notifications to drivers through variable message signs (PMVs) or
through GPS navigation softwares such as Waze or Google Maps.

The SysML/KAOS method is used to provide a framework for the formal
specification, verification and validation of requirements of the integrated com-
ponents and of the supervisor responsible for ensuring the optimal operation
of these components. It should be noted that for space limitations, we will not
describe the modeling of non-functional goals. Interested readers are invited to
refer to [1] for a complete overview of modeling deliverables.

3.2 Functional Goal and Obstacle Modeling

Fig. 1. High-level system functional goal diagram

Functional Goal Modeling. Figure 1 provides an overview of the goal dia-
gram that represents the functionalities of the high-level system. The main
identified purpose is to allow each vehicle on the Ville-Marie highway exit that
connects to Nazareth street to exit. The purpose gives the most abstract goal
BringOutEachVehiclePresentInTunnel of the goal diagram which is refined using
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the AND operator into two subgoals: drive vehicle according to road signing
(goal MoveVehicle) and manage congestion (goal ManageCongestion). The leaf
goal MoveVehicle is assigned to environment agent VehicleDriver (the vehicle
driver) to state the assumption that the driver has the responsibility to drive its
vehicle according to road signs. The assumptions are expressed in domain models
as domain constraints. For instance, the previous assumption entails that “each
vehicle speed does not exceed the speed limit”. For congestion management, it is
necessary to be able to: (1) determine the traffic level from sensors (goal Deter-
mineTrafficLevel), (2) regulate the traffic (goal RegulateTrafficLevel), and (3)
supervise traffic regulation and, if necessary, adjust the traffic signal program
defined by the traffic signal controller (goal SuperviseTrafficLevel). The goal
RegulateTrafficLevel is assigned to the TrafficRegulator subsystem for which the
functionalities are represented by the goal diagram of Fig. 2(a) [1]: determine
the level of traffic from measurements of VdM sensors (goal CommunicateTraf-
ficLeveltoTrafficSignalController) and define the most appropriate traffic signal
program (goal ApplyAppropriateTrafficSignalProgram).

Since the level of traffic is determined using VdM sensors and the MTQ’s
AID, goal DetermineTrafficLevel is AND-refined into subgoals DetermineTraffi-
cLevelFromVdMSensors, for VdM sensors, and DetermineTrafficLevelFromAID,
for the MTQ’s AID. The VdM sensors include a traffic control radar and a redun-
dant sensor. Indeed, the highway exit is splitted into four zones, until the point
where the last vehicle should be in case of maximum congestion lengthening
(Xmax ). The radar covers the four zones. However, a redundant sensor (ground
sensor or thermal camera) is needed for the fourth zone (the one that ends at
Xmax ) to ensure that the maximum congestion lengthening will be detected
even in case of a radar failure.

Knowing that the communication links from CGMU to VdM sensors and
from CIGC to CGMU are subject to failure, an obstacle analysis was carried
out based on the obstacle modeling language of KAOS [30].

Obstacle Modeling. An obstacle is an obstruction to the satisfaction of a
functional goal. Obstacle modeling allows analysis of expected system behav-
iors when obstacles prevent the satisfaction of one or more functional goals [30].

Fig. 2. (a) Functional goal diagram of the TrafficRegulator subsystem; (b) Obstacle
model related to the unreliability of links to CGMU
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Obstacles can be refined to specify their causes: an obstacle can be caused by a
conjunction or disjunction of more specific ones. New functional goals or coun-
termeasures can therefore be defined to prevent, detect or mitigate obstacles,
thus ensuring adequate behavior of the system. Figure 2(b) illustrates the obsta-
cle modeling, related to the unreliability of CGMU to VdM sensors and CIGC
to CGMU links, that entailed the definition of the three supervision modes
of Fig. 1 (goals SuperviseTrafficLevelinNormalMode, SuperviseTrafficLevelinDe-
gradedMode1 and SuperviseTrafficLevelinDegradedMode2 ). Each black arrow
goes from an introduced element (functional goal or obstacle) to the element
that entails it. When all is well, the supervision is performed in normal mode
(goal SuperviseTrafficLevelinNormalMode refined in another goal diagram [1]:
each management center (CGMU and CIGC) receives traffic data from its sen-
sors and notifies the other as to its traffic knowledge. Since AID measurements
are more accurate, in normal mode, they will be systematically used by CIGC
and CGMU to undertake supervision actions: ensure the appropriateness of the
traffic signal program and ensure the appropriateness of user notifications.

The normal mode traffic supervision may be obstructed by the impossibil-
ity for AID to send a precise traffic measurement to CGMU (obstacle Precise-
TrafficLevelNotCommunicatedToCGMU of Fig. 2(b)). This can be due to the
unavailability of the communication channel between the CGMU and the CIGC
(obstacle CGMUnotReachableFromCIGC ) or by that of the one between AID
and CIGC (obstacle CIGCnotReachableFromAID). A countermeasure to detect
the occurrence of obstacle CGMUnotReachableFromCIGC is to regularly check
the state of the communication channel between the CGMU and the CIGC
(goal CheckCGMU-CIGCLinkState). Similarly, goal CheckCIGC-AIDLinkState
is proposed as countermeasure to obstacle CIGCnotReachableFromAID. The
functional goal SuperviseTrafficLevelinDegradedMode1 (Figs. 1 and 2(b)) allows
the supervision to be performed properly despite an occurrence of obstacle
PreciseTrafficLevelNotCommunicatedToCGMU, by defining an alternative that
allows the CGMU to perform the supervision without the need of the CIGC:
only VdM sensors are considered to determine the level of traffic. However,
an obstacle to the satisfaction of goal SuperviseTrafficLevelinDegradedMode1 is
CGMUnotReachableFromVdMSensors, related to the impossibility for CGMU to
obtain measurements from VdM sensors. A detection countermeasure therefore
consists in regularly probing the state of the communication channel between
CGMU and VdM sensors (goal CheckCGMU-VdMSensorsLinkState). An addi-
tional goal SuperviseTrafficLevelinDegradedMode2 (Figs. 1 and 2(b)) is defined
as a mitigation countermeasure and consists in sending a human agent for local
traffic supervision.

A non-functional goal model was built specifically for security and safety
requirements. It is not presented in this paper for space limitations.

3.3 Domain Modeling

Six domain models were constructed for the six refinement levels of the functional
goal model [1]. For space limitations, we will focus only on the first one.



478 S. J. Tueno Fotso et al.

Fig. 3. Ontology associated with the root level of Fig. 1

Root Level. Figure 3 represents the domain model associated with the root
goal BringOutEachVehiclePresentInTunnel of the diagram of Fig. 1. The domain
model introduces the entities required to represent the exit of the Ville-Marie
highway to Nazareth street and to localise vehicles. Its aim is to enable the
specification of vehicle exits. Therefore, a concept VEHICLE is defined to represent
all vehicles likely to engage on the highway exit. Association Vehicle Length
captures the length of each vehicle as a natural number. A variable concept
named Vehicle is defined as a subconcept of VEHICLE to represent the vehicles
currently engaged on the highway exit. Its cardinality is used to quantify the level
of traffic. Each vehicle engaged on the highway exit is localised by the position of
its front (variable association Vehicle Front Position) and by its travel lane
(variable association Vehicle Travel Lane). Indeed, the highway exit has two
travel lanes (see [1]): a main one represented by individual TRAVEL LANE I and a
secondary one, represented by TRAVEL LANE II, which appears when the vehicle
gets closer to the Nazareth street.

Logical formulas are defined to represent properties that need to be guaran-
teed in all system states. For instance, the logical formula below ensures that
the locations occupied by two distinct vehicles are always distinct (absence of
collisions [20]):

∀xx1, xx2·((xx1 ∈ V ehicle ∧ xx2 ∈ V ehicle ∧ xx1 �= xx2

∧V ehicle Travel Lane(xx1) = V ehicle Travel Lane(xx2))

⇒((V ehicle Front Position(xx1) − V ehicle Length(xx1)) .. V ehicle Front Position(xx1)

∩(V ehicle Front Position(xx2) − V ehicle Length(xx2)) .. V ehicle Front Position(xx2) = ∅))

The highway exit is represented by a concept Tunnel defined as a range
of integers (Tunnel = aa .. cc). Association Speed Limit captures the speed
limit (in KM/H ) defined at each position of the highway exit. It is variable
because the speed limit is likely to be updated depending on traffic level. Con-
cept Tunnel part1 is the subpart of the highway exit that contains the cur-
vature which limits the visibility of upstream vehicles. Therefore, an associa-
tion named Visibility Limit is used to associate a visibility limit to parts of
Tunnel part1: each user whose vehicle A has its front located at xx ∈ Tunnel
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is supposed to be able to see vehicle B in front of him (and consequently
to act in a way to avoid a collision) unless xx ∈ dom(Visibility Limit)
and the rear of vehicle B is located beyond Visibility Limit(xx). Finally,
association Min Brake Distance sets a minimum braking distance for each
speed defined as speed limit. Therefore, it is necessary to ensure that for
each speed limit defined for a location xx, if a visibility limit is applica-
ble at xx (xx ∈ dom(Visibility Limit)), the speed limit is defined such
that the minimum braking distance is less than the distance between xx and
Visibility Limit(xx):

∀xx·(xx ∈ dom(V isibility Limit) ⇒ V isibility Limit(xx) > xx)

Following Refinement Levels. The domain model associated with the first
refinement level of the goal diagram of Fig. 1 refines the one associated with
the root level (Fig. 3) and introduces the entities required to represent the traf-
fic level which depends on vehicle speeds and locations. For instance, a natural
number (individual MAXIMAL TUNNEL OCCUPATION) is defined to represent the
maximum number of vehicles allowed at the highway exit and a variable associ-
ation Vehicle Speed is defined to represent speeds of vehicles. We assume that
the vehicles are driven according to road signing. The assumption is represented
by a logical formula stating that the speed of any vehicle must always be lower
than the speed limit associated with its location:

∀xx·(xx ∈ V ehicle ⇒ V ehicle Speed(xx) ≤ Speed Limit(V ehicle Front Position(xx)))

Four traffic levels are considered: normal, dense, slowed and congestion [1].
A variable individual traffic level is defined to represent the current known
traffic level. Each traffic level is defined by an individual and a logical formula
that specifies its requirements. For instance, the traffic level is normal when
the highway exit is occupied at 40% or less and vehicle speeds are higher than
40 KM/H [1]:

(traffic level = NORMAL ⇒ (((card(V ehicle) ∗ 100)/MAXIMAL TUNNEL

OCCUPATION) < 40 ∧ (∀xx·(xx ∈ V ehicle ⇒ V ehicle Speed(xx) ≥ 40))))

The domain model associated with the second refinement level of the goal
model introduces the entities required to distinguish between environment vari-
ables, which represent the actual state of the real environment and controller
variables, which represent the measured value of the environment, as seen by
the controller (measured vehicle front positions, measured vehicle speeds, etc.).
This distinction is necessary to handle measurement errors and control delays
[24]. The next domain model introduces the traffic level sensors and supervi-
sion modes (normal and degraded). It also introduces traffic lights and signaling
programs to allow the specification of traffic regulation. Finally, the fifth and
sixth domain models introduces the communication channels, from sensors to
management centers (CGMU and CIGC) and between management centers, to
allow the specification of traffic supervisions.
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3.4 The B System Specification

The full specification, verified using the Rodin platform [5], can be found in
[1]. Each refinement level is the result of the automatic translation of goal
and domain models, except the body of events that are provided manually. For
instance, the root level of the goal diagram of Fig. 1 gives the B System event
BringOutEachVehiclePresentInTunnel specified in the root machine as:

This event states that when vehicles are present on the highway exit (grd0),
we observe some exiting (act0) and others moving, by nondeterministically
changing their traffic lanes (grd3 and act2) and front positions (grd2 and act1),
while ensuring the preservation of safety invariants (grd4 and grd5). Guard grd1

ensures that each vehicle (x ∈ V ehicle) either exits (x ∈ V ehicle Out) or moves
(x ∈ V ehicle In).

In the first refinement level of the B System specification, event
BringOutEachVehiclePresentInTunnel is refined by events ManageCongestion
and MoveVehicle, the last being specified as1:

1 Event specification restricted to show only the most relevant part with respect to
the one of event BringOutEachVehiclePresentInTunnel. The full version can be found
in [1].
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It states that after a certain delay delay (grd0), all vehicles present on the
highway exit move a distance corresponding to the product of their speed by
delay (grd2). Exiting vehicles (V ehicle Out) are those that are driven out of
the highway by their displacement (grd4). The others (V ehicle In: vehicles
that remain in the highway after their displacement (grd3)) nondeterministi-
cally change their speed (grd5, grd6 and act4) and lane (grd7) while ensuring
the preservation of safety invariants. Finally, the traffic level is updated (act3)
to reflect the new system state (grd9, grd10, ...).

4 Discussion

4.1 Validation and Verification

The SysML/KAOS method not only makes it possible to verify the consistency
of requirements and their refinement logic, but also to better present and val-
idate the requirements with the various stakeholders. Indeed, SysML/KAOS
includes semi-formal languages for a high-level representation of system goals
and application domain properties. This ensures a better reusability and read-
ability of models. Improved readability is confirmed by VdM stakeholders who
were involved to assess each modeling deliverable during scheduled validation
sessions: four validation sessions were organised and allowed to introduce SysM-
L/KAOS to VdM stakeholders and to obtain their feedbacks related to the con-
structed SysML/KAOS models. The improved readability was also confirmed
after an evaluation was conducted among members of the FORMOSE project,
within the framework of another case study [10]. Of the fifteen or so surveyed
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members representing various academic2 and industrial3 partners, all found the
readability of SysML/KAOS models much better than that of a B System spec-
ification.

The method also includes rules for obtaining a B System specification and
the proof obligations required to guarantee consistency of goal refinements and
accuracy of requirements with respect to environment constraints. For instance,
proof obligations related to SysML/KAOS refinements allowed us to identify a
missing goal in goal diagrams. Indeed, the first version of the goal diagram of
Fig. 1 was not defining a goal to ensure that vehicles are driven according to road
signs. Therefore, it was impossible to ensure that a vehicle in the tunnel would
be driven out. Thus, trying to formally ensure root goal satisfaction allowed us
to introduce the MoveVehicle goal assigned to agent VehicleDriver.

SysML/KAOS bridges the gap between the system textual description and its
B System specification. Table 1 summarises the key characteristics related to the
formal specification of the first four refinement levels. The proof obligations, gen-
erated to ensure correctness of the B System specification, have been discharged
using the Rodin tool extended with SMT solvers and Atelier B provers [8]. The
interactive proof was more required for level L3 because of the introduction of
a distinction between the real and measured (by traffic sensors) views of traffic
level. Indeed, this introduction required several adaptations and additions, of
invariants and events, related for example to order in measurement acquisitions
(enforced using controlled variables), sensor coverages and measurement defects
(handled with degraded modes).

Table 1. Key characteristics related to the formal specification

Refinement level L0 L1 L2 L3

Invariants 8 8 14 26

Proof Obligations (PO) 21 52 36 85

Automatically discharged POs 19 51 36 66

Interactively discharged POs 2 1 0 19

Mashkoor et al. [20,21] advocate the use of animation, supported by tools,
to assist validation of a formal specification with non-expert stakeholders. ProB
[19] and B-Motion Studio [15] are industrial-strength tools used to animate and
validate a B System specification. They provide a way to define a high-level
graphical representation of the states of the system. We used them to validate
the formal specification with VdM stakeholders, in addition to graphical models
constructed using the SysML/KAOS goal and domain modeling languages.

The validation by animation was performed following the VTA (Verify-
Transform-Animate) framework [21]. The SysML/KAOS functional goal model
2 University Paris Est Créteil; University of Sherbrooke; IMT Brest, France; etc.
3 THALES, France; ClearSy Systems Engineering, France; Openflexo, France.
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provides the way to group requirements into observation levels (each observation
level corresponds to a refinement level) as required by the VTA. The specifica-
tion obtained from SysML/KAOS models, once completed with event bodies, has
been verified with Rodin provers, transformed and animated. The formal model
transformation has for instance consisted in (1) transforming abstract sets into
concrete ones such as V EHICLE in {V 1, V 2, V 3, V 4, V 5} and Tunnel in 0 ..30,
and (2) introducing events to specify changes in environment structure such as
ctrl ChangeSpeed used to change a vehicle speed during animation. In addition,
units were converted (KM to M for distances, hours (H ) to seconds (S ) for
times, KM/H to M/S for speeds) to precisely observe the system behavior. The
transformed model can be found in [1].

For example, the Figure below is an overview
of a validation session with VdM stakeholders per-
formed using ProB and B-Motion Studio. The top view
presents an illustration of the traffic state on the high-
way exit while the bottom view presents a history of
events triggered to reach this state. The maximum
number of vehicles allowed is set to 4 and vehicles are
not moving (speeds are set to 0). Therefore, the traffic
level is congestion (highway exit occupied at 40% or

more and vehicle speeds less than 15 KM/H [1]). The formal validation allowed
us to detect inconsistencies in textual documents that describe the road trans-
portation system. For instance, we have detected that the four defined traffic
levels were not sufficient [1]: normal, dense, slowed and congestion. Indeed, the
ProB model checker has determined traffic states that do not correspond to
any of the defined traffic levels. This is for instance the case when occupancy is
exactly 40% or when the speeds are between 15 and 24 KM/H. The observations,
validated with VdM stakeholders, were reported to document authors from VdM
and MTQ.

4.2 Lessons Learned, Improvements and Related Work

The development team is composed of six members (the authors of this paper).
Four are academia stakeholders with good expertise in the formal specification
of complex systems while the others are VdM stakeholders with expertise nei-
ther in requirements engineering nor in formal methods. Other members of the
FORMOSE project have been involved in providing feedbacks related to the
use of the SysML/KAOS method. It took three months (September-December,
2018: 16 h per week) to formally specify, verify and validate the requirements.
Indeed, the specification of the body of formal events and logical formulas and
the formal assessment (verification and validation) of the specification can only
be manual and therefore required time, in addition to experts in formal meth-
ods. But this is the price to pay to achieve a formal verification and validation
of requirements.

From the textual description of the road transportation system (see refer-
ence documents [1]) and of the AID, seven goal model refinement levels with
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a hundred functional and non-functional goals were defined. This allowed us to
specify and ensure consistency of the high level requirements of twelve compo-
nents: humans, hardwares (like radar or thermal camera), softwares (like the
traffic supervisor) and cyber-physical systems (like CGMU or AID). Further-
more, six domain models were constructed to formally specify the entities and
constraints of the application domain required to ensure satisfaction of functional
requirements. At each deliverable release, a plenary meeting was held with VdM
stakeholders to validate the work done, through semi-structured interviews, and
assess the method contributions and progress. We noted the need of (cf. [1] for
the full list):

• A non-functional goal refinement strategy based on logical formulas that
allows to refine a non-functional goal NFG into (NFG,P1), ..., (NFG,Pn)
where P1, ..., Pn are logical formulas: the satisfaction of NFG depends on
the satisfaction of NFG when P1 is true, ..., and of NFG when Pn is true.
For example, the satisfaction of a non-functional goal Cost [Actuator] (ensure
an efficient cost for actuators) depends on the satisfaction of Cost [Actuator]
when the user has a smart device and when the user doesn’t. Indeed, it is bet-
ter to send notifications through GPS platforms only when users have smart
devices. When a smart device is not available, the only viable option is to use
variable message signs.

• An obstacle modeling language like that of [30] that distinguishes counter-
measures used to detect the occurrence of an obstacle from those used to
circumvent it.

• A tool support of the propagation of errors and inconsistencies detected when
discharging proof obligations to the corresponding SysML/KAOS models.

This work is closely related with the one of Mashkoor et al. [20]. While in [20],
the transportation system is directly specified in Event-B, the SysML/KAOS
method uses goal models to represent system requirements and ontologies to
represent domain entities and constraints. Ontologies give the structural part
of the B System model while goal models provide the behavioral part. The use
of SysML/KAOS modeling languages has several advantages, such as a better
reusability, maintainability and readability of models. They also facilitate vali-
dations with stakeholders while providing and enforcing the refinement logic.

5 Conclusion and Future Work

This paper focusses on the use and assessment of the SysML/KAOS method for
the high level modeling of requirements, domain and safety invariants related to
a road transportation system for the City of Montreal (VdM) [1]. Translation
rules, supported by tools, were used to obtain a formal specification containing
the system structure and the skeleton of events. The Rodin platform [5] was used
to verify the specification and ProB [19] and B-Motion Studio [15] to animate
and validate it. Compared to other requirements engineering methods such as
KAOS [30] or i* [31], SysML/KAOS fills the gap between the goal and domain
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models on one hand and B System (and Event-B) models on the other hand,
while being fully tooled.

VdM stakeholders were involved to assess the modeling deliverables and pro-
cess and expressed the wish to see the method used in other VdM transportation
projects. SysML/KAOS has proven its usefulness and the proposed improve-
ments will be taken into account in next releases of supporting tools.
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Abstract. The main research content of this topic is model repair
in formal methods. Formal verification can verify the correctness of a
model using rigorous mathematical methods. However, the repair of
incorrect models is usually done by humans. In order to automate the
model repair, we combine the B method, formal verification, probabilistic
methods, satisfiability modulo theories and program synthesis, and we
study various automatic model repair algorithms, which are used to fix
reachability and eliminate invariant violations and deadlock states in
incorrect models.

Keywords: Model repair · B method · Model checking · Refinement

1 Introduction

This work targets to an automatic model repair problem based on formal
verification. Given a model described by a logical language and a set of properties
that are needed to be satisfied, formal verification tools can verify whether the
model satisfies these properties. If any properties are not satisfied, then the
model may be incorrect. The question is: can a computer automatically fix the
model?

The B method [2] is a correct-by-construction software development
technique. Its core idea is to start with a highly abstract model, gradually refine
the model and finally convert the refined model to complete software. During
the design and refinement process, the correctness of the model is verified using
formal logics several times, so that the final software is highly reliable. At present,
there are efficient B model checkers such as ProB [8] and Rodin [3]. Although
model checking is automated, subsequent model repair processes still require
the involvement of humans. Humans need to analyse the results of the model
checking, find out the errors in the model, propose possible repair solutions
and manually repair the model, but this process is often inefficient. In order to
improve the efficiency of model design, we have proposed a number of automatic
model repair algorithms.
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Currently, we have developed algorithms that can automatically eliminate
deadlock states, invariant violations and assertion violations in B models [6].
The algorithms use model checking techniques to calculate the finite state space
of a model, find error states in the state space, calculate candidate repairs
with satisfiability modulo theories (SMT) and use probabilistic methods to
select repairs. Moreover, we have developed an algorithm that can be used for
reachability repair. It complements missing parts of a model using probabilistic
methods, so that the model can reach a set of previously unreachable states.
Further, we have confirmed the effectiveness of the algorithms via experiments.

2 Related Work

B model repair is currently an emerging research direction. It has been proposed
in [11] and further improved in [12], where inductive programming is used
to generate repairs for given I/O examples. For example, to generate a new
operation, a number of instances of pre- and post-states must be given. Then a
precondition that covers the pre-states and a post-condition (i.e., substitution)
that transitions the pre-states to the post-states are synthesised using inductive
programming, and the two conditions constitute a new operation. Additionally,
a model repair approach based on refinement checking has been proposed in [4],
which replaces model components that violate refinement conditions with other
components that satisfy the conditions.

Recently, a number of techniques for automatic software repair have been
developed, including those of imperative programming languages [7]. These
techniques mainly include two parts: fault localisation and repair generation. At
present, one of the most commonly used fault localisation methods is spectrum-
based fault localisation [1]. Its central idea is to obtain execution paths of a
program using test suites and estimate possible locations of errors by observing
overlapping parts of these paths. Methods for repair synthesis include template-
based repair, mutation repair, genetic programming, etc [7]. Similar to B model
repair, the above automatic software repair techniques aim to improve the
efficiency of finding and eliminating bugs in software development processes.
According to [9], one of the key problems of automatic software (or model)
repair is that the number of candidate fixes is generally huge, which results in a
combinatorial explosion. To solve this problem, repair algorithms usually include
evaluation functions for filtering high-quality fixes from candidate fixes.

3 Proposed Solutions

In order to achieve automatic model repair, we have proposed a semantic
learning algorithm for constructing the evaluation function of filtering high-
quality repairs. The core idea of semantic learning is to obtain the design intent
of a model from the state space of the model using classification techniques.
The model’s state space is a collection of valid state transitions. Using a binary
classifier, the state space can be probabilistically modelled to produce a semantic
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model that predicts whether any state transition is valid. The semantic model
is used to calculate scores of repair. For details on how to vectorise state spaces,
train classifiers and score repairs, please refer to our GitHub repository 1.

Additionally, we proposed three general-purpose repair operators: insertion,
modification and deletion. Insertion is a reachability repair operator. Given a
model M and a desired state s, if s is unreachable, then inserting an additional
state transition into the state space of M can make s reachable. In this process,
the semantic model is used to rank candidate insertions. Modification is used
to fix existing state transitions that violate given properties. Given a property
P that a model M needs to satisfy, if any state transitions produced by M do
not satisfy P , then a SMT solver is used to search for candidate edits to make
these transitions satisfy P , and the semantic model is used to score and rank
the edits. In order to apply modifications, scores of the edits need to achieve a
certain level. If not, then deletion is used to remove the faulty state transitions.

The significance of the above methods is that they provide a general-purpose
model repair strategy, and probabilistic machine learning techniques, especially
classification algorithms, can assist in the model design process. As semantic
learning and the three repair operators are based on the model’s state space,
they can be used not only for the B method, but also for other formal design
methods based on the checking of state space. The classification algorithms allow
the intent of model design to be modelled as evaluation functions, leading to
more efficient repairs. At present, there are many studies related to classification
algorithms, and these algorithms can be directly used for semantic learning. If
we try more classification algorithms in the future, the predictive performance
of the semantic model may be further improved.

4 Current Results and Future Work

We are currently developing a tool named B-repair that implements the B model
repair algorithms described in Sect. 3. B-repair uses scikit-learn [10] and Silas
[5] as semantic learners to support binary classifiers such as logistic regression
models, support vector machines, random forests and artificial neural networks.
Moreover, B-repair uses ProB [8] as a model checker and a SMT solver. Currently,
B-repair can automatically eliminate invariant violations, assertion violations
and deadlock states in B models using modifications and deletions, and it can use
insertions to achieve simple reachability repair. Additionally, it supports batch
repairs, which can fix multiple errors in a model at the same epoch. In order to
improve B-repair, we are developing more complex repair functions, optimising
the classifiers and extending the model repair algorithms to refinement.

We tested B-repair using a collection of representative models in the ProB
Public Examples Repository. The results revealed that the semantic learning
method led to 98.3% of average prediction accuracy. Moreover, we seeded faults
into the models and individually used the three repair operators to repair the
models. Results revealed that the deletion operator was able to eliminate all
1 Our repository is on https://github.com/cchrewrite/B-Model-Repair.

https://github.com/cchrewrite/B-Model-Repair
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invariant violations in the models, and average repair accuracies of insertion and
modification reached 86.7% and 89.8%, respectively.

In the future, our work will include the following aspects. First, we will
collect model quality criteria from past studies and use them to evaluate results
of model repair. Second, we will make a benchmark dataset of B model repair
and perform a comprehensive performance test on B-repair. Finally, we will
combine model repair with refinement checking to achieve a complete software
development process.
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Abstract. Apart from the Android apps provided by the official market,
apps from unofficial markets and third-party resources are always caus-
ing a serious security threat to end-users. Because of the overhead of
the network, uploading the app to the server for detection is a time-
consuming task. In addition, the uploading process also suffers from
the threat of attackers. Consequently, a last line of defense on Android
devices is necessary and much-needed. To address these problems, we
propose an effective Android malware detection system, leveraging deep
learning to provide a real-time secure and fast response environment on
Android devices.

Keywords: Android malware · Malware detection · Deep neural
network · Mobile platform

1 Introduction and Background

With the currently increasing number of Android devices and apps, more and
more Android users store personal data such as online banking and shopping
in their Android devices. Consequently, Android malware is one of the most
security threats in this security field. It is not surprising that the demands of
Android malware detection approaches have been proposed such as signature-
based approach [1,2], behavior-based approach [3,4], information-flow analysis-
based approach [5–7]. We note that learning-based approach [8–11] is one of the
most promising techniques in detecting Android malware. With the available big
data and hardware evolution over the past decade, deep learning has achieved
tremendous success in many cutting-edge domains, including Android malware
detection. Actually, all of the above solutions are under server side for Android
markets. However, when a new Android malware family is reported, not all the
Android markets are able to respond in a reasonable time. Since the number
of the real-world Android apps is extremely large, it is a time-consuming task
to perform the complete detection with that large number of apps. Moreover,
end-users consider their app sources are all trust and secure enough. But the app
from unofficial markets and third-party resources like XDA1 are more vulnerable
1 https://forum.xda-developers.com/.
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in the wild. The security of these kinds of apps is indeed unpredictable and
uncontrollable. The traditional cloud based malware detection is challenging to
detect such applications: (1) it is a time-consuming task to upload the app to
server before the installation, especially for larger apps; (2) the uploading process
on the Internet is not secure. Hence, a last line of defense on Android devices is
necessary and much-needed. To address the severe problem, we intend to conduct
Android malware detection on Android devices.

Fig. 1. The processes of feature preparation and deep learning model training

Fig. 2. The overview and workflow of MobiDroid

2 Current Research and Preliminary Results

2.1 Approach

As shown in Fig. 1, the first part of our system contains feature preparation
and DL model training. We select 3 kinds of feature based on the investiga-
tion of existing studies, which are manifest properties, API calls, opcode
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sequences, as the input of our deep neural network. The first part allows to
generate a trained DL model and a vector dictionary for the second part. To
make the model adaptive to Android devices, we then migrate the pre-build DL
model from the first part to a TensorFlow Lite model. Also, a quantization
phase is presented as a performance optimization for the mobile platforms. As
shown in Fig. 2, when an application is downloaded, a feature vector is able to
be extracted from it and delivered to our detection system. Hence, after pre-
dicting with the loaded model, we obtain a certain level of confidence based on
predictive output to know whether the downloaded Android app is a malware.

2.2 Experiment and Result

Fig. 3. Processing time of different feature types

Performance Comparison of Feature Types. We analyze the processing
and analyzing time for each of the potential input features on both server-side
and mobile device to decide the feature type selection. The result in Fig. 3 shows
the time consuming of most full-scale information graphs are too large for our
performance-sensitive approach on mobile device. Other features’ processing and
analyzing time costs, like opcode sequences, API calls, and manifest properties,
are much more acceptable. Therefore, we decide to accept these 3 kinds of fea-
tures as our model inputs.

Accuracy and Time Cost on Mobile Device. To evaluate the response
time of our mobile detection system, we measure both feature preprocessing and
prediction time for both quantized and non-quantized DL models on our Android
devices. The preprocessing time consists of raw data processing and features
analyzing time for each feature. The predicting time is the time measured from
loading inputs to get the result. In Table 1, by comparing quantized and non-
quantized models, the result of prediction time shows that quantization reduces
a lot of time cost. Meanwhile, the accuracy of our test remains unchanged.
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Table 1. Performances of MobiDroid

Devices Quantization Accuracy Preparation Time (s) Prediction Time (s)

Nexus 6 No 97.35% 16.60 9.35

Yes 97.35% 7.23

Nexus 6P No 97.35% 13.56 6.54

Yes 97.35% 4.20

3 Future Work

In the future, we will extend our current work to improve the run-time perfor-
mance of mobile detection system. Currently, we are trying to use some more
efficient features, like binary code etc., in our work to bring the user a bet-
ter experience. We will also consider extending our feature selection method to
provide more application information and increase feature semantics.
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Abstract. Model checking is used widely as a formal verification tech-
nique for safety-critical systems. Certifying the correctness of model
checking results helps increasing confidence in the verification procedure.
This can be achieved by additional book-keeping inside existing model
checkers. Based on this, we extended an existing BDD-based model
checker as well as an IC3-based incremental inductive model checker,
to generate certificates during the model checking procedure. We also
introduce a proof checker which provides a standardised way to vali-
date certificates generated from model checkers in conjunction with a
SAT solver. The main goal is to establish a certification process for the
hardware model checking competition.

1 Introduction

The verification of software and hardware systems has become increasingly
important in modern world with the increase in complexity of system design
and analysis, especially for safety-critical systems. Model checking [1–3] is a
formal method widely adopted for automatic system verification, such as model
checking of safety critical software in the nuclear engineering domain [4]. A model
checker typically takes the model of a system and some properties corresponding
to certain specification as inputs, and verifies if the properties are satisfied in
the given model. As model checkers themselves are complicated programs, any
programming errors can potentially lead to incorrect verification results, which
can directly affect the analysis of system designs. It is therefore crucial to ensure
the correctness in the process of system verification. Certifying model checkers
increases confidence in model checking results, since the certificates can be vali-
dated by proof checkers or SAT solvers which are much simpler pieces of software
with less complexity.

Various work has been done in this area. In SAT, certifying proofs is an estab-
lished technology [5] and for instance mandatory in the SAT competition since
2013. In [6], the authors present an approach for certifying liveness properties
using the k-liveness [7,8] approach to map the problem into a safety property and
then proving an inductive invariant. The paper uses an IC3-based model checker
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Fig. 1. Certifying procedure

and suggests validating the invariants provided by IC3 using a SAT solver but
provides no experimental data on the invariant validation. In [9], the authors
discussed certifying LTL model checking and their experimental results are also
obtained from an IC3-based model checker.

In this paper, we present an automatic proof checker Aigcertify which
provides a standardised way to certify different types of model checkers with
AIGER format. We experimented our tool with aigtrav, a BDD-based model
checker developed at JKU Linz, and iimc[10], which is an IC3-based model
checker. Our ongoing work involves certifying k-induction-based model checkers.

2 Approach

Figure 1 shows the data flow of the certifying procedure, and here we are only
dealing with examples with positive model checking results, as the results of
counter-examples can be checked using counter-example validation.

The main idea is to use an inductive invariant as certificate, which is stored
as an AIGER file. This certificate has to imply the given safety property (the
negation of the bad state predicate). Here we use I to denote Boolean formula
encoding of the initial states, C is the certificate given by the model checker and
C ′ represents the certificate after a transition, B is the predicate representing
the bad states, and T is the transition relation. There are three conditions that
the inductive invariant must satisfy:

Condition Formula The inductive invariant . . .

Initiation I =⇒ C . . . must hold at all initial states.

Consistency C =⇒ ¬B . . . must hold at states that are not bad states.

Consecution C ∧ T =⇒ C′ . . . is preserved during the transition

For instance in BDD-based model checking the Boolean formula encoding
the set of reachable states is such an inductive invariant C.

We have implemented Aigcertify as a proof checker, which accepts a cer-
tificate as an AIGER file, either in binary or ASCII format, which will generate
CNF proof obligations in DIMACS format. As an automatic proof checker, it is
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designed to work with different types of model checkers. We therefore define the
format of a certificate that Aigcerify accepts, which can be obtained during
the verification procedure inside a model checker. An AIGER model consists of
M (maximum variables), I (inputs), L (latches), O (outputs), A (AND gates)
which are represented as literals indicated as numbers. Due to the space limit,
we cannot include a full description of the AIGER format here, but more infor-
mation can be found in [11]. The format of a certificate is defined as follows:

Definition 1 (Format). Given a model M with (MM , IM , LM , OM , AM ), a
certificate C with (MC , IC , LC , OC , AC), the format of a certificate in AIGER
must satisfy the following:

– IC = LM

– LC = 0
– Let m0, ...,mLM−1 ∈ N be the set of latches of M , and c0, ..., cIC−1 ∈ N be

the set of inputs of C, for an arbitrary ci with 0 ≤ i < IC , ci = mi − IM .

We extended Aigtrav, to generate the inductive invariant in AIGER format
after it finishes model checking. Our implementation also includes a conversion
from the BDD structure to AIGER format. The resulting invariant can then be
verified by the proof checker Aigcertify.

In addition, we experimented with IIMC [10], which already provides an
internal proof certificate as one of the features of the IC3 model checking algo-
rithm. The proof certificate of IC3-based model checking can be obtained directly
from the one-step inductive strengthening. We extended the source code to
provide the inductive invariant in AIGER format which can then be used by
Aigcertify.

3 Implementation and Experiments

We have implemented Aigcertify as a proof checker in order to verify the
correctness of certificates generated from model checkers to increase confidence
in verification. It accepts a model and a certificate both in AIGER format as
inputs, as defined in Definition 1, and generates three conditions (explained in
Sect. 2) as separate AIGER files, which are then checked by an existing SAT
solver (like PicoSAT [12]). For additional validation the SAT solver can also
generate proofs that can be further checked by a SAT proof checker (such as
Drat-Trim [5]), resulting in a two stage proof validation.

The variable ordering of the AIGER model is assumed to be the same as that
of the certificate, which ensures they are referring to the same set of latches. We
utilise the AIGER library simpaig.c which provides a simple AIG data structure
that allows operations on variables and AND gates.

The preservation condition requires the certificate to hold after each transi-
tion. Typically, a transition relation is the conjunction of the values of current
inputs and states, and the values of next states. In AIGER format, the next
states are represented by the next values defined for the latches.
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The three output AIGER files are converted to CNF files by the AIGER
library aigtocnf.c using Tseitin encoding, and in our experimental results they
are then validated by the existing SAT solver, PicoSAT [12]. These three con-
ditions form the proof for the model checking procedure, and if all three CNFs
are verified to hold, the certificate is proved successfully. It is further possible to
certify SAT solving by generating and checking propositional DRAT proofs [13].
We are currently applying our approach to benchmarks from HWMCC’17 [14].

4 Discussion and Conclusion

We introduced our tool Aigcertify which is designed to be a uniform proof
checker for different types of model checkers, including BDD-based and SAT-
based. We experimented with existing model checking tools to work in conjunc-
tion with it. The ongoing work of our project includes generating certificates from
k-induction-based model checkers which can then be verified by Aigcertify,
which also involves formally defining the inductive invariant of k-induction-based
model checking. This might also draw inspiration from [15,16]. Even though our
focus is currently on providing certificates for the hardware model checking com-
petition, similar ideas might be applicable to software model checking too.
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Abstract. Safety Instrumented Systems (SIS) protect major hazard
facilities against catastrophic accidents. A SIS consists of hardware com-
ponents and a software part, the program. Failure Mode Reasoning
(FMR) is a novel abstraction technique for identifying and quantify-
ing failure modes of SIS hardware components based on an analysis of
the SIS program. In FMR, the program is divided into smaller segments,
for each of which the input failure modes are identified based on the
function of the segment and the given failure mode at its output. The
results of segment analyses are then combined and simplified in order to
derive a short list of failure modes. The list can also be used to calculate
the aggregated probability of failure. This note outlines the underlying
concepts of FMR.

1 Introduction

In the process industry, Safety Instrumented Systems (SIS) are protection mech-
anisms against major plant accidents. Plant accidents can have catastrophic con-
sequences. A recent explosion at a chemical plant in eastern China killed over
70 people and injured more than 600. SIS’ play a critical role in preventing acci-
dents and protecting people. However, failure of SIS components can result in
the SIS being unavailable to respond to hazardous situations, which can in turn
lead to devastating consequences. It is therefore crucial to correctly identify and
quantify SIS failure modes early in the design and realization stage. This paper
concerns a new method for achieving this objective.

Well established methods, such as Failure Mode and Effect Analysis (FMEA)
[1] and Fault Tree Analysis (FTA) [2] already exist in the industry for analyzing
and quantifying SIS failure modes. Such methods rely on the analyst’s prior
knowledge of the system behavior, which is determined by hardware components
as well as the program. Not only are such analyses inherently subject to human-
error, they also require expertise, time and effort. This is particularly challenging
when it comes to the program, as the interlocks in a program are far more
complicated. Consequently, the impact of program is often undermined and, as
a result, the validity and accuracy of the analysis is compromised.

We are introducing a new method, Failure Mode Reasoning (FMR), that
circumvents the need for by-hand analysis of parts of SIS. Using a special calculus
built on failure modes, FMR analyzes the SIS program to identify those hardware
faults at SIS inputs that can result in a given failure at its output. The main
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outcome of FMR is a short list of failure modes, which can be used to calculate
the probability of failure.

2 The Problem and the Solution

A typical SIS consists of three main subsystems: sensors that measure the pro-
cess conditions (e.g. pressure and temperature), logic solver (e.g. a CPU) that
processes the program, and final elements (e.g. valves) that isolate the plant from
hazard when needed. Figure 1b shows a simple SIS consisting of two sensors, one
logic solver and one final element. This SIS is to protect the downstream process
against high pressure in the upstream gas pipe. The sensors measure the gas
pressure and the logic solver initiates a command to close the valve if the gas
pressure exceeds a threshold limit. Figure 1a shows a fault tree that is meant
to model the failure of this SIS: the SIS fails if both sensors fail, or if the logic
solver fails, or if the final element fails.

(a) Fault Tree (b) SIS

Fig. 1. An example SIS and a proposed fault tree

The fault tree in Fig. 1a is based on the assumption that the two sensors are
redundant; i.e., having one sensor in a healthy state is sufficient to detect poten-
tial hazards. The validity of this assumption, and thus the validity of the fault
tree, directly depends on the details of SIS program: if the readings of sensors are
averaged first and then compared to the high pressure limit, the proposed fault
tree is incorrect; because failure of one sensor will affect the average of the two.
But if each sensor reading is separately compared to the threshold limit first,
the sensors can be considered redundant and the fault tree will be correct. The
soundness of a fault tree highly depends on the analyst’s knowledge, and as can
be seen in this example, this knowledge cannot be complete without including
the impact of the program. Despite its critical role, SIS program is often ignored
or underestimated in real scenario safety analyses. It is not unusual for a SIS
program to have hundreds of inputs and thousands of Function Blocks (FB) that
process those inputs. Conducting a detailed analysis of program at such a scale
is a real challenge for a human analyst.
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FMR concerns a new automated method that addresses this problem. Using
its own calculus, FMR analyzes the SIS program from the perspective of failure.
The program is divided into smaller segments and for each segment the failure
modes of inputs are reasoned based on the failure modes of the output and the
intended function of the segment. The findings of the segments are then combined
and simplified to produce the short list of failure modes of SIS sensors, which
can also be used to calculate the aggregated probability of failure.

3 Failure Mode Reasoning

Consider the state space pair (S̃, S) where S̃ represents the state of system
reported in the SIS program variables and S represents the intended (real) state
of the variables. Ideally, S̃ should be the same as S. This takes place when there
is no faults in the system; i.e. the sensors correctly sense the real state of the
plant. When S̃ �= S, the SIS may produce an undesired output; e.g. not initiate
a safety command when it should. The failure of SIS output depends on the
manner in which S̃ deviates from S. Such deviations are categorized as failure
modes. A failure mode is a manner in which the reported value at a state variable
differs from its intended value. In FMR, the basic failure modes are expressed by
ḣ, l̇, ṫ, and ḟ , which represent High, Low, True and False by fault respectively.

The purpose of FMR is to predict the failure modes at SIS inputs which can
lead to a particular failure mode at SIS output. Failure modes can be analyzed
at two levels: at the FB level and at the SIS program level. At the FB level,
we study one FB in isolation and we define how different failure modes at the
FB input can lead to failure modes at its output. Once the FB failure model is
proposed and proven, it can be used wherever an instance of the corresponding
FB is used in the SIS program.

The failure model of the SIS program, on the other hand, is composed by
combining (parts of) the failure models of individual FBs. The question we are
trying to answer here is: given the specific SIS program and a specific failure
mode at its output, what are the combinations of failure modes at the inputs
of program that can lead to the given output failure mode? In answering this
question, we start at the final SIS output and scan through the program in
reverse direction, towards its inputs. At each stage of analysis the failure model
of an individual FB is employed to reason about the local failure behaviors.
Once the local analyses are concluded, the results are logically combined and
simplified to derive the short list of global failure modes, i.e. the failure modes
of SIS sensors. In the final stage, the short list will be used to calculate the
aggregated probability of SIS failure based on the failure rates of its sensors.

A major innovation in this research is to show that the analysis can be done
directly on failure modes, allowing for a more efficient analysis, whilst ensuring
that all possible failure modes are computed.

4 Discussion and Related Works

What FMR does is very similar to FTA. In both methods a deductive analysis
is employed to calculate the set of root causes that can lead to an undesired



506 H. Jahanian

top event. In a FTA the top event can be the failure state of any type of system,
e.g. failure of a physical brake system in an airplane. In FMR the top event is
always a failure at the output of a SIS program. In FTA, the root causes are often
referred to as cut-sets, or failure sets. In FMR, the root causes are combinations
of faults at the SIS inputs. One could even consider FMR as a fault tree model
of SIS program; except that FMR does not actually create a fault tree, but
instead, the method directly uses the SIS program to conduct its analysis. For
the same reason, the application of FMR is limited to the information that can
be extracted from that program.

Automatic synthesis of FTA has been presented by other researches in recent
years, such as Hierarchically Performed Hazard Origin and Propagation Studies
(HiP-HOPS) [3]. The common concept in these methods is that if we have the
typical definition of fault tree for individual components, then we can synthesize
the system level fault tree by interconnecting the components fault tree. At a
conceptual level, this idea is utilized by FMR too; however, the components
in FMR are the FBs, as opposed to the other methods that analyze general
systems and components. Also, while the other methods rely on separate system
models or specifications to generate fault trees, FMR uses the actual running
program in SIS; which is by far the most accurate, detailed, and specific source
of information if one wishes to study the behavior of a system.

5 Current Experiments and Future Works

The scale and complexity of real-life SIS programs makes their by-hand analysis
a challenge. A software tool is required to automatically read and analyze the
program with minimum chance of error. The author has already developed a pro-
totype tool that parses an offline copy of a SIS program in XML format, analyzes
it based on FMR, generates the short list of failure modes, and calculates the
probability of failure. The tool has been tested in a power plant project where a
SIS with over 200 inputs was installed as a protection system for an industrial
boiler. The preliminary results show that the analysis time can be reduced to less
than 10%, assuming that the analyst would include the program in his analysis
in the first place, and that he has the skills to conduct such analysis.

In addition to empowering the FMR tool and testing it in different project
environments, we are also working towards extending the mathematical concepts
of FMR to deal with more complex dynamics in SIS programs, including the
situations where feedback loops and time delays affect the transition of faults
from inputs to outputs.
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Abstract. A Piece-wise Linear Neural Network (PLNN) is a deep neu-
ral network composed of only Rectified Linear Units (ReLU) activation
function. Interestingly, even though PLNNs are a nonlinear system in
general, we show that PLNNs can be expressed in terms of linear con-
straints because ReLU function is a piece-wise linear function. We sug-
gested that the robustness of Neural Networks (NNs) can be verified
by investigating the feasible region of these constraints. Intuitively, sug-
gested robustness represents the minimum Euclidean distance from the
input needed to change its predicted class. Moreover, the run-time of
calculating robustness is as fast as a feed forward neural network.

Keywords: Robustness · Deep neural network · Piece-wise Linear
Neural Network

1 Introduction

The Deep Neural Networks (DNNs) have been successfully performing complex
tasks. Despite their success, even more accurate than human experts in some
areas, adversarial attacks can fool NNs far too easily [1]. Subsequently, several
methods have been suggested to enhance the robustness of NNs [1,2]. It is how-
ever not clear how robust these methods actually are. Therefore, transforming
the input-to-output mapping of NNs into a system of inequalities, we suggest a
method to measure the robustness of NNs when an input is given.

2 Framework

In this section, we will define a trained neural network model mathematically.
The basic assumption of this work is that there are only fully-connected layers in
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a NN and that the activation functions for NN models are rectified linear units
(ReLU) functions. ReLU(x) is a linear function of x if x ≥ 0, but is equal to 0
if x < 0. In other words, ReLU(x) is a piece-wise linear function. We will prove
that an output layer of a NN model is also a piece-wise linear function.

For a given neural network model M with (nl + 1) layers, wl
i,j denotes the

weight from the ith node in the lth layer to the jth node in the (l + 1)st layer,
and Ll

i and bli denote the ith node (or its value) and the ith bias in the lth layer
respectively. Especially, let L0 and Lnl be the input layer and the output layer
with dimensions of nin and nout respectively. All indices such as l, i, j, nin, nout,
and nl are integers.

If rectified linear units function, ReLU (x), is the activation function for a NN
model M , then the value of a node Ll+1

j is Ll+1
j = ReLU

(∑
i(w

l
i,j · Ll

i) + bl+1
j

)

by the definition of artificial neurons. Observe that even though the weights wl
i,j

are constants for a trained model M , Ll
i is a variable and dependent on an input

I. When Lnl+1
j = Oj where Oj denotes the jth node in the output layer where

0 ≤ j ≤ nout, there is no activation functions, i.e., Oj =
∑

i(w
nl
i,j · Lnl

i ) + bnl+1
j .

In addition, the first layer is the input layer, i.e., L0
i = Ii for i = 0, . . . , nin.

Definition 1. A trained model M can be represented by a tuple M = (W,B),
where W = {w0

0,0, w
0
0,1, w

0
0,2, . . . , w

nl

i′,nout
} is the set of weights, B = {b10, b

1
1, b

1
2,

. . . , bnl
nout

} is the set of biases, and i′ is the dimension of the (nl − 1)th layer.

Interestingly, the indices of each element of M reveals the structure of its NN
model M . For example, the last superscript index plus one, (nl+1), indicates the
number of layers in the NN model and the subscript indices suggest the number
of nodes in each layer.

Definition 2. When an input I is fed into a trained model M , its snapshot of
states can be represented by a triple MI = (W,B,£,O), where W = {w0

0,0, w
0
0,1,

w0
0,2, . . . , w

nl

i′,nout
}, and B = {b10, b

1
1, b

1
2, . . . , b

nl
nout

} are the set of weights and
the set of biases of M respectively; £ = {L0

0, L
0
1, L

0
2, . . . , L

nl
nout−1}, and O =

{Lnl+1
0 , Lnl+1

1 , . . . , Lnl+1
nout

} are the set of node values and output node values
respectively.

The difference between M and MI is that while M is a structure, MI is a
snapshot of M with the nodes of Ll

j loaded with their values from the input I.

Theorem 1. For any NN models MI and any l

Ll
j =

∑

i

(αi,j · Ii) + clj (1)

where αi,j, and clj are a constant within a polytope.

A proof of this theorem is omitted due to the page limit, but it can be
proved using the induction. When l + 1 = nl, that is, Oj = Lj , the output
layer of a NN is a piece-wise linear function of the input layer. Specifically, each
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parameter to ReLU function defines a half-space in the input space I such that
{Ii :

∑
i(αi,j · Ii) + cj ≥ 0} and their intersections define a polytope n, in the

input space. Because αi,j and cj are constants within each polytope, the output
layer of a NN is a piece-wise linear function of the input layer.

Definition 3. A neural network constraint set is a system of linear inequalities
defined by ReLU functions for each node Ll+1

j in terms of the input Ii.

Naturally, the number of neural network constraints is equal to that of nodes
in hidden layer since input and output layers do not have any activation func-
tions. At the same time, a neural network constraint set can be expressed in a
matrix form such as β · I ≤ D, where β and D are a coefficient matrix and a
constant matrix respectively.

Definition 4 (A Canonical Form). For any NN model MI , NN can be
expressed in a canonical form as

O = A · I + C if β · I ≤ D (2)

where O, I, A, and C are the output, input, coefficient, and constant matrices in
Eq. (1). β and D are the coefficient and constant matrices for a neural network
constraints set.

Interestingly, O, A, C, β and D are determined by an input I. The input
decides whether each node activates or not so that the output is calculated
based on these activations. In other words, there is a set of inputs which share
the same inequality, β · I ≤ D. Each row of the inequality defines a half-space in
the input space and their conjunction defines a polytope . In the interior of the
feasible region, these inputs have same A and C. We can compute how much
perturbation is needed for an input to be classified differently if we know how
far the input is located from the boundaries of the feasible region.

The output, O, is however not identical for all inputs within the same feasible
region. In the classification problem, the maximum value among the components
of the output decides which class the input belongs. Hence, to obtain a region
with a homogeneous output and to measure the robustness of an input, we need
to add more inequalities after the output layer.

Definition 5 (Expanded Neural Network). For any MI , let k be an
index of the currently predicted class. An expanded NN for MI can be rep-
resented by a tuple Ek

I = (W ′,B′,£′,O′), where W ′ = W ∪ {wnl+1
0,0 , wnl+1

0,1 ,

wnl+1
0,2 , . . . , wnl+1

nout,nout
}, B′ = B, £′ = £ ∪ {Lnl+1

0 , Lnl+1
1 , Lnl+1

2 , . . . , Lnl+1
nout−1}

and O′ = O, when

Ln+1
j =

nl+1∑

i

wnl+1
i,j · Oj where wnl+1

i,j =

⎧
⎪⎨

⎪⎩

1 if j = k

−1 if j = i

0 otherwise
(3)
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The expanded NN, Ek
I , is a NN that has a layer added after the output

layer. There are nout nodes in the newly added layer. Each node in the last layer
represents the difference between the currently predicted class and the other. By
Definition 3, nout inequalities are added to the neural network constraint set.
Furthermore, the newly added constraints ensure that any inputs in a feasible
region are classified as a same class.

3 Robustness

Definition 6 (Robustness). Robustness, R, of an expanded NN Ek
I is

defined as

R = min
i

|βi · I − D|
||βi|| (4)

where βi is the ith row of β, and I and D are defined in Definition 4.

Note that a constraint set of a NN is different from that of an expanded NN
in which the feasible region is homogeneous. Robustness of an input is defined
as the smallest Euclidean distance between an input and hyperplanes given by
a neural net constraint set of an expanded NN Ek

I . Intuitively, the robustness is
the minimum perturbation needed to change a predicted class.

The execution time for calculating the robustness is spractical since we
convert NNs into linear forms as in Definition 4 despite NNs’ complex struc-
ture. The time complexity for calculating the robustness, when β is given, is
O((h + nout) × nin) since the dimensions of β is (h + nout) × nin, where h is the
number of all nodes in any hidden layers. The number of operations to calculate
β is dependent on the structure of NNs. Suppose ni is the number of nodes
in Li. A matrix that describes the connection between Li and Li+1 has the
dimension of (ni × ni+1). Feed-forward calculation is simply the multiplication
of these matrices in which complexity is O(

∑nl

i=0(n0 · ni+1 · ni+2)). Hence, the
total run-time becomes O(nl · h2) since ni ≤ h for any i.

4 Conclusion and Future Works

We presented that a PLNN can be expressed in a canonical form as described
in Definition 4. Adding a carefully designed extra layer, we can obtain the exact
feasible region whose interior points in terms of the input space are classified
as the same class. Therefore, we can define robustness of a classification by the
shortest distance to the boundaries of the region in the expanded NN. For future
work, we are working on computing the robustness with popular data sets such
as MNIST, and ImageNet.
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Abstract. Smart contracts can be regarded as one of the most popular
blockchain-based applications. The decentralized nature of blockchain
introduces vulnerabilities absent in non-distributed programs. Further-
more, it is very difficult, if not impossible, to patch a smart contract
after it is deployed. Therefore, smart contracts must be formally verified
before they are deployed on the blockchain. In this work, we study the
formal specification and verification of smart contracts.

1 Introduction

A smart contract is a computer program written in certain high-level program-
ming languages, such as Solidity, Bamboo, Vyper, etc, to achieve its function-
ality. Smart contracts must be verified for multiple reasons. Firstly, due to the
decentralized nature of blockchain, smart contracts are different from programs
written in other programming languages (e.g., C/Java), making programming
smart contracts error-prone without a proper understanding of the underlying
semantic model. Secondly, a smart contract can be deployed on the blockchain
by any user in the network. Verifying smart contracts against vulnerabilities
in deployed contracts is crucial for protecting digital assets. Thirdly, it is very
difficult, if not impossible, to patch a smart contract once it is deployed.

There has been a surge of interest in developing analysis and verification tech-
niques for smart contracts. Some of the existing works focus on EVM (Ethereum
Virtual Machine). For instance, Oyente [6] is a symbolic execution engine for
analyzing Solidity smart contracts by translating them into EVM bytecode. Fur-
thermore, a complete formal executable semantics of EVM [3] is developed in
the K-framework to facilitate the formal verification of smart contracts at the
bytecode level. In other works, Solidity contracts are translated into programs
in intermediate languages for analysis and verification. Specifically speaking,
Solidity programs are formalized with an abstract language and then translated
into LLVM bitcode in Zeus [5]. In addition, the formalization in F* [1] is an
intermediate-level language for the equivalence checking of Solidity programs
and EVM bytecode. To conclude, most of the existing approaches either focus
on EVM bytecode, or translate Solidity smart contracts into programs in inter-
mediate languages that are suitable for verifying smart contracts or detecting
c© Springer Nature Switzerland AG 2019
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potential issues in associated verifiers or checkers. Furthermore, none of the
existing works can directly handle smart contracts written in different high-level
programming languages without translating them into EVM bytecode or inter-
mediate languages, and the verification is limited to certain vulnerabilities.

A direct executable formal semantics of the high-level smart contract pro-
gramming language is a must for both understanding and verifying smart con-
tracts. The first reason is that programmers write and reason about smart con-
tracts at the level of source code without the semantics of which they are required
to understand how source programs are compiled into bytecode in order to under-
stand them, which is far from trivial. Furthermore, both high-level [4] and low-
level [2,3] semantics definitions are necessary to conduct equivalence checking to
guarantee that security properties are preserved at both levels and reason about
compiler bugs. Secondly, even though smart contracts can be transformed into
programs in intermediate languages to be analyzed and verified in existing model
checkers and verifiers, the equivalence checking of the high-level programming
language of smart contracts and the intermediate language considered is crucial
to the validity of the verification.

2 Formal Specification and Verification of Smart
Contracts

Generally speaking, we construct a general semantic model for smart contracts
based on the commonly shared semantic features. The direct semantics of any
high-level smart contract programming language can be developed by rewriting
its syntax to the corresponding logical parts in the general semantic model. Based
on this specification, security properties can be formalized and then verified.

2.1 A General Semantic Model

Different kinds of high-level smart contract programming languages vary in syn-
tax but share a lot in common in semantics in order to achieve the equivalent
functionality. Considering this fact, we construct a general semantic model for
all kinds of high-level smart contract programming languages. The semantics
of a high-level smart contract programming language can be summarized into
three aspects in terms of its functionality, namely memory operations, new con-
tract instance creations and function calls. Particularly, new contract instance
creations and function calls are two kinds of transactions on the blockchain.

2.2 Direct Semantics Generation

The direct semantics of a high-level smart contract programming language can
be developed based on the general semantic model. From the perspective of
rewriting logic, a language semantics definition is a set of rewriting steps from
the language syntax to its evaluations. Each of these rewriting steps implements
a function to move the language a step further to its final evaluation. The general
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semantic model which consists of a set of internal rewriting steps can be regarded
as a logical intermediate language to construct the semantics. In this way, we take
the benefits of intermediate languages but also exclude the equivalence checking
issues since there is no semantic-level gap. Considering the fact that different
smart contract languages mainly differ in syntax and share a lot in common in
semantics, the direct semantics of a particular smart contract language can be
constructed by rewriting its syntax to the general semantic model with several
functional steps. For unique features which are absent in the general semantic
model, semantics rules are constructed from scratch.

2.3 Formal Verification of Smart Contracts

Based on the formal specification of smart contracts, security properties can be
formally defined from the perspectives of programming correctness and user-
defined correctness to prevent attacks. Based on the formal definitions, verifica-
tion algorithms for these properties can be developed with the direct executable
formal semantics of the high-level smart contract programming language. This
direct semantics makes the verification of security properties straightforward.
This is because vulnerabilities in smart contracts are introduced by logical errors
in the program execution which can be fully captured by the semantics.

3 Current Results

We propose a general formal semantic framework for smart contracts based on
a general semantic model of high-level smart contract programming languages.
Different from previous works which either analyze and verify smart contracts
on EVM semantics or interpret Solidity semantics with the semantics of inter-
mediate languages, the proposed framework aims to generate a direct executable
formal semantics of any high-level smart contract programming language to facil-
itate the high-level verification of contracts.

We evaluate the proposed general formal semantic framework for smart con-
tracts by showing that the generated semantics is complete and correct with
respect to the compiler test set. We take Solidity as an object for the evaluation
since there are sufficient Solidity smart contracts available for testing the gener-
ated Solidity semantics. The generated Solidity semantics is evaluated from two
perspectives: the first one is its coverage (i.e., completeness), and the second is
its correctness (i.e., consistency with Solidity compilers). Evaluation results (cf.
Table 1) show that the Solidity semantics developed with the proposed frame-
work completely covers the supported high-level core language features specified
by the official documentation and is consistent with the official Solidity compiler.

4 Future Work

– Defining High-level Security Properties: We plan to define some security prop-
erties to prevent both existing and potential attacks, and develop verification



Formal Specification and Verification of Smart Contracts 515

Table 1. Coverage of the generated solidity semantics

algorithms for these properties with the high-level semantics developed with
the proposed general formal semantic framework.

– Automatic Verification: We will develop a practical tool to formally verify
smart contracts written in different high-level programming languages.

– Equivalence Checking on High-level Programs and Low-level Bytecode: We
will conduct equivalence checking on high-level programs and low-level byte-
code to guarantee that security properties are preserved at both levels and
reason about compiler bugs.
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Abstract. Specifying spatio-temporal aspects with changes of spatial
entities in dense time is one of the important areas in cyber-physical
systems. The major problem is the complexity and verifiability of dense
time and real-valued variables of the spatio-temporal properties of cyber-
physical systems. We propose a spatio-temporal specification language,
named STSL, which integrates Signal Temporal Logic (STL) with a spa-
tial logic S4u to deal with the changes of real values spatial entities in
dense time. We present a Hilbert-style axiomatization for the proposed
STSL and provide the soundness and completeness result. Further, we
provide the satisfiable relation of spatio-temporal formulas and the cor-
responding complexity and a decision procedure is present to check the
satisfiability problem of the decidable fragment of STSL. Besides, spatio-
temporal model is monitored at runtime for the changes of spatial signals
over time using MATLAB.

Keywords: Signal Temporal Logic (STL) · S4u · Spatio-Temporal
Specification Language (STSL) · Axiomatization system ·
Decidability · Runtime monitoring

1 Problem Statement

It is a challenging work to model cyber-physical systems, not only because cyber-
physical systems integrate cyber systems, physical environment and the interac-
tive part of them, but also because cyber-physical systems combine temporal and
spatial aspects, discrete and continuous behavior, and uncertainty. Describing
spatio-temporal aspects is one of the important areas in cyber-physical systems.
The major problem isn’t only the expressivness of dense time and real-valued
variables of the spatio-temporal properties, but also multidimensional complex-
ity and verifiability for modeling and analysis of the spatio-temporal behaviors
of cyber-physical systems.
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Logic-based approaches [8] play a significant role in cyber-physical systems
since Pnueli introduces temporal logics to computer science. Spatio-temporal
logics extend temporal logics to express spatial evolution. Although there are
other temporal languages like metric temporal logic (MTL), signal temporal
logic (STL) that can be used to express dense time, their extensions can only
describe discrete space.

Existing methods are insufficient for dense time and real-valued signals of
the spatio-temporal properties. Meanwhile, the corresponding theory, solid tools
and applications aren’t well-developed yet.

2 Related Work

Generally, there are two kinds of logic-based approaches to specify spatio-
temporal properties: the extension of temporal logic with spatial modality and
the combinations of spatial logic and temporal logic.

Some spatio-temporal logics are extensions of temporal logic with spatial
modality. Bartocci et al. [2] extend temporal modalities with spatial directions
to reason reaction diffusion systems. Nenzi et al. [8] present SSTL to combine
the until temporal modality with two spatial modalities, so that one can express
that something is true somewhere nearby and being surrounded by a region
that satisfies a given spatio-temporal property. Balbiani [1] explores the bidi-
mensional space in multi-agent systems through extending dynamic logic with
formulas representing the agents’ positions and programs moving from one posi-
tion to another position. Andreas [9] et al. present Shape Calculus based on
Duration Calculus extended bounded polyhedra for the n-dimensional space for
the specification and verification of mobile real-time systems.

The combinations of temporal logic and spatial logic inherit the expressive-
ness of the two logics. Haghighi et al. [6] present a combination of signal temporal
logic (STL) and tree spatial superposition logic (TSSL) and apply SpaTeL to
networked systems. Ciancia et.al [5] present STLCS enhances SLCS with tem-
poral operators and features the CTL path quantifiers ∀ (“for all paths”) and ∃
(“there exists a path”). Bennett [3] et al. construct a multi-dimensional modal
logic named PSTL through the Cartesian product of the temporal logic PTL
and the modal logic S4u. Sun [10] et al. present a combination of MTL and S4u
to specify safety properties of cyber-Physical systems.

3 Proposed Approaches

STL is present to express properties with continuous behaviors. In order to
specify continuous change of spatial entities, we extend the real-value interval
into spatio-temporal domain through combining of STL and S4u, named STSL.
Formally, the spatial temporal interval I is defined as [(t, l), (t′, l′)], ∀t, t′ ∈ T,
∀l, l′ ∈ L and t < t′. We present two interpretations: STSLPC and STSLOC .
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STSLPC expresses changes over time of the truth-values of purely spatial propo-
sitions. While STSLOC expresses changes or evolution of spatial objects over
time.

STSLPC expresses the change of truth-value of proposition and it is the ele-
mentary requirement for a combined spatio-temporal logic. Specifically, STSLPC

is defined on spatio-temporal terms τ over the spatio-temporal interval I, which
is the fusion of temporal logic STL and modal spatial logic S4u so that the
language can express the changes over time of the truth-values of purely spatial
propositions. The syntax of STSLPC is given by:

τ :: = p | τ | τ1 � τ2 | Iτ
ϕ :: = �∀ τ | xi ≥ 0 | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1UIϕ2

where, τ is a spatio-temporal term, p is a spatio-temporal variable, τ is the
complementary of τ , τ1 � τ2 is the intersection of τ1 and τ2, I is the interior
operator under the topological space interpretation. Moreover, the dual operator
of I is the closure operator C, which means possible or consistent. xi ≥ 0 is an
atomic predicate, ¬, ∨ and ∧ are the Boolean operators, UI is the until operator.

The semantics of STSLPC is divided into Boolean semantics and quantita-
tive semantics, which returns purely spatial propositions and real-valued spatial
objects. The quantitative semantics can be transformed to Boolean semantics
by a predicate μi. A spatio-temporal model is defined on topological space and
temporal model. Formally, a spatio-temporal model M = (T,L,V), where

– T is a pair (T, <), where T is a set of time point and < an irreflexive, transitive
and asymmetric relation on T with a linear strict time flow,

– L is a topological space domain with the definition of (U, I) in which U is
a nonempty set, the universe of the space, and I is the interior operator
on U satisfying the standard Kuratowski axioms: ∀X,Y ⊆ U, I(X ∩ Y ) =
IX ∩ IY, IX ⊆ IIX and I(U) = U,

– V is a valuation on the time point set T and the spatial variable set P, i.e.,
∀p ∈ P, and t ∈ T. Formally, V(p, t) = {μi | ∀i ∈ N, xi ≥ 0} means the space
occupied by p at time point t.

The Boolean satisfaction relation for an STSLOC formula ϕ over a spatio-
temporal model M is given by:

– (M, t) |= �∀ τ ⇔ V(τ, t) = true
– (M, t) |= xi ≥ 0 ⇔ xi ≥ 0
– (M, t) |= ¬ϕ ⇔ (M, t) �|= ϕ
– (M, t) |= ϕ1 ∧ ϕ2 ⇔ (M, t) |= ϕ1 and (M, t) |= ϕ2

– (M, t) |= ϕ1UIϕ2 ⇔ ∃t′ ∈ t + I s.t. (M, t′) |= ϕ2 and ∀t′′ ∈ [t, t′],
(M, t′′) |= ϕ1

A model M satisfies ϕ in t, denoted by (M, t) |= ϕ. The Boolean and quan-
titative semantics for interpreting the expressiveness of STSLPC and STSLOC

are present according to the satisfiable relations that a spatio-temporal model
holds the spatio-temporal specification.
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4 Current Results and Future Work

The proposed approach contains axiomatization, decidability and runtime moni-
toring. The axiomatization presents a Hilbert-style axiom system and the sound-
ness and completeness results are proved from the perspective of mathematics.
Decidability presents the undecidable and decidable fragment, an SMT-based
approach is present to verify the spatio-temporal properties. Bases, we present
a runtime monitoring for the language in MATLAB.

Currently, the work of axiomatization presents the incompleteness of
STSLOC , while STSLPC is sound and weakly complete based on the spatio-
temporal extensions of maximum consistency set and canonical model [7]. The
decidability of STSL present that the satisfiability problem of STSLOC is unde-
cidable, even the quantitive interpretation of STSLPC is still undecidable.
But the Boolean interpretation of STSLPC is decidable and the complexity is
EXPSPACE-complete, and the formal verification is based on the SMT approach
to satisfiability of MITL [4].

Runtime monitoring of STSL is work in process. We build the spatio-temporal
model to monitor the changes of spatial signals over time, where the spatio-
temporal model is built within MATLAB and formulas are specified with the
proposed STSL.
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Abstract. Cyber-Physical-Social Systems (CPSS) is an emerging com-
plicated topic in recent years which focuses on the researches of a com-
bination of cyberspace, physical space and social space. Different from
traditional Cyber-Physical-Systems, CPSS contain human who interacts
with the cyber and physical part more frequently. So how to capture and
analyse human behaviors play a vital role in CPSS performance eval-
uation. To improve the analysis accuracy of CPSS, the paper proposes
a new modelling framework – stohMCharts (stochastic hybrid MARTE
statecharts) which is an extension of MARTE statecharts for stochastic
hybrid system modelling and analysis. Compared to MARTE statechart,
in stohMCharts, we can model the CPSS in a unified way. Also, we asso-
ciate stohMCharts to NSHA (Networks Stochastic Hybrid Automata)
and use statistical model checker UPPAAL-SMC to verify the stohM-
Charts. We apply an autonomous car as an example to explain the effi-
ciency of our proposed approaches.

Keywords: Statistical model checking · Cyber-Physical-Social
Systems · Stochastic hybrid MARTE statecharts · Stochastic Hybrid
Automata

1 Problem Statement

Our society is rapidly developing towards Cyber-Physical-Social Systems that
interact and collaborate with humans. For example: autonomous vehicles inter-
acting with pedestrians and human-drive vehicles, medical robots collaborate
with doctors. Human play a central role in CPSS. The continuing interactions
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of human lead to many safety concerns. The system reactions have direct conse-
quence on the environment the human live in. Furthermore, these actions highly
depend on learned models of the environment or the human they interact with.
The safety-critical nature of the CPSS demands providing correct guarantees
about their actions, models and performance. This brings us to a series of cardi-
nal problems we need to research in CPSS. How do we model human behaviours?
How do we model the interactions between the human and the systems? What
models are suitable for formal analysis and verification of CPSS? How do we
address safety in reactive, stochastic environments?

2 Proposed Approaches

The technology paradigm provides relevant information services. For example, to
discover neighborhoods and communities that consider human and social dynam-
ics as an integral part of CPS is termed CPSS. As depicted in Fig. 1, in social
space, we classify the human behaviors based on machine learning algorithms,
the most used methods are naive bayes [4], support vector machine [6], k-nearest
neighbor [5], decision tree [1] and random forest [3] etc. When the human behav-
iors indicate the driving behaviors, we can predicate the new driver driving style
based on the classification rule, so we can get the probability distribution of the
driving style. The parameters of StohMChart in cyber space are the analysis
results of social space.

It shows the workflow of our approach and the overview of our framework
in Fig. 2. we first model the CPSS with stohMChart which extended hMChart
with uncertainty information (e.g., measuring human variations, action execu-
tion time). We then actively update the human models by online information
gathering. We also efficiently learn human’s preferences by actively synthesizing
comparison queries, and then analyze the accuracy of our human models for
the purpose of verification. We transformed the stohMChart model to NSHA
(Network of Stochastic Hybrid Automata) based on mapping rules. To allow the
quantitative analysis of stohMChart model via performance queries, we trans-
late the design specification into the properties in the form of PCTL (Probabilis-
tic Computation Temporal Logic). After both NSHA models and performance
query-based properties are ready, the framework employs the statistical model
checker UPPAAL-SMC to conduct the quantitative analysis of CPSS stochastic
behaviors. In the following subsections, we will introduce the definition of stohM-
Chart syntax and semantics as well as the major components of our framework.

The syntax of stohMChart
A stohMChart is a tuple stohMChart = {L, l0,T, Cmds,A,C, Inv,D} where

1. L = {l0, l1, ..., lm} is a set of locations. l0 ∈ L is the initial location.
2. T ⊆ L × Cmds × Σ × 2X∪V × L is a set of transitions.
3. Cmds = {g0, g1, ..., gp} is a set of probabilistic guard commands of the form

g → p1 : u1 + ... + pm : um where
– g ⊆ L × Rk is a guard, k ∈ N+ is the dimension of the stohMChart, i.e.

there are k variables (including clock variables) in the model.
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Fig. 1. The three parts of cyber-physical-social systems

– For all 1 ≤ i ≤ m, we get pi ≥ 0 and Σm
i=1pi = 1.

– The update function is defined as Λ : (L × Rk) → 2L×Rk

for 1 ≤ i ≤ m.
4. A = {act0, act1, act2, ..., actn} is a set of actions. We define a single action τ

representing the passing of time.

Fig. 2. The overview of our framework
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5. C is a finite set of clocks constraints, {c1, c2...} are clocks.
6. Inv = {i0, i1, ..., in} is a set of invariants. Inv : L → Exp assigns a set of

invariants L to each location.
7. D is the delay function. D : (l, v, e) → Normal(μ, δ)/Exp(rate)/Uniform(a,b).

3 Conclusion and Future Work

– We integrate human behavior classification based on machine learning with
statistical model checking to analysis cyber-physical-social systems.

– We present a new formal visual language, stohMCharts (Stochastic Hybrid
MARTE Statecharts) by extending the syntax and semantics of hMChart and
importing the modeling & analysis of the stochastic behaviors of an uncertain
environment and in particular human behaviors.

– To automate the quantitative analysis of CPSS designs, we rely on NSHA
(Network of Stochastic Hybrid Automata) [2] as the model of computation in
our approach. We propose a set of mapping rules and construction algorithm
that can automatically transform stohMChart in CPSS design into NSHA.

– We integrate our formal framework which supports the quantitative perfor-
mance analysis of stohMChart with the statistical model checker UPPAAL-
SMC.

Future Work. Considerably more work will need to be done to determine
which machine learning algorithm should be choose depend on different human
behavior. Further research could usefully explore how to automatically transfer
the parameter to the StohMChart from classification results. Another work is to
develop an algorithm and a tool to automatic generate UPPAAL-SMC model
from stohMCharts. This research has thrown up many questions in need of
further investigation.
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